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Foreword  

This thesis is based on data collected in pre-clinical in-vitro and in-vivo evaluations of a novel 

semi-synthetic glykoconjugate vaccine candidate against Streptococcus pneumoniae serotype-

3. The study is the product of a collaborative effort between the working groups of Prof. Dr. 

Peter H. Seeberger, Director at the Max-Planck Institute of Colloids and Interfaces in 

Potsdam, and the laboratories of Prof. Dr. Leif Erik Sander and Prof. Dr. Martin Witzenrath at 

the Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine (Clinical 

Director: Prof. Dr. Norbert Suttorp) at the Charité - Universitätsmedizin in Berlin, Germany. 

Development and production of the vaccine was undertaken by Prof. Dr. Seeberger’s group, 

the pre-clinical evaluations described in this thesis were conducted at the laboratories at 

Charité – Universitätsmedizin in  Berlin.  

The results described in this monograph were partially published in:  Parameswarappa SG, Reppe 
K, Geissner A, Ménová P, Govindan S, Calow ADJ, Wahlbrink A, Weishaupt MW, Monnanda 
BP, Bell RL, Pirofski LA, Suttorp N, Sander LE, Witzenrath M, Pereira CL, Anish C, Seeberger PH. 
A Semi-synthetic Oligosaccharide Conjugate Vaccine Candidate Confers Protection 
against Streptococcus pneumoniae Serotype 3 Infection  Cell Chemistry and Biology. Volume 23, 
Issue 11, p1407–1416, 17 November 2016. 

Specific contributions: Figure 5- Page 1412, Figure 6-Page 1413, Figure 7-Seite 1414, and Figures S5 
& S6 in ‚Supplemental Figures’. 
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I. Abstract 

Introduction: Streptococcus pneumoniae represents a significant cause of global morbidity 

and mortality in both children and adults. While there are vaccines currently available that can 

convey immunity to some of the major serotypes of S. pneumoniae, limited access to vaccines 

in low-income countries leads to insufficient coverage of those populations, and the shifting 

prevalence of serotypes coupled with bacterial resistance to antibiotics is a serious 

development in the US and Europe. The rational design of semi-synthetic glycoconjugate 

vaccines represents a novel method for effective and economical vaccine production, and is 

therefore a viable strategy for addressing these problems. A new oligosaccharide-conjugate 

vaccine against S. pneumoniae serotype 3 (SP3), produced by glycan synthesis developed by 

the working group of Prof. Dr. Peter H. Seeberger (Max Planck Institute für Kolloid- und 

Grenzflächenforschung, MPIKG) has shown promise as one being able to induce serological 

responses.  Here, we tested the ability of this vaccine candidate to confer immunity in a 

mouse model of S. pneumoniae infection. Methods: In the current study, we conducted pre-

clinical in-vitro and in-vivo experiments, in accordance with WHO-guidelines for the 

assessment of novel vaccines, to examine the relative efficacy and safety of a novel, semi-

synthetic glycoconjugate vaccine for S. pneumoniae serotype 3 (SP3). In vitro experiments 

encompassed opsonophagocytosis assays implementing either differentiated HL-60 cells or 

peripheral human neutrophils. In vivo experiments employed a mouse-model of 

pneumococcal pneumonia to assess vaccine protection, based on clinical parameters, bacterial 

clearance from the lungs, bacteremia, local and systemic cellular immune-responses to SP3 

challenge, pulmonary function tests, and pulmonary endothelium barrier integrity. Results:  

The vaccine candidate showed a robust protective effect in mice challenged with SP3 35 days 

following vaccination, but waning effect with no significant protection after 116 days, 

indicating a potential failure to convey long-term protection. Conclusions: These data show 

at once the promise of this approach of using semisynthetic oligosaccharides in vaccines, and 

support the need to expand the efforts of inducing long-lasting immunity through optimized 

vaccine-design.  
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Einleitung:		 Streptococcus	 pneumoniae–Infektionen	 stellen	 weltweit	 eine	 wichtige	

Ursache	 für	 Morbidität	 und	 Mortalität	 bei	 Kindern	 und	 älteren	 Erwachsenen	 dar.	

Obgleich	 Impfungen	 für	 viele	 der	 häufigsten	 Serotypen	 von	S.	 pneumoniae	existieren,	

verhindert	 eine	 beschränkte	 Verfügbarkeit	 der	 Impfstoffe	 in	 Entwicklungsländern	 die	

flächendeckende	 Immunisierung	 dieser	 Bevölkerungen.	 Gleichzeitig	 wird	 in	 den	 USA	

und	Europa	eine	Verschiebung	der	beobachteten	Serotyp-Prävalenzen	bei	zunehmender	

Antibiotika-Resistenz	zu	einer	ernsten	Herausforderung.	Eine	effektive	und	ökonomisch	

effiziente	 Lösung	 dieser	 Probleme	 stellt	 die	 Methode	 des	 rationalen	 Entwurfs	

synthetischer	Polysaccharide-Impfungen	dar.	Vorläufige	Daten	konnten	zeigen,	dass	ein	

semisynthetischer	Oligosaccharid	-Konjugatimpfstoff	für	S.	pneumoniae	Serotyp	3	(SP3),	

hergestellt	 mittels	 automatisierter	 Glykansynthese,	 die	 durch	 die	 Arbeitsgruppe	 von	

Prof.	 Dr.	 Seeberger	 (Max	 Planck	 Institute	 für	 Kolloid-	 und	 Grenzflächenforschung,	

MPIKG)	 entwickelt	 wurde,	 eine	 serologische	 Immunantwort	 in	 Mäusen	 erzeugen	

kann.	In	dem	vorliegenden	Projekt	 sollte	nun	die	Fähigkeit	des	 semisynthetischen	SP3	

Impfstoffs	 Protektive	 Immunität	 in	 einem	 Mausmodell	 zu	 induzieren.	 Methoden:	In	

dieser	präklinischen	Studie	wurden	in-vitro	-	und	in-vivo-Experimente	durchgeführt,	die	

nach	 den	 WHO-Leitlinien	 für	 die	 Auswertung	 der	 Effektivität	 und	 Sicherheit	 neuer	

Impfstoffe	gestaltet	wurden.	In	den	in-vitro-Experimenten	wurden	‚Opsonophagocytosis	

Assays’	 (OPA)	 eingesetzt,	 welche	 Opsonophagozytose	 vermittelt	 durch	 spezifische	

Antikörper	messen.	Zu	diesem	Zweck	wurden	entweder	ausdifferenzierte	HL-60	Zellen,	

oder	 primäre	 menschliche	 Neutrophile	 Granulozyten	 verwendet.	Die	 in-vivo-

Experimente	 setzten	 ein	 Mausmodell	 der	 Pneumokokken-Pneumonie	 ein,	 um	 den	

Impfschutz	 gegen	 SP3-Infektion	 zu	 messen.	 Dazu	 wurden	 Daten	 zu	 klinischen	

Parametern,	 der	 Bakterienlast	 in	 Lunge	 und	 Blut,	 sowie	 zur	 Immunantwort	

erhoben.	Ergebnisse:	Der	 SP3-Impfstoff	 zeigte	 einen	 robusten	 Schutz	 in	 Mäusen,	 bei	

denen	 eine	experimentelle	 Pneumonie	 mit	 SP3	 35	 Tage	 nach	 Impfung	 durchgeführt	

wurde,	 nicht	 jedoch	 in	 Mäusen,	 die	 116	 Tage	 nach	 Impfung	 infiziert	 wurden.	 Der	

Impfschutz	 war	 somit	 nicht	 langlebig.	Schlussfolgerung:	Die	 Studie	 zeigt,	 dass	 semi-

synthetische	Konjugatimpfstoffe	protektive	Immunität	induzieren	können,	sie	zeigt	aber	

auch	 auf	 die	Notwendigkeit	weiterer	 Studien	 zur	Erforschung	der	 Langzeit-Immunität	

mit	diesen	neuartigen	Impfstoffen	auf.		
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II. Introduction 

 

II. A. Epidemiology and the Implications for Public Health 

 

II. A. i. Pneumococcal Infections Globally 

S. pneumoniae is a gram-positive, alpha-hemolytic bacterium that transiently colonizes the 

nasopharynx. Children, and especially infants make up the primary carrier population, of 

which between 30-96% have shown to be affected. The adult population shows decidedly 

lower carrier rates ranging between 3 and 9 %1-6. S. pneumoniae usually exists in a 

diplococcal form and is characterized by its large polysaccharide-rich capsule. Based on 

serum reactivity to capsule components, some 90 serotypes of S. pneumoniae have been 

identified to date, of which approximately 13 have been implicated in roughly 70% of 

invasive pneumococcal disease (IPD) cases2. The prevalence of the 21 most common 

serotypes in IPD is summarized in Figure 1.  

 
Figure 1. Global prevalence of the most 21 common serotypes of S pneumoniae in children under the age of 5. Error bars indicate 95% 
confidence interval for each serotype. Line indicates cumulative proportion of IPD caused by the serotypes. Figure taken from Johnson, et 
al., 20102. 
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Diseases caused by S. pneumoniae include infections of the ears (otitis), nose and throat, 

meningitis, and most notably pneumonia 3,4. These diseases are leading causes of morbidity 

and mortality world-wide. Pneumonia is a leading cause of death in children under the age of 

5 5,6, accounting for approximately 15% of global deaths in this age-group7,8.  S. pneumoniae 

remains the most significant cause of community acquired pneumonia (CAP), killing over 

500,000 children in this age-group each year9,10. Pneumococcal pneumonia in the elderly and 

immune-compromised represent secondary, yet still highly significant sources of disease 

burden and death11-12. Indeed, S. pneumoniae is a leading causative agent of CAP in persons 

65 years of age or older, which is in itself the fifth leading cause of death in this population13. 

 

II. A. ii. Disease Burden in Low-Income Countries 

As with most infectious diseases, pneumococcal infections take their greatest toll in areas of 

the world with low income and resources14, particularly in Africa and Asia, where between 

48% and 88% of IPD cases are accounted for by serotypes included in currently available 

vaccines. Cases in this region account for 95% of global pneumococcal disease, amounting 

annually to 10 million cases and over 600,000 deaths of children under the age of five3,6,12,15,2. 

