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1I N T R O D U C T I O N

The field of molecular biology aims at understanding the processes of the regulation
of gene expression in single- and multicellular forms of life as they ultimately shape
the identity of cells, tissues, and organisms. Gene expression during embryonic de-
velopment is a complex and highly orchestrated concert of regulatory processes that
culminates in the birth of a new life. Deviations from the regular plan of gene regu-
lation is the breeding ground for both disease and evolutionary change.

Regulation happens at every level during the process of gene expression, and one of
the key steps is the transcription of DNA to RNA. Much of the transcriptional regula-
tion happens not at the gene itself, but at cis-regulatory elements such as promoters,
enhancers and silencers. These elements are involved in recruiting the transcriptional
machinery to the transcription start site of a gene and initiate transcription. As the ge-
netic information in every cell of an individual organism is identical, differential gene
activity across tissues is accomplished through epigenetic heterogeneity, i.e. tissue-
specific features beyond the DNA sequence.

The scope of this thesis is the development of computational methods that describe
the epigenomic properties of enhancers and facilitate their identification. Moreover,
this work explores the ambiguity of what it means for a genomic element to be evo-
lutionarily conserved between species and challenges the current notion that mainly
focuses on sequence conservation.

1.1 thesis outline

This thesis comprises five Chapters including the current introduction. In Chapter 2
I will review the general biological background necessary for understanding the bio-
logical aspects of this thesis. In addition, I will explain experimental techniques pro-
ducing the relevant biological data for this dissertation. In Chapter 3 I will describe
the fundamental mathematical concepts on which the subsequently discussed com-
putational methods are based. In Chapter 4 I will present a computational method
for the identification of cis-regulatory elements on epigenomic data using supervised
and constricted hidden Markov models. I will compare the method to the state-of-
the-art, describe its advantages and disadvantages and discuss the properties of the
genome-wide predicted elements. In Chapter 5 I will turn to the subject of evolu-
tionary conservation of regulatory elements. I will present two methods that map
non-alignable sequences between two species with large evolutionary distances un-
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2 introduction

der slightly different aspects and aim at identifying functionally conserved elements
beyond sequence conservation. Finally, I will discuss the work presented in the pre-
ceding Chapters and conclude the dissertation with an outlook to potential future
directions.



2B I O L O G I C A L B A C K G R O U N D

"The molecules of life are not yet life itself any more than a pile of bricks and lumber is a
mansion. At a minimum, life needs a metabolism... [and] the ability to make more of itself - to
replicate."
— A. Wagner, Arrival Of The Fittest, 2014.

The field of molecular biology studies - as its name implies - life at the molecular
level. Molecular biologists are interested in the structure and composition of cellular
components as well as their interactions in diverse processes that together contribute
toward an organism’s maintenance and proliferation. Proteins are one of the key
actors of cellular processes and take on many roles. Structural proteins establish the
shape of cells or exert mechanical forces as motor proteins, enzymes are a class of pro-
teins that catalyze chemical reactions, and signaling proteins such as receptors or hor-
mones establish signal transduction mechanisms. Proteins are large macromolecules
consisting of amino acid chains, and the particular linear sequence as well as three-
dimensional fold that such a sequence entails, gives rise to the protein’s function.

The information on how to assemble a protein, i.e. which amino acids to string to-
gether in which order, is stored in underlying blueprints, the genes. Genes are func-
tional units on a large linear molecule called desoxyribonucleic acid (DNA). DNA
consists of two strands of polynucleotides that coil around each other to form a dou-
ble helix. The nucleotides of each strand are composed of a phosphate-sugar back-
bone that is bound to that of neighboring nucleotides, and a nucleobase that interacts
with its complement on the opposite strand to form a base pair. The four bases in
DNA are adenine (A), cytosine (C), guanine (G) and thymine (T), and base pairing
happens between A and T as well as between G and C via hydrogen bonds. In a
process called replication, the protein complex DNA polymerase duplicates the cell’s
DNA before the cell divides into two daughter cells, each containing one copy. That
way, genetic information is passed onto the next generation during cell proliferation.

DNA is not only replicated, it can also be transcribed to ribonucleic acid (RNA),
which itself can then be translated to synthesize proteins. RNA is a molecule sim-
ilar to DNA, but its sugar backbone contains an additional hydroxyl group, hence
the name ribose instead of deoxyribose. Moreover, it uses an unmethylated form of
thymine called uracil (U) and often occurs as a single-stranded molecule that folds
onto itself. Transcription and translation are the core constituents of a process called
gene expression. Together, replication and gene expression constitute a process so
central that it has been termed the central dogma of molecular biology, a hypothesis pos-
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4 biological background

tulated by Francis Crick in 1958 describing the flow of genetic information within a
biological system [2]. The basic principle of the central dogma of molecular biology
is depicted in Figure 2.1.

Today, gene expression is understood to be a complex and highly regulated concert
of processes sustaining a cell’s functions and thus ultimately essential for the mainte-
nance of life.

RNA Polymerase
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Figure 2.1: The central dogma of molecular biology. The DNA double-helix is unwound for
replication or transcription which is conducted by different types of polymerases. The tran-
scriptional polymerase produces pre-messenger RNA (mRNA), which is transported from
the nucleus to the cytoplasm after processing. There, mature mRNA gets translated by ribo-
somes to polypeptides, i.e. proteins.

2.1 from dna to protein - the central dogma of molecular biology

The DNA of a human cell - its genome - comprises around 3.1 billion base pairs [3],
and only around 1.5% thereof is considered to code for proteins in a total of approxi-
mately 20,000 genes [4–7]. The DNA of an active gene is read by the protein complex
RNA Polymerase II (RNAP II) and used as a template to create RNA in a process
called transcription. RNA comes in many different types: mRNA is the transcript of
protein-coding genes and is transported from the nucleus to the cytoplasm where ri-
bosomes translate it into protein according to the genetic code. However, the majority
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of transcripts does not code for proteins [8]. The ribosome itself is a big complex com-
posed of both ribosomal proteins and ribosomal RNAs (rRNAs), and the process of
translation involves the transfer of amino acids carried by transfer RNAs (tRNAs) to
the nascent peptide chain. Other types of RNA are involved in the regulation of tran-
scription (e.g. long non-coding RNAs (lncRNAs)) as well as the regulation of gene
expression at the post-transcriptional level (e.g. microRNAs (miRNAs) and small in-
terfering RNAs (siRNAs)).

Gene expression is regulated on all levels, i.e. before and after transcription as well
as on a post-translational level. This thesis focuses on the transcriptional aspect of
gene regulation. In the remaining part of the Section I will describe the processes of
transcription in more detail and introduce the concept of transcriptional regulation.

2.1.1 transcription

Transcription can be divided into three major steps: initiation, elongation and ter-
mination. Transcription initiation happens at gene promoters, short cis-regulatory
elements located in proximity to the transcription start site (TSS) of the gene they
regulate. In this context, cis means acting on the same DNA molecule, i.e. the same
chromosome. In contrast, trans-acting factors, e.g. transcription factors (TFs), inter-
act with different molecules. Promoters harbor binding sites for general transcrip-
tion factor (GTF), which perform a series of actions: First, they recruit RNAP II to
the promoter, forming and stabilizing the initiation complex. The initiation complex
then unwinds the DNA forming a transcription bubble in preparation for gene tran-
scription.

Eventually, the positive transcription elongation factor P-TEFb phosphorylates the
C-terminal domain of RNAP II, causing it to undergo a series of conformational
changes that release it from the promoter to begin transcription elongation, at which
point the GTFs are released from the promoter and available for a new round of tran-
scription initiation. During transcription elongation, RNAP II slides along the gene
body and transcribes the DNA template strand to mRNA. In humans, transcription
elongation happens at a speed of around 3.3 - 3.8 kilo base pairs (kbp)/min [9]. The
average human gene is 28 kbp long [5], and its transcription therefore takes around
7-8 minutes. The largest human gene DMD covers 2.3 mega base pairs (Mbp) and
it takes more than 10 hours to transcribe it. However, transcription can be initiated
before the previous transcription terminated and thus often takes place in parallel.
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During transcription termination, the nascent transcript is cleaved and prepared
for downstream processing. For example, mRNAs are subject to intron splicing, 3’-
polyadenylation and 5’-capping before preparing them for nuclear export and trans-
lation in the cytoplasm. Non-coding transcripts are frequently processed during or
after transcription termination too, e.g. different types of rRNAs are the product of
cleaving and chemically modifying a large precursor rRNA.

2.1.2 transcriptional regulation

In eukaryotes, transcription is regulated during all major steps. The mechanisms are
manifold and involve trans-acting factors such as TFs as well as cis-acting regulators
and chromatin structure.

transcription factors TFs belong to the class of DNA-binding proteins and
regulate gene expression. They are highly diverse in terms of structure and DNA
binding mechanisms and group into different families that are defined based on their
DNA-binding domain (DBD) such as helix-turn-helix, zinc finger, homeodomains,
leucine zipper, helix-loop-helix and β-sheet proteins (see [10] for review). Weirauch
and Hughes [11] catalog 91 different types of DBDs across different domains of life,
with binding preference, biological role and regulatory targets still unknown for the
majority of eukaryotic TFs. In human, there are more than 2600 proteins with DBDs
[12], suggesting a high complexity of gene regulation through TFs. The basic func-
tion of a TF is the recognition of DNA sequence patterns that allows it to bind at
specific genomic locations. Subsequently, it either promotes or represses the recruit-
ment of RNAP II to the target gene promoter, in many cases in concert with other
TFs and through coactivators, chromatin remodelers and histone modification (HM)
enzymes.

chromatin structure Eukaryotic DNA is wrapped around protein complexes
consisting of eight histones in order to compact the DNA enough to fit in the nu-
cleus. Histones are the protein components of chromatin and have an arginine- and
lysine-rich N-terminus, conferring them a basic and positively charged character that
allows a tight interaction with the negatively charged DNA. Together, histones and
DNA form the lowest subunit of chromatin, the nucleosome. The presence of nucle-
osomes has an effect on the transcription dynamics. For example, nucleosomes slow
down transcription elongation as they impede the progression of RNAP II. Moreover,
highly compacted DNA is not accessible for most TFs, and it requires the action of



2.2 enhancers 7

so-called pioneer factors and chromatin remodeling complexes to open up chromatin
in order to present the transcription factor binding site (TFBS) to other TFs. Chro-
matin state and structure are therefore crucial elements in the regulation of gene
transcription.

There are several ways to alter chromatin state. A core nucleosome consists of two
copies each of the four different histones H2A, H2B, H3 and H4. The two latter
have long N-terminal tails, and their residues are subject to covalent modifications
by histone-modifying enzymes. For example, lysine 27 at histone 3 (H3K27) can be
acetylated or methylated, altering the characteristics of the chromatin at that loca-
tion. At that residue, acetylation neutralizes the positive charge of lysine and thus
weakens the interaction between the negatively charged DNA and the histone [13].
Methylation has the opposite effect, facilitating chromatin compaction. The addition
of linker histone H1 to chromatin results in the nucleosomes being positioned in reg-
ular arrays, forming tightly compacted chromatin fibers that are not accessible for
the transcription machinery. The regulation of chromatin accessibility through nucle-
osome positioning and modification thus composes a powerful way to regulate gene
expression at the transcriptional level.

Chromatin structure affects transcription not only at the level of nucleosomes. DNA is
a linear molecule, but chromosomes are compartmentalized at multiple spatial scales
[14]. This arrangement in the nucleus results in the spatial proximity of regions that
are far apart on the linear DNA sequence. Not surprisingly, this spatial organization
of chromatin is not random. In 2012, it was discovered that eukaryotic genomes form
chromosome territories, within which DNA sequences interact more frequently with
each other than with sequences from outside such domains, termed topologically as-
sociated domains (TADs) [15, 16]. Chromatin that interacts with the nuclear lamina
forms lamina associated domains (LADs) and becomes transcriptionally silent. For
a review on TADs and LADs, see [17]. The full range of functions of TADs is still
heavily studied, but it has been observed that interactions of promoters with another
type of cis-regulatory elements, so-called enhancers, does not happen across TAD
boundaries. Because enhancers are at the very center of this thesis, I will introduce
them separately in the subsequent Section.

2.2 enhancers

Enhancers are short sequences of DNA involved in the transcriptional regulation of
gene expression. In contrast to promoters, their position is not constrained to a linear
proximity to a gene’s TSS, and they do not necessarily regulate the closest gene. For
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example, in mouse, the gene Shh and its ZRS enhancer are located approximately 1

Mbp apart [18]. However, enhancers are thought to interact with a gene’s promoter
by coming into close spatial proximity through the three-dimensional chromatin ar-
chitecture.

The discovery of enhancers dates back to 1981, when Banerji, Rusconi, and Schaffner
[19] first described the "enhancement of globin gene expression" in transfected HeLa
cells. Transcription of the cloned rabbit hemoglobin β1 gene was elevated 200-fold
when the gene-plasmid recombinants also contained the viral DNA segment SV40.
The authors found that the enhancing activity of SV40 was independent of orienta-
tion or exact position relative to the TSS of the target gene, and concluded that the
activation of genes by this class of DNA elements, transcriptional enhancers, ought
to be a general mechanism for gene regulation. These findings have fueled research
of transcriptional regulation in general and enhancers in particular.

There have been many attempts to describe the properties of enhancers since they
were discovered in the early 1980s. To date, there is still no well-defined description
of an enhancer that would make their identification unambiguous. However, there
have been myriads of studies reporting different enhancer features. In the remain-
ing parts of this Section I will discuss the properties of enhancers, their mechanistic
function in targeting a specific gene promoter, how they tightly regulate gene tran-
scription in a cell type-specific manner during development and differentiation, their
evolution, as well as their role in disease.

2.2.1 enhancer function

Despite the lack of feature descriptions encompassing all enhancers, there is agree-
ment on the definition of their function: an enhancer elevates the rate of transcription
initiation of its target gene, and it does that by recruiting the essential components
of the transcription machinery [20]. Enhancers have been found to target multiple
genes depending on the cell type, and similarly, genes can be regulated by multi-
ple enhancers, either at the same time, or separately in a cell type-specific manner
[21]. Walter Schaffner, the head of the team that discovered the β-globin enhancer
in 1981, wrote in a 2015 review that an enhancer is a "DNA platform that interacts
with a multitude of transcriptional regulatory proteins" [22]. These proteins, so-called
activators, either directly recruit GTFs and RNAP II to the promoter, or they do so
via coactivators. One of the most prominent coactivators is Mediator, a large protein
complex with a variable subunit composition involved in multiple steps of RNAP II
regulation [23]. With a molecular weight of about 1.4 megadalton (MDa), Mediator is



2.2 enhancers 9

roughly three times the size of RNAP II [24, 25]. During transcription initiation, Me-
diator, GTFs and RNAP II form protein-protein interactions. The exact mechanism
by which activators and coactivators regulate transcription initiation remains poorly
understood, however, different models have been proposed.

According to the recruitment model, enhancers are simple binding platforms for TFs
that establish the assembly of the transcriptional machinery [20]. An enhancer’s activ-
ity depends on many parameters, e.g. the quantity and quality of TF binding events,
the simultaneous presence and interaction of multiple TFs, their arrangement and
orientation as well as structural properties of the subjacent DNA itself. As a basic
principle, enhancers decipher a combinatorial code, a function of the described pa-
rameters [26–29]. Multiple suggestions regarding an enhancer’s integrative function
of those parameters have been proposed.

The enhanceosome model, first described by Bazett-Jones et al. [30] in 1994, suggests
the requirement of strict TF positioning in a specific order on the enhancer. This fa-
cilitates protein-protein interactions between the TFs, leading to the formation of a
higher-order protein complex that recruits RNAP II. The necessity of all enhanceosome
components to be present at the same time in order to confer TF cooperativity pro-
vides a sharp, binary transcriptional switch for the activation of gene expression [31].
The enhanceosome has been described in detail on the transcriptional activation of the
IFN-β gene [32–34].

Most developmental enhancers, however, do not exhibit the highly ordered TFBSs
typical for the enhanceosome model, but rather allow for the additive and even inde-
pendent contribution of TFs to gene activation [31, 35]. This led to the description of
the billboard model which allows for a flexible positioning of TFBSs [35]. According
to this model, enhancers provide information displays, i.e. billboards, which are in-
terpreted by the basal transcription machinery. More than only through additivity, it
seems possible that in some cases indirect TF cooperativity can be achieved without
the need to constrain their relative positioning.

Moreover, some enhancers are enriched for particular TFs without providing the ap-
propriate binding sites, but instead through protein-protein interactions with other
TFs for which binding sites are present. This can be viewed as a model in which
a subset of the required TFs act as coactivators, i.e. they require the DNA-binding
property of other TFs in order to be directed to the site of transcription activation,
known as the TF collective model [36].
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Very recently, there has been a study suggesting a soft syntax model of regulatory
integration at enhancers, which can be understood as an intermediate of the billboard
and the enhanceosome, agreeing with the recruitment and collective models [37]. For ex-
ample, one of the rules of soft syntax appears to be an ordered spacing of binding
motifs with helical periodicity, i.e. distances of ~10.5 base pair (bp). These findings
are in line with the collaborative nucleosome competition model that states that TF bind-
ing to nucleosomal DNA is inherently cooperative due to the TFs’ competition with
nucleosomes [38, 39], representing yet another mechanism of TF cooperativity that
does not require protein-protein interactions.

For a review on enhancer architecture and TF integration models, see [40]. These
recent findings are consistent with the previously reported observation that TFs can
not only recognize DNA sequence, but also DNA shape, and that this shape read-
out can reach beyond the core TFBS [41]. DNA shape is highly dependent on both
nucleotide composition and chromatin state, i.e. how the DNA is organized into the
three-dimensional volume of the nucleus.

2.2.2 enhancer chromatin

Some of the coactivators function as chromatin remodelers and histone modification
enzymes. They enable relaxation of the chromatin from its tight packaging around
nucleosomes and even allow histones to be removed, making the DNA at both en-
hancers and promoters accessible for the binding of other factors, and ultimately
available for unwinding the double strand in order to form the transcription bubble.
Chromatin accessibility can be measured using experimental assays such as DNase-
seq [42, 43] or ATAC-seq [44], and I will address them in Subsection 2.4.2.

Histone modifications (HMs) do not only alter the physical configuration of chro-
matin, they can also be recognized and read by other factors, which led to the propo-
sition of an epigenetic code, the histone code [45, 46]. The hypothesis suggests that, al-
though the DNA remains the same across different conditions, developmental stages,
cell types and tissues, the epigenetic code could confer specificity. Consistent with
that, Heintzman et al. [47] reported in 2009 that HM patterns are highly cell type-
specific at enhancers, and less so at promoters, suggesting that it is the enhancers
that confer specificity to gene transcription.

As of today, there is a plethora of HMs known to correlate with particular genomic
functions. For example, H3K36me3 is a mark broadly spread over actively transcribed
gene bodies and is linked to transcriptional elongation by RNAP II [48]. As briefly
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touched upon in Subsection 2.1.2, acetylation of histone 3, lysine 27 (H3K27ac)
generally relaxes chromatin and is associated with transcriptionally active regions,
whereas trimethylation of the same residue (H3K27me3) has the opposite effect. Cor-
respondingly, both active enhancers and promoters are associated with high levels
of H3K27ac [49, 50]. Moreover, the degree of methylation at H3K4 has been under-
stood to allow the distinction of the two cis-regulatory elements. Active promoters
often have the residue trimethylated (H3K4me3) [51, 52], whereas at enhancers it
is typically monomethylated (H3K4me1) [53, 54]. Consistent with that, methylated
H3K4 has been shown to facilitate subsequent chromatin remodeling such as histone
acetylation by the histone acetyltransferase (HAT) p300 [55–57]. Enhancers with the
active mark H3K4me1 but with their H3K27 trimethylated instead of acetylated were
found to be in an intermediate state between active and repressed, termed poised [58,
59]. These enhancers are silent, but ready to be activated quickly by acetylation of
H3K27.

As a consequence of both the considerable advances in high-throughput techniques
such as ChIP-seq for the genome-wide mapping of in vivo protein-DNA interactions
(see Subsection 2.4.3) as well as increasingly available antibody reagents, the list of
studied HMs has become very long. Zhao and Garcia [60] provide a catalog of the
vast number of studied HMs.

2.2.3 dna methylation

Not only the protein components of chromatin but also the DNA sequence itself
can be subject to post-translational modifications. Methylation of cytosine, one of the
four bases of DNA, is a widespread epigenetic modification across all domains of
life. Methylated cytosine is less stable than in its unmethylated form and prone to
deamination, resulting in a mutation to thymine. In mammals, DNA methylation is
predominantly present at CpG dinucleotides and is thought to alter the underlying
sequence’s activity without changing the sequence itself [61, 62]. As a consequence,
CpG-dinucleotides are about four times less frequent than expected in the human
genome except for distinct loci termed CpG-islands, which often co-occur with gene
promoters [63]. In fact, the association of demethylation of CpG-dinucleotides at pro-
moters with increased transcriptional activity has allowed many promoters to retain
expected CpG frequencies and endowed them with an additional layer of regulation.

Enhancers typically also exhibit reduced DNA methylation, albeit not to the same ex-
tent as promoters. Stadler et al. [64] reported the existence of low-methylated regions
(LMRs) with an average methylation level of 30%, representing CpG-poor distal reg-
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ulatory regions exhibiting enhancer-typical chromatin marks. Moreover, enhancers
co-localize with differentially methylated regions (DMRs), i.e. regions with differ-
ential patterns of DNA methylation across tissues and developmental stages [62]. Cell
type-specific hypomethylation patterns have been reported to correlate with H3K27ac
and reflect cell type-specific enhancers [65]. DNA methylation patterns are often dis-
turbed in cancer epigenomes, leading to uncontrolled transcription of oncogenes or
the silencing of tumor suppressor genes [66, 67]. For a review on DNA methylation,
see [68].

2.2.4 enhancer transcription

CBP and p300 are two proteins from the same family of coactivators. They both act as
a HAT and deposit H3K27ac mainly at enhancers [49, 50, 53, 69]. CBP has been shown
to recruit RNAP II to the site of transcription initiation at the promoter. As a result of
the close spatial proximity of enhancer and promoter during that process, it should
not surprise that RNAP II occasionally transcribes the enhancer instead of the pro-
moter. Kim et al. [70] found that in mouse cortical neurons, about 25% of enhancers
are transcribed bi-directionally, yielding short non-coding transcripts. In Drosophila,
over 94% of enhancers in regions of accessible chromatin have been found to be tran-
scribed with a minimum of five reads, indicating that weak enhancer transcription
might be the rule rather than the exception, but that some of it might be missed by
experimental assays lacking sensitivity. Initiation architecture as well as frequencies
of core promoter elements happen to be highly similar between enhancers and pro-
moters [71], however, the two elements diverge in post-initiation transcript stability
[71]. Enhancer transcription happens both uni- and bidirectionally [72, 73], and it is
unclear whether the transcripts [74, 75] or the process of transcription itself [76] are
functionally important for the process of gene regulation, or if enhancer transcription
is merely a consequence of the spatial proximity of RNAP II to the enhancer’s acces-
sible chromatin [77]. The answer is likely a combination of all of these hypotheses,
and not all enhancers are likely to be governed by the same processes.

Despite recent reports that enhancer transcription is less predictive of enhancer activ-
ity than e.g. the presence of particular patterns of HMs [78], the existence of a link
between an enhancer’s transcription and its activity is widely accepted. Several ex-
perimental techniques measure the production of enhancer RNAs (eRNAs), e.g. cap
analysis gene expression (CAGE) [79], PRO-seq [80], GRO-seq [81] and Start-seq [82,
83]. In particular, CAGE was used by the FANTOM consortium to establish a com-
prehensive atlas of transcribed enhancers in multiple organisms and cell types [84]. I
will describe the technique in more detail in Subsection 2.4.4.
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2.2.5 enhancer conservation

Genomic portions that confer function essential to the viability and fitness of an
organism tend to be evolutionarily conserved [85, 86]. Mutations of such DNA se-
quences may lead to a reduced fitness and are thus naturally selected against, a
phenomenon known as negative or purifying selection [85]. Conversely, evolutionary
conservation of a DNA sequence can indicate its functional importance [86], although
it does not necessarily prove it [87, 88].

The different models of how an enhancer integrates the regulatory input from its
binding TFs implicate different evolutionary constraints on enhancer sequence. En-
hancers acting according to the enhanceosome model rely on a strict order of TFBSs
and are thus expected to be conserved across species. This is in fact the case for
developmental enhancers, which are often deeply conserved across large evolution-
ary distances and distribute non-randomly in clusters around the genes they regu-
late. Such regions of unexpected high sequence conservation and their clusters have
been termed conserved non-coding elements (CNEs) [89–91] and genomic regula-
tory blocks (GRBs) [92], respectively, and I will address them separately in the next
Section.

