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Abstract

Human T-lymphotropic virus type-1 (HTLV-1) persists within hosts via infectious spread (de

novo infection) and mitotic spread (infected cell proliferation), creating a population structure

of multiple clones (infected cell populations with identical genomic proviral integration sites).

The relative contributions of infectious and mitotic spread to HTLV-1 persistence are

unknown, and will determine the efficacy of different approaches to treatment. The prevail-

ing view is that infectious spread is negligible in HTLV-1 persistence beyond early infection.

However, in light of recent high-throughput data on the abundance of HTLV-1 clones, and

recent estimates of HTLV-1 clonal diversity that are substantially higher than previously

thought (typically between 104 and 105 HTLV-1+ T cell clones in the body of an asymptom-

atic carrier or patient with HTLV-1-associated myelopathy/tropical spastic paraparesis),

ongoing infectious spread during chronic infection remains possible. We estimate the ratio

of infectious to mitotic spread using a hybrid model of deterministic and stochastic pro-

cesses, fitted to previously published HTLV-1 clonal diversity estimates. We investigate the

robustness of our estimates using three alternative estimators. We find that, contrary to pre-

vious belief, infectious spread persists during chronic infection, even after HTLV-1 proviral

load has reached its set point, and we estimate that between 100 and 200 new HTLV-1

clones are created and killed every day. We find broad agreement between all estimators.

The risk of HTLV-1-associated malignancy and inflammatory disease is strongly correlated

with proviral load, which in turn is correlated with the number of HTLV-1-infected clones,

which are created by de novo infection. Our results therefore imply that suppression of de

novo infection may reduce the risk of malignant transformation.

Author summary

There is no effective antiretroviral treatment for infection with Human T-lymphotropic

virus type-1 (HTLV-1), which causes a range of inflammatory diseases and the aggressive

malignancy Adult T-cell Leukaemia/Lymphoma (ATL) in approximately 10% of infected

people. Within hosts the virus spreads via infectious spread (de novo infection) and
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mitotic spread (infected cell division). The relative contributions of each mechanism are

unknown, and have major implications for drug development and clinical management

of infection. We estimate the ratio of infectious to mitotic spread during the infection’s

chronic phase using three methods. Each method indicates infectious spread at low but

persistent levels after proviral load has reached set point, contrary to the prevailing view

that infectious spread features in early infection only. Risk of disease in HTLV-1 infection

is known to increase with proviral load, via mutations accrued from repeated infected cell

division. Our analyses suggest that ongoing infectious spread may provide an additional

mechanism whereby chronic infection becomes malignant. Further, because antiretroviral

drugs against Human Immunodeficiency Virus (HIV) inhibit HTLV-1 infectious spread,

they may reduce the risk of HTLV-1 malignancy.

Introduction

Human T-lymphotropic virus type-1 (HTLV-1), also known as the human T cell leukaemia

virus, infects an estimated 10 million people worldwide [1]. While the majority of infected

individuals remain lifelong asymptomatic carriers (ACs), in ~10% the virus causes either

Adult T-cell Leukaemia/Lymphoma (ATL) [2] or a range of chronic inflammatory diseases,

notably a disease of the central nervous system called HTLV-1-associated myelopathy/tropical

spastic paraparesis (HAM/TSP) [3]. HTLV-1 viral burden is quantified by the proviral load

(PVL), defined as the number of HTLV-1 proviruses per 100 peripheral blood mononuclear

cells (PBMCs). During the chronic phase of infection, PVL remains approximately constant

within each host [4, 5], but varies between hosts by over four orders of magnitude; a high PVL

is associated with HAM/TSP [5, 6] and ATL [7].

HTLV-1 replicates in the host through two pathways: mitotic spread and infectious spread

[8]. In mitotic spread, an infected cell divides to produce two identical “sister cells" which

carry the single-copy provirus, integrated in the same genomic location as the parent cell.

Infectious spread, or de novo infection, occurs when the virus infects a previously uninfected

cell, and in this case the virus integrates in a new site in the target cell genome (Fig 1). The

combination of infectious and mitotic spread results in a large number of distinct clones of

infected T-cells, where each clone is defined as a population of infected cells with a shared pro-

viral integration site [9–11].

The relative contributions of infectious spread and mitotic spread to the proviral load are

unknown. This ratio is important, because it will directly determine the efficacy of different

approaches to treatment. Although no effective antiretroviral drugs have yet been developed

for HTLV-1 infection, antiretroviral therapy (ART) efficiently reduces infectious spread in

HIV-1 infection by inhibiting reverse transcription, viral maturation and proviral integration.

ART may therefore be effective in HTLV-1 infection if infectious spread contributes to HTLV-

1 pathogenesis. Alternatively, drugs that inhibit T cell proliferation, such as cyclosporin, would

be expected to be more useful if mitotic spread [8] is the dominant mode of viral spread.

The number of clones of HTLV-1-infected T cells depends on the extent of infectious

spread. In this paper, we refer to this number as the HTLV-1 clonal “diversity" (this term

should not be confused with measures such as Shannon entropy or beta diversity). The diver-

sity in one host is unknown, and estimating this number from blood samples is nontrivial.

Diversity estimation is challenging given the nature of the HTLV-1 clone frequency distribu-

tion, where the majority of infected cells are contained in relatively few clones, and the major-

ity of clones contain relatively few cells.
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The prevailing view is that mitotic spread accounts for the long-term persistence of HTLV-

1 in vivo [11–14], and that infectious spread is negligible after initial infection [12, 13]. This

belief was supported by three main observations. First, it was thought that there were relatively

few (~100) HTLV-1 clones in one host [9, 11, 13, 15–19]. Second, HTLV-1 varies little in

sequence both within and between hosts [20]. Since the host DNA polymerase used in cell pro-

liferation (mitotic spread) is far less error-prone than the viral reverse transcriptase used in

infectious spread, a lack of sequence variation implies that infectious spread is rare. Third,

many HTLV-1+ clones have been observed at multiple time points separated by several years

[9, 17], and a long-lived clone is very unlikely to be maintained by repeated proviral integra-

tion at the same integration site through infectious spread, especially since there are no hot-

spots of HTLV-1 integration [9].

However, these three observations do not necessarily imply that infectious spread is negligi-

ble in HTLV-1 pathogenesis [14], particularly when we consider the total number of clones in

the host and the very small proportion of clones that can be sampled. First, the number of

clones that have been both estimated and directly observed has increased over time [9, 11, 13,

15, 17, 19], and current estimates give approximately 104–105 clones in the circulation of ACs

and patients with HAM/TSP [10, 21, 22]. Because smaller and smaller clones can be detected

as method sensitivity increases, it is no longer a given that all clones are large and thus that

infectious spread is non-existent during chronic infection. Second, apparent sequence unifor-

mity may result from repeated detection of sister cells from a small number of expanded

clones. That is, because of the limitations of sampling, there is a strong bias to detection of the

large clones which have expanded through mitosis. Third, the repeated observation of specific

clones over many years does not rule out persistent infectious spread. The observation of a

temporary but dramatic PVL reduction in a patient with HAM/TSP following treatment with

the reverse transcriptase inhibitor lamivudine [23] implies that infectious spread could remain

Fig 1. HTLV-1 infectious and mitotic spread schematic. Left column (Infectious spread): an HTLV-1-infected cell

infects an uninfected CD4+ T cell (typically by cell-to-cell contact via the virological synapse, and potentially also via

cell-free spread). The HTLV-1 provirus (red) integrates in a different genomic location in the newly infected cell, so

infectious spread has resulted in two clones. Right column (Mitotic spread): An HTLV-1-infected cell divides,

whereupon the provirus resides in the same genomic location in each daughter cell. The figure shows a single clone

with two HTLV-1-infected cells.

https://doi.org/10.1371/journal.pcbi.1007470.g001
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important in HTLV-1 persistence, at least in some cases. Finally, the virus must retain the

capacity for infectious spread, for the simple reason that it could not spread between hosts oth-

erwise. We therefore believe it is right to question the assumption that all clones are formed

during early infection.

