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1. Introduction 

1.1. Early mammalian development: from fertilization to germ-layer formation 

Embryogenesis is the process during early development that starts with the fertilization of the egg cell by a 

sperm cell and ends around the onset of organogenesis (Gilbert, 2000). In mammals, the fertilized egg (zygote) 

undergoes a series of cell divisions maintaining a constant embryonic cytoplasmic volume that give rise to a 

structure called the morula around the 8-16 cell stage (Fig. 1) (Barlow et al., 1972). This is followed by the 

appearance of small intercellular cavities that subsequently merge into a single blastocoel at approx. the 16-32 

cell stage, leading to the formation of the blastula (Motosugi et al., 2005). Development continues through the 

differentiation of cells into two different cell types: trophoblast cells and the inner cell mass (ICM), generating 

thus what is known as the blastocyst (Fig. 1) (Nishioka et al., 2009; Rayon et al., 2014; Wicklow et al., 2014). 

Trophoblast cells make up the outer layer of the blastocyst and build extraembryonic tissues such as the 

placenta, while ICM cells differentiate further into primitive endoderm (hypoblast) or primitive ectoderm 

(epiblast) (Fig. 1) (Chazaud et al., 2006; Morris et al., 2010; Yamanaka et al., 2010). From these two, only the 

latter will give rise to the embryo proper.  

Implantation, the stage at which the embryo adheres to the uterine wall,  occurs around  embryonic day 4.5-5 

(E4.5-5), accompanied by a remodeling of the epiblast that involves the formation of a rosette of polarized cells 

and later on the establishment of an epithelium around a central lumen (proamniotic cavity) (Fig. 1) (Bedzhov 

and Zernicka-Goetz, 2014). Gastrulation begins through the formation of an anterior-posterior axis and the 

ingression of cells in the posterior region of the epiblast, building the so-called primitive streak. This is followed 

by the establishment of three primary germ layers that will form the organs and tissues of the adult organism: 

ectoderm, mesoderm and ectoderm (Kiecker et al., 2016; Tam et al., 1993). After gastrulation has taken place, 

it is followed by the process of organogenesis, which continues until birth. Here, the three germ layers will form 

the internal organs of the fetus: the endoderm will give rise to the epithelial parts of the lungs, liver, pancreas, 

the stomach, etc, whereas the mesoderm layer will generate tissues such as muscle, bone and cartilage. Lastly, 

the ectoderm will build, among others, the epidermis and the nervous system. 

 

Figure 1: Early mammalian development. The fertilized zygote undergoes a series of cell divisions giving rise to the morula. This is followed 

by the appearance of the blastocoel and the first lineage decision forming inner cell mass (ICM) and trophectoderm cells. Later on, the ICM 

cells differentiate further into primitive endoderm cells and epiblast cells, the latter giving rise later on to the embryo proper. As 

development continues, epiblast cells become polarized forming a rosette structure around a lumen that will become the proamniotic cavity.  

 

http://f1000.com/work/citation?ids=8461929&pre=&suf=&sa=0
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1.2. Pluripotency defined 

The ability of a cell to differentiate into different cell types is defined as potency. The differentiation potential 

of a given cell, however, varies throughout developmental progression. So are zygotes as well as blastomere 

cells from the Morula stage capable of differentiating into all possible cell types, whereas cells from the ICM of 

the early preimplantation blastocyst, where the first lineage segregation has occurred, are able to differentiate 

into all three germ layers but not certain extraembryonic tissues (Fig. 2).  While the first are defined as totipotent 

cells, the latter are coined as pluripotent (Mitalipov and Wolf, 2009). An even further restricted differentiation 

potential is displayed by multipotent and oligopotent cells, such as hematopoietic stem cells that give rise to 

many blood cell types, or lymphoid cells that form B and T cells, respectively.  

Pluripotency could be first captured in vitro by Martin Evans and Matthew Kaufman in 1981 by dispersing cells 

from the ICM of the murine preimplantation blastocyst and passaging them through co-culture with mouse 

embryonic fibroblasts (feeder cells), which administered the necessary signals for self-renewal and pluripotency 

maintenance (Evans and Kaufman, 1981; Martin, 1981). This allowed for the generation of mouse embryonic 

stem cell lines (mESCs), which provided an excellent in vitro model for early mammalian development.  

 

Figure 2: Pluripotency. Pluripotent cells are able to differentiate into all three germ layers: endoderm, mesoderm and ectoderm. These 

germ layers will give rise to the different tissues and organs of the adult organism. The endoderm will thus give rise to the epithelial parts of 

the lungs, liver, pancreas, the stomach, etc, whereas the mesoderm layer will generate tissues such as muscle, bone and cartilage. Lastly, 

the ectoderm will build, among others, the epidermis and the nervous system. 

Key for the maintenance of the pluripotency state is the expression of a group of core transcription factors that 

restrict differentiation and at the same time sustain self-renewal capabilities: Oct4, Sox2 and Nanog (OSN) 

(Avilion et al., 2003; Boyer et al., 2005; Chambers et al., 2003, 2007; Loh et al., 2006; Masui et al., 2007; Mitsui 

et al., 2003; Nichols et al., 1998; Silva et al., 2009; Wang et al., 2012). They exert their functions by repressing 

lineage-specific genes and at the same time by activating genes that mediate the pluripotency state, including 

binding to their own promoters in a positive-feedback fashion (Boyer et al., 2005; Chen et al., 2008; Kim et al., 

2008; Loh et al., 2006). Overexpression of a combination of these and/or other pluripotency-promoting factors 

in differentiated somatic cells of adult organisms allows for the generation of induced pluripotent cells lines 

(iPSCs), highlighting their essential role as the main drivers of the pluripotent state (Takahashi and Yamanaka, 

2006).  

http://f1000.com/work/citation?ids=2273725&pre=&suf=&sa=0
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1.2.1 The naive and primed pluripotent state  

In order to further dissect the different early stages of the developmental continuum, the term naive and primed 

pluripotency were coined defining epiblast cells of the murine pre- or postimplantation epiblast, respectively 

(Nichols and Smith, 2009). Extensive characterization of both states, which was possible to a great extent 

through the derivation of naive and primed pluripotent stem cell lines in vitro (naive mESCs and epiblast stem 

cells (EpiSCs), respectively) (Brons et al., 2007; Tesar et al., 2007), led to the specification of their distinct 

functional and molecular signatures.  

While both naive mESCs as well as primed EpiSCs are able to differentiate into all three germ layers in vitro, only 

the former is able to give rise to the germline (e.g. the cells that will later differentiate into oocytes and sperm 

cells) when injected back into early embryos (Huang et al. 2012). This ability to incorporate external pluripotent 

cells into normal development is a characteristic of early mammalian embryos, which readily accommodate 

alterations in cell numbers, resulting in chimeric animals. Primed pluripotent cells are thus more restricted in 

their differentiation potential compared to naive pluripotent stem cells and are conditioned for further 

differentiation, hence the name “primed” pluripotent.  

Several molecular signatures additionally distinguish naive from primed pluripotent stem cells. A key trait of 

naive mESCs is for instance their increased expression of a certain set of transcription factors associated with 

naive pluripotency, including Prdm14, Klf4, Klf2, Esrrb, Tfcp2l1, Tbx3, Tcl1 and Gbx2 (Fig. 3) (Boroviak et al., 2015; 

Dunn et al., 2014; Ivanova et al., 2006; Kalkan et al., 2017; Martello et al., 2012, 2013; Niwa et al., 2009; Tai and 

Ying, 2013; Yamaji et al., 2013; Yeo et al., 2014; Ye et al., 2013). The overexpression of combinations of these 

markers can revert cells to the naive pluripotent state, inducing hallmarks of the naive states such as X 

chromosome reactivation (see below) (Bao et al., 2009; Guo et al., 2009). Primed pluripotent stem cells, on the 

other hand, express significantly lower levels of naive pluripotency factors together with increased expression 

of primed markers such as Fgf5, Otx2 and Zic2 (Acampora et al., 2013; Buecker et al., 2014; Kalkan et al., 2017; 

Klein et al., 2015; Kondoh, 2018; Marks et al., 2012; Matsuda et al., 2017).  

Distinct epigenetic states (changes that do not involve alterations in the DNA sequence) have also been reported 

between naive and primed pluripotent stem cells. Significant differences have been observed, for example, in 

the degree of global CpG methylation, with naive cells being found in a genome-wide hypomethylated state (Fig. 

3) (Ficz et al., 2013; Habibi et al., 2013; Leitch et al., 2013; von Meyenn et al., 2016; Smith et al., 2012). DNA 

methylation is a process in which a methyl group is added to a cytosine base in the DNA and it is usually 

associated with transcriptional repression, especially when located at gene promoters (Smith and Meissner, 

2013). It is established by DNA methyltransferases (DNMTs), of which two kinds can be distinguished: the 

maintenance methyltransferase Dnmt1 and the de novo methyltransferases Dnmt3a and Dnmt3b (Hermann et 

al., 2004; Jeltsch, 2006; Okano et al., 1999; Smith and Meissner, 2013). These two de novo methyltransferases 

act together with Dnmt3l, which lacks methyltransferase activity but facilitates Dnmt3a/b chromatin targeting 

(Ooi et al., 2007). While maintenance DNA Methyltransferases are able to bind hemimethylated DNA (only one 

of the two complementary DNA strands is methylated), de novo methyltransferases recognize unmethylated 

DNA (Hermann et al., 2004; Jeltsch, 2006; Okano et al., 1999). In agreement with their global CpG 

hypomethylation state, Dnmt1 and/or Dnmt3a/b knockout naive mESCs can be propagated in culture, which is 

not the case for primed pluripotent cells (Chen et al., 2003; Jackson et al., 2004; Lei et al., 1996; Tsumura et al., 

2006). The latter also express significantly higher levels of de novo methyltransferases Dnmt3a, Dnmt3b and 

Dnmt3l, which is accompanied by a meaningful rise in genome-wide CpG methylation levels (Fig. 3) (Habibi et 

al., 2013).  

Lastly, female naive pluripotent cells possess two active X chromosomes (Fig. 3) (Rastan and Robertson, 1985), 

which become randomly silenced once they undergo the transition to the primed state. The process of silencing 

one of the two X chromosomes present in females is known as X chromosome inactivation and it represents the 
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manner how mammals compensate the double X chromosome dosage present in XX females vs the single dosage 

exhibited by XY males. The latter is achieved through the expression of the long non-coding RNA (lncRNA) Xist, 

which coats the inactive X chromosome and recruits epigenetic modifiers leading to heterochromatinization and 

gene silencing (see below for further details) (Galupa and Heard 2018). This point is of particular importance for 

this work, since its focus involves the identification of the genetic determinants underlying sex differences in 

mESCs that arise from a double X-dosage in female cells.  

 

Figure 3: The naive and primed state of pluripotency. Epiblast cells of the pre-implantation mouse blastocyst express higher levels of naive 

pluripotency markers and display global CpG hypomethylation. On the other hand, epiblast cells of the post-implantation blastocyst have 

already undergone X chromosome inactivation, express primed pluripotency markers and display higher levels of global CpG methylation.  

Pluripotent stem cells represent a valuable tool to study human development in vitro, since embryo 

manipulation for research purposes is restricted or forbidden in many countries. Human pluripotent stem cells 

(hPSCs) can also be derived from the early blastocyst, however, their characteristics resemble that of murine 

EpiSCs and are therefore thought to be found in a primed-like pluripotent state (Brons et al., 2007; Tesar et al., 

2007; Thomson et al., 1998; Vallier et al., 2005; Ying and Smith, 2017). Nevertheless, culture conditions have 

recently been developed that seem to induce a shift of hPSCs towards a more naive state of pluripotency 

(Takashima et al., 2014; Theunissen et al., 2014).  This highlights the importance of specific culture conditions in 

capturing the different stages of the pluripotency developmental continuum.  

1.2.2 In vitro maintenance and signaling cues sustaining diverse pluripotency states 

Extracellular cues are key for shaping cellular behaviors or inducing cell fates during developmental progression, 

taking many forms such as proteins, lipids, peptides or small molecules. They act by inhibiting or activating 

intracellular signal transduction pathways that transform these cues into cellular responses, such as 

differentiation, apoptosis, proliferation, migration, etc (Anon. 2010). Identifying and understanding the signaling 

molecules and pathways that are key for capturing the different stages of early development in vitro has proven 

a challenging task, however, many progress has been made in the last decades.  

The maintenance of mouse embryonic stem cells in culture was first possible using serum-supplemented media 

together with feeder cells, which secreted factors that allowed for the propagation of these cells in the 

pluripotent state. Later on, the discovery of leukemia inhibitory factor (LIF), a molecule secreted by feeder cells, 
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permitted the maintenance of feeder-free mESCs (Smith and Hooper, 1987; Smith et al., 1988; Williams et al., 

1988). Furthermore, the use of serum could be replaced through the addition of the bone morphogenetic 

protein 4 (BMP4) to the culture media (Ying et al., 2003), leading thus to the identification of molecules 

responsible for the maintenance of pluripotency (Ying and Smith, 2017).  

LIF binds the gp130 receptor activating the pluripotency-inducing Jak/Stat3 and Akt signaling pathways, while 

also activating at the same time the differentiation-inducing mitogen activated protein kinase (MAPK) signaling 

pathway (Fig. 4) (Niwa et al., 1998, 2009). The SMAD pathway activating BMP4 molecule, on the other hand, 

induces the expression of Dusp9, a MAPK pathway inhibitor, balancing the signaling input towards pluripotency 

maintenance (Li et al., 2012). Additionally, BMP4-induced ID proteins are able to block the differentiation of 

mESCs into neural lineages (Fig. 4) (Ying et al. 2003).  

Capturing the naive state of pluripotency in vitro has been possible through the inhibition of two signaling 

molecules: Mek (a main component of the differentiation-inducing MAPK signaling pathway) and the glycogen 

synthase-kinase 3 (Gsk3), hence the name 2i medium (Fig. 4) (Burdon et al., 1999; Sato et al., 2004; Wray et al., 

2010; Ying et al., 2008). While Gsk3 inhibition is important for the maintenance of clonogenicity and viability in 

mESCs (Ying et al., 2008), the inhibition of the MAPK signaling pathway is essential to block mESC differentiation 

(Kunath et al., 2007; Stavridis et al., 2007).  

Maintenance of mESCs in vitro is therefore usually accomplished using Serum and LIF (Serum/LIF) conditions or 

though the further addition of 2i inhibitors (2i/LIF), which keeps the cells in a more naive state of pluripotency 

by blocking the differentiation-inducing MAPK signaling pathway.  

 

Figure 4: The mESC signaling network. Signaling pathways known to be involved in mediating the pluripotency state and their modulation 

of pluripotency factor expression. The addition of LIF and Bmp4 to the culture media promotes the naive pluripotency state (blue boxes), 

together with the inhibition of the Mek and Gsk3 kinases (red boxes). The shown interactions are based on the following literature: a. (Niwa 

et al., 2009), b. (Martello et al., 2013), c. (Fang et al., 2014; Jeong et al., 2010), d. (Martello et al., 2012), e. (Kim et al., 2012), f. (Kim et al., 

2014b), g. (Yeo et al., 2014), h. (Li et al., 2012), i. (Ying et al., 2003), j. (Matsuda et al., 1999; Niwa et al., 1998), k. (Burdon et al., 1999; Fukada 

et al., 1996), l. (Paling et al., 2004), m. (Wray et al., 2011), n. (Betschinger et al., 2013), o. (Zhao et al., 2015) (Adapted from Schulz, 2017). 

The MAPK pathway is activated through the binding of extracellular mitogens such as fibroblast growth factor 

(Fgf) to their membrane receptor, leading to the activation of a kinase cascade composed of Raf, Mek and Erk 
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(Fig. 4). Fgf4 is secreted, during early embryonic development, from the epiblast cells of early blastocysts to 

induce primitive endoderm differentiation in neighboring cells by activating the MAPK signaling pathway (cells 

in the developing embryo are in constant communication with adjacent cells through the secretion of signaling 

molecules, driving this way the process of embryogenesis). Interestingly, Fgf4-/- mutant mESCs fail to 

differentiate into both neural as well as mesodermal lineages (Kunath et al., 2007; Stavridis et al., 2007). This is 

also the case for homozygous mutant cells for the Erk2 kinase, the main Erk isoform in mESCs (Kunath et al., 

2007).  

Lastly, in contrast to naive mESCs, primed EpiSCs are maintained through the addition of the MAPK activator 

Fgf2 together with Activin to the culture medium (Brons et al., 2007; Tesar et al., 2007).  

1.3. The MAPK signaling pathway  

This next section focuses specifically on the MAPK signaling pathway, given that the first part of this work aims 

at identifying X-linked MAPK inhibitors that, when present in a double dosage in female cells, lead to sex 

differences in mESCs.  

Four sub-families of MAPKs can mediate the mitogen-activated protein kinase (MAPK) signaling pathway: 

Erk1/2, Jnk, p38 and Erk5 (Johnson and Lapadat, 2002). While Jnk and p38 are usually activated by stress signals, 

the MAPK/Erk pathway controls many cellular responses such as proliferation, migration, apoptosis and 

differentiation (Johnson and Lapadat, 2002). It is therefore crucial for cell survival and its dysregulation has been 

linked to many diseases such as cancer (Roberts and Der, 2007). 

1.3.1 Cascade components at a glance 

Fgf ligands represent the main activators of the MAPK signaling pathway during early development. Vertebrates 

possess 22 types of Fgf ligands and five types of Fgf receptors; although in the early embryo, Fgf4 and Fgfr2 are 

predominantly expressed (Arman et al., 1998; Goldin and Papaioannou, 2003; Johnson and Williams, 1993; 

Lanner and Rossant, 2010; Ornitz and Itoh, 2001; Rappolee et al., 1994). Fgf receptors consist of an extracellular 

ligand-binding domain, a single transmembrane domain and an intracellular domain with tyrosine kinase 

activity. Ligand binding leads to dimerization and subsequent phosphorylation of its intracellular domain, 

recruiting a complex that binds to the phosphorylated residue comprising the fibroblast growth factor receptor 

substrate 2 (Frs2), the Src homology region 2 domain-containing phosphatase 2 (Shp2 or Ptpn11) and the growth 

factor receptor-bound protein 2 (Grb2) (Fig. 5) (Burgar et al., 2002; Gotoh, 2008; Kouhara et al., 1997; Lin et al., 

1997; Lowenstein et al., 1992; Ong et al., 2000; Sarabipour and Hristova, 2016; Schlessinger et al., 2000; Yan et 

al., 2002). This leads to the activation of the Ras GTPase by the nucleotide exchange factor son of sevenless (SOS) 

through the exchange of GDP for GTP (Margarit et al., 2003; Rajalingam et al., 2007; Simon and Schreiber, 1995). 

Active Ras then starts the sequential phosphorylation of the kinases Raf, Mek and lastly Erk (Fig. 5).  

The Raf kinase phosphorylates the two isoforms of Mek (Mek1 and Mek2) at serine 217 and 221 residues (in 

mouse Mek1/2), which lie within the activation loop. Curiously, while Mek1 seems to be indispensable for 

developmental progression (Mek1-/- knockout mice die around E10.5), Mek2-/- mice are viable (Bélanger et al., 

2003; Bissonauth et al., 2006). Meks (mitogen activated protein kinase kinase) phosphorylate residues tyrosine 

205/185 and threonine 203/183 of both mouse Erk isoforms, Erk1 and Erk2 (Roskoski, 2012). Also in this case, 

one isoform plays a more essential role during development, since Erk2-/- mice die after implantation, whereas 

Erk1-/- mice are phenotypically normal (Hatano et al., 2003; Nekrasova et al., 2005; Saba-El-Leil et al., 2003).  

Erk targets comprise both nuclear as well as cytoplasmic proteins with diverse function, including kinases, 

transcription factors and RNA-binding proteins. Nuclear targets, such as the ETS family transcription factor ETS 

Like-1 protein (Elk-1), can be activated by Erk following its nuclear translocation through Mek-mediated 

http://f1000.com/work/citation?ids=1140901,1140811&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1140811&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1140811&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=888892,153974&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=330605&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=330605&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=783253&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=572909,65666,64625,1574420,5340396,8173762&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=572909,65666,64625,1574420,5340396,8173762&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=8177707,1576878,3945867,8181212,8181216,113373,1989733,55299,1561166&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=8177707,1576878,3945867,8181212,8181216,113373,1989733,55299,1561166&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=8177707,1576878,3945867,8181212,8181216,113373,1989733,55299,1561166&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=494498,389727,1332712&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=6719582,4019288&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=6719582,4019288&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1264597&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8181706,1182985,1179356&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0


7 

phosphorylation. C-terminal Elk1 phosphorylation increases its affinity to the serum response factor (SRF), 

building a dimer that can bind to serum response elements (SRE) and Elk1 binding sites, leading to transcriptional 

activation of target genes such as Egr1 and c-Fos (Marais et al., 1993; Whitmarsh et al., 1995). The latter, for 

example, plays an important role in proper progression of differentiation and proliferation (Eferl and Wagner, 

2003).  

Among several other MAPK target genes are found negative feedback regulators such as dual specificity 

phosphatases (Dusp) and Sprouty proteins (Spry), which allow for the modulation of signaling responses (see 

below). 

1.3.2 Negative feedback regulation of the MAPK signaling pathway 

The MAPK signaling pathway is controlled by several negative-feedback mechanisms that regulate its magnitude, 

duration and location within the cell to ensure homeostasis (Fig. 5). For once, Erk has been shown to 

phosphorylate numerous MAPK pathway components such as Fgf receptors, SOS, Frs2, Raf and Mek, leading to 

their inhibition by preventing association with other pathway components in most cases (Fig. 5) (Brummer et 

al., 2003; Eblen et al., 2004; Kamioka et al., 2010; Lake et al., 2016; Lax et al., 2002; Ritt et al., 2010; Wu et al., 

2003; Zakrzewska et al., 2013).  

 

Figure 5: The MAPK signaling pathway and its negative feedback regulation. Briefly, the fibroblast growth factor (Fgf) binds the Fgf receptor 
(Fgfr), leading to its phosphorylation and subsequent activation. This induces the formation of a complex consisting of the FgfR Substrate 2 
(Frs2), the growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain-containing phosphatase 2 (Shp2 or Ptpn11). 
This leads to the activation of the Ras GTPase, triggering the kinase cascade of Raf, Mek and Erk. Activated Erk translocates to the nucleus 
to activate MAPK target genes and feedback regulators (dual specificity phosphatases (Dusps) and Sprouty proteins). Negative feedback 
regulation has been reported from Erk to Mek1/2, Raf, Sos and Frs2, among others. Additionally, Sprys mediate pathway inhibition upstream 
of Erk and Dusps are able to dephosphorylate and inactivate Erk both in nuclear as well as cytoplasmic compartments (Adapted from Lake 
et al., 2016). 
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Furthermore, several MAPK target genes represent known feedback regulators, such as dual specificity 

phosphatases (Dusp) and Sprouty proteins. The mechanism of action of the latter still needs further elucidation, 

however, studies have reported an inhibitory effect of Spry1 and Spry2 on binding of Grb2 to Frs2 (Fig. 5) 

(Hanafusa et al., 2002). Additionally, Sprouty proteins could mediate their inhibiting action by binding to Raf-1 

(Sasaki et al., 2003; Yusoff et al., 2002). Nevertheless, further insights need to be gained to properly elucidate 

the inhibitory effect of Sprouty proteins on the MAPK pathway.  

Dusps, on the other hand, are able to dephosphorylate and inactivate both the threonine and tyrosine residues 

necessary for the activation Erk1/2 proteins (Fig. 5). They consists of an N-terminal docking domain, which 

mediates substrate recognition, and a C-terminal catalytic domain (Dickinson and Keyse, 2006; Owens and 

Keyse, 2007). A subgroup of the Dusps are the dual-specificity MAPK phosphatases (MPKs) that can be divided 

into three groups (Caunt and Keyse, 2013). The first group is represented by nuclear proteins that are able to 

dephosphorylate Erk1/2 but also JNK and p38 (which are part of other MAPK signaling pathways): Dusp1, Dusp2, 

Dusp4 and Dusp5 (the latter only inactivates Erk1/2). The second group comprises cytoplasmic located Erk-

specific phosphatases: Dusp6, Dusp7 and Dusp9 (Figure 5). Lastly, the third group contains the JNK/p38 specific 

phosphatases Dusp8, Dusp10 and Dusp16. Due to their distribution in particular cellular compartments, Dusps 

are able to regulate Erk specifically in either the cytoplasm or the nucleus, leading to localized signaling 

modulation (Kidger et al., 2017).  

Additionally, Dusps have been shown to mediate cross talk between different signaling pathways. Induction of 

Dusp9 expression through Bmp4-mediated Smad1/4 and 5 activation has been shown to inhibit Erk and thus 

differentiation of mESCs (Li et al., 2012; Ramesh et al., 2008). On the other hand, transforming growth factor-β 

(TGFß) has also been shown to induce Dusp4 expression through Smad3 activation, leading to Erk 

dephosphorylation and promoting apoptosis by blocking the Erk-dependent degradation of BIM (Bcl-2-

interacting mediator of cell death) (Li et al., 2012; Ramesh et al., 2008).  

1.3.3 The role of the MAPK pathway during early development 

During early development, the activation of the MAPK pathway mediated by Fgf4 is necessary for the formation 

of primitive endoderm lineages from the ICM of the pre-implantation blastocyst (Fig. 6).  Fgf4 is expressed in an 

autocrine fashion under the control of Oct4 and Sox2 in Nanog-high epiblast cells (Yuan et al., 1995), whereas 

primitive endoderm cells, on the other hand, express low levels of Nanog and high levels of the Fgf4 receptor 

Fgfr2 and the primitive endoderm (PE) marker Gata6 (Chazaud et al., 2006; Guo et al., 2010; Plusa et al., 2008).  

The key role of the MAPK pathway in the formation of the PE in the preimplantation epiblast is further confirmed 

in blastocysts treated with Mek inhibitors or devoid of MAPK components such as Grb2, Fgf4 and Fgfr2, which 

display an expanded pluripotent epiblast and show peri-implantation lethality (Arman et al., 1998; Chazaud et 

al., 2006; Cheng et al., 1998; Feldman et al., 1995; Kang et al., 2013; Yamanaka et al., 2010). The fact that the 

pluripotent epiblast is still present in these blastocysts further supports the notion that pluripotency can be 

maintained in the complete absence of MAPK signaling, while being key for the further development and 

differentiation of the early blastocyst. This is also shown in mESCs with homozygous Fgf4 or Erk2 mutations, 

which lack the ability to differentiate towards neural or mesodermal lineages (Kunath et al., 2007; Stavridis et 

al., 2007).  

http://f1000.com/work/citation?ids=409726&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8181751,6250089&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=2927446,2914330&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=2927446,2914330&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1029813&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8181801&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8181804,4617992&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=8181804,4617992&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=5287122&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=889005,889130,957186&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=888929,889130,677481,677454,8173003,5340396&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=888929,889130,677481,677454,8173003,5340396&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=1140811,1140901&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1140811,1140901&pre=&pre=&suf=&suf=&sa=0,0


9 

 

Figure 6: Role of MAPK signaling in lineage decisions during early embryonic development. Around the late morula/early blastocyst stage, 
cells start expressing either Fgf4 or Fgfr2 in a salt and pepper pattern. Fgf4 secreting epiblast cells express high levels of Nanog whereas 
Fgfr2 expressing cells also express the primitive endoderm markers Gata6. Nanog and Gata6 expression is mutually exclusive. Activation of 
the MAPK pathway mediated by Fgf4 is therefore necessary for the formation of primitive endoderm lineages from the ICM of the pre-
implantation blastocyst (Adapted from Lanner and Rossant 2010). 

In summary, MAPK signaling is indispensable for the differentiation of primitive endoderm lineages from the 

pluripotent ICM as well as neural and mesodermal lineages from pluripotent mESCs, representing a pivotal 

differentiation-inducing pathway. Its activation is a key step for the transition from the naive to the primed 

pluripotency state, which is additionally accompanied by a series of epigenetic changes, such as the process of 

X-chromosome inactivation (XCI) in female mammals. The next section will focus on outlining this dosage 

compensation mechanism in detail, as the main focus of this work involves the identification of the genes 

underlying sex differences in mESCs that arise from a double X-dosage in female cells. These differences are 

present also during differentiation, which encompasses the process of XCI.  

1.4. Dosage compensation of sex chromosomes and X-chromosome inactivation in 

mammals 

The process of sex determination in organisms with sexual reproduction is, in many species, based on genetic 

differences such as heteromorphic sex chromosomes (e.g. X and Y or Z and W sex chromosomes). Males may 

represent the heterogametic species displaying an XY genotype whereas female are homogametic XX, such as 

in mammals (male heterogamety). Alternatively, in other species such as birds, females have acquired the 

heterogametic ZW genotype (female heterogamety) (Mank, 2013).  

During evolution, sex chromosomes arise from a pair of autosomal chromosomes that seize to recombine (proto 

sex chromosomes), leading to extensive gene loss and to the accumulation of repetitive DNA in the sex-limited 

Y and W chromosomes (Disteche, 2012; Vicoso and Bachtrog, 2009). In humans, it is estimated that only 3% of 

the genes located in the proto Y-chromosome have been retained in the Y chromosome, whereas 98% of the 

genes found on the proto X chromosome are still present in the X chromosome (Disteche, 2016). This extreme 

imbalance in gene dosage poses a natural form of aneuploidy, which becomes neutralized through the process 

of dosage compensation.  

1.4.1 Dosage compensation mechanisms 

Dosage compensation of sex chromosomes varies between different species and has been extensively studied 

in D. melanogaster, C. elegans and M. musculus (Disteche, 2016). In D. melanogaster, dosage compensation is 

accomplished through the upregulation of X-linked genes in males by the male-specific lethal (MSL) complex to 
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achieve the double X-chromosomal dosage present in females (Fig. 7) (Kuroda et al., 2016). In C. elegans, on the 

other hand, the dosage compensation complex (DCC) binds to both X chromosomes in hermaphrodite worms, 

resulting in a two-fold repression of gene expression (Albritton and Ercan, 2018).  

In mammals, dosage compensation is achieved through the process of X chromosome inactivation (XCI), which 

starts with the upregulation of the lncRNA Xist from one of the two X chromosomes (Fig. 7, see below) (Lyon, 

1961). Here, one of the two X chromosomes present in females undergoes heterochromatinization, leading to 

the transcriptional silencing of most of its genes and to the formation of the Barr body in the cell nucleus (Barr 

and Bertram, 1949; Dixon-McDougall and Brown, 2016; Robert Finestra and Gribnau, 2017).  

 

Figure 7: Mechanisms of X-dosage compensation in mammals (M. musculus), flies (D. melanogaster) and worms (C. elegans). In mammals, 
one of the two X-chromosomes becomes inactivated through the spreading and coating of the lncRNA Xist, which leads to 
heterochromatinization and silencing of most X-linked genes. In flies, on the other hand, the male-specific lethal (MSL) complex increases 
X-chromosomal dosage in males by acetylating and opening its chromatin. Lastly, the dosage compensation complex (DCC) downregulates 
gene expression in both X-chromosomes leading to a two-fold repression in hermaphrodite worms.   

There are two forms of X-chromosome inactivation: imprinted and random (Okamoto et al., 2011). Marsupials, 

for instance, undergo imprinted XCI exclusively by silencing the paternal X chromosome in all somatic cells (Grant 

et al., 2012). Placental mammals, on the other hand, display random X chromosome inactivation in all somatic 

tissues (Deng et al., 2014; Moreira de Mello et al., 2010; Okamoto et al., 2011; Petropoulos et al., 2016).  

Curiously, both imprinted as well as random XCI are observed in mice, the most well studied model organism for 

XCI. Imprinted dosage compensation occurs around the four-to-eight-cell stage of the preimplantation 

blastocyst, leading to the inactivation of the paternally inherited X chromosome (Xp) (Fig. 8) (Borensztein et al., 

2017a; Mak et al., 2004; Okamoto et al., 2004). Around embryonic day E3.5, the naive pluripotent epiblast cells 

of the preimplantation blastocyst that give rise to the embryo proper will start to reactivate their X chromosome, 

whereas trophectoderm and primitive endoderm cells, that give rise to extraembryonic lineages, retain their 

imprinted Xp status (Mak et al. 2004; Okamoto et al. 2004; Takagi 2003; Borensztein et al. 2017; Cheng et al. 

2019; Mohammed et al. 2017). The process of random XCI starts around E5.5 so that primed epiblast cells from 

the postimplantation blastocyst at E6.5 (and later on all somatic cells) already express either maternal or 

paternal X-linked genes (Fig. 8) (Mohammed et al. 2017; Cheng et al. 2019). 
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Figure 8: Forms of X chromosome inactivation in early mouse development. Imprinted XCI occurs in mice around the four- to eight- cell 
stage, where only the paternal X chromosome becomes inactivated (XipXam). Around E3.5, cells of the inner cell mass that will become 
embryo-forming epiblast cells start reactivating their X chromosome (XapXam), whereas cells giving rise to extra-embryonic tissues retain 
their imprinted Xp status. Finally, random X chromosome inactivation is observed in epiblast cells of the post-implantation egg cylinder 
(XipXam and XapXim).  

1.4.2 XCI in placental mammals is mediated by the lncRNA Xist 

X-chromosome inactivation is mediated by long non-coding RNA molecules (lncRNAs) encoded on the X 

chromosome that act in cis: Rsx (RNA-on-the-silent X) in marsupials and Xist (X inactive specific transcript) in 

placental mammals (Borsani et al., 1991; Brockdorff et al., 1991, 1992; Brown, 1991; Brown et al., 1992; Clemson 

et al., 1996; Gendrel and Heard, 2014; Grant et al., 2012).  

Xist upregulation from one of the two X-chromosomes (monoallelic) present in females marks the start of X 

chromosome inactivation (XCI), which takes place during the transition from the naive to the primed pluripotent 

state. This is followed by the coating of the X chromosome in cis by this lncRNA, which then recruits epigenetic 

regulators that lead to chromosome silencing. Xist is pivotal for the X chromosome choice involved in the process 

of random XCI, as the mutation of just one copy of Xist in females leads to non-random XCI, with all cells 

inactivating only the wildtype X chromosome (Marahrens et al., 1997; Penny et al., 1996).  

Female-specific monoallelic upregulation of Xist is ensured by several factors, many of which are located close 

to the Xist locus in a region called the X inactivation center (Xic) (Fig. 9). A model has been proposed in which a 

double dosage of a trans-acting activator (tXA) is required for Xist upregulation from one of the X chromosomes 

present in female cells, and that a negative feedback loop involving the silencing of this activator from the 

inactive X chromosome could ensure monoallelic Xist upregulation (Jonkers et al. 2009; Barakat et al. 2011; 

Augui et al. 2011; Mutzel et al. 2019). Additionally, Xist silencing in the active X chromosome could be positively 

reinforced by a cis-acting repressor (cXR) (Mutzel et al. 2019).  

One candidate for the trans-acting activator of Xist is the E3 ubiquitin protein ligase Rnf12, which targets the 

pluripotency factor Rex1 for degradation, a known naive pluripotency factor and strong Xist repressor (Barakat 

et al., 2011; Gontan et al., 2012, 2018; Jonkers et al., 2009). Other lncRNAs located in the Xic have additionally 

been proposed to act as Xist activators: Jpx and Ftx, however, only Jpx could exert a function in trans and it 

additionally appears to escape X-chromosome inactivation (Fig. 9) (Barakat et al., 2014; Carmona et al., 2018; 
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Sun et al., 2013; Tian et al., 2010; Chureau et al., 2011; Hosoi et al., 2018; Barakat et al., 2014; Carmona et al., 

2018; Furlan et al., 2018; Tian et al., 2010).  

The most well characterized cis-acting repressor (cXR), on the other hand, is the lncRNA Tsix, whose locus 

overlaps Xist and is transcribed antisense to the latter (Figure 9). It is essential for proper dosage compensation 

in females, as heterozygous mutants with a deletion of the Tsix promoter and enhancer regions have skewed 

XCI towards the mutated X chromosome (Lee, 2005; Lee and Lu, 1999; Lee et al., 1999). Xist repression by Tsix 

seems to be transcription-dependent, leading to chromatin changes along the Xist promoter that ultimately 

downregulate Xist expression (Navarro et al., 2005, 2006, 2009; Ohhata et al., 2008; Sado et al., 2005; Shibata 

et al., 2008; Sun et al., 2006). 

 

 

Figure 9: Regulation of Xist by the X inactivation center (Xic). The Xic harbors a series of lncRNAs and protein-coding genes, some of which 
have been shown to affect Xist expression and the process of X chromosome inactivation. The lncRNAs Jpx and Ftx, together with the trans-
acting Rnf12 protein are found among the Xist activators. Tsix represses Xist expression and is itself positively regulated by Tsx and Xite, 
whereas Linx has been shown to repress Xist expression through long-range mechanisms.   

The process of X-chromosome inactivation is tightly coupled to the onset of differentiation and the transition 

from the naive to the primed pluripotent state, which comprises the downregulation of various pluripotency 

markers. It has been shown that several pluripotency factors bind Xist, Tsix and their regulatory sequences and 

regulators (Rnf12, Jpx) (Chen et al., 2008; Donohoe et al., 2009; Navarro et al., 2008, 2010). An over early 

upregulation of Xist due to either knockdown of the pluripotency factor Oct4 or knockout of the Tsix repressor 

leads to a higher proportion of cells expressing this lncRNA in a biallelic form (Donohoe et al., 2009; Lee, 2005). 