This disproportionate geographic distribution in pneumococcal disease prevalence reflects 

limited access to health-care and related resources in those regions16. Inadequate access to 

antibiotic treatments for acute infection and insufficient vaccine coverage constitute the two 

major obstacles to stemming the tide of illnesses caused by this pathogen8. Indeed, while rates 

of IPD in the United States plummeted, and remained relatively low with the advent of the 

first pneumococcal vaccines17,15 (Figure 2), the associated disease burden in developing 

countries remains high, and is caused by serotypes included in current vaccines15,18,2,19 (Figure 

3), a clear indication of poor vaccine coverage in these populations.  
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Figure 2. Mortality caused by serotypes of S. pneumoniae covered by licensed pneumococcal conjugate vaccines (PCVs). The graph shows 
absolute mortality attributable to IPD in children under the age of 5 by geographical region. The different bars indicate absolute number of 
deaths caused by serotypes covered by each of the respective pneumococcal vaccines. Figure taken from Johnson, et al., 20102.  

 

 

Figure 3. geographical distribution of deaths attributable to pneumococcal disease in children under the age of 5 (based on data obtained 
from the WHO: ‘Programme for Immunization, Vaccines and Biologicals’, 20089) 

 

 

II. A. iii. Disease Burden in Europe and the United States 

Higher income countries face different problems related to IPD. Increasing bacterial 

resistance to both first- and second- line antibiotics15,20,21 and shifts in seroprevalence away 
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from types covered by currently available vaccines22,19 (Figure 4)  are increasing concerns 

both in the United States and Europe.  

Management of pneumococcal disease is costly. The financial costs have been calculated to 

reach over 3.5 billion USD in the US and some 5 billion Euros in Europe annually. Thousands 

of hospital-days and physician working-hours are committed to this task each year13,23,24
.  

 

 

 

Figure 4. Frequency of Penicillin resistance in S. pneumoniae isolates in the United States until the introduction of PCV7 (Prevnar7®) 
Figure taken from Pilishvili, et al., 201215. 

 

 

II. B. Vaccination as an approach to pneumococcal disease-control and prevention. 

Several vaccines for S. pneumoniae have been developed to date (Table 1). The first widely 

implemented vaccine against S. pneumoniae was the 23-valent polysaccharide vaccine (PSV) 

Pneomovax23® (Merck™). For reasons discussed in the next section, PSVs confer limited 

immunity to young children. The introduction of the polysaccharide conjugate vaccine (PCV), 

Prevnar7® for S. pneumoniae in 2000 can be regarded as a breakthrough, since it reduced the 

incidence of pneumococcal disease in the United States in children under the age of five from 

80 cases in 100,000 to less than 1 case in 100,000 within 7 years of its implementation15 

(Figure 5). 
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Trade Name Manufacturer PSV/PCV Year Licensed Serotypes incl. 

Pneumovax23® Merck™ PSV23 1983 1, 2, 3, 4, 5, 6B, 7F, 8, 

9N, 9V, 10A, 11A, 12F, 

14, 15B, 17F, 18C, 19A, 

19F, 20, 22F, 23F, 33F 

Prevnar7® Pfizer™ PCV7 2000 4, 6B, 9V, 14, 18C, 19F, 

23F 

Prevnar9® Pfizer™ PCV9 Unlicensed 4, 6B, 9V, 14, 18C, 19F, 

23F, 1, 5 

Prevnar10® Pfizer™ PCV10 Unlicensed 4, 6B, 9V, 14, 18C, 19F, 

23F, 1, 5,7 
Prevnar13® Pfizer™ PCV13 2010 4, 6B, 9V, 14, 18C, 19F, 

23F 1, 3, 5, 6A, 7F and 

19A 

Table 1.  15 

 

 

 

Figure 5. Incidence of IPD caused by S. pneumoniae PCV7-serotypes in children under the age of 5 before and after the release of the 
vaccine in 2001. (Figure modified from VPD Surveillance Manual, 5th Edition, 2012. Pneumococcal Disease: Chapter 11-13)15.  
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Based on this evidence, it can be asserted that vaccination is a safe and efficient measure to 

reduce the problem of pneumoccal disease in populations where it is readily accessible. 

Development of cost-effective methods for vaccine production would greatly improve vaccine 

coverage in low-income countries and allow for a quicker adaptation of vaccine serotypes in 

response to changes in serotype distribution25,26. As such, developing new strategies for more 

efficient, defined and cost-effective vaccine production has been a priority of several 

organizations, including the WHO and UNICEF, which jointly put forth the Global Action 

Plan for Pneumonia and Diarrhea (GAPPD). This initiative sets specific goals for the 

eradication of IPD in children by 20254. 

 

II. B. i. Current vaccines and mechanisms of inducing immunity to S. pneumoniae. 

A critical feature of acquired immunity against S. pneumoniae, and many other capsulated 

bacterial pathogens, is the production of specific antibodies to capsular polysaccharides (CPS) 

found in the bacterial cell wall27 (Figures 6 & 7). Humoral immunity in general is an 

extremely potent defense mechanism against extracellular bacterial pathogens. Pathogen-

specific antibodies offer protection by opsonizing bacteria and thus enhancing phagocytic 

clearance. In addition, antibodies promote complement-dependent killing of pathogens28,29,30. 

Protection afforded by pneumococcal vaccines is based on their ability to elicit humoral 

immunity to capsular antigens, thereby promoting opsono-phagocytosis and complementary 

killing of invading pneumococci31,32. Each of the licensed vaccines contains native capsular 

polysaccharides purified from fermented bacterial cultures31,32. In the case of PSVs, these 

polysaccharides are administered as a suspension without modification32; whereas in PCVs, 

CPS are chemically bound, or conjugated, to a carrier protein31.  

 

Figure 6. Author’s rendering of S. pneumoniae showing the diplococcal morphology and dense capsule. Based on electron-micrographs 
depicted in Rockefeller.edu33 . 
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Figure 7. Author’s rendering (modified from Stephens et. al, 2007) of the bacterial cell-wall cross section. The capsular polysaccharide 
contains the antigenic sequences that determine the serogroup34.  

 

Polysaccharides on their own elicit an immune response that is largely T-Helper-cell 

independent27 and fail to induce long-lived B cell memory35. Multiple B-cell receptors bind to 

the epitopes within a polysaccharide (glycotopes) and are subsequently cross-linked, resulting 

in a cascade reaction that eventually leads to antibody production and B-Cell differentiation 

into short-lived plasma-cells27,36. This mechanism is not supported in children younger than 

18-24 months, probably because they have not yet undergone the B-Cell maturation necessary 

to convey immunity to carbohydrates37,38. Consequently, polysaccharide vaccines such as 

PSV23 are ineffective in this very vulnerable age-group.  The immune systems in small 

children can, however, form immunological memory via mechanisms belonging to the 
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thymus-dependent pathway, for which peptides are required in the activation process. In this 

case, antigen presenting cells, such as dendritic cells and B-cells present peptide antigens on 

MHC-II molecules to CD4+ T-helper cells, which in turn stimulate B-cell activation, 

proliferation, antibody class-switching and recombination (CSR) and the generation of B-cell 

memory36,39,40(Figure 8). PCVs take advantage of this mechanism by coupling CPS to carrier-

proteins, which provide peptide antigens to stimulate sufficient T-cell help to trigger the 

germinal center reaction resulting in B cell memory. Notably, most conjugate vaccines use the 

well-characterized detoxified diphtheria toxin derivative CRM-197 as a carrier protein, 

thereby mobilizing CRM-197-specific T-helper cells into the CPS-specific humoral immune 

response41,39,42. MHC II appears to play a critical role in this process of carrier-protein 

facilitated B-Cell activation43,44,45,probably by direct MHC II Binding of carrier proteins and 

subsequent presentation to B-cell and release of IL  2&445. PCVs allow for safe and 

successful vaccination of infants and children under the age of two31.  

 

T-helper cell-independent response as seen with PSV: 

                               

 

 



 
 

16 

T-helper cell-dependent response as seen with PCV: 

 

 

Figure 8. Two pathways in the response to PSV (a) and PCV (b): Author’s rendering (modified from Avci et al, 2011) of a T-Helper cell-
independent response antibody production to PSV and b T-Helper cell-dependent response and antibody production to PCV44–46,47. 

 

 

II. B. ii. Challenges in Vaccine Production  

 

Implications for global accessibility and coverage.  

The production of CPS for both of these vaccines and, indeed for all vaccines utilizing CPS as 

antigen, is very resource intensive and often hampered by technical difficulties in providing 

stable and pure antigens48. The production process requires large-scale cultivation of the 

specific bacterial strains, and subsequent isolation of the desired CPS49,50. There are many 

technical and logistical challenges in this process. To name only a few of the problems 

encountered in CPS production by fermentation and purification, cultivation of certain strains 
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is often difficult51,52; isolation and purification of CPS is invariably never completely 

effective, resulting in the inclusion of impurities, which may disrupt vaccine responses or 

cause side-effects51,53; and CPS may become unstable during this process54,55. Naturally, this 

process must also be tightly controlled and regulated at each step49,50. In sum, the production 

of natural CPS antigens incorporated into these vaccines represents one major hurdle to 

overcoming the prohibitively high costs of making such vaccines available globally.  

 

 

II. B. iii. Rational Vaccine-Design   

 

Approaches for vaccine development and application in developing a novel vaccine for S. 
pneumoniae serotype 3. 

One promising approach to reducing production costs lies in the rational design of 

carbohydrate antigens and their synthetic production. Such a method allows for consistent and 

reliable production of carbohydrate antigens that could be employed in vaccine production 

with a comparatively insignificant window of chance for the inclusion of impurities48. 

Furthermore, this process would eliminate the problem of instability in the antigens produced, 

and circumvent the need for such rigorous inspection and regulation in the production process 

described above48,56,57.  

One significant challenge to this approach is identifying the carbohydrate sequences within 

the CPS that are sufficiently antigenic. Several methods have been developed to this end in 

the past few years, however, paving the way for advances in this field and expanding the 

currently available library on carbohydrate antigens48,57.  