Mitotic spread must still be predominant in proviral load maintenance, however, because

the 104–105 clones (created by infectious spread) present in one host consist of approximately

1011 infected cells (created by mitotic spread). However, this consideration ignores the possi-

bility that clones may be continuously created by infectious spread and killed by the immune

response and natural death.

The aim of this study was to quantify the rate of infectious spread, and thus the ratio of

infectious spread to mitotic spread during chronic infection. We first estimated HTLV-1

clonal diversity from sequence data in 11 subjects using our previously developed method

[10]. We next fitted a deterministic and stochastic hybrid model of within-host HTLV-1 per-

sistence to clonal diversity estimates. To ensure the robustness of our estimates, we used three

alternative estimators of the infectious spread rate, the first of which approximates the upper

bound of the infectious spread rate using a simplified model of HTLV-1 clones. The final two

estimators are adapted from a method originally developed to model naïve T cell dynamics.

We find broad agreement between estimates from all methods. We conclude that, during

chronic infection, a given HTLV-1-infected cell in the peripheral blood is substantially more

likely to be derived by mitosis of an existing clone than by de novo infection, although infec-

tious spread continues throughout chronic infection, with an average of 175 new clones cre-

ated every day.

Methods

Data sets

We apply all three methods described below to previously obtained high-throughput data on

HTLV-1 clonality [9]. Each HTLV-1 dataset quantifies the abundance of HTLV-1-infected T

cell clones in ex vivo PBMCs, without selection or culture. We studied 11 subjects, where each

subject had three blood samples taken per time point, at three time points separated by an

average of 4 years, giving a total of 99 datasets. All subjects either had HAM/TSP, HTLV-

1-associated uveitis or were asymptomatic carriers of HTLV-1.

HTLV-1 clonal diversity estimates

To estimate the rate of infectious spread we first estimated HTLV-1 clonal diversity. We use our

recently developed estimator, “DivE" [10, 24, 25], which uses experimental observations of

clonal diversity in a sample to estimate both the number of clones and their frequency distribu-

tion in the body of the host (Fig 2A). DivE fits multiple mathematical models to individual-

based rarefaction curves; such curves plot the expected number of clones against the number of

infected cells sampled. Numerical criteria score models on their ability to accurately estimate

the observed rarefaction curve when fitted to nested subsamples of the data. The best-perform-

ing models are extrapolated to estimate the total number of clones in the body, based on the

proviral load in each respective subject. See [10, 25] for further details and implementation.

S2 Table gives the notation used in the three modelling approaches that follow.

Modelling approach 1: Full simulation hybrid model

Within a given host, HTLV-1+ T cell clones vary in abundance by several orders of magnitude

[9, 10]. Broadly, abundant clones can be modelled deterministically but small clones must be

PLOS COMPUTATIONAL BIOLOGY Ratio of infectious to mitotic spread in HTLV-1 persistence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007470 September 17, 2020 4 / 25

https://doi.org/10.1371/journal.pcbi.1007470


modelled stochastically. In the following sections, we describe a model of HTLV-1 dynamics at

quasi-equilibrium that is a hybrid of deterministic and stochastic parts (Fig 2).

Deterministic model

We consider a system with S(t) clones, where a given clone i has frequency xi(t) at time t. We

have the following ordinary differential equations (ODEs) for each clone:

dxi

dt
¼

pxi

K þ NðtÞ
� dxi ð1Þ

where NðtÞ ¼
XSðtÞ

j¼1

xjðtÞ is the total number of infected cells summed over all clones at time t;

p

KþNðtÞ is the proliferation rate of infected cells (i.e. the rate of mitotic spread) which is half maxi-

mal when N(t) = K (S1 Text) and δ is the death rate of infected cells (Fig 2B). New clones

appear at a rate rI × N(t), where rI is the per-capita rate of infectious spread. Note that we make

the simplifying approximation of a single proliferation rate, p

KþNðtÞ, for all clones.

The dynamics of small clones, where random effects are important, will not be adequately

described by a deterministic model. Since small clones contain most information about infec-

tious spread, it is important to model these clones accurately, and so we use a discrete stochas-

tic model, in which we consider multiple potential states of each clone and their

corresponding probabilities over time.

Stochastic model

Using a stochastic framework, the number of clones S(t) and their frequencies at time t are

considered as random variables, and we describe within-host HTLV-1 dynamics by a set of

reactions and their corresponding propensities (S2 Text). Infected cells can proliferate, die, or

infect uninfected cells (Fig 1). Thus the total number of possible reactions C 2 N at time t is

Fig 2. Schematic of full simulation hybrid model. A: Observed and estimated clone frequency distributions. From an observed sample of clones, the clone frequency

distribution of the body in one host is estimated using DivE. B: Propagation of hybrid model: Estimated clone frequency distribution partitioned into deterministic and

stochastic systems. Clones of frequency less than and greater than threshold F are respectively modelled stochastically and deterministically. F is chosen with respect to

probability of clone extinction (S2 Text). The deterministic system is modelled using ordinary differential equations (Eq (1)). The stochastic system consists of multiple

birth-death processes (one for each stochastically modelled clone) each with an absorbing state at zero (Fig 3A and 3B). The evolution of the clone probability

distribution over time is governed by the chemical master equation (Eq (10), Fig 3C and 3D). New clones are created through infectious spread, i.e. the per-capita rate rI
multiplied by the expected number of infected cells, in both deterministic and stochastic compartments (Eq (11)). Deterministic and stochastic systems are propagated

concurrently with Strang splitting (S2 Text). C: Hybrid model diversity. The estimated number of clones S(t) (Eq (13)) at time t, given parameters θ = {π, δ, K, rI} is given

by the number of clones created (Eq (11)), minus the number of clones that are expected to have died between 0 and t (Eq (12)), plus the number of clones S0 at t = 0.

The number of clones is assumed to be at equilibrium in the chronic phase of infection. D: Model fitting schematic: Expected diversity at S(tDur) increases with per-

capita infectious spread rate rI. Model fitted using non-linear least squares to DivE estimated diversity in the body, where the objective function is the square of the

discrepancy between this value and the value of S(tDur) at equilibrium.

https://doi.org/10.1371/journal.pcbi.1007470.g002
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C = 3S(t). Following the formulation given in [26, 27], let X(t) = (Xi(t)i2S(t))
T be the state vector

at time t of all clones. X(t) is a random variable in NSmax that consists of the random variables

XiðtÞ 2 N0 ¼ N [ f0g of the frequencies xi(t) of clones i = 1,. . ., Smax, where Smax is chosen to

always be larger than S(t) for all t. The state vector X(t) evolves through a Markov jump process

that depends only on the current state y 2 NSmax
0

, and its evolution is given by

XðtÞ ¼ y0 þ
XC

c¼1

Pcð
R t

0
acðXðsÞÞdsÞnc ð2Þ

where νc and αc respectively denote the stoichiometric vector and propensity function of reac-

tion c [26, 27]. Eq (2) states that the population X(t) at time t is equal to the initial population

y0 plus the sum of the changes induced by all reactions. See S2 Text for further details.