This could be in accordance with a proposed model in which the proportion of biallelically Xist-expressing cells 

depends on the precise timing of Xist upregulation, with fast Xist upregulation generating a higher proportion of 

bialellic cells, and trans-acting activator (tXA) silencing, with slow silencing also promoting a higher fraction of 

biallelic cells (Mutzel et al. 2019).  

Furthermore, effective chromosome silencing can only be achieved through Xist upregulation during early 

differentiation, pointing to an impossibility of XCI induction in differentiated cells (Wutz and Jaenisch, 2000). 

Initiation and termination of XCI is thus tightly coupled to developmental progression to ensure its successful 

completion. 

Monoallelic Xist upregulation in females during differentiation sets the onset of XCI and represents a tightly 

regulated process, ensured by many cis- and trans-acting factors. This is followed by the coating of the X 

chromosome by Xist in cis and the recruitment of epigenetic regulators that will ultimately lead to chromosome 

silencing. How this happens is the subject of the next section.  
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1.4.3 The silencing of an X chromosome  

Ectopic expression of an inducible Xist cDNA from an autosomal chromosome leads to gene silencing in cis, albeit 

to a lower degree than in female cells, demonstrating that Xist alone is capable of mediating chromosome 

inactivation (Chow et al., 2007; Tang et al., 2010; Wutz and Jaenisch, 2000). The latter is accompanied by a series 

of epigenetic changes that ensure the formation of heterochromatin on the inactive X, ultimately leading to gene 

silencing and X dosage compensation. These include histone deacetylation by the deacetylase HDAC3, followed 

by the Polycomb repressive complex 1 (PRC1) mediated H2AK119 ubiquitination, which in turns recruits PRC2 

leading to H3K27me3 accumulation (Fig. 10) (Brockdorff, 2017; Chaumeil et al., 2006; Disteche and Berletch, 

2015; Żylicz et al., 2019). Maintenance of the X inactivation state is then ensured through the replacement of 

histone H2A by macrohistone H2A and through the deposition of CpG DNA Methylation by the Dnmt3b 

methyltransferase (Costanzi and Pehrson, 1998; Gendrel et al., 2012).  

Xist interacts with several proteins that mediate the heterochromatization and subsequent inactivation of a 

single X chromosome. Several of these proteins have been identified in mouse through Xist pull-down 

approaches (Chu et al., 2015; McHugh et al., 2015; Minajigi et al., 2015). Among the most important mediators 

of Xist silencing were found Spen, a known transcriptional repressor, whose dysregulation leads to significant 

defects in X-linked gene silencing,  hnRNPK, Rbm15, hnRNPU and CIZ1 (Fig. 10) (Chu et al., 2015; Dossin et al., 

2020; McHugh et al., 2015; Moindrot et al., 2015; Monfort et al., 2015; Nesterova et al., 2019; Shi et al., 2001; 

Nesterova et al., 2019; Patil et al., 2016; Hasegawa et al., 2010; Ridings-Figueroa et al., 2017; Sunwoo et al., 

2017). They seem to bind Xist through several of its identified domains, including the A-, B- and C-repeats, 

leading to transcriptional silencing, histone deacetylation and the recruitment of polycomb repressive complex 

1 and 2 (Fig. 10) (Bousard et al., 2018; Chu et al., 2015; Colognori et al., 2019; Pintacuda et al., 2017; Wutz et al., 

2002).  

 

Figure 10: Molecular mechanisms behind the process of X-chromosome inactivation in mice. Xist recruits Spen to actively transcribed 
genes through the interaction of Spen with NurD and Pol II. This is turn leads to the deacetylation of gene regulatory elements through the 
interaction of Spen with the NCOR/SMRT complex and HDAC3, inducing gene silencing. Xist subsequently recruits Polycomb group proteins 
to chromatin through its interaction with hnRNPK, leading to the ubiquitination of histones. This in turns mediates the recruitment of PRC2, 
which induces heterochromatin formation and X chromosome inactivation. 

Interestingly, some X-linked genes escape the process of XCI and remain expressed from both X-chromosomes; 

these are termed as “escapee” genes. It has been shown that approx. 15% of X-linked genes escape XCI in 

humans, whereas this number is reduced to 3% in the mouse (Berletch et al., 2010; Carrel and Willard, 2005; 

Yang et al., 2010).  
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In conclusion, X-chromosome inactivation is a precisely orchestrated process that starts with the upregulation 

of the lncRNA Xist from one the two X-Chromosomes present in females during a very specific developmental 

window at the transition from the naive to the primed pluripotent state. The timing and manner of Xist 

upregulation is tightly regulated by several activators and repressors present in the vicinity of Xist in the X 

inactivation center (Xic), together with various pluripotency factors. Silencing of one X chromosome is 

subsequently mediated through Xist coating and several Xist interacting proteins that recruit epigenetic 

modifiers, leading to heterochromatinization and the formation of the Barr body in female cells.  

1.5. Sex differences in mammals due to variations in X-chromosomal dosage 

X dosage compensation takes place during the transition from the naive to the primed pluripotent state in 

female mammals. Therefore, in the preimplantation blastocyst, before this process has taken place, females 

express X-linked genes at around two-fold higher levels, which leads to substantial sex differences between male 

and female blastocysts. 

Dosage imbalance is largely neutralized in somatic cells after XCI has taken place. However, sex differences may 

still arise from increased expression of a subset of escapee genes, which could cause female individuals to be 

either more or less prone to the acquirement of certain disease phenotypes, such as various cancer types (Ratnu 

et al., 2017; Schurz et al., 2019; Snell and Turner, 2018).  

The next sections will focus on the sex differences observed in early embryonic development and in mESCs, 

which represent an excellent in vitro model for these early stages of developmental progression, as they possess 

two active X chromosomes, which become inactive in the process of differentiation. Clarifying the phenotypic 

differences arising from variations in X-chromosomal dosages in early mammalian development is essential for 

this work, as its main focus lies in the identification of X-chromosomal genes that underlie them.  

1.5.1 Sex differences during early embryonic development 

It has been reported that in many species, including mice, rats, cows and humans, female embryos develop 

slower compared to males (Fig. 11) (Alfarawati et al., 2011; Avery et al., 1989, 1991; Luna et al., 2007; Ménézo 

et al., 1999; Ray et al., 1995; Scott and Holson, 1977; Seller and Perkins-Cole, 1987; Tsunoda et al., 1985; Yadav 

et al., 1993; Zwingman et al., 1993). Since these differences manifest at developmental stages where fetal 

hormones are not yet produced, they have been attributed to variations in sex-chromosomal dosages.  

Both an increase in cell number and weight (Scott and Holson, 1977) as well as more advanced stages of 

development (Seller and Perkins-Cole, 1987; Tsunoda et al., 1985) (e.g. higher number of somites or faster 

blastocoel formation in male embryos at a certain developmental time-point) have been reported in male 

blastocysts. It is therefore difficult to distinguish whether these differences are caused by increased proliferation 

rates in male embryos or genes that affect developmental progression and differentiation, or both. In this 

context, the Y-linked gene SRY has been shown to have mitogenic properties and it is expressed from very early 

on during development in human and mouse (Fiddler et al., 1995; Zwingman et al., 1993). However, the 

contribution of the Sry gene to the observed sex differences has been ruled out in mice in a study where the 

weight of male embryos with a Sry deletion was compared to the one of female embryos at E10.5, showing still 

significant differences (Burgoyne et al., 1995). The authors additionally concluded that the sex differences 

observed in early blastocysts at this embryonic stage could be attributed to a combinatorial effect of the Y-

chromosome during the preimplantation period and X-chromosomal dosage (XX vs. X) at later embryonic stages 

around E9.5 (Burgoyne et al., 1995).  
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Figure 11: Sex differences during early development. Female embryos of many mammalian species develop slower compared to their male 
counterparts at early stages of development. Since no fetal hormones are secreted during this time, it has been proposed that the observed 
sex differences are due to variations in sex chromosome dosage.  

Other evidence of X-chromosomal dosage effects was reported in a study that compared the weights of XY, XX, 

XmO and XpO embryos also at 10.5 dpc, the latter two exhibiting X chromosomes derived either paternally (XpO) 

or maternally (XmO) (Thornhill and Burgoyne, 1993). Curiously, while XpO developed at a similar rate compared 

to XX blastocysts, XmO developed at much faster rates comparable to XY embryos. It was therefore proposed 

that a paternally inherited X chromosome slows the development of XX embryos, which could be attributed to 

differential expression of certain genes between the two X chromosomes due to genomic imprinting. This 

phenomenon, where genes are expressed in a parent-of-origin-specific manner, is due to the presence of 

epigenetic marks such as DNA methylation or histone modification in imprinted genes that are inherited from 

sperm and oocyte cells (Ferguson-Smith 2011).  

1.5.2 Sex differences in murine mouse embryonic stem cells 

Female mESCs possess two active X-chromosomes and undergo the process of XCI once induced to differentiate. 

Interestingly, it has recently been reported that both female mESCs as well as iPSCs (induced pluripotent stem 

cells) are found in a more naive state of pluripotency compared to their male counterparts (Fig. 12) (Schulz et 

al. 2014; Song et al. 2019). It was shown that these differences arise due to varying X-chromosomal dosage, as 

the XO subclones of female mESCs behave similar to male cells.  

Female mESCs display lower levels of the differentiation-inducing MAPK signaling pathway, which is reflected in 

their lower expression levels of MAPK target genes (Fig. 12). Curiously, phosphorylation levels of MAPK pathway 

components such as Erk and Mek are higher in XX wildtype cells, which is due to a reduced negative feedback 

activity of the pathway caused by the lower expression levels of feedback regulators (Fritsche-Guenther et al., 

2011; Sturm et al., 2010).  

Higher expression of naive pluripotency markers such as Nanog, Prdm14 and Tcl1 in Serum/LIF culture conditions 

is another marked sex difference between female and male mESCs, even though expression of core pluripotency 

factors such as Oct4 and Sox2 remains largely unchanged (Fig. 12) (Schulz et al., 2014). When induced to 

differentiate via LIF withdrawal or EpiSC differentiation protocols, female mESCs fail to efficiently downregulate 

pluripotency factors compared to male cells, where significantly lower levels are observed from day 1 of 

differentiation (Fig. 12). This situation reminisces of the sex differences reported in in vivo blastocysts, where 

male embryos are faster to reach more advanced stages of development (Burgoyne et al., 1995; Mittwoch, 1993; 

Thornhill and Burgoyne, 1993).  

http://f1000.com/work/citation?ids=44435&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=64037&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915,325914,6614183,7255779&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://f1000.com/work/citation?ids=1480915,325914,6614183,7255779&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://f1000.com/work/citation?ids=6614183,325914&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=6614183,325914&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7659404,43207,44435&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=7659404,43207,44435&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Additionally, male mESCs exhibit global CpG methylation levels close to ~60%, compared to the approx. 30% 

observed in female mESCs, which resemble the 20-30% CpG methylation levels observed in naive pluripotent 

stem cells cultured under 2i conditions (Schulz et al., 2014; Zvetkova et al., 2005).  

Inhibition of MAPK signaling leads to a strong shift towards the naive pluripotency state, accompanied by an 

increase in pluripotency factor expression and global DNA hypomethylation (Ficz et al., 2013; Habibi et al., 2013; 

Hackett et al., 2013; Leitch et al., 2013; Milagre et al., 2017; Ooi et al., 2010; Pasque et al., 2018; Schulz et al., 

2014; Silva et al., 2009; Zvetkova et al., 2005). It was therefore hypothesized that one or more X-encoded MAPK 

inhibitors present in a double dosage in female mESCs might be responsible for the observed female-specific 

pluripotency phenotype. This could pose a biological checkpoint to guarantee that only the cells in which 

successful XCI has taken place contribute to the adult organism. However, when this study was initiated, the 

identity of the genes mediating the observed sex differences in mESCs remained unknown.  

 

Figure 12: Sex differences in mouse embryonic stem cells. Female mESCs are found in a more naive state of pluripotency, as they display 
lower levels of the differentiation-inducing MAPK signaling pathway, while at the same time expressing higher levels of naive pluripotency 
factors and exhibiting slower differentiation kinetics compared to their male counterparts (yellow arrows). These effects might be mediated 
through an X-encoded MAPK inhibitor (red), which would be present in a double dosage in female mESCs. This might ensure the 
developmental progression of cells that have successfully undergone X chromosome inactivation, and have thus reduced the levels of the 
putative MAPK inhibitor and subsequently of pluripotency factor expression.  

1.5.3 Genes mediating the sex differences observed in mESCs 

Genes responsible for mediating sex differences in mESCs caused by X-chromosomal dosage effects should be 

located on the X chromosome and their expression should be at least two-fold higher in female mESCs. 

Additionally, a heterozygous mutation of such a gene in female mESCs should lead to a male-like phenotype.  In 

this context, the heterozygous deletion of the Erk-specific phosphatase Dusp9 in female mESCs has been shown 

to lead to global CpG methylation levels similar to those observed in males (Choi et al., 2017). However, other 

studies have shown that these female mutants do not display significant reductions in pluripotency factor 

expression or faster differentiation kinetics (Song et al., 2019). Therefore, Dusp9 seems to mainly account for 

one aspect of the reported sex differences when expressed from just one allele in female cells.  

http://f1000.com/work/citation?ids=1480915,44633&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=57745,739643,739644,7255831,1112626,6684236,44102,5337687,1480915,44633&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=57745,739643,739644,7255831,1112626,6684236,44102,5337687,1480915,44633&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=57745,739643,739644,7255831,1112626,6684236,44102,5337687,1480915,44633&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=3406497&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7255779&pre=&suf=&sa=0
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Dusp9 overexpression in male mESCs, on the other hand, has been shown to lead to a decrease in global CpG 

methylation while at the same time increasing pluripotency factor expression (Choi et al., 2017). Strikingly, these 

cells also displayed higher levels of Erk phosphorylation, which is counterintuitive considering that 

overexpression of an Erk phosphatase should in fact decrease pErk levels (Li et al., 2012).  

The aforementioned results suggest that Dusp9 might act together with other genes to mediate the female 

pluripotency phenotype, which, until now, remain elusive. 

Candidate genes such as Zic3, known to positively regulate Nanog expression and the pluripotent state (Declercq 

et al., 2013; Lim et al., 2007, 2010), and Tfe3, which has been shown to block differentiation and increase Esrrb 

levels (Betschinger et al., 2013), have also been studied in mESCs. It was shown that their heterozygous mutation 

in female mESCs does not lead to a significant reduction in pluripotency factor expression or differentiation 

kinetics (Song et al., 2019). Furthermore, other X-linked genes such as Nr0b1 and Zfx have been reported to 

induce a differentiation blockage; however, their contribution to the female pluripotency phenotype has not 

been characterized so far (Galan-Caridad et al., 2007; Khalfallah et al., 2009; Zhang et al., 2014). 

Overall, the question as to which genes underlie the sex differences observed in mESCs and iPSCs still remains 

open in the stem cell field. Since the X chromosome harbors approx. 1000 genes, it seems very challenging to 

assess their involvement in the previously mentioned phenotypes in an unbiased and effective manner. With 

the advent of new and promising technologies such as CRISPR pooled screens, it now appears that we can start 

looking for answers.  

 

 

 

 

 

  

http://f1000.com/work/citation?ids=3406497&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4617992&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6900916,6927676,7313340&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=6900916,6927676,7313340&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=58508&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7255779&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8094610,8094611,1436155&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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2. Aims of study  

Female mouse embryonic stem cells (mESCs) are found in a more naive state of pluripotency compared to their 

male counterparts, as they display lower levels of MAPK signaling and higher expression of pluripotency factors. 

Additionally, these cells fail to down-regulate pluripotency factors during differentiation as effectively as male 

cells or their XO subclones. The genes mediating these observed sex differences remain, however, largely 

unknown.  

Aim 1: Identification of X-linked genes that drive sex differences in mouse embryonic stem cells (mESCs) 

In this work, I aimed at identifying the X-linked genes underlying the sex differences observed in mESCs in an 

unbiased and high-throughput manner through a series of complementary pooled CRISPR Knockout screens. In 

a first primary screen, I made use of a fluorescent MAPK-sensitive reporter in order to identify inhibitors of the 

MAPK signaling pathway by generating an sgRNA library targeting the majority of X-linked genes. I then 

performed a series of secondary screens targeting several top hits from the primary screen that made use of 

reporters that assessed pluripotency factor expression in the undifferentiated state and during differentiation, 

together with phosphorylation of MAPK pathway components. This way, I generated a list of candidate X-linked 

genes involved in the modulation of several of the observed sex differences.  

Aim 2: Validation of top hits from the generated screens in male and female mESCs 

After identifying candidate genes that could mediate the observed gender differences in mESCs, I validated the 

top ranking genes from the previously conducted pooled CRISPR knockout screens. For this, I implemented the 

CRISPRa Suntag system in order to overexpress these genes in male cells, which should lead to a shift towards a 

more naive state of pluripotency. Additionally, I generated heterozygous mutants in female mESCs by using the 

CRISPR/Cas9 technology. I subsequently assessed whether female mESCs with a single dosage of the genes of 

interest exhibited a male-like phenotype, including higher MAPK signaling leves, lower expression of 

pluripotency factors, faster differentiation kinetics and an increase in global CpG methylation.  
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3. Materials 

3.1. Antibodies 

Table 1.  Antibodies used in this study 

Epitope Supplier Number Dilution 

Primary antibodies 

Phospho-MEK1/2 (Ser221) (166F8) Cell Signaling 2338  1:2000 

Mek1/2 (L38C12) Cell Signaling 4694  1:1000 

Phospho-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204) (197G2) Cell Signaling 4377  1:1000 

p44/42 MAP Kinase (L34F12) Cell Signaling 4696  1:2000 

KLHL13 Monoclonal Antibody (8D1) Thermo Fisher MA5-15658  1:1000 

Dusp9 Antibody 
Kind gift from Keyse lab 
(Dickinson et al. 2002) - 1:10000 

GFP Sigma-Aldrich 11814460001  1:1000 

B-Tubulin Cell Signaling 2146  1:1000 

Secondary antibodies 

 IR Dye800W Goat anti-Rabbit IgG  Li cor  P/N 926-32211  1:15000 

 IR Dye680W Goat anti-Mouse IgG  Li cor  P/N 926-68070  1:15000 

Antibodies for pMek intracellular staining 

Phospho-MEK1/2 (Ser221) (166F8) Cell Signaling 2338 1:100 

Alexa Fluor 647 Goat anti-Rabbit Thermo Fisher Scientific A-21244 1:400 

  

3.2. Plasmids 

A unique identifier of the plasmids used in this study is given in brackets in column 1 as an SP (Schulz Plasmid) 

number.   

Table 2. Plasmids used in this study.  

 

Vector Function Source Promoter Bacterial 
resistance 

Mammalian 
resistance 

http://f1000.com/work/citation?ids=8725821&pre=&suf=&sa=0
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302 reporter 
(SP35) 

Amplification of the 
SRE/Elk-sensitive 
promoter 

Kind gift from 
Morkel and 
Brummer lab 

SRE/Elk Ampicillin - 

pCAGG-
L/eGFP (SP9) 

Amplification of PolyA 
sequence 

O. Masui Chicken-B-
Actin 

Ampicillin - 

lentiGuide-
puro (SP32) 

sgRNA Library cloning, 
cloning of sgRNAs 
targeting Mek and Erk 
locus 

Addgene 52963, 
(Sanjana et al., 
2014) 

U6 (sgRNA) Ampicillin Puromycin 

lenti MS2-P65-
HSF1-Hygro 
(SP63) 

SRE-Elk reporter 
cloning 

Addgene 61426, 
(Konermann et al., 
2015) 

- Ampicillin Hygromycin 

pUC19 
(SP194) 

Cloning of repair 
template for Nanog 
and Esrrb reporter 
generation 

Thermo Fisher 
Scientific SD0061 

Lac Ampicillin - 

PX330 (SP301) sgRNA cloning for 
Nanog and Esrrb 
reporter generation 

Addgene 42230, 
(Cong et al., 2013) 

CBh (Cas9), 
U6 (sgRNA) 

Ampicillin - 

pLP1 Lentiviral packaging Thermo Fisher 
Scientific 

- Ampicillin - 

pLP2 Lentiviral packaging Thermo Fisher 
Scientific 

- Ampicillin - 

VSVG Lentiviral packaging Thermo Fisher 
Scientific 

- Ampicillin - 

PX458 (SP177) sgRNA cloning for 
Dusp9 mutant 
generation 

Addgene 48138, 
(Ran et al., 2013) 

CBh (Cas9), 
U6 (sgRNA) 

Ampicillin - 

pU6-sgRNA-
EF1Alpha-
puro-T2A-BFP 
(SP65) 

CRISPRa sgRNA cloning Addgene 60955, 
(Gilbert et al., 2014) 

EF1a 
(Puro), U6 
(sgRNA) 

Ampicillin Puromycin 

pLenti-PGK-
GFP-Blast 
(SP51) 

Cloning of constructs 
for Klhl13 
Immunoprecipitation 
experiments 

Addgene 19069, 
(Campeau et al., 
2009) 

PGK Ampicillin Blasticidin 

pCAG-Cre 
(SP44) 

Cre recombinase 
expression 

Addgene 13775, 
(Matsuda and 
Cepko, 2007) 

CAG Ampicillin - 

lentiCas9-
Blast (SP54) 

Cas9 expression Addgene 52962, 
(Sanjana et al., 
2014) 

EFS Ampicillin Blasticidin 

pSuper-Puro 
(SP10) 

SRE/Elk reporter 
cloning 

- H1 Ampicillin Puromycin 

 

3.3. Primers 

All primers were purchased from Sigma-Aldrich and sequences are listed in the 5´to 3´orientation. 

Table 3. qPCR primer pairs used in this study 

http://f1000.com/work/citation?ids=93133&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=93133&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=53365&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=53365&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=31382&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=31401&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5733&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=889107&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=889107&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=413353&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=413353&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=93133&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=93133&pre=&suf=&sa=0
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Target 
gene 

Primer Name Forward Reverse Source 

Nanog ES025/ES026 AGGATGAAGTGCAAGCGGTG TGCTGAGCCCTTCTGAATCAG Navarro et al, 
2008 

Esrrb ES193/ES194 CTGCAGCTGGTGCGCAGGTA CCTGGAGCTTCTGCACCGCC Schulz et al., 
2014 

Prdm14 ES191/ES192 ACAGGCCATACCAGTGCGTGT GTGGCTGTCGTGGGCAGCAT Designed by E. 
G. Schulz  

Arpo Arpo_F/Arpo_R  
TCCAGAGGCACCATTGAAATT 

 TCGCTGGCTCCCACCTT Designed by E. 
G. Schulz  

Rrm2 Rrm2_F/Rrm2_R CCGAGCTGGAAAGTAAAGCG ATGGGAAAGACAACGAAGCG Schulz et al., 
2014 

Egr1 ES431/ES432 GTGTCGAATCTGCATGCGTAA ATCACTCCTGGCAAACTTCCT Li et al, 2012 

Spry4 ES489/ES490 GACCCACTCGGGTTCGGGGA GGGGGCTCCATGAGGCTGGA Schulz et al., 
2014 

Table 4. PCR primer pairs used in this study 

Target Primer Name Forward Reverse 

SRE-Elk promoter  OG109/OG110 TGGTTAATTAGCTAGGGGATCCC
AGGATGTCCATATTAG 

CTCCACTGCCTGTACACACATTGA
TCCTAGCAGAAGCAC 

PolyA sequence OG19/OG20 GCTAGGATCAATGTGTGACGGTG
GCTAATAAAGGAAATTTATTT 

GGGAACAAAAGCTGGGTCGACGA
TCTTCATAAGAGAAGAGG 

Nanog_WT OG152/OG155 TGAACGCATCTGGAAGCCTT GTATGCCACCTTTGGTCCCA 

Nanog_mCherry g6_2f/mCherry_
seq_rev 

TGTTTAAGGTCGGGCTGT TACATGAACTGAGGGGAC 

Nanog_Puro OG166/OG167 GCAGAAGAAGACCATGGGCT ACATGGTGGCTCACAACCAT 

Nanog_Puro2 OG162/OG163 GTCACCGAGCTGCAAGAACT GAGGCCTTCCATCTGTTGCT 

Esrrb_WT OG156/OG159 CTCTGACTCAGCCCTGCATC CACTAAGCACTGCCCATCCA 

Esrrb_mCherry g7_2f/mCherry_
seq_rev 

AGGAAAATGGGGGACAGA TACATGAACTGAGGGGAC 

Esrrb_Puro OG164/OG165 GCGCCTACAACGTCAACATC ACATGGCCAGGAAGCAAGAA 

Esrrb_Puro2 OG162/OG163 GTCACCGAGCTGCAAGAACT GAGGCCTTCCATCTGTTGCT 

Klhl13_WT OG138/OG140 CAGGGAGGCTGAGTTGACTT CAGTGGCTCCCAAACTCCAA 

http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
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Klhl13_Deletion OG138/OG144 CAGGGAGGCTGAGTTGACTT CTTTCTGAGGACTTCCAAATCCT 

Dusp9 OG197/OG198 CAGGACAGGGGTTGACTTCC CGTTCTCCGCTTCAGCCTTA 

Dusp9 (NGS) OG202/OG210 AATGATACGGCGACCACCGAGAT
CTACACTCTTTCCCTACACGACGC
TCTTCCGATCT(Sample 
Barcode)GCCTTGCCTCTCTCCACA
GCA 

CAAGCAGAAGACGGCATACGAGA
T(Illumina 
Barcode)GTGACTGGAGTTCAGAC
GTGTGCTC 
TTCCGATCTCAGCTCCTGACGCAG
CCACA 

Dusp9 (Gibson 
cloning) 

OG200/OG201 CACCGTGGGCTTGTACTCGGTCAT
GGTAAGCAGGACAGGGGTTGAC
TTCC 

TCCTCTTCCTCATCTCCGGGCCTTT
CGACCCGTTCTCCGCTTCAGCCTTA 

sgRNA library 
(Cloning) 

OG113/OG114 TAACTTGAAAGTATTTCGATTTCT
TGGCTTTATATATCTTGTGGAAAG
GACGAAACACCG 

ACTTTTTCAAGTTGATAACGGACT
AGCCTTATTTTAACTTGCTATTTCT
AGCTCTAAAAC 

sgRNA library 
(Amplification) 

OG115/OG116 AATGGACTATCATATGCTTACCGT
AACTTGAAAGTATTTCG 

CTTTAGTTTGTATGTCTGTTGCTAT
TATGTCTACTATTCTTTCC 

sgRNA library 
(NGS) 

OG125/OG126 AATGATACGGCGACCACCGAGAT
CTACACTCTTTCCCTACACGACGC
TCTTCCGATCTTCTTGTGGAAAGG
ACGAAACACCG 

CAAGCAGAAGACGGCATACGAGA
T(Illumina 
barcode)GTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATCTTCTACTAT
TCTTTCCCCTGCACTGT 

Karyotyping (NGS) OG218/OG219 AATGATACGGCGACCACCGAGAT
CTACACTCTTTCCCTACACGACGC
TCTTCCGATCT 

CAAGCAGAAGACGGCATACGAGA
T(Illumina 
Barcode)GTGACTGGAGTTCAGAC
GTGTGCTCTTC CGATC 

   

3.4. gRNAs 

gRNAs were ordered from Sigma-Aldrich with a desalting purity grade and sequences are listed in the 5´to 

3´orientation. gRNAs for the generation of Klhl13 deletion mutants were ordered from IDT (Alt-R® CRISPR-Cas9 

crRNA) 

Table 5. gRNAs used in this study 

Target gene Sequence Function Source 

Mek1 (Map2k1) CGTTAACCGCCGAGCCATCG Mek1 knockout crispr.mit.edu 

Mek1 (Map2k1) GGCGGTTAACGGGACCAGCT Mek1 knockout crispr.mit.edu 

Mek1 (Map2k1) ATGGGCGTCGGCTTCTTCTT Mek1 knockout crispr.mit.edu 

Erk2 (Mapk1) CGCGGGCAGGTGTTCGACGT Erk2 knockout crispr.mit.edu 
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Erk2 (Mapk1) CGCCTTCTCCGATGTACGAG Erk2 knockout crispr.mit.edu 

Erk2 (Mapk1) TACGAGAGGTTGGTGTAGCG Erk2 knockout crispr.mit.edu 

Nanog CGTAAGTCTCATATTTCACC mCherry tagging  crispr.mit.edu 

Nanog GACTCCACCAGGTGAAATAT mCherry tagging  crispr.mit.edu 

Esrrb TGTGCTGGGCCATCACACCT mCherry tagging  crispr.mit.edu 

Esrrb TGCTGGAGGCCAAGGTGTGA mCherry tagging crispr.mit.edu  

Klhl13 TACTGAGTGTCAACTATCAC Deletion mutant 
generation 

crispr.mit.edu 

Klhl13 TGTACTAGTTCATAGTAACT Deletion mutant 
generation 

crispr.mit.edu 

Klhl13 TGGAACTAGGTAGACTAGGC Deletion mutant 
generation 

crispr.mit.edu 

Klhl13 ACACTCTGGAGACAGGGCGT Deletion mutant 
generation 

crispr.mit.edu 

Dusp9 CGACCATGGAGAGTCTGAGT Deletion mutant 
generation 

crispr.mit.edu 

Klhl13 GAGGGGAGCGTGTGGGCGG CRISPRa 
(Overexpression) 

CRISPR library 
designer (CLD) 
(Heigwer et al. 
2016) 

Klhl13 CACATGGCTTCTAGTGTCC CRISPRa 
(Overexpression) 

CRISPR library 
designer (CLD) 
(Heigwer et al. 
2016) 

Dusp9 CCCAGGCGGGACAGGGTCA CRISPRa 
(Overexpression) 

Horlbeck et al. 
2016 

Dusp9 GGAGAGCCAACCAGGGCTA CRISPRa 
(Overexpression) 

Horlbeck et al. 
2016 

Non-targeting  GCGCGCGGATCAAATCAGC CRISPRa control Horlbeck et al. 
2016 

Non-targeting  TCGGACCGGTAACGCCTGT CRISPRa control Horlbeck et al. 
2016 

  

3.5. Oligos  

Oligos were ordered from Sigma-Aldrich with a desalting purity grade or with HPLC purity grade if the sequence 

was larger than 40bp. Sequences are listed in the 5´to 3´orientation. 

http://f1000.com/work/citation?ids=1330955&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1330955&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1330955&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1330955&pre=&suf=&sa=0
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Table 6. Oligos used in this study 

Name Sequence Function 

OG41_MCS_SRE/Elk_F TCCCCTACCCGGTAGAGGTACCAAAC
CATGGAAAGGGCCCAGCTAGGATCA
ATGTG 

Cloning of pSuper-puro-MCS-PolyA 

OG42_MCS_SRE/Elk_R 
 

CACATTGATCCTAGCTGGGCCCTTTC
CATGGTTTGGTACCTCTACCGGGTAG
GGGA 

Cloning of pSuper-puro-MCS-PolyA 

NIaIII adapter top GATCGGAAGAGCGAGAACAA Karyotyping protocol 

NIaIII adapter bottom GTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCCATG 

Karyotyping protocol 

PstI adapter top ACACTCTTTCCCTACACGACGCTCTTC
CGATCT(Barcode)TGCA 

Karyotyping protocol 

PstI adapter bottom (Barcode)AGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGT 

Karyotyping protocol 
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4. Methods 

4.1. Molecular cloning 

Molecular cloning can be used to insert target DNA sequences into vectors (circular DNA molecules). The 

generated plasmid can then be transformed into bacterial cells and amplified through specific replication 

sequences present in bacterial vectors.  

This work implemented two different molecular cloning strategies: restriction enzyme cloning and 

recombination cloning systems, described in detail in section 4.1.1 and 4.1.2, respectively (see Table 7, Cloning 

method for each plasmid generated in this study). After generation of the target plasmid through either of these 

methods, it was transformed into bacterial cells. For this, chemically competent cells were immersed for 45 sec 

into a 42°C water bath (heat-shock transformation) and subsequently plated on Ampicillin plates (0.1 mg/ml, 

Sigma). Colonies were picked the following day and mini plasmid preparations were carried out using the 

Peqgold Plasmid Miniprep Kit and following the manufacturer´s instructions. Positive colonies were verified (see 

Table 7, Strategy for verification) and a colony containing the desired plasmid without DNA sequence mutations 

was inoculated into 100 ml of LB with Ampicillin (0.1 mg/ml, Sigma) and cultured overnight at 37°C and 200 rpm. 

A plasmid midi-prep was carried out the next day using the NucleoBond Xtra Midi Plus kit (Macherey-Nagel) and 

following the manufacturer’s instructions (see Table 7 for a list of plasmids generated in this study). 

Table 7. Plasmids generated in this study. In column one (Plasmid), a unique identifier of the plasmids generated 
in this study is given in brackets as an SP (Schulz Plasmid) number. Additionally, the name of the person that 
generated it is written in brackets. 

 

Plasmid Source of insert Original plasmid 
and restriction 
enzymes used 

Cloning method Strategy for 
verification 

pSuper-puro-
MCS-PolyA 
(SP27) (by O. 
Genolet) 

(1) MCS oligo sequences 
(OG41/OG42) 
(2) The PolyA sequence of 
the pCAGG-L/eGFP 
plasmid was amplified 
using the CloneAmp HiFi 
PCR Premix, primers with 
homology overhangs 
(OG19/OG20), and a Tm  
of 53°C. 

pSuper-puro 
digested with 
EcoRI/KpnI 
(NEB) 

In-Fusion HD 
cloning kit 
(Takara Bio) 

Restriction digest 
using KpnI and SalI, 
followed by sanger 
sequencing of positive 
clones 

pSuper-puro-
SRE/Elk-GFP-
PEST-PolyA 
(SP25) (by O. 
Genolet) 

SRE/Elk-sensitive 
promoter and GFP-PEST 
were digested from the 
302 reporter plasmid 
using KpnI and ApaI 

KpnI/ApaI (NEB) 
digested 
pSuper-puro-
MCS-PolyA 

Restriction 
cloning 

Restriction digest 
using KpnI and ApaI, 
followed by sanger 
sequencing of positive 
clones 

pLenti-SRE/Elk-
GFP-PEST-
Hygro (SP300) 
(by O. Genolet) 

SRE/Elk-sensitive 
promoter and GFP-PEST 
were amplified from the 
302 reporter plasmid by 
using the Phusion High-
Fidelity DNA Polymerase 
(NEB), primers with 
homology overhangs 

lenti-MS2-P65-
HSF1-Hygro, 
digested with 
NheI and BsrGI 
(NEB) 

In-Fusion HD 
cloning kit 
(Takara Bio) 

The presence of the 
SRE-Elk-GFP amplicon 
was examined via 
restriction digest with 
BamHI and BsrGI 
(NEB). Correct 
sequence of positive 
colonies was verified 
via sanger sequencing 
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(OG109/OG110), and a 
Tm of 62°C 

pUC19-Nanog-
mCherry-puro 
(by J. 
Schmiedel) 

Gene blocks (IDT) of 
upstream/downstream 
homology arms and PCR 
amplicons of the mCherry 
and the puromycin 
sequence 

pUC19 
linearized with 
XbaI (NEB)    

NEBuilder® HiFi 
DNA Assembly 
Cloning Kit 
(NEB) 

PCR and restriction 
digest, followed by 
sanger sequencing of 
positive clones 

pUC19-Esrrb-
mCherry-puro 
(by J. 
Schmiedel) 

Gene blocks (IDT) of 
upstream/downstream 
homology arms and PCR 
amplicons of the mCherry 
and the puromycin 
sequence 

pUC19 
linearized with 
XbaI (NEB)   

NEBuilder® HiFi 
DNA Assembly 
Cloning Kit 
(NEB) 

PCR and restriction 
digest, followed by 
sanger sequencing of 
positive clones 

lentiGuide-
Mek1_KO (by 
O. Genolet) 

sgRNA oligo sequence 
(equimolar mix of three 
different sgRNAs targeting 
Mek1) 

lentiGuide-puro 
linearized with 
BsmBI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

lentiGuide-
Erk2_KO (by O. 
Genolet) 

sgRNA oligo sequence 
(equimolar mix of three 
different sgRNAs targeting 
Erk2) 

lentiGuide-puro 
linearized with 
BsmBI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

PX330-
Nanog_sgRNA1 
(by J. 
Schmiedel) 

sgRNA oligo sequence PX330 linearized 
with BbsI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

PX330-
Nanog_sgRNA2 
(by J. 
Schmiedel) 

sgRNA oligo sequence PX330 linearized 
with BbsI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

PX330-
Esrrb_sgRNA1 
(by J. 
Schmiedel) 

sgRNA oligo sequence PX330 linearized 
with BbsI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

PX330-
Esrrb_sgRNA2 
(by J. 
Schmiedel) 

sgRNA oligo sequence PX330 linearized 
with BbsI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

PX458-
Dusp9_sgRNA1 
(by O. Genolet) 

sgRNA oligo sequence PX458 linearized 
with BbsI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pU6-Klhl13.1-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 
with BlpI and 
BstXI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pU6-Klhl13.2-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 
with BlpI and 
BstXI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pU6-Dusp9.1-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 



28 

with BlpI and 
BstXI (NEB) 

pU6-Dusp9.2-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 
with BlpI and 
BstXI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pU6-NTC.1-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 
with BlpI and 
BstXI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pU6-NTC.2-
EF1Alpha-
puro-T2A-BFP 
(by A. Monaco) 

sgRNA oligo sequence pU6-sgRNA-
EF1a-puro-T2A-
BFP digested 
with BlpI and 
BstXI (NEB) 

Restriction 
cloning 

Restriction digest, 
followed by sanger 
sequencing of positive 
clones 

pLenti-PGK-
Degron-GFP-
Blast (SP234) 

Gene amplification by 
Genscript 

pLenti-PGK-
GFP-Blast 

Cloned by 
Genscript 

- 

pLenti-PGK-
Degron-GFP-
Klhl13-Blast 
(SP235) 

Gene amplification by 
Genscript 

pLenti-PGK-
GFP-Blast 

Cloned by 
Genscript 

- 

pLenti-PGK-
GFP-Blast 
(SP233) 

Gene amplification by 
Genscript 

pLenti-PGK-
GFP-Blast 

Cloned by 
Genscript 

- 

pLenti-PGK-
GFP-Kelch 
(SP238) 

Gene amplification by 
Genscript 

pLenti-PGK-
GFP-Blast 

Cloned by 
Genscript 

- 

 

4.1.1 Restriction enzyme cloning 

This method was used for the cloning of sgRNAs into target vectors. sgRNAs targeting the Mek1 (Map2k1), Erk2 

(Mapk1), Nanog, Esrrb, Klhl13 and Dusp9 locus were designed using the CRISPR-Cas9 online tool 

http://crispr.mit.edu:8079/. Off-target scores based on in silico quality and off-target predictions (Hsu et al., 

2013) were compared among the candidate sgRNAs and only the top-scoring sgRNAs were selected. 