Enhancers under the billboard and collective models possess much more plasticity and
are expected to be less conserved in sequence. Of course, enhancers might also reg-
ulate species-specific traits and exhibit no sequence conservation as they might have
evolved only recently [93]. Moreover, some enhancers act alone and are essential
while others are dispensable as their loss might be buffered by redundant enhancers
[94].

Enhancers with low sequence conservation can mean two things: either the enhancer
is indeed specific to a particular species or clade, or the enhancer’s function is con-
served, but that conservation is not reflected in the sequence, consistent with the more
plastic billboard and collective models. Moreover, as opposed to promoters, which need
to be located near the TSS of a gene, enhancers are not constrained in their linear ge-
nomic position as long as they manage to spatially fold to their target promoter. Un-
der these circumstances, some enhancers possess more freedom to mutate while con-
serving ancestral function. One proposed mechanism is compensatory TFBS turnover
as has been described in detail for the even-skipped stripe 2 enhancer (S2) in various
Drosophila species [95]. Another is the actual movement, or in evolutionary terms
the turnover of the actual position of an enhancer. This has been described for the
Drosophila gene yellow regulated by an enhancer which is found at variable genomic
positions in different Drosophila species [96]. Taken together, enhancers are a very



14 biological background

diverse type of genomic elements with various modes of action and therefore display
heterogeneous levels of sequence conservation [97], with some exhibiting functional
rather than sequence conservation [86, 98–101].

2.3 shared synteny of conserved non-coding elements in genomic

regulatory blocks

In 1985, Yaffe et al. [102] investigated sequence conservation in mRNA coding for
homologous actins and observed high degrees of homology in parts of the 3’ un-
translated region (UTR), i.e. the part of the transcript downstream of the translation
stop codon. A few years later, Lemaire, Heilig, and Mandel [103] made a similar ob-
servation in the 3’ UTR of the dystrophin gene, followed by other studies reporting
the existence of high sequence conservation in introns, 5’ and 3’ UTRs and other non-
coding regions [104–107]. The development of next generation sequencing (NGS)
technologies greatly facilitated comparative genomics studies and led to three studies
in quick succession that systematically analyzed and described so-called conserved
non-coding elements (CNEs) genome-wide [89–91].

CNEs are genomic stretches of DNA exhibiting striking levels of sequence conser-
vation that exceed those of protein coding genes with some of them being at least
partially conserved over hundreds of millions of years [90]. The conservation levels
of CNEs are unexpected under neutral selection, and it has been reported that they
are subject to negative selection that is much stronger than that in protein coding
genes due to the degeneration of the genetic code [108]. To date, a conclusive model
explaining this degree of sequence conservation in CNEs remains elusive. Graphic
examples of the degree of sequence conservation across multiple species of an exam-
ple gene exon and an example CNE are given in Figure 2.2 A and B, respectively.

CNEs are not distributed randomly in the genome but tend to cluster into highly
syntenic structures, i.e. they co-localize in both species with a conserved order, hence
their genomic positions are collinear [109]. Moreover, such arrays of CNEs are of-
ten found around key developmental genes, which they are expected to regulate
as enhancers [90]. Therefore, these clusters were termed genomic regulatory blocks
(GRBs) [92]. Besides the target gene regulated by the CNEs, GRBs often also contain
bystander genes, i.e. genes whose syntenic positions were maintained solely due to
their interspersion with CNEs, but whose expression and function are distinct from
those of the target gene due to a different promoter architecture [110, 111]. A visual
interpretation of the GRB model is given in Figure 2.2 C.
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GRBs have been shown to coincide with TADs, suggesting a role of CNEs in the
three-dimensional organization of chromatin [112]. Conversely, not all TADs coincide
with GRBs. Those who do are typically larger and gene-sparser as well as attributed
with higher strengths of intra-TAD interactions than those who do not contain clus-
ters of CNEs. Also, target genes in GRB-overlapping TADs tend to exhibit a higher
cell-type-specificity. As these two types of TADs often alternate on the linear genome,
it has been proposed that the insulation of the TADs that do not overlap GRBs is sim-
ply a consequence of their adjacency to strongly interacting TADs [112]. For a review
about CNEs and GRBs, see [113, 114].

A

Bystander
Gene

CNE Target
Gene

Bystander
Gene

C

B

Figure 2.2: CNEs exhibit high degrees of conservation and cluster in GRBs. A Multiple align-
ment of an example coding region (exon of HIST1H4D, hg19 at chr6:26,189,130-26,189,194).
Dots represent identical nucleotides with respect to the hg19 reference. B Multiple alignment
of an example CNE (hg19, chr3:180,462,367-180,462,428). C Schematic illustration of the GRB
model.
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2.4 experimental techniques in functional genomics

The field of functional genomics aims to understand an organism’s phenotype as
a function of its genotype. Different experimental techniques have emerged that al-
low investigating particular aspects such as gene expression, protein interactions and
many more. In this Section I will introduce the essential techniques giving rise to the
data that I used in my projects and refer to in other parts of this thesis.

2.4.1 dna sequencing

As a consequence of the central role of DNA in functional genomics, DNA sequenc-
ing is one of its most central techniques, and many experimental methods incorporate
a step of DNA sequencing in their protocols. Historically, DNA sequencing tech-
niques were developed after the first published sequencing methods for proteins in
the 1950s [115] and RNA in the 1960s [116]. The first successful attempt to sequence
DNA dates back to the late 1960s when Wu and Kaiser [117] sequenced the 12 bps
of the cohesive ends of bacteriophage lambda. In 1973, Gilbert and Maxam [118] pub-
lished the 24 bp long nucleotide sequence of the lac operator. The applied methods
were extremely cumbersome and time-consuming, and it was not before 1977 that
two methods with drastically improved speed were presented: The chemical cleav-
age procedure by Maxam and Gilbert [119], and the chain terminator procedure by
Sanger, Nicklen, and Coulson [120].

Within the next decade, multiple methods and protocols were developed that refined
and automated the existing sequencing techniques [121–123]. By the year 2000, a sec-
ond generation of sequencing methods emerged, termed next generation sequencing
(NGS) or high-throughput sequencing (HTS). The latter term is owed to the main
difference of HTS technology to previous methods, namely that it is highly scalable,
allowing the sequencing of an entire genome in one go. Today, sequencing by synthe-
sis is one of the most widely used short-read HTS methods and universally known
as Illumina sequencing [124]. The main steps in the Illumina protocol are as follows:
First, DNA is fragmented yielding small pieces of a few hundred bps. The fragments
are clonally amplified in a highly parallel process called bridge amplification. Then,
the single DNA strands are complemented using fluorescently tagged nucleotides
during the sequencing step. The addition of each nucleotide emits a characteristic
fluorescent signal that allows deciphering the composition of the DNA sequence.

Paired-end sequencing incorporates the sequencing of fragments from both ends and
thereby further improves the quality of the sequencing data. Long-read sequencing
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techniques such as Nanopore and single-molecule real-time sequencing (SMRT) fa-
cilitate de novo genome assembly at the expense of a decreased accuracy [125, 126].
For a review on the history of DNA sequencing, see [127].

2.4.2 chromatin accessibility assays

Regulatory activity requires the ability of TFs to bind and interact with chromatinized
DNA. This is highly dependent on the degree of chromatin accessibility which is de-
termined by nucleosome occupancy and organization. In 1973, Hewish and Burgoyne
[128] described the use of DNA endonucleases to fragment chromatin and observed
periodic hypersensitivity across the genome. Since then, technological advances have
led to today’s possibility of measuring chromatin accessibility genome-wide with
relatively few requirements in terms of biological material and labor. In the follow-
ing paragraphs I will describe two of them: DNase I hypersensitive site sequenc-
ing (DNase-seq) and assay for transposase-accessible chromatin using sequencing
(ATAC-seq). For a comprehensive review on chromatin accessibility and designated
experimental assays see [129].

dnase-seq Deoxyribonuclease I (DNase I) is an enzyme with endonuclease ac-
tivity which preferentially cleaves nucleosome-depleted DNA. It generally does not
have a strong sequence preference and thus binds DNA relatively nonspecifically,
although there have been reports indicating low levels of sequence specificity lead-
ing to some bias in resulting data sets [130]. Applying DNase I to a population of
cells therefore results in short fragments of DNA whose ends correspond to the site
of digestion, also-called DNase I hypersensitive site (DHS). In 2006, two studies
provided the first genome-wide measurements of DNase hypersensitivity [42, 131].
In 2008, Boyle et al. [43] adapted the workflow and presented DNase I hypersensi-
tive site sequencing (DNase-seq), which adds a step of high-throughput sequencing
of the fragments. Sequencing and subsequent alignment back to the genome thus
allowed quantifying the relative abundance of accessible chromatin throughout the
genome. Song and Crawford [132] provide a complete and improved description of
the protocol.

atac-seq Assay for transposase-accessible chromatin using sequencing (ATAC-
seq) protocols were first presented in 2013 by Buenrostro et al. [44] as an orthogonal
approach to DNase-seq. They use hyperactive Tn5, a prokaryotic enzyme of the class
of transposases, which have been shown to integrate into nucleosome-free regions
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in vivo [133]. In ATAC-seq, genetically engineered Tn5 transposes into regions of ac-
cessible chromatin and ligates high-throughput sequencing adapters to these regions.
The presence of nucleosomes sterically hinders such transposition, making it less
likely to happen in nucleosome-dense regions. While DNase-seq requires millions of
cells, ATAC-seq can be performed on 500-50,000 cells [44]. It is a simple procedure
executed in less than two hours, which stands in high contrast to the multiday pro-
tocol of DNase-seq [129]. The simplicity, time-efficiency and the fact that ATAC-seq
data correlates well with DNase-seq let it become the state-of-the-art technique for
measuring chromatin accessibility [44, 134]. In recent years, modifications of the pro-
tocol yielded single-cell ATAC-seq (scATAC-seq), enabling the analysis of accessible
chromatin in heterogeneous cell populations at single-cell resolution [135]. For a re-
view on ATAC-seq, see [136].

2.4.3 chip-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an exper-
imental technique used to identify the location of protein-DNA interactions on a
genome-wide scale and was first described in 2007 [137, 138]. It combines chromatin
immunoprecipitation (ChIP) and high-throughput sequencing to map binding sites
of TFs, HMs and other DNA-binding proteins. ChIP is a procedure in which proteins
and chromatin are covalently cross-linked at their current site of interaction using
formaldehyde. This creates a snapshot of protein-DNA interactions in a given cell
population. The DNA is then fragmented using sonication, followed by isolation of
the fragments bound to the protein of interest using antibodies. DNA recovery and
purification is achieved by the reversal of the protein-DNA cross-links. After that,
DNA is extracted and prepared for high-throughput sequencing. Genome mapping
of sequencing reads represent the last step, yielding quantitative maps of genome-
wide protein-DNA interactions.

It has been reported that highly transcribed and thus accessible chromatin is more
selectively recovered during immunoprecipitation, potentially creating biologically
meaningless artifacts in ChIP-seq data. Other studies show that nearly every step
of the protocol is prone to bias [139, 140]. Moreover, low signal-to-noise ratio and a
resolution limited to above 100 bp sparked the development of improved techniques
such as ChIP-exo [141] and CUT&RUN [142]. Regardless, ChIP-seq has become the
standard method for profiling protein-DNA interactions and is one of the most estab-
lished and widely used techniques in the field. For a review, see [143].
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2.4.4 cage

In 2003, Shiraki et al. [79] developed cap analysis gene expression (CAGE), an exper-
imental method to capture the present state of the transcriptome in a cell population
of interest. In short, CAGE identifies a transcript’s 5’ cap, a particularly modified
guanine nucleotide at the 5’ end of stable mRNA transcripts [144]. In 2012, Taka-
hashi et al. [145] described an optimized protocol in which 5’ capped transcripts are
reverse-transcribed into complementary DNA (cDNA) which is then cleaved by a
restriction enzyme 27 nucleotides downstream of the 5’ end. These so-called CAGE
tags are then amplified using polymerase chain reaction (PCR) and subsequently
sequenced on the Illumina platform.

Since the introduction of CAGE, several improved protocols have been developed
that for example no longer require cleavage and PCR amplification (nAnTi-CAGE
[146]), or operate on a fraction of the input material required in early protocols thanks
to a dramatically increased sensitivity (SLIC-CAGE [147]). CAGE provides a method
for identifying TSSs, characterizing promoter usage and determining the initiation
sites of both coding and non-coding RNAs.





3
M AT H E M AT I C A L P R E R E Q U I S I T E S

3.1 probabilistic models

Probabilistic models are used to model phenomena and incorporate random vari-
ables and probability distributions in order to predict the outcome of an event. In
this Section I will give an introduction into probabilistic models relevant for the work
presented in this thesis.

3.1.1 statistical models for read count data

High-throughput functional genomics assays followed by sequencing are among the
most popular techniques in molecular genetics. They typically produce read count
data that can be used to quantify biological phenomena. The distribution of the read
count data produced by the final sequencing step is often approximated by a suitable
statistical model. Such a model needs to fit the characteristics of the read count data,
which is discretely distributed over an unbounded positive range with the sample
variance exceeding the sample mean. In other words, read count data is overdis-
persed with respect to the Poisson distribution. Gierliński et al. [148] describe the
suitability of multiple statistical models to approximate the distribution of RNA-seq
read count data and find that the negative binomial and the log-normal distributions
perform best. I use these distributions for modeling read count data from ChIP-seq
and ATAC-seq experiments as explained in Section 4.2. In the following paragraphs
I will formally describe the negative binomial and the log-normal distributions.

21
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the negative binomial distribution The negative binomial distribution is
a discrete probability distribution of the number of successful Bernoulli trials x before
the occurrence of a number of failures r. With p denoting the probability of success,
the probability mass function of a negative binomial distribution is

fNB(x; r,p) =
(
x+ r− 1

x

)
(1− p)rpx. (3.1)

With the mean and variance being µ = pr
1−p and σ2 = pr

(1−p)2
, respectively, we can

parameterize the distribution differently and get

fNB(x;µ, r) =
Γ(r+ x)

Γ(r)x!

(
µ

µ+ r

)x(
r

µ+ r

)r
, (3.2)

with Γ(n) = (n− 1)! being the gamma function for all natural numbers n ∈N.

the log-normal distribution The log-normal distribution is a continuous
probability distribution used to describe natural phenomena, e.g. the survival rate of
bacterial spores in disinfectants [149], or the blood pressure of adult humans [150].
The logarithm of a log-normally distributed variable follows a normal distribution.
The probability density function for the log-normal distribution is

fLN(x;µ,σ) =
1

xσ
√
2π

exp
(
−
(ln x− µ)2

2σ2

)
. (3.3)

3.1.2 maximum likelihood estimation

The problem of understanding biological phenomena often involves the underlying
assumption that a particular phenomenon can be described sufficiently by a statistical
model. For example, we might observe some data that we would like to model with a
certain type of probability distribution. Once we are set on a model we intend to infer
the optimal model parameters that best explain the observed data. Maximum like-
lihood estimation (MLE) is a procedure for that purpose. It maximizes a likelihood
function so that under the assumed model the observed data is most probable. Max-
imum a posteriori estimation (MAP) presents an alternative to MLE which proves
particularly useful when observed data size is small and prior information about the
model parameters is available. However, the data discussed in this thesis is generally
large and thus MLE is the method of choice.
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Let Y1, ...,YL be random variables and y = y1, ...,yL realizations thereof. Assuming
that Yl are independent and identically distributed random variables with probability
function p(Yl = yl | θ), the likelihood function of θ is

Ly(θ) =

L∏
l=1

P(Yl = yl | θ) = P(Y = y | θ). (3.4)

The maximum likelihood estimate is then

θ̂ML = arg max
θ

Ly(θ). (3.5)

Typically, the maximum likelihood estimate can be determined by computation of
the roots of the gradient of Ly(θ). In practice, however, the analytical derivation of
Ly(θ) might be complex. Then, we rely on methods that iteratively approach θ̂ML,
such as the expectation-maximization (EM) algorithm.

3.1.3 expectation maximization

Let us assume that not all variables of a model are observed and that there is a set
of hidden data x being drawn from a discrete random variable X with the proba-
bility distribution p (X = x | y, θ). We can then define the likelihood function for the
complete data:

Lx(θ) = Pθ(X = x, Y = y). (3.6)

We now want to find the maximum likelihood estimate using Equation 3.5 on the
likelihood function for the complete data. We can replace the likelihood function
with the log-likelihood because the logarithm is a monotonic function and thus order
preserving. Hence, the parameters optimizing

∑
x

logLx(θ) also optimize
∑
x
Lx(θ).

This is beneficial for analytical and numerical reasons, i.e. preventing floating point
underflow.

The EM algorithm proceeds in two steps. The Expectation step (E step) determines
the expected value of the log likelihood of the complete data given the observed data
and the current model parameters θ(t−1). The expected value of a discrete random
variable is the weighted average of its possible values, hence:

Q
(
θ, θ(t−1)

)
=

∑
x∈ZL

logLx(θ) Pθ(t−1)(X = x | Y = y) (3.7)
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The Maximization step (M step) updates the parameters such that the expected value
from the E step is maximized:

θ(t) = arg max
θ

Q
(
θ, θ(t−1)

)
(3.8)

These two steps are repeated iteratively until convergence, i.e. when Lx
(
θ(t)

)
−

Lx
(
θ(t−1)

)
< τ with τ being a predefined threshold. Note that the EM algorithm

converges monotonically to a local maximum. It is important to incorporate previous
knowledge into the initial parameter estimation in order to achieve optimal results.

In the next Subsection I will introduce the Hidden Markov model (HMM), a proba-
bilistic framework where a special case of the EM algorithm is employed to learn the
model parameters.

3.1.4 hidden markov models

HMMs are used to model a sequence of observations emitted by a sequence of under-
lying hidden states. After HMMs were first described in the 1960s and initially used
for speech recognition problems in the 1980s [151], they are now widely applied to
numerous problems in various fields. They are especially popular in bioinformatics
and have been used for many tasks including locating genes, detecting CpG islands
and segmenting genomes into functional units [152–155]. In this Subsection I will
describe the parameterization of HMMs, how to compute the probability of the data
when the model parameters are known, how to learn the parameters if they are not
known, and how to decode the sequence of hidden states for a given model.

parameterization Standard HMMs have only one hyperparameter: the total
number of discrete hidden states N. Let the set of states be denoted as Z = {1, . . . ,N},
and let Xl be a discrete random variable with N possible values denoting the hidden
state at position l ∈ {1, ...,L}. A first-order HMM assumes that at any position l in the
sequence, the probability of a hidden state only depends on the state at position l− 1
and is independent of any other state in the sequence or the actual position l:

P (Xl = xl | X1 = x1, . . . ,Xl−1 = xl−1) = P (Xl = xl | Xl−1 = xl−1) (3.9)
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This characteristic is called the Markov property. Hence, we can define the transition
probability matrix as follows:

A = {aij}, with

aij = P(Xl+1 = j | Xl = i)

For the first position l = 1, the probability of state i is given by

πi = P(X1 = i),

with π denoting a vector of length N comprising the initial probabilities for every
state.

Further, the HMM relies on the assumption that an observation only depends on the
underlying hidden state and is independent of the actual position l, allowing us to
define the emission probability matrix as follows:

B = {bi(y)}, with

bi(yl) = P(Yl = yl | Xl = i)

Given the model parameters θ = {π,A,B}, the joint probability of the observed data
and a particular sequence of states is

Pθ(Y = y,X = x) = πx1bx1(y1)

L−1∏
l=1

axlxl+1bxl+1(yl+1). (3.10)

probability of the data under a given model If we want to infer the
marginal probability of the observed data under a given model, we have to inte-
grate the joint probability (Equation 3.10) over all possible state sequences. Since the
number of possible state sequences is NL, this can easily become computationally
expensive. Especially in the case of genomic data where L scales with the length of
the genome, this approach becomes infeasible. However, the use of a dynamic pro-
gramming approach called the forward-backward algorithm allows us to compute the
probability of the observed data much more efficiently [154, 155]. The forward pro-
cess recursively determines the probability of being in state j at position l after having
made the current and all previous observations y1:l:

αj(l) = Pθ(Y1:l = y1:l | Xl = j) = bj(yl)

N∑
i=1

αi(l− 1)aij

αj(1) = πjbj(y1)

(3.11)
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The backward procedure works similarly but from the other end of the sequence. It
recursively determines the probability of being in state i at position l and all following
observations yl+1:L:

βi(l) = Pθ(Yl+1:L = yl+1:L | Xl = i) =

N∑
j=1

aijbj(yl+1) βj(l+1)

βi(L) = 1

(3.12)

The probability of the observed data under the model parameters θ is then given by

Pθ(Y = y) =

N∑
i=1

αi(L)

=

N∑
i=1

πibi(y1)βi(1)

(3.13)

learning the parameters If the parameters of an HMM are not known, they
can be learned from the data in an iterative process called the Baum-Welch algorithm,
a special case of the EM-algorithm [154, 155]. The Baum-Welch algorithm aims to yield
the maximum likelihood estimate of the parameters given the observed data:

θ̂ = arg max
θ

Pθ(Y = y)

Initially, the parameters have to be guessed and are often assumed uniform, but a
more educated guess due to prior knowledge might help the algorithm to converge
faster and increases the chance to find the global rather than a local maximum.

In the expectation step, the expected log likelihood is obtained by plugging Equa-
tion 3.10 into Equation 3.7. By setting ρθ(t−1)(x) = Pθ(t−1)(X = x | Y = y) we get:

Q
(
θ, θ(t−1)

)
=

∑
x∈ZL

ρθ(t−1)(x) logPθ(X = x, Y = y)

=
∑
x∈ZL

ρθ(t−1)(x) log

(
πx1bx1(y1)

L−1∏
l=1

axlxl+1bxl+1(yl+1)

)

=
∑
x∈ZL

ρθ(t−1)(x)

(
logπx1 +

L−1∑
l=1

logaxlxl+1 +
L∑
l=1

logbxl(yl)

) (3.14)

In the maximization step, the three summands ofQ
(
θ, θ(t−1)

)
can be optimized sepa-

rately. The first summand can be reduced as we sum over all possible state sequences,
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but only ever consider the first state:

∑
x∈ZL

ρθ(t−1)(x) logπx1 =
N∑
i=1

Pθ(t−1)(X1 = i | Y = y) logπi

·
∑
x2∈X

· · ·
∑
xn∈X

P (X2 = x2, . . . ,Xn = xn | X1 = x1, Y = y, θ)︸ ︷︷ ︸
=1

=

N∑
i=1

γi(1) logπi

(3.15)

where γi(l) denotes the posterior probability of being in state i at position l given the
observed data and the current parameters. For that, we use the previously introduced
forward-backward algorithm:

γi(l) = Pθ(t−1)(Xl = i | Y = y)

=
αi(l)βi(l)
N∑
j=1

αj(l)βj(l)

(3.16)

Computing the roots of the partial derivative with respect to πi and subject to
∑
i

πi =

1, we get:

π̂i = γi(1). (3.17)

The second summand can be reduced accordingly:

∑
x∈ZL

ρθ(t−1)(x)

L−1∑
l=1

logaxlxl+1 =
N∑
i=1

N∑
j=1

L−1∑
l=1

Pθ(t−1) (Xl = i,Xl+1 = j | Y = y) logaij

=

N∑
i=1

N∑
j=1

L−1∑
l=1

ξij(l) logaij

(3.18)
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where ξij(l) denotes the posterior probability of being in state i and j at position l
and l+ 1, respectively, given the observed data and the current parameters:

ξij(l) = Pθ(t−1)(Xl = i,Xl+1 = j | Y = y)

=
αi(l)aijbj(yl+1)βj(l+ 1)

N∑
r=1

N∑
s=1

αr(l)arsbs(yl+1)βs(l+ 1)

.
(3.19)

We can again determine the maxima of the partial derivative with respect to aij and
subject to

∑
j

aij = 1 and get

âij =

L−1∑
l=1

ξij(l)

L−1∑
l=1

γi(l)

(3.20)

Finally, the third term becomes

∑
x∈ZL

ρθ(t−1)(x)

L∑
l=1

logbxl(yl) =
N∑
i=1

L∑
l=1

P (Xl = i | Y = y, θ) logbi(yl)

=

N∑
i=1

L∑
l=1

γi(l) logbi(yl),

(3.21)

and maximizing the function with respect to bi and subject to
∑
i

bi(k) = 1 results in

b̂i(k) =

L∑
l=1

γi(l) 1(k = yl)

L∑
l=1

γi(l)

, (3.22)

where 1(k = yl) denotes the indicator function

1(k = yl) =

1 if k = yl

0 otherwise.
(3.23)

See Appendix A.1.1 for a detailed derivation.