There exists a probability distribution associated with the random variable XðtÞ 2 NSmax
0

in

(2), given by PðX; tÞ ¼ PðXðtÞ ¼ yjXð0Þ ¼ y0Þ, where y; y0 2 N
Smax
0

. PðX; tÞ is a column vector

where each entry is a probability associated with a potential state of the random variable at

time t. It can be shown [27–30] that PðX; tÞ is a solution of the Chemical Master Equation

(CME)

@PðX ¼ y; tÞ
@t

¼
XC

c¼1

ðacðy � ncÞPðX ¼ y � nc; tÞ � acðyÞPðX ¼ y; tÞÞ ð3Þ

which describes the rate of change in the probability distribution associated with X(t). The first

term is the sum over all reactions of the probability of arriving at state X(t) = y from state X(t)
= y—νc via reaction c, and the second term is the sum over all reactions of the probability of

leaving state X(t) = y via reaction c.
For a single clone X i, the following reactions respectively describe mitotic spread, cell death

and infectious spread:

ri;1 : X i!
p�ðtÞ

2X i ð4Þ

ri;2 : X i!
d
� ð5Þ

ri;3 : X i!
rI X i þ X SðtÞþ1 ð6Þ

where

p�ðtÞ ¼
p

K þ NðtÞ
ð7Þ

is the aggregate density-dependent proliferation rate (dependent on the carrying capacity, and

the numbers of infected and uninfected cells). The first two reactions of each clone describe a

birth-death process, and the lack of inflow from source (i.e. the lack of a reaction r : � ! X i)

defines an absorbing state (Fig 3A and 3B). Note that Eq (6) makes the approximation that all

instances of infectious spread lead to a new clone. Any errors from this assumption will be

small, and this is considered in greater detail in the Discussion.

The reactions (4), (5) and (6) are monomolecular (in terms of the chemical master equa-

tion), because they carry the simplifying assumption that cell death due to the host immune

response, and the proviral load, are each constant in the equilibrium within each host. HTLV-

1 proviral load remains stable over many years [4, 5]: that is, the numbers of infected and unin-

fected cells stays approximately constant during the chronic phase of infection.
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Simplifying approximations of stochastic model

The probability distribution PðX; tÞ describes the states and associated probabilities of the

entire system, and we define the probability distribution of a particular clone i, PðXi; tÞ associ-

ated with the random variable Xi(t) similarly: PðXi; tÞ ¼ PðXiðtÞ ¼ xijXið0Þ ¼ xi;0Þ, where

xi; xi;0 2 N0. The extinction probability of clone i at time t, PðXi ¼ 0; tÞ, is used below to calcu-

late the expected number of clones at time t (Fig 2C), which in turn enables the model to be fit-

ted to clonal diversity estimates (Fig 2D).

If clones interact and are modelled with a single master equation associated with PðX; tÞ,
the complexity and runtime of the model increase exponentially with the number of clones.

However, because we model the system when proviral load is in equilibrium and can therefore

use monomolecular reactions, density-dependent proliferation rates remain approximately

constant, and so we can model each clone in isolation with multiple master equations associ-

ated with multiple clone-specific distributions PðXi; tÞ (i = 1, . . ., S(t)) (Fig 2B). Therefore, the

model complexity and runtime increase only linearly with the number of clones.

Fig 3. Stochastic clone dynamics. A and B respectively show the clone state space with and without an upper limit τ. Each box denotes the potential state of a given

clone, i.e. the number of cells in that clone, with the corresponding propensity of each reaction at each state. π�(t) and δ denote the per-capita rates of infected cell

proliferation and death respectively. Note there is no source inflow from frequency 0 to frequency 1. C and D show clone frequency probability distributions over

time. Each curve shows the distribution PðXi; tÞ ¼ PðXiðtÞ ¼ xijXið0Þ ¼ xi;0Þ of the probability that the given clone i contains xi cells at time t. At successive time

points the curve broadens and either shifts to the right as the expected frequency of the clone increases (C), or shifts to the left as the expected frequency of the clone

decreases (D).

https://doi.org/10.1371/journal.pcbi.1007470.g003
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If we impose a maximum frequency for a particular clone i (S2 Text, Fig 3B), we can sum-

marise Eq (3) using multiple, simpler differential equations below

dPðXi; tÞ
dt

¼ APðXi; tÞ for i ¼ 1; . . . ; Smax ð8Þ

where A is the transition matrix or “matrix of connections" (S2 Text) [27, 31, 32]. Further,

because the proliferation rate is constant at equilibrium, rates are independent of time, and so

Eq (8) has solution

PðXi; tÞ ¼ eAtP0;i ð9Þ

where P0;i ¼ PðXi; t ¼ 0Þ is the initial probability distribution and eAt is the matrix exponential

[33]. For equally spaced time steps ðtnÞ
N
n¼0

of length h, PðXi; tÞ can be calculated recursively

PðXi; tnÞ ¼ eAhPðXi; tn� 1Þ: ð10Þ

Example solutions of Eq (9) are shown in Fig 3C and 3D.

Expected number of clones

We model the expected number of clones S(t) at time t by adding the total number of clone

“births” b(t) over time (that is, the number of infectious spread events), and subtracting the

total number of clone extinctions E(t) over time. b(t) is given by

bðtÞ ¼
R t

0
rI
XbðuÞ

j¼1

xjðuÞ

2

4

3

5du; ð11Þ

where rI is the per-capita rate of infectious spread, xj(t) is the expected frequency of the jth

clone to be born since t = 0 (i.e. xjðtÞ ¼ E½XjðtÞ�), and b(0) = 0. E(t) is then given by

EðtÞ ¼
XS0þbðtÞ

j¼1

PðXj ¼ 0; tÞ ð12Þ

Note that b(t) and E(t) are increasing functions since rI, xj(t)� 0, and because a clone fre-

quency of zero is an absorption state for the random variable Xj(t). Taking (11) and (12)

together we calculate the number of clones S(t) as

SðtÞ ¼ S0 þ bðtÞ � EðtÞ ð13Þ

where S0 is the number of clones at time zero (Fig 2C).

Eq (11) does not have a density-dependent rI, and so for large values of the number of new

clones and cells would tend to infinity over time. Practically, however, rI is sufficiently small

that it was unnecessary to add density-dependent de novo infection to the model.

Hybrid model fitting and uncertainty

It is estimated that there are approximately 1011 HTLV-1 infected cells in one host [10], and so

it is not computationally feasible to model all clones using our stochastic formulation. Clones

above a certain frequency [F = 460 cells; S2 Text] are assumed to be adequately described by

the expected value from the deterministic ODEs in Eq (1) (Fig 2B, 2C and 2D). We thus parti-

tion our system of HTLV-1 within-host dynamics into a deterministic system of ODEs, and a

stochastic system of master equations (Fig 2B). We propagate these systems alternatively and

concurrently using “Strang splitting" (S2 Text) [34]. The deterministic system described in Eq

PLOS COMPUTATIONAL BIOLOGY Ratio of infectious to mitotic spread in HTLV-1 persistence
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(1) has an ordinary differential equation for each clone. Since S(t) can exceed 105, we group

clones into categories based on the order of magnitude of their abundance.

We model the dynamics of clones in the body, and not only the blood, because this allows

us to model clone extinction. If zero cells of a particular clone are observed or estimated in the

blood, this does not necessarily imply that the clone is extinct, because cells in that clone could

remain in the solid lymphoid tissue, which contains 98% of lymphocytes. We model clones in the

body as a whole to avoid this difficulty, which necessitates the assumption that the clonal popula-

tion structure in the blood is representative of the HTLV-1 clonal structure in the whole body.