CRISPRa sgRNA sequences (see Table 5) targeting the Dusp9 gene were taken from previously published libraries 

(Horlbeck et al., 2016), whereas sgRNAs targeting the mESC-specific Klhl13 isoform (ENSMUST00000115313.7) 

were designed using the CRISPR library designer (CLD) from the Boutros lab (Heigwer et al. 2016).  

Knockout sgRNAs targeting the start of the Mek1 and Erk2 locus were cloned into the lentiGuide-puro plasmid 

(Shalem et al. 2014; Sanjana et al. 2014). This plasmid is used for lentiviral delivery of sgRNAs, allowing for stable 

expression of the the sgRNA of interest in a target cell population after puromycin selection. The cell line of use 

should already stably express the Cas9 endonuclease enzyme. The three sgRNAs targeting each locus were mixed 

in an equimolar ratio before cloning into the lentiGuide-puro vector.  

Plasmids PX330 and PX458 were used for cloning of sgRNAs implemented for genome editing (Nanog, Esrrb, 

Klhl13 and Dusp9). Both plasmids co-express the wildtype Cas9 nuclease together with the sgRNA of interest 

under the Pol III U6 promoter, the PX458 additionally expresses the GFP fluorescent protein. These plasmids 

http://crispr.mit.edu:8079/
http://crispr.mit.edu:8079/
http://crispr.mit.edu:8079/
http://f1000.com/work/citation?ids=58742&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=58742&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2457130&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1330955&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6088,93133&pre=&pre=&suf=&suf=&sa=0,0
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allow for transient expression of the Cas9 nuclease in the cells of interest, leading to double strand breaks in the 

target DNA.  

The plasmid pU6-sgRNA-EF1a-puro-T2A-BFP was used to clone sgRNAs for gene overexpression (CRISPRa). This 

plasmid is used for endogenous target gene overexpression in cells that stably express a mutated version of the 

Cas9 endonuclease, termed as dead Cas9 (dCas9), capable of binding but not cutting the target DNA. 

Additionally, the dCas9-binding handle sequence of the sgRNA has been optimized in this plasmid for improved 

dCas9 binding, which yields higher overexpression efficiencies (see section 4.2.7 for additional information on 

the CRISPR/Cas9 system and sgRNA structure) (Chen et al., 2013). The pU6-sgRNA-EF1a-puro-T2A-BFP is a 

lentiviral plasmid, which allows for stable expression of the sgRNA of interest.  

For sgRNA cloning (gRNA sequences are found in Table 5) into the PX330/PX458, lentiGuide-puro or pU6-sgRNA-

EF1a-puro-T2A-BFP plasmids, two complementary oligos containing the guide sequence and BbsI 

(PX330/PX458), BsmBI (lentiGuide-puro) or BlpI/BstXI (pU6-sgRNA-EF1a-puro-T2A-BFP) homologous overhangs 

(Fig. 13) were annealed and cloned into the BbsI, BsmBI or BlpI/BstXI (NEB) digested target plasmid by using 0.5 

µl of the T4 DNA ligase enzyme (NEB) in 10 µl total reaction volume (cloned plasmids are found in Table 7).  For 

the ligation reaction, 50 ng of the digested and gel-purified (using the NucleoSpin Gel and PCR Clean-up, 

Macherey-Nagel) plasmid were implemented, together with 1 µl of 1:200 diluted and previously annealed oligo 

sequences. The mixture was first incubated for 10 min at RT and subsequently heat-inactivated at 65°C for 10 

min.  

 

Figure 13: Schematic representation of oligo synthesis for sgRNA cloning into PX330/PX458, lentiGuide-puro or pU6-sgRNA-EF1a-puro-
T2A-BFP. For cloning sgRNAs into the PX330/PX458, lentiGuide-puro or pU6-sgRNA-EF1a-puro-T2A-BFP vector, complementary oligos need 
to be designed containing the target sgRNA flanked by sequences complementary to the ends generated by the BbsI, BsmBI and BlpI/BstXI 
restriction enzymes, respectively.  

Additionally, restriction cloning was used for the generation of the pSuper-puro-SRE/Elk-GFP-PEST-PolyA 

plasmid. For this, the SRE/Elk-sensitive promoter and GFP-PEST sequence was digested from the 302 reporter 

plasmid using KpnI and ApaI and cloned into the KpnI/ApaI digested pSuper-puro-MCS-PolyA (the pSuper-puro-

MCS-PolyA plasmid was generated using recombination cloning, see below for details) by using 1 µl of the T4 

DNA ligase enzyme (NEB) in 20µl total reaction volume (cloned plasmids are found in Table 7).  For the ligation 

reaction, 50 ng of the digested and gel-purified plasmid were implemented, together with 45 ng of the digested 

and gel-purified insert (SRE/Elk-GFP-PEST). Incubation of the ligation reaction was performed as described 

previously for sgRNA cloning.  

4.1.2 Recombination cloning 

Recombination cloning systems offer the advantage that DNA sequences can be cloned into linearized plasmids 

without further treatment of the insert (such as restriction digestion) and with a specific direction using 

complementary sequences to the target vector. This method was implemented in this work for the cloning of 

the SRE-Elk reporter plasmid pLenti-SRE/Elk-GFP-PEST-Hygro (SRE/Elk promoter sequence is found in Supp. 

Table S5) together with the pSuper-puro-MCS-PolyA (by using the In-Fusion cloning kit from Takara Bio following 

the manufacturer’s instructions), and the Nanog/Esrrb repair templates pUC19-Nanog-mCherry-puro and 

http://f1000.com/work/citation?ids=28187&pre=&suf=&sa=0
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pUC19-Esrrb-mCherry-puro (by using the NEBuilder® HiFi DNA Assembly Cloning Kit (NEB)) (Plasmids and cloning 

strategy found in Table 7). 

For cloning of the Nanog/Esrrb repair templates, homology arms were ordered as gene blocks (gBlocks, IDT) 

containing 20bp long overlapping sequences, and the mCherry and Puromycin sequence were amplified from 

existing plasmids (Fig. 14). A reaction was carried out using the NEBuilder® HiFi DNA Assembly Cloning Kit (NEB) 

with 0.05 pmol of each of the 4 DNA fragments and 10 µl of the NEBuilder master mix. Samples were incubated 

for 60 min at 50°C, diluted 1:4 by adding 60 µl of ddH2O and placed on ice. A total of 2 µl of the reaction was 

transformed into OneShot Top10 chemically competent cells (Thermo Fisher Scientific). 

 

 
 

Figure 14: Schematic representation of repair template for C-terminal tagging of the Nanog and Esrrb locus. Repair templates consisted 
of a P2A self-cleaving peptide followed by the mCherry coding sequence and a puromycin-resistance cassette, flanked by ~400bp homology 
regions to the Nanog/Esrrb locus (Esrrb-HA-Upstream: chr12:86,518,604-86,519,062, Esrrb-HA-Downstream: chr12:86,519,066-86,519,521, 
Nanog-HA-Upstream: chr6:122,713,142-122,713,552, Nanog-HA-Downstream: chr6:122,713,556-122,714,007 (GRCm38/mm10 Assembly)). 

4.2. Cell culture 

4.2.1 Cell culture conditions 

All mESC lines were grown without feeder cells on gelatin-coated flasks (Millipore, 0.1%) in serum-containing ES 

cell medium (DMEM (Sigma), 15% FBS (PanBiotech), 0.1 mM ß-Mercaptoethanol (Sigma), 1000 U/ml leukemia 

inhibitory factor (LIF, Merck)). mESCs were passaged every second day at a density of 4*104 cells/cm2 and 

medium was changed daily.  

Hek293T cells were cultured in DMEM supplemented with 10% FBS and passaged every 2 to 3 days.   

4.2.2 Differentiation of mouse embryonic stem cells 

The differentiation of cells in this work was achieved through LIF withdrawal either from +LIF/Serum conditions, 

or from 2i/LIF conditions. For the latter, cells were first adapted to 2i+LIF medium (ES cell medium (see above) 

with addition of 3 μM Gsk3 inhibitor CT-99021 (Axon Medchem) and 1 μM MEK inhibitor PD0325901 (Axon 

Medchem)) for at least five passages before undergoing differentiation. 

Cells were differentiated via LIF withdrawal in DMEM supplemented with 10% FBS and 0.1 mM ß-

Mercaptoethanol at a density of 2*102 cells/cm2 in fibronectin-coated dishes (10 µg/ml, Merck). 

4.2.3 Cell lines  

A detailed list of all cell lines used in this study is given below. The parental 1.8 XX mESC line, which carries a 

homozygous insertion of 7xMS2 repeats in Xist exon 7, was a gift from the Gribnau lab (Schulz et al., 2014).  

The female TX1072 mESC line was derived from a cross of a TX/TX R26rtTA/rtTA female (Savarese et al. 2006) with 

a Mus musculus castaneus male. This cell line carries a doxycycline inducible promoter in front of the Xist gene 

in one of its two X-chromosomes (Schulz et al. 2014).  

E14-STN male cells expressing the CRISPRa SunTag system were a kind gift from the Navarro lab.  

http://f1000.com/work/citation?ids=1480915&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1576549&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1480915&pre=&suf=&sa=0
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Low-passage Hek293T cells, which were used for lentivirus generation, were a kind gift from the Yaspo lab. 

Table 8. Cell lines used in this study. A unique cell line identifier is given in column 3 as an SC number (Schulz 
cells).  

 

Cell line Clone Cell 
line 
num
ber 

Clone 
numb
er 
thesis 

Method 
of 
generati
on 

Parental 
cell line 

Plasmid for 
genomic 
integration 

Selection Genotype 
verification 

1.8 XX A3 SC01 1 Sub-
cloning 

1.8 XX - - FISH for X-
chromosomal 
status 

1.8 XX C9 SC01 2 Sub-
cloning 

1.8 XX - - FISH for X-
chromosomal 
status 

1.8 XO F1 SC12 1 Sub-
cloning 

1.8 XX - - FISH for X-
chromosomal 
status 

1.8 XO F12 SC12 2 Sub-
cloning 

1.8 XX - - FISH for X-
chromosomal 
status 

1.8 XO D1 SC12 3 Sub-
cloning 

1.8 XX - - FISH for X-
chromosomal 
status 

1.8 XX 
K13-
HET 

H6.2 SC29 1 Genome 
editing 

1.8 XX - - Genotyping PCR, 
Klhl13 RNA FISH, 
Immunoblotting 

1.8 XX 
K13-
HET 

B1 SC29 2 Genome 
editing 

1.8 XX - - Genotyping PCR, 
Klhl13 RNA FISH, 
Immunoblotting 

1.8 XX 
K13-
HOM 

D1 SC30 1 Genome 
editing 

1.8 XX - - Genotyping PCR, 
Klhl13 RNA FISH, 
Immunoblotting 

1.8 XX 
K13-
HOM 

C6 SC30 2 Genome 
editing 

1.8 XX - - Genotyping PCR, 
Klhl13 RNA FISH, 
Immunoblotting 

1.8 XX 
D9-HET 

D4B1 SC31 1 Genome 
editing 

1.8 XX - - Sanger 
sequencing, NGS, 
Immunoblotting 

1.8 XX 
D9-HET 

C6B9 SC31 2 Genome 
editing 

1.8 XX - - Sanger 
sequencing, NGS, 
Immunoblotting 

1.8 XX 
D9-
HOM 

F10 SC32 1 Genome 
editing 

1.8 XX - - Sanger 
Sequencing, 
Immunoblotting 

1.8 XX 
D9-
HOM 

H4 SC32 2 Genome 
editing 

1.8 XX - - Sanger 
Sequencing, 
Immunoblotting 

1.8 XX 
D9K13-
HET 

A8D5 SC33 1 Genome 
editing 

1.8 XX - - Sanger 
sequencing, NGS, 
Genotyping PCR 
(for K13 del), 
Immunoblotting 
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1.8 XX 
D9K13-
HET 

C2E2 SC33 2 Genome 
editing 

1.8 XX - - Sanger 
sequencing, NGS, 
Genotyping PCR 
(for K13 del), 
Immunoblotting 

E14-
STN 

Clona
l 
origin 

SC40 - Piggybac 
transposi
tion 

- - - - 

TX1072 
SRE-Elk 

Clone 
2 

SC59 - Random 
integrati
on 

TX1072 pSuper-
Puro-
SRE/Elk-GFP-
PEST 

Puromycin 
(1ng/µl) 

Flow cytometry 

1.8 XX 
SRE-Elk 

Clone 
3 

SC26 - Lentiviral 
transduc
tion 

1.8 XX pLenti-
SRE/Elk-GFP-
PEST-Hygro 

Hygromyci
n (250 
µg/ml) 

Flow cytometry 

1.8 XX 
Nanog-
mCherr
y 

D9 SC27 - Genome 
editing 

1.8 XX pUC19-
Nanog-
mCherry-
puro 

Puromycin 
(1ng/µl) 

Genotyping PCR, 
flow cytometry 

1.8 XX 
Esrrb-
mCherr
y 

H7 SC28 - Genome 
editing 

1.8 XX pUC19-
Esrrb-
mCherry-
puro 

Puromycin 
(1ng/µl) 

Genotyping PCR, 
flow cytometry 

E14-
STN-
NT.1 

Non-
clona
l 

SC49 - Lentiviral 
transduc
tion 

E14-STN pU6-NTC.1-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

E14-
STN-
NT.2 

Non-
clona
l 

SC49 - Lentiviral 
transduc
tion 

E14-STN pU6-NTC.2-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

E14-
STN-
Dusp9.
1 

Non-
clona
l 

SC50 - Lentiviral 
transduc
tion 

E14-STN pU6-
Dusp9.1-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

E14-
STN-
Dusp9.
2 

Non-
clona
l 

SC50 - Lentiviral 
transduc
tion 

E14-STN pU6-
Dusp9.2-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

E14-
STN-
Klhl13.1 

Non-
clona
l 

SC51 - Lentiviral 
transduc
tion 

E14-STN pU6-
Klhl13.1-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

E14-
STN-
Klhl13.2 

Non-
clona
l 

SC51 - Lentiviral 
transduc
tion 

E14-STN pU6-
Klhl13.2-
EF1Alpha-
puro-T2A-
BFP 

Puromycin 
(1ng/µl) 

Immunoblotting 

1.8 XX 
K13-
HOM D-
GFP 

Non-
clona
l 

SC54 - Lentiviral 
transduc
tion 

1.8 XX 
K13-
HOM 
Clone 2 

pLenti-PGK-
Degron-GFP-
Blast 

Blasticidin 
(5 ng/µl) 

Immunoblotting 
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1.8 XX 
K13-
HOM D-
GFP-
Klhl13 

Non-
clona
l 

SC55 - Lentiviral 
transduc
tion 

1.8 XX 
K13-
HOM 
Clone 2 

pLenti-PGK-
Degron-GFP-
Klhl13-Blast 

Blasticidin 
(5 ng/µl) 

Immunoblotting 

1.8 XX 
K13-
HOM 
GFP 

Non-
clona
l 

SC52 - Lentiviral 
transduc
tion 

1.8 XX 
K13-
HOM 
Clone 2 

pLenti-PGK-
GFP-Blast 

Blasticidin 
(5 ng/µl) 

Immunoblotting 

1.8 XX 
K13-
HOM 
GFP-
Kelch 

Non-
clona
l 

SC53 - Lentiviral 
transduc
tion 

1.8 XX 
K13-
HOM 
Clone 2 

pLenti-PGK-
GFP-Kelch-
Blast 

Blasticidin 
(5 ng/µl) 

Immunoblotting 

 

4.2.4 Sub-cloning 

For the generation of clonal cell lines, 10 cells/cm2 were plated into 10 cm plates and grown for 9 days, after 

which clones were transferred to one well of a 96-well plate and expanded. Medium was changed every 2-3 

days. 1.8 XO subclones can be generated through sub-cloning of female cells because 5-10% of all XX mESC lines 

have lost one of their X-chromosomes due to X-chromosomal instability.  

4.2.5 Lentiviral transduction 

The use of lentiviral vectors permits stable expression of a gene of interest by inserting the desired transgene 

into the host's DNA. Once this happens, the gene of interest is propagated along with the host cell and is not 

lost through cell division.  Virus generation is carried out in mammalian cells such as Hek293T through their 

transfection with a specific set of plasmids: pLP1, pLP2 and VSVG. These packaging vectors represent a third 

generation packaging system with increased safety measures, as the main viral genes are encoded in three 

different plasmids instead of two (Dull et al., 1998). The pLP1 vector carries the gag and pol genes, the first codes 

for the viral capsid components and the second for the reverse transcriptase and integrase. pLP2, on the other 

hand, carries the rev gene, whose protein binds to the Rev Response Element (RRE) within unspliced and partially 

spliced transcripts, facilitating this way nuclear export. Lastly, the VSVG vector carries the genes that code for 

envelope proteins.  

The transgene sequence of interest must be flanked by long terminal repeats (LTRs), which will mediate the 

insertion of the DNA sequence into the host genome. These are found in lentiviral vector backbones used for 

the cloning of the desired expression construct. 

In this work, DNA constructs were first packaged into lentiviral particles for the generation of cell lines expressing 

the transgene of interest. For this, 1*106 Hek293T cells were seeded into one well of a 6-well plate and 

transfected the next day with the lentiviral packaging vectors: 1.2 µg pLP1, 0.6 µg pLP2 and 0.4 µg VSVG (Thermo 

Fisher Scientific), together with 2 µg of the desired construct using lipofectamine 2000 (Thermo Fisher Scientific). 

Hek293T supernatant containing the viral particles was harvested after 48 h. 0.2*106 mESCs were seeded per 

12-well and transduced the next day with 500 µl of viral supernatant and 8 ng/µl polybrene (Sigma). Antibiotic 

selection was started two days after transduction and kept for at least 3 passages.  

http://f1000.com/work/citation?ids=93229&pre=&suf=&sa=0
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4.2.6 Random integration 

Generation of genetically modified cell lines can be achieved through the delivery of transgenes into the cell 

using standard transfection reagents such as lipofectamine, leading to the random integration of the transgene 

in the host's genome in a very low percentage of cells, where double-stranded DNA breaks have sporadically 

occurred and have been subsequently repaired (Smirnov et al. 2020).  

Random integration was used in this work for the generation of the TX1072 SRE-Elk cell line (see Table 8). Here, 

1*106 cells were seeded in a 6-well plate and transfected the next day with 2.5 µg of the NotI linearized pSuper-

puro-SRE/Elk-GFP-PEST-PolyA plasmid and 10 µl Lipofectamine 2000 (Thermo Fisher Scientific) following 

manufacturer’s instructions. The next day, 90% and 10% of cells were passaged into two separate 10 cm culture 

dishes and puromycin selection (1 ng/µl, Sigma) was started the day after. Individual clones were picked after 8 

days of selection and GFP fluorescence was measured via flow cytometry.  

4.2.7 Genome editing  

Genome editing is achieved by relying on the cells ability to repair double strand breaks (DSBs) by using a set of 

mechanisms such as homology directed repair (HDR (Carroll, 2017)) or non-homologous end-joining (NHEJ), 

which allows the cell to avoid cell death by DNA damage. During HDR, a cell is able to repair DSBs in the DNA 

using a homologous DNA sequence on the sister chromatid, whereas during NHEJ, the break ends are directly 

ligated together without the use of an homologous template, which often leads to deletions in the original DNA 

sequence. Genome editing was a highly inefficient process, as it relied on spontaneous DSBs that occurred in a 

very small subset of cells, requiring the screening of hundreds of clones, until the emergence of tailored 

nucleases, which increased the rate DSBs in specific target DNA sequences. The first generation of engineered 

nucleases included zinc-finger nucleases (ZNFs) and transcription activator-like effector nucleases (TALENs), 

however, the time needed for the generation of one enzyme targeting a specific genomic region was still 

considerable, ranging from several weeks to months (Carroll, 2017). The advent of the CRISPR/Cas9 technology 

has significantly reduced the time needed for the generation of genome edits, as the targeting of the Cas9 

endonuclease to a specific genomic region is mediated through an RNA oligo. 

CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial adaptive immune system that 

is based on nucleases guided by RNA molecules to cleave a specific sequence of DNA (Horvath and Barrangou, 

2010). The type II CRISPR system derived from Streptococcus pyogenes consists of three main components: a 

Cas9 nuclease enzyme, a crRNA (CRISPR RNA) which contains the complementary region to the target DNA 

(protospacer) and the tracrRNA (trans-activating CRISPR RNA), which mediates both maturation of the crRNA 

and binds the Cas9 nuclease (also known as the scaffold) (Cong et al., 2013; Makarova et al., 2011). The latter 

two have been recently fused to generate single guide RNAs (sgRNAs) that bind both the target DNA sequence 

and the Cas9 (Jinek et al., 2012). One requirement of the Cas9 endonuclease from Streptococcus pyogenes 

(spCas9) is that the target DNA must be preceded by a 5´NGG protospacer adjacent motif (PAM) sequence, 

slightly restricting the number of target sequences in the genome.  

Once the Cas9 endonuclease cleaves the genome, the resulting double strand break (DSB) will be amended by 

the cell using the two main pathways for DNA damage repair mentioned previously: NHEJ or HDR. The first is 

generally exploited to generate gene knockouts, whereas the latter is used together with repair templates to 

insert DNA sequences into a genomic target site (Cho et al., 2013; Ran et al., 2013). For this, the Cas9-induced 

DSB should be not more than 10 bp away from the site of modification and repair template homology arms 

should range from 30 to 1000 bp depending on the size of the desired insert (Singh et al., 2015). Colony screening 

can be facilitated through the incorporation of a resistance cassette, which can be flanked by loxP sites for 

subsequent removal.  

http://sciwheel.com/work/citation?ids=8634005&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4652357&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4652357&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=433856&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=433856&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=401550,31382&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=93144&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=31401,97640&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=42078&pre=&suf=&sa=0
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4.2.7.1 1.8-Nanog-mCherry and 1.8-Esrrb-mCherry reporter cell lines 

1.8-Nanog-mCherry and 1.8-Esrrb-mCherry reporter lines were generated by tagging the C-Terminus of the 

Nanog/Esrrb locus with the fluorescent protein mCherry using CRISPR-Cas9 mediated homologous 

recombination (HR). For the generation of the cell lines, a repair template was generated that included the 

mCherry sequence preceded by a P2A self-cleaving peptide together with a puromycin resistance cassette 

flanked by loxP sites (Fig. 15). Cells were transfected with the respective repair templates together with two 

sgRNAs targeting the C-terminus of either the Nanog or the Esrrb locus (see Table 5) and subsequently selected 

for target sequence insertion. In order to make both reporter cell lines puromycin-sensitive again, the resistance 

cassette was excised through transient transfection with Cre recombinase. This is of great importance since the 

lentiviral sgRNA-expressing constructs used during the generated pooled CRISPR screens (see below, section 4.4) 

include a puromycin resistance cassette for the selection of cells where a stable sgRNA genomic integration has 

occurred. Lastly, clones were screened for correct mCherry insertion and fluorescence.  

For the generation of the Nanog- and Esrrb-mCherry reporter cell lines,  1*106 female 1.8 mESCs were seeded 

into a 6 cm dish and  transfected the following day with 4 µg of the repair template (pUC19-Nanog-mCherry-

puro or  pUC19-Esrrb-mCherry-puro plasmids, Table 7) and  1.5 µg of each of the sgRNAs plasmids co-expressing 

the Cas9 endonuclease (PX330-Nanog-sgRNA1/2 and PX330-Esrrb-sgRNA1/2, Table 7) using 16.5 µl of 

lipofectamine 3000 and 22 µl of P3000 reagent (Thermo Fisher Scientific) according to manufacturer’s 

recommendations. Puromycin selection (1 ng/µl, Sigma) was started two days after transfection and was kept 

for 3 days. 

The loxP flanked puromycin selection cassette was subsequently excised through transient expression of the 

CRE recombinase enzyme. To this end, 1*105 cells were nucleofected with 0.8 µg of the CRE recombinase 

expression plasmid pCAG-Cre (see Table 2) by using the Amaxa 4D-Nucleofector together with the P3 Primary 

Cell 4D-Nucleofector Kit S and DN100 program (LONZA). Cells were subsequently seeded for clone picking at a 

density of 10 cells/cm2 into 10 cm plates and grown for 9 days, after which clones were transferred to one well 

of a 96-well plate and expanded.  

Finally, expanded clones were tested via puromycin treatment as well as genotyped for loss of the puromycin 

cassette by PCR, and additionally for the proper insertion of the mCherry tag into the C-terminus of the Nanog 

or Esrrb locus (Fig. 15). All PCRs were carried out by using the Hotstart Taq Polymerase (Qiagen), a Tm of 56°C 

and 30 cycles (Primer sequences are listed in Table 4). 
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Figure 15. Genotyping of Nanog and Esrrb reporter clones. Genotyping strategy (above, primer binding is shown as arrows and PCR products 
with respective lengths are shown below) and genotyping results (below) using the indicated primer pairs. The clone for each cell line used 
in the secondary screens is highlighted in red.  

4.2.7.2 Dusp9 and Klhl13 mutant cell lines  

A gene knockout can be achieved in a given cell line through the generation of a gene deletion or a frameshift 

mutation. In both cases, the Cas9 endonuclease should be transiently delivered to the cell population together 

with the gRNA(s) of interest, which will induce double strand breaks in the start of the coding sequence 

(frameshift mutants) or around the promoter or whole gene locus (deletion mutants).  

The Cas9 endonuclease and gRNAs of interest can be delivered into the cell type of interest through different 

methods, depending on the experiment´s goal and design. Lentiviral systems can be useful for cells that are 

difficult to transfect, or when a single genome integration is aspired, such as in pooled CRISPR screens (see 

below). On the other hand, if transient Cas9 and gRNA delivery is sufficient and/or desired, such as for the 

generation of knockout cell lines, researchers can make of plasmids expressing the Cas9 and gRNA or Cas9-gRNA 

ribonucleoprotein complexes (RNP) (DeWitt et al., 2017; Zuris et al., 2015).  The latter is especially advantageous 

when trying to minimize off-target effects due to the shorter half-life of the Cas9 protein compared to plasmid 

delivery.  

In order to generate Klhl13 mutant mESCs, 4 guide RNAs were designed to target a 4.5 kb region around the 

Klhl13 (K13) promoter with the Alt-R® CRISPR-Cas9 System (IDT), which contains all necessary reagents for the 

delivery of Cas9-gRNA ribonucleoprotein complexes (RNP) into target cells, together with the mutant Alt-R HiFi 

Cas9 nuclease exhibiting significantly reduced off-target effects. Here, 4 different crRNAs (Table 5, 2 guides 

binding upstream of the Klhl13 promoter and 2 downstream) and the Cas9 binding trcrRNA were mixed in 

equimolar concentrations and the 4 crRNAs and tracrRNA duplexes were subsequently pooled together. 2.1 µl 

PBS, 1.2 µl of the tra+cr duplex (100 µM Stock), 1.7 µl Cas9 (61 µM Stock) and 1 µl electroporation enhancer 

were pipetted together and incubated for 20 min. 105 cells were nucleofected with the mixture using the CP106 

program of the Amaxa 4D-Nucleofector (Lonza) and plated on gelatin-coated 48-well plates. After 48 h, cells 

were seeded at a density of 10 cells/cm2 into 10 cm plates. Individual clones were picked, expanded and 

genotyped for the presence of the promoter deletion.  

http://f1000.com/work/citation?ids=30594,3494483&pre=&pre=&suf=&suf=&sa=0,0
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The genotyping strategy to identify heterozygous (HET) and homozygous (HOM) clones is shown below in Fig. 

16. Primers OG138 and OG140 (Primer sequences are listed in Table 4) were used for the PCR amplification of 

the wildtype allele. For this, the HotStart Taq Polymerase (Qiagen) was used with an annealing temperature of 

51°C and 35 cycles. For the PCR amplification of alleles harboring a promoter deletion, the Phusion HiFi 

Polymerase (NEB) was implemented with an annealing temperature of 63°C, 35 cycles and primers OG138 and 

OG144.  

Figure 16.  PCR genotyping of Klhl13 mutant cell lines. Thick bars indicate gRNA binding sites and arrows indicate primer-binding positions. 
PCR products are shown below. 

For the generation of Dusp9 (D9) mutants, an sgRNA targeting the start of the coding region was designed (Table 

5) and cloned into the PX458 (PX458-Dusp9_sgRNA1, Table 7), with the goal of generating frameshift-mutant 

cell lines. Here, 2*106 WT and K13HET (Clone 1) cells were nucleofected as described above with 5 µg of the 

PX458-Dusp9_sgRNA1 plasmid and subsequently plated on gelatin-coated 6 cm plates. The PX458 plasmid is 

used for the co-expression of an sgRNA of interest together with the Cas9 nuclease, which is coupled to the 

green fluorescent protein (GFP) by a T2A self-cleaving peptide, allowing the assessment of Cas9 expression levels 

with single-cell resolution. One day after transfection, high GFP+ cells that were successfully transfected with 

the PX458 plasmid and expressed significant levels of the Cas9 endonuclease were single-cell sorted in a 96-well 

plate and expanded. Clones were screened for homozygous or heterozygous frameshift deletions via 

Immunoblotting and Sanger-sequencing (Fig. 17A-B, see below).  

Heterozygous deletion of several selected clones was further confirmed via NGS (Fig. 17C). For this, a region 

surrounding the Dusp9 deletion was amplified using the Phusion HiFi Polymerase (NEB) with a total of 30 cycles 

and an annealing temperature of 65°C (Primer sequences in Table 4, OG197/OG198). A second PCR using again 

the Phusion HiFi Polymerase (NEB) with a total of 14 cycles and an annealing temperature of 65°C was performed 

in order to attach the illumina adaptors and barcodes (Table 4, OG202/OG210). A dual barcoding strategy was 

employed, where Illumina barcodes were included in the reverse and custom sample barcodes in the forward 

primers. Samples containing the same Illumina barcode but different custom sample barcodes were pooled in 

an equimolar fashion and sequenced on the Illumina Miseq platform PE150. Samples were aligned using Bowtie2 

(Langmead and Salzberg, 2012) and an index containing sample barcodes and possible deletion sequences based 

on previously generated Sanger sequencing data, gaining approximately 4000 reads per sample.  

http://f1000.com/work/citation?ids=48791&pre=&suf=&sa=0


38 

 

Figure 17. Generation of Dusp9 homozygous and heterozygous mutants. (A) Sanger sequencing results of D9-HET and D9K13-HET clones. 
(B) Screening for D9-HOM clones with an XX wildtype background via Immunoblotting. Clones used in this study are highlighted in red 
(F10/D9-HOM Clone 1 and H4/D9-HOM Clone 2). (C) NGS sequencing results from the D9-HET/D9K13-HET clones. The index used for the 
alignment if shown in the left and the number of counts aligning to each index for each clone is shown in a table in the right. (D) Sanger 
sequencing results of the cloning of an amplicon generated from D9-HET Clone 2 gDNA spanning the target deletion. Seven bacterial clones 
were sequenced: 5/7 showed the 8bp deletion and 2/7 the wildtype sequence.  

The presence of a mutant and wildtype allele in a second Dusp9 heterozygous clone (D9-HET Clone 2) was 

confirmed through the cloning of the PCR amplicon surrounding the start of the Dusp9 coding sequence into a 

mammalian expression plasmid and subsequent Sanger-sequencing of single transformed bacterial clones (Fig. 

17D). This was due to the fact that it was not possible to generate two D9-HET clones in a first attempt, so a 

second one was implemented after the previously described round of NGS for the mutant clones. For this, 

primers OG197 and OG198 spanning the Dusp9 deletion were attached to complementary sequences of the 

pSuper-Puro plasmid for Gibson cloning (Primers OG200/OG201, sequences are listed in Table 4). The pSuper-

puro was digested with NheI and PstI and a Gibson reaction was carried out to insert the PCR amplicon generated 
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using the OG200/OG201 primers from the gDNA of D9-HET Clone 2. After transformation, colonies were picked 

and seven positive colonies were Sanger sequenced.    

4.3. Karyotyping 

The use of cell lines with a normal karyotype is of particular importance since chromosome trisomies or 

monosomies can affect gene expression and therefore lead to confounding results. Traditional karyotyping 

methods involve the harvesting of cells during metaphase, their staining with DAPI or FISH probes for 

chromosome painting and their microscopic analysis (chromosome counting). However, they are time intensive 

and hard to upscale to numerous cell lines. Furthermore, the identification of small chromosomal duplications 

or deletions using this method is quite challenging. In this study, cell lines were karyotyped via double digest 

genotyping-by-sequencing (ddGBS), a reduced representation genotyping method. This allows for the 

karyotyping of dozens of cell lines simultaneously, reducing at the same time the hands-on time significantly to 

2-3 days.  

In this protocol, the gDNA of each cell line is digested using two different restriction enzymes (RE), NIaIII and 

PstI, after which oligonucleotide adapters are ligated complementary to the generated overhangs (Fig. 18, NIaIII 

overhangs in red, PstI overhangs in blue). This is followed by the amplification of gDNA using sequencing primers 

complementary to the ligated NIaIII and PstI adapters (Fig. 18, OG218 and OG219), and subsequent next 

generation sequencing of the sample. A great advantage of this method is that the sequencing of gDNA using 

restriction enzymes together with their specific adapters allows the achievement of a higher coverage than if 

the whole genome was sequenced at random.  

The protocol was performed as described in the Palmers lab website, which was adapted from previously 

published protocols (Elshire et al., 2011). The forward and reverse strands of a barcode adapter and common 

adapter were diluted and annealed (Fig. 18), after which they were pipetted into each well of a 96-well PCR plate 

together with 1 µg of gDNA from each sample and dried overnight (Oligo sequences are listed in Table 6). The 

following day samples were digested with 20 µl of a NIaIII and PstI enzyme mix (NEB) in NEB Cutsmart Buffer at 

37°C for 2 h.  

 

Figure 18. Schematic representation of the karyotyping protocol. PstI adapters (blue) and NIaIII adapters (red) are first annealed and then 
pipetted together with the sample DNA into each well of a 96-well. The DNA is dried overnight, subsequently digested with the NIaIII and 
PstI restriction enzymes and then ligated.  Samples are cleaned, quantified, pooled in an equimolar fashion and size selected using gel 
electrophoresis. Lastly, ligated DNA is amplified with Illumina sequencing primers (OG218/OG219) and sequenced on the Illumina platform.  

After the digest, a 30 µl mix consisting of 1.6 µl of T4 DNA Ligase (NEB), 5µl 10X T4 DNA Ligase Buffer (NEB) and 

23.4µl ddH2O was added to each well and placed on a thermocycler (16°C 60 min followed by 80°C 30min for 

enzyme inactivation). By doing this, barcode and common adapters with ends complementary to those 

generated by the two restriction enzymes were ligated to the genomic DNA.  

Samples were cleaned with CleanNGS beads (CleanNA) to remove the restriction and digestion mix using 90 µl 

of beads for each well and following manufacturer’s instructions. Samples were eluted in 25 µl ddH2O and DNA 

was quantified using a dsDNA HS Qubit assay (Thermofisher). Samples were pooled in an equimolar fashion, 

http://f1000.com/work/citation?ids=204118&pre=&suf=&sa=0
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size-selected (300-450bp) by loading 400 ng of each pooled sample on an agarose gel, followed by a cleaning 

step using the Nucleospin Gel and PCR Cleanup kit (Macherey-Nagel). Samples were subsequently PCR-amplified 

using the Phusion HF polymerase (NEB) and an annealing temperature of 68°C over 15 amplification cycles 

(primers OG218/OG219, Table 4). Resulting amplicons were cleaned with CleanNGS beads in a 1:1.2 ratio 

(sample:beads) to eliminate primer dimers and sequenced with 2x75bp on the Miseq platform (12 pM loading 

concentration), yielding from 0.2*106 to 1*106 fragments per sample.  