S. pneumoniae serotype-3 (SP3) represents a previously well-characterized and clinically 

relevant pathogen. SP3 is known to cause IPD in both children and adults58,59. Several studies 

have made progress in describing the makeup of the CPS as well as identifying viable glycan 

hapten-candidates for use in vaccines60. In addition, PCV13 is known to be only weakly 

protective against SP3, making the latter a problematic serotype with a high medical need for 

better vaccines61,62.  

Recently developed glycan microarrays63 were employed to identify glycotopes in the CPS of 

SP3 that could potentially provide protective immunity against SP3. Using this method, Prof. 

Peter H. Seeberger’s group (MPIKG) generated a catalog of synthetic glycans fixed to a solid 
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surface, known as a microarray chip and then exposed to commercially available, well-

characterized monoclonal antibodies known to opsonize SP3 bacteria. Following rinsing 

steps, secondary antibodies coupled to fluorophores were then applied to mark the fixed 

antibodies. Quantification of fluorescence on the glycan microarray allows for the 

identification of oligosaccharides (i.e. glycotopes) that best bind the primary antibodies63 and 

therefore represent promising candidates for utilization in vaccines. Using this method, Prof. 

Seeberger’s group confirmed that SP3-specific antibodies bind both native SP3 CPS, as well 

as a newly synthesized tetrasaccharide-sequence with high affinity. The synthetic 

tetrasaccharide sequence was subsequently used as the SP3-glycotope in the synthetic PCV 

tested in this study64.  

As discussed previously, conjugation to a carrier-protein is necessary for the elicitation of a 

thymus-dependent response in children under the age of 24 months. 

CRM-197, an inactivated form of diphtheria toxin65,66 and the carrier employed in PCV13, 

was selected as carrier protein in this vaccine as one that is well-characterized and licensed for 

this purpose67. A coupling process using a linking compound was undertaken to conjugate the 

hapten to its carrier protein. This linker and the bonds involved can also play a role in 

immunogenicity48, which is why this constituent of the vaccine must be carefully selected so 

as not to negatively affect vaccine-response. Successful conjugation was verified by mass-

spectroscopy, which showed that, on average, 6 to 7 of tetrasaccharide haptens were 

conjugated to each CRM-197 molecule employed for this purpose68. This newly generated 

conjugate vaccine is referred to as ‘SP3-Tetrasaccharide’ from hereon. 

 

 

II. B. iv. Innate Immunity and Vaccines  

 

The role of the innate immune system in the conference of an adaptive response to threats, and 
the implications for vaccination. 

A necessary step in eliciting immune memory conferred by T- and B-cells involves antigen 

presentation by antigen-presenting-cells (APC) such as B-Cells, dendritic cells and 

macrophages36,69,70. PCVs on their own have a very limited capacity for evoking activation of 

antigen presenting cells. However, appropriate activation signals are required for the 

maturation of antigen presenting cells and the expression co-stimulatory molecules as well as 
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efficient processing and presentation of antigen. Thus, PCV application alone leads only to 

poor presentation of the antigens to immune cells and the resulting adaptive immune 

responses are limited36,70,71. The potential for eliciting immune-memory and a secondary 

immune-response is therefore reduced as well. The process of antigen presentation and 

sufficient activation takes place at the interface of the innate and adaptive immune-

systems72,70,73. The innate response to a potential threat, or an inflammatory stimulus such as 

an adjuvant, is prerequisite for the initiation of a sustained adaptive immune-response72,70,73.  

To facilitate this interface-reaction, vaccines must be supplemented with a component that 

adequately alerts the innate immune system to a potential threat36,71. Such supplementary 

substances are termed ‘adjuvants.’ There are many such substances in use today; an 

aluminum-containing solution (Alum) such as Alyhdrogel® (InvivoGen™) employed in this 

study, is one of the oldest and most widely used adjuvants, which has a consistent track-

record of being effective and very safe 74–76. For the purposes of this study, Complete-

Freund’s-Adjuvant (CFA), an oil emulsion containing heat-inactivated Mycobacterium bovis 

components77 was also employed. This latter adjuvant, while highly-effective at producing 

local-reactions and conferring immune-memory, is not approved for use in humans as it has 

shown to produce severe local and systemic side-effects78. The mechanisms by which each of 

these adjuvants elicits local-responses and subsequent activation of the adaptive immune-

system are, as yet, not fully understood. Some evidence suggests that aluminum directly 

activates macrophages and dendritic cells, which subsequently go on to present antigens 

within secondary lymph organs74–76.  CFA appears to elicit a similar reaction78, but tends to 

generally induce immune-memory more effectively than aluminum-containing agents79,71. 

 

 

II. B. v. Preliminary Results from Studies in Mice. 

 

Mice treated with SP3-Tetrasaccharide and CFA or Alum showed a significant immune 
response as determined by glycan microarray. 

Small-scale, preliminary experiments were conducted by our collaborators at MPIKG to 

establish whether the SP3-Tetrasaccharide combined with either the Alum-adjuvant or CFA 

would elicit an effective humoral immune response in mice. Groups of 6 mice were 

immunized either with PBS, SP3-Tetrasaccharide, SP3-Tetrasaccharide + Alum or SP3-
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Tetrasaccharide + CFA, followed by boosting at 14 and 28 days. Serum was then analyzed 

using glycan microarrays in a fashion similar to the one described above. Results from this 

analysis showed that mice from the SP3-Tetrasaccharide, SP3-Tetrasaccharide + Alum or 

SP3-Tetrasaccharide + CFA-groups produced immunoglobulin G (IgG) specific to both the 

SP3-Tetrasaccharide antigen, as well as to the native SP3-CPS, demonstrating that the vaccine 

could induce an immune response. A comparison of the results from these groups also showed 

that vaccines supplemented with either Alum or CFA elicited higher IgG titers compared to 

SP3-Tetrasaccharide alone. It was also shown that a significantly greater response was elicited 

when CFA was employed as an adjuvant when compared to Alum. These findings are also 

reflected in the literature wherein more robust responses to CFA were observed when 

compared directly with Alum80. Those findings confirmed robust immune-responsiveness to 

SP3-Tetrasaccharide when combined with an adjuvant.  

 

 

II. B. vi. WHO Guidelines for Vaccine Development 

 

II. B. vi. 1. Overview 

While these studies provided evidence for the immunogenic nature of SP3-Tetrasaccharide 

antigen, proof of functional protection in an animal model must be provided before clinical 

trials in humans can be conducted. The WHO has established guidelines for non-clinical 

evaluation of vaccines, which are intended to standardize the establishment of risk-benefit 

analysis50,81,82. These guidelines encompass parameters for toxicity assessment, 

immunogenicity and protective effects of the vaccine in an animal model to assess for the 

benefits of treatment and its relative safety before proceeding with human trials50,81. 

Toxicity studies monitor both clinical data that may reflect illness in animals (appearance, 

behavior and body-weight), hematologic and serologic examinations (complete blood count, 

electrolytes, enzyme studies and electrolytes) and pathology-studies (complete necropsy, 

examination of immune-organs including the spleen, lymph nodes, bone-marrow—and 

pivotal organs—brain, kidney and liver)82,81. 

Establishing effectivity involves both in-vivo and in-vitro/ex vivo studies. In-vitro/ex vivo 

studies encompass measures of antibody-titers, mean antibody concentration, seroconversion 

rates and antibody functionality. The latter is the capacity of specific antibodies to promote 
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opsono-phagocytosis and killing of the target pathogen in a standardized in-vitro assay82. In-

vivo studies combine both the toxicity studies described above as well as parameters adhering 

to established animal-models of pneumococcal disease, in the form of a challenge-experiment 

in which vaccinated animals are subjected to inoculation with the respective pathogen81,83,84.  

 

 

II. B. vi. 2. Application to the Current Study 

 

Applying a mouse-model of pneumococcal pneumonia to the current study  

A mouse model of pneumococcal pneumonia has been established in the working-group of 

Prof. Witzenrath Charité - Universitätsmedizin Berlin, Department of Infectious Diseases and 

Pulmonary Medicine81,83,84,85,86. This model encompasses direct monitoring of infected- mice 

and controls at 12 h intervals for clinical signs of morbidity (appearance of the fur and skin, 

lacrimation, behavior indicating stress etc.), bodyweight and temperature. Later, sacrificed 

animals are dissected and intubated for gathering spirometric data; BAL-Fluid and blood 

samples are collected for conduction FACS-studies and lung-permeability assessment; and 

lung tissue is obtained for histological examination.  

In this study we tested the protective effects of a novel, semi-synthetic PCV against SP3 using 

the in-vitro/ex vivo and in-vivo methods described above. We were able to show that SP3-

Tetrasaccharide induces protective humoral immunity as confirmed by positive OPA-titers in 

immunized mice 5 weeks after immunization, but not after 16 weeks. The protective nature of 

the vaccine in the short-term, but not in the long-term groups was indicated by: the absence of 

clinical signs and symptoms of infection, maintenance of body–weight and temperature, 

pulmonary bacterial load and bacteremia, and pulmonary endothelial permeability. Cell 

counts of bronchio-alveolar-lavage fluid (BALF) showed increased Neutrophil recruitment to 

lungs in non-vaccinated mice compared with vaccinated mice, and increases in Lymphocyte 

recruitment in vaccinated mice, supporting the conjecture of a specific immune response in 

vaccinated animals. Cell counts performed in whole-blood showed lower leukocyte counts in 

non-vaccinated groups than in vaccinated animals and uninfected controls.  In sum, we were 

able to demonstrate proof of concept for a novel, semi-synthetic PCV vaccine against SP3.  
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III. Materials and Methods 

 

 

III. A. In vitro / ex vivo-Studies 

III. A. i. Materials 

 

III. A. i. 1. Bacteria 

Highly encapsulated, alpha hemolytic serotype-3 S. pneumonia (PN36, NCTC7978, kindly provided 

by Prof. S. Hammerschmidt, Universität Greifswald, Germany), was employed in both OPA’s and in-

vivo experiments.  

The preparation of bacteria for killing assays and challenge experiments was performed according to 

protocols previously established in our working group. 

Bacterial stocks used in OPA’s were established by cultivating bacteria from single colonies overnight 

in a medium of Todd-Hewitt broth supplemented with a 0.5% yeast extract to an optical density (OD) 

of 0.3-0.4 at a wavelength of 600 nm. This OD corresponds to a mid-logarithmic growth-phase for this 

strain.  