We fitted the infectious spread rate rI as a free parameter, with all other parameters

(infected cell proliferation rate, death rate and density dependency) fixed using previous

results from the literature and based on each subject’s proviral load [35] (S1 Text). For each

subject sample and parameter update of rI, the model was run to reach an approximate equilib-

rium (Fig 2C). The model was fitted to the estimated clonal diversity of that subject sample, i.e.

to determine the value of rI required to keep the clonal diversity at the observed equilibrium

value (Fig 2D).

The uncertainty in the estimate of rI, the rate of infectious spread, derives from three

sources: error in model choice (both structure and numerical value of fixed parameters), error

in clonal diversity estimation, and sampling variation. Classical methods of quantifying fitted

parameter uncertainty only reflect the last source of error (i.e. they assume that the model and

the data are correct). We address the first difficulty by using three alternative models with dif-

ferent structures and parameters, and through a sensitivity analysis on the infected cell prolif-

eration and death rates (S3 Text). We address the error in diversity estimation by using

alternative clonal diversity inputs from the Chao1 estimator [36], a non-parametric diversity

(or species richness) estimator that has been widely used in many fields [37–40]. And we

address the issue of sampling variation by investigating the range of estimates provided by the

nine hybrid model fits per subject (i.e. one for each of the subject’s blood samples); the mean

of these estimates is taken as our point estimate.

The hybrid model was coded in R (version 3.5.0) [41], using the packages “data.table" [42]

and “Matrix" [43]. Matrix exponentials were computed using the Padé approximation [44].

The hybrid was fitted using one-dimensional optimisation as described in [45]. The model

code is available at https://github.com/dlaydon/HTLV_1_InfMit_Hybrid.

Modelling approach 2: Upper bound approximation

We considered a simplified model of HTLV-1 persistence that does not describe individual

clone dynamics. If S(t) and N(t) are the number of clones and number of infected cells respec-

tively at time t, and rI, is the per-capita rate of infectious spread, we have the following differen-

tial equation

S0ðtÞ ¼ rINðtÞ � dSðtÞSðtÞ ð14Þ

where δS(t) is the clone death rate at time t. The first term of Eq (14) models the birth of new

clones by infectious spread, and the second term models the death of existing clones.

If δ is the (constant) death rate of infected cells, then we have δS(t)� δ, because the number

of clones that die cannot exceed the number of cells that die (equality would occur if all clones

were singletons i.e. clones that contain only one infected cell). The clone death rate depends

on the population structure of infected cells and will vary over time as this population structure

changes. For example, a higher proportion of singletons will increase δS(t).
We assume that, in the chronic stage of infection when HTLV-1 proviral load is at equilib-

rium, the number of clones is also at equilibrium and so we have N(t) = N, S’(t) = 0, and S(t) =
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S. Letting d̂S be the average rate of clone death, we can approximate Eq (14) as

S0ðtÞ ¼ 0 ¼ rIN � d̂SS ð15Þ

) rI ¼
d̂SS
N
�
dS
N

ð16Þ

and therefore we define the supremum of the rate

) rI;Supremum ¼
dS
N

ð17Þ

rI,Supremum will substantially overestimate infectious spread because it applies the relatively high

singleton death rate to all clones—clones with few cells become extinct more quickly than

clones with many cells. To obtain a tighter upper bound we divide clones into those that are

smaller and larger than an arbitrary size fmax and expand the expression for rI in Eq (17) to

obtain

rI;fmax
¼

d̂small

Xfmax

f¼1

nfþd̂ large

X1

f¼fmaxþ1

nf

N
ð18Þ

where nf denotes the number of clones of frequency f, i.e. the "occupancy classes". The aggre-

gate clone death rate of small clones d̂small and of large clones d̂ large will comprise a weighted

average of the death rate of clones of all sizes within that category. Because the HTLV-1 clonal

frequency distribution is heavy tailed, small clones are more numerous than large clones, and

so will make the dominant contribution to the clone death rate. Therefore the contribution

from large clones can be neglected to give

rI;fmax
’

d̂small

Xfmax

f¼1

nf

N
ð19Þ

Provided fmax is sufficiently small, then d̂small (which is less than or equal to δ) can be

approximated by δ. The error incurred by this approximation decreases as fmax is reduced, and

so the infectious spread rate will be best approximated by rI;fmax
for low values of fmax. Estimates

of the ratio of infectious spread to mitotic spread can be obtained by dividing rI,Supremum and

rI;fmax
by the per-capita rate of mitotic spread π = 0.0316 (S1 Text) to give

RSupremum ¼ rI;Supremum=p ð20Þ

and

Rf max ¼ rI;fmax
=p: ð21Þ

Modelling approach 3: Occupancy class model

Adapting a model of naïve T cell dynamics [46], we model the occupancy classes nf of HTLV-1

clones (Fig 4). We assume that the clonal structure is in equilibrium (i.e. that the number of

clones in each size class is constant) and that the probabilities of cell proliferation and death

are independent of clone size.
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Scaling so there is one event (i.e. de novo infection or mitosis) per cell per unit time we

have I + M = 1 and R: = I / M. Therefore

I ¼ R=ð1þ RÞ ð22Þ

and

M ¼ 1=ð1þ RÞ ð23Þ

where I and M are the rates of infectious and mitotic spread (scaled as above), and R is the

ratio of infectious to mitotic spread.

A clone in occupancy class f moves to class f+1 by mitosis with probability

Mfnf=N ¼ fnf=Nð1þ RÞ ð24Þ

where N is the number of infected cells. A clone in occupancy class f+1 moves down to class f
by death. Loss of cells by death is equal to the production of new cells by infection and mitosis,

which has been scaled to 1, so the death rate is 1 per unit time. Since we assume that the proba-

bility of death is independent of clone size, the probability that the one death event in unit

time occurs to a cell in size class i+1 is simply equal to the proportion of cells in size class i+1
i.e. fnf / N.

In order for the number of cells Cf in size class f (Cf = fnf) to remain constant, we require

that flow in and flow out of the occupancy class nf to be equal (Fig 4), i.e. that the number of

cells leaving occupancy class nf must be equal to those arriving from class nf-1 (via mitosis) and

class nf+1 (via cell death). By reference to Fig 4 we see that, for clone class f, we therefore have

1

1þ R
Cf � 1

N
þ

Cfþ1

N
¼

1

1þ R
Cf

N
þ

Cf

N
for f ¼ 2; . . . ;1 ð25Þ

Rearranging gives

Cfþ1 ¼
1

1þ R
þ 1

� �

Cf �
1

1þ R
Cf � 1 ð26Þ

For the number of cells (C1) in size class 1 to remain constant we require

R
1þ R

þ
C2

N
¼

1

1þ R
C1

N
þ

C1

N
ð27Þ

Fig 4. Occupancy class model schematic. Singletons (clones of size 1) are produced by infectious spread (red). Proliferation (orange)

results in loss from clone size class nf and entry into size class nf + 1. Death of a cell (green) results in a clone moving from size class f to size

class nf—1.

https://doi.org/10.1371/journal.pcbi.1007470.g004
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And for the population as a whole to remain of constant size we need the gain of new clones

to balance their loss

R
1þ R

¼
C1

N
ð28Þ

Rearranging (28) gives our first estimator (R1) for the ratio R from the occupancy class

model, given in terms of p = C1/N, the proportion of cells that are singletons:

R ¼
p

1 � p
ð29Þ

Substituting (28) into (27), and applying (26) recursively we obtain

Cf ¼
1

1þ R
Cf � 1 for f ¼ 2; 3 . . .1 ð30Þ

Specifically, substituting (28) into (27), replacing R/1+R we obtain

C1

N
þ

C2

N
¼

1

1þ R
C1

N
þ

C1

N

giving

C2 ¼
1

1þ R
C1

i.e. (30) when f = 2.