Data processing and statistical analysis was performed on the public Galaxy server usegalaxy.eu. For this, fastq 

files were uploaded and demultiplexed using the "Je-demultiplex" tool (Girardot et al., 2016). Reads were 

mapped to the mm10 mouse reference genome (GRCm38) using “Map with BWA” (Li and Durbin, 2009, 2010). 

Read counts for each chromosome were calculated with “multiBamSummary” (Ramírez et al., 2016) and 

normalized to a previously karyotyped XX control cell line (using dapi stained metaphase spreads and 

chromosome painting).   

Figure 19. Karyotyping of mutant cell lines used in this study by double digest genotyping by sequencing (ddGBS). Counts mapping to each 

chromosome were normalized to an XX clone that had previously been karyotyped via metaphase spreads. 

From the two clones used from each genotype in this study (XX, XO, K13-HET, K13-HOM, D9-HET, D9-HOM and 

D9K13-HET), at least one displayed a normal karyotype, with only one clone exhibiting a trisomy of chromosome 

1 (D9-HET Clone 2) (Fig. 19).  

4.4. CRISPR Knockout screens 

Pooled CRISPR screens are a powerful tool for the identification of genes underlying a specific phenotype in an 

unbiased and high-throughput manner. The implementation of such a screening strategy requires the  execution 

http://f1000.com/work/citation?ids=3287240&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=48641,49016&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=3347443&pre=&suf=&sa=0
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of certain key steps that lead to the identification of the genes mediating the phenotype of interest, starting 

with the design and cloning of an sgRNA library targeting a vast number genes into a lentiviral plasmid (section 

4.4.1). Such plasmids usually express a resistance marker for future selection of cells with stably integrated 

sgRNAs. Next, the cloned sgRNA library will be packed into lentiviral particles that will be used for the 

transduction of the cell line of interest with a low multiplicity of infection (MOI) (section 4.4.2), which will 

guarantee that each cell becomes transduced with maximally one viral particle (section 4.4.3 and 4.4.4). In this 

work, cells transduced with the sgRNA library had been previously transduced with lentivirus carrying the Cas9 

endonuclease and subsequently selected, in order to ensure stable Cas9 expression in all cells (section 4.4.3 and 

4.4.4). Another option implemented in CRISPR screens is the use of a lentiviral plasmid that co-expressess the 

sgRNA library together with the Cas9 nuclease, however, this leads to a lower viral yield (Sanjana et al. 2014).  

Cells that were transduced with the lentiviral sgRNA library will be selected and expanded for several passages, 

after which a population of interest will be enriched (phenotypic enrichment, section 4.4.3 and 4.4.4). This works 

implemented fluorescent readouts in all of the generated pooled screens for the selection of specific cell 

populations with either high or low readout activity through fluorescence activated cell sorting (FACS) (section 

4.4.3 and section 4.4.4). Cell pellets from the enriched populations (sorted cells) together with input controls 

(unsorted cells) can be frozen after phenotypic enrichment, which is then followed by gDNA isolation and 

amplification of the sgRNA cassettes (a region surrounding the genomically integrated sgRNA) present in each 

sample (section 4.4.6). Identification of the amplified sgRNAs from each sample can be achieved through next 

generation sequencing (NGS) (section 4.4.6), which is then followed by data analysis in order to quantify the 

abundance of the sgRNAs present in a given sample. By comparing sgRNA abundances in the sorted vs unsorted 

populations, genes can be identified that either promote or inhibit the phenotype of interest (section 4.4.7). 

Pivotal for the implementation of pooled CRISPR screens is the maintenance of the sgRNA library representation 

or coverage, which is defined as the average number of cells or molecules per sgRNA present in a sample. This 

will ensure that all sgRNAs are detected in the final data analysis step, which is important for statistical testing. 

Coverage should thus be maintained at all screening steps, which include library cloning, lentiviral transduction, 

cell splitting, phenotypic enrichment, sequencing library preparation as well as next generation sequencing 

(NGS). In the pooled CRISPR screens carried out in this work, a coverage of X300 was maintained throughout all 

steps.  

4.4.1 Design and cloning of sgRNA libraries 

One of the first steps in a pooled CRISPR screen is the design of the sgRNA library. This includes the decisions of 

which genes will be targeted during the screening procedure (genome wide or a certain subset of genes), the 

number of sgRNAs per gene and the sgRNA binding sites within the gene locus, which will depend on the 

perturbation system of choice. In a knockout CRISPR screen, such as the ones conducted in this work, the sgRNAs 

will be targeted to the early exons of the genes with the aim to generate frameshift mutations (Shalem et al. 

2014). Alternatively, sgRNAs can be targeted upstream or downstream of the transcriptional start site (TSS) in 

CRISPR interference (CRISPRi) or CRISPR activation (CRISPRa) screens that induce either gene knockdown or 

overexpression, respectively (Gilbert et al. 2014).  

sgRNA sequences targeting the desired genes together with non-targeting controls can be extracted from 

previously published genome-wide libraries for sgRNA library design in silico. This is followed by library synthesis 

on a microarray and subsequent library amplification using primers that include complementary sequences to 

the lentiviral plasmid of choice for recombination cloning. Both amplification and cloning are carried out with 

the pooled sgRNA library oligos, requiring the maintenance of library coverage at these steps. The lentiviral 

plasmid for library cloning contains a Pol III promoter together with the sgRNA scaffold for Cas9 binding.  

http://sciwheel.com/work/citation?ids=93133&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6088&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6088&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5733&pre=&suf=&sa=0
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For the GeCKOx library used in this study, a list of protein-coding and miRNA genes on the X chromosome was 

obtained from the NCBI Reference Sequence (Refseq) track on the UCSC genome browser (Pruitt et al. 2005; 

Pruitt et al. 2014). sgRNA sequences for the targeted X-linked genes, together with the sequences for positive 

screen controls (MAPK regulators) and non-targeting control sgRNAs were extracted from the genome-wide 

GeCKO library (Shalem et al., 2014). For the GeCKOxs library, the 50 most enriched and depleted X-linked genes 

and the 10 most enriched and depleted MAPK regulators from the primary screen were identified using HitSelect 

(Diaz et al., 2015). The 3 top-scoring sgRNAs for each gene were incorporated in the GeCKOxs library together 

with 10 non-targeting sgRNA controls. Additionally, several pluripotency regulators were added as positive 

controls. 

The GeCKOx and GeCKOxs sgRNA libraries were cloned into the lentiGuide-puro sgRNA expression plasmid 

(Table 2). The vector was digested with BsmBI (NEB) overnight at 37°C and gel-purified. sgRNA sequences were 

synthesized by CustomArray flanked with OligoL (TGGAAAGGACGAAACACCG) and OligoR 

(GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC) sequences. For the amplification of the library, 8 or 5 

(GeCKOx/GeCKOxs) PCR reactions (Primer sequences are listed in Table 4, OG113/OG114) with 5ng from the 

synthesized oligo pool were carried out using the Phusion Hotstart Flex DNA Polymerase (NEB), with a total of 

14 cycles and an annealing temperature of 63°C in the first 3 cycles and 72°C in the following 11 cycles. The 

amplicons were subsequently gel-purified.  

Amplified sgRNAs were ligated into the vector though Gibson assembly (NEB). Two 20 µl Gibson reactions were 

carried out using 7 ng of the gel-purified insert and 100 ng of the vector. The reactions were pooled, EtOH-

precipitated to remove excess salts that might impair bacterial transformation and resuspended in 12.5 µl H2O. 

9 µl of the eluted DNA were transformed into 20 µl of electrocompetent cells (MegaX DH10B, Thermo Fisher 

Scientific) according to the manufacturer's protocol using the ECM 399 electroporator (BTX). After a short 

incubation period (1 h, 37°C 250rpm) in 1 ml SOC medium, 9 ml of LB medium with Ampicillin (0.1 mg/ml, Sigma) 

were added to the mixture and dilutions were plated in Agar plates (1:100, 1:1000 and 1:10000) to determine 

the coverage of the sgRNA libraries (600x for the GeCKOx and 2500x for the GeCKOxs). 500 ml of LB media with 

Ampicillin were inoculated with the rest of the mixture and incubated overnight for subsequent plasmid 

purification using the NucleoBond Xtra Maxi Plus kit (Macherey-Nagel) following the manufacturer’s 

instructions. To assess library composition and sgRNA representation via deep-sequencing, a PCR reaction was 

carried out to add illumina adaptors by using the Phusion High Fidelity DNA Polymerase (NEB), with an annealing 

temperature of 60°C and 14 cycles (OG125/OG126, Table 4). The PCR amplicon was gel-purified by using the 

Nucleospin Gel and PCR Clean-up kit (Macherey-Nagel) following the manufacturer’s instructions. Libraries were 

sequenced paired-end 50 bp on the HiSeq 2500 Platform yielding approximately 25 Mio. Fragments for the 

GeCKOx (20 pM loading concentration) and 1.3*106 fragments for the GeCKOxs library (22 pM loading 

concentration). 

sgRNA counts from the cloned GeCKOx and GeCKOxs libraries were obtained by using MaGeck_count (from the 

MAGeCK CRISPR screen analysis tools (Li et al., 2014, 2015b)) on the public Galaxy server usegalaxy.eu (Afgan et 

al., 2016) and analyzed in RStudio 3.5.3 (see section 4.4.7 for details).  

4.4.2 Generation of a lentiviral-packaged sgRNA library for mESC transduction 

To generate virus carrying sgRNAs of the GeCKOx/GeCKOxs libraries, HEK293T cells were seeded into 12/8 10 

cm plates and transfected the next day at 90% confluence. Each plate was transfected with 6.3 µg of pPL1, 3.1 

µg of pLP2 and 2.1 µg of VSVG vectors (Thermo Fisher Scientific, Table 2) together with 10.5 µg of the 

GeCKOx/GeCKOxs library plasmids in 1 ml of Opti-MEM (Life technologies). 60 µl Lipofectamine 2000 Reagent 

(Thermo Fisher Scientific) were diluted in 1 ml Opti-MEM. Both mixtures were incubated separately for 5 min 

and then combined followed by a 20 min incubation, after which they were added dropwise to the HEK293T 

cells. Medium was changed 6 h after transfection. Transfected HEK293T cells were cultured for 48 h at 37°C, 

afterwards the medium was collected and centrifuged at 1800 x g for 15 min at 4°C. Viral supernatant was further 

http://sciwheel.com/work/citation?ids=511416,65861&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=511416,65861&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=6088&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=179565&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=24857,1234316&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
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concentrated 10-fold using the lenti-XTM Concentrator (Takara Bio) following the manufacturer's instructions and 

subsequently stored at -80°C.  

To assess the viral titer, 5 serial 10-fold dilutions of the viral stock were applied to each well of a 6-well mESC 

plate (MOCK plus 10-2 to 10-6) for transduction with 8 ng/µl polybrene (Merck). Two replicates were generated 

for each well. Selection with puromycin (1 ng/µl, Sigma) was started two days after transduction and colonies 

were counted after 8 days. The number of colonies multiplied with the dilution factor yields the transducing 

units per ml (TU/ml), which ranged from 0.5-1.5*106 TU/ml. 

The amount of viral supernatant given to each mESC flask in order to achieve a multiplicity of infection (MOI) of 

0.3 (meaning 0.3 viral particles per cell) was calculated as follows: 

(Total number of cells per well) x (Desired MOI) = Total transducing units needed (TU) 

(Total TU needed) / (TU/ml reported from dilution) = Total ml of lentiviral particles to add to each well 

4.4.3 Primary screen on X-chromosomal genes for MAPK regulators 

For the SRE-Elk screen, female 1.8-SRE-Elk mESCs (Table 8) were passaged twice before transduction with viral 

supernatant carrying the lentiCas9 plasmid (Table 2). Blasticidin selection (5 ng/µl, Roth) was started two days 

after transduction and kept for 4 passages, after which 6*106 cells were transduced with the sgRNA library 

(MOI=0.3). Puromycin selection (1 ng/µl, Sigma) was started 48 h after transduction and kept until harvesting at 

day 7 after transduction. The 25% of cells with the highest reporter activity were sorted. From these cells, 6-

8*106 cells were snap-frozen and 6*106 were cultured for two additional days and subsequently sorted for GFP 

fluorescence (top 25%). Around 8*106 unsorted cells were snap-frozen on day 7 and day 9 after transduction.  

4.4.4 Secondary screens for modulators of pluripotency factor expression, differentiation kinetics and 

phosphorylation of MAPK pathway components 

For the secondary screens, 2*106 female 1.8 XX Nanog-mCherry, 1.8 XX Esrrb-mCherry (Table 8) or 1.8 XX mESCs 

were transduced with the lentiCas9 plasmid as described above and subsequently with the GeCKOxs library.  

1.8 XX mESCs were stained for pMek on day 7 after transduction and the 25% of cells with the lowest pMek 

signal were sorted. 1.8-Esrrb-mCherry mESCs were passaged for differentiation (LIF withdrawal) on day 5 and 

differentiated for 3 days, after which cells were harvested and the 10% cells with the lowest mCherry 

fluorescence were sorted. 1.8-Nanog-mCherry mESCs were harvested on day 7 and the 25% cells with the lowest 

mCherry fluorescence were sorted. From these cells, around 2*106 were cultured for two additional days and 

subsequently sorted for mCherry fluorescence (bottom 25%). Approximately 1*106 sorted and unsorted cells 

were snap-frozen for subsequent library preparation from all the secondary screens in order to maintain good 

library representation. 

4.4.5 pMek intracellular staining 

For the intracellular pMek staining, cells were washed with PBS and dissociated to single cells with a 5 min trypsin 

(Life technologies) incubation. Trypsinization was stopped through addition of medium with serum. Cells were 

disaggregated and pelleted, washed with PBS and immediately fixed with 1.5% PFA (1 ml/1*106 cells). The cell 

mixture was incubated for 10 min at room temperature and subsequently centrifuged for 5min at 500 x g. 

Cells were resuspended in ice-cold MeOH, incubated for 10 min on ice (0.5 ml/1*106 cells) and centrifuged for 5 

min at 500 x g. Cells were washed once with staining buffer (PBS + 1% BSA, 2 ml/1*106 cells) and blocked for 10 

min in staining buffer. Cells were subsequently incubated with the pMek-specific antibody (Cell Signaling, 

#2338,1:100, antibodies are listed in Table 1) for 30 min at room temperature (100 µl/1*106 cells), then washed 

twice with staining buffer. Cells were then incubated with an anti-rabbit-Alexa647 antibody (Thermo Fisher 
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Scientific,1:400, Table 1) for 15 min at room temperature (100 µl/1*106 cells) and washed twice with staining 

buffer before FACS sorting using the BD FACSAriaTM II. 

4.4.6 Preparation of sequencing libraries  

For the SRE-Elk screen, genomic DNA was isolated from the frozen cell pellets using the DNeasy Blood and Tissue 

kit (Qiagen) following the manufacturer's instructions. For the secondary screens, genomic DNA from frozen cell 

pellets was isolated via Phenol/Chloroform extraction due to higher gDNA yields. Briefly, cell pellets were 

thawed and resuspended in 250 µl of Lysis buffer (1% SDS (Thermo Fisher Scientific), 0.2 M NaCl and 5 mM DTT 

(Roth) in TE Buffer) and incubated overnight at 65°C. 200 µg of RNAse A (Thermo Fisher Scientific) were added 

to the sample and incubated at 37°C for 1 h. 100 µg of Proteinase K (Sigma) were subsequently added followed 

by a 1 h incubation at 50°C. Phenol/Chloroform/Isoamyl alcohol (Roth) was added to each sample in a 1:1 ratio, 

the mixture was vortexed at room temperature for 1 min and subsequently centrifuged at 16000 x g for 10 min 

at room temperature. The aqueous phase was transferred to a new tube and 1 ml 100% EtOH, 90 µl 5 M NaCl 

and 1 µl Pellet Paint (Merck) was added to each sample, after which samples were mixed and incubated at -80°C 

for 1 h. DNA was pelleted through centrifugation for 16000 x g for 15 min at 4°C, pellets were then washed twice 

with 70% EtOH, air-dried and resuspended in 50 µl H2O.  

The PCR amplification of the sgRNA cassette was performed in two PCR steps as described previously with minor 

modifications (Shalem et al., 2014). The first PCR reaction is necessary for an effective amplification of sgRNA 

sequences from gDNA, while the second PCR allows for the addition of sequencing primers and sample barcodes 

to the resulting amplicons.  

In order to ensure proper library coverage (300x), each sample was amplified in 6/2 PCR reactions (2 µg 

DNA/reaction) in the primary/secondary screens using the ReadyMix Kapa polymerase (Roche) with a total of 

20 cycles and an annealing temperature of 55°C (Primer sequences in Table 4, OG115/OG116).  

Successful amplification was verified on a 1% agarose gel and a second nested PCR was performed to attach 

sequencing adaptors and sample barcodes using 2.5 µl of the sample from the first PCR with a total of 11 cycles 

and an annealing temperature of 55°C (OG125/OG126, Table 4).  

Resulting amplicons were loaded on a 1% agarose gel and purified using the Nucleospin Gel and PCR clean-up 

kit (Macherey-Nagel). Libraries from the primary screen were sequenced 2x50bp on the HiSeq 2500 Platform 

(18 pM loading concentration) yielding approximately 4x106 fragments per sample. Secondary screens were 

sequenced 2x75bp (Pluripotency and differentiation screens) on the Nextseq 500 (2.2 pM loading concentration) 

or 2x50 (pMek screen) on the HiSeq 2500 Platform (20 pM loading concentration).  

4.4.7 Data analysis 

Data processing and statistical analysis was performed on the public Galaxy server usegalaxy.eu (Afgan et al., 

2016) with the MAGeCK CRISPR screen analysis tools (Li et al., 2014, 2015b). To this end, fastq files for read1 

were uploaded to the Galaxy server. Alignment and read counting was performed with MAGeCK_count. 

Duplicated sgRNAs (sgRNAs that targeted more than one gene present in the library and were therefore not 

unique) were excluded, leaving 6508 unique sgRNA sequences. Statistical analysis was performed with 

MAGeCK_test for the primary screen (SRE-Elk) and the three secondary screens (Pluripotency, Differentiation 

and pMek). Additionally, MAGeCK_mle was implemented for statistical analysis of the two performed pMek 

screens (Harvesting at RT vs. 4°C) for the generation of Fig. 34D (see section 5.2.4). 

Normalized counts and gene hit summary files were downloaded and analyzed in RStudio 3.5.3 using the stringr, 

tidyr , data.table, dplyr and gplots packages. For easier interpretation of the results, common names were used 

instead of official gene symbols for a subset of genes in all figures (Erk2 for Mapk1, Mek1 for Map2k1, Fthl17e 

for Fthl17, Fthl17f for Gm5635 and H2al1m for 1700012L04Rik). The 50 most enriched and depleted genes for 

http://f1000.com/work/citation?ids=6088&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=24857,1234316&pre=&pre=&suf=&suf=&sa=0,0
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the generation of the GeCKOxs sgRNA library from the primary screen were extracted using HitSelect (Diaz et 

al., 2015).  

4.5. DNA methylation profiling 

Global CpG methylation levels were measured using the luminometric methylation assay (LUMA), which makes 

use of the different sensitivities of the HpaII and MspI restriction enzymes to CpG methyl groups. Both enzymes 

target the same CCGG sequence, but while MspI cuts both unmethylated and methylated DNA, HpaII is 

methylation-sensitive (Fig. 20). The amount of DNA cut by either MspI or HpaII is then normalized to the amount 

of overhangs generated by EcoRI, which should be the same in both samples. 

This differential sensitivity towards CpG methylation combined with a bioluminometric polymerase extension 

assay allows for quantification of methylated DNA in a given sample. After an enzymatic digest, generated 

overhangs are used as primers in a pyrosequencing reaction (Fig. 20). Here, each dNTP addition leads to the 

release of inorganic phosphate (PPi), which is converted to ATP by the ATP-Sulfurylase. The latter is then used 

by the luciferase enzyme to convert luciferin to oxyluciferin, emitting a light signal proportional to the amount 

of dNTP incorporated in the sample.  

 

Figure 20.  The luminometric methylation assay (LUMA). This assay makes use of the different sensitivities of the HpaII and MspI restriction 
enzymes to CpG methyl groups. Both enzymes target the same CCGG sequence, but while MspI cuts both unmethylated and methylated 
DNA, HpaII is methylation-sensitive. After an enzymatic digest, generated overhangs are used as primers in a pyrosequencing reaction. Here, 
each dNTP addition leads to the release of inorganic phosphate (PPi), which is converted to ATP by the ATP-Sulfurylase. The latter is then 
used by the luciferase enzyme to convert luciferin to oxyluciferin, emitting a light signal proportional to the amount of dNTP incorporated 
in the sample.  

The luminometric methylation assay was performed as described previously (Pilsner et al., 2010). For this, 

genomic DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen) and 500 ng of DNA were digested 

either with HpaII/EcoRI (NEB) (Tube A) or MspI/EcoRI (NEB) (Tube B) in Tango Buffer (Thermo Fisher Scientific) 

in a total of 20 µl for 4 h at 37°C. 15 µl of Pyrosequencing Annealing Buffer (Qiagen) were mixed with 15 µl of 

http://f1000.com/work/citation?ids=179565&pre=&suf=&sa=0
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each sample and overhangs were quantified by Pyrosequencing using the following dispensation order 

GTGTGTCACACATGTGTGTG (nucleotides were pipetted in a two-fold dilution) in the PyroMark Q24 (Qiagen). 

The peak height from dispensation 13 (T) corresponds to the EcoRI digestion and the peak height from 

dispensation 14(G) corresponds to the HpaII or the MspI digestion. For each sample, the HpaII/EcoRI ratio for 

tube A and the MspI/EcoRI ratio for tube B were calculated. The fraction of methylated DNA is then defined as 

1-((HpaII/EcoRI) / (MspI/EcoRI)). 

4.6. Flow Cytometry 

Flow cytometry allows for the measurement of multiple physical characteristics of single cells (Adan et al., 2017). 

Here, cell populations are passed through a fluidics stream in a flow chamber to allow single cells to move 

through a laser beam. Cell properties such as size and internal complexity are measured through light scattering 

of the laser light. Forward scattered light (FSC) is proportional to cell surface area, while side scattered light (SSC) 

is proportional to cell granularity. This allows for the differentiation of various cell populations within one sample 

or the separation of live cell populations from cell debris.  

Flow cytometry also enables the measurement of fluorescence intensities, allowing the assessment of cell 

populations labeled with a fluorophore or expressing fluorescent proteins. Here, electrons of a fluorescent 

compound are excited with a laser emitting light energy of a specific wavelength (Absorption spectrum), rising 

to a higher energy level. Decay of the electron to its ground state leads to photon emission (Emission spectrum), 

or what is termed fluorescence. Different laser and filter combinations can be applied to assess fluorescence of 

several compounds simultaneously in a given cell.  

In this work, the green fluorescent protein (GFP, excitation max. 488 nm and emission max 509 nm) and the 

mCherry protein (excitation max 587 nm and emission max. 610 nm) were implemented as fluorescent reporters 

in the primary (section 4.4.3) and two secondary (section 4.4.4) CRISPR Knockout screens. Additionally, an 

intracellular staining strategy was used in a third secondary screen (section 4.4.4 and 4.4.5) using a secondary 

Alexa Fluor 647 conjugated antibody (excitation max 651 nm, emission max 667 nm).  

For the experiments described in this work, cells were resuspended in Sorting buffer (1% FCS and 1mM EDTA, 

section 4.4.3 and 4.4.4 (Primary screen together with pluripotency and differentiation secondary screens)) or 

Staining Buffer ( PBS + 1% BSA, section 4.4.5, pMek screen) before flow cytometry and cells were sorted using 

the BD FACSAriaTM II. The sideward and forward scatter areas were used for live cell gating, whereas the height 

and width of the sideward and forward scatters were used for doublet discrimination.  Analysis of FCS files was 

carried out using the FlowJo V10 Software (BD Biosciences). FCS files of the gated single cell populations were 

visualized using RStudio and the Flowcore package.  

4.7. Immunoblotting 

Immunoblotting is used to detect and quantify target protein levels. Here, samples are subjected to gel 

electrophoresis in order to separate proteins by molecular weight, after which they are transferred onto a 

membrane (either PVDF or Nitrocellulose) through electrophoresis. This is followed by blocking of the 

membrane to prevent nonspecific binding of antibodies and subsequent incubation with a primary antibody of 

choice that will detect the target protein. Proteins are made visible through secondary antibodies that bind the 

primary antibodies, which are conjugated either to a reporter enzyme such as the horseradish peroxidase (HRP) 

or near-infrared dye labelled secondary antibodies (the latter were implemented in this study, see below).  

Lysates were prepared from ~ 2*106 cells by washing with ice-cold PBS, directly adding Bioplex Cell Lysis Buffer 

(Biorad) supplemented with the provided inhibitors and shaking plates at 4°C at 300 rpm for 30 min, after which 

the lysates were transferred to 1.5 ml eppendorf tubes and centrifuged at 4°C and 4500 x g for 20 min, in order 

http://f1000.com/work/citation?ids=3049384&pre=&suf=&sa=0


47 

to remove unlysed cells and cellular debris. The soluble Protein fraction was transferred to a clean tube and 

quantified using the Pierce BCA kit (Thermo Fisher Scientific). The principle of protein quantification via BCA is 

the presence of bicinchoninic acid and copper (II) sulfate added in the solution added to each sample for 

quantification. Peptide bonds in proteins reduce Cu2+ to Cu+ in a manner proportional to the amount of protein 

present in the sample. Subsequently, two molecules of bicinchoninic acid chelate with the Cu+, forming a purple 

colored complex that absorbs light at a wavelength of 562 nm. 

For signaling proteins, 25 µg protein was applied per lane. For Dusp9 10 µg and for Klhl13 40 µg were loaded per 

lane. Proteins were separated by molecular weight via SDS-polyacrylamide gel electrophoresis and transferred 

to nitrocellulose membranes (GE Healthcare) using the Trans-Blot Turbo semi-dry transfer system (Bio-rad). 

Membranes were blocked for 1 h with Odyssey Blocking Buffer/PBS (1:1) (Li-COR) at room temperature, followed 

by an incubation with primary antibody (in Odyssey Blocking Buffer/PBST (1:1)) overnight at 4°C.  

Signals were detected using near-infrared dye labelled secondary antibodies added in a 1 h incubation step at 

room temperature (in Odyssey Blocking Buffer/PBST (1:1), allowing for linear quantification of target epitopes. 

This offers an advantage over luminescence-based detection systems, which depend on the enzyme kinetics of 

the horseradish peroxidase (HRP) and do not allow this type of quantification. Membranes were scanned using 

Li-COR Odyssey and band intensities were quantified using the Image Studio Lite Ver 5.2 by calculating median 

intensities of the band area and subtracting the adjacent top/bottom background. Antibodies are listed in Table 

1. 

4.8. RNA extraction, reverse transcription, qPCR 

Quantitative polymerase chain reaction (qPCR) allows the monitoring of specific DNA amplicons during the PCR 

reaction by making use of DNA-binding fluorescent dyes, such as SYBR Green, which binds specifically to double-

stranded DNA (dsDNA). An increase in the amount of DNA produced during the PCR reaction will therefore lead 

to a quantifiable increase in the fluorescent intensity measured each cycle, as the dye will only fluoresce when 

bound to dsDNA.  

For gene expression profiling, ~ 2*106 cells were washed with ice-cold PBS and lysed by directly adding 500 µl of 

Trizol (Invitrogen). RNA was isolated using the Direct-Zol RNA Miniprep Kit (Zymo Research) following the 

manufacturer’s instructions. For quantitative PCR (qPCR), 1 µg RNA was reverse transcribed using Superscript III 

Reverse Transcriptase (Invitrogen) with random hexamer primers (Thermo Fisher Scientific) and RNA expression 

levels were quantified in the QuantStudio™ 7 Flex Real-Time PCR machine (Thermo Fisher Scientific) using 

2xSybRGreen Master Mix (Applied Biosystems), normalizing to Rrm2 and Arpo. Primer sequences are listed in 

Table 3. 

4.9. RNA FISH 

RNA fluorescence in situ hybridization (FISH) relies on the use of fluorescent probes that bind to a target RNA 

allowing for its accurate detection and localization using wide-field fluorescence microscopy. Several probes can 

be used for RNA FISH, such as fluorescently labelled DNA oligonucleotides and plasmids or bacterial artificial 

chromosomes (BACs), all containing sequences complementary to the target RNA. Whereas fluorescently 

labelled oligonucleotides can be purchased from several companies for immediate use, plasmids and BAC probes 

need to be labelled with fluorescent dyes prior to RNA FISH in order to detect transcribed RNA in fixed cells. This 

can be done through Nick-translation, where the DNA to be processed is treated with DNAse in order to induce 

single stranded “nicks”. The DNA Polymerase I subsequently removes nucleotides in the “nick” through 5'-3' 

exonuclease activity, and replaces these by adding fluorescently labelled nucleotides.  

https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Nanometer
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This work made use of two BAC probes spanning genomic regions of the X-linked genes HuweI (RP24-157H12) 

and Klhl13 (RP23-36505). BACs were purified using the NucleoBond BAC kit (Macherey-Nagel) and fluorescently 

labelled by nick-translation (Abbot) using dUTP-Atto550 (Jena Bioscience) for the HuweI probe and Green dUTP 

(Enzo) for the Klhl13 probe.  

RNA FISH was performed based on previous protocols (Chaumeil et al., 2008). Here, cells were singled out using 

Accutase (Invitrogen) and placed onto #1.5 (1mm) coverslips for 10 min. Coverslips had been previously coated 

using 0.01% Poly-L-Lysine diluted in H2O followed by a 10 min incubation at room temperature. Cells were fixed 

with 3% paraformaldehyde in PBS for 10 min at room temperature and permeabilized for 5 min on ice in PBS 

containing 0.5%Triton X-100 and 2 mM Vanadyl-ribonucleoside complex (New England Biolabs). Coverslips were 

stored in -20°C in 70% EtOH until further use.  

Before incubation with the target probes, the fixed cells were dehydrated through an ethanol series (80, 95 and 

100%) and subsequently air-dried. Per coverslip, 60 ng labelled probe was ethanol precipitated with Cot1 repeats 

(in order to suppress repetitive sequences in the BAC DNA that could hamper the visualization of specific signals), 

resuspended in formamide, denatured (10 min 75°C) and competed for 1 h at 37°C. Probes were then co-

hybridized in hybridization buffer overnight (50% Formamide, 20% Dextran Sulfate, 2X SSC, 1 µg/µl BSA and 10 

mM Vanadyl-ribonucleoside (ribonuclease inhibitor)). To reduce background, three 7 min washes were carried 

out at 42°C in 50% Formamide/2XSSC (pH 7.2) followed by three 5 min washes in 2X SSC at room temperature. 

Nuclei were stained with 0.2 mg/ml DAPI and mounted using Vectashield mounting medium for fluorescence 

(Vector Laboratories). Images were acquired using a widefield Z1 Observer (Zeiss) equipped with a 100-x 

objective and the filter set 38 and 43 (Zeiss). Image analysis was carried out using the Zen lite 2012 software 

(Zeiss).  

4.10. RNA-seq 

RNA-seq uses next generation sequencing (NGS) to quantify the relative amount of RNA transcripts found in a 

given sample. Two different RNA-seq methods were used in this work.   

In the first method, libraries were generated using the Tru-Seq Stranded Total RNA library preparation kit 

(Illumina) with 1 µg starting material and amplified with 15 Cycles of PCR. This was carried out by the Sequencing 

Core Facility at the Max Planck Institute for Molecular Genetics (MPIMG). Libraries were sequenced 2x50bp on 

one HiSeq 2500 lane (22 pM loading concentration), which generated ~40 Mio. fragments per sample. The reads 

were mapped with the STAR aligner allowing for maximally 2 mismatches to the mm10 mouse reference genome 

(GRCm38) and quantified using the ENSEMBL gene annotation (Dobin et al., 2013). Read mapping was carried 

out by Dr. Edda Schulz. Normalized counts (rpkm) were obtained using the EdgeR package in RStudio (Robinson 

et al., 2010).  

In a second method the QuantSeq 3‘ mRNA-Seq Library Prep Kit (FWD) for Illumina (Lexogen) was used with 800 

ng starting material. Here, transcripts are sequenced from the 3´-end, generating just one fragment per 

transcript. Unique molecular identifiers (UMIs) are additionally tagged to individual transcripts, which permits 

the identification of PCR duplicates, eliminating amplification biases. Quantseq library preparation was carried 

out by Ilona Dunkel.  

Samples were sequenced with 1x75bp on the NextSeq 500 Platform (2 pM loading concentration). The count 

matrix was generated with the FWD-UMI Mouse (GRCm38) Lexogen QuantSeq 2.6.1 pipeline from the BlueBee 

NGS data analysis platform (https://www.bluebee.com/). Differential expression analysis was carried out using 

the EdgeR package in RStudio, together with normalization of gene expression values (cpm) (Robinson et al., 

2010).  

http://f1000.com/work/citation?ids=761315&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=49324&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=673952&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=673952&pre=&suf=&sa=0
https://www.bluebee.com/
http://f1000.com/work/citation?ids=673952&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=673952&pre=&suf=&sa=0
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4.11. Immunoprecipitation 

Immunoprecipitation is a technique where a protein is enriched using an antibody that binds specifically to one 

(monoclonal antibody) or several of its epitopes (polyclonal antibody). The antibody is usually bound to beads 

(such as agarose or magnetic beads) and can be detached from them through either denaturation or enzymatic 

digest, allowing for the elution of the protein of interest. This work made use of a GFP tag coupled to a protein 

of interest in order to pull-down its interaction partners.  

The GFP Immunoprecipitation protocol implemented in this study was performed as described previously with 

minor modifications (Hubner et al., 2010). Cells were treated with 15 µM of the proteasome inhibitor MG132 

for 3 h prior to harvesting. This was done in order to stabilize Klhl13 protein targets, which would otherwise be 

subjected to proteasomal degradation. Cells were singled out using trypsin, pelleted and resuspended in 1 ml of 

Lysis Buffer containing 150 mM NaCl, 50 mM Tris, pH 7.5, 5% glycerol, 1% IGEPAL-CA-630, 1 mM MgCl2, 200 U 

benzonase (Merck), and EDTA-free complete protease inhibitor cocktail (Roche). Cells were incubated on ice for 

30 min to allow cell lysis. Lysates were centrifuged at 4000 x g and 4°C for 15 min to remove cell debris and the 

supernatant was incubated with 50 µl magnetic beads coupled to monoclonal mouse anti-GFP antibody 

(Miltenyi Biotec) for 20 min on ice. Magnetic columns were equilibrated by washing first with 250 µl of 100% 

EtOH followed by two washes with the same volume of lysis buffer. After the 20 min incubation, the lysates were 

applied to the column followed by three washes with 800 µl of ice-cold wash buffer I (150 mM NaCl, 50 mM Tris, 

pH 7.5, 5% glycerol, and 0.05% IGEPAL-CA-630) and two washes with 500 µl of wash buffer II (150 mM NaCl, 50 

mM Tris, pH 7.5, and 5% glycerol). Column-bound proteins were subsequently pre-digested with 25 µl 2 M urea 

in 50 mM Tris, pH 7.5, 1 mM DTT, and 150 ng trypsin (Roche) for 30 min at room temperature. Proteins were 

eluted by adding two times 50 µl elution buffer (2 M urea in 50 mM Tris, pH 7.5, and 5 mM chloroacetamide). 

Samples were further digested overnight at room temperature, since the trypsin treatment implemented during 

the elution step is not sufficient for the generation of tryptic peptides for downstream Mass spectrometry 

analysis. The tryptic digest was subsequently stopped by adding formic acid to a final concentration of 2%.  

4.12. Mass spectrometry 

Quantitative proteomics of cell samples can be achieved through two different methods: the first one being 

stable isotope labelling by amino acids in cell culture (SILAC) and the second one label free quantification (Wong 

and Cagney, 2010). A major disadvantage of the first is, however, is the need to culture cells in a specific medium, 

which can drastically differ from the original. High costs are something to be further considered. 

Label-free protein quantification bases on the premise that identical peptides across different LC-MS/MS 

experiments can be compared directly. Samples are therefore normalized relative to the mean of all protein 

abundance ratios, offering the major advantage that no extra steps are required for sample preparation.  

4.12.1 Sample Preparation for proteomics with Label-Free Quantification (LFQ) 

Proteomics sample preparation was done according to a published protocol with minor modifications (Kulak et 

al., 2014). Approximately 2*107 cells were lysed under denaturing conditions in a buffer containing 3 M 

guanidinium chloride (GdmCl), 5 mM tris(2-carboxyethyl)phosphine, 20 mM chloroacetamide and 50 mM Tris-

HCl pH 8.5. Lysates were denatured at 95°C for 10 min shaking at 1000 rpm in a thermal shaker and sonicated 

in a water bath for 10 min. A small aliquot of cell lysate was used for the bicinchoninic acid (BCA) assay to quantify 

the protein concentration. 50 µg protein of each lysate was diluted with a dilution buffer containing 10% 

acetonitrile and 25 mM Tris-HCl, pH 8.0, to reach a 1 M GdmCl concentration. Then, proteins were digested with 

LysC (Roche, Basel, Switzerland; enzyme to protein ratio 1:50, MS-grade) shaking at 700 rpm at 37°C for 2 h. The 

digestion mixture was diluted again with the same dilution buffer to reach 0.5 M GdmCl, followed by a tryptic 

http://f1000.com/work/citation?ids=641953&pre=&suf=&sa=0
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digestion (Roche, enzyme to protein ratio 1:50, MS-grade) and incubation at 37°C overnight in a thermal shaker 

at 700 rpm.  