The bacterial suspension was then diluted to obtain a concentration of ~106 CFU/mL and combined 

with glycerol to make a 15%-glycerol/suspension solution. This combination was frozen and stored at 

-80°C in 0.5 mL aliquots.  

Bacteria-viability was verified by plating 50 µL (~5 x 104 CFU) of frozen aliquot taken at random, and 

diluted 1:1, 1:10 and 1:100 serially on Columbia Agar. The plates were incubated for 10 hours at 37°C 

and 5% CO2 atmosphere, and the colonies counted manually.  

 

III. A. i. 2. HL-60 Cells 

Human, myeloproliferative leukemia HL-60 cells were implemented in the OPA’s. Cryostocks of HL-

60 cells were kindly provided by the working group of PD Dr. Andreas Nitsche at the Robert Koch 

Institute in Berlin, Germany. 

To establish the growth pattern and optimal induction-conditions for these cells, multiple expansions 

were performed. We tracked both the viable cell density using 4% trypan blue exclusion, and the 

degree of differentiation using a combination of Giemsa-Pappenheim staining to resolve 

morphological features at pre-established time-points during the growth- and differentiation process. 
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In addition, nitro blue tetrazolium staining for superoxide anions, and therefore the presence of 

granules was used to identify more accurately mature granulocytic cells.  

 

Expansion of HL-60 Stocks 

A cryostock of 1 x 106 HL-60 cells was diluted to 1:20 in a solution of RPMI 1640 medium 

supplemented with 20% fetal bovine serum (FBS), 1% L-glutamine and 1% penicillin-streptomycin. 

Cells were expanded to a concentration of ≤ 1 x 106 cells/mL in the upright position at 37°C and 5% 

CO2 atmosphere. Cell-viability was verified using 0.4% trypan blue exclusion. The growth medium 

was changed every 24h by centrifuging the culture at room-temperature at 160 x g for 10 minutes, and 

decanting supernatant from the pellet.  Following expansion, cells were cultured with a starting 

concentration of 2 x 105 cells/mL of the same medium, supplemented with 10% FBS instead of 20%. 

These growth cultures were incubated at 37°C and 5% atmosphere to a concentration of ≤ 5-7 x 106 

cells/mL in the upright position. The medium was changed as described above every 48-72 hours. 

Counts of viable cells were performed at regular intervals using trypan blue, and showed logarithmic 

growth over time (Figure 9).  

 

 

 

Figure 9. Average growth-rate of viable HL-60 cells over time started with an inoculation of 100,000 Cells/mL 
in a 200 mL solution. Shown are the average cell counts of 6 expansions. 

 

HL-60 Cell Differentiation 

The procedure for the differentiation of HL-60 cells to pseudogranulocytes was also modified from 

that described by Romero Steiner et. al., 2007. We assumed that the concentration of DMF used to 

stimulate HL-60 would at once affect the morphology as well as the viability of the cells. The latter 
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characteristic we attribute to the toxic nature of this compound and the fact that terminal 

differentiation of myeloid cells generally involves a proliferative block87,88. To determine the optimal 

condition for inducing granulocytic differentiation with preservation of cellular viability, we therefore 

conducted differentiation of HL-60 cells in 3 different environments i.e. with different concentrations 

of DMF: to a standard medium 200 mL of RPMI 1640 supplemented with 20% FBS and 1% L-

glutamine was added the required volume of DMF to produce either a 100 mM, 75 mM or 50 mM 

solution of this compound. (The protocol described by Romero-Steiner et. al. calls for a concentration 

of 100 mM DMF.)  

Cells from the previous step were then added to this medium at a concentration of 2 x 105 cells/mL 

and incubated for 7 days at 37°C and 5% CO2 atmosphere in the slanted position. The medium was not 

changed during this time.  After 7 days, trypan blue exclusion was used to control for the number of 

viable cells. Giemsa staining combined with nitroblue tetrazolium for testing the presence of 

superoxide anions was used to verify differentiation to pseudogranulocytes. Absolute cell counts vs. 

non-viable cell counts were charted over time (Figure 10) to assess the optimal differentiation time for 

each of these conditions. 

 

 

 

Figure 10. Relative growth (‘X mM DMF) and mortality (‘X mM DMF—Tri-X incl) of HL-60 cells in varied solutions of DMF inoculated 
with a starting concentration of 200,000 cells/mL. Cell mortality was quantified using a sample of cells from each time-point stained with 
Tri-X pan solution counted in a Neubauer cell-chamber. Cells showing inclusion of Tri-X pan were deemed unviable. All conditions showed 
an initial rise in viable cell concentration, with subsequent decline in viable cell concentration with a concomitant rise in cells showing 
Tripan Blue inclusion.  
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For each of these time-points, samples were plated and prepared using Giemsa-stain and nitroblue 

tetrazolium to establish the relative differentiation of cells in each of these respective conditions. 

(Micrographs of representative samples of cells from each set of conditions are shown in Figures 11-

13). In order to select the optimal conditions for performing OPAs we compared samples from 

conditions with the optimal cell viability i.e. lowest cell-mortality, and highest degree of cell 

differentiation. The latter characteristic was determined by cell-morphology and superoxide anion 

content of granules. We assumed that an optimal culture would contain the least number of dead cells, 

which would presumably interfere with granulocyte-SP3 contact and thereby opsonization, and the 

greatest number of cells with the highest degree of differentiation. 
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Figure 11 A-F showing author’s micrographs of HL-60 cells prepared by the author with Giemsa stain and nitroblue tetrazolium in a native, 
unstimulated state (A), and in a 100 mM solution of DMF at 47(B), 72 (C), 91(D), 135(E) and 156(F) hours post-inoculation. Progressive 
differentiation can be observed from a morphology comparable to that of HL-60 cells in a native state, to one with increased segmentation of 
the nucleus and presence of granules containing superoxide anions. 
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Figure 12 A-F. Author’s micrographs of HL-60 cells, prepared by the author, stimulated with a 75 mM solution of DMF at 47, 72, 91, 135, 
156 and 180 hours post-inoculation, respectively. The micrographs show progressive stages of differentiation, with a similar progression to 
a pseudogranulocytic state, and an increase in nuclear segmentation and the development of granules over time. Notably, there is an 
increased clustering of viable cells toward the end of the differentiation period and markedly less cell fragments, when compared to the 
differentiation-cultures containing a 100mM DMF solution. 
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Figure 13 A-F. Author’s micrographs of HL-60 cells, prepared by the author, stimulated with a 50 mM solution of DMF at 47, 72, 91, 135, 
156 and 180 hours, respectively, post-inoculation. Progression to a pseudogranulocytic state where the characteristic, granulocytic 
appearance is also observed. 

C 

E 

D 

F 

B A 



 
 

29 

We concluded that cells differentiated in a 75 mM DMF Solution for 6 days showed, by comparison, 

the best ratio of differentiation to viability. 

 

III. A. i. 3. Peripheral Human Neutrophils (PHN) 

Peripheral human neutrophils (PHN) were extracted from human whole blood using combined 

Hisoplaque-1077 and -1119 gradients. Isolated neutrophils were substituted in the same quantity for 

the HL-60 cells in the OPA assays described above. To establish the gradient, 12 mL of Histoplaque-

1077 solution was layered onto 12 mL of Histoplaque-1119 solution in a 50 mL centrifuge tube at 

room-temperature.  24 mL of whole blood, anticoagulated with 0.40 mL of a 250 mM EDTA solution, 

were then immediately layered onto this gradient and centrifuged at 700 x g for 30 minutes at 22°C 

with the brake off. The granulocyte layer was extracted and rinsed twice by suspension in PBS and 

centrifugation at 400 x g for 10 minutes. Following a third centrifugation, the cells were re-suspended 

with OPA-buffer and kept on ice until utilized in the OPA.  

To verify the presence of granulocytes in the layer extracted, a sample was taken and was prepared 

with a Giemsa-Pappenheim stain to verify the cell-type, morphologically (Figure 14).  

 

 
Figure 14. Author’s micrographs, of Giemsa-Pappenheim stain of a representative sample, prepared by the author, of isolated PHN used in 
these experiments, with characteristic, multi-segmentation of the cell-nucleus. 

 

III. A. i. 4. Serum 

Serum used in OPAs stemmed from one of two groups: either from mice vaccinated in the 

experiments performed by Prof. Seeberger’s group, or from mice vaccinated in our facilities. Mice 

from the former set of experiments had been vaccinated with SP3-Tetrasaccharide with a primary dose 
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of vaccine and either a Conjugate Freund’s Adjuvant (CFA) or Aluminum Hydroxide adjuvant 

(Alum). Both groups received one boosting 28 days thereafter. Serum was extracted before 

vaccination, at 1, 2 and 4 weeks following primary vaccination, and at 1 and 2 weeks following 

boosting. Pooled serum samples from each of these conditions were then implemented in our OPAs. 

A separate vaccination trial was carried out as above using 6 animals treated with SP3-Tetrasaccharide 

+ CFA. Serum from individual animals drawn at 2 and then at 3 weeks post-boosting was used in 

OPAs.  

In vaccination experiments conducted in our facilities (see description of in-vivo studies below) 

animals were treated with a primary dose of SP3-Tetrasaccharide + Alum, and with vaccine-boostings 

at 14 and 28 days thereafter. Serum was extracted at day 35 (i.e. 7 days following the second boosting) 

for use in OPAs. 

Serum from naïve animals was used as a negative control in these experiments. WHO-standardized, 

human serum from humans vaccinated with the 23-valent polysaccharide vaccine was implemented as 

a positive control.  

 

III. A. i. 5. Complement Factor 

Complement factors, isolated from naïve baby rabbits, provided by two different manufacturers, 

Cedarlane™ and Biozol™, were compared for effectivity. OPAs showed that assays using Biozol™ 

produced significantly greater killing than those using complement obtained from Cedarlane™ (see 

Results section), and Biozol™ was therefore selected for use in comparative OPAs. 