With that, a new set of parameters θ(t) = {π̂, Â, B̂} has been calculated based on the
previous set θ(t−1). Repeating this procedure iteratively until convergence results in
locally optimized model parameters. Those can furthermore be used to infer the se-
quence of hidden states that most likely gave rise to the observed data, a process
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called decoding. I will discuss prevalent decoding algorithms in a later paragraph.

In the next paragraph I will describe how to use the Baum-Welch algorithm to opti-
mize the emission probabilities when they are modeled by the negative binomial and
the log-normal distribution.

the baum-welch algorithm for negative binomial and log-normal

emissions In the previous paragraph I formally described the learning of the
parameters of an HMM. When using the negative binomial distribution to model the
emission probabilities, the optimization problem of Equation 3.21 becomes

µ̂i, r̂i = arg max
µi,ri

L∑
l=1

γi(l) log fNB(yl;µi, ri), (3.24)

Unfortunately, there is no analytical solution to this maximization problem and an
optimal solution can only be found numerically [156].
For the log-normal distribution the optimization problem presents itself as follows:

µ̂i, σ̂i = arg max
µi,σi

L∑
l=1

γi(l) log fLN(yl;µi,σi), (3.25)

Here it is possible to find an analytical solution for the optimization problem (see
Appendix A.1.5 for a detailed derivation):

µ̂i =

L∑
l=1

γi(l) lnyl

L∑
l=1

γi(l)

(3.26)

and

σ̂i =

√√√√√√√√
L∑
l=1

γi(l) (lnyl − µi)
2

L∑
l=1

γi(l)

(3.27)

With that, finding the optimal parameters for fitting the read count distribution with
a log-normal distribution becomes an easy task that can be achieved in short compu-
tational time.
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decoding the state sequence In this paragraph I will outline two popular
approaches for inferring the underlying sequence of hidden states that most likely
produced the observed data under a given model [154, 155].

The posterior decoding produces a state sequence xp containing the most likely state
for each position l:

x
(P)
l = arg max

i∈Z
Pθ(Xl = i | Y = y)

= arg max
i∈Z

γi(l)
(3.28)

The Viterbi decoding in turn produces the most likely state sequence, i.e. it does not
maximize yx(l) for every l independently, but instead maximizes the probability of
the whole sequence:

x(V) = arg max
x∈ZL

P (X = x | Y = y, θ) (3.29)

Instead of computing the probability of every possible path, the Viterbi algorithm
uses dynamic programming to obtain the same result recursively [154, 155]:

Vj(l) = max
i∈Z

[
aijVi(l− 1)

]
bj(yl),

Vj(1) = πjbj(yl).
(3.30)

If the model contains transition probabilities that are zero, posterior decoding could
potentially yield forbidden transitions. In cases where this is undesirable it is crucial
to use Viterbi decoding in order to preserve the model’s grammar. I will give an ap-
plied example in Subsection 4.2.7, and show how the Viterbi algorithm can be used
for parameter training in Subsection 4.2.4.

3.1.5 extended hidden markov models

In addition to the standard HMM, a plethora of modified and extended topologies
of HMMs have been described. For example, the factorial HMM is based on multi-
ple independent Markov chains, and the tree structured HMM is a further extension
thereof, which introduces coupling of state variables in a single time step [157]. In
triplet Markov models, the distribution of the hidden and observable process is the
marginal distribution of a Markov process (X,U, Y), where U is an auxiliary under-
lying process [158]. Switching state-space models combine real-valued and discrete
hidden states in order to model time series with continuous dynamics [159]. Other
extensions allow for an infinite or unknown number of states, e.g. the infinite HMM
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[160] and the hierarchical Dirichlet process HMM [161]. Standard HMMs do not re-
quire class-labeled data but rather learn patterns from unlabeled data, i.e. they fall
into the category of unsupervised machine learning. In contrast, supervised HMMs
have been described that make use of labeled data for parameter learning [162]. I will
introduce an application of supervised HMMs including additional constraints on
the Markov chain topology in Subsection 4.2.2.

3.2 graph theory

Graph theory describes mathematical structures representing sets of pairwise rela-
tions between objects. A graph is a diagram of vertices that are connected by edges,
describing their relationship. One of the earliest formal descriptions of a graph goes
back to 1736 and the Seven Bridges of Königsberg, when the Swiss mathematician Leon-
hard Euler studied the system of bridges connecting mainland and islands across the
river Pregolya in Königsberg (today Kaliningrad, Russia) [163]. He asked whether it
was possible to walk over every bridge exactly once with starting and ending at the
same place. For that, he reduced a conventional map to the relevant information for
this problem which is the land masses and the bridges connecting them, as shown in
Figure 3.1.

Graphs provide a simple model for many practical problems and are therefore used
ubiquitously across all fields of science. In biology, graphs are used extensively to
model systems such as gene regulatory networks, biochemical pathways, and many
more. I use graphs for the mapping of unalignable genomic regions between distantly
related species as discussed in detail in Section 5.2.

A

D

B

C

A

B C

D

Figure 3.1: A map of the Seven Bridges of Königsberg (left) and its graph representation
(right). Adapted from Bóna [163].
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3.2.1 formal definition

A graph G is a pair of sets V and E such that the elements of E are 2-element subsets
of V. If G has no loops, i.e. an edge from a vertex to itself, no multiple edges between
pairs of vertices, and the edges are bidirectional, then G is a simple undirected graph
and can be defined as follows:

G = (V ,E) such that E ⊆ { {x,y} | (x,y) ∈ V2 ∧ x 6= y } (3.31)

A sequence of distinct edges e1e2 . . . ek is called a walk, and such a sequence with
e1 = ek is termed a closed walk. Eulerian walks contain every edge of a graph, and
walks with every vertex being present maximally once are called paths. The solu-
tion to the problem of the Seven Bridges of Königsberg is thus a closed Eulerian walk.
Graphs with existing paths between every pair of vertices are called connected, and if
a graph contains all possible edges then it is a complete graph. The degree of a vertex re-
veals the number of edges connected to it. In weighted graphs, edges are not just mere
connections but associated with a numerical weight that holds information about the
length of the connection. An example is a graph where the vertices are cities and the
edges are the distances between them.

3.2.2 shortest path problem

In many real-world problems we are facing the challenge of finding the shortest path
from one vertex to another in a weighted graph. For example, navigation systems
consist of graphs with places and streets as their vertices and edges, respectively,
and ideally such systems suggest the shortest path between a given start and end
point. With increasing graph size, finding the shortest path between two vertices em-
pirically by evaluating every possible path quickly becomes an infeasible task. In
1959, the Dutch computer scientist Edsger W. Dijkstra [164] presented an algorithm
that solves the problem for graphs with non-negative edge weights. It is generally
perceived as a greedy algorithm, however, it has been proposed to be revalued as a
dynamic programming successive approximation procedure [165]. The algorithm has
been named after its inventor: Dijkstra’s Shortest Path Algorithm (DA).

dijkstra’s shortest path algorithm Let G = (V ,E) denote a simple undi-
rected graph with non-negative edge weights, i.e. d(ei) > 0 ∀ ei ∈ E. We want to
find the shortest path from vertex s to vertex t with s 6= t. Let δ(v) denote the length
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of the tentatively shortest path from s to v. Let V split into S and T , where S is the set
with all vertices for which we currently have a tentatively shortest path from s, and
T is the set of vertices for which we do not. The algorithm starts with the following
setting:

S = {s}

T = V − s

δ(s) = 0

δ(v) = ∞ ∀ v ∈ T .

(3.32)

Set the current vertex c = s and evaluate every edge cv with v ∈ T . If δ(c) + d(c, v) <
δ(v), this means that the path through c to v is shorter than any previously calculated
path to v. Set δ(v) = min [δ(v), δ(c) + d(c, v)]. From all evaluated v, choose the vertex
with the shortest tentative path, i.e. v ′ = arg minv δ(v), move v ′ to S and set c = v ′.
Continue iteratively until v ′ = t. All tentative shortest paths to any v are stored re-
cursively by defining a pointer p(v) = c as δ(v) is updated. The final shortest path
to t is then found recursively starting at p(t). The time complexity of DA has an up-
per bound of O(|V |2), but can be decreased to O(|E|+ |V | log |V |) when using priority
queues [166].





4
P R E D I C T I O N O F C I S - R E G U L AT O RY E L E M E N T S

4.1 motivation

Enhancers are DNA sequences that act as cis-regulators on the transcription of genes
and are therefore at the center of research of transcriptional regulation. The research
community is and has been interested in many aspects of enhancer properties and
has been asking manifold questions about their role during development [167], how
they emerge, become fixed, conserved or eventually disappear over time [168], their
mechanistic function and how they target gene promoters [169, 170], their role in dis-
ease [167] and many more. Identifying enhancers forms the foundation for all of those
questions. There are multiple reasons why this is a difficult task. First, enhancers are
relatively small - an ordinary enhancer is thought to comprise a handful of TFBSs on
a stretch of DNA no longer than a few hundred base pairs [171]. Second, the search
space is large as enhancers distribute over the whole genome - in case of mammals
this is in the order of billions of base pairs with an average of 3.13 giga base pairs
(Gbp) [172]. Moreover, enhancers do not necessarily target the closest promoter but
can regulate genes that are far away, in the renowned case of the Shh gene and its ZRS
enhancer their linear distance amounts to ~1 Mbp [18]. Enhancers can reside up- or
downstream of a target gene, in intergenic regions as well as in introns of other genes
or the target gene itself. Even exons have been reported to harbor enhancers [173,
174]. They may target one or multiple genes and their activity as well as their target
might change based on the tissue, the developmental stage and external stimuli [21].

In recent years, several experimental assays have been designed for the detection of
enhancers and for measuring their activity. Classical reporter assays link candidate
enhancer sequences to a minimal promoter and a reporter gene in a vector and aim to
measure the ability of a DNA sequence to enhance the transcription of a reporter gene
[175]. Visel et al. [176] provide a resource of non-coding genomic elements with exper-
imentally validated enhancer activity using transgenic mice in their VISTA enhancer
browser. These experimental assays test one sequence at a time and are thus not
suitable for genome-wide screenings. Massively parallel reporter assays (MPRAs)
are designed to upscale classical assays using high-throughput technologies and in-
clude CRE-seq [177], STARR-seq [178], TRIP [179], FIREWACh [180] and SIF-seq [181].
MPRAs have several shortcomings: while some are episomal, meaning that they are
oblivious to genomic and chromosomal context, others suffer from low resolution or
are not quantitative. For a review, see [182].

35
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Experimental enhancer detection requires the appropriate infrastructure, funding, ex-
perienced personnel and time. Thus, there is a demand for replacing these experi-
ments with computational techniques to predict enhancers. An apparent approach
is to predict enhancers based on their DNA sequence. However, this turns out to be
difficult. Existing methods often rely on computationally expensive Deep Learning
algorithms and their predictive power is typically limited, especially for predicting
the tissues or cell types in which the enhancer is active [183–186]. Conversely, we are
even further from being able to design enhancer sequences with desired activity in
particular tissues or cell types [187].

It is therefore crucial to explore other properties of enhancers beside DNA sequence,
i.e. epigenetic features instead of genetic features. The minimal functional unit of an
enhancer needs to be able to target a promoter. This happens through the concerted
binding of TFs, which in turn requires the enhancer DNA to be accessible. Chromatin
accessibility can be experimentally measured with various assays, for example ATAC-
seq, a simple and time-efficient method [44]. I elaborate experimental techniques for
measuring chromatin accessibility in more detail in Subsection 2.4.2.

Accessible chromatin means that it is depleted of nucleosomes. Nucleosomes consist
of different types of histones, which are subject to post-translational modifications.
Especially some well-studied residues in their N-terminal tails are associated with
functional subunits of the genome. For example, elevated levels of trimethylation
of histone 3, lysine 36 (H3K36me3) are associated with actively transcribed gene
bodies [48]. Nucleosomes flanking the central accessible regions of active enhancers
have also been observed to exhibit characteristic patterns, namely H3K27ac and
monomethylation of histone 3, lysine 4 (H3K4me1) [50, 53, 58]. Poised enhancers
are expected to have their H3K27 trimethylated instead of acetylated (H3K27me3)
[58]. The epigenetic signatures of active gene promoters resemble those of enhancers
as they also consist of a central stretch of accessible DNA and flanking H3K27ac.
However, lysine 4 at histone 3 (H3K4) of nucleosomes flanking promoters is ex-
pected to be trimethylated rather than monomethylated. Hence, the methylation
level of H3K4 accounts for one of the most distinctive features between enhancers
and promoters. Histone modifications are measured with the widely-used technique
ChIP-seq, in which specific antibodies against particularly modified histones co-
immunoprecipitate the DNA wrapped around them [137, 138, 143]. I describe this
technology in more detail in Subsection 2.4.3.

Not only histones, but the DNA itself can be post-translationally modified through
methylation of the cytosine of CpG-dinucleotides (see Subsection 2.2.3). For example,
DNA methylation at promoters is associated with repressed gene expression [188].
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Cell type-specific DNA hypomethylation patterns were observed to correlate with
those of H3K27ac and have been proposed to reflect cell type-specific enhancers [65].
DNA methylation can be studied with techniques such as whole-genome bisulfite se-
quencing (WGBS), the downside of which is that it is expensive and labor-intensive
[189, 190]. Alternative methods such as reduced representation bisulfite sequencing
(RRBS) have been developed in order to reduce those drawbacks, particularly by en-
riching for CpG-dense genomic regions before sequencing and thereby reducing the
sequencing cost to approximately 1% compared to WGBS [191].

In 2010, Kim et al. [70] described the production of short non-coding transcripts at
enhancers. These so-called eRNAs potentially emerge as a consequence of the en-
hancers’ spatial proximity to RNAP II during transcription initiation at the promoter.
It is unclear, however, whether eRNAs also have a functional role themselves [70,
192]. Among other experimental techniques that measure the production of eRNAs,
CAGE was used by the FANTOM consortium to establish a comprehensive atlas of
transcribed enhancers in multiple organisms and cell types [79, 84]. However, not all
active enhancers are observed to produce eRNA. In mouse cortical neurons, eRNAs
have been detected at approximately 25% of all enhancers [70].

Evolutionary conservation of DNA sequence might indicate its functional importance
[85, 86]. Naturally, this has led to the selection of conserved elements as candidate
enhancer regions [176, 193–195]. While highly conserved enhancers are associated
with the regulation of fundamental processes such as embryonic development, re-
cently evolved and species-specific enhancers that contribute to positively selected
alterations in gene expression are consistently overlooked by that strategy [93, 97].
Moreover, enhancers have been shown to exhibit functional conservation beyond the
sequence level [98, 99, 101].

Taken together, enhancers can be described by genomic and epigenomic features, are
frequently transcribed and often evolutionarily conserved. However, no single fea-
ture is sufficient to identify enhancers genome-wide and as a consequence, the exact
definition of an enhancer is still debated. There exists a plethora of methods that im-
plement respective subsets of the described features to predict enhancers. They can be
divided in two broad classes - supervised and unsupervised methods. Unsupervised
methods do not require labeled training sets. They directly learn patterns on the pro-
vided data. This entails that they do not include any prior biological knowledge, e.g.
about the molecular structure of enhancers. Moreover, the results of unsupervised
methods need to be inspected and interpreted by the user. For example, unsuper-
vised HMMs yield transition and emission parameters which can be evaluated and
assigned to a type of genomic element. This process inherently varies on an indi-
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vidual basis and can lead to bias. Supervised methods rely on a labeled training set
in order to learn how to distinguish between positive and negative examples. Many
mathematical models have been employed in both an unsupervised and a supervised
manner (see [196, 197] for review). One of the most prominent ones is the HMM [151].
HMMs can be used to infer an unknown state associated with each position in a given
sequence of observations. They assume that observations are generated by an under-
lying hidden state emitting symbols according to a particular probability distribution.
HMMs are therefore ideal for the task of recognizing chromatin states based on the
observed sequence of histone modification patterns, and have been used repeatedly
for that purpose in an unsupervised, as well as a supervised fashion. Chromatin
annotation methods such as ChromHMM [198], EpiCSeg [199] or Genostan [200] im-
plement an unsupervised HMM, i.e. the main hyperparameter is the desired number
of states. These methods require the user to interpret and annotate the learned states
based on previous knowledge about functional elements in the genome, e.g. that pro-
moters are enriched in H3K4me3 signal. Won et al. [201] turn this approach around
and use supervised HMMs with a left-right structure to predict different genomic
modules such as enhancers and promoters, and incorporate the modules into one
model. They integrate existing knowledge into the model by learning the parameters
on pre-selected training sets. However, their model allows the modules to be passed
through in many different ways, e.g. skipping the state representing the nucleosome-
free region where transcription factors can bind, leaving the method very sensitive
for detecting false positives. Other methods rely on different mathematical models in
order to predict enhancers [202–204], and many of them do not consider prior biolog-
ical knowledge about enhancers such as their diverse lengths or their heterogeneous
molecular structure. Others include great numbers of features and are therefore very
data expensive, making it difficult to study particular cell types for which it is infea-
sible to acquire a lot of experimental data. [205].

To address this, I designed enhancer Hidden Markov Model (eHMM), which im-
plements multivariate modeling of functional genomics data in a supervised HMM.
eHMM comprises enhancer and promoter modules that capture the physical struc-
ture of gene regulatory elements, i.e. a central accessible stretch of DNA flanked by
nucleosomes that exhibit typical histone modifications. In the following Sections I de-
scribe the method, assess the performance of eHMM within and across developmen-
tal stages and cell types, compare it to both unsupervised and supervised methods
and show how eHMM raises the benchmark of current enhancer prediction in terms
of prediction accuracy, spatial resolution and low levels of false-positives. Based on
measuring the area under the precision-recall curve, eHMM outperforms previous
methods. Moreover, eHMM is easy to interpret, yields predictions with a high reso-
lution and provides a pre-trained model that can robustly be applied across samples.
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The advantages of eHMM come at a price. The method is rather conservative, typi-
cally identifying small numbers of enhancers with high confidence in the order of a
few thousands genome-wide. Moreover, its promoter module mainly serves the pur-
pose of increasing specificity of the enhancer module by competition. It is therefore
not optimized for promoter identification and for example oblivious to asymmetrical
promoters. In the remainder of this Section I will describe in detail how eHMM uses
a supervised HMM with a constrained underlying Markov chain, incorporates prior
biological knowledge about the molecular structure of enhancers in a dynamic model
to predict heterogeneous enhancers of variable sizes on the basis of a minimal set of
features.

4.2 methods

There are four main aspects that I incorporated into the development of eHMM. First,
I set out to include as few, non-redundant and commonly available or cheaply pro-
ducible features as possible. These turned out to be a chromatin accessibility assay
(e.g. ATAC-seq or DNase-seq), H3K27ac, H3K4me1 and H3K4me3. I will discuss the
selection of features in more detail in Subsection 4.2.1. For the sake of readability I
will consistently use ATAC-seq in the subsequent parts of this Chapter when refer-
ring to any chromatin accessibility assay.

Second, the method was supposed to capture the molecular structure of enhancers. In
other words, it should be able to distinguish accessible chromatin from nucleosome-
occupied chromatin, and it should identify an enhancer only if those chromatin states
are arranged in a meaningful order, i.e. a central nucleosome-free region flanked by
nucleosomes. To that end, I decided to use a hidden Markov model, but instead of
a standard implementation, I set out to constrain the HMM in terms of transition
probabilities. I elaborate on this procedure in Subsection 4.2.2.

Third, instead of using the HMM in its conventional unsupervised fashion, I aimed to
supervise model training in order to incorporate prior biological knowledge into the
model and therefore improving prediction quality. In addition, supervised models
avoid potential ambiguity of user-interpreted results from which unsupervised mod-
els may suffer. The model consists of the combination of three supervised models
representing enhancers, promoters and background, each being trained individually
on a designated training set. As promoters and enhancers exhibit a substantial over-
lap in histone modification patterns, this distinction helps the enhancer module not
to primarily detect annotated promoters. I acknowledge reports attributing enhancer
function to some promoters [206], however, this dual role is not within the scope of
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this thesis. For clarity, I will refer to the three models as modules and reserve the name
model for the full model, i.e. the combination of the modules. I describe the definition
of the training sets and model training of the three individual modules in Subsec-
tions 4.2.3 and 4.2.4, respectively. Subsection 4.2.5 dwells on model architecture, i.e.
how the individually trained modules are combined into one model.

Lastly, I intended to develop a method that is widely applicable, i.e. to any cell type
without the need of training a separate model each time. To that end, eHMM im-
plements a pre-trained model including a normalization step for users to apply to
any data set. I address model implementation and data normalization in Subsec-
tions 4.2.9 and 4.2.10, respectively.

4.2.1 features

eHMM implements enhancer and promoter modules, subsequently referred to as the
foreground modules, designed to capture an enhancer’s or promoter’s topology, re-
spectively. These topologies consist of a central accessible stretch of DNA flanked by
two nucleosomes. Chromatin accessibility is measured with assays such as ATAC-seq
or DNase-seq. Nucleosomes are detected from the occurrence of ChIP-seq signals for
the three histone modifications H3K27ac, H3K4me1 and trimethylation of histone 3,
lysine 4 (H3K4me3). H3K27ac is generally associated with active chromatin, whereas
ratios of H3K4me1 over H3K4me3 are typically high at enhancers and low at promot-
ers. This small set of four features provides a maximal amount of information while
being minimally redundant at the same time. Moreover, it consists of only the most
prevalent histone marks for which antibodies are available for many species, tissues
and developmental stages.

4.2.2 a supervised and constricted hidden markov model

Standard HMMs are unsupervised, i.e. they learn patterns from unlabeled data. Here
I want the model to learn the molecular structure of enhancers and promoters. I thus
use a supervised approach to learn these structures from predefined training sets.

The molecular structure of enhancers and promoters is understood to consist of two
chromatin states: a central stretch of nucleosome-free, i.e. accessible chromatin (sA)
flanked by nucleosomal chromatin (sN) to each side. These chromatin states are the
hidden states of the HMM and their properties are inferred from the observable
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functional genomics input data. The foreground modules thus consist of the set of
hidden states

S = {sA, sN}

and enhancers and promoters are expected to exhibit the minimal state sequence
sN − sA − sN. In Subsection 4.2.4 I will discuss that sA and sN may themselves be
sets of multiple states.

The key characteristic of both foreground modules is directionality, as depicted in the
corresponding Markov chain in Figure 4.1. Both enhancer (E) and promoter (P) mod-
ules can only be reached through transitions from a state of the background module
(BG) to states representing the first nucleosome (N1). From there, accessible chro-
matin states (A) and later a second nucleosome state (N2) have to be visited before
returning to the background module. In addition, self-transitions allow the model to
capture regulatory elements of variable lengths. I discuss the implementation of the
model’s directionality constraints in the following Subsection 4.2.4.

Figure 4.1: Schematic Markov chain of eHMM’s underlying constricted Hidden Markov
Model. Enhancer and promoter modules (E and P, respectively) consist of states N1, A and
N2 which can only be transitioned in a directed fashion from the background module (BG).
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4.2.3 training sets

In this Subsection I will describe how I assembled the training sets used for training
the modules.

enhancer training regions The enhancer module is designed to learn chro-
matin states from genomic regions that are confidently classified as enhancers. To
date, there is no gold standard set of true enhancers. However, there is a wealth of
experimental approaches for identifying enhancers [84, 176, 178]. Since the model
learns patterns of ATAC-seq and histone modification ChIP-seq signals, I defined
the training set based on criteria independent of these features. As I introduced in
Subsection 2.4.4, enhancers can be located experimentally using CAGE sequencing
on RNA samples. FANTOM5 is a project of the Functional Annotation of the Mam-
malian Genome (FANTOM) consortium that provides data sets for multiple tissues
in many vertebrate species [84]. I applied the following protocol to the publicly avail-
able CAGE data sets for mouse embryonic stem cells (ESC) of cell line E14, liver
E12 and lung E17 in order to define the enhancer training regions: I set a minimal
threshold of 11 (ESC) and 5 (liver, lung) CAGE-tags per region resulting in 5573,
537 and 642 regions, respectively. These regions are expected to include many false
positives as a consequence of the low thresholds and necessitate further filtering. I
performed k-means clustering on the regions’ ATAC-seq, H3K27ac and H3K4me1/3
ChIP-seq signals with k = 5 and selected the cluster with the strongest active en-
hancer signature consisting of 920 regions in ESC. The discarded clusters exhibited
typical patterns of promoters, poised enhancers, or were depleted of any signal. The
model topology requires the training regions to be accurately defined, i.e. to start
and end at nucleosome positions. To that end, I used MACS2 [207] with default set-
tings to determine H3K27ac - ATAC-seq - H3K27ac peak triplets with a width of less
than 2 kbp overlapping with the active enhancer regions, followed by the removal of
neighboring regions (pairwise distance of less than 2 kbp). This procedure resulted
in a set of 647 active enhancer regions in ESC, from which I randomly sampled 300

regions. In liver and lung, the final number of enhancers in the training set was 118

and 62, respectively.

promoter training regions I defined the promoter training regions in a sim-
ilar fashion: H3K27ac - ATAC-seq - H3K27ac peak triplets with a width of less than
2 kbp belonging to the cluster with the strongest active promoter signature and
overlapping an annotated promoter from the University of California Santa Cruz
(UCSC) knownGene database [208], but not a previously defined enhancer training
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region. In order to favor the selection of active promoters, I applied an additional
filter for H3K27ac levels greater than or equal to the minimum H3K27ac level of the
previously defined enhancer training regions. From the resulting 3029 regions in ESC,
I randomly sampled 300 regions to give rise to the training set for the ESC promoter
module. I obtained the training sets for liver and lung analogous to the described
procedure.

background training regions There are several approaches to train a back-
ground module. I will elaborate on them in detail in Subsection 4.2.4. One of them
is a standard HMM learned on a training set representing genomic background, i.e.
all types of genomic elements except enhancers and active promoters. To this end,
I defined mammalian genomic proportions by roughly approximating the numbers
reported for the human genome by Kellis et al. [198]. This resulted in 10% enhancers,
5% active promoters, 5% inactive promoters, 10% genic and 70% intergenic regions.
I obtained the training set for the background module by randomly sampling 2 kb
genomic regions according to these proportions with respect to UCSC knownGene
annotations, leaving out regions annotated as enhancers or active promoters.