4.12.2 LC-MS/MS Instrument Settings for Shotgun Proteome Profiling 

Shotgun Proteome Profiling was carried out by the Mass spectrometry facility of the Max Planck Institute for 

Molecular Genetics (MPIMG), according to their established protocol.  

4.12.3 Data analysis 

Raw MS data were processed with MaxQuant software (v1.6.0.1) and searched against the mouse proteome 

database UniProtKB with 22,286 entries, released in December 2018. Parameters of MaxQuant database 

searching were a false discovery rate (FDR) of 0.01 for proteins and peptides, a minimum peptide length of seven 

amino acids, a first search mass tolerance for peptides of 20 ppm and a main search tolerance of 4.5 ppm, and 

using the function “match between runs”. A maximum of two missed cleavages was allowed for the tryptic 

digest. Cysteine carbamidomethylation was set as fixed modification, while N-terminal acetylation and 

methionine oxidation were set as variable modifications. Contaminants, as well as proteins identified by site 

modification and proteins derived from the reversed part of the decoy database, were strictly excluded from 

further analysis.  

The calculation of significantly differentially expressed proteins for both the proteomics (K13 HOM vs XX 

wildtype) as well as the IP datasets (GFP-Kelch/D-GFP-Klhl13 vs GFP/D-GFP) was done with Perseus (v1.6.1.3). 

LFQ intensities, originating from at least two different peptides per protein group were transformed by log2. 

Only groups with valid values in at least one group were used, missing values were replaced by values from the 

normal distribution. Statistical analysis for differential expression was done by a two-sample t-test with 

Benjamini-Hochberg (BH, FDR of 0.05) correction for multiple testing.  

For the identification of Klhl13 interaction partners, cut-offs were set from the data displayed in the volcano 

plots using a previously published method (Keilhauer et al., 2015). Briefly, a graphical formula as a smooth 

combination of the following parameters was implemented: 

-log10(p) ≥ c/ |x| - xo 

x: enrichment factor of a protein 

p: p-value of the t-test, calculated from replicates 

xo: fixed minimum enrichment 

c: curvature parameter 

We optimized parameters c and xo such as to have 10% FDR (left-sided outliers) while maximizing the number 

of right-sided outliers. In the case of the GFP-Kelch IP, c = 0.32 and xo = 0.02. For the GFP-Klhl13 IP, c = 0.28 and 

xo = 0.04. Proteins without an associated gene name were filtered out in further analyses.  

  

http://f1000.com/work/citation?ids=800303&pre=&suf=&sa=0
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5. Results 

5.1. Pooled CRISPR knockout screen reveals several putative MAPK inhibitors as candidate 

genes underlying the female pluripotency phenotype 

MAPK pathway inhibition leads to an enhanced naive pluripotent state in mouse embryonic stem cells (mESCs) 

by increasing pluripotency factor expression and blocking differentiation (Kunath et al., 2007; Silva et al., 2009). 

Since this pathway seems to regulate many of the traits that underlie the female pluripotency phenotype (Schulz 

et al., 2014; Song et al., 2019), we hypothesized that one or several X-chromosomal MAPK inhibitors could be 

responsible for the observed sex differences.  

Since the X chromosome harbors approx. 1000 genes, we decided to implement a pooled screen in order to 

screen most of the candidate genes in a high-throughput and unbiased manner. Screens are usually performed 

in two possible formats: arrayed and pooled. In the first, a single perturbation is carried out in the multiple cells 

present in one well of a multi-well plate. Disadvantages of this method include the requirement of specialized 

microscopic equipment for monitoring of perturbation outcomes together with high costs, which limit screening 

library size.  

In pooled screens, a library is applied en masse to a population of cells so that a single gene will be perturbed in 

each cell. This is followed by the selection of a population of interest based on a biological readout (e.g. sorted 

cells or treated cells), which depends on the question addressed in the research project. Possible readouts 

include gene reporter activity, protein expression assessed via fluorescent tagging, cell activity (proliferation, 

migration, etc) or drug resistance. 

During a pooled CRISPR screen, a population of cells is transduced with lentiviral particles carrying an sgRNA 

library targeting the genes of interest (sgRNA library) in a way that each cell is transduced with only one sgRNA. 

After the phenotypic enrichment of a cell population with the phenotype of interest, which usually includes drug 

selection or fluorescent activated cell sorting (FACS), genes are identified by amplifying the sgRNAs present in 

both enriched and control cell populations (e.g. treated vs. untreated or sorted vs. unsorted) followed by next 

generation sequencing (NGS) and comparison of their relative abundances. Screen hits are finally determined 

by assessing statistical enrichment or depletion of several sgRNAs per gene in the target population (e.g treated 

or sorted). A great advantage of pooled screens is that they allow the screening of a large number of genes in 

an unbiased and cost-effective manner, whereas a small disadvantage is the limitation of available screening 

readouts.  

Several steps need to be established before carrying out a pooled CRISPR screen. First, the perturbation system 

(e.g. gene knockout, knockdown or overexpression) should be selected and its efficiency tested in the cell line 

of interest (section 5.1.1). This is followed by the generation of an sgRNA library targeting the subset of genes 

to be screened, including also positive and negative controls (section 5.1.2). Next, a readout should be chosen 

to answer the research question addressed, which in this work is the identification of X-linked MAPK inhibitors. 

A MAPK-sensitive fluorescent reporter should be therefore generated in the cell line of interest and its 

functionality tested (section 5.1.3).  The results of these steps will be shown in the following sections.  

5.1.1 Assaying for Cas9 knockout efficiency in female mESCs 

So far, possible technologies to assess loss of function (LoF) phenotypes include shRNA, CRISPR interference 

(CRISPRi) and CRISPR knockout screens, however, the latter has proven the most efficient (Evers et al., 2016). 

Additionally, sgRNA libraries for CRISPR knockout screens tend to be usually smaller compared to CRISPRi 

libraries, since for the latter sgRNA activity is less predictable and therefore more sgRNAs targeting each gene 

http://f1000.com/work/citation?ids=1140811,57745&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1480915,7255779&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1480915,7255779&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1395402&pre=&suf=&sa=0
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(and its various isoforms) are needed. For these reasons, a knockout perturbation system was chosen over 

CRISPRi. We next sought out to test Cas9 knockout efficiency in female mESCs.  

To test for knockout efficiency using the Cas9 endonuclease, 1.8 female mESCs stably expressing the Cas9 

endonuclease, which had been previously transduced with the lentiCas9 construct and subsequently blasticidin 

selected, were transduced with lentivirus carrying sgRNAs targeting the coding region of the MAPK pathway 

components Mek or Erk and selected for stable guide integration using puromycin. The lentiGuide-Mek1_KO 

and lentiGuide-Erk2_KO sgRNA plasmids implemented for this experiment were generated using an equimolar 

mix of three different sgRNAs that were cloned into the lentiGuide-puro plasmid (see Table 2 and Table 7). Mek 

and Erk protein levels were subsequently assessed via Immunoblotting. We observed an approx. 70% reduction 

of total Mek levels and 50% reduction of total Erk levels (Fig. 21). In theory, very efficient sgRNAs should generate 

a mixed population of cells carrying frameshift mutations that would include 11% wildtype cells, 44% 

heterozygous mutant cells and another 44% of homozygous mutant cells. This means that, theoretically, these 

sgRNAs should lead to a reduction of protein levels of approx. 66%, which is similar to those observed in the 

Mek mutants. The slightly lower reduction of Erk levels could be due to the fact that the sgRNAs implemented 

for this locus were not as efficient.  

Figure 21. Assaying for Cas9 knockout efficiency in female mESCs. Erk  and Mek protein levels quantified via Immunoblotting from female 
mESCs stably expressing the Cas9 nuclease and sgRNAs targeting the coding sequences of the Mek (red) or Erk locus (blue), or no sgRNA 
(control, black). Only one replicate was performed.  

In summary, an effective reduction of protein levels could be reached through the employment of the Cas9 

endonuclease together with sgRNAs targeting the Mek or Erk coding sequences. CRISPR knockout screens using 

the Cas9 nuclease represent therefore a suitable loss of function technology for implementation in female 

mESCs.   

5.1.2 Generation of an sgRNA knockout library targeting X-chromosomal genes 

As a first step to screen for X-chromosomal genes that modulate the MAPK pathway in female mESCs, an sgRNA 

knockout library was generated to target the genes present on the X Chromosome. For this, sgRNA sequences 

were extracted from the previously published GeCKO library (Shalem et al. 2014). From 1067 X-chromosomal 

genes, 961 were present in the GeCKO library with approx. 6 sgRNAs targeting each gene (Fig. 22A). Additionally, 

237 positive control genes known to have an effect on the MAPK pathway were included from the Gene Ontology 

(GO) terms “Erk1 and Erk2 Cascade” (GO 0070371), “Regulation of Erk1 and Erk2 Cascade” (GO 0070372), 

“Negative regulation of Erk1 and Erk2 Cascade” (GO 0070373) and “Positive regulation of Erk1 and Erk2 Cascade” 

(GO 0070374). MAPK regulators Grb2, Fgfr2, Dusp5, Dusp7, and Dusp2 were added as additional controls, since 

http://f1000.com/work/citation?ids=6088&pre=&suf=&sa=0
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they were not found in the gene ontology annotations and represent important pathway components or 

negative regulators. Lastly, 100 non-targeting control sgRNAs were included in the GeCKOx library (Fig. 22A). 

These represent negative controls, which should not have an effect on the MAPK signaling pathway and should 

theoretically be neither enriched nor depleted after phenotypic enrichment.  

The GeCKOx oligo library was cloned and proper sgRNA representation was assessed via next generation 

sequencing (NGS) (Fig. 22B). Alignment of the sgRNA library using MaGeck_count (Li et al., 2014, 2015b) on the 

galaxy server usegalaxy.eu (Afgan et al., 2016) excluded sgRNAs that targeted more than one gene present in 

the library and were therefore duplicated, leaving 6508 unique sgRNA sequences. Out of these, only one sgRNA 

had no detectable counts after read alignment: sgRNA_6894_mmu-mir-3620. All sgRNAs were present in 

comparable abundance with a 4-fold difference between the 10th and 90th percentile, which is considered an 

ideal distribution width (Imkeller et al. 2020) (Fig. 22B). 

Figure 22. Generation of an sgRNA library targeting the X chromosome. (A) Composition of the GeCKOx sgRNA library targeting 961 X-
linked genes and 242 genes involved in the regulation of the MAPK signaling pathway, with approx. 6 sgRNAs per gene. Additionally, 100 
non-targeting controls (NTCs) were added. (B) Cumulative sgRNA frequency in the cloned GeCKOx sgRNA library. Dashed lines indicate the 
10th and 90th percentiles.  

To sum up, an sgRNA library targeting 961 X-linked genes and 242 known MAPK regulators as positive controls 

could be successfully generated. 100 non-targeting sgRNAs were additionally included in the library as negative 

controls.  

5.1.3 Generation of a MAPK sensitive reporter in female mESCs 

A MAPK sensitive fluorescent reporter was generated in order to monitor MAPK pathway activity on a single cell 

level, where the expression of an unstable green fluorescent protein (GFP-Pest) is driven by a MAPK sensitive 

promoter with binding sites for MAPK downstream components (Serum response factor (SRF) and Elk1, see 

Supp. Table S5 for sequence). The ETS like-1 protein (Elk1) is activated through Erk phosphorylation after nuclear 

translocation and forms an heterodimer with the SRF to activate MAPK target genes (Gille et al., 1995).  

In order to test the functionality of the reporter and its sensitivity to X-chromosomal dosage, it was randomly 

integrated in the genome of the TX1072 female cell line, in which the expression of the lncRNA Xist can be 

monoallelically induced through the addition of doxycycline (Fig. 23A) (Schulz et al. 2014). This is turn causes the 

progressive silencing of X-linked genes over several days from one of the two X-Chromosomes present in the 

cell line. The aforementioned decrease in X-chromosomal dosage should then lead to a subsequent increase of 

MAPK signaling levels possibly due to silencing of putative X-linked MAPK inhibitors (Schulz et al. 2014). Indeed, 

after addition of doxycycline during four consecutive days, a slight increase in GFP fluorescence was observed 

(Fig. 23B).  
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We additionally tested whether the SRE-Elk reporter would be sensitive to external perturbations of the MAPK 

pathway. For this, we randomly integrated the SRE-Elk reporter into the genome of 1.8 XX cells using lentivirus 

and assessed reporter functionality via treatment with a Mek inhibitor, which showed the expected decrease in 

GFP fluorescence (Fig. 23C). 

 

Figure 23. Generation of a MAPK-sensitive fluorescent reporter for a pooled CRISPR knockout screen. (A) Schematic representation of the 
TX1072 cell line, where expression of the lncRNA Xist from the B6 allele can be induced via doxycycline treatment (B) Measurement of GFP 
fluorescence via flow cytometry in TX1072 female cells carrying a stably integrated MAPK-sensitive reporter treated for 4 days with 1µg/ml 
doxycycline (Green, +Dox) together with a non-treated control (Grey, -Dox). (C) Measurement of GFP fluorescence via flow cytometry in 1.8 
female mESCs carrying a stably integrated MAPK-sensitive reporter (1.8 SRE-Elk cells) treated for 48h with 1µM of the Mek inhibitor U0126 
(Meki treated) or with DMSO (Untreated). The parental cell line without reporter integration is shown in grey.  

In conclusion, the SRE-Elk MAPK reporter appears to be slightly sensitive to X-chromosomal dosage. Additionally, 

a robust decrease in GFP fluorescence could be observed when cells carrying the randomly integrated reporter 

were treated with a Mek inhibitor, pointing to a strong reporter response towards external perturbations of the 

MAPK pathway. Thus, the SRE-Elk reporter seems to represent a suitable readout to assess MAPK pathway 

activity on a single cell level.  

5.1.4 Pooled CRISPR knockout screen workflow  

During the screen, 1.8 XX mESCs carrying a randomly integrated SRE-Elk reporter (1.8 SRE-Elk cells) were 

transduced with lentivirus carrying the Cas9 endonuclease and subsequently selected with blasticidin for stable 

expression in all cells. After selection and expansion for several passages, cells were transduced with the GeCKOx 

sgRNA library with a multiplicity of infection (MOI) of 0.3, ensuring this way the transduction of each cell with 

maximally one viral particle (Fig. 24). Cells were puromycin selected two days after transduction and expanded 

for 5 additional days, followed by FACS-sorting of cells with high reporter activity. An additional sorting step of 

the previously sorted population was carried out after two days in culture in order to further enrich for cells with 

increased MAPK pathway activity (Fig. 24). Three independent replicates were performed. The genomically 

integrated sgRNAs in the unsorted and double-sorted cell fractions were finally amplified and their sequences 

determined via NGS. This way, the comparison of sgRNAs present in the double-sorted population compared to 

the sorted population allowed for the identification of enriched or depleted sgRNAs. Furthermore, statistical 

testing using MaGeck enabled us to establish significant scoring genes, where consistent effects where observed 

in several sgRNAs targeting a certain gene.  
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Figure 24. Pooled CRISPR Knockout screen for the identification of X-linked modulators of the MAPK signaling pathway. Workflow of the 
SRE-Elk screen: 1.8 SRE-Elk mESCs carrying a stably integrated MAPK reporter, where GFP expression is driven by an SRE-Elk promoter (with 
binding site for downstream components of the MAPK pathway), were transduced with a construct expressing the Cas9 endonuclease. After 
selection for several passages, cells were transduced with the GeCKOx sgRNA library targeting the majority of X-chromosomal genes and 
further selected for sgRNA integration. A GFP-high population was sorted via flow cytometry after seven days of expansion, cultured for two 
additional days and subsequently sorted again (double-sorted population).  Genomically integrated sgRNAs were amplified from the 
unsorted and double sorted population and abundance was quantified via deep-sequencing. The screen was performed in three 
independent replicates.  

5.1.5 Results of the pooled CRISPR knockout screen for the identification of X-linked MAPK pathway inhibitors 

In order to assess the quality of the generated screen data, we first compared the correlation of all the analyzed 

samples, observing that sorted and double-sorted fractions were highly correlated in all the replicates (Fig. 25A). 

Additionally, sgRNAs were present in comparable abundance in all samples, meaning that a good library 

coverage was maintained throughout all steps of the screen, and non-targeting controls were neither enriched 

nor depleted, as expected (Fig. 25B-C).  
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Figure 25. Quality controls for the pooled CRISPR Knockout screen for the identification of X-linked modulators of the MAPK signaling 
pathway. (A) Pearson correlation coefficients between the unsorted and the double-sorted fractions of the three replicates in the SRE-Elk 
screen. (B) sgRNA distributions in the unsorted and double-sorted fractions of all three replicates. (C) Mean fold change of the double-sorted 
vs the unsorted fractions of the 100 Non-targeting controls and the individual sgRNAs targeting  significantly enriched and depleted genes  
(FDR < 0.05, MAGeCK), * p < 0.05, Wilcoxon rank-sum test. 

We next assessed the enrichment/depletion in the screen results of known MAPK regulators included in the 

library, to determine whether it correlated to their GO annotations or known function from the literature. Here, 

central MAPK pathway components such as Erk2, Grb2, Frs2, Mek1 and Ptpn11 were highly and significantly 

depleted in the double-sorted fraction, as expected, confirming the validity of the generated screen (Fig. 26). 

The Mek1 kinase showed lower depletion compared to other main components such as Grb2 and Erk2, possibly 

due to genetic compensation by its isoform Mek2, which is also highly expressed in mESCs (El-Brolosy and 

Stainier, 2017).  

The known pathway inhibitor Csk was the strongest enriched gene in the target population (Okada, 2012) (Fig. 

26). Csk inhibits Src family kinases, which activate the MAPK signaling pathway through Raf phosphorylation 

(Pearson et al., 2001). Curiously, the tumor suppressor gene Fbxw7, annotated in the GO database as a MAPK 

activator, was found among the strongly enriched hits. Our results are however in accordance to studies that 

have shown an increase in MAPK signaling upon Fbxw7 knockdown in melanoma cancer cell lines, also in 

agreement with its role as tumor suppressor (Cheng et al., 2013).  Lastly, Flcn, a known negative regulator of 

MAPK signaling (Baba et al., 2008; Cash et al., 2011), was the last of the three MAPK regulators that scored 

among the significantly enriched genes (Fig. 26). 

 

Figure 26. Identification of X-linked modulators of the MAPK signaling pathway in female mESCs via a pooled CRISPR knockout screen. 
Volcano plot displaying significantly enriched and depleted (FDR > 0.05, MAGeCK) X-linked genes (blue) and known MAPK regulators as 
positive controls (red). 

Among the X-linked genes, 9 were significantly enriched in our primary screen: Dusp9, Klhl13, Zic3, H2al1m, 

Fthl17e, A830080D01Rik, Ftsj1, Mid1ip1 and Gm648 (Fig. 26). Dusp9 is a known Erk phosphatase and MAPK 

inhibitor (Caunt and Keyse, 2013, Li et al., 2012), and Zic3 a known pluripotency factor (Declercq et al., 2013; 

Lim et al., 2007, 2010). The remaining genes, on the other hand, have not yet been linked to the modulation of 

naive pluripotency in mESCs.  
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Interestingly, a larger number consisting of 18 X-linked genes scored significantly in the screen as putative MAPK 

activators: Klf8, Eras, Nr0b1, Tsr2, Hccs, Gm10921, Med12, Dkc1, Slc35a2, Pgk1, Kdm6a, Rbm10, Gm10058, 

Otud5, Haus7, HuweI, Thoc2 and Rpl10 (Fig. 26). It has been shown that siRNA-mediated knockdown of Klf8 

mRNA leads to lower levels of phosphorylated Erk in colorectal cancer cells, pointing to a possible role as MAPK 

activator (Shi et al., 2015). Eras, on the other hand, is a known activator of the Akt signaling pathway and a strong 

driver of mouse embryonic stem cell proliferation (Takahashi et al., 2003).  

In order to rule out the possibility that gene enrichment/depletion might be due to faster or slower proliferation 

of targeted cells between the two sampling time points (day 7 and day 9), we compared the sgRNA frequency in 

the cloned sgRNA library to the unsorted cell fraction from day 7 (Fig. 27). We found that six from the 18 

identified putative X-linked MAPK activators led to faster proliferation in mESCs: Eras, Tsr2, Gm10921, Gm10058, 

Haus7 and Rpl10. More importantly, none of the identified X-linked MAPK inhibitors negatively affected 

proliferation, which would lead to the enrichment of their sgRNAs between day 7 and day 9 of the screen, 

eventually leading to false positive hits. Lastly, sgRNAs targeting several essential ribosomal genes were strongly 

depleted after expansion (Rps4x, Rpl10, Las1l, Rpl36a, Rpl39, etc), confirming the knockout efficiency of the Cas9 

nuclease during the screen.  

 

Figure 27. Proliferation effect of the pooled CRISPR Knockout screen for the identification of X-linked modulators of the MAPK signaling 
pathway. Volcano plot displaying significantly enriched and depleted (FDR > 0.05, MAGeC) X-linked genes (blue) and known MAPK regulators 
as positive controls (red) in the unsorted fraction vs the cloned plasmid library. 

In summary, we have identified several putative MAPK inhibitors among hundreds of X-linked genes through the 

implementation of a pooled CRISPR knockout screen. These genes are strong putative candidates underlying the 

sex differences observed in mESCs.  
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5.2. Secondary screens reveal X-linked candidate genes additionally involved in the 

regulation of pluripotency factor expression, differentiation kinetics and Mek 

phosphorylation 

After identifying several putative X-linked MAPK inhibitors in the previous primary screen, we set out to 

investigate which of these genes also had an effect in the other sex differences observed between female and 

male mESCs, namely pluripotency factor expression, differentiation kinetics and Mek phosphorylation. We 

carried out for this purpose a series of complementary screens using different fluorescent readout systems for 

each of the assessed phenotypes, which would allow us the identification of candidate genes in an unbiased 

manner.  

5.2.1 Generation of an sgRNA library targeting the most enriched and depleted genes from the primary screen 

First, the GeCKOxs (GeCKOx small) sgRNA library was designed targeting the 50 most enriched and depleted X-

linked genes, together with the 10 most enriched and depleted MAPK controls from the primary screen (Fig. 

28A). For this, the 3 most effective sgRNAs based on their previous scoring were selected. Additionally, 10 non-

targeting sgRNAs together with sgRNAs targeting 10 known pluripotency regulators (Sox2, Tbx3, Tcf3, Fgf2, 

Stat3, Esrrb, Tfcp2l1, Klf2, Nanog and Oct4) were included from literature searches as further controls (Fig. 28A). 

The GeCKOxs library was cloned and sgRNA representation was assessed via NGS, which revealed that all sgRNAs 

were present and in comparable abundance with a 2.1-fold difference between the 10th and 90th percentile 

(Imkeller et al. 2020) (Fig. 28B).  

The generation of a small GeCKOx library (GeCKOxs) targeting 100 X-linked putative MAPK regulators together 

with 20 known MAPK and 10  pluripotency regulators as positive controls was therefore successful. Additionally, 

10 sgRNAs were included as negative controls.   

 

 

Figure 28. Generation of the GeCKOxs library for the secondary CRISPR knockout screens. (A) Composition of the GeCKOxs sgRNA library 
targeting the 50 most enriched and depleted genes, together with the 10 most enriched and depleted MAPK controls from the primary 
screen with 3 sgRNAs per gene. sgRNAs targeting 10 pluripotency regulators and 10 non-targeting controls (NTCs) were added additionally. 
(B) sgRNA distribution in the cloned GeCKOxs sgRNA library. Dashed lines represent the 10th and 90th percentiles.  

5.2.2 Secondary CRISPR knockout screen for the identification of genes that modulate pluripotency factor 

expression in female mESCs 

We generated a first secondary screen in order to determine which of the previous putative X-linked MAPK 

inhibitors would additionally modulate pluripotency factor levels in female mESCs. In order to monitor 

http://f1000.com/work/citation?ids=8328807&pre=&suf=&sa=0
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pluripotency factor expression on a single-cell level, the Nanog locus was C-terminally tagged with mCherry (Fig. 

29A). The later was chosen due to significantly higher expression levels in undifferentiated cells with two X 

chromosomes compared to their XO subclones (2-4 fold higher levels in XX vs XO) (Schulz et al., 2014). This C-

terminal tagging strategy was also used to tag the Esrrb locus for a second secondary screen (see below in section 

5.2.3). In order to keep the functionality of the endogenous protein, which could be hampered due to steric 

hindrances caused by the relatively large mCherry protein, a P2A cleaving peptide was incorporated between 

the C-terminus of the locus and the fluorescent tag (Fig. 29A). The repair template to tag Nanog with mCherry 

(pUC19-Nanog-mCherry-puro, Table 7) consisted of the P2A self-cleaving peptide followed by the mCherry 

coding sequence and a loxP-flanked puromycin-resistance cassette, flanked by ~400bp homology regions to the 

Nanog locus. This plasmid, together with the sgRNA-plasmids targeting the C-terminus of the Nanog locus, were 

cloned by Jörn Schmiedel. 1.8 XX cells were transiently transfected with the Cas9 endonuclease, sgRNAs 

targeting the C-terminus of the Nanog locus and the aforementioned repair template. Successfully tagged cells 

were selected based on their puromycin resistance and mCherry fluorescence, after which the puromycin 

selection cassette was excised via transient CRE recombinase expression. This was due to the fact that the 

GeCKOxs sgRNA library expresses a puromycin resistance cassette that is used for the selection of cells with 

stably integrated sgRNAs. Finally, 1.8 Nanog-mCherry clones were genotyped for targeted C-terminal tagging of 

the Nanog locus (see section 4.2.7.1, Fig. 15).    

Reporter functionality was assessed by monitoring mCherry levels during differentiation. We observed a 

significant downregulation of fluorescence intensities around day 3, hinting that the generated reporters indeed 

mirrored pluripotency factor expression (Fig. 29B).  

During the screen, cells carrying the Nanog reporter and stably expressing the Cas9 endonuclease were 

transduced with the GeCKOxs library and subsequently selected with puromycin. The cells with lower mCherry 

fluorescence were enriched on day 7 after transduction in two consecutive sorts similarly to the primary screen 

sorting workflow (sorted vs. double-sorted cells) (Fig.  29C). This sorting strategy was implemented due to our 

aim at identifying Nanog activators, that when knocked out would lead to lower pluripotency factor expression. 

Two replicates were carried out for this screen.  

 

Figure 29. Secondary CRISPR knockout screen for the identification of genes modulating pluripotency factor expression in female mESCs. 
(A) Schematic representation of the generated Nanog and Esrrb fluorescent reporters. Briefly, the Nanog/Esrrb locus was C-terminally 
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tagged with mCherry via CRISPR/Cas9 mediated homologous recombination, where both proteins are linked to mCherry through a P2A self-
cleaving peptide. The puromycin cassette was subsequently excised through transient CRE expression. (B) Flow cytometry measurement of 
mCherry levels in 1.8 Nanog-mCherry cells before and after 3 days of differentiation.  (C) Workflow of the generated pluripotency screen for 
the identification of genes modulating pluripotency factor expression. 1.8 female wildtype mESCs or cells carrying mCherry-tagged Nanog 
locus that stably expressed the Cas9 endonuclease were transduced with the GeCKOxs sgRNA library, subsequently selected, and expanded. 
mCherry low cells were sorted via flow cytometry on day 7 after transduction, cultured for two days and sorted again. The screen was 
performed in two replicates. 

Good library representation was maintained throughout all steps of the screens, what could be observed in the 

sgRNA cumulative distributions before and after sorting (Fig. 30A). Furthermore, non-targeting controls were 

neither enriched nor depleted (Fig. 30B).  

MAPK regulators Ptpn2, Frs2, Erk2 and Grb2 were found among the most depleted genes in the pluripotency 

screen (Fig. 30C). Curiously, Ptpn2, a known negative regulator of the MAPK signaling pathway, scored as an 

anti-pluripotency factor (Mattila et al., 2005; van Vliet et al., 2005). Studies have shown, however, that this gene 

has an inhibitory effect on the Jak/STAT signaling pathway (Yamamoto et al., 2002), which is one of the main 

drivers of pluripotency in mouse embryonic stem cells (Niwa et al., 1998). Csk was again strongly enriched among 

the pluripotency-promoting factors, further confirming its role as a MAPK inhibitor (Fig. 30C). Additionally, 

Fbxw7 was also significantly enriched in the pluripotency screen, in accordance with the primary screen where 

it scored among the MAPK pathway inhibitors (Fig. 26). 

Among the known pluripotency regulators included as controls in the GeCKOxs library, Tfcp2l1 together with 

Klf4 were enriched in the pluripotency screen, as expected (Fig. 30C). Nanog itself was also enriched (3.1 fold), 

albeit non-significantly (FDR=0.67). This could be due to the positive effect of Nanog on mESC proliferation and 

viability, which leads to a strong depletion of sgRNAs targeting this gene upon cell expansion and therefore 

highly variable sgRNA count number (Fig. 30D). 

 

Figure 30.  Identification of X-linked candidate genes from the primary screen that additionally modulate pluripotency factor expression 
in female mESCs via a secondary pooled CRISPR knockout screen. (A) sgRNA distribution of the sorted and unsorted fractions in all replicates 
of the pluripotency screen.  (B) Mean fold change of the sorted vs the unsorted fractions of the 10 Non-targeting controls and the individual 
sgRNAs targeting  significantly enriched and depleted genes in the pluripotency screen  (FDR < 0.05, MAGeCK), * p  < 0.05, Wilcoxon rank-
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sum test. (C) Volcano plot displaying the most enriched and depleted (FDR < 0.05, MaGeCK) X-linked (blue), MAPK controls (red) and 
pluripotency controls (yellow) in the pluripotency screen. (D) Volcano plot displaying significantly enriched and depleted (FDR < 0.05, 
MAGeC) X-linked genes (blue),  known MAPK regulators  (red) and pluripotency factors (yellow) as positive controls in the unsorted fraction 
vs the cloned plasmid library in the pluripotency screen.  

Two X-linked genes were found in the depleted fraction of the pluripotency screen: Nr0b1 and Ascl4 (Fig. 30C). 

Curiously, Nr0b1 has been linked to the maintenance of the pluripotency state in several studies, where its 

knockdown led to upregulation of differentiation specific markers (Khalfallah et al., 2009; Zhang et al., 2014). 

Interestingly, no significant change was documented regarding Nanog expression, with one report intriguingly 

showing an increase in pluripotency factors Tbx3 and Klf4 in Nr0b1 knockout ES cells (Fujii et al., 2015). Since all 

of these studies were carried out in male mESCs, it would be interesting to assess if the increase in Nanog upon 

Nr0b1 depletion observed in our results is a female specific phenotype.  

A total of 6 X-linked genes were significantly enriched in the pluripotency screen: Klhl13, Zic3, Dusp9, Stag2, 

Fthl17e and Fthl17f (Fig. 30C). Interestingly, Klhl13 was the top hit in the pluripotency screen, pointing to the 

fact that this gene could play a bigger role in the modulation of pluripotency factor expression in female mESCs 

compared to the previous top X-linked hit Dusp9.  

In summary, the pluripotency screen recovered several known MAPK and pluripotency regulator controls in the 

expected fractions, pointing to the validity of the screening approach. Among the X-linked genes, Klhl13 scored 

as the strongest positive regulator of pluripotency factor expression, posing as a novel and strong candidate 

underlying the sex differences observed in mESCs.  

5.2.3 Secondary CRISPR knockout screen for the identification of genes that modulate differentiation kinetics 

in female mESCs 

Female mESCs downregulate pluripotency factors significantly slower during differentiation compared to male 

cells (Schulz et al. 2014).  In order to screen for X-linked modulators of differentiation kinetics in female mESCs 

among the candidates identified in the primary screen, the C-terminus of the locus coding for the pluripotency 

factor Esrrb was tagged with mCherry using the same strategy described above for the generation of the Nanog 

mCherry reporter (see section 5.2.2, Fig. 29A), which allowed us to assess pluripotency factor expression during 

differentiation on a single cell level. Esrrb was chosen as a reporter for this particular screen since it is 

downregulated significantly faster in male compared to female mESCs during differentiation (~6 fold lower in 

XO vs XX at day 3 of differentiation via LIF withdrawal) (Schulz et al., 2014).  

Reporter functionality was assessed again by monitoring mCherry levels during differentiation, observing much 

like for the Nanog reporter, a significant downregulation of fluorescent intensity around day 3, which confirmed 

the functionality of the reporter in mirroring pluripotency factor levels during differentiation (Fig. 31A).  

During the differentiation screen, cells stably expressing the Cas9 nuclease and the GeCKOxs library were 

expanded until day five and differentiated via LIF withdrawal from Serum/LIF conditions for three days, after 

which the low mCherry fluorescent cells were FACS sorted (Fig. 31B). Here, our goal was to determine which 

genes led to faster differentiation kinetics, and therefore lower Esrrb levels at day 3 of differentiation, upon 

knockout. Since a transient phenotype was analyzed in this screen, only a single sorting step was possible. Three 

replicates were generated.  
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Figure 31. Secondary CRISPR knockout screen for the identification of genes modulating differentiation kinetics in female mESCs. (A) Flow 
cytometry measurement of mCherry levels in 1.8 Esrrb-mCherry cells before and after 3 days of differentiation. (B) Workflow of the 
generated differentiation screen for the identification of genes modulating differentiation kinetics. 1.8 female wildtype mESCs or cells 
carrying mCherry-tagged Esrrb locus that stably expressed the Cas9 endonuclease were transduced with the GeCKOxs sgRNA library and 
subsequently selected and expanded. Cells were differentiated on day 5 after transduction for 3 days and then the 10% of cells with the 
lowest mCherry fluorescence were FACS sorted. The screen was performed in three replicates.  

Here again, good library representation was maintained throughout all steps of the screens and non-targeting 

controls were neither enriched nor depleted (Fig. 32A-B). 

MAPK regulators Erk2, Flcn, Frs2, Grb2, Ptpn11 and Ptpn2 were found among the most depleted genes in the 

pluripotency screen (Fig. 32C). Surprisingly, Flcn, a gene that was found among the MAPK inhibitors in the 

primary screen, was identified in the differentiation screen as a strong pro-differentiation factor (Fig. 32C). This 

is however in accordance with previous reports that describe its central role in early differentiation (Betschinger 

et al., 2013). The mechanism through which a putative MAPK inhibitor might induce differentiation is 

nevertheless worthy of further investigation. Csk scored as an anti-differentiation factor, which is in accordance 

with its role as a MAPK inhibitor (Fig. 32C).  
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Figure 32.  Identification of X-linked candidate genes from the primary screen that additionally modulate differentiation kinetics in female 
mESCs via a secondary pooled CRISPR knockout screen. (A) sgRNA distribution of the sorted and unsorted fractions in all replicates of the 
differentiation screen.  (B) Mean fold change of the sorted vs the unsorted fractions of the 10 Non-targeting controls and the individual 
sgRNAs targeting  significantly enriched and depleted genes in the differentiation screen  (FDR < 0.05, MAGeCK), * p < 0.05, Wilcoxon rank-
sum test. (C) Volcano plot displaying the most enriched and depleted (FDR < 0.05, MaGeCK) X-linked (blue), MAPK controls (red) and 
pluripotency controls (yellow) in the differentiation screen.  

Surprisingly, none of the pluripotency regulators were significantly enriched in the differentiation screen. Esrrb 

itself was enriched (1.6 fold), albeit non-significantly (FDR=0.2) (Fig. 32C).  

Two X-linked genes were found in the depleted fraction of the differentiation screen: Hccs and Huwe1 (Fig. 32C). 

In contrast, five X-linked genes including Klhl13, Zic3, Gpc4, Dusp9 and Fthl17f were found to be enriched (Fig. 

32C). Similar to the pluripotency screen, both Klhl13 and Zic3 scored higher than Dusp9 in the differentiation 

screen, meaning that both genes could have a stronger effect on differentiation kinetics of female mESCs.  

In conclusion, several known MAPK activators were depleted in the differentiation screen, which is expected 

given the fact that the MAPK pathway is necessary for lineage commitment and differentiation. Concerning the 

screened X-linked genes, Klhl13 scored again as the top candidate modulating differentiation kinetics in female 

mESCs, followed by Zic3.  

5.2.4 Secondary CRISPR knockout screen for the identification of genes that modulate phosphorylation of 

MAPK components in female mESCs 

Female mESCs display higher levels of Mek phosphorylation compared to their male counterparts, even though 

they express lower levels of MAPK targets. Increased pMek levels, however, are due to a reduced negative 

feedback activity of the pathway caused by the lower expression levels of feedback regulators (Fritsche-

Guenther et al., 2011; Sturm et al., 2010).  

In order to find out whether the X-linked genes targeted in the GeCKOxs library had an effect on the 

phosphorylation of MAPK pathway components, we implemented an intracellular staining as a reporter strategy 

by using a pMek-specific primary antibody and a secondary Alexa647-coupled antibody to determine the genes 

that lead to lower pMek levels, reflecting the XO pluripotency phenotype. Functionality of the pMek readout 

was assessed through the staining of XX, XO and XO cells treated with a Mek inhibitor (Fig. 33A). The highest 

pMek levels were observed as expected in the XO Meki treated cells due to inhibition of negative feedback 

regulation. Differences were also observed between the XO and XX cells, the latter exhibiting higher fluorescence 

intensities and mirroring thus the changes previously observed via Immunoblotting (Fig. 33A).  