 

 

III. A. ii. Methods 

 

III. A. ii. 1. Opsonophagocytosis Assay (OPA) 

Differentiated cells obtained in the steps described above were harvested by centrifugation (160 x g 

for 10 minutes at room temperature). Trypan blue exclusion was used to first determine the viable cell 

count. The viable cell count was then used to calculate the volume of growth culture needed for the 

previous step. In order to obtain an effector-to-target cell ratio of 400:1, a volume of differentiated 

HL-60 cells or PHN was removed to provide 4 x 105 viable cells per well, multiplied by the number of 

wells used in the experimental conditions.  On the day of the assay, the differentiated cells were 

centrifuged at 160 x g for 10 minutes at room temperature, the supernatant was discarded and the 

pellet then re-suspended in 15 mL of Hank’s buffer without Ca++ or Mg++ (OPA-buffer). The 

suspension was then centrifuged a second time as above, and then re-suspended in the volume of the 
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same required for that specific assay. This suspension was kept in an ice-bath until it was 

implemented. 

For the assay itself, 5 µL aliquots of serum from each condition (run in duplicate for each assay) were 

added to the first well of each row of a 96-well, round-bottom micro titer plate. 15 µL of OPA-buffer 

were then added to each of these wells, and 10 µL of OPA-buffer to all of the subsequent wells in that 

row. The serum was then serially diluted using a multi-channel pipette for a titer range of 1:32 to 

1:4096.  10uL of OPA-buffer were then added to each row to bring the total volume of each condition 

to 90 µL. 20 µL of bacterial suspension (PN36, taken directly from thawed cryostocks prepared as 

described in the section above) were then added to each well. Control conditions, also run in duplicate, 

were set up as follows:  20 µL of PN36 + 70 µL of OPA-buffer, 20 µL of PN36 + 10 µL of 

complement + 60 µL of OPA-buffer, 20 µL of PN36 + 40 µL of differentiated Hl-60 cells + 30 µL of 

OPA-buffer, and 20 µL of PN36 + 10 µL of complement + 5 µL of WHO serum + 55 µL of OPA-

buffer. The micro titer plate was then incubated for 15 minutes at 37°C and 5% CO2 atmosphere. 

Phagocytosis was then initiated by adding 10 µL of complement suspension (Biozol™) to each well, 

followed immediately by 40 µL of differentiated HL-60 cells or PHN. The plate was then incubated 

for 45 minutes at 37° in a horizontal shaker operating at 220 rpm. The plate was then removed and 

kept on ice for the remainder of the protocol to halt the phagocytosis process. 5 µL of suspension from 

each condition was then plated onto 5% sheep blood agar plates and incubated for 10-12 hours at 37°C 

and 5% CO2 atmosphere. The plates were then removed and the CFU’s counted manually.  

 

 

III. B. In–Vivo Studies 

 

III. B. i. Materials 

III. B. i. 1.  Animals/Housing 

All protocols involving animals were first approved by the University’s board for the care and use of 

animals in research, as well as the local authorities (Landesamt für Gesundheit und Soziales Berlin, 

approval ID: A 305/12). Animals were housed and handled adherent to regulations on animals used for 

scientific purposes set forth by the European Commission for Environment and the Society for 

Laboratory Animal Science Association (FELASA). Housing for all mice used was kept pathogen-

free. 
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III. B. i. 2.  Bacteria 

Bacteria for challenge-experiments were taken from frozen stocks and plated on Columbia Agar 

containing 5% sheep blood by volume and incubated at 37°C and 5% CO2 atmosphere for 9 hours. 

Single colonies were used to inoculate a medium of Todd Hewitt Broth supplemented with 0.5% yeast 

extract (growth medium). Bacteria were then cultured at 37°C and 5% CO2 atmosphere to an optical 

density of 0.3 – 0.4 at a wavelength of 600 nm, which corresponds to mid-logarithmic growth-phase. 

The suspension was then centrifuged and re-suspended with sterile, Phosphate-buffered Saline (PBS) 

to the appropriate concentration for direct implementation in infection (see below). 

 

III. B. i. 3.  Serum 

Serum was obtained from mice in a pre-vaccinated state, and at 2 and 4 weeks following primary 

vaccination. Blood was drawn either from the tail- or facial-vein and centrifuged at 5000 x g for 10 

minutes at room-temperature to separate serum from the cellular phase. 

 

 

III. B. ii.  Methods 

 

III. B. ii. 1.   Pneumococcal Challenge 

8 week-old, Female C57BL/6N mice (Charles River, Sulzfeld, Germany) were injected 

subcutaneously with a 1:1 (v/v) suspension of SP3-Tetrasaccharide and Alum (Alhydrogel, Brenntag, 

Mühlheim, Germany) or CFA (Sigma-Aldrich, Steinheim am Albuch, Germany). This combination 

corresponds to a 100 µL solution containing 5 µg of conjugate. As controls, mice were injected with 

100 µL of sterile PBS, or with a suspension containing SP3-Tetrasaccharide without an adjuvant. 

S. pneumoniae challenge was performed using transnasal inoculation with bacteria at 35 days for 

short-term studies, or at 116 days for long-term studies. For this purpose, mice were anaesthetized by 

intraperitoneal (i.p.) administration of 80 mg/kg of Ketamine (Ketavet®, Pfizer, Berlin, Germany) and 

25 mg/kg of xylazine (Rompun®, Bayer, Leverkusen, Germany). A 20 µL PBS/bacterial suspension 

containing 1 x 106 CFU, or 20uL PBS solution was administered to the anaesthetized mice. Mice were 

monitored at 12-hour intervals for signs of illness and distress, which was qualified according to 

behavior (activity, grooming and respirations), appearance, body weight and rectal temperature (BAT-

12 Microprobe Thermometer, Physitemp Instruments, Clifton, NJ).  

48 hours following pneumococcal challenge, mice were deeply anaesthetized with a combination of 

ketamine (160 mg/kg body weight (BW)) and xylazine (75 mg/kg BW), and subsequently prepared for 

tracheotomization and ventilation. This procedure was carried out by Dr. med. vet. Katrin Reppe 
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(Witzenrath laboratory). Mice were then heparinized and exsanguinated via the Vena Cava Caudalis. 

The lungs were then perfused by way of the pulmonary artery using sterile PBS. Broncheoalveolar 

lavage (BAL) was conducted in two steps with an administration of 800 µL of PBS plus protease 

inhibitors each (Roche™, Mannheim, Germany). Both lungs and the spleen were then subsequently 

removed for microbiological and histological examination. 

Bacterial burden in BAL-fluid (BALF), lung-tissue and whole blood was measured. Lung-tissue was 

passed through a cell-strainer (100 µm, BD Bioscience), and the homogenate diluted serially and 

plated on Columbia agar with 5 % sheep blood and incubated at 37°C and 5% CO2 overnight. BALF 

and whole blood samples were similarly diluted and then plated for incubation. CFU’s were then 

counted manually. 

To measure blood-lung barrier permeability, albumin concentration in BALF supernatant and plasma 

were determined using enzyme-linked immunosorbent assay (Bethyl Laboratories Inc., Montgomery, 

AL, USA) as per manufacturer’s instructions. Albumin BALF/plasma ratio was calculated as an 

indicator and quantifier of alveolar edema.  

Total BALF leukocytes were quantified by use of a Neubauer™ hemocytometer, and differentiated by 

FACS analysis (FACS Calibur; BD Biosciences, Heidelberg, Germany) using forward vs. side scatter 

characteristics and staining with CD45 PerCP (clone 30-F11) GR-1 PE (clone RB6-8C5, all from BD 

Bioscience™, Heidelberg, Germany) and F4-80 APC (Invitrogen™ by Life Technologies, Carlsbad, 

CA). 
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IV. Results 

 

IV. Pooled reference serum from immunized humans potently opsonizes and facilitates 
killing of SP3 bacteria by HL-60 derived pseudogranulocytes or peripheral human 
neutrophils and complement.   

Host-defense against S. pneumoniae is contingent upon effector cells’ ability to phagocytize 

bacteria29,30,89. Phagocytosis of S. pneumonia, like most capsulated bacteria, is greatly enhanced by 

opsonization via specific antibodies, in particular IgG28,90. Enzyme-Linked Immunoabsorbant Assay 

(ELISA) is used to quantify the absolute serum-concentration of specific IgG91,82, and opsono-

phagocytosis assays (OPA) indirectly measures the presence and functionality of opsonizing and 

complement activating antibodies by measuring the ability of effector cells to clear bacteria in vitro92.  

 

 

In-vitro assessment of immune response: quantitative Enzyme-Linked Immunoabsorbant Assay 
(ELISA) and opsonophagocytosis assays (OPA). 

 

IV. A. i. ELISA for verification of IgG concentration. 

In-vitro experiments include the use of quantitative ELISA and OPA to establish specific serum IgG 

concentrations and the functionality of those immunoglobulins, respectively82. Similar to the glycan 

microarray studies described above, ELISA involves the immobilization of antigens—in this case the 

native SP3-CPS—in a solid matrix and application of serum from immunized mice. Secondary 

antibodies conjugated to substances that can be stimulated to produce chromographic reaction are 

subsequently applied. Quantification of this reaction verifies IgG concentrations91,93. 

 

IV. A. ii. OPAs as a tool for functional assessment of immunogenicity in response to 
vaccination. 

OPAs combine immune serum (or non-immune serum as control) with complement (usually baby 

rabbit complement) with effector cells and a pre-determined number of bacteria. The finished product 

of an OPA is plated on sheep’s agar. The functionality of the sera used for each condition is indicated 

by the degree of killing of bacteria.  This procedure was first described and standardized by Romero-

Steiner et. al in 1997 and has been adopted by the WHO in its guidelines for the evaluation of novel 

vaccines82.  
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Figure 15. Author’s rendering—using original artwork—of the process of opsonization of S. pneumoniae showing binding of specific IgG to 
pneumococci and subsequent phagocytosis with the help of complement.  