To get a similar expression for C3 we replace f = 3 in (26) to give

C3 ¼
1

1þ R
þ 1

� �

C2 �
1

1þ R
C1

Eliminating C1

C3 ¼
1

1þ R
þ 1

� �

C2 � C2

C3 ¼
1

1þ R
C2

i.e. (30) when f = 3 and so on, recursively to obtain the general Eq (30) by inspection.

And thus

Cf ¼
1

1þ R

� �f � 1

N
R

1þ R
: ð31Þ

Species richness is defined as the number of clones, and so

Species richness ¼
X1

f¼1

nf

¼
X1

f¼1

Cf

f

¼
X1

f¼1

1

1þ R

� �f � 1 N
f

R
1þ R

ð32Þ

obtained by substituting in (31).
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Using the fact that
X1

k¼1

zk

k
¼ ln 1

1� z

� �
(a special case of the polylogarithm function)

We have that

species richness ¼ ln
1þ R
R

� �

NR ð33Þ

Rearranging for R, this provides our second estimator for the ratio of infectious to mitotic

spread, R2, from the occupancy class model.

The number of infected cells in the body is estimated from each patient’s proviral load, as

described in [10]. The proportion of infected cells that are singletons is estimated using the

DivE distribution generation algorithm, and given in S1 Table. This algorithm estimates the

relative frequencies of observed and unobserved clones from extrapolated rarefaction curves.

Further details are given in [10].

We have outlined three methods: a deterministic and stochastic hybrid model of individual

HTLV-1 clones over time; a greatly simplified model to approximate the upper bound of the

infectious spread rate; and a model of clone occupancy classes. This final method yields two

estimators.

Results

HTLV-1 clonal diversity estimates

We previously estimated HTLV-1 clonal diversity (the number of unique clones) from

sequence data in 11 subjects with non-malignant HTLV-1 infection (either asymptomatic car-

riers, HTLV-1-associated uveitis patients or those with HAM/TSP). These estimates were

obtained by measuring diversity in the nine blood samples per person (three at each of three

time points) and then applying our recently developed method of estimating clonal diversity

by extrapolation from the sample to the whole body [10] (Table 1, S1 Table and S1 Fig).

Table 1. Hybrid model estimates of rate of infectious spread estimates and ratio of infectious to mitotic spread by patient.

Patient

(Disease

Status‡)

Mean Proviral load�

(no. HTLV-1+ cells per

10,000 PBMCs) [9]

Mean Estimated�

diversity (no. HTLV-1+

clones in body) [10]

Infectious spread rate rI (d-1)

[Mean, (Lower–Upper)†, standard

deviation within patient replicate

samples]

Ratio of infectious to mitotic spread

[Mean, (Lower–Upper)†, standard

deviation within patient replicate

samples]

Number new clones

per day [Mean,

(Lower–Upper)†],

1 (AC) 417 50666 1.0e-09, (5.9e-10–1.4e-09), 2.6e-10 3.3e-08, (1.9e-08–4.4e-08), 8.3e-9 149, (101–191)

2 (UV) 133 19025 1.1e-09, (4.8e-10–1.6e-09), 3.5e-10 3.5e-08, (1.5e-08–5.0e-08), 1.1e-8 51, (25–67)

3 (HAM) 320 59908 1.7e-09, (1.2e-09–2.1e-09), 3.0e-10 5.2e-08, (3.9e-08–6.8e-08), 9.6e-9 181, (130–243)

4 (HAM) 920 36840 2.8e-10, (2.1e-10–3.7e-10), 5.4e-11 8.8e-09, (6.8e-09–1.2e-08), 1.7-.9 89, (68–113)

5 (HAM) 160 16485 7.8e-10, (5.2e-10–1.0e-09), 1.9e-10 2.5e-08, (1.6e-08–3.3e-08), 6.0e-9 43, (33–58)

6 (HAM) 187 15906 6.1e-10, (3.4e-10–9.5e-10), 2.3e-10 1.9e-08, (1.1e-08–3.0e-08), 7.3e-9 39, (19–57)

7 (HAM) 2077 152180 5.9e-10, (4.9e-10–6.8e-10), 6.7e-11 1.9e-08, (1.5e-08–2.2e-08), 2.1e-9 428, (346–496)

8 (HAM) 1753 52246 2.1e-10, (1.6e-10–3.3e-10), 5.9e-11 6.8e-09, (4.9e-09–1.0e-08), 1.9e-9 128, (82–178)

9 (HAM) 1827 142032 7.3e-10, (5.3e-10–1.1e-09), 2.2e-10 2.3e-08, (1.7e-08–3.4e-08), 6.9e-9 456, (303–671)

10 (HAM) 813 68897 6.8e-10, (6.1e-10–7.6e-10), 6.4e-11 2.2e-08, (1.9e-08–2.4e-08), 2.0e-9 196, (157–249)

11 (HAM) 690 59145 7.6e-10, (4.2e-10–1.6e-09), 4.1e-10 2.4e-08, (1.3e-08–4.9e-08), 1.3e-8 161, (118–234)

Mean 845 61212 7.7e-10 d-1 2.4e-8 175

� Mean value of nine replicate samples for each patient (see methods)
† Lower and Upper denote the range of estimates from nine hybrid model fits from each subject.
‡ Disease status: AC = asymptomatic carrier. UV = uveitis (non-HAM/TSP); HAM = HAM/TSP

https://doi.org/10.1371/journal.pcbi.1007470.t001
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We tested our assumption that the number of clones is at equilibrium in the chronic phase

of infection, where HTLV-1 proviral load is at equilibrium. Using a two-tailed binomial test,

we found little evidence that this change was significantly different from zero (p = 1 for

observed and p = 0.07 for estimated). We further used linear regression to estimate the net

change per day in the observed and estimated number of clones in each subject. This net

change was 0.01 (95% CI -0.07–0.09) clones per day (i.e. 1 clone every 100 days) and -2.50

(-5.94–0.93) clones per day in the observed and estimated number of clones respectively; in

each case the confidence interval spans zero. We therefore make the approximation that

HTLV-1 clonal diversity remains unchanged in the chronic phase of infection, after the provi-

ral load has reached steady state.

It is important to note that this assumption requires some infectious spread to replenish

dying clones. However, if there were no infectious spread, and given the cell death rate δ
(0.0316 d-1) and the estimated number of singletons n1 (5.5 × 102–2.3 × 104, (S1 Table)), we

would expect approximately n1 × δ clones to be lost every day, i.e. an average of 172 (between

18 and 718). This number is vastly more than we estimate. Furthermore, this logic is conserva-

tive as it ignores the number of clones with two cells, number of clones with three cells, etc. that

will die. Finally, if there was no replacement of clones through infectious spread during chronic

infection, we would expect the estimates of clonal diversity to decline within patients over time.