During the pMek screen, cells stably expressing the Cas9 endonuclease and the GeCKOxs library were harvested 

on day 7 after sgRNA library transduction, stained and the low pMek population enriched. This way, we expected 

to find genes that, when knocked out, would lead to a decrease in Mek phosphorylation, mirroring thus the XO 

phenotype. A single sorting step was possible also during this screen due to the fixation of cells as a requirement 

for the intracellular staining (Fig. 33B). Three replicates were carried out.  
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Figure 33. Secondary CRISPR knockout screen for the identification of genes modulating Mek phosphorylation in female mESCs. (A) 
Intracellular pMek staining of 1.8 XX (red), XO (blue) and XO cells treated with the Mek inhibitor (Meki, yellow) PD0325901 for 48h. (B) 
Workflow of the pMek screen for the identification of genes modulating Mek phosphorylation. 1.8 female wildtype mESCs that stably 
expressed the Cas9 endonuclease were transduced with the GeCKOxs sgRNA library, subsequently selected, and expanded. Cells were 
stained with an anti-pMek antibody coupled to an Alexa647 fluorophore on day 7 after transduction and the 25% of cells with the lowest 
signal were sorted. The screen was performed in three replicates.  

Good library representation was maintained throughout all steps of the screens (Fig. 34A). Non-targeting 

controls, however, were slightly but significantly depleted (Fig. 34B).  

Erk2 and Ptpn2 were significantly depleted in the pMek screen (Fig. 34C). These two genes were also depleted 

in the pluripotency, differentiation and SRE-Elk screen. Erk2 is a strong feedback regulator of the MAPK signaling 

pathway, which acts upstream of Raf by phosphorylating inhibitory sites (Fritsche-Guenther et al., 2011; Sturm 

et al., 2010). This could therefore be a reason why Erk2 is found consistently depleted in all screens. No MAPK 

regulators were enriched in the pMek screen.  

Pluripotency regulators Stat3, Esrrb and Tfcp2l1 were found enriched in the pMek screen (Fig. 34C). Numerous 

studies have shown an effect of the MAPK signaling pathway on pluripotency factor expression and stability 

(Dhaliwal et al., 2018; Kim et al., 2014b; Silva et al., 2009; Yeo et al., 2014), interestingly, the opposite effect has 

also been observed for a few pluripotency factors, albeit not for Esrrb or Tfcp2l1 (Azami et al., 2018; Grabole et 

al., 2013; Mzoughi et al., 2017). We speculate that this phenomenon could be in part due to crosstalk between 

the Jak/STAT and MAPK signaling pathways (Cacalano et al., 2001), or to transcriptional regulation of MAPK 

feedback regulators or pathway components by pluripotency factors (Azami et al., 2018; Grabole et al., 2013). 

  

Figure 34. Identification of X-linked candidate genes from the primary screen that additionally modulate Mek phosphorylation in female 
mESCs via a secondary pooled CRISPR knockout screen. (A) sgRNA distribution of the sorted and unsorted fractions in all replicates of the 
differentiation screen.  (B) Mean fold change of the sorted vs the unsorted fractions of the 10 Non-targeting controls and the individual 
sgRNAs targeting  significantly enriched and depleted genes in the differentiation screen  (FDR < 0.05, MAGeCK), * p < 0.05, Wilcoxon rank-
sum test. (C) Volcano plot displaying the most enriched and depleted (FDR < 0.05, MaGeCK) X-linked (blue), MAPK controls (red) and 
pluripotency controls (yellow) in the differentiation screen.  (D) Comparison of beta scores generated by using the MaGeCK_mle tool 
between the secondary pMek screen and one replicate of a pMek screen where trypsinization and fixation was performed at 4°C. The 
Pearson correlation coefficient (R) and p-value (p) are indicated. Each dot represents a gene. 
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The trypsinization of cells during harvesting for immunoblotting or intracellular staining has been shown to alter 

phospho-protein levels. Since the pMek screen was carried out using traditional trypsinization conditions (5 min 

incubation at 37°C), we assessed whether a more controlled trypsinization and fixation on ice at 4°C previous to 

the intracellular pMek staining would drastically change the results obtained during this secondary screen. An 

additional screen was therefore performed similarly to the previously described pMek screen except for the cell 

harvesting steps and the first steps of the intracellular staining, which were all carried out at 4°C on ice. Only 

one replicate was generated. We observed that both Dusp9 as well as Erk2 scored similarly under the two 

different trypsinization conditions, furthermore, a positive correlation of 0.6 was determined between the two 

screens, confirming the generated results (Fig. 34D).  

Dusp9 was the strongest enriched X-linked gene in the pMek screen, followed by Pgk1, Fthl17e, Fthl17f, Kdm6a 

and Stag2 (Fig. 34C). Knockout of Kdm6a and Pgk1 was found to lead to higher phosphorylation levels as 

observed in XX cells, even though they were identified as MAPK activators in the primary screen.  

Overall, Dusp9 was the only candidate gene that scored significantly in all four generated screens (including the 

primary SRE-Elk screen) (Fig. 35A). Additionally, from the X-linked MAPK inhibitors identified in the primary 

screen, Klhl13, Zic3, two genes of the Fthl17 cluster (Fthl17e and Fthl17f) and Stag2 were enriched in at least 

two screens (Fig. 35A). Surprisingly, Klhl13 was the strongest hit in both the pluripotency as well as the 

differentiation screen and Zic3 was the second strongest hit in the differentiation screen, indicating that these 

genes could have a more pronounced effect on the modulation of pluripotency factor expression and 

differentiation kinetics (Fig. 35A-B). 

 

Figure 35. Identification of candidate genes mediating sex differences in mESCs via pooled CRISPR screens (A) Heatmap showing the 
enrichment in both the primary (SRE-Elk) and secondary CRISPR screens (pMek, Nanog, Esrrb) of significantly enriched or depleted genes in 
at least two screens. *FDR < 0.05 (MAGeCK), n.d non-determined. (B) Enrichment of individual sgRNAs targeting putative candidate genes 
mediating the female pluripotency phenotype in the primary and secondary screens.  
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5.2.5 Expression levels of candidate hits in XX and XO mESCs 

A prerequisite for a candidate gene to mediate the sex differences observed in mESCs is that it should be 

expressed in a double dosage in female cells. In order to corroborate this, we analyzed RNA-seq data from the 

1.8 XX cell line used in the screen and a generated XO subclone (Harvesting of cell material and library 

preparation was done by Zeba Sultana and Ilona Dunkel, whereas read mapping was carried out by Edda G. 

Schulz). Even though female cells expressed X-linked genes with an expected 2-fold difference (Fig. 36A), Zic3 

and Stag2 were expressed at similar levels between XX and XO cells (Fig. 36B). Dusp9 and Klhl13 were expressed 

at 4.2- and 3.2-fold higher levels in female cells, whereas genes belonging to the Fthl17 cluster, which is 

maternally imprinted and therefore only expressed in females (Kobayashi et al., 2010), were essentially not 

expressed in the XO subclone (where the remaining X is probably maternally inherited).  

 

Figure 36. Expression levels of candidate hits in 1.8 XX and XO mESCs (A) Boxplot showing expression levels of all genes and only X-linked 

genes in 1.8 XX and 1.8 XO mESCs. (B) Expression level of X-linked genes enriched in at least two of the generated screens in 1.8 XX and XO 

mESCs assessed by RNA-seq, n.d. non-determined.  

We have therefore determined four genes that could mediate the female pluripotency phenotype through the 

implementation of a series of pooled CRISPR screens: Dusp9, Klhl13, Fthl17e and Fthl17f. Dusp9, like previously 

mentioned, is an Erk phosphatase and known MAPK inhibitor (Caunt and Keyse, 2013). Previous publications 

have studied the role of Dusp9 in mediating sex differences in DNA methylation in mESCs (Choi et al., 2017), 

however, some have reported no changes in pluripotency factor expression and differentiation kinetics in 

heterozygous female mutants (Song et al., 2019). A further and deeper assessment of the role of Dusp9 in 

mediating the female pluripotency phenotype is therefore necessary. The remaining genes, on the other hand, 

have not been linked to the modulation of pluripotency in female mESCs and represent novel putative 

candidates. Klhl13 is a substrate adaptor protein for the E3 ubiquitin-protein ligase complex (Sumara et al., 

2007), whereas the Fthl17 genes represent ferritin-like proteins with unknown functions that are partially 

nuclear and lack ferroxidase activity (Ruzzenenti et al., 2015).  

In conclusion, we have identified several candidates that could mediate sex differences in mESCs. From these, 

we have decided to validate Dusp9 and Klhl13 as the top two scoring genes across all of the generated screens. 

Our screen results suggest that Dusp9 could have a stronger effect on the MAPK signaling pathway, as it 

represents the top X-linked hit in the SRE-Elk and pMek screens. Klhl13, on the other hand, could have a stronger 

effect on pluripotency factor expression and differentiation kinetics, being the strongest enriched gene in both 

the pluripotency as well as the differentiation screen. In order for a gene to underlie the sex differences observed 

in mESCs, its overexpression in male cells should lead to a female-like pluripotency phenotype, while the 

opposite should happen through their heterozygous deletion in female mESCs.  
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5.3. Klhl13 and Dusp9 overexpression in male mESCs leads to a shift towards the naive 

pluripotency state and slower differentiation kinetics in male mESCs 

The ability of the Cas9 protein to bind specific DNA loci guided by an RNA molecule has been exploited for the 

modulation of gene expression levels. A mutated and nuclease-deficient Cas9 (dCas9) can be coupled to 

activator domains in order to increase gene expression, a technique termed as CRISPRa (activation). 

Improved systems for CRISPR activation have been developed which allow for stronger overexpression 

efficiencies, among these we find the CRISPRa SuperNova tagging system (SunTag, Fig. 37A)  (Heurtier et al., 

2019; Tanenbaum et al., 2014). This system is based on antibody-antigen interactions to obtain an amplification 

of the activation signal. Here, a doxycycline-inducible dCas9 is fused with ten repeats of an epitope of the yeast 

GCN4 protein, while a second tet promoter drives the expression of a single-chain variable fragment (scFv) anti-

GCN4 antibody fused with four repeats of the VP16 transcriptional activation domain, termed VP64. Under 

doxycycline treatment, the GCN4 epitope will be bound by multiple copies of the VP64 coupled anti-GCN4 

antibody, leading to stronger transcriptional activation. 

The advantages of the use of CRISPR activation systems are numerous. First, once the cell line expressing the 

SunTag system is established in the lab, the process of sgRNA design and cloning together with the cell line 

generation is fairly rapid. Moreover, it gives the possibility to overexpress a gene in its endogenous form within 

more physiological levels, as opposed to cDNA overexpression systems where expression levels can be 

significantly higher.  

Figure 37. Dusp9 and Klhl13 overexpression in male mESCs using the CRISPRa SunTag system. (A) Schematic representation of the SunTag 
CRISPR system used for gene activation in male mESCs. (B) Position of the sgRNA sequences used to over-express Dusp9 and Klhl13. SgRNAs 
for Dusp9 were targeted -91 (chrX:73,639,328-73,639,346, GRCm38/mm10 Assembly) and -160bp (chrX: 73,639,259-73,639,277) bp, 
whereas for Klhl13 they were targeted -264 (chrX:23,365,328-23,365,347) and -70bp (chrX:23,365,134-23,365,152) bp upstream of the 
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transcriptional start site (TSS). (C)  For overexpression of endogenous Dusp9 (yellow) or Klhl13 (blue), male E14 mESCs stably expressing the 
doxycycline-inducible SunTag System were transduced with one of two different sgRNAs tageting either the Dusp9 or Klhl13 promoter 
regions, or one of two non-targeting control sgRNAs (NTs). mESCs were treated for 3 days with 1 µg/ml of doxycycline before cell harvesting. 
Dusp9 (left) and Klhl13 (right) protein levels were quantified via Immunoblotting. Immunoblot signals were normalized to Tubulin and to the 
mean of the signals from cells transduced with the two NT control sgRNAs. Dots and triangles represent the two different sgRNAs and thick 
bars display the mean of three biological replicates. * p < 0.05 in a two-tailed paired Student´s T-test comparing the Dusp9/Klhl13 over-
expressing samples and the mean of the two NT controls.  

In order to over-express Dusp9 and Klhl13 in male mESCs, we made use of an E14 cell line carrying the 

components of the aforementioned CRISPRa SunTag system (E14-STN) (Heurtier et al., 2019; Tanenbaum et al., 

2014) (Fig. 37A). The experimental part of the section 5.3 was performed by the master student Anna A. Monaco, 

who was supervised by O. Genolet.  

E14-STN cells were transduced with one of two distinct sgRNAs targeting the promoter of either Dusp9 or Klhl13 

(Fig. 37B). Two cell lines stably expressing different non-targeting sgRNAs (NTCs) were additionally used as 

controls. For Dusp9, overexpression levels of 4 and 3.3-fold were reached, which were quantified via 

Immunoblotting, whereas for Klhl13 they were 2.9- and 2.1-fold higher compared to the NTCs (Fig. 37C). We 

next assessed the phenotypes affected by sex differences in mESCs: MAPK pathway levels, pluripotency factor 

expression, differentiation kinetics and finally global CpG methylation. Results for all phenotypes are 

summarized in the end of the section in Fig. 40.  

5.3.1 Overexpression of Dusp9 and to a lesser extent Klhl13 reduces levels of MAPK signaling activity in male 

mESCs 

Female mESCs express lower levels of MAPK target genes compared to male cells (Schulz et al. 2014). If indeed 

Dusp9 and Klhl13 represent modulators of sex differences in mESCs, we would expect a reduction of MAPK 

targets upon overexpression of either of these genes in male mESCs. In order to test this, we first measured 

expression levels of two well-known MAPK target genes via qPCR: Egr1 and Spry4 (Casci et al., 1999; Hodge et 

al., 1998). Here, both genes were strongly downregulated upon Dusp9 overexpression (5.5/2.7-fold for 

Egr1/Spry4) to levels comparable to those of XX cells, which express approx. 2 to 10-fold lower levels of these 

two target genes (Fig. 38A). When overexpressing Klhl13, the reduction in expression levels observed for MAPK 

targets was much smaller (1.4/1.3-fold for Egr1/Spry4) and only significant for one of the Klhl13-targeting 

sgRNAs with respect to Spry4 levels (Fig. 38A).  

We next assessed pMek and pErk levels in Dusp9/Klhl13 overexpressing cells via Immunoblotting, observing 

striking differences for both upon Dusp9 overexpression (22-fold increase in pMek and 12-fold decrease in pErk 

levels) (Fig. 38B). No differences were observed for Klhl13 overexpression, what is also in accordance with the 

generated pMek screen (Fig. 34C). Curiously, a previous study reported an increase in pErk upon Dusp9 

overexpression. Since we observe striking differences in pErk levels depending on the cell harvesting technique 

used for subsequent Immunoblotting, we hypothesize that these discrepancies might be due to the requirement 

of trypsinization when analysing feeder-dependent cell lines (Choi et al., 2017). Indeed, when Dusp9 

overexpressing cells are subjected to trypsinization previous to cell lysis, we observe a striking increase in pErk 

levels compared to cells that were lysed through direct addition of cell lysis buffer to the culture plate (Fig. 38C).  

In summary, we confirm the role of Dusp9 as an Erk phosphatase and strong MAPK inhibitor affecting both target 

genes as well as phosphorylation levels of pathway intermediates. Klhl13, on the other hand, seems to slightly 

affect MAPK target genes but no differences could be observed in pMek/pErk levels, in accordance to a 

previously performed screen.  
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Figure 38. Overexpression of Dusp9 and to a lesser extent Klhl13 leads to inhibition of the MAPK signaling pathway in male mESCs.  (A-B) 
For overexpression of endogenous Dusp9 (yellow) or Klhl13 (blue), male E14 mESCs stably expressing the doxycycline-inducible SunTag 
System were transduced with one of two different sgRNAs tageting either the Dusp9 or Klhl13 promoter regions, or one of two non-targeting 
control sgRNAs (NTs). mESCs were treated for 3 days with 1 µg/ml of doxycycline before cell harvesting. MAPK target gene expression was 
assessed via qPCR (A) and Mek and Erk phosphorylation levels were again quantified via immunoblotting (B). Immunoblot signals were 
normalized to total Mek/Erk levels and to the mean of the signals from cells transduced with the two NT control sgRNAs. qPCR values  were 
normalized to two housekeeping genes and to their respective non-treated controls (-Dox). Dots and triangles represent the two different 
sgRNAs and thick bars display the mean of three biological replicates. * p < 0.05 in a two-tailed paired Student´s T-test comparing the 
Dusp9/Klhl13 over-expressing samples and the mean of the two NT controls. (C) Immunoblotting of pErk levels in male mESCs overexpressing 
Dusp9 protein harvested either through direct cell lysis (top) or trypsinization followed by cell pelleting and subsequent cell lysis (bottom).  

5.3.2 Overexpression of Dusp9 and to a lesser extent Klhl13 increases expression of pluripotency factors and 

blocks differentiation in male mESCs 

Female mESCs express higher levels of pluripotency factors and display slower differentiation kinetics compared 

to male cells, being found thus in a more naive state of pluripotency (Schulz et al. 2014). If indeed a double 

dosage of Dusp9 or Klhl13 leads to a shift towards the naive state of pluripotency in female mESCs, we would 

expect an increase in pluripotency factor levels upon overexpression of either of these genes in male mESCs. 

Additionally, these cells would display slower differentiation kinetics or fail to downregulate pluripotency factors 

altogether during differentiation.  
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We therefore assessed the expression of pluripotency factors Nanog and Prdm14 before, and additionally of 

Esrrb during differentiation via qPCR. We observed a significant increase of Nanog (1.7-1.5-fold) and Prdm14 (3-

2.3-fold) levels in Dusp9 overexpressing cells in the undifferentiated state (Fig. 39A). These differences are 

comparable to those observed between XO and XX cells, the later expressing 2-4 fold higher levels of the two 

target genes (Choi et al., 2017; Schulz et al., 2014; Song et al., 2019). Cells overexpressing Klhl13, on the other 

hand, showed a slight increase in Prdm14 expression (1.6-fold) only in the cell line achieving higher Klhl13 

overexpression levels (Fig. 39A). These differences were also observed during differentiation via LIF withdrawal 

from Serum/LIF conditions, where down-regulation of pluripotency factors across the measured timepoints was 

stalled in both Dusp9 overexpressing cell lines. A significant delay in developmental progression was, however, 

also observed in cells that overexpressed Klhl13 to higher levels (Fig. 39B). Overall, it seems that cells expressing 

higher levels of Dusp9 are found in a more naive state of pluripotency, whereas in the case of Klhl13 over-

expressing cells, only a small shift towards the naive state could be detected.  

 

Figure 39. Overexpression of Dusp9 and to a lesser extent Klhl13 leads to a shift towards the naive pluripotency state and slower 
differentiation kinetics in male mESCs. (A-C) For overexpression of endogenous Dusp9 (yellow) or Klhl13 (blue), male E14 mESCs stably 
expressing the doxycycline-inducible SunTag System were transduced with one of two different sgRNAs tageting either the Dusp9 or Klhl13 
promoter regions, or one of two non-targeting control sgRNAs (NTs). (A) mESCs were treated for 3 days with 1 µg/ml of doxycycline before 
cell harvesting and pluripotency target gene expression was assessed via qPCR. Values  were normalized to two housekeeping genes and to 
their respective non-treated controls (-Dox). Dots and triangles represent the two different sgRNAs and thick bars display the mean of three 
biological replicates. (B) E14 SunTag mESCs were treated with 1 µg/ml doxycycline 24h previous to differentiation via LIF withdrawal from 
Serum/LIF conditions for Dusp9 or Klhl13 overexpression. Pluripotency factor expression was assessed during 4 days of differentiation via 
qPCR at different timepoints as indicated. Mean and standard deviation across three biological replicates is shown. (C)  E14 SunTag mESCs 
were treated with 1 µg/ml doxycycline for three passages and global CpG methylation was assessed via pyrosequencing-based luminometric 
DNA methylation assay (LUMA). Dots and triangles represent the two different sgRNAs and thick bars display the mean of three biological 
replicates. * p < 0.05 in a two-tailed paired Student´s T-test comparing the Dusp9/Klhl13 over-expressing samples and the mean of the two 
NT controls.  

Lastly, we monitored global CpG DNA methylation levels in cells overexpressing either Dusp9 or Klhl13. Here, 

cells were treated with doxycycline for 3 passages, since a decrease in CpG methylation levels upon Dusp9 

overexpression has been shown to be caused by passive demethylation mechanisms (Choi et al., 2017). We 

observed a decrease in global CpG methylation from 60% in the NTCs to 53-42% in Dusp9 overexpressing cells, 

confirming previous studies (Choi et al., 2017) (Fig. 39C). These cell lines, however, did not seem to reach the 

http://f1000.com/work/citation?ids=1480915,3406497,7255779&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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levels detected in female cells (20-30%, (Choi et al., 2017; Habibi et al., 2013; Zvetkova et al., 2005)), which could 

be due to other X-linked genes being necessary to attain the full methylation phenotype. Additionally, Dusp9 

overexpression over more passages might lead to even lower global DNA methylation levels. Klhl13 

overexpression, on the other hand, did not seem to have an effect on the assessed phenotype.  

 

Figure 40. Table summarizing the effects of Dusp9 and Klhl13 overexpression in E14-STN male mESCs. Gene overexpression levels, MAPK 
target gene expression, pMek and pErk levels, pluripotency factor expression and global CpG methylation levels in E14-STN cell lines 
overexpressing either Dusp9 or Klhl13 by using one of two different sgRNAs (sgRNA1/2) targeting the TSS of each gene and the Sun-Tag 
CRISPRa system, compared to two non-targeting controls (NT). Additionally, differences observed between XX and XO (or XY cells) are given 
as reference. Arrows indicate whether levels are higher or lower than the reference (NTs for Dusp9/Klhl13 overexpression or XO/XY cells for 
XX wildtype cells). * values taken from Schulz et al., 2014.  

In summary, we observe a strong shift for cells overexpressing Dusp9 and a milder one for cells overexpressing 

Klhl13 towards a female-like pluripotency state (Fig. 40). The fact that smaller differences are observed in the 

case of Klhl13 could be attributed to the fact that lower overexpression levels were reached in these cells. This 

is of great importance in the performed experiments, which seem strongly dose dependent. Furthermore, unlike 

Dusp9, Klhl13 mediates its function as part of a complex, which might lead to its stoichiometric imbalance upon 

overexpression of only one of its members, leading to less pronounced overexpression phenotypes. The fact 

that small but significant effects are nevertheless observed upon Klhl13 overexpression with the stronger sgRNA 

(that leads to Klhl13 levels similar albeit slightly lower than the ones observed in female cells) implies that the 

later might also be a mediator of the sex differences observed in mESCs. The degree to which Dusp9 or Klhl13 

mediate the female-associated naive pluripotency phenotype can be studied in a complementary fashion 

through the generation of heterozygous mutants in female mESCs. We thus went on to elucidate whether female 

mutants with two X chromosomes, but just one copy of the Dusp9/Klhl13 allele, would indeed display a male-

like pluripotency phenotype.  

5.4. Heterozygous deletion of Klhl13 and Dusp9 in female mESCs qualitatively recapitulates 

the male pluripotency phenotype 

If both Klhl13 and Dusp9 are indeed mediators of the sex differences observed between female and male mESCs, 

their heterozygous deletion in female cells should lead to a male-like pluripotency phenotype. In order to test 

this hypothesis, we generated both heterozygous (HET) and homozygous (HOM) Dusp9 (D9) and Klhl13 (K13) 

mutants, together with double heterozygous mutants (D9K13) to assess for additive effects of the two genes. 

The generation of homozygous mutants might allow the detection of stronger gene-mediated effects on the 

mESC pluripotency phenotype. D9 mutants were generated by targeting an sgRNA to the start of the coding 

sequence for the generation of frameshift mutations (Fig. 41A). A first strategy where the protomer of the single 

Dusp9 isoform would be deleted by targeting the Cas9 endonuclease to regions upstream and downstream of 

the latter was unsuccessful in this work. Due to the fact that frameshift deletions are difficult to verify via PCR 

genotyping, a region surrounding the start of the Dusp9 coding sequence was amplified and Sanger-sequenced 

for detection of HET clones (see section 4.2.7.2, Fig. 17A). D9-HOM clones, on the other hand, were identified 

via Immunoblotting (Fig. 17B). Heterozygous deletions were additionally confirmed via NGS for the D9-HET Clone 

1 and both D9K13-HET clones (Fig. 17C, Fig. 41B), whereas for the D9-HET Clone 2 the presence of a mutant and 

http://f1000.com/work/citation?ids=3406497,739644,44633&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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wildtype allele was confirmed through the cloning of the PCR amplicon surrounding the start of the coding 

sequence into a mammalian expression plasmid and subsequent Sanger-sequencing of single bacterial clones 

(Fig. 17D, Fig. 41B). The latter was due to the fact that it was not possible to generate two D9-HET clones in a 

first attempt, so a second one was implemented.   

Figure 41. Generation of Dusp9 and Klhl13 mutant cell lines in female mESCs. (A) Strategy for the generation of Klhl13 and Dusp9 mutant 
cell lines. A region around 4.5 kb spanning the Klhl13 promoter and TSS was excised via CRISPR/Cas9, whereas for Dusp9, frameshift mutants 
were generated by targeting the start of the CDS. (B) Sequence of Dusp9 frameshift mutants. Start codon is underlined. (C) RNA fluorescence 
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in situ hybridization (FISH) of XX wildtype cell lines together with Klhl13 heterozygous and homozygous mutants. Probes for Klhl13 were 
used (green) together with an X-linked control gene (orange). A bar graph shows the fraction of cells with a specific pattern.  

Heterozygous (HET) and homozygous (HOM) Klhl13 (K13) mutants were generated by deleting a 4.5 kb region 

around its promoter using CRISPR/Cas9 and mutants were identified via genotyping PCR (Fig. 41A, Fig. 16, see 

section 4.2.7.2). Loss of Klhl13 transcription in the respective mutants was additionally confirmed by nascent 

RNA FISH (Fig. 41C). All phenotypes were analyzed using two clones from each genotype except for 

differentiation kinetics, and all clones were karyotyped via double digest genotyping-by-sequencing (Elshire et 

al., 2011) (see section 4.3, Fig. 19).  

Klhl13 and Dusp9 protein levels in all mutant cell lines were assessed via Immunoblotting. Here, Klhl13 levels 

were reduced ~2.7-fold in HET mutants compared to XX cells, whereas protein levels in the HOM mutants were 

not detected (Fig. 42). Dusp9 levels were ~1.8-fold lower in the HET mutant cell lines compared to XX cells, not 

reaching, however, the ~3.5-fold reduction observed in XO cells, pointing to additional regulatory mechanisms 

from other X-linked genes. In the HOM mutants, on the other hand, Dusp9 protein levels were not detected (Fig. 

42).  

 

Figure 42. Generation of Dusp9 and Klhl13 mutant cell lines in female mESCs. Immunoblot quantification of Dusp9 (top) and Klhl13 (bottom) 
protein levels in Dusp9 (yellow) and Klhl13 (blue) heterozygous (HET) and homozygous (HOM) mutant cell lines together with Dusp9/Klhl13 
double heterozygous mutants (red) compared with the parental XX and XO cells lines (black). Two clones were compared for each cell line 
and are depicted as grey circles (clone 1) or triangles (clone 2). The mean of the two clones and three biological replicates is shown as a thick 
line. Protein levels were normalized to ß-Tubulin and to the mean of the XX controls.  * p < 0.05 from a two-tailed paired Student’s t-test 
comparing each mutant/XO cell line vs. the XX controls. 

5.4.1 Dusp9 and Klhl13 repress MAPK target gene expression in female mESCs, whereas Dusp9 additionally 

affects Mek phosphorylation levels 

If Dusp9 and Klhl13 are indeed mediators of the female pluripotency phenotype in mESCs, their heterozygous 

deletion in female cells should lead to higher levels of the MAPK signaling pathway, including higher levels of 

MAPK target genes and lower levels of Mek phosphorylation.  

We first assessed MAPK signaling levels in the generated mutants by quantifying Eg1 and Spry4 expression via 

qPCR. Here, levels were significantly increased in all mutant cell lines compared to the parental cell line albeit to 

different degrees (Fig. 43A). The strongest increase was observed in the D9-HOM mutants followed by D9K13-

HET mutants, where MAPK target expression levels were 6.5/3.4-fold (Egr1/Spry4) higher compared to female 

wildtype cells. Levels of MAPK target genes Egr1 and Spry4 in D9K13-HET mutants therefore almost reached the 

ones observed in XO cells, which displayed 10.2/2.7 higher levels of Egr1 and Spry4, respectively, compared to 

http://f1000.com/work/citation?ids=204118&pre=&suf=&sa=0
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XX wildtype cells. Both D9 and K13 HET mutants showed significant upregulation of MAPK target genes, albeit 

to a lower extent compared to their respective HOM mutants (Fig. 43A).  

To get a more global picture of signaling pathway levels that modulate the pluripotency state in mESCs, RNA-

seq data was generated from all the previously assessed mutants and an extra XO clone (Clone 3). This data was 

then used to assess global expression of Mek, Gsk3 and Akt targets (Schulz et al., 2014; Watanabe et al., 2006; 

Wray et al., 2011). Library generation for this experiment was carried out by Ilona Dunkel.  

Gsk3 signaling is associated to differentiation of mESCs and is blocked in 2i culture conditions (Sato et al., 2004; 

Wray et al., 2011; Ying et al., 2008), whereas Akt signaling is a strong pro-pluripotency pathway known to be 

upregulated in female mESCs (Watanabe et al. 2006; Schulz et al. 2014). Surprisingly, the strongest upregulation 

of Mek targets was observed this time in the K13-HOM mutants (Fig. 43B). This suggests that a greater number 

of Mek targets is upregulated to higher levels in K13-HOM mutants compared to D9-HOM mutants. D9K13-HET 

mutants showed the highest upregulation of Mek and Gsk3 targets among HET mutants, together with the 

strongest downregulation of Akt targets (Fig. 43B). Additionally, a higher upregulation of Mek and Gsk3 target 

genes could be observed for K13-HET mutants compared to D9-HET mutants. However, for all three signaling 

pathways, the effects detected in the D9K13 mutants could accounts for ~50% of the differences observed 

between XX and XO cells, suggesting the involvement of other genes in mediating the observed sex differences 

between female and male mESCs.  

 

Figure 43. Dusp9 and Klhl13 inhibit the MAPK signaling pathway in female mESCs. (A) qPCR quantification of MAPK target genes Egr1 (top) 
and Spry4 (bottom) levels in Dusp9 (yellow) and Klhl13 (blue) heterozygous (HET) and homozygous (HOM) mutant cell lines together with 
Dusp9/Klhl13 double heterozygous mutants (red) compared with the parental XX and XO cells lines (black). Two clones were compared for 
each cell line and are depicted as grey circles (clone 1) or triangles (clone 2). The mean of two clones and three biological replicates is shown 
as a thick line. (B) Boxplots showing the expression of Mek (left), Gsk3 (middle) and Akt (right) target genes assessed via RNA-seq in cell lines 
with the indicated genotype. Boxes indicate the 25th and 75th percentiles and the central lines represent the median. (C) Immunoblot 
quantification of pMek protein levels in Dusp9 (yellow) and Klhl13 (blue) heterozygous (HET) and homozygous (HOM) mutant cell lines 
together with Dusp9/Klhl13 double heterozygous mutants (red) compared with the parental XX and XO cells lines (black). Two clones were 
compared for each cell line and are depicted as grey circles (clone 1) or triangles (clone 2). The mean of the two clones and three biological 
replicates is shown as a thick line. Protein levels were normalized to total Mek protein levels and to the mean of the XX controls.  * p < 0.05 
from a two-tailed paired Student’s t-test (or Wilcoxon rank-sum test for (B)) comparing each mutant/XO cell line vs. the XX controls. 

We next assessed Mek phosphorylation levels, where the strongest downregulation was observed in the D9-

HOM mutants (7.5-fold reduction compared to XX wildtype cells) (Fig. 43C). D9-HET and D9K13-HET mutants 
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exhibited a 2.6-fold reduction compared to wildtype XX cells, approaching the 4.3-fold reduction observed in XO 

cells (Fig. 43C). K13 mutants, however, showed similar Mek phosphorylation levels compared to XX cells, in 

accordance with the previous screen results (see section 5.2.4) and Klhl13 overexpression experiments in male 

cells (see section 5.3.1).  

In summary, it appears that Dusp9 has a stronger effect on Mek phosphorylation, whereas Klhl13 deletion 

mutants, on the other hand, exhibit higher levels of MAPK target genes, which is in contrast to results obtained 

from overexpression experiments  (even though only two MAPK target genes were assessed in the latter). This 

is in accordance to the role of Dusp9 as an Erk phosphatase and MAPK inhibitor. The mechanism by which Klhl13 

exerts an effect on MAPK target genes without affecting Mek phosphorylation, however, requires further study.  

5.4.2 Klhl13, and to a lesser extent Dusp9, induce higher levels of pluripotency factor expression and lead to 

slower differentiation kinetics in female mESCs 

If a double dosage of Dusp9 or Klhl13 in female mESCs leads to a shift towards the naive pluripotency state, their 

heterozygous female mutants should display a decrease in pluripotency factor expression, faster differentiation 

kinetics, and higher levels of CpG methylation. We first assessed pluripotency factor expression via qPCR, where 

the strongest downregulation of Nanog and Prdm14 compared to female wildtype cells was observed in the K13-

HOM mutants (1.5-1.8-fold reduction compared to XX cells), followed by the D9K13-HET mutants (1.5-1.4-fold 

reduction compared to the parental cell line) (Fig. 44A). These changes in pluripotency factor expression could 

account for approx. half of the differences observed between XX and XO cells (2-2.4-fold lower levels than XX 

cells). D9K13-HET mutants displayed slightly lower Nanog levels compared to the single HET mutants, even 

though this was not the case for Prdm14 (Fig. 44A).  

Differentiation kinetics were assessed next by measuring pluripotency factor expression via qPCR at different 

timepoints during differentiation. For this, all cell lines were first adapted to 2i/LIF conditions for at least five 

passages before undergoing differentiation via LIF withdrawal. Since adaptation of mESCs to 2i/LIF increases 

pluripotency factor levels significantly, we argued that a stronger downregulation of these markers would be 

observed during differentiation by starting from these conditions, potentially leading to stronger differences in 

pluripotency factor expression between female wildtype cells and the generated mutants.  
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Figure 44. Mutation of Klhl13 and to a lesser extent Dusp9 in female mESCs leads to a significant decrease in pluripotency factor 
expression and faster differentiation kinetics. (A) qPCR quantification of Nanog (top) and Prdm14 (bottom) pluripotency factor levels in 
Dusp9 (yellow) and Klhl13 (blue) heterozygous (HET) and homozygous (HOM) mutant cell lines together with Dusp9/Klhl13 double 
heterozygous mutants (red) compared with the parental XX and XO cells lines (black). Two clones were compared for each cell line and are 
depicted as grey circles (clone 1) or triangles (clone 2). The mean of two clones and three biological replicates is shown as a thick line. (B) 
qPCR quantification of pluripotency factor expression during differentiation via 2i/LIF withdrawal in Dusp9 (yellow) and Klhl13 (blue) 
heterozygous (HET) and homozygous (HOM) mutant cell lines together with Dusp9/Klhl13 double heterozygous mutants (red) compared 
with the parental XX and XO cells lines (black). One clone was assessed for each mutant cell line and the mean and SD from three biological 
replicates is shown. * p < 0.05 from a two-tailed paired Student’s t-test comparing each mutant/XO cell line vs. the XX controls. 

During the four-day differentiation time course, the D9-HET mutant showed only a very small reduction in 

Nanog, Prdm14 and Esrrb levels compared to the parental cell line (Fig. 44B). K13-HET cells, on the other hand, 

downregulated all three factors with faster dynamics. Interestingly, the D9K13-HET mutant showed faster 

differentiation kinetics than both HET mutants and exhibited pluripotency factor expression levels closely 

resembling those of XO cells during differentiation (Fig. 44B).  

Overall, Klhl13 mutants showed stronger effects on pluripotency factor expression and differentiation dynamics 

compared to Dusp9 mutants. Klhl13 poses thus a strong and novel modulator of the female pluripotency 

phenotype.  

5.4.3 Mutation of Klhl13 and Dusp9 in female mESCs leads to a significant increase in global CpG methylation 

levels  

Female mESCs display lower levels of global CpG methylation compared to their male counterparts, reflecting a 

more naive state of pluripotency. We therefore next assessed global CpG methylation levels in all mutant cell 

lines by implementing the LUMA assay (see section 4.5). Here, both single HET cell lines showed an increase of 

~10% of global CpG methylation compared to female wildtype cells, whereas double HET mutants and HOM 

mutants showed increases of ~15% (Fig. 45A). Since XX wildtype cells exhibit values of approx. 30% global CpG 

methylation, compared to the approx. 60% displayed by XO cells, double heterozygous mutants could again 

account for around half of the differences observed between male and female mESCs. Similar patterns were 

observed concerning the expression of DNA methyltransferase enzymes, where the highest expression of 

Dnmt3b and Dnmt3I was observed in the K13-HOM mutants (2.1/2.6-fold for Dnmt3b/Dnmt3I in K13-HOM vs 

3.7/2.2 in XO), followed closely by D9-HOM mutants (1.7/2.2-fold) and then D9K13-HET cells (1.5/1.5-fold) (Fig. 