Figure 4.2 shows the average signal distributions for the enhancer, promoter and
background training regions in all three cell types.
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Figure 4.2: Distribution of normalized read counts for training regions of mouse ESC E14,
mouse embryonic liver E12.5 and mouse embryonic lung E16.5.
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4.2.4 model training

In this Subsection I will discuss the process of individually training the three mod-
ules for enhancers, promoters, and background on the previously defined training
sets.

training the foreground modules The training procedure for the fore-
ground modules comprises a three-step learning process. First, a conventional five-
state HMM is learned on the respective training sets. I set the number of states to
five with the intention of learning multiple hidden states per chromatin condition.
This will grant additional flexibility to the model as it will be able to learn different
variants of the same functional state, e.g. two states sA1 and sA2 exhibiting strong
and weak chromatin accessibility, respectively.

Second, states are assigned to represent either chromatin accessibility (sA) or nucle-
osomes (sN) based on their emission parameters (see Subsection 4.2.2 and an exam-
ple in Figure 4.4, left). The automated state selection assigns to SA = {s

(1)
A , s(2)A } the

two states with the highest ATAC-seq to H3K27ac (or DNase-seq to H3K27ac) ratio.
From the remaining three states, the two with the highest (enhancer module) or low-
est (promoter module) H3K4me1 to H3K4me3 ratio are assigned to SN = {s

(1)
N , s(2)N }.

The ratios are calculated on the mean of the fitted log-normal distributions of each
state. Then, states in SN are duplicated to SN1 = {s

(1)
N1, s(2)N1} and SN2 = {s

(1)
N2, s(2)N2}

and arranged in a directed order together with the states in SA. Transitions conflict-
ing with the intended directionality, e.g. from a state in SN2 back to a state in SA, are
forbidden by setting the corresponding transition probabilities to zero. See Figure 4.3
for illustration.

Third, the newly constructed model’s parameters are used as initial values for param-
eter re-estimation. The aim of this step is to modulate the transition probabilities be-
tween the rearranged states without changing the emission probabilities and thereby
preventing states previously assigned to a particular class to adapt. For that purpose,
I use Viterbi training [209] instead of the Baum-Welch algorithm. Viterbi training is a
simplification of the Baum-Welch algorithm and results in an approximation of the
maximum likelihood estimate. Instead of accounting for all possible paths, only the
most probable path is considered during parameter re-estimation (see Equation 3.30).
Moreover, Viterbi training allows to force the state sequence to end with a state in SN2
for every training sample, maintaining the structural constraints of enhancers and
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promoters. For that purpose, the transition matrix for the last step is modified such
that only transitions to an end state j ∈ SN2 are possible:

A(L) = {a
(L)
ij }, with

a
(L)
ij = P (XL = j | XL−1 = i)

=

aij if j ∈ SN2

0 otherwise

(4.1)

A(L) is then normalized by the sum of its columns such that
∑
j

a
(L)
ij = 1. With these

constraints I aim to achieve an accurate representation of enhancer and promoter
characteristics reflected by both emission and transition parameters.

After the decoding step of each learning iteration, the model parameters π and A are
updated according to the principles discussed in Subsection 3.1.4, while the emission
parameters are not allowed to change:

π̂i =


1 if i = arg max

j∈Z
Vj(1)

0 otherwise

âij =

L−1∑
l=1

δi(l) δj(l+ 1)

L−1∑
l=1

δi(l)

(4.2)

where

δl (i) =

1 if i = x(V)
l

0 otherwise
(4.3)

training the background module There are different possible approaches
to train a background module. For example, I can deduce it from the previously
trained foreground modules by adopting the number of states and their emission
probabilities, but overwriting their transition probabilities such that they are uniform.
That way, I emphasize the foreground modules’ capability to capture the molecular
structure of enhancers and promoters reflected by the transition probabilities. I will
call this type of training approach FGtoBG.



46 prediction of cis-regulatory elements

Figure 4.3: Schematic illustration of the transition probabilities of a foreground module. Al-
lowed transitions are green, forbidden transitions are white.

Further, analogous to the foreground training procedure, I can define a training set
that represents the aforementioned genomic proportions in mammals, see Subsec-
tion 4.2.3. Varying the number of states will tell us the impact of that hyperparameter
on total model performance. I will call this type of training approach Standard.

In addition, I will customize the Standard background module by removing states
with enhancer- and promoter-like emission patterns. This could have an impact on
the sensitivity of the model and thus the overall performance by reducing direct com-
petition for the states in the foreground modules. I would expect such a model to be
more sensitive to emission patterns only remotely similar to the foreground states.
This type of training approach will be termed Reduced.

I will compare the performance of the background modules Standard, Reduced and
FGtoBG with varying numbers of states in Subsection 4.3.1.

4.2.5 module combination

Once the three modules are trained, they are combined into one model consisting
of all states (see example in Figure 4.4). Transitions between states of different mod-
ules are either set to zero because they are not allowed, or estimated in the case of
SBG → SN1 or SN2 → SBG transitions. For the first, I refer to the estimated number
of enhancers (399,124) and promoters (70,292) in the human genome as stated by the
ENCODE consortium [210], as well as to the total human genome size of roughly
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3 billion bps according to genome assembly GRCh38 [3], and a bin size of 100 bps.
These numbers led to estimated SBG → SN1 transition rates of 1.33% and 0.23% for
enhancers and promoters, respectively, and I expect them to be good estimates for
other mammalian genomes, too. I set SN2 → SBG transitions to the learned values of
SN1 → SA transitions as the size of all nucleosomes is expected to be equal and thus
the size distributions modeled by the transition parameters of SN1 and SN2 should
be too.
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a standard 10-state HMM learned on whole genome ESC data.
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4.2.6 emission distributions

Mammana et. al [211] show that multivariate read count data can be accurately mod-
eled using the negative multinomial distribution. However, the fitting procedure for
negative multinomials requires a complex numerical approximation. Instead, I mod-
eled the read count data with independent log-normal distributions, which appear to
be both a better fit for the data as well as the analytical fitting procedure being much
easier, see Subsection 3.1.4. Fit quality is demonstrated in Figure 4.5, showing the
read count data and the fitted log-normal distributions in a standard 10-state model
learned on whole genome ESC data. Kolmogorov-Smirnov (KS) distances between
the data and the fits were computed for all features and states, ranging from 0.00 to
0.49 with a median of 0.08. Some components model a single coverage value and I
assume here that such states have a KS distance of 0. In contrast, marginal negative
binomial fits show KS distances ranging from 0.02 to 0.29 with a median of 0.09 (data
not shown).

4.2.7 decoding and scoring

There are several decoding algorithms that yield a state sequence from a learned
HMM, see Subsection 3.1.4. Posterior decoding determines the path with the most
probable state at any genomic position. However, it may not preserve the model’s
grammar, which is essential in order to prevent forbidden transitions e.g. from a
state representing an accessible region to a background state. Hence, I use the Viterbi
decoding algorithm which returns the globally most likely path resulting in a partic-
ular number of predicted enhancers without the requirement for finding an optimal
prediction threshold. However, while these predictions all belong to the globally most
likely path, they might differ in local certainty. The forward-backward algorithm pro-
vides a posterior probability for the respective state at each position, considering all
possible paths. Summing over the posteriors of the enhancer module’s states repre-
senting accessibility at every position provides a measure of prediction certainty with
expected maxima at the center of predicted enhancers. I denote the position-specific
enhancer score s(E)l :

s
(E)
l =

∑
i∈S(E)A

P(Xl = i | Y = y, θ) =
∑
i∈S(E)A

γi(l)

Figure 4.6 shows an example genomic region classified as an enhancer and the corre-
sponding enhancer score.
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Figure 4.6: Example genomic region with functional genomics data in mouse ESC with the
segmentation and corresponding enhancer score from eHMM. The color code in the segmen-
tation track corresponds to that of Figure 4.4.

4.2.8 testing

I assessed the method’s ability to correctly classify enhancers with different setups.
First, I evaluated the method’s performance within a certain cell type using cross-
validation. Then, I tested the method’s predictions in a given cell type when the
model was trained in another, referred to as cross sample validation. In the following
paragraphs I will outline the definition of the test sets and describe how I evaluate
the method’s performance within as well as across cell types.

test sets I used the previously described training regions in ESC, liver E12.5 and
lung E16.5 for within as well as cross cell type validation. In addition, I defined test
sets in ESC, liver E14.5 and lung E14.5 using regions from the EnhancerAtlas [212].
I processed the data sets by combining regions within 500 bps, excluding regions
that are located within 2 kbp of annotated promoters from the UCSC knownGene
database and centering on the highest overlapping ATAC-seq peak in order to em-
phasize my intention to focus on functional enhancers. Notably, this led to data set
reductions of 68%, 83% and 66% for ESC, liver and lung, respectively. I comple-
mented the test sets with randomly sampled regions according to the proportions
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of functional elements in mammalian genomes with respect to UCSC knownGene
annotations, see Subsection 4.2.3.

performance evaluation In order to assess the method’s performance within
a certain cell type, I performed a 5-fold cross-validation scheme on the previously de-
scribed unbalanced training and test sets, such that each test set contained 1/5 of the
original enhancer training set, while the model was trained on the remaining 4/5.
Cross sample validations were obtained by training the model on the respective full
training sets and evaluating the labeled test sets. The model’s performance was quan-
tified by calculating the area under the precision recall curve (AUPRC). Precision
and recall are defined as follows:

TP True Positives Enhancers correctly classified as enhancers

FP False Positives Non-enhancers falsely classified as enhancers

FN False Negatives Enhancers falsely classified as non-enhancers

Precision tells us how many of the regions classified as enhancers are actually true
enhancers:

precision =
TP

TP+ FP
(4.4)

Recall denotes how many of the actual enhancers were correctly classified as en-
hancers:

recall =
TP

TP+ FN
(4.5)

A very stringent classifier typically reaches high precision, but low recall, whereas
the opposite is true for a very lenient classifier. Plotting precision against recall with
different prediction thresholds thus gives a good indication on how well the clas-
sifier finds a trade-off between those measures. Calculating the AUPRC provides a
quantification that can be used to compare different methods exposed to the same
prediction problem. Figure 4.7 shows example precision recall curves for different
types of classifiers for a balanced data set (i.e. the number of positive examples is
half of the total number of examples in the data set). Note that, in contrast to other
metrics such as prediction accuracy or receiver operating characteristic (ROC), pre-
cision and recall are also suitable for imbalanced data sets. In that case, the baseline
of the random classifier would move to the level of the fraction of positive examples
in the set.
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Figure 4.7: Exemplary precision recall curves for five different classifiers on a balanced data
set. The area under the curve of a random classifier represents the fraction of positive exam-
ples in the data set.

4.2.9 implementation

I implemented the method as an R software package [213] named eHMM available
at https://github.com/tobiaszehnder/ehmm. In 2015, Mammana et al. developed
EpiCSeg [211], a tool for genome segmentation using an unsupervised HMM on epi-
genetic features. Since the framework of that method is essentially very similar to
the requirements of the method described here, I used it as a basis for building the
method. I adopted already implemented basic functionalities such as the initialization
algorithm or the Baum-Welch algorithm, and extended the framework by developing
new functions for tasks and features specific for eHMM.

eHMM is implemented primarily in C++, and integrated with R using the Rcpp
package [214]. It implements multi-threading for dealing with large sets of data and
is available as an interface in R as well as the command line program.

eHMM comprises three subprograms which are supposed to run in sequence: learnModel,
constructModel and applyModel. First, learnModel learns a standard HMM for a
given set of genomic regions based on the features described in Subsection 4.2.1. The
user inputs read count data in bam file format for the required features and specifies
the desired number of hidden states. This step is supposed to be exerted separately
for previously defined training sets for enhancers, promoters and background re-

https://github.com/tobiaszehnder/ehmm
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gions. Once these three models are learned, constructModel is applied to combine
the modules to one big model as described in Subsection 4.2.5. Lastly, applyModel
takes the learned model and applies it on a given set of genomic regions, e.g. a la-
beled test set for model testing or the whole genome.

Defining labeled training sets takes time and access to appropriate data. I thus de-
cided to equip the software package with a pre-trained model that spares the user
the potentially laborious first two steps. I trained this model on mouse ESC E14 data.
The determination of the training sets is described in Subsection 4.2.3. If the user
chooses to use the provided pre-trained model, the query data will be normalized
to the data that was used during model training using quantile normalization. I will
discuss quantile normalization in Subsection 4.2.10.

4.2.10 quantile normalization

Data from different ChIP-Seq experiments may vary in their total number of reads
and their read count distributions may be scaled differently. Therefore, in order to
apply a model learned on a specific cell type to another cell type, input data has to
be brought to the same scale. For that, I used quantile normalization to adjust the
statistical properties of a query distribution (the data the model is applied to) to a
reference distribution (the data the model was learned on) [215]. This method mini-
mizes the distance between the query and reference cumulative distributions by an
order-preserving rescaling of the query count values. In practice, it orders a matrix
containing read counts with rows representing genomic locations and columns rep-
resenting the query and reference samples in a column-wise fashion. Then, values
from the reference column are assigned to the query column before the columns are
re-ordered back to the original order. We can assess the effect of the normalization
procedure by comparing MA plots of the unadjusted and the normalized data. MA
plots show the two metrics M and A. M is the binary logarithm of the count ratio
between the reference (R) and the query (Q) samples (M = log2 R/Q), and A is the
average log count (A = 1

2 log2 RQ). Hence, MA plots visualize intensity-dependent
differences between samples. Figure 4.8 depicts exemplary MA plots and read count
distributions from H3K4me1 ChIP-seq experiments in mouse ESC E14 and mouse
embryonic lung E16.5. The data shown is a random sample of 20000 genomic loca-
tions on chromosome 1. Quantile normalization eliminates intensity-dependent dif-
ferences between the two samples and leads to a strong overlap between the two
distributions.
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Figure 4.8: Effect of quantile normalization on read count data. Left panel: MA plot of un-
adjusted data. Middle panel: MA plot of quantile normalized data. The respective red lines
show local regression (LOWESS). Right panel: Log count distributions in different cell types
before and after normalization.

4.2.11 data

data sources I investigated five specific mouse samples regarding cell type and
developmental stage: ESC, embryonic liver E12.5 and E14.5 as well as embryonic lung
E14.5 and E16.5. ATAC-seq and HM ChIP-seq data from liver and lung samples were
obtained from ENCODE [210]. I downloaded ESC HM and TF ChIP-seq as well as
Methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) data
from the NCBI Gene Expression Omnibus (GEO) [216], and converted genome coor-
dinates from mm9 to mm10 with CrossMap [217]. I obtained sequence conservation
data from phastCons conservation scores from UCSC [218]. An overview of all used
data and their accession numbers is given in Appendix A.2.1.

data processing I downloaded the raw data fastq files using the SRA toolkit
[219] and processed fastq to bam files using the Burrows-Wheeler Alignment (BWA)
tool [220] for mapping and SAMtools [221] for filtering, sorting and removing du-
plicates. eHMM implements the algorithm bamsignals [199] to calculate read counts
for bins with a width of 100 bps. In order to estimate the fragment centers and with
an expected fragment length of 150 bps, bamsignals adds a default shift of 75 bps
to ChIP-seq reads. In contrast, chromatin accessibility assays are treated with a shift
of zero as the interest of these experiments lies on the actual cutting sites. I added a
pseudo-count of 1 to prevent taking logarithms of entries with value zero.
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4.3 results

In this Section I will assess the quantitative and qualitative performance of eHMM. I
will discuss different strategies for defining the background module (Subsection 4.3.1),
evaluate the prediction performance within and across cell types and data sources
(Subsections 4.3.2 and 4.3.3) and compare the performance of eHMM to state-of-the-
art methods in terms of precision and recall (Subsection 4.3.4) as well as run time
(Subsection 4.3.8). Finally, I will discuss the properties of genome-wide predicted
enhancers on a qualitative level (Subsections 4.3.5 to 4.3.7).

4.3.1 performance of different background modules

As described in Subsection 4.2.4, I will show the impact of the choice of the back-
ground module on overall model performance. For that, I trained background mod-
ules with 6, 8, 10 and 12 states on the previously defined background training sets,
and then either used them unchanged (termed Standard), or after the removal of
states resembling the emission patterns of enhancers and promoters (Reduced). I de-
termined the removed states in the Reduced models qualitatively by manually evaluat-
ing emission patterns. In addition, I derived a background module from the learned
foreground modules using the same emission probabilities, but unitized transition
probabilities (FGtoBG). With that, I want to investigate whether the foreground mod-
ules rely more on the different emission patterns compared to background genomic
regions, or if their predictive power is due to the emphasis on the molecular structure,
which is reflected in the constrained transition probabilities.

First, I evaluated the impact of the background modules on the overall predictive per-
formance of the models using cross-validation on the mouse ESC data. With AUPRCs
of 0.96 - 0.97, the Standard model clearly outperforms the alternative models (Reduced:
0.48 - 0.66, FGtoBG: 0.23, Figure 4.9). Further, the Standard model is robust to the
number of states whereas the Reduced model performs better with a higher number
of states.

Second, I assessed the effects of the background on the total number of predicted en-
hancers in a genome-wide matter (Figure 4.10). The Standard model predicts roughly
between 4000 - 5000 enhancers and 8000 - 10,000 promoters. Both the Reduced and
FGtoBG, however, predicted about ten times more enhancers, while detecting 17-64%
less promoters compared to the equivalent Standard models in terms of the number
of states.
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Figure 4.9: Precision recall curve using the Standard and alternative background modules
with different numbers of states.
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Figure 4.10: Number of predicted enhancers and promoters using the Standard and alternative
background modules with different numbers of states.

Third, I investigated the enrichment of genomic signals over the predicted regions
(Figure 4.11). By definition, there is only one implementation of the FGtoBG model
with 10 states. Hence, I only compare the models with 10 background states. More-
over, due to the exceedingly high number of enhancer predictions in some models,
I randomly sampled 3000 predictions from every model. The predicted promoters
look very similar across all background modules and consistent with what we would
expect from literature, i.e. high levels of ATAC-seq in the center flanked by high lev-
els of H3K27ac and H3K4me3. The predicted enhancers, however, look substantially
different between the different background modules, and only the Standard model
predicts enhancers that are consistent with the expected properties, i.e. high levels of
ATAC-seq in the center flanked by high levels of H3K27ac and H3K4me1. The high
numbers of predicted enhancers using alternative background modules thus most
likely suffer from a high false-positive rate. Thus, the enhancer- and promoter-like
states in the Standard background that are not present in the alternative background
modules likely contribute to an increased prediction specificity by competition with
the foreground states.
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models FGtoBG Reduced Standard

Figure 4.11: Feature heatmaps of predicted enhancers (left panel) and promoters (right panel)
using different background modules. Average distributions are shown in the top sub-panels.

Combined, these findings substantiate the importance of choosing the right back-
ground module. While the sheer numbers of genome-wide predictions with the alter-
native models might look reasonable, their performance in cross-validation tests as
well as the enrichment of genomic signals over the predicted regions clearly do not.
In the next Subsection I will assess the method’s performance in different settings.
For that, I will use the Standard background module with 10 states.

4.3.2 performance within and across samples

Once settled on the type of background module and after constructing the full model,
it is of interest to quantify how well the model is able to predict enhancers. I de-
scribe the testing procedure in Subsection 4.2.8. In this Subsection, I will present the
method’s performance within and across samples and data types.

within sample validation eHMM is able to recall a high fraction of the la-
beled enhancers without capturing a lot of false positives. i.e. being very precise at
the same time. This is demonstrated in Figure 4.12 (upper panel), where blue lines
depict eHMM’s precision and recall using variable prediction thresholds in cross-
validations within samples. Notably, even low threshold values yield high precision
while still capturing most enhancers from the test set. The good performance is quan-
tified by the sample-specific AUPRC ranging between 0.947 and 0.971 (Figure 4.14).

cross sample validation Often, enhancer predictions are desired in specific
samples for which it is infeasible to define a training set, e.g. because there is no
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labeled data set available online for a particular cell type or developmental stage
and executing the necessary experiments oneself is not practicable. Such scenarios
require the option to train the method on one sample and apply it to another. I tested
eHMM’s performance in cross-sample validation settings where I used the model
trained on data from FANTOM5 in mouse ESC to predict FANTOM5 enhancers
in mouse liver E12.5 and lung E16.5. I used quantile normalization (see Subsec-
tion 4.2.10) to account for potentially different read count scales between samples. As
expected, method performance decreases slightly in across-sample validation com-
pared to using a model trained on data from the same sample (Figure 4.12, lower
panel). Areas under the precision-recall curve of 0.928 and 0.865 for liver E12.5 and
lung E16.5, respectively, still show very satisfying results (Figure 4.14, blue dots). This
demonstrates the method’s great applicability with pre-trained models. Moreover,
I show the suitability of the quantile normalization approach by comparing cross-
sample validations with and without normalization. Quantile normalization helps to
improve prediction quality with an increase in area under the precision-recall of 0.041

and 0.025 in liver E12.5 and lung E16.5, respectively.

eHMM does not require the user to set an arbitrary prediction threshold, but rather
makes use of the Viterbi decoding algorithm. Figure 4.12 displays shapes that illus-
trate the performance of Viterbi decoding. In both within and cross sample validations,
Viterbi decoding yields precision and recall values residing in the top right corner of
where the lines of variable prediction thresholds run, endorsing its application.

4.3.3 prediction robustness against variable data sources

To date, there is no gold standard enhancer set for any cell type. However, training
and testing on data from one source only could potentially result in overfitting. To
that end, I performed within and cross sample validation using an independent test
set from EnhancerAtlas [212]. EnhancerAtlas integrates data from different sources
and multiple enhancer signals, e.g. DHS, the enhancer associated histone acetyltrans-
ferase EP300 [222] or combined tracks such as TFBSs consisting of multiple motifs or
the single or combined presence of histone modifications. The fundamental assump-
tion of the EnhancerAtlas approach is that predictions from good quality data should
coincide whereas those from low quality data should not. With that, EnhancerAtlas
integrates numerous data sources and simultaneously weighs their individual impact
according to their agreement with other sources.

I compared eHMM’s performance on regions from the EnhancerAtlas for the mouse
samples ESC E14, liver E14.5 and lung E14.5 by measuring precision and recall (Fig-
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Figure 4.12: Precision recall curves for the supervised methods eHMM and REPTILE vali-
dated within and across samples on data from FANTOM5 in mouse ESC, liver E12.5 and
lung E16.5. Shapes indicate prediction performance of the Viterbi algorithm. Lines represent
precision and recall on posterior probabilities obtained from the forward-backward algorithm.

ures 4.13 and 4.14, yellow dots). Compared to training and testing on data from the
same source, eHMM’s performance dropped considerably in mouse ESC (AUPRC
= 0.75). However, high performance was maintained in liver E14.5 (AUPRC = 0.93)
and lung E14.5 (AUPRC = 0.86). Of course, the quality of the EnhancerAtlas data sets
might vary itself, and thus it is necessary that these performance measures are put
into perspective. I will do that in the next Subsection where I will benchmark eHMM
in comparison with existing methods.