 

A key component of OPAs is the effector cells: phagocytosis of S. pneumoniae in-vivo is executed 

largely by neutrophilic granulocytes94–96.  The isolation of primary peripheral granulocytes represents a 

source of potential variability. The strategy employed to circumvent this problem has been to utilize 

differentiated, human myeloprolific HL-60 cells92,97,98. These cells were isolated from a patient in the 

late 1950’s with acute myeloproliphic leukemia and have been utilized for a wide range of uses 

since99. These cells are pluripotent, and when exposed to certain stimuli will differentiate to express 

the phenotype of mature white blood cells100. It was found that exposure to the organic solvent, 

Dimethylformamide (DMF) would result in the differentiation of these cells to granulocytes or 

‘pseudogranulocytes’ with the morphological and biochemical properties of peripheral human 

neutrophils87 (Figure 15). 

In order to establish the OPA testing of mouse immune sera in our laboratory, we acquired pooled 

serum standardized by the World Health Organization (WHO-S) from humans vaccinated with PSV23 

(Pneumovax23®) to use as a positive control. Indeed, we found that WHO reference serum mediated 

significant killing of SP3 bacteria through opsonphagocytosis with HL60-derived pseudogranulocytes, 

achieving 50% killing at titers between 1:32 and 1:128 (Figure 16). By contrast, serum from naïve, 

nonimmune mice (NMS) failed to induce significant bacterial killing (Figure 16). Per WHO definition, 

an effective concentration of serum antibodies corresponds to one that achieves 50% or greater-

reduction of CFU-count98,101. For further optimization, effectivity of two complement-factor sources 
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(Biozol™ and CedarLane™) was also compared, showing better killing in assays utilizing Biozol’s™ 

baby rabbit complement (Figure 16).   

 

Figure 16. A comparison of bacterial killing curves in OPAs utilizing HL60-derived pseudogranulocytes with either Biozol™ or 
CedarLane™-sources of complement factor and nonimmune mouse serum (NMS) or WHO-S (Immunized, WHO-Serum). Shown is the mean 
±SEM. n= 5. 

 

To further confirm effectivity of OPAs with primary human cells, we isolated human neutrophils 

(PHN) from peripheral blood of healthy blood donors by density gradient centrifugation as stated in 

detail in the Methods section. PHN showed slightly better killing capacity in OPA compared to HL60 

derived pseudogranulocytes (Figure 17). 

 

Figure 17. Bacterial killing in OPAs utilizing PHN as effector cells and Biozol™ complement and either WHO-S or NMS. Shown is the mean 
±SEM. n=5 
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To sum up, we established a standardized in vitro assay (OPA) to assess the functionality of humoral 

immunity to S. pneumoniae.  

 

 

IV. B. Results from Short Term Vaccination Studies. 

IV. B. i. Preliminary Studies 

 

IV. B. i. 1. OPAs 

Immune sera from SP3-Tetrasaccharide vaccinated mice facilitate significant 
opsonophagocytosis.  

Sera derived from experiments conducted by our collaborators at the MPIKG included mice 

immunized with SP3-Tetrasachharide + Alum following a prime-boost regimen (day 0, 14, 28), were 

analyzed by OPA (Figure 18).  

 

 
Figure 18. Time-line of the prime-boost SP3-Tetrasaccharide vaccinations, followed by infection and OPA. 

 

Data from OPAs using sera from mice treated in this way, taken at 2 and 3 weeks following the second 

boosting, were pooled and compared to sera from naïve mice. The OPA analyses demonstrated 

efficient opsonophagocytic capacity of immune sera from mice at 2 weeks post-boosting, with 50% 
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killing or greater at titers up to 1:256. Sera taken from mice at 3 weeks post-booster effected killing at 

all concentrations (Figure 19). 

 

 

Figure 19. OPAs utilizing pooled sera from 6 mice treated with SP3-Tetrasaccharide (SP3-ts) + CFA at 2 and 3 weeks after second 
boosting. Shown is the mean killing achieved using pooled sera from 6 mice, with each experimental condition repeated a total of 6 times. 

 

 

Pooled sera from mice treated with SP3-Tetrasaccharide + CFA taken at 4 weeks post primary-

vaccination (i.e. before the second boosting) and at 1 and 2 weeks after the second boosting showed 

significant killing when compared to controls and earlier time-points (Figures 20 A-B & 21). 
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Figure 20-A. Killing achieved with Pooled sera from 6 Mice in a pre-immune state, at 1 and 2 weeks following vaccination. 

 

Figure 20-B. Killing achieved with Pooled sera from 6 Mice 4 weeks following primary vaccination (SP3-ts+CFA), and at 1 and 2 weeks 
following the second boosting (SP3-ts+CFA). Each experimental condition was carried out once, as there was insufficient serum to perform 
multiple trials.  

 

A selection of data points from each curve from the data-sets described above corresponding to a 

dilution of 1:128 further illustrates effective bacterial killing a month after primary vaccination and at 

1 and 2 weeks post boosting (Figure 21).  
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Figure 21. Selection of mean bacterial killing capacity in OPA of pooled sera (dilution 1:128) from animals vaccinated using SP3-
Tetrasaccharide (SP3-ts) + CFA. 

Using a standardized WHO OPA for preclinical testing, these results demonstrated a functional 

immunogenicity of the newly generated semi-synthetic Alum or CFA adjuvanted SP3-Tetrasaccharide 

vaccine.  

 

 

IV. B. ii.  Establishment and Execution of In Vivo Experiments. 

 

Applying a mouse-model of pneumonia for in-vivo vaccine assessment. 

While there is no standard animal-model of pneumonia, the effects of S. pneumoniae in mice have 

been well characterized in the literature102,84. A challenge-experiment in which animals are directly 

inoculated with a quantity of bacteria sufficient to cause fulminant pneumonia represents an effective 

means of testing vaccine protection103. Pneumococcal serotypes differ in terms of the effect they have 

on their host. SP3 often causes bacteremia and pneumogenic sepsis that often affects the liver and 

other organ-systems102. An effective vaccine for SP3 should therefore be able not only to protect 

against bacterial burden of the lungs and the effects of pneumonia, but also to reduce bacterial 

translocation to the bloodstream and involvement of other organ-systems.  

The parameters used to evaluate the effects of SP3-Tetrasacharide were established to encompass the 

clinical, physiological, laboratory and histological measures of disease in mice. 
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SP3-Tetrasaccharide + Alum protects mice against challenge with SP3 35 days post 

immunization. 

 

IV. B. ii. 1.  Clinical Data: appearance, bodyweight and temperature. 

 

Vaccinated animals showed clinical signs of protection from SP3 challenge, as well as 

maintenance of bodyweight and temperature as compared to unvaccinated animals. 

Animals were monitored in 12-hour intervals for signs of disease. Clinically, mice with severe illness 

exhibit signs of inactivity, reduced feeding and grooming and excessive lacrimation104. Body weight 

declines over the course of progressive disease and body temperature drops in cases of fulminant 

bacterial invasion and sepsis104. Regular and frequent monitoring and documentation of these 

parameters can indicate the trajectory of the disease course in animals104. For the purposes of this 

study, these parameters were monitored at 12-hour intervals. 

Clinical observation of the mice showed telltale signs of disease. Reduced activity, hunched posture, 

lacrimation and starry fur were seen in varying degrees in mice from the PBS-treated and SP3-

Tetrasaccharide -only groups, whereas SP3-Tetrasaccharide + Alum mice were completely free from 

such signs. 

The body weight of S. pneumoniae infected mice immunized with adjuvanted vaccine did not drop 

significantly from baseline (n=11; 92.48 ± 3.45%; p>0.05). In contrast, the control non-immunized 

group and the group immunized in the absence of Alum adjuvant showed significant bodyweight loss. 
SP3-Tetrasaccharide + Alum mice showed significantly better maintenance of body-weight at 

48 hours after infection (n=11; 92.48 % ± 3.35 %) compared with infected mice treated with 

PBS (n=11; 84.14 % ± 7.04 %; p<0.001) and the group receiving SP3-Tetrasaccharide only 

(n=11; 84.6 % ± 5.67 %; p<0.01). Predictably, PBS-treated, uninfected mice showed the least 

drop in weight (n=9; 96.99 % ± 4.27 %: p>0.05) (Fig’s. 22 & 23). 



 
 

42 

 

Figure 22.  Average body weight over time in the 48 hours following pneumococcal challenge, shown as a percentage of body weight at 
time=0 (PBS / PBS = Phosphate-buffered saline - sham-infected, unvaccinated animals; PBS / SP3 = unvaccinated mice infected with SP3). 
Shown is the mean ±SEM. 1-Way ANOVA n=9 PBS/PBS; n=11 for PBS/SP3, SP3-Tetrasaccharide/SP3 and SP3-
Tetrasaccharide+Alum/SP3 

 
Figure 23. Average body weight of mice 48h post-challenge. [**p<0.01; ***p<0.001] 1 way ANOVA,  Shown are the data for each animal 
and the mean (horizontal bar; PBS / PBS = Phosphate-buffered saline - sham-infected, unvaccinated animals; PBS / SP3 = unvaccinated 
mice infected with SP3). 1-Way ANOVA. n=9 PBS/PBS; n=11 for PBS/SP3, SP3-Tetrasaccharide/SP3 and SP3-Tetrasaccharide+Alum/SP3.  
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Fever in humans corresponds to a temperature drop in mice104. We found that the changes in body 

temperature in the experimental groups mirrored the changes in body-weight described above (Figures 

24 & 25). Body-temperature 48 hours post pneumococcal challenge showed declines in the PBS-

treated, infected group (n=11; 36.07 °C ± 0.88 °C; p<0.01) and the SP3-Tetrasaccharide-only control 

groups (n=11; 35.91°C ± 1.79 °C p<0.01); whereas the SP3-Tetrasaccharide + Alum group maintained 

body-temperature (n=11; 37.11°C ± 0.36 °C; p>0.5 ), reflecting the protective effect of the adjuvanted 

vaccine.  Our negative-controls, which were unvaccinated and sham-infected, showed no significant 

decline in body temperature (n= 9; 37.68°C ± 0.28 °C p>0.5). 

 

Figure 24. Average body-temperature in the experimental groups during the 48 hours following pneumococcal infection. Shown is the mean 
±SEM, n=9 PBS/PBS; n=11 for PBS/SP3, SP3-Tetrasaccharide/SP3 and SP3-Tetrasaccharide+Alum/SP3.  