45B). Expression changes of both of these genes were even lower in single HET mutants. No significant increases 

were observed regarding Dnmt3a expression in any of the generated mutant cell lines (Fig. 45B). Our results are 

in contrast with other studies were female D9-HET mutant mESCs almost fully recapitulate CpG methylation 

levels observed in male cells (Choi et al., 2017; Song et al., 2019).  

In conclusion, we observe that Dusp9 and Klhl13 affect DNA methylation levels in mESCs to a similar extent, and 

that D9K13-HET mutants recapitulate approx. half of the sex differences observed in mESCs regarding this 

specific phenotype. 
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Figure 45. Heterozygous mutation of Dusp9 and Klhl13 induces an increase in global CpG methylation levels in female mESCs. (A-B)  Dusp9 
(yellow) and Klhl13 (blue) heterozygous (HET) and homozygous (HOM) mutant cell lines together with Dusp9/Klhl13 double heterozygous 
mutants (red) compared with the parental XX and XO cells lines (black). Two clones were compared for each cell line and are depicted as 
grey circles (clone 1), triangles (clone 2) or squares (clone 3). The mean of the two (A) or three (B) clones (for the XO clones only) and three 
biological replicates is shown as a thick line. (A) Global CpG methylation levels assessed via pyrosequencing-based luminometric DNA 
methylation assay (LUMA). (B) DNA Methyltransferase expression levels assessed via RNA-seq.   * p < 0.05 from a two-tailed paired Student’s 
t-test comparing each mutant/XO cell line vs. the XX wildtype controls. 

5.4.4 Klhl13 contributes more strongly to the X-dosage induced global transcriptome changes compared to 

Dusp9 

In order to see to which degree the generated mutants could recapitulate the XO phenotype at a global 

transcriptome level, we carried out a differential expression analysis (DEA) between XO/HET mutant cell lines 

and XX wildtype cells using EdgeR from RNA-seq data of all the generated mutants. Differentially expressed 

genes (DEGs) were defined as being significantly (p-value < 0.05) up- (Log2 Fold Change > 0.5) or downregulated 

(Log2 Fold Change < -0.5) between XO or HET mutants cell lines and XX wildtype cells. We then analyzed how 

many of the DEGs found in XO cells overlapped with the DEGs found in the HET mutant cell lines. Here, we 

observed again a smaller overlap of 148 genes between the D9-HET cell line and XO cells, compared to the 201 

genes commonly differentially expressed between K13-HET and XO cells (Fig. 46A). The strongest overlap of 265 

genes, however, was detected with the D9K13-HET cell line (Fig. 46A). A more similar transcriptome profile 

between D9K13-HET and XO cells was also confirmed when performing principal component analysis (PCA), 

followed by K13-HET cells and lastly by D9-HET mutants (Fig. 46B). This data suggest a stronger contribution of 

Klhl13 to the X-dosage induced transcriptome changes compared to Dusp9.  
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Figure 46. Global transcriptome profiling in Klhl13 and Dusp9 mutant cell lines. (A) Differentially expressed genes (DEGs) in XO (grey), K13-
HET (blue), D9-HET (yellow) and D9K13-HET (red) cells compared to the parental XX cell line were identified via RNA sequencing. (log2(fold-
change) > 0.5 or  log2(fold-change) < -0.5, p-value < 0.05). Overlap between these genes is shown in the Venn diagrams. (B) Principal 
component analysis (PCA) of the 100 most variable genes between XX (black), XO (grey), D9-HET (yellow), K13-HET (blue) and D9K13-HET 
(red) cell lines. The average of three replicates is shown.  

In summary, the effects observed in the D9K13-HET mutants regarding MAPK target gene expression, 

pluripotency factor expression, differentiation kinetics and global transcriptome profile suggest that multiple 

genes underlie the sex differences observed in mESCs. This is due to the fact that these mutants can qualitatively, 

albeit not quantitatively, recapitulate the XO pluripotency phenotype. Dusp9 seems to be responsible for the 

effects observed regarding Mek phosphorylation, whereas both genes seem to contribute to the reduction in 

MAPK target gene expression observed in female cells. Effects regarding pluripotency factor expression and 

differentiation kinetics seem to be, on the other hand, more strongly mediated by Klhl13. We have thus validated 

two essential genes underlying the female pluripotency phenotype, identifying hereby a key novel player: Klhl13.  

Dusp9 seems to mediate the phenotypes associated with sex differences in mESCs through the inhibition of the 

MAPK signaling pathway by dephosphorylating one of its main cascade components: Erk. We were able to clarify 

the debated role of Dusp9 as an Erk phosphatase (see section 5.3.1), and to show that the previous hypothesis 

of Dusp9 acting downstream of Erk might be due to the effect of trypsinization before protein harvesting (Choi 

et al. 2017). We next set to investigate the mechanism by which Klhl13 mediates the observed differences in 

female mESCs, which, until now, remains elusive.  

5.5. Identification of Klhl13 target proteins  

Klhl13 is an adaptor protein for the Cullin-3-based E3 ubiquitin-protein ligase complex (Dhanoa et al. 2013; 

Pintard et al. 2004). It consists of a Cul3-binding BTB domain and five Kelch repeats that interact with specific 

substrates, leading to their ubiquitination by the E3 ubiquitin-protein ligase complex and subsequent 

proteasomal degradation (Dhanoa et al., 2013; Pintard et al., 2004). We reasoned that Klhl13 might mediate its 

function by reducing the protein abundance of factors leading to higher levels of MAPK signaling, lower levels 

of pluripotency factor expression and faster differentiation kinetics (Fig. 47A). In order to find Klhl13 target 

proteins, we first set out to find its interaction partners via IP-MS. We subsequently determined which of these 

candidate proteins were upregulated in K13-HOM cells compared to wildtype XX cells (Fig. 47B).  

Identification of Klhl13 interaction partners was carried out by tagging either full-length Klhl13 

(ENSMUST00000115313.7) or the substrate-binding Kelch domain (AA290 to AA585, extracted from  the SMART  
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database (http://smart.embl-heidelberg.de/)) with the green fluorescent protein (GFP,  Hein et al., 201), which 

was used for protein immunoprecipitation using a GFP-specific antibody (Fig. 47B). The GFP-Kelch construct was 

used in order to identify direct substrates of Klhl13 and not those that bind indirectly through Cul3 or other 

adaptor proteins present in the complex such as Klhl9. We nevertheless hoped to find Klhl13 substrates also by 

pulling-down full-length Klhl13, together with Cul3 and other complex components, and we reasoned that 

interaction partners found in both pull-downs would represent strong Klhl13 candidate substrates.  

 

Figure 47. Strategy for the identification of Klhl13 target proteins that mediate its pluripotency-inducing phenotype. (A) Schematic 
representation of the putative mode of action behind the Klhl13-mediated female pluripotency phenotype. Klhl13 binds differentiation-
inducing proteins via its Kelch domain and sends them for proteasomal degradation through the recruitment of the Cul3 E3 ubiquitin ligase 
complex. (B) Experimental strategy for the identification of Klhl13 target proteins. Comparison of the proteomes of XX wildtype cells and a 
K13-HOM mutant cell line allowed the determination of upregulated proteins in the later. Additional pull-down of Klhl13 and the Klhl13 
Kelch domain interacting partners and subsequent IP-MS helped to determine Klhl13 binding partners. All three datasets were integrated 
for the identification of target proteins. (C) Immunoblotting of protein lysates from female K13-HOM cell lines expressing constructs for the 
identification of Klhl13 interacting proteins and an XX wildtype control. Membranes were incubated with an anti-Klhl13 antibody (left) and 
and anti-GFP antibody (right). *bands with the expected size. 

The GFP-Klhl13 construct was additionally coupled to a degron domain consisting of a mutated cytosolic prolyl 

isomerase FKBP12F36V, which was however not used in the reported experiments (Nabet et al., 2018). Plasmids 

for gene overexpression were cloned by Genscript and delivered as ready-to-use Midi preparations (pLenti-PGK-

Degron-GFP-Blast, pLenti-PGK-Degron-GFP-Klhl13-Blast, pLenti-PGK-GFP-Blast, and pLenti-PGK-GFP-Kelch, 

Table 7).  

These constructs were subsequently overexpressed in K13-HOM cells, which are depleted of endogenous Klhl13 

protein (Fig. 47C). Cells were cultured for 3 h with a proteasomal inhibitor before harvesting for IP-MS in order 

to stabilize transient interactions. A total of 218 proteins for GFP-Klhl13 and 197 proteins for GFP-Kelch domain 

http://f1000.com/work/citation?ids=1005934,5000462&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=5000462&pre=&suf=&sa=0
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were enriched after immunoprecipitation relative to the GFP only controls, with an overlap of 110 proteins 

enriched in both datasets (Fig. 48A-B, Fig. 48D). Six known Klhl13 interactors were significantly enriched in the 

GFP-Klhl13 IP (Fig. 48B). Three of them, Klhl22, Klhl21 and Klhl9, are proteins that interact with Klhl13 through 

Cul3, which was also among the significantly scoring interaction partners (Sowa et al., 2009). The other two 

known Klhl13 binding proteins found in the BioGRID database, Nudcd3 and Hsp90aa1, were also significantly 

enriched in the GFP-Kelch domain pull-down (Fig. 48A).  

If Klhl13 indeed leads to the proteasomal degradation of its interaction partners, our protein of interest should 

be upregulated in cells depleted of Klhl13. We therefore carried out a proteomics profiling with label-free 

quantification (LFQ) of the two K13-HOM cell lines and compared it to wildtype female cells to determine 

differentially expressed proteins (Fig. 48C). Among the 110 proteins enriched in both IP-MS experiments, five 

were upregulated in K13-HOM cells from a total of 299 proteins: Scml2, Peg10, Alg13, Larp1, Cct3 (Fig. 48D). 

From these candidate proteins, the X-linked Alg13, which encodes a cytosolic and catalytic subunit recruited by 

Alg14 to the ER membrane for N-linked glycosylation of proteins (Gao et al., 2005), was found depleted in the 

pluripotency and differentiation screens (Enrichment = 0.39/0.52 and FDR = 0.05/0.07, respectively), pointing to 

a possible role as a differentiation-inducing factor (Fig. 48E). Scml2, another candidate gene, is a member of the 

Polycomb group proteins involved in transcriptional regulation, mediating the deposition of repressive histone 

marks H2AK119ub and H3K27me3 (Bonasio et al., 2014; Hasegawa et al., 2015; Maezawa et al., 2018), it is also 

encoded on the X chromosome., and it was strongly upregulated in K13-HOM cells (~8-fold). Peg10, on the other 

hand, represents a MAPK target gene and known oncogene, and was also found strongly upregulated in K13-

HOM cells (~4-fold) (Xie et al. 2018). Lastly, Larp1 represents a transcriptional regulator and Cct3 is a member of 

the chaperonin containing TCP1 complex (CCT) (Philippe et al. 2018; Walkley et al. 1996; Tcherkezian et al. 2014). 

 

Figure 48. Identification of Klhl13 target proteins that mediate its pluripotency-inducing phenotype.. (A-B) Volcano plots showing the 
results of the GFP-Kelch (A) and GFP-Klhl13 pull-down (B). The fold change across three biological replicates relative to the GFP-only control 

http://f1000.com/work/citation?ids=234758&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5517073&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1640445,49371,5179658&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=6266122&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5760429,9280636&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=349736&pre=&suf=&sa=0
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is shown against the p-value calculated via a two-sample Student's T-test with Benjamini-Hochberg correction for multiple testing. Black 
lines indicate the significance threshold that was chosen such that FDR<0.1, assuming that all depleted proteins (left-sided outliers) were 
false-positive. Triangles show known Klhl13 interaction partners (BioGRID database). (C) Volcano plot depicting differentially expressed 
proteins in the K13-HOM cell line compared to wildtype XX cells. The fold change across three biological replicates is shown against the p-
value calculated via a two-sample Student's T-test with Benjamini-Hochberg correction for multiple testing. Upregulated proteins (p < 0.05) 
are highlighted in red. Black circles (A-C) represent the putative target proteins that were identified in all three datasets.  (D) Venn diagram 
showing the putative Klhl13 target genes identified in all three datasets (A-C). (E) Results from all the four generated screens for Alg13. Grey 
dots indicate the enrichment of individual sgRNAs and thick black lines represent the mean. The false discovery rate for Alg13 in all the 
screens is also shown. 

In conclusion, we have identified several putative Klhl13 target genes: Alg13, Scml2, Peg10, Larp1 and Cct3. 

Alg13, the most promising putative target protein, could represent a differentiation-inducing factor, leading at 

the same time to lower pluripotency factor levels. The role of the other identified targets in the context of sex 

differences in mESCs still requires further study.  
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6. Discussion 

Female mESCs are found in a more naive state of pluripotency compared to their male counterparts and XO 

subclones. They display lower levels of MAPK signaling, higher expression of pluripotency factors and lower 

levels of global CpG methylation. Additionally, these cells downregulate pluripotency factors with significantly 

slower kinetics during differentiation.  

We hypothesized that these sex differences could be due to the presence of one or several X-linked genes 

present in a double dosage in female mESCs that inhibit the MAPK signaling pathway and thus lead to a more 

naive pluripotency phenotype, and whose identity has remained unknown until now. 

From a physiological perspective, the slower differentiation kinetics observed in female mESCs might ensure 

proper progression of the XCI process, which starts early during differentiation and takes several days to 

complete. This phenomenon might additionally pose a biological checkpoint in which only the cells that have 

successfully inactivated one of their X chromosomes can successfully downregulate their pluripotency factors, 

continue through their developmental progression and thus contribute to the developed organism.  

In order to identify X-linked genes mediating the aforementioned sex differences in an unbiased manner, we 

made use of a series of complementary pooled CRISPR knockout screens. Since we hypothesized that these 

genes might act by inhibiting the MAPK pathway, we first carried out a primary screen that implemented a 

fluorescent MAPK-sensitive reporter and an sgRNA library that targeted the majority of X-linked genes.  

Secondary screens were subsequently performed in order to determine, among the top scoring genes from the 

primary screen, which genes additionally had an effect on pluripotency factor expression, differentiation kinetics 

and phosphorylation of the MAPK component Mek. These genes should, moreover, be expressed at least at two-

fold higher levels in female mESCs. This way, four X-linked candidate genes were identified: Dusp9, Klhl13, 

Fthl17e and Fthl17f.  

The role of the two strongest hits found in the performed screens, Dusp9 and Klhl13, in mediating the sex 

differences observed in mESCs was confirmed by overexpressing these genes in male cells, which led to a shift 

towards a more naive state of pluripotency. Additionally, heterozygous and homozygous mutants were 

generated in female mESCs, which shifted these cells towards a more primed pluripotent state. Phenotypes such 

as pluripotency factor expression, differentiation kinetics, MAPK target gene expression, Mek phosphorylation 

levels and global CpG methylation were assessed in all generated cell lines. While Klhl13 seems to mediate 

stronger effects regarding pluripotency factor expression and differentiation kinetics, Dusp9 alone strongly 

modulates phosphorylation levels of MAPK pathway components. Curiously, both genes seem to affect 

expression of MAPK target genes.  

Through Klhl13 Immunoprecipitation experiments together with proteomics profiling of the K13-HOM 

(homozygous) mutants compared to wildtype female mESCs, it was possible to determine putative Klhl13 target 

proteins that both interacted with Klhl13 and were upregulated in K13-HOM mutants. Five putative candidates 

were identified: Alg13, Scml2, Peg10, Larp1 and Cct3. The X-linked UDP-N-Acetylglucosaminyltransferase 

Subunit Alg13 was found in the depleted fractions of the pluripotency and the differentiation screen, pointing 

to a possible role as a pluripotency-destabilizing factor.  

6.1. Dusp9 as a mediator of sex differences in mESCs 

The series of pooled CRISPR knockout screens generated in female mESCs identified two top candidates as 

modulators of the observed sex differences in mESCs: Dusp9 and Klhl13.  
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Dusp9 is a known Erk phosphatase and inhibitor of the MAPK signaling pathway (Caunt and Keyse, 2013). Dusp9 

overexpression in male mESCs leads to higher levels of pluripotency factors, significantly slower differentiation 

kinetics and a partial loss of global CpG methylation. Additionally, these cells express lower levels of MAPK target 

genes and display higher levels of Mek phosphorylation and lower levels of Erk phosphorylation, in accordance 

to its role as an Erk phosphatase.  

Curiously, female mESCs with an heterozygous Dusp9 mutation exhibit a very marginal and non-significant 

downregulation of pluripotency factors and differentiate only slightly faster compared to their wildtype 

counterparts. However, Mek phosphorylation levels in these mutants are significantly lower than the ones 

observed in female cells, almost reaching the levels displayed by XO cells, pointing to a strong effect of Dusp9 

on the phosphorylation of this MAPK pathway component. MAPK target genes are additionally upregulated in 

these mutants, in accordance to the role of Dusp9 as a MAPK inhibitor.  

Female wildtype mESCs exhibit higher Mek phosphorylation levels compared to their male counterparts. 

Additionally, differences in MAPK target gene expression are consistently observed, with female cells displaying 

lower levels than XO cells. Given these variations concerning the MAPK signaling pathway in XX vs XO cells, its is 

probable that differences in Erk activity are also present between these cell lines. However, we observed similar 

pErk levels between XX wildtype cells, their XO subclones and the Dusp9 female mutants (both heterozygous 

and homozygous, data not shown), which is curious given the previously confirmed role of Dusp9 as an Erk 

phosphatase through its overexpression in male cells. It is nevertheless possible, that the various negative 

feedback loops that ensure homeostasis of the MAPK signaling pathway are able to guarantee stable pErk levels 

in the long-term, even in Dusp9 homozygous mutants. Stable pErk levels could then be observed in cell lines 

with a constitutive Dusp9 mutation, and less in the Dusp9 overexpression scenario, where expression is induced 

for only few days.  

Our results concerning the upregulation of pluripotency factors and a loss of global CpG methylation through 

Dusp9 overexpression in male mESCs are in accordance to a previous study (Choi et al. 2017). However, the 

latter study also reports an increase in Mek and Erk phosphorylation upon Dusp9 overexpression, which they 

state is due to Dusp9 acting downstream of Erk and to the accompanying decrease in feedback regulation of the 

MAPK pathway (Fig. 49) (Choi et al., 2017). This is in contrast to our results, where we observe a clear decrease 

in Erk phosphorylation upon Dusp9 overexpression, which would be in accordance with the role of Dusp9 as an 

Erk phosphatase (Fig. 49). These discrepancies could be due to the different cell harvesting conditions used for 

Immunoblotting, as requirement of trypsinization in feeder-dependent cell lines leads to drastic alterations in 

phosphorylation levels of MAPK pathway components.  

http://f1000.com/work/citation?ids=1029813&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3406497&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3406497&pre=&suf=&sa=0
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Figure 49. Possible mechanisms of Dusp9 mediated inhibition of the MAPK pathway. Schematic representation of the two proposed 
mechanisms by which Dusp9 might inhibit the MAPK pathway. A study conducted by Choi et al., 2017 reports an increase in both Erk and 
Mek phosphoryation upon Dusp9 overexpression, stating that the MAPK inhibitor could act downstream of Erk. The present work observes 
a strong increase in Mek phosphorylation together with a decrease in pErk levels, in accordance with the role of Dusp9 as an Erk phosphatase. 
Discrepancies between the two studies could be due to different protein harvesting conditions, as trypsinization previous to cell lysis of 
Dusp9 overexpressing cell lines leads to strong increases in pErk levels.  

The Choi et al. study also generated female heterozygous mutants for Dusp9, assessing only global CpG 

methylation levels and showing that these mutants could almost recapitulate male global CpG levels (Choi et al. 

2017). Our study confirms a rise in global CpG methylation levels in Dusp9 HET mutants compared to wildtype 

female cells, however, the increases are not as strong as the ones observed in this previous study, probably due 

to differences in the implemented cell lines, culture conditions and/or methylation assay. 

A previous study showed that female mESCs carrying a Dusp9 mutation in one of their two alleles do not display 

significantly lower levels of pluripotency factor expression or faster differentiation kinetics (Song et al., 2019), 

which is in contrast to other studies showing significant decreases in pluripotency factors upon Dusp9 

knockdown in male cells (Li et al., 2012). Our work confirms that female heterozygous Dusp9 mutants show 

marginal decreases in pluripotency factor expression and slightly faster differentiation kinetics compared to 

female wildtype mESCs, even though these small differences lead to considerable stronger effects in 

Dusp9/Klhl13 double heterozygous mutants.  

In summary, Dusp9 represents an important mediator of sex differences in mESCs by acting as an inhibitor of 

the MAPK pathway. Whether Dusp9 acts as an Erk phosphatase or downstream of the pathway seems to be a 

subject of debate, however, our results suggest that it indeed dephosphorylates the key MAPK pathway 

component Erk. The weak shift towards the primed pluripotency phenotype displayed by Dusp9 HET mutants is 

in accordance with a previous study (Song et al. 2019), hinting that additional genes are involved in mediating 

the reported sex differences in mESCs. However, the stronger shift towards the naive pluripotency phenotype 

upon Dusp9 overexpression in male cells observed in our study also reproduces previous results (Choi et al. 

2017). The strong differences observed between the gain- and loss of function experiments could be due to 

adaptation to the constitutive mutation in female mESCs over several passages, in contrast to the induction of 

Dusp9 overexpression over a few days. Additionally, Dusp9 loss could be compensated by other MAPK regulators 

that act in a redundant manner.  

6.2. Klhl13 as a key and novel mediator of sex differences in mESCs 

Among the two top hits identified in the series of generated CRISPR screens is a novel and key modulator of the 

observed sex differences in mESCs: Klhl13. A deeper study of Klhl13 and the molecular mechanisms behind its 

function could be relevant for several clinical contexts. For once, mutations in Klhl13 diagnosed in patients with 

Inherited peripheral neuropathies (IPN) via whole exome sequencing (WES) identify this gene as a novel disease-

related candidate (Schabhüttl et al., 2014). Additionally, Klhl13 has been found to be differentially expressed in 

patients with Stage I-II laryngopharyngeal squamous cell carcinoma, linking this dysregulation in expresion to 

low survival prediction (Reddy et al., 2019).  

In this work, we find that heterozygous mutation of Klhl13 in female mESCs, and to an even larger extent its 

homozygous mutation, leads to a shift towards the primed pluripotency state. These cells express lower levels 

of pluripotency factors, significantly faster differentiation kinetics, higher global CpG methylation levels and 

higher levels of MAPK target genes than their female wildtype counterparts. Klhl13 also appears to contribute 

more strongly than Dusp9 to the global transcriptome differences observed between XX and their XO cell lines. 

Interestingly, Klhl13 does not affect phosphorylation of MAPK pathway intermediates, meaning that repression 

of MAPK target genes could be mediated at the chromatin level.  This work thus represents the first study that 

links Klhl13 to the modulation of the pluripotent state.  

http://sciwheel.com/work/citation?ids=3406497&pre=&suf=&sa=0
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Klhl13 overexpression in male mESCs leads to a weaker shift towards the naive pluripotency state. Only slightly 

higher levels of pluripotency factors and lower levels of MAPK target genes are observed in Klhl13 male 

overexpressing cells. Significantly slower differentiation kinetics are, however, detected in these cell lines. This 

smaller shift towards the naive pluripotent state could be attributed to the fact that Klhl13 overexpression levels 

are quite low in these cell lines, which is of great importance since these differences seem to be strongly dose 

dependent. Furthermore, unlike Dusp9, Klhl13 mediates its function as part of a complex, which might lead to 

its stoichiometric imbalance upon overexpression of only one of its members, leading to less pronounced 

overexpression phenotypes. The fact that small but significant differences are observed in Klhl13 overexpressing 

male cells points to its role in mediating sex differences in mESCs.  

Klhl13 is a substrate adaptor protein of the E3 ubiquitin ligase complex (Sumara et al., 2007). A previous study 

has conferred a role to Klhl13 in the regulation of proper mitotic progression, together with other components 

of the E3 ubiquitin ligase complex such as Cul3 and Klhl9 (Sumara et al., 2007). The latter study reports that the 

Cul3-Klhl19-Klhl13 complex is needed to remove the passenger Aurora B kinase from mitotic chromosomes in 

order to complete cytokinesis. However, Klhl13 homozygous clones with a normal karyotype could be generated 

without major difficulties in this study, pointing to another role of Klhl13 in mESCs. 

Another former study has generated three large-fragment (LF1-3) heterozygous deletions on the X chromosome 

in female wildtype mESCs in order to corroborate a model in which several, and not single, X-linked genes 

mediate the observed sex differences in mESCs (Song et al. 2019). Faster differentiation kinetics compared to 

female wildtype mESCs were more strongly observed in the LF1, followed by the LF2 mutants. LF3 mutants 

showed marginal effects. The LF1 deletion encompases all genes between the Tfe3 and Zic3 locus, the LF2 

deletion encloses all genes between the Zic3 and the Dusp9 locus, and lastly, the LF3 deletion, all genes between 

the Dusp9 and Nr0b1 locus. Interestingly, both Klhl13 and the Fthl17 cluster, which includes two strong 

candidate genes found in the generated screens (Fthl17e and Fthl17f), are found in the LF1 deleted region. This 

may support the faster differentiation kinetics observed in Klhl13 heterozygous mutants compared to Dusp9 

heterozygous mutants, and at the same time, it reinforces the hypothesis that several genes are responsible for 

mediating the sex differences observed in mESCs.  

Overall, this work shows that Klhl13 is a key mediator of sex differences in mESCs and that heterozygous Klhl13 

and Dusp9 female mESCs mutants qualitatively recapitulate all aspects of the male pluripotency phenotype. 

Furthermore, we demonstrate that effects on pluripotency factor expression and differentiation kinetics are 

mainly mediated by Klhl13. Surprisingly, a double dosage of Klhl13 in female mESCs leads to lower levels of 

MAPK target gene expression, even though it does not affect Mek phosphorylation. The elucidation of the 

molecular mechanism behind the role of Klhl13 in mediating the female pluripotency phenotype could shed 

further light into the nature of the observed phenotypes.  

6.3. Identification of putative Klhl13 target proteins  

Since the molecular mechanisms behind Klhl13´s modulation of the pluripotency phenotype remain elusive, a 

strategy was implemented to find Klhl13 target genes that were upregulated in K13-HOM mutants and that 

interacted with the full Klhl13 protein and its substrate-binding Kelch domain. Using this approach, five putative 

target proteins were identified: Alg13, Scml2, Peg10, Larp1 and lastly, Cct3.  

In order to confirm and validate the interaction of Klhl13 with the identified targets, their tagged proteins could 

be overexpressed in Hek293T cells together with a tagged Klhl13 protein. The latter could then be 

immunoprecipitated and the target pull-down determined via Immunoblotting. Additionally, the endogenous 

Klhl13 locus could be tagged in order to confirm interaction with endogenous target proteins. Ubiquitination of 

target proteins could be further confirmed by overexpressing the tagged target proteins in either female 

http://f1000.com/work/citation?ids=748122&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=748122&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7255779&pre=&suf=&sa=0


86 

wildtype cells or K13-HOM mutants followed by protein pull-down and quantification of the fraction of 

ubiquitinated protein via immunoblotting. The later experiments would further confirm the nature of Alg13, 

Scml2, Peg10, Larp1 and Cct3 as Klhl13 target proteins.  

Alg13 represents a subunit of a bipartite UDP-N-acetylglucosamine transferase complex (Gao et al., 2005). 

However, a second isoform could also function as a deubiquitinase enzyme (Mevissen et al. 2013). This X-linked 

gene was targeted in both the GeCKOx as well as the GeCKOxs library, being found among the 50 most depleted 

genes genes in the primary screen. It was also depleted in the pluripotency and differentiation screen, pointing 

to a role as a pro-differentiation factor. It would be of interest to see whether overexpression of this gene in 

female wildtype mESCs or knockdown in K13-HOM mutants leads to a male-like pluripotency phenotype in the 

first or phenotypic rescue in the latter.  

Scml2 is a member of the Polycomb group proteins and is therefore associated with transcriptional repression 

(Montini et al. 1999; Shao et al. 1999; Wang et al. 2010). Since no changes are detected in the phosphorylation 

levels of MAPK pathway components in Klhl13 mutant female mESCs cells, Scml2 could mediate the observed 

differences in MAPK target gene expression at the chromatin level. Indeed, even though Scml2 has been shown 

to lead to the deposition of repressive histone marks such as H3K27me3 and H2AK119ub, it has also been 

implicated in the removal of the latter through the recruitment of the deubiquitinase enzyme Usp7 (Bonasio et 

al., 2014; Hasegawa et al., 2015; Maezawa et al., 2018). This points to a possible role of Scml2 in both 

transcriptional activation as well as transcriptional repression. It would be of interest to determine whether 

Scml2 overexpression in female wildtype cells leads to changes in MAPK target gene and pluripotency factor 

expression, and therefore a general shift towards a more primed state of pluripotency. If this is indeed the case, 

chromatin immunoprecipitation (ChIP) experiments could help to verify whether Scml2 overexpressing cells 

indeed display different levels of polycomb-mediated repressive histone marks at MAPK target genes or 

pluripotency genes compared to wildtype cells and whether Scml2 binds directly to these genes.  

If the degradation of Scml2 via a double dosage of Klhl13 indeed leads to the more naïve state of pluripotency 

observed in female mESCs, its knockdown in K13-HOM mutants should rescue their phenotype. Scml2 was 

among the genes targeted in the primary CRISPR screen, being encoded on the X chromosome, but was neither 

in the depleted or enriched gene fraction. However, Scml2 could still mediate the phenotypic changes observed 

in Klhl13 mutants, since the chromatin regulatory elements that could be subject to deubiquitination by Scml2 

are not present in the surroundings of the randomly integrated SRE-Elk reporter used in the screen. Additionally, 

the levels of Scml2 in K13-HOM mutants are significantly higher than the ones displayed by wildtype female 

mESCs, the cell line in which the SRE-Elk screen was performed. It could therefore be possible that a shift back 

towards a more naïve state of pluripotency is only possible to detect upon Scml2 knockdown in K13-HOM cells.  

A third interesting candidate worth investigating is the maternally imprinted/paternally expressed Peg10 (Ono 

et al., 2001). This gene is retrotransposon-derived and its mutation leads to embryonic lethality around 10.5 dpc 

due to severe placental defects (Ono et al., 2006). The inhibition of the MAPK pathway through culture with an 

inhibitor of Mek leads to its downregulation in mESCs, representing a MAPK target gene. This, however, could 

explain why it is significantly upregulated in K13-HOM mutants, which show an increase in MAPK target gene 

levels, raising therefore the possibility that Peg10 might not represent a direct Klhl13 target gene.  

Peg10 is a known oncogene and its knockdown has been shown to lead to lower Erk phosphorylation levels, 

even though the present work does not detect changes in the phosphorylation of MAPK pathway components 

caused by Klhl13 (Peng et al., 2017; Xie et al., 2018). Additionally, it has been found to interact with Nanog and 

Oct4 in human cancer cells (Oliviero et al., 2015). It would be therefore nevertheless interesting to determine 

whether Peg10 overexpression in female wildtype mESCs leads to changes in MAPK targets or pluripotency 

factor expression, even though its mechanisms of action are still incompletely understood. 
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Protein ubiquitylation is a mechanism implicated in a variety of cellular processes that not only include the 

proteasomal degradation pathway. Proteins can be tagged with just one ubiquitin (Ub) molecule 

(monoubiquitylation), which has been linked, among others, to the regulation of endocytosis and DNA repair 

(Haglund and Dikic 2005). A protein can also be ubiquitylated at various lysine residues (multiubiquitinylation), 

and since ubiquitin itself harbors seven of these residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63), a 

single ubiquitin molecule can be ubiquitylated to form ubiquitin chains (polyubiquitylation). It has been shown 

that while Lys48-linked poly-Ub (UbLys48) leads to proteasomal degradation of target substrates (Hershko and 

Ciechanover 1998), mono-Ub and UbLys63 chains have been associated to cellular signaling (Silverman and 

Maniatis 2001; Newton et al. 2008; Parvatiyar et al. 2010; Haglund and Dikic 2005). It is therefore possible that 

some of the Klhl13 interacting proteins found in both pull-down experiments might not be upregulated in K13-

HOM mutants, but could nevertheless be involved in the activation of signaling pathways that lead to a more 

primed state of pluripotency.  

In conclusion, we have identified, through the implementation of Klhl13 Immunoprecipitation experiments 

together with proteomics profiling of the K13-HOM mutants compared to wildtype female mESCs, five putative 

Klhl13 target proteins: Alg13, Scml2, Peg10, Cct3 and Larp1. The most promising candidate seem to be, however, 

Alg13, which could represent a pluripotency-destabilizing factor as it was found in the depleted fractions of both 

the pluripotency as well as the differentiation screen.  

6.4. Multiple genes underlie the observed the sex differences in mESCs 

The series of CRISPR knockout screens generated in this work revealed four candidates genes mediating the sex 

differences observed in mESCs that scored in at least two of the four screens and are expressed at least two fold 

higher in female mESCs compared to male cells: Klhl13, Dusp9, Fthl17e and Fthl17f. Additionally, Zic3 and Stag2 

were also significantly enriched in at least two screens, however, their expression levels in female and male 

mESCs were similar.  

By generating heterozygous and homozygous female mESC mutants for Klhl13 and Dusp9 we showed that 

effects on pluripotency factor expression and differentiation kinetics are mainly mediated by Klhl13. However, 

Klhl13 does not affect Mek phosphorylation, whereas Dusp9 heterozygous mutants display pMek levels almost 

reaching the ones observed in XO subclones. Interestingly, both genes seem to affect MAPK target gene 

expression similarly. By overexpressing Dusp9 in male mESCs we see a clear decrease in Erk phosphorylation and 

an accompanying rise in pMek levels due to reduced feedback regulation, pointing to the role of Dusp9 as an Erk 

phosphatase and MAPK inhibitor. The mechanism by which Klhl13 affects MAPK target genes remains, however, 

slightly more unclear. We find one putative Klhl13 target protein, Alg13, as a possible pluripotency-destabilizing 

factor, since it was depleted in both the pluripotency as well as the differentiation screen. The role of the other 

identified putative target proteins in mediating the effects observed in Klhl13 mutants is subject of future study.  

Klhl13 and Dusp9 double heterozygous mutants (D9K13-HET) display lower levels of pluripotency factors, higher 

levels of MAPK target genes and faster differentiation kinetics than their single heterozygous mutants, which 

clearly shows that both genes are implicated in mediating sex differences in mESCs. However, for most of the 

phenotypes assessed in this work, D9K13-HET mutants can account for approx. half of the differences observed 

between female and male mESCs, pointing to the fact that there must be additional mediators of the female 

pluripotency phenotype. These most probably include some of the additional genes identified in the generated 

CRISPR screens: Fthl17e, Fthl17f, Zic3 and Stag2.  

Zic3 is known to enhance iPSC generation and regulate Nanog expression, as its knockdown leads to a 

downregulation of the latter (Declercq et al., 2013; Lim et al., 2007, 2010). Because of this, Zic3 could contribute 

to the increase in pluripotency factor expression and slower differentiation kinetics observed in female mESCs, 
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as also shown in the secondary screens. The fact that it is significantly enriched in the primary SRE-Elk screen 

but not in the pMek screen shows similarities to Klhl13´s phenotype, hinting that it could also mediate the 

increases in MAPK target gene expression at the chromatin level or otherwise through indirect regulation. 

Analysis of RNA-seq data in 1.8 XX vs XO cell lines showed that female cells expressed Zic3 at slightly lower levels 

than XO cells, however, a higher expression of this gene in female compared to male cells has been reported in 

other cell lines (Song et al., 2019).  

Studies have shown that female cells harboring an heterozygous mutation for Zic3 display no significant 

decreases in pluripotency factor expression or faster differentiation kinetics (Song et al., 2019). However, this 

report drew the same conclusion about the heterozygous mutation of Dusp9 in female cells, which, as we show 

in the present work, leads to considerable additive effects in cells with a Klhl13 heterozygous mutant 

background. It is therefore possible that a further shift towards a male-like pluripotency phenotype could be 

observed in Dusp9, Klhl13 and Zic3 triple heterozygous female mESCs.  

Stag2, on the other hand, is a member of the cohesin complex, which has been shown to modulate pluripotency 

factor expression through the establishment of long-range interactions between gene regulatory elements 

(Kagey et al., 2010). Recent studies, however, show that the dysregulation of pluripotency factor expression 

could be due to DNA damage caused by the absence of cohesin during DNA replication (Gupta et al., 2016). It 

would therefore be of interest to determine whether the effects of Stag2 on MAPK target gene and pluripotency 

factor expression are due to a global transcriptional dysregulation that could lead to confounding results. 

A particularly interesting candidate is the Fthl17 gene cluster, which encodes seven ferritin-like proteins that 

lack ferroxidase activity and are partially located in the nucleus (Ruzzenenti et al., 2015). It is maternally 

imprinted and only expressed from the paternal X chromosome in female blastocysts, which is also observed in 

the higher expression patterns of Fthl17f and Fthl17e, the only two genes expressed from this cluster, in female 

mESCs (Kobayashi et al., 2010). Previous studies have reported that XmO blastocysts with a maternally inherited 

X chromosome develop in a similar rate compared to male blastocyst, whereas XpO blastocyst, whose X 

chromosome is paternally derived, develop much slower (Thornhill and Burgoyne, 1993). This points to a 

“retardation factor” expressed from the paternal X chromosome, which could be represented by the maternally 

imprinted Fthl17 cluster.   