4.3.4 benchmarking

Identifying regulatory elements has been a central objective in computational biol-
ogy for decades, and numerous software packages exist that tackle this task relying
on various experimental data [196, 197]. In this Subsection I compare the prediction
performance of eHMM to a selection of existing methods, i.e. ChromHMM [223],
EpiCSeg [211] and REPTILE [224]. I chose these methods for a variety of reasons.
First, ChromHMM is a well-established and widely used method that learns a hid-
den Markov model based on binarized input data in an unsupervised fashion. EpiC-
Seg presents another unsupervised HMM that also provided the foundation of the
implementation of eHMM. In contrast to ChromHMM, it models the read count data
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Figure 4.13: Precision recall curves for all tested methods validated on data from the En-
hancerAtlas in mouse ESC, liver E14.5 and lung E14.5. Lines represent precision and recall
on posterior probabilities obtained from the forward-backward algorithm.

using a negative multinomial distribution instead of binarized data. Together, these
two methods allow the comparison of my supervised HMM to two unsupervised
HMMs and thus to investigate the benefit of supervision. Finally, REPTILE is a su-
pervised method using a random forest classifier, which I train with the same training
data as eHMM in order to study the differences between two supervised methods
that use a different mathematical model. As shown in the article by He et al. [224],
REPTILE is state-of-the-art as it outperforms previous methods. It therefore certainly
serves as a challenging competitor to eHMM. Unfortunately, I was not able to test
ChroModule (see Section 4.1) as the authors do not provide the software.

As ChromHMM and EpiCSeg are unsupervised methods, I applied them to whole
genome data with different numbers of states (6, 8, 10 and 12). With the resulting
parameters I computed the maximum posterior probability of every state in the test
regions and report only the best performing state. Of course, state selection based
on performance on a test set is not within the usual application of these methods.
Typically, states are selected by eye, potentially introducing an additional source of
error and bias. However, for the sake of benchmarking I assume optimal state selec-
tion. I tested REPTILE and eHMM within cell types using 5-fold cross-validations on
FANTOM5 data and across cell types and data sources by validating the performance
of a model trained on aforementioned mouse ESC training data on test regions from
FANTOM5 and EnhancerAtlas.

eHMM performs equally well or better than all other methods in all but one sce-
narios (Figures 4.12 to 4.14). Only in the cross sample validation in liver, REPTILE
performs slightly better than eHMM. Generally, the supervised methods eHMM and
REPTILE tend to outperform the unsupervised ChromHMM and EpiCSeg in most
test settings, demonstrating the benefit of supervised learning for the task at hand.
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Figure 4.14: AUPRC for all tested methods validated on data from FANTOM5 (blue) and
EnhancerAtlas (orange). Note that the columns ’Liver’ and ’Lung’ include data from different
developmental stages, i.e. E12.5 and E14.5 for FANTOM5 and EnhancerAtlas, respectively, for
’Liver’, and E16.5 and E14.5 for FANTOM5 and EnhancerAtlas, respectively, for ’Lung’, listed
in detail in Appendix A.2.1. Legend acronyms: CV - within-sample 5-fold cross-validation.
ESC QN - cross-sample validation using a model trained on ESC data including quantile
normalization. ESC - cross-sample validation using a model trained on ESC data without
normalization. n - number of states in HMM.

Benchmarking aims to report the methods’ performances in different test scenarios.
As indicated in previous Subsections, this includes the performance within and across
samples and data sources. Overall, eHMM proves to be very robust against varying
test scenarios as performance measures are more or less maintained when altering
the sample, the data source or both. In contrast, REPTILE generally performs well
when the data source for training and testing is the same, but struggles when it is
varied (Figure 4.14), suggesting overfitting of the learned models on the FANTOM5

data. The tested unsupervised models depend strongly on the data quality and less
on the method (ChromHMM or EpiCSeg) or the chosen hyperparameter (the number
of states). For example, all tested unsupervised models predict with AUPRC < 0.5 on
EnhancerAtlas lung E14.5 data, but with AUPRC > 0.75 on EnhancerAtlas liver E14.5
data. Together, these results show underline the robustness of eHMM under different
types of validation setups.

4.3.5 whole genome predictions in mouse embryonic stem cells

The testing procedures described so far allowed the quantitative measurement of the
method’s ability to fulfil its purpose - to identify enhancers. Naturally, the next step
is to apply the method to a full genome data set to identify enhancers genome-wide.
eHMM predicts 5357 enhancers and 8040 promoters in mouse ESC. Depending on
the chosen prediction threshold c ∈ [0, 1], REPTILE predicts between 2604 (c = 0.9)
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and 12,830 (c = 0.1) enhancers. With a varying number of states n, ChromHMM
finds between 19,643 (n = 12) and 88,716 (n = 6) enhancers, EpiCSeg between
37,911 (n = 12) and 103,293 (n = 6). In this Subsection I will discuss the proper-
ties of eHMM’s identified enhancers and promoters in mouse ESC as depicted in
Figure 4.15.

atac-seq and histone modifications The identified regulatory regions ex-
hibit the anticipated average relative enrichment or depletion of the features used
for training, i.e. ATAC-seq, H3K27ac, H3K4me1 and H3K4me3. Both predicted en-
hancers and promoters show a bimodal enrichment of the respective histone modifi-
cations with a central unimodal enrichment of ATAC-seq. Predicted enhancers and
promoters show high and low ratios of H3K4me1/3, respectively. These observations
provide evidence for the initial biological assumptions that motivated and shaped
the model’s architecture.

binding of transcription factors and chromatin remodelers Pre-
dicted enhancers show enriched binding of ESC-specific transcription factors Nanog,
Oct4 and Sox2. This effect is present, but less pronounced in promoters and thus
in line with the hypothesis that enhancers are more lineage-specific than promoters,
and that promoters can be regulated by different sets of lineage-specific enhancers
depending on the cell type [225].

In addition, predicted enhancers show elevated levels of the HAT p300, an enzyme
involved in transcriptional regulation via chromatin remodeling. p300 was reported
to deposit H3K27ac [49] mainly at TSS-distal sites [53] and its binding locations
are associated with active enhancers [69]. Interestingly, although promoters exhibit
higher levels of H3K27ac on average, p300 indeed seems to bind more exclusively to
enhancers, suggesting that other HATs might be responsible for the deposition of the
bulk of H3K27ac at promoters.

Binding events of CCCTC-binding factor (CTCF), a protein involved in the regula-
tion of the three dimensional chromatin structure [226] and often co-occurring with
the borders of TADs [16], are enriched in enhancers, implying the enhancers’ role in
the mediation of enhancer-promoter contacts and DNA looping [227, 228]. The deple-
tion of CTCF binding in predicted promoters might hint at the incompleteness of the
set. Some promoters show very asymmetrical features, e.g. because they are highly
one-directional. eHMM assumes symmetry in enhancers and promoters and might
misclassify such cases. Promoters at TAD boundaries, however, are expected to be
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one-directional by nature. However, eHMM’s main purpose is to identify enhancers,
not promoters, which is why I only acknowledge this shortcoming of the promoter
module, but do not tackle it.

dna methylation and sequence conservation Both enhancers and pro-
moters show a dip in DNA methylation measured by MeDIP-seq. This effect appears
to be stronger in predicted promoters, confirming previous studies that suggest that
DNA methylation levels negatively correlate with H3K4me3 [229] and that high-CpG-
density promoters generally contain a core region of unmethylated CpGs [230]. Pre-
dicted promoters exhibit increased sequence conservation across species as depicted
by phastCons conservation scores [218]. Enhancers indicate this feature as well, but
to a much lower extent, agreeing with Villar et al. [97] who showed that enhancers
evolve much more rapidly than promoters.

rna polymerase ii Finally, promoters exhibit high bimodal levels of RNAP II,
indicating transcription initiation events in both directions. Enhancer elements show
a similar pattern but at lower levels, confirming that the input data from FANTOM5

reflects the information about the bidirectional transcription initiation which had
originally motivated our choice of the training set.

Peaks of features that are enriched unimodally are especially sharp in enhancers, in-
dicating that enhancer predictions are centered well on the true accessible chromatin.
In the next Subsection, I will quantify this spatial accuracy of eHMM’s enhancer pre-
dictions.
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Figure 4.15: Mean feature distributions of genome-wide predicted enhancers and promoters
in mouse ESC.
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4.3.6 spatial accuracy

In previous Subsections I have assessed eHMM’s capability to predict enhancers in
quantitative validations on predefined test sets as well as a qualitative analysis of the
features of genome-wide predictions. Researchers that are interested in predicting en-
hancers prior to downstream analyses might also care for the resolution of the predic-
tions, i.e. the spatial accuracy of the predicted enhancer locations. Active enhancers
are expected to contain accessible chromatin, which is where TFs bind and establish
the enhancer’s function. Chromatin accessibility can be measured by ATAC-seq, and
the distance of an enhancer prediction to the nearest ATAC-seq peak thus provides
a measure of spatial accuracy. eHMM predictions are on average around seven times
closer to the center of an accessible region compared to REPTILE (median of 42 bps
and 343 bps, respectively, Figure 4.16). Including other features such as DNA methy-
lation might improve REPTILE’s spatial prediction accuracy, however, at the expense
of requiring additional data. Moreover, even the most complex REPTILE models do
not achieve average distances lower than 111 bps and 65 bps in mouse embryonic tis-
sues E11.5 and human H1 derived cells, respectively [224]. This highlights eHMM’s
outstanding resolution which is accomplished by the model architecture, namely the
distinction between nucleosomal and accessible states.

4.3.7 predicted enhancers are tss-distal

Promoters and enhancers are mainly distinguished by the degree of methylation of
H3K4. These residues are generally trimethylated in the immediate proximity of a
promoter’s center. When moving away from a promoter’s center, the likelihood of
H3K4 being trimethylated drops fast and is replaced by monomethylation. At that
point, nucleosomes resemble those of a typical enhancer. However, these nucleosomes
are in the periphery of promoters and do not border accessible chromatin themselves.
Figure 4.17 illustrates this problem, showing an example gene where eHMM cor-
rectly predicts a promoter at the upstream end of a transcribed gene, while REPTILE
misclassifies the adjacent region as an enhancer. I quantified this effect by calculat-
ing the distances of genome-wide predicted enhancers to the closest annotated TSS.
Distances of predicted enhancers to the closest annotated TSS are unimodally dis-
tributed in the case of eHMM with an interquartile range spanning from 11 kb to 85

kb (Figure 4.16). Enhancers predicted by REPTILE exhibit an additional mode that
centers at approximately 1 kb and most likely represents false enhancer predictions
adjacent to promoters.
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Figure 4.16: Distance distributions of predicted enhancers to closest ATAC-seq peak (MACS2)
and TSS (UCSC knownGene database) in mouse ESC for eHMM and REPTILE (threshold =
0.9).
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Figure 4.17: Example genomic region with predictions from eHMM and REPTILE (threshold
= 0.5). The color code in the eHMM segmentation track is equal to Figure 4.4, i.e. green:
enhancer nucleosome, red: promoter nucleosome, yellow: chromatin accessibility, gray: back-
ground.
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4.3.8 run time

I estimated empirical run times for model training and prediction on mouse ESC
data and compared them to those of REPTILE, EpiCSeg and ChromHMM. All meth-
ods ran on 21 cores in parallel (one for every chromosome) as far as the respective
implementation allowed it. Run times per core are shown in Table 1. REPTILE uses
the least total CPU time, but the longest real time, indicating a lack of efficiency in
leveraging multithreading. eHMM completes training and prediction in less than 47

seconds (real time), which is similar to EpiCSeg (36 seconds) and ChromHMM (50

seconds). REPTILE takes almost twice the amount of time (90 seconds).

Table 1: Run times

Real time [s] CPU time [s]
Method Training Prediction Total Training Prediction Total

eHMM 2.961 43.636 46.597 15.337 155.820 171.157

REPTILE 1.461 89.456 90.917 5.162 140.388 145.550

EpiCSeg 36.327 352.294

ChromHMM 50.401 282.909

4.4 discussion

I developed eHMM with the goal of detecting active enhancers with variable lengths
throughout mammalian genomes. eHMM features three modules for enhancer, pro-
moter and background prediction, each being trained in a supervised fashion on
predefined training sets. The enhancer and promoter modules consist of a particular
architecture that captures the biological topology of these regulatory elements, i.e. a
central accessible stretch of DNA flanked by nucleosomes to each side. The method
performs well in cross-validation tests, showing that the proposed physical model is
present in the data and captured by eHMM. Moreover, eHMM incorporates a quan-
tile normalization step that makes it well applicable across samples, e.g. a model
trained on one cell type or developmental stage can be used for predictions on an-
other. Based solely on the area under the precision-recall curve as a performance
measure, eHMM achieves similar results as the top-performing state-of-the-art soft-
ware REPTILE when testing on the FANTOM5 data set, and outperforms it when val-
idating on regions from the EnhancerAtlas. These results suggest overfitting of the
models learned by REPTILE and underline the robustness of eHMM’s predictions
over different validation setups. Notably, there are apparent performance differences
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between cell types. In particular the prediction performance on ESC is generally
lower compared to lung and liver. This is likely due to the fact that EnhancerAtlas
regions were predicted on the basis of agreement of different source tracks such as
TFBSs, eRNA, histone modifications, chromatin accessibility and more. Here, I use
only chromatin accessibility and histone modifications, and I would thus expect the
tested methods to perform best in cell types where these features were most informa-
tive for the EnhancerAtlas predictions. The results suggest that ESC regions in the
EnhancerAtlas were not primarily predicted on the basis of the features used in this
study. The outcome of unsupervised methods such as ChromHMM and EpiCSeg is
uncertain as they perform well in some conditions and poorly in others, and it is not
apparent how to judge the quality of a segmentation without a test set. In addition,
state interpretation is not trivial and highly affects the prediction quality.

eHMM’s genome-wide enhancer and promoter predictions in mouse ESC exhibit ex-
pected properties, confirming prediction quality on a whole-genome level. For exam-
ple, lineage-specific transcription factors are enriched at enhancers, and promoters
exhibit low DNA methylation levels and an abundance of RNAP II. In contrast to
previous work focusing on sequence conservation in cis-regulatory regions [176, 193–
195, 231], these results show that the sequence of predicted enhancers is less likely
to be conserved in comparison to predicted promoters. This seeming contradiction
between observing strong binding of lineage-specific transcription factors and low
levels of sequence conservation could suggest functional conservation while the en-
hancers’ genomic locations are highly dynamic in evolutionary terms as suggested
by Schmidt et al. [232] and others [98, 99, 101], manifesting itself in a lower sequence
conservation across species.

The lower number of predicted enhancers with the supervised methods eHMM and
REPTILE reflects their higher specificity compared to the unsupervised methods
ChromHMM and EpiCSeg. While REPTILE enforces this specificity rather arbitrarily
by calling only the most certain enhancer among multiple neighboring predictions,
eHMM achieves this by the potential presence of enhancer- and promoter-like states
in the background module that compete with the topology-respecting foreground
module. eHMM thus ultimately reduces the false-positive rate by emphasizing the
importance of the enhancers’ molecular structure, which in turn results in higher
spatial accuracy. Further, eHMM returns the most likely path according to the Viterbi
decoding algorithm and therefore does not require the definition of an arbitrary pre-
diction threshold.

Many methods often predict enhancers right next to promoters where the promoter-
specific histone modification H3K4me3 decreases while H3K4me1 re-emerges. The
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implemented promoter module as well as the aforementioned model topology en-
ables eHMM to distinguish between the two regulatory elements and to refrain from
calling enhancers in promoter-associated regions merely on the basis of a decreasing
promoter signal. In addition, eHMM provides a high resolution of predicted regions,
allowing the accurate targeting of regulatory subunits such as nucleosomal or acces-
sible regions for potential downstream analyses.

Moreover, eHMM allows inspection of model parameters that provide information
about both transition dynamics between states and each state’s signal emission dis-
tribution, standing in contrast to black box methods. These properties facilitate inter-
pretability of the learned parameters and the predicted regions, and allow us to draw
biological conclusions. Finally, I showed how to use hidden Markov models in a su-
pervised fashion with functional genomic data, and how different models learned on
various training sets can be combined in order to obtain one global model containing
supervised modules with well-defined topologies.

Taken together, the minimal feature requirements, good performance within and
across samples, the predictions’ high spatial accuracy as well as interpretability and
resolution make eHMM a very powerful and feasible tool for enhancer prediction.
However, while the method tackles problems and shortcomings of earlier methods, it
comes with certain drawbacks itself. Optimizing the performance of a computational
method is often a trade-off between various objectives. For example, eHMM’s high
confidence predictions come at the price of low sensitivity. Downstream analyses
relying on computationally identified enhancers may depend on high sample sizes,
and in those cases eHMM may not be the method of choice. This is particularly the
case when performing statistical analyses for single loci, e.g. motif analysis of all en-
hancers in a TAD as in Subsection 5.3.4. Moreover, eHMM requires minimal input
data, a property that is especially useful when data availability is scarce. However,
other methods may be more suitable in case additional data such as DNA methyla-
tion is available. Extending eHMM to optionally integrate additional data presents
an opportunity to expand the applicability of the method. Finally, eHMM is designed
for bulk functional genomics data and is not suitable for handling sparse read count
data from single cell experiments such as scATAC-seq. It will certainly be interesting
to conceptualize a method using single cell data together with maintaining the ad-
vantages achieved in this work in the future and thereby addressing the identification
of cell type-specific enhancers.
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F U N C T I O N A L C O N S E RVAT I O N O F C I S - R E G U L AT O RY
E L E M E N T S

5.1 motivation

identifying functionally conserved elements Two species share parts
of their genomes that have been conserved since their evolutionary paths diverged. In
a simplified view, the more time has passed since the common ancestor and the faster
the adaptation or the higher the mutation rate, the less frequent are those conserved
elements. Conserved elements are typically functional and their conservation the very
consequence thereof. In Subsection 2.2.5 I introduced the topic of sequence conser-
vation and noted that enhancers display very heterogeneous levels thereof [97]. The
results presented in Chapter 4 confirmed these previous findings by showing diverse
levels of sequence conservation in predicted enhancers (Subsection 4.3.5). Moreover,
there have been individual reports of enhancers that are not conserved in sequence
but rather in function [86, 95, 96, 98, 99, 101]. Measured by the multitude of such
findings, functional conservation in absence of sequence conservation seems to be a
widespread phenomenon.

In 2011, Taher et al. [100] presented an attempt to systematically identify functionally
conserved elements. They did so by exploiting the fact that for any given genomic lo-
cation, mutation rates and selective pressure may vary between species. This means
that even if the sequence in putative functional orthologs between two species di-
verged to an extent that renders them unalignable, both of these orthologs might be
alignable to a third species. In that case, the sequence of the third species serves as
an "orthology tunnel" between the originally compared species. I will use the term
bridging species for such a third species harboring an orthology tunnel. Using this
approach with the western clawed frog (Xenopus tropicalis) as their bridging species,
they found approximately 300 pairs of functional orthologs with diverged sequences
between human and zebrafish (Danio rerio) that are likely to share common ancestry
and regulatory activity based on TFBS composition. The very fundamental factor for
their approach is that different genomic locations vary in mutation rates and selective
pressures between species. This entails that a fixed bridging species will only reveal
a subset of all true functional orthologs because many of them might be tunneled
through a different bridging species. Optimizing the choice of the bridging species
and, moreover, using multiple bridging species in sequence thus may enhance the
capability of identifying functional orthologs beyond sequence conservation.

69
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In this Chapter I will present two methods that optimize the compilation of bridg-
ing species for a given genomic location under slightly different aspects (Subsec-
tions 5.2.1 and 5.2.2).

projecting genomic coordinates of non-alignable elements For the
task at hand the goal is to achieve accurate projections of unalignable genomic re-
gions between a reference and a target species. Alignable and non-alignable regions
are interspersed, i.e. non-alignable regions are generally located between alignable
regions except for genomic regions at the chromosomal margins. Two methods pre-
sented in Subsections 5.2.1 and 5.2.2 make use of that fact and assume that if a
non-alignable genomic element is located between two alignable sequences in a syn-
tenic neighborhood in the reference species, then it will also be located between these
two alignable regions in the target species if it exists. In other words, non-alignable
but functional sequences within a GRB are either lineage-specific or they are func-
tionally conserved and thus also expected to maintain synteny, i.e. the co-localization
and conservation of order between the two species. For this assumption to hold true,
the flanking alignable regions, which I term anchor points, are required to exhibit
shared synteny, too. In that case, the anchor points map to roughly the same genomic
neighborhood in the target species. Especially CNEs clustering in GRBs have been
found to be largely syntenic and thus collinear [233].

The linear distance between any two anchor points depends on the similarity of the
compared genomic regions which is a function of the evolutionary distance between
the two species and their respective local mutation rates. For example, let us imag-
ine a random genomic location in mouse that is neither alignable to human nor to
zebrafish. On average, its anchor points to human are expected to be closer than its
anchor points to zebrafish, given that human and mouse diverged roughly 90 million
years ago (mya) and share much more genetic information than mouse and zebrafish
who diverged ~435 mya [234]. This example is visualized in Figure 5.1 A. The dis-
tribution of CNEs in GRBs as depicted in Figure 5.1 C shows a distinct pattern that
changes with the evolutionary distance of the compared species (Figure 5.1 B). Most
distributions are bimodal with the first mode at short distances in the order of 100

bps. This mode is consistent in all compared species and likely represents tight clus-
ters of CNEs that potentially form subdomains within a larger unit, the GRB. The
second mode only exists with larger evolutionary distances and its position posi-
tively correlates with these very distances, representing the sparser distribution of
conserved elements between species with high evolutionary distances and thus their
larger spacing. This is summarized in Figure 5.1 D showing an exponential relation-
ship between the divergence time of two species and the average distance between
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two CNEs. Notably, elephant shark (Callorhinchus milii) stands out with lower CNE
distances than zebrafish. This is owed to the fact that elephant shark has the slowest
evolving genome among all examined vertebrates and thus resembles the last com-
mon ancestor more than zebrafish does [235]. This highlights that not only time but
also individual mutation rates affect anchor point distributions.
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Figure 5.1: Distribution of CNEs between two species in relation to their evolutionary dis-
tance. A Schematic illustration of CNE densities between mouse, human and zebrafish.
B Phylogenetic tree showing evolutionary distances between mouse and five species (hu-
man, chicken, frog, zebrafish and elephant shark). Evolutionary divergence times according
to Kumar et al. [234]. C Distributions of inter-CNE distances in comparisons from mouse to
five species. D Relationship between divergence time and the average distance between two
CNEs shared between mouse and one of five species.
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functional conservation of topological chromatin structures In
Section 2.3 I discussed the nature of highly conserved genomic elements, so called
CNEs, and their clustering into GRBs. Many CNEs have been shown to act as en-
hancers on the regulation of key developmental genes [90]. Not only are CNEs con-
served in their sequence but also constrained in their order and they are largely
collinear [233]. This global constraint likely represents higher-order organization such
as the three-dimensional chromatin structure. A recent study reported that GRBs co-
localize with TADs, suggesting a functional role of CNEs in the regulation of the
spatial chromatin structure [112]. CNEs identified in different lineages with large
evolutionary distances often lack sequence conservation due to gradual and continual
CNE turnover [236]. Regardless, TAD structures are often conserved even in GRBs
with high CNE turnover, suggesting that the three-dimensional organization plays
an important role and can be maintained even in the absence of sequence conserva-
tion [237, 238]. I investigated this context by mapping epigenomic data representing
higher order chromatin structure from mouse onto zebrafish genomic coordinates
and assessed the conservation of topological structures on the epigenomic level be-
yond sequence conservation. In Subsection 5.3.4 I will present the discovery of epige-
nomically conserved subdomains and further provide evidence for the functional
equivalence of the regulatory elements within those subdomains.

The development of the limb bud in vertebrates is one of the most studied experi-
mental frameworks for investigating the molecular and morphogenic processes dur-
ing organogenesis [239]. In addition, it serves as a model for studying evolutionary
innovations, for example the appearance of digits during the fin-to-limb transition in
the evolution of terrestrial vertebrates [240, 241]. It is especially suitable for studying
the effect of genetic manipulations in limb-specific loci as the consequences of those
may lead to malformations but are typically not lethal, and thus provides the ideal
framework for the field of comparative genomics. In Chapter 4 I presented a method
for identifying enhancers using functional genomics data. In Subsection 5.3.1 I will
describe how I apply this method on data from the developing limb in mouse and
use the identified enhancers as subjects in an attempt to identify putative functional
orthologs between mouse and chicken.

5.2 methods

Depending on the context it is either desirable to project a given genomic location
as accurately as possible or to project multiple neighboring regions subject to the
constraint of synteny. An example for the first is the projection of an unalignable
enhancer from one species to another, e.g. for identifying functionally conserved or-
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thologs in the absence of sequence conservation. An example for the latter is the
projection of a whole GRB. I will discuss these two approaches under the terms In-
dependent Point Projection (IPP) and Syntenic Anchor Point Propagation (SAPP)
in the subsequent parts of this Section.