Modelling approach 1: Full simulation hybrid model

We model within-host HTLV-1 persistence by considering HTLV-1-infected clones sepa-

rately. Large clones are modelled deterministically using a system of ordinary differential equa-

tions. Smaller clones are modelled stochastically by solving the chemical master equation (Eqs

(9) and (10)) that considers the frequency of each clone as a random variable governed by a

birth-death process (Fig 2B). The per-capita rate of infectious spread and the expected number

of infected cells are then combined to model the birth of new clones (Eq (11)), and the extinc-

tion probability of each clone is used to calculate the expected clone death (Eq (12)). The birth

and death (extinction) of clones provide an estimate of the number of clones at equilibrium

(Eq (13), Fig 2C), and it is this value that is fitted to our estimates of HTLV-1 clonal diversity,

to infer the per-capita rate of infectious spread (Fig 2D).

The hybrid model was fitted for each subject, for all samples at each time point, providing

an estimate of the infectious spread rate in each case (Table 1, S3 Table). These nine estimates

per patient were averaged to calculate the mean rate for each individual. Between individuals,

the mean estimated rate of infectious spread was 7.7 × 10−10 per day, ranging from 2.1 × 10−10

to 1.7 × 10−9 per day (Table 1). Given an estimate of the rate of mitotic spread of 3.2 × 10−2 per

day (Table 2), our infectious spread estimates imply an average ratio of infectious to mitotic

Table 2. Parameter names and values.

Parameter

Name

Description Comments Value

rI daily per-capita rate of infectious spread (de novo infection) Fitted for each patient [Methods] See Table 1

π daily per-capita rate of mitotic spread (infected cell proliferation) Derived from [35] (supplementary

information)

0.0316 per

day

δ daily per-capita rate of infected cell death Derived from [35] (supplementary

information)

0.0316 per

day

K Density dependency parameter. Infected cell proliferation rates are half maximal when

number of infected cells N(t) = K
Derived from [35] (supplementary

information)

4.02 ×1011

R Ratio of infectious to mitotic spread derived from value of π and fitted

values of rI
See Table 1

https://doi.org/10.1371/journal.pcbi.1007470.t002
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spread of 2.4 × 10−8 (6.6 × 10−9–5.3 × 10−8), i.e. varying by almost an order of magnitude

(Table 1, Fig 5A).

While the per-capita infectious spread rate is very low, it translates to an average of 175

(range 39–456) new clones created per day (Fig 5B). Therefore the hybrid model predicts that

infectious spread is not limited to initial infection, but persists at a low level throughout the

chronic phase. Over a 10-year period, this amounts to an average of 6.4 × 105 clones that are

created and destroyed (1.4 × 105–1.7 × 106). As each clone will integrate in a new genomic site,

low but sustained levels of infectious spread could be an alternative mechanism by which

chronic infection develops into malignancy.

Within individuals the standard deviation between samples in the infectious spread rate

was relatively small, with an average of 2 × 10−10 (5.4 × 10−11–4.1 × 10−10) (Table 1). Estimates

of the per-capita infectious spread rate were not found to correlate with either proviral load or

with the estimated diversity during the chronic phase (this may be due to our 11 patients pro-

viding insufficient power). However, unsurprisingly, the estimated number of new clones per

day was correlated with both proviral load (R2 = 0.62) and strongly correlated with the esti-

mated diversity (R2 = 0.99) (S2 Fig).

Sensitivity analyses of hybrid model

We investigated the sensitivity of our results to: i) choice of threshold frequency F (above and

below which clones are respectively modelled deterministically and stochastically); ii) choice

of time step; iii) use of hybrid deterministic and stochastic model (as opposed to a purely sto-

chastic model); and iv) choice of proliferation and death parameters.

Originally our threshold value of F was set to equal 100. However, the extinction probability

of clones of size 100 over a duration of tDur = 3133 days (S2 Text) duration was 0.37. We were

therefore concerned that excluding such clones would bias the estimates of the infectious

Fig 5. Ratio of infectious spread to mitotic spread and number of new clones per day, by patient and estimator. A Ratio of infectious spread to mitotic spread.

B Number of new clones generated per day. Values of both the ratio and number of new clones are derived from estimators of infectious spread. In each plot, red

crosses and bars respectively denote point estimates and the range from the nine estimates for each subject from the hybrid model. Upper bound approximations

from rI,Supremum (green triangles) are shown, together with tighter upper bounds from rI;fmax
(coloured circles) for multiple values of fmax between 1 and 1000. Lighter

colours denote higher values of fmax. Hybrid model point estimates are very close to the estimates obtained for fmax = 1 (lowest circles). Estimates plotted on

logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1007470.g005
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spread rate and therefore the ratio, and so re-fitted our model with F = 460. This value is the

minimum clone frequency for which the extinction probability is less than 1%, given our

parameters of infected cell growth, death, and density dependency (S3 Fig, S2 Text). The esti-

mates of infectious spread from the hybrid model are almost identical whether we assume

F = 100 or F = 460. We present the F = 460 estimates, as the most accurate description of the

system would to consider all clones stochastically.

We find that a timestep of h = 1 day results in negligible splitting errors (S4 Fig), and that

using a hybrid deterministic and stochastic system gives an appropriate approximation of our

stochastic process (S5 Fig).

We investigated the sensitivity of the hybrid to proliferation and death rates. We fitted the

model again, assuming these rates were halved (to give π� = δ = 0.0158) or doubled (to give

π� = δ = 0.0632), while still modelling proviral load at equilibrium. We find that the ratio of

infectious spread to mitotic spread is robust to these different values, giving almost identical

results. However, the infectious spread rate rI, and therefore the number of new clones per day

are sensitive to proliferation, death, and density-dependency parameters π, δ and K (S3 Table,

S6 Fig), although results are similar. When rates were halved and doubled, the average number

of new clones per day was respectively 89 (20–234) and 341 (77–885).

Although the population is still at equilibrium, higher proliferation and death rates cause

the birth-death process for each clone to behave more “erratically”, thus increasing the proba-

bility of clone extinction, and the ensuing higher clone death must be met with additional

infectious spread.

Modelling approach 2: Upper bound approximation

Upper bounds of the infectious spread rate (rI,Supremum) were estimated for each subject using Eq

(17), by substituting inputs of HTLV-1 clonal diversity estimates (Table 1, S1 Table) and an esti-

mate of δ = 0.0316 infected cell death a day, and an estimate of the total number of infected cells

N (derived from the proviral load, as detailed in [10]). For each individual we averaged across all

samples and across all time points. Estimated values of the rate ranged between individuals from

2.8 × 10−9 to 1.7 × 10−8 per infected cell per day, and thus (given a per-capita rate of mitotic

spread of 0.0316 cells per day) estimates of the ratio RSupremum ranged between 8.7 × 10−8 and

5.5 × 10−7 (Fig 5A). The estimated number of new clones per day using rI,Supremum are unsurpris-

ingly much larger than those of the hybrid, ranging from 516 to 4804, i.e. approximately an

order of magnitude higher (Fig 5B).

We further estimated the more restrictive upper bounds of the ratio Rfmax
from Eq (21) for

multiple fmax values between 1 and 1000 (Fig 5A). These estimates assume that the cell death

rate applies to clones with frequencies less than or equal to fmax, and that larger clones do not

contribute to the rate.

The hybrid estimates always fall below the estimated supremum and are very close to the

estimates provided by for fmax = 1 (Fig 5, S6 Fig). Since it is likely that the upper bound approx-

imation will give more accurate estimates for lower values of fmax, this result demonstrates the

consistency of estimates produced between the hybrid and the upper bound approximation,

and further implies that the number of singletons is the dominant factor in the extent of infec-

tious spread. We estimate that singletons constitute between 6% and 12% of clones (S1 Table).

Modelling approach 3: Occupancy class model

The results from the hybrid model indicate a very low ratio of infectious to mitotic spread. The

hybrid benefits from treating small clones stochastically and from the inclusion of known

experimental details of HTLV-1 infection and spread. However, it remained possible that
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these very low estimates of the ratio resulted from incorrect model or parameter assumptions.