0 12 24 36 48
33

34

35

36

37

38

39

time post infection [h]

bo
dy

 te
m

pe
ra

tu
re

 [°
C

]

PBS / PBS

SP3-ts+Alum / SP3

PBS / PN36
SP3-ts / SP3



 
 

44 

 

Figure 25. Body-temperature 48 hours post pneumococcal challenge. Shown are the values for each individual animal, the mean is 
represented by the horizontal bar. [**p<0.01] 1-Way ANOVA, n=9 PBS/PBS; n=11 for PBS/SP3, SP3-Tetrasaccharide/SP3 and SP3-
Tetrasaccharide+Alum/SP3. 

 

 

IV. B. ii. 2.   Bacterial Burden in the Lung and in Blood. 

 

Animals immunized with Alum-adjuvanted SP3-Tetrasaccharide showed overall lower bacterial 
burden of the lung, and lower levels of bacteremia compared to controls.  

S. pneumoniae pneumonia in mice is associated with high bacterial burdens in pulmonary secretions 

and lung tissue102,105; bacteremia and sepsis are also frequent complications of pneumococcal 

pneumonia106. Quantification of colony forming units (CFU) in both bronchoalveolar lavage fluid 

(BALF) and homogenized lung tissue allows for the quantification of bacterial load in the lung; CFU 

counts in whole blood may be used to assess levels of bacteremia, and thereby sepsis107,108. Bacterial 

clearance was measured by CFU counts from plating BALF, lung-tissue homogenates, and whole 

blood samples on sheep-blood agar. We found that bacterial loads in the BALF of SP3-

Tetrasaccharide + Alum animals (n=8; 3 CFU/µL ± 3/µL) were significantly lower than those in SP3-

Tetrasaccharide-only controls (n=6; 5.18 x 102 CFU/µL ± 1.12 x 103/µL; p<0.05). Bacterial load in the 

vaccinated group was also lower than in PBS-treated, infected animals (n=8; 1.016 x 103 CFU/µL ± 
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1.844 x 103 CFU/µL), but this difference is not statistically significant at conventional levels (p>0.5) 

(see Figure 26). 

 

Figure 26.  CFU counts obtained from BALF by plating samples on sheep-blood agar and overnight incubation. [*p<0.05]1-Way ANOVA.  
(n= 8 for PBS / SP3 and SP3-ts + Alum groups; n= 7 for SP3-ts / SP3 groups). 

 

These results were reflected by bacterial burdens in homogenized lung tissue samples, in which 

significantly better bacterial clearance was seen in the vaccine-adjuvant group when compared to 

controls (Figure 27). Bacterial load in SP3-tetrasaccharide + Alum mice (n=8; 9.47 x 104 CFU/g ± 

2.59 x 105 CFU/g) was significantly lower than in both the PBS-treated, infected mice (n=8; 1.75 x108 

CFU/g  ± 1.53 x 108 CFU/g; p<0.01) and the SP3-Tetrasaccharide only group (n=8; 2.15 x 108 CFU/g 

±  2.99 x 108 CFU/g; p<0.05). 
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Figure. 27. Bacterial load in homogenized lung-tissue 48 hours post pneumococcal challenge. 1-Way ANOVA [*p<0.05; **p<0.01], n=8 for 
all groups.  

 

Levels of bacteremia were pronounced in control animals, whereas the animals in the adjuvanated-

vaccine group showed virtually no bacterial invasion into the blood stream (Figure 28). SP3-

Tetrasaccharide + Alum treated mice (n=8; 0.5 CFU/µL ± 1.41 CFU/µL) were lower than those in 

both the SP3-Tetrasacharide only group (n=8; 5.10 x 102 CFU/µL ± 5.96 x 102 CFU/µL; p<0.05) and 

the PBS-treated group (n=8; 2.53 x 102µL ± 2.36 x 102 CFU/µL; p<0.05). 
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Figure 28. CFU counts in whole blood 48 hours after pneumococcal challenge. 1-Way ANOVA.  [*p<0.05] n=8 for all groups.  

 

IV. B. ii. 3.   White Cell Counts in the Lung and in Blood. 

 

Bacterial pneumonia is characterized by a massive influx of inflammatory leukocytes into the infected 

lung tissue, and extravasation of those cells and fluid into the air-spaces109. Leukocyte-, and especially 

Neutrophil infiltration in the case of S. pneumoniae plays a central role in the mediation of innate 

response to invasive organisms110,111, involving activation and excretion of inflammatory factors such 

as pneumolysin, reactive-oxygen species and proteases, causing both bactericide and lung parenchyma 

edema, tissue damage and fluid-accumulation112,113. These inflammatory responses and the secondary 

effects of inflammation are the hallmarks of pneumonia, and are typically reflected as “pulmonary 

infiltrate” in the chest X-ray of pneumonia patients114,115. Here, as a marker of disease-severity, we 

quantified leukocyte infiltration of the lung and the alveolar space using flow cytometry. Leukocyte 

counts in BALF were performed 48 hours after infection, and revealed a significantly greater number 

of leukocytes in the PBS-treated, infected mice (n=8; 2.02 x 104 cells/mL ± 1.60 x 105/mL) and the 

SP3-Tetrasaccharide only group (n=7; 2.53 x 105 cells/mL ± 1.50 x 105 cells/mL) than in the PBS-

treated, uninfected mice (n=7 2.02 x 104 cells/mL ± 9.38 x 103 cells/mL) (p<0.05 & p<0.01, 

respectively). A higher leukocyte count in the SP3-Tetrasaccharide + Alum group was also detected, 
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but is not statistically significant at conventional levels (n=8; 1.39 x 105 ± 6.74 x 104 cells/mL; 

p>0.05) (Figure 29). 

  

 

 

Figure 29. Leukocyte counts in BALF 48 hours post pneumococcal infection. 1-Way ANOVA. [*p<0.05; **p<0.01] , n=8 for all groups. 

The relative proportions of Leukocytes may shed light on specific- vs. non-specific immune response 

to bacterial challenge. The nonspecific response to bacterial invasion is characterized primarily by 

granulocytes, which play a role in phagocytocis116 and secretion of bacteriotoxic substances96,98,117. 

The specific or adaptive immune response, by contrast, is characterized by a mobilization of B- 

Lymphocytes, and specifically Plasma-Cells, which produce opsonizing antibodies important for 

assisting phagocytosis and cell-clearance118,119. Performing differential cell-counts of BALF and 

peripheral blood allows for an assessment of which of the two immune-responses predominate in 

vaccinated or non-vaccinated animals84,120,121.  

To further differentiate and quantify the infiltrating leukocyte populations, we performed multi-color 

flow cytometry. Absolute neutrophilia was observed in both the PBS-treated, infected mice (n=7; 1.53 

x 105 cells/mL ± 1.23 x 105 cells/mL) as well as the SP3-Tetrasaccharide-only mice (n=6; 1.67 x 105 

cells/mL ± 1.32 x 102 cells/mL) compared to the PBS-treated uninfected mice (n=6; 8.85 x 102 

cells/mL ± 4.82 x 102 cells/mL) where p<0.05 in both cases (Figure 30-A).  
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In comparison to PBS-treated, uninfected mice, the percentage of Neutrophils (%Neu) in BALF was 

dramatically higher in the infected control mice (n=7; 56.29 %Neu ± 28.06 %Neu; p<0.01), in mice 

treated with SP3-Tetrasaccharide only (n=6; 63.92 %Neu ± 8.07 %Neu; p<0.05) and in SP3-

Tetrasaccharide + Alum treated mice (n=7; 48.54 %Neu ± 17.34 %Neu) (Figure 30-B).  

The absolute Macrophage count in BALF did not differ significantly between groups. Unvaccinated, 

uninfected controls showed an absolute number of cells in BALF (6.48 x 104 cells/mL ± 4.53 x 104 

cells/mL) that did not differ significantly from either the SP3-tetrasaccharide-only mice (n=6; 6.98 x 

104 ± 104 cells/mL; p>0.05) SP3-tetrasaccharide + Alum (n=7; 6.48 x 104 cells/mL ± 1.82 x 104 

cells/mL; p>0.05) or the PBS-treated, infected animals (n=6; 2.07 ± 7.83 x 103 cells/mL; p>0.05). In 

contrast, the relative number of macrophages in PBS-treated, infected mice (n=7; 38.32 %Ma ± 23.28 

%Ma; p<0.001), the SP3-tetrasaccharide-only mice   (n=6; 37.9 %Ma ± 7.9 %Ma; p<0.001) and SP3-

Tetrasaccharide + Alum (n=7; 31.86 %Ma ± 7.77 %Ma; p<0.001) were all significantly lower than 

those observed in PBS-treated, infected mice (n=6; 91.52 ± 3.54 %Ma)(Figure. 30-C/D).  

Greater absolute numbers of Lymphocytes in SP3-tetrasaccharide+Alum animals (n=7; 1.69 x 104 

cells/mL ± 1.24 x 104) were observed when compared to both PBS-treated, uninfected animals (n=6; 

7.71 x 102 ± 3.74 x 102 cells/mL; p<0.01) and PBS-treated, infected animals (n=7; 4.35 x 103 ± 2.29 x 

103 cells/mL; p<0.05), but not when compared to the SP3-tetrasaccharide-only animals (n=7; 7.71 x 

103 cells/mL ± 6.15 x 103; p>0.05). The latter group did not show absolute numbers of Lymphocytes 

that differed from those of the other groups. 

The percentage of Lymphocytes (%Ly) were observed in SP3-Tetrasaccharide + Alum mice (n=7; 

12.57 %Ly ± 9.76 %Ly) were also shown to be significantly higher than in PBS-treated, uninfected 

mice (n=6; 3.44 %Ly ± 1.58 %Ly; p<0.05), PBS-treated, infected mice (n=7; 3.16 %Ly ± 2.83 %Ly; 

p<0.05), and SP3-tetrasacharide-only mice (n=6; 3.31 %Ly ± 1.89 %Ly; p<0.05) (Figure. 30-E/F). 

These findings strongly suggest an adaptive immune response in adjuvanted, vaccinated animals. 