5.2.1 independent point projection (ipp)

In syntenic genomic neighborhoods, projecting a genomic location from a given
species to another in the absence of sequence conservation can be achieved by in-
terpolating its relative position between two alignable anchor points. Naturally, this
quickly becomes inaccurate when the anchor points are far apart as often is the case
when comparing distantly related species. Using a bridging species may increase the
density of anchor points and thus improve projection accuracy. In fact, the closer a
genomic position is located to an anchor point, the less uncertain a projection using
that anchor point. Therefore, it is desirable to choose the bridging species individ-
ually for every genomic location so that the distance to one of the anchor points
is minimized. Figure 5.2 A schematically illustrates the benefit of using a bridging
species on the projection accuracy for an example projection from zebrafish to mouse.

Finding an optimal bridging species depends on the distance of the genomic location
x to the anchor points. However, it is not sufficient to only consider the distances
in the reference species. If xR is projected from the reference species R to xB in a
bridging species B and subsequently from B to xT in the target species T , then the
projection uncertainty will propagate through the species path R → B → T . The fi-
nal projection accuracy will thus depend on both the distances from x to its closest
anchor point aR,B as well as from the intermediate projection xB to its anchor point
aB,T . Figure 5.2 B illustrates a scenario with a bridging species that minimizes only
the distance in the reference, but not in the bridging species. A sequence of multiple
bridging species will thus propagate the uncertainty of every step through the path.

Finding the optimal set of bridging species presents a shortest path problem. In graph
theory, the shortest path problem is the search for a path between two vertices of a
graph such that the sum of the lengths of its constituent edges is minimized. I discuss
the topic in Section 3.2 and introduce Dijkstra’s Shortest Path Algorithm. Here, the
vertices are the species and the weighted edges between them represent the distance
of a genomic location to its anchor point. A schematic visualization of such a graph
for a set of 15 species is given in Figure 5.3. The closer a genomic location to an anchor
point, the smaller the distance in the graph for this species pair. In the following
paragraph I establish a distance scoring function designed for that purpose.
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Figure 5.2: Schematic illustration of the IPP algorithm from zebrafish to mouse using dif-
ferent bridging species. Regions (X) in species other than the reference are found by linear
interpolation between anchors. Symbols represent anchors between two species with their
colors and shapes highlighting species pairs (e.g. black pentagons correspond to anchors
between zebrafish and mouse). The grey shaded background depicts the span of the direct
anchors, dashed lines mark the spans of the anchors through the bridging species. Horizontal
bars represent distances from the closest anchor to the genomic coordinate and their colors
distinguish direct projections (black) and projections via bridging species (green). The algo-
rithm is outlined in Algorithm 1. A Bridging via frog minimizes distances to anchor points.
B Bridging via elephant shark minimizes distance to anchor point in zebrafish, but not in
elephant shark.
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Independent point projections optimize projection accuracy for single independent
genomic locations. However, in certain circumstances the genomic locations of in-
terest are not independent and this method not suitable. I discuss the projection of
dependent genomic locations in Subsection 5.2.2.

Figure 5.3: Species graph. Vertices represent different species and the edges are weighted
by the distance scores between the vertices they connect. The highlighted paths mark two
possible paths through the graph from mouse to zebrafish.

distance scoring function The IPP algorithm aims at maximizing projec-
tion accuracy by minimizing distances from the initial genomic location and all po-
tential intermediate projections to their respective anchor points. For that, I estab-
lished a scoring function that reflects those distances and returns values between 0

and 1. A score of 1 means that a genomic location x overlaps an anchor point a. The
score decreases exponentially as the distance |x − a| increases. For a single species
comparison, the function is defined as follows:

f(x) = exp
(
−

min(|x− a(1)|, |x− a(2)|)
g s

)
, (5.1)

with g denoting the genome size of the respective species and s a scaling factor. s can
be determined by defining a distance half life dh, i.e. the distance |x− a| at which the
scoring function is to return a value of 0.5. Solving f(dh) = 0.5 for s we get

s = −
dh

g log(0.5)
. (5.2)
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Figure 5.4 shows the distance function for different distance half life values around
two anchors that are located 200 kbp apart.
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Figure 5.4: Course of the distance scoring function as defined in Equation 5.1 with varying
scaling factors around anchor points a1 and a2 located at 0 and 200 kbp, respectively. The
scaling factors are based on distance half life values between 10 and 100 kbp. Shorter distance
half lives let the score decrease faster when moving away from an anchor point.

It is important to note that when projecting from a reference to a target species
through a path comprising a given set of bridging species, the scaling factor is only
determined once for the reference species and kept constant for every subsequent
bridging species in the path. That way, the genome size scaling factor g adjusts for
different genome sizes in the respective bridging species.

The length lp of a path p through the species graph G negatively correlates with the
scores for each edge in p. Thus, lp is obtained by multiplying the distance scoring
function for every species in that path and subtracting that value from 1:

lp = 1−
∏
i∈p

exp

(
−

min(|xi − a
(1)
i |, |xi − a

(2)
i |)

gis

)
, (5.3)

where xi denotes the genomic coordinate in species i ∈ p. Other than in the reference
species where this value is given as an input, xi is determined by linear interpolation
between the anchors.

With di = min(|xi − a
(1)
i |, |xi − a

(2)
i |):

lp = 1− exp

−
1

s

∑
i∈p

di
gi

 . (5.4)
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The shortest path p̂ through the species graph is then found by minimizing lp:

p̂ = arg min
p∈P

lp (5.5)

with P denoting the set of all paths through G.

IPP’s basic function is described as pseudocode in Algorithm 1 and a simple example
schematically visualized in Figure 5.2. The algorithm uses max-heap, a specialized
tree-based data structure that is an efficient implementation of a priority queue. In
a max-heap, the element with the highest priority, in this case the highest projection
score, is stored at the root. Two of the basic heap operations are push, i.e. adding
elements to the heap, and pop, i.e. extracting the root from the heap.

5.2.2 syntenic anchor point propagation (sapp)

Sometimes, instead of projecting single independent genomic locations, we might
want to project multiple dependent locations. For example, two enhancers in a syn-
tenic region of the reference species are of course expected to be syntenic in the
target species as well. However, IPP may render different species paths for both en-
hancers. Moreover, these two paths might differ in the direction of the closest anchor.
Because the IPP algorithm estimates the intermediate locations in every bridging
species by interpolation, this can lead to projections where the relative positions of
the two enhancers are inverted in the target species, neglecting the aspect of synteny
(Figure 5.5 A).

To that end, I developed a second algorithm termed SAPP in which not the genomic
location itself but rather its closest anchors are propagated through the species graph.
SAPP differs from IPP in three major aspects. First, when moving from one species
to another, the genomic location of interest is not interpolated. Instead, the algo-
rithm follows the anchor points of the initial genomic location. Second, there are
no distances between species. Instead, it is only the final anchor span in the target
species that is minimized. For example, a potential insertion between the anchors in
a bridging species may result in a wide intermediate anchor span, however, this is
irrelevant as long as the anchor span in the target species is minimal. Third, anchors
are propagated through the species graph independently for both directions. This
may implicate resulting target anchors from different species. The SAPP algorithm
always moves in an outward direction. This characteristic feature of the algorithm en-
sures that synteny is maintained. Moreover, SAPP does not provide point projections.
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Algorithm 1 Independent Point Projection

function distanceScoringFunction(anchors, coordinate)
As described in Equation 5.1.

end function

function project(currentSpecies, nextSpecies, currentCoord, currentScore)
Determine anchors between currentSpecies and nextSpecies that flank currentCoord.
Estimate nextCoord by linear interpolation between anchors.
nextScore = currentScore × distanceScoringFunction(anchors, currentCoord)
return nextScore, nextCoord

end function

function getShortestPath(reference, target, coordinate, speciesList)
Initialize path as a dictionary with key : value pairs of the form
species : (score, previousSpecies, coordinate)
Initialize maxHeap as a heap of tuples of the form (score, species, coordinate).
maxHeap.push((1.0, reference, coordinate))
while maxHeap not empty do

currentBestScore = path[currentSpecies]["score"] if entry exists else 0
currentScore, currentSpecies, currentCoord = maxHeap.pop()
if currentScore 6 currentBestScore then

continue . currentSpecies was already reached by a shorter path.
end if
if currentSpecies == target then

break . Reached target species.
end if
for nextSpecies in speciesList do

nextBestScore = path[nextSpecies]["score"] if entry exists else 0
if currentScore 6 nextBestScore then

continue . nextSpecies was already reached by a shorter path.
else

args = (currentSpecies, nextSpecies, currentCoord, currentScore)
nextScore, nextCoord = project(args)

end if
if nextScore 6 nextBestScore then

continue . nextSpecies was already reached by a shorter path.
else

path[nextSpecies] = (nextScore, currentSpecies, nextCoord)
maxHeap.push((nextScore, nextSpecies, nextCoord))

end if
end for

end while
shortestPathToTarget = Backpropagate path from target to reference.
return shortestPathToTarget

end function

Instead, if the original assumption of maintained synteny is accurate, the resulting
anchors in the target species will ultimately span a region that contains all potential
orthologs to the corresponding region in the reference species. SAPP’s course of ac-
tion is visually outlined in Figure 5.5 B and described as pseudocode in Algorithm 2.
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Algorithm 2 Syntenic Anchor Point Propagation

function moveOut(currentSpecies, currentCoord, currentDirection, target)
while currentCoord is within outerBoundaries of currentSpecies do

Walk from currentCoord in currentDirection.
Stop at the nearest anchor to any other species.
Set the anchor coordinate in currentSpecies as currentCoord.
Set the species to which the anchor points as nextSpecies.
Set the anchor coordinate as nextCoord.
if nextCoord is within the outer boundaries of nextSpecies then

if nextSpecies == target then
Replace respective value in target’s outerBoundaries by currentCoord.

else
moveOut(nextSpecies, nextCoord, currentDirection, target)

end if
else

Discard anchor and change currentCoord by 1 bp in currentDirection
end if

end while
end function

function propagateAnchors(reference, target, coordinate, speciesList)
for currentSpecies in speciesList do

Determine the anchors from reference to currentSpecies that flank coordinate.
In currentSpecies, these anchors span a region (anchorSpan).
Determine the anchors from currentSpecies to target that flank anchorSpan.
Set these two anchors as outerBoundaries of currentSpecies.

end for
for currentDirection in ["upstream", "downstream"] do

moveOut(reference, coordinate, currentDirection, target)
end for
return outerBoundaries

end function

5.2.3 data sources and processing

data sources Zebrafish functional genomics data was downloaded as bam- and
bigwig-files from the DANIO-code DCC at https://danio-code.zfin.org/ [242, 243]
(whole-embryo 24 hpf ATAC-seq [244] and H3K27me3 [245]). Mouse H3K27me3
data was downloaded from ENCODE for multiple tissues at embryonic stage E10.5
(forebrain, midbrain, hindbrain, heart, limb, embryonic facial prominence) [210], and
merged to simulate whole-embryo data comparable to that of zebrafish. Functional
genomics data used for enhancer prediction in mouse embryonic limb E10.5 was
downloaded from GEO (ATAC-seq [246], H3K4me1 and H3K4me3 [247]) and from
ENCODE (H3K27ac [248]). Functional genomics data for chicken embryonic limb
Hamburger-Hamilton stage 25 (HH25) [249, 250] was kindly provided by the re-
search group of Stefan Mundlos and a manuscript by Ringel et al. is in preparation,
which also provided the locations of putative enhancers in the Fat1 locus. Putative
enhancers in the Sox9 locus were obtained from Despang et al. [251].

https://danio-code.zfin.org/
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Figure 5.5: Schematic illustration of the SAPP algorithm for anchor point propagation from
zebrafish to mouse with frog as a bridging species. Symbols represent anchors between two
species with their colors and shapes highlighting species pairs (e.g. black pentagons corre-
spond to anchors between zebrafish and mouse). The algorithm starts at a region (X, Y) in
the reference species and moves outward in both directions to an anchor to any species until
the target species is reached, and choses the path that minimizes the target anchor span. The
algorithm is outlined in Algorithm 2.

cnes and grbs I identified CNEs and GRBs using CNEr [252]. First, I called di-
rect GRBs from zebrafish to mouse. These definitions are vague due to the low CNE
density between those species. To that end, I called clade-specific GRBs (zebrafish
- grass carp and mouse - human), and refined the boundaries of zebrafish - mouse
GRBs by requiring overlap with the clade-specific GRBs in both zebrafish and mouse,
yielding 152 GRBs.

species selection IPP and SAPP rely on the assessment of multiple species for
close anchor points. A suitable set of bridging species always depends on the par-
ticular species comparison. In Subsection 5.3.4 I map unalignable regions between
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zebrafish and mouse. For that, I include bridging species that diverged from mouse
later than zebrafish did (human, chicken, frog, coelacanth) and others that diverged
from zebrafish later than mouse did (grass carp, common carp, goldfish, medaka,
stickleback, japanese pufferfish, green spotted puffer, spotted gar). This increases the
probability that a putative functionally conserved element is alignable or close to
alignable anchors in some species pairs even though in mouse and zebrafish it is
not, and ultimately that those species pairs allow forming a short path through the
species graph resulting in accurate projections. In addition, I chose elephant shark as
an outgroup for two reasons. First, elephant shark has the slowest evolving genome
among all known vertebrates [235]. It therefore resembles the last common ancestor
with zebrafish and mouse stronger than any other species in this clade. Second, an-
chor points shared between elephant shark and zebrafish are likely to be different to
those shared between elephant shark and mouse, hence increasing total anchor point
density. This follows from the fact that mouse and zebrafish evolved independently
and thus accumulated different sets of random mutations. Other slowly evolving
species included in the graph are coelacanth and spotted gar, with the latter being
the closest relative to zebrafish that did not undergo the additional whole genome
duplication (WGD) of teleost fish [253]. In Subsection 5.3.1 I investigate functional
conservation of putative enhancers in the developing limb of mouse and chicken. I
therefore replaced several teleost species with closer relatives to chicken (penguin,
ostrich, alligator, lizard). The respective selections of bridging species are shown as
phylogenetic trees in Figure 5.6.

filter anchor points A fundamental requirement for both IPP and SAPP
is the availability of anchor points with conserved synteny, i.e. neighboring anchor
points must be collinear between two species and reside in roughly the same genomic
neighborhood. Synteny is an inherent property of GRBs, and their genes (both target
and bystander) as well as their CNEs are largely collinear [110, 233], providing ideal
terrain for those methods. In addition to genes and CNEs, I decided to use any pair-
wise alignment to obtain the largest possible sets of anchor points. However, pairwise
alignments frequently contain false positives [166], resulting in syntenic regions that
include outliers pointing to different chromosomes or simply violating the collinear-
ity constraint. I therefore implemented an outlier-check prior to defining the closest
anchors of a region of interest that collects the ten closest anchor points in both up-
and downstream direction and discards every data point that fails this test.
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5.2.4 implementation and availability

I implemented IPP and SAPP in python and released them together in a repository
available at https://github.com/tobiaszehnder/genomic_coordinate_projection.

Western Clawed Frog
Xenopus tropicalis
xenTro9

Chicken
Gallus gallus
galGal5

Human
Homo sapiens
hg38

Mouse
Mus musculus
mm10

Zebrafish
Danio rerio
danRer10

Elephant Shark
Callorhinchus milii
calMil1

Coelacanth
Latimeria chalumnae
latCha1

Grass Carp
Ctenopharyngodon idella
cteIde1

Common Carp
Cyprinus carpio
cypCar1

Goldfish
Carassius auratus
carAur01

Medaka
Oryzias latipes
oryLat2

Japanese Pufferfish
Takifugu rubripes
fr3

Green Spotted Puffer
Tetraodon nigroviridis
tetNig2

Spotted gar
Lepistosteus oculatus
lepOcu1

Stickleback
Gasterosteus aculeatus
gasAcu1

500 400 300 200 100 0

Divergence Time [mya]

Western Clawed Frog
Xenopus tropicalis
xenTro9

Chicken
Gallus gallus
galGal6

Human
Homo sapiens
hg38

Mouse
Mus musculus
mm10

Zebrafish
Danio rerio
danRer10

Elephant Shark
Callorhinchus milii
calMil1

Opossum
Monodelphis domestica
monDom5

Platypus
Ornithorhynchus anatinus
ornAna3

Spotted gar
Lepistosteus oculatus
lepOcu1

Adélie penguin
Pygoscelis adeliae
pygAde1

0

Divergence Time [mya]

500 400 300 200 100

BA

Ostrich
Strutio camelus
strCam1

Chinese Alligator
Alligator sinensis
allSin1

Green Anole Lizard
Anolis carolinensis
anoCar2

Figure 5.6: Phylogenetic trees of the selected species for the genomic coordinate mapping
between mouse and zebrafish (A) and between mouse and chicken (B). Evolutionary diver-
gence times according to Kumar et al. [234]. The labels depict each species’ trivial name (bold),
scientific name (italic) and genome assembly. Colors indicate monophyletic groups. A blue
- Sarcopterygii, (including tetrapods and lobe-finned fish such as coelacanths and lungfish),
orange - Actinopterygii (including teleost, gars and bowfins), green - outgroup. B blue - Mam-
malia, orange - Sauria (including reptiles and birds), green - outgroup.

https://github.com/tobiaszehnder/genomic_coordinate_projection
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5.3 results

5.3.1 identifying functional orthologs using ipp

Key developmental genes often reside in tightly regulated neighborhoods with rela-
tively high frequencies of sequence conservation. At the same time, many putative
enhancers in these genomic environments lack direct alignability between a given
species pair, especially if these species are not closely related. However, as intro-
duced earlier in this Chapter, some of the unalignable enhancers might still share
function even though their respective sequences have changed to a degree that has
rendered them unalignable. Here I will describe an attempt at identifying putative
functional orthologs using the previously described IPP method. For that, I used the
enhancer prediction method eHMM I presented in Chapter 4 for identifying puta-
tive enhancers in the developing limb in mouse, resulting in a total of 4569 predicted
enhancers genome-wide. I used IPP to project the genomic locations of these puta-
tive enhancers to chicken. Using IPP’s projection score (Subsection 5.2.1), I grouped
the enhancers in three different classes: S (sequence-conserved), F (potentially func-
tionally conserved) and N (not conserved). Enhancers were classified as S if their
projection score using only direct alignments from mouse to chicken was above a cer-
tain threshold, and as F if they were not in S and their projection through the species
graph yielded a score greater than the threshold in question. I set the projection score
thresholds to 0.99 and chose a stringent distance half life of 10 kbp for determining
the scaling factor (Equation 5.2). According to that and Equation 5.1, a projection
score of 0.99 corresponds to an enhancer-anchor distance of ~150 bps when consid-
ering direct anchors from mouse to chicken. The projections were performed on the
enhancers’ center base pair coordinate, and given a typical enhancer’s width of a
few hundred bps [171], a distance of less or equal than 150 bps to an anchor can be
considered as at least partially overlapping the enhancer. However, enhancers in class
F were projected using at least one bridging species, and since the distances in the ex-
ponent of the score are additive, this means that the sum of all distances to the anchor
points of each used species is less or equal to the corresponding distance, e.g. 150 bps.

According to these classifications, 393 (9%) of the predicted enhancers have a con-
served sequence between mouse and chicken, and another 567 (12%) are identified
as candidates for functional conservation as they overlap indirect alignments via at
least one bridging species (Figure 5.7 A). N enhancers are generally lowly conserved
in a multiple species comparison as depicted by the distribution of phastCons 60way
scores in Figure 5.7 B. This score is computed from a multiple alignment across 60

vertebrates and correlates with the fraction of species in which an enhancer is con-
served. Conversely, enhancers in class S exhibit more variable conservation scores
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with a larger fraction not only conserved to chicken but also to many other verte-
brates. The distribution of the conservation scores of F largely resembles that of S,
reflecting the identified alignments between the species pairs in the respective opti-
mal bridging species paths. In terms of conservation across multiple vertebrates, F
enhancers are hardly distinguishable from S enhancers despite their missing direct
alignment between mouse and chicken.

I analyzed the projected genomic locations for the presence of epigenetic features as-
sociated with enhancer function such as chromatin accessibility measured by ATAC-
seq, histone modifications H3K27ac, H3K27me3, H3K4me1 and H3K4me2, as well
as binding events of RNAP II (Figure 5.7 C). Sequence-conserved enhancers from
class S possess the strongest enhancer-associated features whereas the projections of
non-conserved enhancers point to regions in chicken that are much less enriched for
those. F enhancers generally exhibit these features similar to S and rather distinct
from N, suggesting that these regions might indeed act as enhancers in chicken, too.
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Figure 5.7: Identification and evaluation of potential functional orthologs between mouse
and chicken using putative enhancers predicted by eHMM. A Enhancer classification into
sequence-conserved (S), potentially functionally conserved (F) and not conserved (N) en-
hancers according to a projection score threshold of 0.99. Elements in F have a score above the
threshold for projections using multiple bridging species, elements in S have a score above the
threshold for projections using only direct alignments between mouse and chicken. B Mouse
mm10 phastCons 60way sequence conservation scores averaged over 500 bps windows cen-
tered on the enhancers. C Distribution of the signal of phastCons and various functional
genomics experiments averaged over 500 bps windows centered on the IPP projections in
chicken HH25.
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Figure 5.8: Identification and evaluation of potential functional orthologs between mouse
and chicken using ATAC-seq peaks predicted by MACS2 [207]. Subfigures are analogous to
Figure 5.7.

As described in Chapter 4, eHMM predicts enhancers with a particular emphasis
on specificity rather than sensitivity. The number of enhancers assessed for potential
functional conservation is therefore rather low. For this reason I expanded the query
to a larger set of putative regulatory elements, namely all ATAC-seq peaks predicted
by MACS2 [207] in mouse forelimb that are located within a GRB, resulting in a total
of 16,865 elements. The distribution of element classes is shifted towards conserva-
tion, with S and F amounting to 15% and 18% of all tested elements, respectively
(Figure 5.8 A). This is roughly twice as many conserved elements as observed for
the predicted enhancers and arises from the fact that ATAC-seq peaks include ac-
tive promoters which are often conserved. In terms of sequence conservation across
60 vertebrates and the functional genomics features in chicken, the ATAC-seq peaks
show similar results to the predicted enhancers with respect to the classes S, F and
N. Overall, IPP identifies more than 3000 candidates for potential functional conser-
vation with substantiating epigenetic features in the developing limb bud.

These results demonstrate global conservation patterns and suggest the prevalence
of functional conservation throughout the genome. Single loci, however, might differ
from the global average. To that end, I examined conservation of regulatory elements
in five limb-specific loci, i.e. the GRBs surrounding the limb-specific genes Fat1, Fgf8,
En1, Hand2 and Sox9. Conservation levels differ remarkably between different loci
(Figure 5.9). For example, half of the ATAC-seq peaks in the GRB around the gene



86 functional conservation of cis-regulatory elements

Sox9 are either sequence-conserved or potential candidates for functional conserva-
tion, whereas in the Fat1 GRB, 90% of the ATAC-seq peaks are not conserved. An
overview of the features for the individual loci is given in Figure 5.10.

Figure 5.9: Local and global enhancer classification into sequence-conserved (S), potentially
functionally conserved (F) and not conserved (N) enhancers according to a projection score
threshold of 0.99. Label names of local classifications refer to the GRBs in which the respectiv
genes reside. The labels eHMM and ATAC refer to global classifications using elements from
the whole genome as predicted by eHMM and MACS2, respectively.
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Figure 5.10: Potential functional orthologs between mouse and chicken in the GRBs encom-
passing Fat1, Fgf8, En1, Hand2 and Sox9. A PhastCons sequence conservation scores averaged
over 500 bps windows centered on the ATAC-seq peaks. B Feature distributions of the IPP
projections in chicken.
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optimal path statistics IPP optimizes the choice of bridging species for max-
imizing projection accuracy. Figure 5.11 shows the distribution of path lengths, i.e. the
number of bridging species for the classes S, F and N and shows the relative frequen-
cies of the different species occurring in those paths for a conservation threshold of
0.99. Optimal paths pass through up to six bridging species with shorter paths be-
ing more common. Especially shorter paths are predominantly going through mam-
malian species human, opossum and platypus with a strong favor for human in paths
with a single bridging species. Compared to the mammalian clade, species from the
clade Sauria (including reptiles and birds [254]) are less frequently used as a bridging
species in shorter paths and approximately as often in longer paths (e.g. > 3). Species
from the outgroup are the least frequent and mainly appear in approximately 5% of
the shorter paths.