To test the robustness of our estimate of the ratio to changes in model and parameter assump-

tions, we adapted a simple deterministic model of HTLV-1 clonal dynamics and occupancy

classes and used this to produce two alternative estimators of the ratio of infectious to mitotic

spread.

The occupancy class model is based on a model of naïve T cell dynamics developed by de

Greef et al [46]. It assumes that clonal dynamics are deterministic, that the clonal structure is

in equilibrium and that the probabilities of cell proliferation and death are independent of

clone size. The model yields two estimators of the ratio of infectious to mitotic spread. The

first estimator (referred to as R1) depends on the proportion of infected cells that are single-

tons

R1 ¼
p

1 � p

where p is the proportion of cells that are singletons.

The second estimator (referred to as R2) depends on species richness.

species richness ¼ ln
1þ R2

R2

� �

NR2

where N is the number of infected cells (see Methods for derivation of both expressions).

Across the 99 estimates (11 subjects, 3 time points, 3 replicates) both estimators, R1 and R2,

are strongly positively correlated with the estimate of the ratio produced by the hybrid model

(P = 1 × 10−135 and P = 6 × 10−87 respectively, Pearson correlation) and agree well numerically,

being of the same order of magnitude and, if anything tending to be even smaller (hybrid

median = 2.0 × 10−8, hybrid LQ = 1.4 × 10−8, hybrid UQ = 3.0 × 10−8; R1 median = 2.0 × 10−8,

R1 LQ = 1.4 × 10−8, R1 UQ = 3.0 × 10−8; R2 median = 1.3 × 10−8, R2 LQ = 1.0 × 10−8, R2

UQ = 1.9 × 10−8) (Fig 6).

Finally, we applied the second estimator from the occupancy class model (R2) to the Chao1

estimator of clonal diversity (rather than the DivE estimate used up to this point). The Chao1

estimator gives much lower diversity estimates, and so unsurprisingly yields considerably

smaller estimates of the infectious to mitotic spread ratio (median = 7.3 × 10−10,

LQ = 4.7 × 10−10, UQ = 1.0 × 10−9).

We conclude that the low estimates of the infectious to mitotic spread are not the product

of implicit assumptions in the hybrid model or incorrect parameter choice. Inaccurate esti-

mates of the clonal diversity may play a significant role but calculations using an alternative,

widely used estimator provided even smaller estimates of clonal diversity, and therefore yield

an even lower ratio. The lower estimates of the ratio from Chao estimator are driven by its

lower diversity estimates. However we found previously that these diversity estimates were

unrealistically low, in that they predicted fewer clones than were observed in additional blood

samples taken from the same subject at the same time, whereas DivE did not [10]. Our esti-

mates of ongoing infectious spread during chronic infection are therefore more likely to be an

underestimate than an overestimate.

Discussion

The relative contribution of infectious and mitotic spread to HTLV-1 viral persistence has not

previously been estimated, and this has been a long-standing problem in the field. For many

years, it was believed that the virus persisted solely by oligoclonal proliferation of latently

infected cells, and that infectious spread contributed little if anything to persistence. However,
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three observations have brought this belief into question. First, the strong, persistently acti-

vated host T-cell response to HTLV-1 implied that the virus is not latent but is frequently

expressed in vivo. Second, high-throughput analysis revealed that a typical host carries

between 104 and 105 clones, not ~100 clones as was previously believed. Third, treatment with

Fig 6. Comparison of estimates of ratio of infectious to mitotic spread from the hybrid model (method 1) and the occupancy class model (method 3).

(Top left) Estimate of ratio from hybrid model plotted against first estimate from occupancy class model (R1). Red line is line of best fit, black line is line of

equality. (Top right) Estimate of ratio from hybrid model plotted against second estimate from occupancy class model (R2). Red line is line of best fit, black

line is line of equality. (Bottom left) Estimate of ratio between hybrid model and first estimate from occupancy class model (R1). Black line denotes the

median. (Bottom right) Estimate of ratio between hybrid model and second estimate from occupancy class model (R2). Black line denotes the median.

https://doi.org/10.1371/journal.pcbi.1007470.g006
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the antiretroviral therapy lamivudine temporarily but substantially reduced the proviral load

of a patient with HAM/TSP. These observations raise the question: what is the contribution of

infectious spread to the persistence of HTLV-1 in the host after initial infection?

In this study, we used three different strategies to estimate the ratio of infectious to mitotic

spread during the chronic phase of infection. We first developed a deterministic and stochastic

hybrid model of within-host HTLV-1 dynamics, and fitted this model to clonal diversity esti-

mates derived from experimental data. We then derived an estimate of the upper bound of the

ratio by using a highly simplified model where individual clones are not considered. Finally,

we adapted a model of naïve T cell repertoires that models clone occupancy classes. We found

broad agreement between the estimates of the ratio obtained using all three methods; and each

method implied the existence of ongoing infectious spread during chronic infection, after the

HTLV-1 proviral load has reached steady state.

We found no evidence that HTLV-1 clonal diversity either increases or decreases over time,

and we therefore assumed that the number of HTLV-1 clones is in equilibrium during chronic

infection. It is important to note that this assumption necessitates some infectious spread by

design. However, the estimated number of clones changes far less over time than would be

expected if there were no infectious spread, given the cell death rate and proportion of clones

that are singletons, and so we believe this assumption is justified.

While the ratio of infectious to mitotic spread during the chronic phase is very small

(~2 × 10−8), it equates to ~102 new clones every day. That is, approximately 100 new HTLV-

1-infected T cell clones appear every day by infectious spread. Over a 10-year period, this

would result in an average of 6.4 × 105 clones created and subsequently destroyed. Further,

while the estimated rate of infectious spread represents a negligible contribution to HTLV-1

proviral load, the constant creation of new clones will increase the risk of malignant transfor-

mation, because this risk depends in part on the proviral integration site [21]. Malignancy

could arise not only from accumulated mutations in a long-lived clone (where only mitotic

spread is relevant), but also from frequent proviral integration (where only infectious spread is

relevant).

High HTLV-1 proviral load increases both clonal diversity [47] and risk of ATL [7]. How-

ever, it is unknown whether the increased clonal diversity (caused by infectious spread) is a

mechanism for this higher risk of malignancy, or whether it is a separate by-product of high

proviral load. Ongoing infectious spread during chronic infection would be consistent with

the hypothesis that higher infectious spread increases the risk of malignant transformation. If

this is the case, then anti-retroviral therapy could reduce the risk of ATL in patients who have

entered their chronic phase, not by sustainably suppressing proviral load, but by limiting pro-

viral integration; this therapy would need to be continued for many years before its impact was

evident.

It is important to note that the different methods we use are not independent. First, they all

use our clonal diversity estimates as an input (see section below). Second, they all assume equi-

librium clonal diversity. However, they do differ in a number of respects. The upper bound

approximation is independent of the parameters F, π and K and makes no assumptions about

the clonal structure or the density dependence of infected cell proliferation. The R1 estimator

from the occupancy class model depends only on the proportion of singletons and so is inde-

pendent of all the parameters (F, π, δ and K), assumptions about density dependence of prolif-

eration, and indeed the estimated clonal structure beyond the number of singletons. Similarly

the R2 estimator from the occupancy class model is also independent of F, π, δ and K as well as

proliferation assumptions. While the hybrid model is our most detailed simulation of HTLV-1

within-host dynamics, it is mathematically and computationally complex and requires signifi-

cant runtime. Because the estimates from all three methods are largely consistent, our analysis
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indicates that the latter two methods provide good approximations of the rate of infectious

spread and the ratio of infectious to mitotic spread.