In summary, we have identified and validated two genes implicated in mediating sex differences in mESCs. 

However, given that female mESCs carrying a double heterozygous mutation for Klhl13 and Dusp9 do not fully 

recapitulate the male pluripotency phenotype, additional genes might be involved, the most promising 

candidate being the Fthl17 gene cluster.  

6.5. Identified modulators of sex differences in mESCs and their potential roles in sex-

specific stem cell therapies 

This work uncovered several X-linked genes that, when present in a double dosage in female cells, lead to 

differences in their signaling and pluripotency state. These results could therefore possibly contribute to the 

development of future sex-specific stem cell therapies. Since a double dosage of the identified X-linked genes 

influences pluripotency factor expression in the undifferentiated state together with differentiation kinetics, it 

is likely that it also affects the efficiency of iPSC generation. Due to the fact that these genes also modulate the 

signaling strength of several pathways, it is likely that in vitro differentiation protocols for specific lineages would 

lead to different outcomes regarding cell fate determination in a sex-specific manner.  

Human female-derived iPSCs and hPSCs retain their inactive X chromosome in culture, since they are thought to 

be found in a more primed state of pluripotency (Kim et al., 2014a; Silva et al., 2008). However, a phenomenon 
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called X chromosome erosion is often observed after several passages in vitro, where the lncRNA Xist becomes 

gradually silenced and the inactive X chromosome partially reactivated (Silva et al., 2008; Vallot et al., 2015). 

The eroded state of the inactive X chromosome is irreversible and is maintained throughout differentiation, 

potentially leading to sex differences in differentiation propensity (D’Antonio-Chronowska et al., 2019b, 2019a; 

Patel et al., 2017). Recently, culture conditions have been developed that lead to the reactivation of the inactive 

X chromosome by shifting hPSCs to a more naive state of pluripotency, as observed in pre-implantation 

blastocysts (Takashima et al., 2014; Theunissen et al., 2014). However, there are still marked differences 

between the in vivo and in vitro situation. For once, in vivo preimplantation blastocysts express Xist from both 

X chromosomes, even though this phenomenon does not lead to XCI (Okamoto et al., 2011; Petropoulos et al., 

2016; Vallot et al., 2017). In contrast, the majority of hPSCs maintained in the so called “5iLAF” or “t2iL+Gö” 

medium express Xist from only one X chromosome, even though a small fraction of cells expresses Xist 

biallelically (Sahakyan et al., 2017; Vallot et al., 2017). Additionally,  when induced to differentiate, the X 

chromosome that was previously silenced before reprogramming to the naive state will become inactivated 

anew during differentiation, making the process of XCI in this scenario non-random (Sahakyan et al., 2017). This 

absence of random X chromosome inactivation together with the inability to fully recapitulate the in vivo pre-

implantation state in vitro points to the need of further optimization of the defined culture conditions for hPSCs.  

The aforementioned phenomenon of X chromosome erosion in hPSCs induces, either fully or partially, the 

expression of X-linked genes in a double dosage in female cells, which could lead to sex differences concerning 

signaling and pluripotency states. This would also be the case if culture conditions are developed where full X 

chromosome reaction is achieved in female hPSCs. Thus, these sex-differences could, as mentioned previously, 

affect lineage-specific differentiation protocols in a sex-specific manner.  

In conclusion, the current study has uncovered several X-linked genes that mediate sex differences in mESCs and 

that could play a role in sex-specific stem cell therapies. In general, sex differences between female and male 

individuals in the generation of human PSCs is an understudied phenomenon that deserves further investigation.  

6.6. Identified MAPK pathway modulators in female mESCs and their potential roles in sex-

specific cancer therapies 

In this work, a primary CRISPR knockout screen was implemented for the identification of X-linked MAPK 

regulators by using a MAPK sensitive fluorescent reporter. The purpose of this screen was aimed at identifying 

MAPK inhibitors that would mediate the sex differences observed in mESCs. However, the MAPK pathway has 

been shown to be implicated in a myriad of cellular processes such as cell survival and its dysregulation has been 

linked to many diseases such as cancer (Roberts and Der, 2007). The results of the aforementioned primary 

screen could be therefore relevant for more clinical fields, such as sex-differences in cancer, a field that is gaining 

more attention in the past years. Indeed,  it has been recently shown that X-linked escape genes might be 

involved in the protection of females against certain cancer types, such as Atrx, Cnksr2, Ddx3x, Kdm5c, Kdm6a 

and Magec3 (Dunford et al., 2017).  

The primary screen implemented for the identification of X-linked genes modulating the MAPK signaling 

pathway revealed 9 putative MAPK inhibitors together with 18 activators. Among the identified MAPK inhibitors, 

only Dusp9 has been previously linked to the modulation of the pathway by dephosphorylating and subsequently 

inactivating Erk (Choi et al., 2017; Li et al., 2012; Song et al., 2019). The present study additionally validates the 

role of Klhl13 as a MAPK inhibitor acting primarily on target gene expression. It would be nevertheless of interest 

to study the involvement of the other identified genes in the inhibition of the MAPK signaling pathway and the 

molecular mechanisms leading to it.   
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On the other hand, several of the identified MAPK activators have been linked to the modulation of MAPK 

signaling, including Klf8, Eras, Pgk1 and Kdm6a. Klf8 has been known to activate Egfr in breast cancer, confirming 

its involvement as pathway activator (Li et al., 2015a). Eras knockdown, on the other hand, has been shown to 

lead to decreased levels of Erk phosphorylation and target gene expression in mESCs (Zhao et al., 2015), and a 

similar decrease of Erk phosphorylation has been observed upon Pgk1 knockdown in cancer cells (Zhou et al., 

2019). Finally, the Erk pathway has been shown to be dysregulated in Kdm6a Knockout female mice (Kaneko and 

Li, 2018). Curiously, Kdm6a seems to play a role as a tumor suppressor and is frequently mutated in human 

cancers (Wang and Shilatifard, 2019). It would be therefore interesting to validate whether indeed the remaining 

putative MAPK activators represent novel modulators of the MAPK signaling pathway.  

Dysregulation of XCI in cancer cells is a known albeit understudied phenomenon. Indeed, investigations from 

several decades ago identified the loss of the Barr body in breast cancer cells (Barr and Moore, 1957; Borah et 

al., 1980). An increase in X-chromosomal dosage in cancer cells has been reported since then due to loss of the 

inactive X, followed by duplication of the active X chromosome, as well as epigenetic instability and loss of 

silencing of the inactive X chromosome (Chaligné et al., 2015; Kawakami et al., 2004; Richardson et al., 2006; 

Sirchia et al., 2005). This rise in X-chromosomal dosage in female cancer cells could therefore lead to the 

dysregulation of the MAPK signaling pathway.  

Indeed, several of the identified MAPK activators have been reported to play a role in cancer progression 

including Klf8, Eras, Nr0b1, Dkc1, Pgk1 and Rpl10 (He et al., 2019; Hou et al., 2019; Lahiri and Zhao, 2012; Oda 

et al., 2009; Shi et al., 2018; Sieron et al., 2009; Suárez-Cabrera et al., 2018). A contribution of the novel putative 

MAPK activators in cancer progression through the modulation of the MAPK signaling pathway could therefore 

be a subject of future study.  

On the other hand, a tumor suppressor function has been attributed to the known Erk phosphatase Dusp9 (Liu 

et al., 2007). Additionally, dysregulation of Klhl13 expression has been linked with lower survival prediction in 

patients with Stage I-II laryngopharyngeal squamous cell carcinoma (Reddy et al., 2019). However, whether any 

of the remaining identified MAPK inhibitors might play a role in tumor suppression remains to be resolved in 

future works.  

Overall, this work has uncovered several X-linked MAPK modulators, whose role in sex-specific cancer 

progression still remains largely unclear. These results might therefore help to better understand the sex biases 

observed in certain cancer types and contribute to future sex-specific cancer therapies.  

6.7. Limitations of the study 

The present work has uncovered several X-linked genes that could act collectively to modulate the female 

specific pluripotency phenotype. Female mESCs that carry heterozygous mutations for the two strongest hits, 

Klhl13 and Dusp9, display significant decreases in pluripotency factor expression together with higher levels of 

MAPK pathway activity, global CpG methylation and faster differentiation kinetics. However, these cells do not 

fully recapitulate the male pluripotency phenotype. Heterozygous mutation of other candidate genes in female 

D9K13-HET cells, such as the Fthl17 cluster, could induce a further shift towards the primed state of pluripotency. 

Still, other genes that were not identified in this study could be additionally involved in the observed sex 

differences.  

First, pooled CRISPR Knockout screens are not able to target lncRNAs due to the fact that their effectiveness 

depends on the induction of frameshift mutations in protein-coding genes, which in the case of lncRNAs is not 

applicable, as they do not undergo translation.  The X chromosome harbors around 100 annotated lncRNAs, 

whose contribution to the reported sex differences in mESCs cannot be excluded in the present work.  
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Additionally, combinatorial or synergistic effects of several genes cannot be identified by using CRISPR screens, 

where only one gene is perturbed individually in each cell. Therefore, in order to find genes that might work 

synergistically together with Dusp9 or Klhl13, the primary screen could be repeated by making use of the 

Dusp9/Klhl13 double heterozygous cell line instead of wildtype female mESCs. This would allow screening for 

additional X-linked genes that lead to small but additive effects in female mESCs.  

This work made use of a primary CRISPR knockout screen in order to identify X-linked MAPK inhibitors, and a 

series of secondary CRISPR screens on the hits from the primary screen in order to find genes that would 

additionally modulate pluripotency factor expression and differentiation kinetics. However, some X-linked genes 

could affect pluripotency factor expression or differentiation kinetics without modulating the MAPK signaling 

pathway. For this, an additional knockout screen could be carried out using the 1.8 Nanog-mCherry cell line or 

the 1.8 Esrrb-mCherry cell line targeting all X-linked genes, where their effects on pluripotency factor expression 

and differentiation kinetics would be assessed. 

Other signaling pathways, such as the Gsk3 or Akt signaling pathway, are known to modulate the pluripotency 

state. Gsk3 signaling leads to higher expression of primed pluripotency markers such as Fgf5 and Otx2, whereas 

Akt signaling positively affects the expression of naive pluripotency markers such as Nanog, Prdm14 and Tcl1 

(Popkie et al. 2010; Storm et al. 2009; Watanabe et al. 2006). It is therefore possible that one or several X-linked 

genes could modulate either of these two signaling pathways, subsequently affecting pluripotency factor 

expression, yet without inducing strong effects on MAPK signaling. Since no changes in Gsk3 phosphorylation 

can be observed between female and male mESCs (Schulz et al. 2014), a Gsk3 reporter would have to be 

generated in order to implement a CRISPR screen targeting all X-linked genes for modulators of the Gsk3 

signaling pathway. On the other hand, Akt phosphorylation is significantly higher in female mESCs, making the 

implementation of a pAkt staining readout feasible for the identification of X-linked Akt pathway activators 

(Schulz et al. 2014).   

Regarding the identification of Klhl13 targets, the transient nature of its interacting partners makes their pull-

down through protein tags quite challenging. This work made use of the proteasomal inhibitor MG132 in order 

to increase their stabilization and prevent their proteasomal degradation, however, the use of biotinylating 

enzymes for the identification of transient interactions is a popular alternative (Branon et al., 2018). Here, fusing 

the protein of interest with a promiscuous biotin ligase allows for the labeling of interacting proteins, which can 

be subsequently enriched through streptavidin-mediated pull-down (Branon et al., 2018). The later strategy was 

unsuccessful in the current work due to inefficient pull-down of biotinylated proteins, however, further 

optimization could help to identify target proteins that were not detected in the generated GFP 

Immunoprecipitation experiments due to transient interactions. 

6.8. Outlook  

During early embryonic development, female mammalian blastocysts develop more slowly compared to their 

male counterparts, which is reflected in the later exhibiting higher weights and reaching sooner more advanced 

developmental stages. It remains to be proven whether these sex specific differences arise from faster 

proliferation rates or faster differentiation kinetics (or both) exhibited by male/XO blastocysts. Indeed, it has 

recently been shown that XO mouse iPSCs display higher proliferation rates compared to female iPSCs (Song et 

al., 2019). It would be therefore important to determine, whether female blastocysts express higher levels of 

pluripotency factors specifically in the pre-implantation epiblast before the process of XCI has taken place, which 

would hint towards faster differentiation kinetics in males. This could be addressed by analysing single-cell RNA-

seq data from female and male blastocysts during early development, which would allow for the identification 

of an epiblast population through specific markers genes, followed by analysis of pluripotency factor expression. 

However, ideally embryos from both sexes would be compared in the same litter. If it is proven that the epiblast 
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of female pre-implantation embryos indeed expresses higher levels of pluripotency factors, it would be of 

interest to see whether female embryos carrying heterozygous mutations for Dusp9 and Klhl13 display 

significantly reduced levels of the latter. In addition, one could assess whether these embryos reach certain 

developmental stages at faster rates, as observed for male blastocysts (Seller and Perkins-Cole, 1987; Tsunoda 

et al., 1985). 

Differences in proliferation rates between 1.8 XX and XO mESCs were not assessed in this work. However, it 

would indeed be interesting to determine whether the observations reported in previous studies also apply for 

the cell lines used in this work, and additionally, whether D9K13-HET cells proliferate at faster rates compared 

to female wildtype mESCs. Nevertheless, the later might be unlikely due to the fact that none of the identified 

X-linked hits from the primary and secondary screens lead to slower proliferation rates in female mESCs (Fig. 27, 

see section 5.1.5). Additionally, differences in proliferation rates between XX and XO mESCs were routinetely 

observed during the generated experiments in this work, even though they were never quantified, with XO cells 

proliferating at faster rates. However, no differences were observed between XX wildtype cells and D9K13-HET 

mutants, further confirming the hypothesis that neither of these genes affects proliferation dynamics.  

Our results from the primary CRISPR screen uncovered genes that affected mESC proliferation by comparing the 

sgRNA composition of the cloned plasmid library to the one from the input samples after seven days of 

expansion. sgRNAs targeting X-linked genes present in a double dosage in female mESCs that lead to decreased 

proliferation rates would accumulate after expansion, given the faster proliferation dynamics of the cells 

carrying these sgRNAs upon gene knockout. In this work, only one X-linked gene was identified that was 

significantly enriched in the input population after expansion: Olfr1321 (Fig. 27, see section 5.1.5). This gene 

encodes an olfactory receptor protein, which are members of a family of G-protein-coupled receptors (GPCR). 

It would be of interest to see whether Olfr1321 heterozygous female mESC mutants indeed display faster 

proliferation rates compared to their wildtype counterparts.  

Having generated female cells that have the ability to downregulate pluripotency factors significantly faster 

during differentiation, such as the D9K13-HET mutants, it will now be possible to study in detail how the process 

of X chromosome inactivation is coupled to developmental progression. It has been previously hypothesized 

that the slow differentiation kinetics displayed by female cells are necessary for proper silencing of one of the 

two active x chromosomes, so that only cells that have effectively undergone the process of XCI will contribute 

to the adult organism (Schulz et al., 2014).  

It has been proposed that Xist upregulation at the initiation of XCI should be a slow and stochastic process, which 

would allow the expression of Xist from only one of the two X chromosomes in female cells (Mutzel and Schulz 

2020). This could be guaranteed by a tight regulation of the levels of Xist repressors such as Tsix or pluripotency 

factors (Oct4, Nanog, Rex1, etc). This process would be followed by the fast silencing of a trans-acting Xist 

activator, such as Rnf12, in order to prevent upregulation of Xist from the second X chromosome, which would 

lead to biallelic Xist expression in female cells (see section 1.4.2) (Mutzel and Schulz 2020). It has been indeed 

shown that reducing the amount of Xist repressors, either due to full Tsix loss or knockdown of the pluripotency 

factor Oct4, leads to a higher fraction of female mESCs expressing Xist biallelically (Donohoe et al., 2009; Lee, 

2005). This is in accordance with other studies that have proven that the timing of Xist expression is crucial for 

proper XCI to occur, and that over early Xist upregulation through the lack of a cis acting Xist repressor leads to 

biallelic Xist upregulation (Mutzel et al., 2019).  

Since D9K13-HET cells downregulate pluripotency factors significantly faster compared to female cells, it is likely 

that this reduction of Xist repressor levels could also lead to a higher fraction of cells expressing Xist biallelically. 

However, it has been shown that this state can be resolved by cells into monoallelic Xist expression through the 

silencing of a trans-acting Xist activator such as Rnf12 (Mutzel et al., 2019). Therefore, the consequences of this 

dysregulation remain obscure. A higher apoptosis rate in Tsix knockout cells has been reported in vitro, however, 
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in vivo studies in Tsix knockout embryos remain challenging due to their early embryonic lethality (Lee, 2005). If 

D9K13-HET mutants indeed display a higher portion of biallelically Xist expressing cells, it would be of interest 

to assess whether this would lead to a higher rate of apoptosis in the pre- or postimplantation epiblast. 

Another interesting aspect for further study is whether the sex differences observed in mESCs and early mouse 

embryonic development are displayed by human PSCs and human embryos. The fact that both the primed state 

as well as the naïve state of hPSCs is maintained in culture through the use of MAPK modulators (Fgf2 and a Raf 

inhibitor, respectively), makes the assessment of sex differences in the undifferentiated state quite challenging. 

However, differences in differentiation kinetics starting from naïve culture conditions, where both X 

chromosomes are active, are now possible (Sahakyan et al., 2017; Vallot et al., 2017).  If it is indeed the case that 

female hPSCs downregulate pluripotency factors slower compared to their male counterparts, it would be 

interesting to see whether these differences are also mediated through Klhl13 and Dusp9, among the other 

identified regulators. 
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7. Summary 

Double X-chromosomal dosage leads to substantial sex differences during early development, before the 

process of X chromosome inactivation has occurred. Since these observations occur before fetal hormones are 

produced, they have been attributed to variations in X-chromosomal dosage. Sex differences can be also 

observed by using mESCs as an in vitro model, where female cells display lower levels of the differentiation-

inducing MAPK signaling pathway leading to higher expression of pluripotency factors and slower differentiation 

kinetics and are therefore found in a more naïve state of pluripotency compared to their male counterparts. 

These effects are underlied by X-linked MAPK inhibitors present in a double dosage in female mESCs, whose 

identity, until now, has remained obscured.  

We have therefore carried out a series of CRISPR knockout screens to identify the genes behind the female 

pluripotency phenotype, finding in an unbiased and high-throughput manner several genes that act together to 

shift female mESCs to a more naive state of pluripotency. Among these genes, we find the E3 ubiquitin ligase 

adaptor protein Klhl13, which induces higher pluripotency factor expression, slower differentiation kinetics and 

lower MAPK target gene expression (Fig. 50). Klhl13 acts together with Dusp9, a known Erk phosphatase and 

MAPK inhibitor, to mediate the sex differences observed in mESC, as double Klhl13 and Dusp9 heterozygous 

mutants qualitatively recapitulate the male pluripotency phenotype. Dusp9, however, seems to act primarily on 

the MAPK signaling pathway as an Erk phosphatase, as its effects on pluripotency factor expression and 

differentiation kinetics are considerably weaker compared to the effects mediated by Klhl13 (Fig. 50).  

We have additionally determined, through Klhl13 pull-down experiments and proteomics profiling of Klhl13 

homozygous mutants, several putative Klhl13 target proteins: Alg13, Scml2, Peg10, Larp1 and Cct3. Alg13 might 

represent a pluripotency-destabilizing factor, as it was found depleted in screens implemented for the 

identification of X-linked genes that increase pluripotency factor expression and lead to slower differentiation 

kinetics (Fig. 50). The role of the other putative candidates in mediating the effects observed in Klhl13 mutants 

remains, however, subject of further study.  

We have thus identified several genes behind the sex differences observed in mESCs in an unbiased manner, 

and we have validated the top two candidates: Klhl13 and Dusp9 (Fig. 50). This work is the first to link Klhl13 to 

the modulation of pluripotency and to the sex differences observed in mESCs. Additionally, it has begun to shed 

some light into possible mechanisms through which Klhl13 might mediate the reported female pluripotency 

phenotype.  

 

Figure 50. The female pluripotency phenotype is mediated through an additive effect of two key regulators: Klhl13 and Dusp9. Schematic 
representation of X-chromosomal dosage effects mediated by Klhl13 and Dusp9, leading to lower MAPK signaling levels, higher pluripotency 
factor expression and slower differentiation kinetics in female mESCs.   



95 

8. Zusammenfassung 

Eine doppelte Dosis X-chromosomaler Genprodukte in weiblichen im Vergleich zu männlichen Zellen führt zu 

erheblichen Geschlechtsunterschieden in der frühen embryonalen Entwicklung, bevor der Prozess der X 

Chromosomen-Inaktivierung stattgefunden hat. Da dieses Phänomen vor der Produktion von fetalen Hormonen 

auftritt, resultiert es aus Variationen in der Dosierung des X Chromosomes. Geschlechtsunterschiede können 

auch bei der Verwendung von embryonalen Stammzellen der Maus (mES-Zellen) als In-vitro-Modell beobachtet 

werden, wobei weibliche Zellen ein niedrigeres Niveau des differenzierungsinduzierenden MAPK-Signalweges 

aufweisen, was zu einer höheren Expression von Pluripotenzfaktoren und einer langsameren 

Differenzierungskinetik führt. Sie befinden sich daher im Vergleich zu männlichen Zellen in einem naiveren 

Zustand der Pluripotenz. Diese Effekte werden durch X-chromosomal codierte MAPK-Inhibitoren untermauert, 

die in weiblichen mES-Zellen in doppelter Dosierung vorhanden sind und deren Identität bisher unbekannt war. 

Wir haben daher eine Reihe von CRISPR Knockout Screens durchgeführt, um die Gene zu identifizieren, die hinter 

dem Phänotyp der weiblichen Pluripotenz stehen. Wir haben auf dieser Art unvoreingenommen und im 

Hochdurchsatz mehrere Gene identifiziert, die zusammenwirken, um weibliche mES-Zellen in einen naiveren 

Zustand der Pluripotenz zu versetzen. Eines dieser Gene codiert das E3-Ubiquitin-Ligase-Adaptor-Protein Klhl13, 

das eine höhere Expression von Pluripotenzfaktoren, eine langsamere Differenzierungskinetik und eine 

geringere Expression von MAPK-Zielgenen induziert. Klhl13 wirkt zusammen mit Dusp9, einem bekannten Erk-

Phosphatase- und MAPK-Inhibitor, um die in mES-Zellen beobachteten Geschlechtsunterschiede zu vermitteln. 

Doppelte heterozygote Mutanten für Klhl13 und Dusp9 rekapitulieren also qualitativ den männlichen 

Pluripotenz-Phänotyp. Dusp9 scheint jedoch in erster Linie auf den MAPK-Signalweg zu wirken, da seine 

Auswirkungen auf die Expression von Pluripotenzfaktoren und die Differenzierungskinetik im Vergleich zu den 

durch Klhl13 vermittelten Effekten erheblich schwächer sind. 

Zusätzlich haben wir durch Klhl13-Pulldown-Experimente und quantitative Massenspektrometrie von Klhl13-

homozygoten Mutanten mehrere mutmaßliche Klhl13-Zielproteine bestimmt: Alg13, Scml2, Peg10, Larp1 und 

Cct3. Alg13 könnte einen Pluripotenz-destabilisierenden Faktor darstellen, da es in den hier durchgeführten 

Screens zur Identifizierung X-chromosomaler Gene, die die Expression von Pluripotenzfaktoren erhöhen und die 

Differenzierungskinetik verlangsamen, dezimiert war. Die Rolle der anderen mutmaßlichen Kandidaten bei der 

Vermittlung der in Klhl13-Mutanten beobachteten Effekte bleibt jedoch Gegenstand weiterer Untersuchungen.  

Auf diese Weise haben wir unvoreingenommen mehrere Gene identifiziert, die die in mES-Zellen beobachteten 

Geschlechtsunterschieden vermitteln, und wir haben die beiden stärksten Kandidaten validiert: Klhl13 und 

Dusp9. Diese Arbeit ist die erste, die Klhl13 mit der Modulation der Pluripotenz und mit den in mES-Zellen 

beobachteten Geschlechtsunterschieden in Verbindung bringt. Darüber hinaus hat sie begonnen, die 

Mechanismen zu entschlüsseln, durch die Klhl13 den berichteten weiblichen Pluripotenz-Phänotyp vermitteln 

könnte. 
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10. Appendix 

10.1. Supplemental tables 

10.1.1 Instruments 

Table S1. Instruments used in this study 

Instrument Source 

Accuspin Micro 17 Centrifuge  Thermo Fisher Scientific  

Centrifuge 5424 R Eppendorf 

Centrifuge 5810 R Eppendorf 

Heraeus Megafuge 8 Thermo Fisher Scientific  

Mastercycler Pro Eppendorf 

Precision GP 02 water bath Thermo Fisher Scientific 

Hybrigene Incubator  Techne 

Herasafe Hood for Cell Culture Thermo Fisher Scientific  

Heracell 150i CO2 incubator for Cell Culture  Thermo Fisher Scientific 

Aqualine Water bath AL 12 Lauda  

Axio Vert.A1 Microscope  Zeiss 

4D Nucleofector  Lonza 

EVETM Automated Cell Counter  NanoEnTek 

Pyromark Q24 Qiagen 

BD FACSAria II BD Biosciences 

BD FACSAria Fusion  BD Biosciences 

ABI 7900HT Real-time PCR machine  Thermo Fisher Scientific  

QuantStudioTM 7 Flex Real-Time PCR machine Thermo Fisher Scientific 

Gel DocTM XR+ Gel Documentation System  Bio-Rad 

10.1.2 Enzymes 

Table S2. Enzymes used in this study 

Enzyme Supplier Number 
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Restriction enzymes 

ApaI New England Biolabs R0114S 

BsmBI New England Biolabs  R0580S  

BlpI New England Biolabs  FD0094  

BstXI New England Biolabs  FD1024  

HpaII New England Biolabs R0171S   

MspI New England Biolabs  R0106S  

EcoRI New England Biolabs  R3101S  

KpnI New England Biolabs R3142S 

NIaIII New England Biolabs  R0125S 

PstI New England Biolabs  R3140S  

NheI New England Biolabs  R3131S  

BsrGI New England Biolabs  R3575 S  

NcoI New England Biolabs  R3193S  

NaeI New England Biolabs  R0190S  

BsaAI New England Biolabs R0531S   

Polymerases 

Phusion Hotstart Flex DNA Polymerase New England Biolabs M0535S 

KAPA HiFi HS RM   Roche  7958935001  

HotStart Taq Polymerase Qiagen  203203  

Phusion High-Fidelity DNA Polymerase New England Biolabs  M0530L  

 CloneAmp HiFi PCR Premix Takara Bio 639298 

Other 

RNAse A  Thermo Fisher Scientific  AM2269  

Proteinase K  Thermo Fisher Scientific  25530049  

Recombinant Cas9 from Alt-R® CRISPR-Cas9 System IDT  1081060 

Superscript III Reverse Transcriptase   Thermo Fisher Scientific  18080093  
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T4 DNAse ligase  New England Biolabs  M0202S  

Trypsin  Thermo Fisher Scientific  25300054  

Benzonase  Merck  70746-3  

Gibson Assembly MasterMix  New England Biolabs  E2611S  

  

10.1.3 Kits 

Table S3. Kits used in this study 

Kit Function Supplier Number 

DNeasy Blood and Tissue kit gDNA isolation Qiagen  69504  

Direct-Zol RNA Miniprep Kit RNA purification Zymo Research  R2070  

QuantSeq 3‘ mRNA-Seq Library Prep 
Kit 

RNA sequencing Lexogen Quote 
LexGmbH-
24-06-
2019-
001189  

Peqgold Plasmid Miniprep Kit I  Plasmid DNA purification  VWR  732-2780  

NucleoBond Xtra Midi Plus  Plasmid DNA purification   Macherey-Nagel  740412.50  

NucleoBond BAC BAC DNA purification  Macherey-Nagel   740579  

NucleoSpin Gel and PCR Clean-up  PCR Clean-up  Macherey-Nagel   740609.50  

Nick translation kit FISH probe labeling Abbot  07J00-001  

  

10.1.4 Bacterial strains 

Table S4. Bacterial strains used in this study 

Bacterial strain Function Supplier Number 

MegaX DH10B T1R 
Electrocompetent cells 

sgRNA library transformation Thermo Fisher 
Scientific 

 C640003  

One Shot Stbl3 Chemically 
competent cells 

Lentiviral plasmid transformation Thermo Fisher 
Scientific 

 C737303  

Stellar chemically competent cells Non-lentiviral and lentiviral 
plasmid transformation 

Takara Bio  636762  
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One Shot TOP10 chemically 
competent cells 

Non-lentiviral plasmid 
transformation 

Thermo Fisher 
Scientific 

C404003 

 

10.1.5 SRE-Elk promoter sequence 

Table S5. SRE-Elk promoter sequence 

Name Sequence 

SRE-Elk (MAPK-sensitive promoter) 
CAGGATGTCCATATTAGGACACAGGATGTCCATATTAGGACACAGGA
TGTCCATATTAGGACACAGGATGTCCATATTAGGACACAGGATGTCCA
TATTAGGACACAGGATGTCCATATTAGGACAAAGCTTAATTAAGTTCC
GCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGC
GCCAGCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACT
GAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCG
CGCTCCCACCCAGCTCTGCTCTGCAGCTCCCACCAGTGCCA 

 

10.1.6 Illumina barcodes 

Table S6. Illumina barcodes used in this study 

Barcode 
number  

Barcode 
sequence  

Primer number Sample 

27  ATTCCT  OG126 SRE-Elk screen: Unsorted D7 R1 
Nanog screen: Unsorted D7 R1 
pMek screen: Unsorted unfixed R1 

33  CAGGCG  OG127 SRE-Elk screen: Sorted 25% D7 R1 
Nanog screen: Sorted 25% Top D7 R1 
pMek screen: Unsorted fixed R1 

34  CATGGC  OG128 SRE-Elk screen: Unsorted D7 R2 
Nanog screen: Sorted Bottom D7 R1 
pMek screen: Sorted Top 25% R1 

35 CATTTT  OG129 SRE-Elk screen: Sorted D7 R2 
Nanog screen: Unsorted Top D9 R1 
pMek screen: Sorted Bottom 25% R1 

36 CCAACA  OG130 SRE-Elk screen: Unsorted D7 R3 
Nanog screen: Sorted Top D9 R1 
pMek screen: Unsorted unfixed R2 

37 CGGAAT  OG131 SRE-Elk screen: Sorted D7 R3 
Nanog screen: Unsorted Bottom D9 R1 
pMek screen: Unsorted fixed R2 
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38 CTAGCT  OG132 SRE-Elk screen: Unsorted D9 R1 
Nanog screen: Sorted Bottom D9 R1 
pMek screen: Sorted Top 25% R2 

39 CTATAC  OG133 SRE-Elk screen: Sorted D9 R1 
Nanog: Unsorted D7 R2 
pMek screen: Sorted Bottom 25% R2 

40 CTCAGA  OG134 SRE-Elk screen: Unsorted D9 R2 
Nanog screen: Sorted Top D7 R2 
pMek screen: Unsorted unfixed R3 

41 GACGAC  OG135 SRE-Elk screen: Sorted D9 R2 
Nanog screen: Sorted Bottom D7 R2 
pMek screen: Unsorted fixed R3 

42 TAATCG  OG136 SRE-Elk screen: Unsorted D9 R3 
Nanog screen: Unsorted Top D9 R2 
pMek screen: Sorted Bottom 25% R3 

43 TACAGC  OG137 SRE-Elk screen: Sorted D9 R3 
Nanog screen: Sorted Top D9 R2 
pMek screen: Sorted Bottom 25% R3 

1 ATCACG  OG170 Nanog screen: Unsorted Bottom D9 R2 

2 CGATGT  OG171 Nanog screen: Sorted Bottom D9 R2 

3 TTAGGC  OG172 Esrrb screen: Unsorted undifferentiated R1 

4 TGACCA  OG173 Esrrb screen: Unsorted differentiated R1 

5 ACAGTG  OG174 Esrrb screen: Sorted Top 20% undifferentiated R1 

6 GCCAAT  OG175 Esrrb screen: Sorted Bottom 20% undifferentiated R1 

7 CAGATC  OG176 Esrrb screen: Sorted Top 10% undifferentiated R1 

8 ACTTGA  OG177 Esrrb screen: Sorted Bottom 10% undifferentiated R1 

9 GATCAG  OG178 Esrrb screen: Unsorted undifferentiated R2 

10 TAGCTT  OG179 Esrrb screen: Unsorted differentiated R2 

11 GGCTAC  OG180 Esrrb screen: Sorted Top 20% undifferentiated R2 

12 CTTGTA  OG181 Esrrb screen: Sorted Bottom 20% undifferentiated R2 

13 AGTCAA  OG182 Esrrb screen: Sorted Top 10% undifferentiated R2 

14 AGTTCC  OG183 Esrrb screen: Sorted Bottom 10% undifferentiated R2 

15 ATGTCA  OG184 Esrrb screen: Unsorted undifferentiated R3 

16 CCGTCC  OG185 Esrrb screen: Unsorted differentiated R3 
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17 GTAGAG OG186 Esrrb screen: Sorted Top 20% undifferentiated R3 

18 GTCCGC OG187 Esrrb screen: Sorted Bottom 20% undifferentiated R3 

19 GTGAAA OG188 Esrrb screen: Sorted Top 10% undifferentiated R3 

20 GTGGCC OG189 Esrrb screen: Sorted Bottom 10% undifferentiated R3 

 

10.1.7 Software 

Table S7. Software used in this study 

Name Source Application 

R Studio  (Robinson et al., 2010)  Data analysis and visualization 

Geneious  https://www.geneious.com/ Sequence database for plasmids, 
primers, gDNA, etc, and molecular 
cloning design tool  

FlowJo V10 Software  BD Biosciences  FCS file gating and analysis 

Image Lab Software https://www.bio-rad.com/de-
de/product/image-lab-
software?ID=KRE6P5E8Z 

 Gel visualization and analysis 

Galaxy https://usegalaxy.eu/ (Afgan et 
al., 2016) 

CRISPR KO screen analysis and 
Karyotyping analysis 

Pyromark Q24 2.0.8 https://www.qiagen.com/us/res
ources/resourcedetail?id=273a81
ee-f6fb-4dcf-8fb4-
ae56dd947706&lang=en 

 Pyrosequencing analysis 

Image Studio Lite Ver 5.2  LI-COR Immunoblotting quantification 
and analysis 

SDS 2.1 https://www.thermofisher.com/
de/de/home/technical-
resources/software-
downloads/applied-biosystems-
7900ht-fast-real-timespcr-
system.html 

 qPCR analysis 

QuantStudio 7  https://www.thermofisher.com/
de/de/home/global/forms/life-
science/quantstudio-6-7-flex-
software.html 

 qPCR analysis 

Zen lite 2012  Zeiss  Microscopy Image analysis 

BlueBee NGS data analysis platform  https://www.bluebee.com/  RNA-seq analysis 

http://f1000.com/work/citation?ids=673952&pre=&suf=&sa=0
http://www.geneious.com/
https://usegalaxy.eu/
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1439638&pre=&suf=&sa=0
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MaxQuant v1.6.0.1  https://www.maxquant.org/ LFQ intensity calculation 

Perseus v1.6.1.3  http://www.perseus.tufts.edu  Proteomics data analysis 

NCBI primer blast https://www.ncbi.nlm.nih.gov/to
ols/primer-blast/ 

 qPCR primer design  

CRISPR EDU MIT  http://crispr.mit.edu:8079/  sgRNA design 

Adobe Illustrator CC (64 Bit) https://adobe.com/products/illus
trator/ 

 Figure generation 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://crispr.mit.edu:8079/
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10.2. Vector maps 

10.2.1 302 (SP35) 

 

10.2.2 lenti-MS2-P65-HSF1-Hygro (SP63) 

 

 

 

 



127 

10.2.3 lenti-SRE-Elk-GFP-PEST-Hygro (SP300) 

 

 

10.2.4 lentiGuide-Puro (SP32) 
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10.2.5 pBROAD3-hyBASE-IRES-Zeocin (SP99) 

 

10.2.6 pLenti-PGK-Degron-GFP-Blast (SP234) 
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10.2.7 pLenti-PGK-Degron-GFP-Klhl13-Blast (SP235) 

 

10.2.8 pLenti-PGK-GFP-Blast (SP51, Original plasmid) 
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10.2.9 pLenti-PGK-GFP-Blast (SP233, Modified GFP) 

 

 

10.2.10 pLenti-PGK-GFP-Kelch-Blast (SP238)  
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10.2.11 pU6-sgRNA-EF1a-Puro-T2A-BFP (SP65) 

 

 

10.2.12 pUC19 (SP194) 
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10.2.13 pUC19-Esrrb-P2A-mCherry-T2A-Puro 

 

10.2.14 pUC19-Nanog-P2A-mCherry-T2A-Puro 
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10.2.15 PX330 (SP301) 

 

10.2.16 PX458 (SP177) 
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10.2.17 pCAG-Cre (SP44) 

 

 

10.2.18 lentiCas9-Blast (SP54) 
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10.2.19 pSuper-Puro (SP10) 

 

 

10.2.20 pSuper-Puro-MCS-PolyA (SP27) 
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10.2.21 pSuper-Puro-SRE/Elk-GFP-PEST-PolyA (SP25) 

 

 

10.2.22 pCAGG-L-GFP (SP9) 
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