Elements classified as sequence-conserved (S), i.e. a direct alignment from mouse to
chicken is located within roughly 150 bps, are projected directly in only about 50% of
the cases. The other half of elements in S are considered directly sequence-conserved
to mouse, too, yet they were projected through paths comprising up to 6 species sim-
ilarly to elements from the other classes. Within a clade, the minimal evolutionary
distance between a species to either mouse or chicken is the strongest determinant
of its employment as a bridging species. Hence, human is more prevalent than opos-
sum which in turn surmounts platypus among the mammals, and xenopus is the
most frequently used outgroup species. The exception is Sauria, where alligator alto-
gether appears more often as a bridging species relative to the two birds ostrich and
penguin, despite its evolutionary trajectory having diverged from birds more than
100 million years (myr) earlier than ostrich and penguin diverged from chicken.

Sauria OutgroupMammalia

Figure 5.11: Bridging species frequencies in projection paths for the classes S, F and N by
path length.
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5.3.2 qualitative evaluation of ipp’s projection quality

In this Subsection I want to demonstrate the benefit of IPP’s projections over the Di-
rect approach in a qualitative assessment of an example locus roughly 100 kbp around
the gene body of Wbp1l in the GRB of Fgf8 in mouse. Figure 5.12 depicts the respec-
tive genomic regions in mouse and chicken. Matching alignments are connected with
lines and show two alignment-dense regions as well as a central ’alignment-desert’
with no direct alignments for a stretch of approximately 55 kbp. I projected three
putative regulatory elements (A1, A2, A3) from mouse to chicken using IPP and the
Direct approach. A1 is located right next to a direct alignment between mouse and
chicken. The projections of IPP and Direct therefore agree and have both close to
maximal scores. A2 and A3, however, reside in the alignment-desert. Consequently,
the Direct projections are uncertain with scores of 0.54 and 0.24 for A2 and A3, re-
spectively. IPP’s projections benefit from a higher anchor point density to bridging
species and consequently exhibit higher projection scores of 0.68 and 0.97. While the
accuracy of a projection with a score of 0.68 (A2) is still rather uncertain, the projected
location of A3 with a score of 0.97 promises to be highly accurate. Indeed, the pro-
jection of A3 overlaps with epigenomic features that are associated with enhancers,
i.e. enriched ATAC-seq, H3K27ac, H3K4me1 and H3K4me2 and agrees with the fea-
tures in mouse, suggesting that A3 is functionally conserved in absence of sequence
conservation. IPP is able to discover such occurrences even when the closest direct
anchors are far apart, in this case more than 50 kbp.

5.3.3 quantitative evaluation of ipp’s projection quality

In Subsection 5.3.1 I have presented an application of IPP, a method for the projection
of non-alignable genomic elements, in order to identify putative functional orthologs
beyond sequence conservation between mouse and chicken. In the next Subsection I
will address the question of functional conservation not only on the level of single in-
dependent elements, but for dependent neighborhoods with conserved synteny. This
work originated from a collaborative project that studies zebrafish as an alternative
model organism to mammals and thus researches the comparability of genomics in
zebrafish and mouse. In order to assess IPP’s suitability for the zebrafish - mouse
comparison, I comprehensively evaluated the projection quality of IPP by extending
the scope from putative functional elements to entire GRBs. I projected 152 GRBs
divided into 1 kbp windows from mouse onto zebrafish genomic coordinates. This
resulted in a total number of 70,949 bins, thus providing a good opportunity to eval-
uate IPP’s overall projection quality.
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Figure 5.12: Projections of three putative regulatory elements in and around the gene body
of Wbp1l from mouse (top, light gray) to chicken (bottom, dark gray) using IPP and Direct.
Projection scores are indicated next to the projected elements. The difference in the sets of fea-
tures between mouse and chicken is according to data availability (H3K4me3 and H3K4me2).

Using IPP instead of interpolating the signal using direct alignments (henceforth
referred to as the Direct method) highly increased the projection accuracy. The pro-
jection accuracy is reflected by the distance of a particular genomic coordinate to its
closest anchor point. The closer an anchor point, the more confident the projection.
Figure 5.13 A depicts the distributions of distances from the original coordinates to
their closest anchors in zebrafish (left panel) and from the projected coordinates to
their closest anchors in mouse (right panel). In zebrafish, IPP decreases the median
distance from 4.8 kbp using direct alignments to 0.5 kbp. In mouse, the distances
average to 8.7 kbp (Direct) and 0.6 kbp (IPP). The fraction of coordinates located
within only a few bps to an anchor point is remarkably increased in both zebrafish
and mouse, indicating that many coordinates were indirectly alignable through a
particular combination of bridging species using IPP. In zebrafish, 12,636 regions lie
within 10 bps to their closest IPP anchor compared to 1513 using Direct. In mouse,
this effect is even stronger with 20,017 (IPP) vs. 1892 (Direct) regions within 10 bps
to their closest anchor.

Assessing distances to the closest anchors in the reference and target species is often
a good approximation of the projection accuracy, however, it can be deceptive. For
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example, the projection of a region close to its anchor points in both zebrafish and
mouse can still be uncertain if the projection passed a bridging species where its inter-
mediate projection and the respective anchor were more distant. I therefore addition-
ally evaluated projection accuracy by assessing the projection score (Subsection 5.2.1)
which reflects the distances from all intermediate coordinates to their respective an-
chors instead of only one species at a time. It is therefore a more stringent measure.
IPP projections are distinctly shifted towards high projection scores (Figure 5.13 B,
mean projection scores 0.82 and 0.61 for IPP and Direct, respectively). As a result,
the GRBs’ anchor point density in zebrafish was increased approximately 5 times
using IPP (77,542 unique anchors) compared to the Direct approach (15,297 unique
anchors). This is reflected by the distribution of inter-anchor distances in Figure 5.13
C and in an example locus in Figure 5.14, colored bars. On average, IPP anchors are
separated by 1.0 kbp, Direct anchors by 5.2 kbp. Particularly the tail towards large
distances representing anchor deserts is lost when optimizing the selection of bridg-
ing species. Instead, the second mode of distances within direct anchors representing
inter-cluster distances as discussed in Section 5.1 is reduced, suggesting that anchor
points are more prevalent between those clusters. Moreover, IPP anchors are enriched
for very short inter-anchor distances, indicating that also intra-cluster anchor densi-
ties are increased. Together, these results affirm an increase in projection accuracy of
IPP over the Direct approach and endorse its application for zebrafish - mouse com-
parisons.
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Figure 5.13: Measures of projection quality of IPP versus Direct. A Distributions of distances
from the original genomic coordinate in zebrafish to the closest anchor (left panel), and from
the projection to the closest anchor in mouse (right panel). B Distribution of projection scores.
C Distribution of distances between anchors in zebrafish reflecting anchor point density.
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5.3.4 conservation of topological chromatin structures in absence

of sequence conservation

The remarkable syntenic arrangement of CNEs within GRBs has garnered attention
in the scientific community towards the evolutionary constraints that led to this obser-
vation. A well-established hypothesis assumes that keeping the regulatory elements
in cis contributes towards conservation of synteny [255]. Moreover, the distribution
of the regulatory elements i.a. in gene bodies of bystander genes adds additional
constraints to the location of CNEs. Recent reports about the co-localization of GRBs
and TADs have added another perception and suggested a regulatory role of CNEs
towards the three-dimensional structure of chromatin [112]. A possible mechanism
by which CNEs can influence chromatin structure is through the interaction with
Polycomb (PcG) and Trithorax (TrxG) group proteins, two antagonistic groups of
chromatin-modifying factors. PcG proteins are associated with transcriptional repres-
sion [256, 257], TrxG proteins with its promotion [258]. Polycomb repressive complex
(PRC) 1 and 2 are two major multiprotein complexes from the family of PcG proteins.
PRC2 deposits the histone modification H3K27me3 [259, 260] which can then be
read by PRC1 which effects chromatin compaction [261]. In addition, PcG proteins
are associated with the stabilization of chromatin loops and chromatin domains [262].
H3K27me3 is a relatively stable chromatin mark that is maintained throughout repli-
cation and inherited to the daughter cells, where it then needs the activity of PcG
proteins to proliferate [263]. Because of this epigenetic memory and together with the
described effects of PcG proteins on chromatin topology, H3K27me3 might therefore
serve as a potential readout for established three-dimensional chromatin structures.
Similarities of epigenomic features between species suggest functional conservation
of intra-TAD subdomains and enhancer topology organisation.

To test the hypothesis of conserved chromatin topology in absence of sequence conser-
vation, I mapped the signal from H3K27me3 ChIP-seq experiments from mouse onto
zebrafish coordinates using IPP. To that end, I limited the regions of interest to GRBs
and divided them into 1 kbp windows which I then mapped between zebrafish and
mouse using IPP. I assessed the projection quality in the previous Subsection 5.3.3.
In the remaining Subsection I will assess the extent to which the signals overlap be-
tween the two species and address the question of functional equivalence.

topological subdomains of conserved epigenomics With the confidence
of IPP producing high accuracy projections as demonstrated in Subsection 5.3.3 I
compared the H3K27me3 signal between mouse and zebrafish using IPP to map the
binned GRBs. For that, I used data from matched developmental stages 24 hpf in ze-
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brafish and E10.5 in mouse. I quantile normalized the signal distributions in the two
species and investigated signal overlap. Using the 90th percentile of the H3K27me3
signal as an enrichment threshold I classified the GRB-bins into three types of sub-
domains. Subdomain α contains regions with mutually enriched H3K27me3 in both
zebrafish and mouse. β comprises regions with mutually depleted H3K27me3 and
δ holds the regions that are differentially enriched in either zebrafish or mouse and
depleted in the other. Figure 5.14 shows the H3K27me3 mapping and the subsequent
classification into the subdomains α, β and δ in the Irx locus. The example shows a
region of conserved H3K27me3 that spreads beyond the immediate promoter region
and gene body of Irx3a to a region of approximately 90 kbp downstream of Irx3a (Fig-
ure 5.14, shaded area), which predominantly classifies as subdomain α. Note that this
region is vastly depleted of directly alignable anchors between zebrafish and mouse,
yet the epigenomic signal is conserved.
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Figure 5.14: Mapping of H3K27me3 in the Irx locus from mouse onto zebrafish genomic
coordinates using IPP with multiple bridging species. Mapped data was binned into 1 kbps
windows. Anchor points are indicated as colored dashes. Identified subdomains are indicated
as colored bars below the zebrafish track and refer to the following color code regarding the
enrichment of the epigenetic signal: green - conserved (α), light gray - depleted (β), yellow -
differential (δ).

The global distribution of subdomains is depicted in Figure 5.15 A, showing that a
total of 2.286 Mbp within GRBs exhibits epigenomic conservation. α domains are
on average wider than δ subdomains while β subdomains are often substantially
larger, owed to the fact that low H3K27me3 is the default state to be expected at
random genomic locations (Figure 5.15 B). The frequent interspersion of α and δ

subdomains further contributes to smaller consecutive domains. The bulk of the α
subdomains span less than 10 kbp and thus clearly range in a sub-TAD scale. Nat-
urally, epigenomic conservation between two species is more likely if the sequence
is conserved too. Analogously, many α subdomains contain alignable regions. For
example, the conserved genes Irx3a, Irx5a and Irx6a all reside in subdomain α (Fig-
ure 5.14). However, epigenomic conservation is not restricted to sequence-conserved
regions only but also observed when sequences have diverged. This is quantified by
the phastCons 12way conservation score of ATAC-seq peaks across the three types of
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subdomains as shown in Figure 5.15 D. α subdomains harbor the biggest fraction of
highly conserved elements, however, they do comprise a notable amount of zebrafish-
specific elements with very low phastCons scores. 15.2% of all ATAC-seq peaks in α
have a phastCons score of less than 0.05 (33.5% and 25.6% in β and δ, respectively).

The directionality index calculated from contact frequencies of Hi-C experiments al-
lows identifying boundaries of topological chromatin domains on a sub-TAD level
[264]. It represents the degree of up- and downstream biases of physical interactions
between genomic loci, and this bias is maximal at domain borders where loci interact
exclusively with loci from one direction [16]. Hence, the directionality index’ absolute
value is a readout for a locus’ proximity to a domain border independent of direction.
ATAC-seq in α domains are more likely to be situated at subdomain boundaries
as they exhibit a light shift in the distribution of the absolute directionality index
towards higher values (Figure 5.15 C). Enhancers at domain boundaries have been
reported to be involved in the regulation of multiple targets in a process called loop
extrusion [265, 266]. However, the effect size is relatively small, suggesting that this
property pertains to only a small subset of those elements. In the next paragraph
I will investigate whether those elements experiencing a conserved epigenetic influ-
ence effectively show signs of functional equivalence that may have had an impact on
the epigenomic landscape and thus ultimately on the higher order chromatin topol-
ogy.

functional equivalence of enhancers within topological subdomains

The task of investigating functional equivalence of enhancers across species requires
the correct assignment of potentially equivalent elements. On average, IPP projects
genomic coordinates with high accuracy. However, it does so for point coordinates,
and finding a matching enhancer based on point projections including a potential
level of uncertainty is error-prone and not trivial. For example, if IPP projects an en-
hancer from zebrafish to mouse into the vicinity of multiple enhancers, it might not
be trivial to choose an appropriate distance limit in order to decide which enhancers
to include as potential candidates for equivalence.

Instead of projecting point coordinates, SAPP propagates an enhancer’s anchor points
while respecting the constraint of conserved synteny such that the resulting anchor
span in the target species is minimized. This yields a genomic region of minimal
width in which a potential equivalent enhancer will be located given that synteny is
conserved between the reference and the target species and given that an equivalent
enhancer exists. It is therefore the more suitable approach for narrowing the search
field for candidates of functional equivalence.
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Figure 5.15: Characterization of identified subdomains. A Number of bins classified as sub-
domain α, β and δ. B Cumulative distribution of the widths of consecutive subdomains. C
Cumulative distribution of the absolute value of the directionality index of ATAC-seq peaks
within the subdomains. D Distribution of phastCons 12way conservation scores of ATAC-seq
peaks within the subdomains.

I propagated the anchors of 9430 ATAC-seq peaks within GRBs using SAPP, result-
ing in narrower anchor spans in both the reference and the target species compared
to the direct anchors from zebrafish to mouse (Direct). The distribution of the an-
chor span widths in both species is depicted in Figure 5.16. The median width of
the anchor spans using the Direct approach is 24.0 kbp and 47.5 kbp in zebrafish
and mouse, respectively. In contrast, the median of the resulting anchor spans using
SAPP are 7.1 kbp (zebrafish) and 14.6 kbp (mouse), corresponding to more than a
three-fold reduction of the average anchor span width. In addition, SAPP substan-
tially increases the fraction of anchor spans with a width in the order of only a few
hundred bps both in the reference and the target species, corresponding to regions
that are located on alignments throughout the path from the reference to the target.
Hence, they are indirectly alignable w sith the correct choice of bridging species. The
reason that these regions, which are located on an alignment, do not have an anchor
span width of zero lies in the nature of SAPP’s design, according to which regions
overlapping an alignment get assigned the alignment’s start and end coordinates as
their anchor points. By that, SAPP considers the possibility of gaps in the alignments.
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Figure 5.16: Projection quality as measured by the distribution of anchor span widths in
zebrafish and mouse using SAPP versus Direct.

Narrowing the resulting anchor spans in the target species as much as possible is
pivotal for the purpose of identifying functional equivalence in syntenic regions. The
target anchors of some of the assessed elements are still fairly distant and in those
cases an accurate assignment of equivalent elements might still be difficult. To that
end, I reduced the set of zebrafish elements to those with target anchor span widths
of less than 1 kbp, yielding 8360 candidate elements. It is worth noting that the Direct
approach only yielded 1096 elements with the same threshold. Naturally, a large part
of those elements may be truly specific to zebrafish or teleost fish and may indeed
lack conservation to mouse as those two species diverged over 435 mya As a conse-
quence, only 1117 of the 8360 candidates actually have a complementary candidate
element (i.e. a DNase-seq peak) within the determined anchors.

To test for functional equivalence I examined the two species’ elements within shared
subdomains for the number of pairwise matching TFBS motif hits according to seq-
pattern (threshold 0.85) [267], using 190 TF motifs from JASPAR [268] and TRANS-
FAC [269]. As a control, I counted the number of matching motifs to an equally sized
control set of randomly picked elements from non-matching domains in cis and trans.
Alignable elements are often conserved promoters and it does not surprise that they
are more likely to have matching motifs across species independent of the type of
their allocated subdomain (Figure 5.17). This effect is present in non-alignable ele-
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ments, too, albeit to a less pronounced extent in subdomain β and δ. Non-alignable
elements in α, however, resemble the alignable elements in that they are more homo-
typic between zebrafish and mouse than expected. It should be noted that the sample
size in some groups is rather small, impeding the generalization of these results.
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Figure 5.17: TFBS motif match analysis. A Schematic illustration of the motif match anal-
ysis. Zebrafish and mouse elements within anchor boundaries (blue links) are assessed for
the number of shared motifs and compared to randomly picked controls from outside the
boundaries in cis (orange) and trans (green). B Cumulative distributions of the number of
shared motifs between elements within and across anchor boundaries.

5.4 discussion

In this Chapter I investigated functional conservation of cis-regulatory elements in
absence of sequence conservation as an orthogonal approach to the traditional per-
ception of conservation solely based on sequence. In Subsection 5.2.1 I introduced
the notion of mapping the genomic coordinates of non-alignable elements between
species using flanking alignable regions as anchor points. Such interpolations are
most accurate if the anchor points are close, a requirement that is often not met when
comparing species over large evolutionary distances, e.g. mammals and teleost fish.
This is because the genomes of the members of these clades largely diverged since
the last common ancestor 435 mya, resulting in a low density of alignable regions.
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However, a particular species pair from the two clades, e.g. mouse and zebrafish,
might share a partially different set of genomic elements than other mammal - teleost
species pairs. In addition, due to variable evolutionary pressure and thus varying lo-
cal mutation rates, some non-alignable elements between zebrafish and mouse might
both be alignable to a third species that underwent different mutation events. This
can be understood as follows: Let us assume that for two sequences to be alignable
requires at least 70% sequence identity. Let us further assume that two sequences A
and B originating from a common ancestral sequence acquired random mutations
over time such that they now differ in 20% compared to the ancestral sequence. If
the acquired random mutations of the two sequences are mutually exclusive, they
would now only share 60% sequence identity and not be alignable. However, both
sequences would still be alignable to the ancestral sequence. If a third sequence C
originating from the same ancestral sequence acquired mutations at a much lower
rate, it is possible that A and B are both alignable to C. In that scenario, C would act
as a bridging sequence for A and B.

Even if a genomic element is not indirectly alignable through a bridging species, its
anchor points from the reference to the bridging species and from the bridging to
the target species might be arranged more closely than the anchor points from the
reference directly to the target. Using a bridging species not only for indirect align-
ments but also for the overall increase of anchor point density is therefore expected
to increase the mapping accuracy for genomic coordinates by interpolation between
anchors. Moreover, using the optimal bridging species for a given genomic location
and furthermore a set of multiple bridging species led to the conception of the Inde-
pendent Point Projection (IPP) method presented in Subsection 5.2.1.

IPP implements Dijkstra’s Shortest Path Algorithm for finding the optimal set of
bridging species that minimize a distance function and thus maximize projection
accuracy. In Subsection 5.3.1 I described the application of IPP to map predicted
enhancers in the developing limb bud of mouse embryos to genomic coordinates
of chicken. For that, I chose a set of bridging species from within respective mono-
phyletic groups encompassing mouse (Mammalia) and chicken (Sauria) as well as
from a set of outgroup species with special emphasis on species that have been found
to evolve slowly (e.g. elephant shark).

Only 307 out of 3181 predicted enhancers (~10%) are directly alignable from mouse
to chicken and thus considered sequence-conserved (class S). IPP identified an ad-
ditional set of 419 enhancers (~13%, class F) to be indirectly alignable through an
optimal set of bridging species, and these elements exhibit enhancer-like features
in chicken resembling those of the sequence-conserved enhancers. In addition, F en-
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hancers are more likely to be sequence-conserved across multiple vertebrates similar
to S enhancers. If an enhancer is alignable between two species, it is likely also con-
served in other species. These results, however, reject the reverse conclusion, and the
method is capable of differentiating between enhancers that show no evidence of con-
servation, and enhancers that are potentially functionally conserved.

Extending the set from putative enhancers predicted by eHMM to the rather loose cri-
terion of ATAC-seq peaks rendered 16,865 putative cis-regulatory elements of which
2608 (~ 15%) are sequence-conserved between mouse and chicken (S). IPP identified
another 3023 candidates for functionally conserved elements (F). Again, elements in
classes S and F are highly similar with respect to functional epigenomic features
such as histone modifications, chromatin accessibility, RNAP II occupancy and the
genomic feature of sequence conservation to other vertebrates.

Different genomic loci appear to vary substantially in the abundance of functional
conservation (Figure 5.9). While classes S and F comprise about 50% of putative reg-
ulatory elements in the Sox9 GRB, this fraction is considerably lower in the GRB
encompassing Fat1 (~10%).

The chosen paths through the species graph that maximize projection accuracy have
variable lengths ranging from one to six species. The vast majority of all paths and
especially of shorter paths (1-2 bridging species) lead through mammalian species.
This is likely a consequence of the mouse’s relatively high rate of somatic mutations
[270], which results in its genome having accumulated more changes than the average
mammal since their common ancestor with chicken. However, some of those changes
are shared among mammals, making them the ideal relay for genomic projections
to other clades. In fact, a perfect bridging species for mouse has an ideal balance be-
tween being closely related to mouse and having a low mutation rate itself, so that it
maximally resembles the mouse as well as the chicken. Indeed, smaller evolutionary
distances from a species to either mouse or chicken make it more likely to appear in
the bridging species path as demonstrated by human and xenopus within the mam-
malian clade and the outgroup, respectively. The exception is the Sauria clade with
alligator occurring more frequently than the two birds ostrich and penguin despite
the former having diverged from birds more than 100 myr before their speciation.
This can be explained by either mutation rates (e.g. low in alligator, high in ostrich
and penguin), or, more likely, by technical reasons. For example, low quality genome
assemblies negatively affect alignability and highly fragmented scaffolds may often
not fulfill synteny requirements and be excluded during IPP’s test for collinearity.
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In a comprehensive application on 152 entire GRBs between zebrafish and mouse
(Subsection 5.3.3), IPP increased the anchor point density more than fivefold com-
pared to direct alignments. Consequently, IPP produces accurate genomic projections
with an average distance of 500 and 600 bps between projected points to their closest
anchor in zebrafish and mouse, respectively. This contrasts with these distances av-
eraging at 4.8 and 8.7 kbp using direct alignments. According to this measure, IPP’s
multi-species approach increases projection accuracy more than tenfold.

Altogether, IPP provides a valuable means to accurately project genomic regions
across species with large evolutionary distances. The findings presented in this Chap-
ter suggest that large fractions of allegedly non-conserved regulatory elements might
effectively be conserved in function. I propose functional conservation beyond the
conservation of sequence to be a widespread phenomenon. I encourage further stud-
ies to use these regions as candidates for experimental reporter assays in order to
test them for regulatory activity in chicken and thus gain a broader understanding
about regulatory landscapes and the evolutionary dynamics that shaped them. More-
over, the present results encourage large scale investigations across all GRBs in order
to examine the degree to which regulatory elements in different loci are conserved,
turned over or species-specific and the potential consequences this might entail for
matters like chromatin topology and gene expression. Including multiple develop-
mental stages and tissues would enable obtaining a more complete picture about
time- and cell-type-dependent patterns of conservation. Further expanding the analy-
sis to other species would allow tracking trajectories of enhancer evolution. Dissecting
enhancers in order to discover their functional core presents another promising direc-
tion of future studies. For example, investigating enhancers where function was lost
despite the sequence being largely conserved could contribute towards deciphering
the relevant parts of an enhancer that encode function.

In Subsection 5.3.4 I assessed the conservation of the histone modification H3K27me3
between zebrafish and mouse GRBs and found occurrences of epigenomic conserva-
tion in absence of conserved sequence. I divided the GRBs based on local enrichment
and conservation of H3K27me3 into the three subdomains α (mutually enriched), β
(mutually depleted) and δ (differentially enriched in zebrafish or mouse). Putative
regulatory elements in α are more likely to be sequence-conserved to other verte-
brates, however, approximately two thirds of them do not directly align to mouse
and roughly 15% are specific to zebrafish (phastCons score < 0.05), demonstrating
that epigenetic conservation is not necessarily a product of conserved sequence but
can be maintained in absence thereof. Elements in α have a slight tendency to be
more proximal to domain boundaries, a property that has been found to correlate
with enhancers that contact multiple targets during loop extrusion. However, the ef-
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fect size is rather small and does not allow the conclusion that enhancers in α are
categorically different from enhancers in other subdomains in terms of topological
properties. It would be interesting to acquire high resolution chromosome conforma-
tion capture data to further investigate differences in chromatin topology between
the subdomains.