The most likely source of error in our estimates of the ratio of infectious to mitotic spread

lies in the estimation of clonal diversity. Two factors argue against a serious error. First, esti-

mates based on two different quantities (the number of clones and the proportion of infected

cells that are singletons) give very similar estimates of the ratio. Second, diversity estimates

from DivE are far more plausible than those from other widely used estimators of species rich-

ness: these other estimators produced demonstrably false estimates that were lower than the

diversity observed by combining blood independent samples drawn at the same time from the

same patient. [10]. It remains possible that we have underestimated clonal diversity, although

if so then our conclusion of ongoing infectious spread during chronic infection would only be

strengthened.

A much smaller source of potential error lies in using the number of clones to quantify

infectious spread. If the virus repeatedly integrates in the same genomic site, then the number

of unique genomic sites would be less than the number of true clones, and hence both the

infectious spread rate and the ratio would be underestimated. However, hotspots of HTLV-1

integration have not been observed [9], and so such repeat infection would not substantially

alter our estimate. Assuming the provirus does not efficiently integrate into heterochromatin,

which represents ~2/3 of the human genome, then only one third of the ~3 × 109 base pairs of

the human genome have the potential for proviral integration. The probability of repeated pro-

viral integration is then the number of existing integration sites divided by the number of

potential integration sites. Given the estimated number of clones is of the order of 105, this

probability is approximately 105/109 = 10−4. Therefore, any error in using the number of clones

to quantify infectious spread infectious spread is very small.

It seems surprising that, during initial infection, the virus could establish a stable population

of infected T cell clones with such a low rate of infectious spread. However, these low rates of

infectious spread are measured in the chronic phase of infection, when the strong host cyto-

toxic response kills HTLV-1-expressing cells, which probably reduces efficient infectious

transmission and favours mitotic transmission. During the early phase of infection, before the

establishment of an adaptive immune response, the contribution of infectious spread is likely

to be substantially higher than during chronic infection. It would be interesting to model the

dynamics of early infection, in particular to investigate the rate required to establish a stable

population of infected T cell clones. Modelling early infection would violate the assumption of

equilibrium, and thus would void many of the simplifying assumptions that makes our model

tractable (e.g. our ability to model clones independently and so avoid an exponential increase

in complexity). However, given sufficient computational power, this analysis would be

possible.

Another extension of each of the methods presented might be to include variable prolifera-

tion rates for each clone, which would refine estimates of the infectious spread rate and ratio

of infectious spread to mitotic spread. Because clones proliferate in response to antigen, our

assumption of a single per-capita infected cell proliferation rate is a simplifying approximation.

If larger clones are larger in part because they proliferate faster than small clones, then small

clones will die at a faster rate, which would likely require more infectious spread to maintain

equilibrium of clonal diversity.

The methods described here have potential applications in other fields, for example in

modelling the human T cell receptor (TCR) repertoire. The mechanisms by which the immune

system is reconstituted after immune suppression or transplantation are poorly understood.

Drawing parallels between immune reconstitution and HTLV-1 infectious and mitotic spread,

the present approach could be applied to investigate the extent to which reconstitution occurs
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either through the generation of new TCR clonotypes, or through the expansion of existing

clonotypes. In HIV-1 infection, the approach could be used to quantify the ratio of infectious

to mitotic spread in the absence of treatment and in the latent reservoir remaining following

treatment.

In summary, we develop three methods, which have the potential to be applied to a range of

areas, and use them to quantify the role of de novo infection in HTLV-1 persistence during

chronic infection. We find that on average 5 x 109 new infected cells are produced every day;

of these the vast majority (>99.9%) will arise from division of an existing infected cell and will

thus have the same proviral integration site as their mother cell, but a small minority (about

175 cells per day) will arise from infectious transmission and will contain a novel proviral inte-

gration site. These estimates suggest that ongoing infectious spread may be a mechanism for

malignant transformation that treatment with antiretroviral drugs may suppress.

Supporting information

S1 Text. Estimation of density dependency parameters.

(PDF)

S2 Text. Additional details of hybrid model.

(PDF)

S3 Text. Further hybrid model sensitivity analysis.

(PDF)

S1 Table. Patient sample characteristics and diversity estimates.

(PDF)

S2 Table. Notation used in models of HTLV-1 within host persistence.

(PDF)

S3 Table. Hybrid model sensitivity to proliferation and death rates.

(PDF)

S1 Fig. Observed and estimated diversity (number of HTLV-1+ clones) over time by

patient. Estimated diversity is shown in blue (left hand y-axes) and observed diversity is

shown in red (right-hand y-axes).

(TIF)

S2 Fig. Correlations between per-capita infectious spread rate, daily number of new clones,

estimated clonal diversity and HTLV-1 proviral load. Infectious spread rate is not correlated

with either the estimated diversity (A, R2 = 0.0069) during the chronic phase or proviral load

(B, R2 = 0.28). However, unsurprisingly, the estimated number of new clones per day was

strongly correlated with both the estimated diversity (C, R2 = 0.99) during the chronic phase

or proviral load (D, R2 = 0.62) and proviral load.

(TIF)

S3 Fig. Choice of stochastic threshold frequency F and individual clone state space upper

limit τ values for hybrid model. A Extinction probabilities by clone starting frequency (red)

at tDur = 3133 days (given our values of infected cell proliferation and death parameters). Sto-

chastic threshold frequency F = 460 (green) is chosen to be the minimum starting frequency

such that a clone has less than a 1% (black line) chance of extinction. B Probability distribution

of a clone at tDur = 3133 days given starting frequency F = 460. The upper limit τ (blue) is cho-

sen so that this probability distribution is not significantly distorted.

(TIF)
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S4 Fig. Effect of hybrid time step length h. Expected diversity S(tDur) at given duration

(tDur = 600 days) (first row); minimum diversity predicted throughout given duration (second

row); and the number of infected cells N(tDur) predicted at tDur (third row), plotted against

time step length h for three parameter sets: θG = {rI = 2 × 10−11, π� = 0.0316, δ = 0.5 � π�} (left

column—“growth”); θE = {rI = 2 × 10−11, π� = 0.0316, δ = π�} (middle column—“equilibrium”);

θD = {rI = 2 × 10−11, π� = 0.0316, δ = 2 � π�} (right column—“death”) for an example patient

data set. Note that y-axes are split so that time step differences are visible. Time step effects are

negligible for each observable.

(TIF)

S5 Fig. Comparison of pure stochastic and hybrid deterministic and stochastic model on

reduced system. Reduced system omits all clones of size greater than 460 cells. For each

patient, both the estimated number of clones over time and the fitted values of rI are very simi-

lar between the pure stochastic and the deterministic/stochastic hybrid model.

(TIF)

S6 Fig. Ratio of infectious spread to mitotic spread and number of new clones per day, by

patient, estimator, and parameter choice. As per Fig 5. A, C Ratio of infectious spread to

mitotic spread. B, D Number of new clones generated per day. A, B assume π� = δ = 0.0158,

half the value in our main analysis. C, D assume π� = δ = 0.0632, twice the value in our main

analysis. Estimates of the ratio of infectious spread to mitotic spread are almost identical. The

infectious spread rate and therefore the number of new clones per day are sensitive to choice

of proliferation and death parameters, although values are comparable. Upper bound approxi-

mations for fmax = 1 again match the more-detailed hybrid model.

(TIF)
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