In order to study enhancer equivalence I developed a method called Syntenic An-
chor Point Propagation (SAPP). Similar to IPP, this method relies on pairwise an-
chor points between multiple species. However, it propagates the anchors through
the species graph with the goal of minimizing the resulting anchor span in the tar-
get species while maintaining synteny rather than independently projecting genomic
point coordinates. SAPP successfully increases the projection accuracy by decreas-
ing target anchor spans more than three fold compared to using direct alignments.
It thus provides the means to narrow the search field for the analysis of enhancer
equivalence.

As expected, putative regulatory elements are more likely to be homotypic when they
are directly alignable between zebrafish and mouse. However, the motif-match distri-
bution of non-alignable elements resembles that of the alignable elements only in the
case of the α subdomain, where conservation of motif composition and epigenomic
features correlate. This suggests that sequences of regulatory elements can diverge to
a large extent - as far as losing alignability - without losing their core function, the
ability to bind a particular set of TFs. The expected degree of freedom for sequences
to change while maintaining function is possibly high as the order of the TFBSs for
those factors potentially does not always matter.

It is important to note that TF motifs are not necessarily a direct indicator of function
and that the resulting sample size in this analysis was rather small. Blank general-
izations of these findings are therefore not possible. Instead, I propose future studies
with refined methods for a more sophisticated comparison of sequence function be-
yond alignability. Moreover, the comparison between mouse and zebrafish is inher-
ently difficult because of the large evolutionary distance and zebrafish’s additional
whole genome duplication event. Comparative studies of more closely related species
could potentially help increasing sample sizes.

Together, the efforts presented in this Chapter aim to contribute towards understand-
ing evolutionary aspects of gene regulatory logic. I presented the means for the iden-
tification of candidates with conserved function despite diverged sequences. Future
methods will highly profit from experimental validations of those candidates to learn
more about the sequence features of functional orthologs. My work regarding iden-
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tifying functionally equivalent enhancers is only scratching the surface, touching on
the most prominent examples. As a scientific community, we need to learn more
about how to integrate sequence information at enhancers and allocate it to their
function.





6D I S C U S S I O N A N D C O N C L U S I O N

In this chapter I will discuss the presented work on the prediction of enhancers and
the analysis of their evolutionary conservation. I will relate my findings to today’s
state of knowledge and review the limitations of the presented methods and how
they could be improved. Finally, I will provide a perspective on possible future direc-
tions for research and lastly conclude the thesis.

6.1 discussion

In this thesis I examined the descriptive as well as the evolutionary properties of cis-
regulatory elements in the genomes of vertebrate species. Thorough inspection of the
former revealed that enhancers can be described by a plethora of features and that no
individual feature alone as well as no single combination of features by itself would
identify all enhancers. Unfortunately, there is no gold standard set of enhancers that
would qualify as a comprehensive validation set for computational approaches to
identify enhancers, and even the mere number of enhancers in the human genome
is subject to debate, with speculations ranging over several orders of magnitude. My
supervisors and I thus put the focus on designing a method that specializes on par-
ticular aspects of enhancer prediction that had not been sufficiently addressed before.

First, I learned that many well-established methods such as the unsupervised seg-
mentation method chromHMM suffer from a low specificity for the sake of high
sensitivity and usually predict in the order of hundreds of thousands enhancers per
given cell type. Second, many methods are blind to the heterogeneous molecular
composition of enhancers and consider their quantitative features averaged over a
predefined range, despite the established perception that enhancers comprise a cen-
tral stretch of accessible DNA flanked by nucleosomal DNA wrapped around histone
proteins that carry post-translational modifications that can be quantified by exper-
imental techniques such as ChIP-seq. Third, some methods were found to require
experimental data from laborious or expensive experiments and others performed
well in certain scenarios, but lacked generalizability over vast ranges of tissues and
developmental stages.

These observations led to the conception of enhancer Hidden Markov Model (eHMM),
which uses a constricted and custom-tailored supervised hidden Markov model
(HMM) to predict enhancers and promoters. eHMM requires minimal input data
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in the form of four features that represent chromatin accessibility (ATAC-seq), tran-
scriptional activity (H3K27ac) and the possibility to distinguish enhancers from pro-
moters (mono- and trimethylation of histone 3, lysine 4 (H3K4me1/3)). These are
widely-used features that are abundantly available online for many species, tissues
and developmental stages, as well as cheaply producible in standard laboratory facili-
ties. eHMM is fast and computationally cheap, especially compared to deep learning
methods. It produces high-confidence predictions that are highly specific at the ex-
pense of low sensitivity, typically in the order of a few thousand per sample. eHMM
provides a pre-trained model that can readily be applied to any cell type and uses
quantile normalization to adjust read count distributions across samples. eHMM out-
performs the state-of-the-art method REPTILE in terms of robustness across samples
and resistance to overfitting, especially when testing on data from different sources
than the training data. The spatial accuracy of enhancer predictions by eHMM is
remarkably high thanks to the distinction between accessible and nucleosomal chro-
matin. This consideration of molecular structure is the key feature of eHMM that
allows it to keep a low false positive rate.

Naturally, the strong focus on particular aspects of enhancer prediction implicated
certain trade-offs. The low number of predicted enhancers can be a problem when
aiming for statistical analyses for which larger sample sizes are beneficial. Also, the
method is fixed on four features and does not include the option to include additional
features upon availability. This certainly presents a promising potential for future de-
velopment of the method. Moreover, expanding the method to call different types of
enhancers, e.g. transcriptionally active enhancers based on CAGE-tags or evolution-
arily conserved enhancers exhibiting active chromatin marks or characteristic DNA
methylation patterns would broaden the scope and allow for more diversity among
the predicted elements. Currently, the field of molecular genomics experiences a shift
from bulk data from whole cell populations towards single-cell genomics. This entails
new challenges for enhancer prediction methods such as sparse data and it will be
interesting to see how future methods deal with those.

In the early years of enhancer prediction particular attention was paid to sequence
conservation as a major feature of enhancers. Of course, a conserved sequence implies
function and if the conserved region is located distal to a TSS, it is likely an enhancer.
Since then, studies have shown that enhancers emerge, change, turn over and disap-
pear in a highly dynamic fashion over time and that only a subset of all enhancers is
conserved. In addition, recent reports about individual occurrences of functional con-
servation in absence of sequence conservation have added another perspective on the
evolutionary dynamics of enhancers. According to those, an enhancer can appear to
be specific to a particular species or clade because its sequence diverged to an extent
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rendering it unalignable to other species with large evolutionary distances, when in
fact it may have retained function nonetheless. I set out to identify such events of
functional conservation and developed two methods called Independent Point Pro-
jection (IPP) and Syntenic Anchor Point Propagation (SAPP).

IPP projects genomic coordinates between two species by interpolation of the rela-
tive location between two alignable anchor points. Such alignable anchor points are
sparsely distributed if the evolutionary distance between the compared species is
large, and projections by interpolation with large distances to the anchors are inaccu-
rate. IPP therefore uses anchor points to intermediate species in order to increase the
anchor point density and subsequently projection accuracy. It does so for multiple
sequential species by finding the optimal combination of bridging species through a
multi-species graph using Dijkstra’s Shortest Path Algorithm, with bridging species
for which the anchors are close to the projected element being favored.

Applying IPP on 3181 predicted enhancers by eHMM, I identified 419 candidates for
functional conservation in chicken in addition to the 307 predicted enhancers with
conserved sequence. Extending the analysis to 16,870 ATAC-seq peaks, a more loose
definition of regulatory elements including promoters, IPP predicts 3023 of those to
be potentially functionally conserved. Similarly to the predicted enhancers, this frac-
tion is again larger than the 2608 sequence-conserved elements. In chicken, the pro-
jected locations of putative functionally conserved elements exhibit epigenomic prop-
erties associated with enhancers and promoters and tend to be conserved to a larger
number of vertebrates than the non-conserved elements. Overall, epigenomic features
of identified candidate elements highly resemble those of the sequence-conserved el-
ements, suggesting conserved function in absence of sequence conservation. Some of
these candidates may look like they are functionally conserved on the basis of being
alignable through bridging species when they are truly not. Of course, this is true
for sequence-conserved elements as well. Just because we can align a sequence does
not mean that function is maintained. It is therefore crucial to validate the extent to
which putatively conserved elements are functional in experimental reporter assays.
It will be interesting to compare the fractions of effectively functionally conserved
elements among the putative candidates that are directly sequence-conserved or only
indirectly as identified via bridging species.

Conservation of regulatory elements appears to strongly differ between individual
loci, with the fraction of directly or indirectly conserved putative regulatory elements
ranging from 10% (Fat1) to 50% (Sox9) among the limb-specific loci assessed in Sub-
section 5.3.1. The extent to which gene regulation is conserved thus seems to vary
from locus to locus. Future research addressing the reconstruction of evolutionary
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trajectories of enhancers in specific loci taking into account enhancer turnover will be
necessary to elucidate the origins and emergence of gene regulatory logic.

A comprehensive quantitative evaluation of IPP’s projection quality demonstrated
that using the multi-species approach of IPP greatly elevated anchor density and
thus decreased the average distance of a projected genomic location to its anchor
points in all the reference, bridging and target species compared to using only di-
rect anchor points. With that, I applied it in an extensive approach to map the sig-
nal of H3K27me3 from 152 GRBs from mouse onto zebrafish genomic coordinates
and assessed signal overlap. Roughly 10 % of zebrafish chromatin in GRBs is en-
riched for H3K27me3. According to the results from mapping the mouse signal onto
zebrafish coordinates, approximately 40% of that is shared with mouse. However,
many putative regulatory elements within those regions of shared epigenomics are
not conserved in sequence. I hypothesized that regions of shared epigenomics could
represent topological subdomains due to the fact that H3K27me3 is a readout of
current or past Polycomb activity which in turn is known for its contribution to the
stabilization of chromatin loops and establishing chromatin domains. According to
that, I identified three classes of subdomains which are either mutually enriched or
mutually depleted for H3K27me3 in zebrafish and mouse, or differentially enriched
in zebrafish only. Regulatory elements in the mutually enriched subdomain are more
likely to be located at domain boundaries. However, the effect size of this result
is very small and whether the identified subdomains actually represent topological
units remains elusive and may be subject to future research.

In addition to the quantitative improvement of projection accuracy, I demonstrated
IPP’s capability of identifying individual occurrences of putative functionally con-
served elements. As demonstrated in Subsection 5.3.2, IPP correctly projected the ge-
nomic coordinates of a putative regulatory element in mouse onto a region in chicken
that overlaps epigenomic features that suggest enhancer function. It did so for a ge-
nomic region vastly devoid of directly alignable sequences, exemplifying the benefit
of individually optimizing bridging species selection. These findings encourage the
conceptualization of a future project involving the systematic search for such cases
of putative functional conservation followed by experimental validation in order to
draft a catalog of functionally conserved elements beyond sequence conservation.

To test functional equivalence of enhancers under a different perspective, I developed
the method SAPP. Instead of projecting independent point coordinates, SAPP takes
the anchor points of a given genomic location and propagates them through the bridg-
ing species until the target species is reached, selecting the path which minimizes the
target anchor span. With that, the resulting anchor span is expected to contain a po-
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tentially equivalent enhancer given that synteny is conserved. Minimizing the target
anchor span thus allows narrowing the search field as much as possible in order to
exclude non-equivalent enhancers. This resulted in the three fold reduction of anchor
spans, providing a good foundation for studying enhancer equivalence. For that, I
assessed the TFBS motif composition of elements and quantified enhancer similarity
based on the number of motif matches. On average, directly alignable elements share
more motifs with their aligned counterpart than with randomly assigned elements.
When testing the non-alignable elements, only those in the epigenomically conserved
subdomains in zebrafish were more likely to share motifs with the mouse elements
that are located within the anchors than randomly assigned elements across anchor
boundaries. These findings suggest that enhancer equivalence is more likely when
epigenomic features are conserved, even when the sequence is not. It is possible that
regulatory elements within epigenomically conserved subdomains are more likely
to be functionally conserved which in turn might contribute to the maintenance of
the epigenomic, and ultimately topological properties. The limitation of this analysis
certainly is the small sample size. As a consequence of the large evolutionary dis-
tance between zebrafish and mouse, many enhancers are species-specific, and out of
the non-alignable elements located within the epigenomically conserved subdomains,
only very few had at least one counterpart element within the anchor boundaries in
mouse. These results therefore need to be regarded with a certain level of caution.

6.2 conclusion

In this thesis I presented three methods called eHMM, IPP and SAPP. eHMM pre-
dicts enhancers based on epigenomic features with a prediction performance equal
to or higher than state-of-the-art methods. eHMM is robustly applicable to multi-
ple tissues and developmental stages and its predictions exhibit a remarkably high
spatial accuracy. I demonstrated that HMMs can be used in a highly modular and
constricted way by imposing constraints on transition parameters as well as supervise
their training on multiple training sets. IPP and SAPP project non-alignable elements
between species with large evolutionary distances by increasing anchor point density
using multiple pairwise species comparisons. Both methods substantially increase
projection accuracy compared to using sparsely distributed direct anchors and help
identify candidate enhancers for functional conservation despite diverged sequences.

Together, these efforts have contributed to the understanding of enhancers’ epige-
nomic properties as well as their evolutionary dynamics, and have opened up new
questions for future research.
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a.1 mathematical derivations

a.1.1 optimizing the q-function subject to constraints using lagrange

multipliers

According to Equation 3.14, the Q-function is given by
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Finding the optimal parameters of the Q-function is subject to the following con-
straints:
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with K denoting the set of all possible observables. The constrained optimization
problem can then be formulated as the Lagrange function:
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I will show the optimization of each parameter by calculating the roots of the respec-
tive partial derivatives of the Lagrange function in the following subsections.

a.1.2 optimizing the initial probabilities

∇πi,λ L(π, λ) = 0
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We can now reformulate the constraint:

1 =
∑
i

πi =

∑
i

γi(1)

λ

λ =
∑
i

γi(1) = 1

The previously determined πi then becomes
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a.1.3 optimizing the transition probabilities
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We can now reformulate the constraint:
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a.1.4 optimizing the emission probabilities
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The previously determined bi(k) then becomes
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a.1.5 optimizing the parameters of the log-normal distribution mod-
eling the emission probabilities
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a.2 data sources

a.2.1 functional genomics data for enhancer prediction

Table 2: Data sources. Accession numbers containing GSE were obtained from NCBI GEO
[271–274], those starting with ENC from ENCODE [210].

Cell type Experiment Target Accession Format

ESC E14 ATAC-seq - GSE120376 fastq
ChIP-seq H3K27ac GSE120376 fastq

H3K4me1 GSE120376 fastq
H3K4me3 GSE120376 fastq
Nanog GSE11431 fastq
Oct4 GSE11431 fastq
Sox2 GSE11431 fastq
CTCF GSE29184 fastq
p300 GSE29184 fastq
Pol II GSE29184 fastq

MeDIP-seq - GSE3859 fastq

liver E12.5 ATAC-seq - ENCSR302LIV bam
ChIP-seq H3K27ac ENCSR136GMT bam

H3K4me1 ENCSR770OXU bam
H3K4me3 ENCSR471SJG bam

liver E14.5 ATAC-seq - ENCSR032HKE fastq
ChIP-seq H3K27ac ENCSR075SNV bam

H3K4me1 ENCSR234ISO bam
H3K4me3 ENCSR433ESG bam

lung E14.5 ATAC-seq - ENCSR335VJW fastq
ChIP-seq H3K27ac ENCSR452WYC bam

H3K4me1 ENCSR825OWH bam
H3K4me3 ENCSR839WFP bam

lung E16.5 ATAC-seq - ENCSR627OCR fastq
ChIP-seq H3K27ac ENCSR140UEX bam

H3K4me1 ENCSR387YSD bam
H3K4me3 ENCSR295PFM bam
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S U M M A RY

In the last several decades, the field of molecular biology has made substantial
progress in deciphering the many facets of gene expression and regulation. The par-
allel development of experimental methods, especially high-throughput, greatly con-
tributed to new possibilities for studying functional elements of the genome such as
promoters and enhancers. In this thesis, I investigate the characterization and evolu-
tionary conservation of enhancers.

First, I present eHMM, a method that uses a supervised HMM with a constrained un-
derlying Markov chain that incorporates prior biological knowledge about the molec-
ular structure of enhancers in a dynamic model to predict heterogeneous enhancers
of variable sizes on the basis of a minimal set of features. I demonstrate eHMM’s
prediction performance using different validation setups within and across data sets,
tissues and developmental stages and analyze genome-wide predictions in terms of
functional genomic and epigenomic features, spatial accuracy and susceptibility for
false-positive results.

Second, I investigate functional evolutionary conservation of enhancers in absence of
detectable sequence conservation. For that, I introduce the concept of using multiple
sets of pairwise alignments that allow moving through a species graph in order to
produce accurate projections of non-alignable genomic regions between two species
with large evolutionary distances. To that end, I present the methods IPP and SAPP
that approach the task under slightly different aspects.

IPP projects individual genomic point coordinates from one species onto another by
interpolating their position between two alignable sequences, so-called anchor points.
Instead of using only direct alignments between the two species in question, IPP im-
plements the choice of an optimal set of bridging species that maximizes projection
accuracy. I demonstrate IPP’s projection accuracy compared to using direct align-
ments, propose functional conservation to be a universal phenomenon and identify
individual occurrences of functional orthologs beyond sequence conservation.

SAPP propagates anchor points rather than projecting genomic points in a fashion
that minimizes resulting anchor spans in the target species. By that, it respects the
conservation of synteny and provides maximally narrowed search spaces for analyz-
ing enhancer equivalence between two species.

Together, the work presented in this thesis aims at adding to our current understand-
ing about the identity and the evolutionary properties of enhancers.
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Z U S A M M E N FA S S U N G

Die Molekularbiologie hat in den letzten Jahrzehnten grosse Fortschritte im Bere-
ich der Genexpression und deren Regulation gemacht. Die parallele Entwicklung
von experimentellen Methoden, speziell ’high-throughput’, hat neue Möglichkeiten
geschaffen um funktionelle Elemente des Genoms wie Promotoren und Enhancer zu
studieren. In dieser Dissertation untersuche ich die Charakterisierung sowie die evo-
lutionäre Konservierung von Enhancern.

Zunächst präsentiere ich eHMM, eine Methode zur Bestimmung von heterogenen
Enhancern mit variablen Grössen anhand minimaler Merkmale mittels überwachtem
HMM mit eingeschränkter Markov-Kette, die biologische Kenntnisse über die moleku-
lare Struktur von Enhancern in einem dynamischen Modell integriert. Ich validiere
eHMMs Enhancerklassifizierung sowohl innerhalb als auch zwischen Datensätzen,
Geweben und Entwicklungsstadien. Ausserdem analysiere ich genomweite Enhancer-
vorhersagen betreffend funktioneller genomischen und epigenomischen Merkmalen,
räumlicher Präzision und der Anfälligkeit für falsch-positive Resultate.

Des Weiteren untersuche ich die funktionelle evolutionäre Konservierung von En-
hancern in Fällen fehlender Sequenzkonservierung. Ich stelle dafür ein Konzept vor,
das exakte Projektionen nicht-alinierbarer Regionen zwischen Spezies mit grossen
evolutionären Distanzen ermöglicht und präsentiere zu diesem Zweck die Methoden
IPP und SAPP, die diese Aufgabe unter leicht verschiedenen Aspekten angehen.

IPP projiziert individuelle genomische Punktkoordinaten zwischen zwei Spezies mit-
tels Interpolation derer Positionen zwischen zwei alinierbaren Ankerpunkten. IPP im-
plementiert die optimierte Auswahl sogenannter "Brückenspezies" zur Maximierung
der Projektionsgenauigkeit, welche ich im Vergleich mit der Verwendung von lediglich
direkten Alignments zwischen den betreffenden Spezies analysiere. Darüber hinaus
schlage ich funktionelle Konservierung als universelles Phänomen vor und identi-
fiziere individuelle funktionelle Orthologe jenseits der Konservierung der Sequenz.

Im Gegensatz dazu propagiert SAPP die Ankerpunkte, so dass die Abstände der re-
sultierenden Ankerpunkten in der Zielspezies minimiert werden. Dadurch wird die
Konservierung von Syntenie berücksichtigt und die Analyse von Enhanceräquivalenz
in maximal reduzierten Suchfeldern ermöglicht.

Insgesamt leistet die in dieser Dissertation präsentierte Arbeit einen Beitrag zum
gegenwärtigen Verständnis der Identität und den evolutionären Eigenschaften von
Enhancern.

155





S E L B S TÄ N D I G K E I T S E R K L Ä R U N G

Hiermit erkläre ich, Tobias Zehnder, gegenüber der Freien Universität Berlin, dass
ich die vorliegende Dissertation selbstständig und ohne Benutzung anderer als der
angegebenen Quellen und Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei
von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften
entnommen sind, habe ich als solche kenntlich gemacht. Diese Dissertation wurde in
gleicher oder ähnlicher Form noch in keinem früheren Promotionsverfahren eingere-
icht. Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre
ich mich einverstanden.

Berlin, September 2020

Tobias Zehnder


	Preface
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Thesis Outline

	2 Biological Background
	2.1 From DNA to Protein - The Central Dogma of Molecular Biology
	2.1.1 Transcription
	2.1.2 Transcriptional Regulation

	2.2 Enhancers
	2.2.1 Enhancer Function
	2.2.2 Enhancer Chromatin
	2.2.3 DNA methylation
	2.2.4 Enhancer Transcription
	2.2.5 Enhancer Conservation

	2.3 Shared Synteny of Conserved Non-Coding Elements in Genomic Regulatory Blocks
	2.4 Experimental Techniques in Functional Genomics
	2.4.1 DNA Sequencing
	2.4.2 Chromatin Accessibility Assays
	2.4.3 ChIP-seq
	2.4.4 CAGE


	3 Mathematical Prerequisites
	3.1 Probabilistic Models
	3.1.1 Statistical models for read count data
	3.1.2 Maximum likelihood estimation
	3.1.3 Expectation maximization
	3.1.4 Hidden Markov Models
	3.1.5 Extended Hidden Markov Models

	3.2 Graph Theory
	3.2.1 Formal Definition
	3.2.2 Shortest Path Problem


	4 Prediction of Cis-Regulatory Elements
	4.1 Motivation
	4.2 Methods
	4.2.1 Features
	4.2.2 A Supervised and Constricted Hidden Markov Model
	4.2.3 Training Sets
	4.2.4 Model Training
	4.2.5 Module Combination
	4.2.6 Emission Distributions
	4.2.7 Decoding and Scoring
	4.2.8 Testing
	4.2.9 Implementation
	4.2.10 Quantile Normalization
	4.2.11 Data

	4.3 Results
	4.3.1 Performance of Different background modules
	4.3.2 Performance Within and Across Samples
	4.3.3 Prediction Robustness Against Variable Data Sources
	4.3.4 Benchmarking
	4.3.5 Whole Genome Predictions in Mouse Embryonic Stem Cells
	4.3.6 Spatial Accuracy
	4.3.7 Predicted Enhancers are TSS-distal
	4.3.8 Run Time

	4.4 Discussion

	5 Functional Conservation of Cis-Regulatory Elements
	5.1 Motivation
	5.2 Methods
	5.2.1 Independent Point Projection (IPP)
	5.2.2 Syntenic Anchor Point Propagation (SAPP)
	5.2.3 Data Sources and Processing
	5.2.4 Implementation and Availability

	5.3 Results
	5.3.1 Identifying Functional Orthologs using IPP
	5.3.2 Qualitative Evaluation of IPP's Projection Quality
	5.3.3 Quantitative Evaluation of IPP's Projection Quality
	5.3.4 Conservation of Topological Chromatin Structures in Absence of Sequence Conservation

	5.4 Discussion

	6 Discussion and Conclusion
	6.1 Discussion
	6.2 Conclusion

	A Appendix
	A.1 Mathematical derivations
	A.1.1 Optimizing the Q-function subject to constraints using Lagrange multipliers
	A.1.2 Optimizing the initial probabilities
	A.1.3 Optimizing the transition probabilities
	A.1.4 Optimizing the emission probabilities
	A.1.5 Optimizing the parameters of the log-normal distribution modeling the emission probabilities

	A.2 Data sources
	A.2.1 Functional Genomics Data for Enhancer Prediction


	Bibliography
	List of Figures
	List of Figures

	List of Tables
	List of Tables
	Acronyms

	Acronyms
	Curriculum Vitae
	Summary
	Zusammenfassung
	Selbständigkeitserklärung