When taken together with the findings on bacterial burden described above, they further suggest that 

the (highly protective) effect of vaccination in these animals is facilitated by antibody-producing 

lymphocytes.  
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Figure 30 A-F. Figure 13-A: Differential cell-counts of BALF obtained using FACS. 1-Way ANOVA  (*p<0.05 **p<0.01 ***p<0.001) n=7 
for PBS / PBS; n=8 for PBS / SP3, SP3-ts / SP3 and SP3-ts + Alum / SP3.  
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Differential cell counts performed in whole blood: leukocytosis of peripheral blood as a marker 
for disease severity and immune-response. 

The mobilization of leukocytes in pneumonia is a hallmark sign of disease severity96,122,123. We 

measured absolute leukocyte counts in peripheral blood samples. In comparison to SP3-

tetrasaccharide+Alum mice (n=8; 2.68 ± 7.64 x 102 cells/µL), absolute Leukocyte counts were 

significantly lower in PBS-treated, infected animals (n=8; 1.27 ± 7.03 x102 cells/µL; p<0.01) and in 

SP3-tetrasaccharide-only mice (n=8; 1.36 ± 5.98 x 102 cells/µL). Leukocyte counts in PBS-treated, 

uninfected mice (n=7; 2.04 x 103 cells/µL ± 7.22 x102 cells/µL; p<0.05) did not differ significantly 

from any of the other groups, probably representing an unstimulated state with regard to Lymphocyte 

proliferation (Fig 31).  

 

 

 

Figure. 31. Absolute cell counts in whole-blood performed 48 hours after pneumococcal challenge. TruCOUNT™ of whole-blood. 1-Way 
ANOVA . [** p<0.01] n=7 for PBS / PBS; n=8 for PBS / SP3, SP3-ts / SP3 and SP3-ts + Alum / SP3. 

 

We then further differentiated the blood leukocytes by flow cytometry (Figure 32). Absolute 

Neutrophil-counts differed significantly only between SP3-tetrasaccharide+Alum animals (n=8; 6.04 x 

102 ± 4.13 cells/ µL) and PBS-treated, uninfected animals (n=7; 1.83 x 102 ± 79.3 cells/µL; p<0.05). 

Counts performed in whole blood from either PBS-treated infected animals (n=8; 3.19 x102 ± 2.12 

x102 cells/ µL) and SP3-tetrasaccharide only animals (n=8; 3.02 x 102 ± 1.62 x 102 cells/ µL; p>0.05) 

revealed no significant differences between groups. 
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The relative proportion of Neutrophils showed no significant variance (p>0.05) at all between groups. 

(PBS/PBS: n=7; 8.88 ± 2.24 %Neu); (PBS/SP3: n=8; 24.80 ± 13.33%Neu); (SP3-

tetrasaccharide+Alum/SP3: n=8; 22.21 ± 14.03 %Neu); (SP3-tetrasaccharide/SP3: n=8; 23.14 ± 9.81 

%Neu).   

Some significant differences were observed in the absolute count of blood Monocytes between PBS-

treated, uninfected mice  (n=7; 1.73 x 102 ± 6.73 x 102 cells/ µL) and SP3-tetrasaccharide-only animals 

(n=8; 3.52 x 102  ± 1.02x102 cells/µL), where the latter showed higher numbers than the former. 

Unvaccinated, infected mice (n=8; 3.02 x 102 ± 84.78 x10 cells/µL) and SP3-tetrasaccharide +Alum 

mice (n=8; 2.89 x 102 ± 1.08 x 102 cells/µL) also showed slightly higher monocyte counts than the 

unvaccinated, uninfected mice, but these were not significant at the conventional level (p>0.05). 

Measures of the relative number of blood monocytes (%Mono), revealed that PBS-treated, infected 

animals (n=8; 27.63 %Mono ± 9.5 %Mono) and SP3-tetrasaccharide –only mice (n=8; 28.48 %Mono 

± 9.16 %Mono) had significantly higher proportions (p<0.001 in both cases) of circulating monocytes 

than in both SP3-Tetrasaccharide + Alum, infected (n=8; 10.60 %Mono ± 2.07 %Mono) and PBS-

treated, uninfected groups (n=7; 8.82 %Mono ± 2.39 %Mono) (Figure 32-D).  

By contrast, both the absolute and relative lymphocyte counts for the PBS-treated, uninfected mice 

and, more importantly, for the SP3-tetrasaccharide+Alum group were significantly higher than those 

of the unvaccinated, infected group, and the mice treated with the conjugate without adjuvant. 

Absolute counts of lymphocytes in the SP3-tetrasaccharide+Alum group (n=8; 1.76 x 103 ± 5.80 x102 

cells/µL) were significantly higher than those in both the PBS-treated, infected mice (n=8; 6.33 x 102 

± 5.73 x102 cells/µL; p<0.01) and in mice treated only with SP3-tetrasaccharide (n=8; 6.85 x 102 ± 

4.73 x 102 cells/µL; p<0.01). Unvaccinated, infected animals (n=7; 1.66 x 103 ± 6.12 x102 cells/µL) 

showed higher levels of absolute lymphocyte counts than both the unvaccinated, infected animals 

(p<0.05) and the mice treated with only SP3-tetrasaccharide (p<0.01). (Figure 32-E). 

Significantly lower rates of relative lymphocyte counts compared to the SP3-tetrasaccharide+Alum 

mice (n=8; 66.31 %Ly ± 14.51 %Ly) were seen in both the PBS-treated, infected controls (n=8; 46.23 

Ly% ± 12.26 %Ly; p<0.05) and the SP3-tetrasaccharide-only, infected group (n=8; 47.17 %Ly ± 

11.39 %Ly; p<0.05). The PBS-treated, uninfected controls (n=7; 81.15%Ly ± 4.30 %Ly) showed 

significantly higher relative numbers of circulating lymphocytes than both the PBS-treated, infected 

animals and the SP3-tetrasaccharide-only animals (p<0.001 for both cases). (Figure 32-F). 

 



 
 

53 

 

Figure 32 A-F. FACS analysis of leukocyte populations in whole blood. 1-Way ANOVA*p<0.05 **p<0.01 ***p<0.001 ) n=7 for PBS / PBS; 
n=8 for PBS / SP3, SP3-ts / Sp3 and SP3-ts + Alum / SP3.   
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IV. B. ii. 4.   Pulmonary Function Tests  

 

SP3-Tetrasaccharide + Alum vaccination protects against lung damage and decreased lung 
function following S. pneumoniae infection.  

We next assessed lung function parameters to determine the effects of SP3-Tetrasaccharide 

vaccination on pneumonia induced organ dysfunction. These measurements were performed by Dr. 

vet. med. Katrin Reppe and kindly provided for inclusion in this thesis for completeness.  

As discussed above, bacterial pneumonia caused by S. pneumoniae is hallmarked by leukocyte 

extravasation and edema124. The functional consequences are reduced pulmonary compliance and 

increased airway-resistance125,126,85. 

Pulmonary compliance refers to the distensability of lung parenchyma in response to changes in 

(pleural) pressure127; pulmonary edema reduces pulmonary compliance by increasing the rigidity of 

parenchyma124, thereby reducing the lung’s ability to expand in a response to reduced pleural pressure, 

as for example during inspiration128,129. 

Airway resistance refers to airflow through the upper and lower pulmonary airways, and is determined 

by two significant factors: 

1) airway radius, as shown by Poiseuille’s law130: 

𝐴𝑖𝑟𝑤𝑎𝑦 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
8
𝜋

 ∙
𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 ∙ 𝑡𝑢𝑏𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑑𝑖𝑢𝑠!
 

and  

 

2) the degree of turbulent airflow vs. laminar airflow127,130.  

In order to maintain a given airflow with increasing resistance, an increase in respiratory work to 

change airway pressure is required, as described by the equation130: 

𝐴𝑖𝑟𝑓𝑙𝑜𝑤 𝑖𝑛
𝐿
𝑠
=  
Δ Airway 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝐴𝑖𝑟𝑤𝑎𝑦 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 

Inflammation of the mucosa in pneumonia surrounding the inner lumen of the airways, and the 

accumulation of mucus and pus in airways cause an decrease in airway diameter, an increase in 

physical irregularities in airway lumen, and thereby increase of airway resistance and turbulent 

airflow, respectively 131,132,130.  

The resulting effect is increased respiratory work to produce to maintain an airflow that will ventilate 

the lungs and to maintain gas-exchange130. As respiratory work decompensates, so too does airflow 

and gas exchange; this leads to a state of respiratory insufficiency, which is characterized by 

hypoxemia and hypercapnia133. 
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Pulmonary functions tests showed that average lung compliance was lower in sham-vaccinated, 

infected mice (n=8; 15.78 µm/cm H2O ± 4.17 µm/cm H2O; p<0.01) and SP3-tetrasaccharide-only, 

infected mice (n=8; 16.06 µm/cm H2O ± 2.45 µm/cm H2O; p<0.01) than in the sham-vaccinated, 

uninfected mice (n=7; 22.6 µm/cm H2O ± 1.0 µm/cm H2O). Compliance in SP3-

tetrasaccharide+Alum mice (n=8; 16.06 µm/cm H2O ± 2.45 µm/cm H2O) was better than in the PBS-

treated, infected animals and the animals treated only with SP3-tetrasaccharide, but not significantly 

so (p>0.05). At the same time, adjuvanted, vaccinated animals did not have significantly lower 

compliance than uninfected controls (p>0.05), indicating a partial restoration (Figure 33).  

 

Figure 33. Lung function test measuring lung compliance in the experimental groups depicted. 1-Way ANOVA. [**p<0.01]. n=7 for PBS / 
PBS; n=8 for PBS / SP3, SP3-ts / SP3 and SP3-ts + Alum / SP3. 

 

Lung resistance was significantly higher only in sham-vaccinated, infected mice (n=8; 2.5 

cmH2O/mL/s ± 0.5 µm/cm H2O; p<0.01) when compared to PBS-treated, uninfected mice (n=7; 1.9 

µm/cm H2O ± 0.22 µm/cm H2O).  The former group and the group treated only with SP3-

tetrasaccaride (n=8; 2.53 ± 0.38 µm/cm H2O) showed a resistance that was higher than the SP3-

tetrasaccharide+Alum animals (n=8; 2.04 ± 0.24 µm/cm H2O), but not significantly so (p>0.05 in both 

cases). 
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Figure 34. Lung function test measuring lung resistance in the experimental groups depicted. 1-Way ANOVA. [**p<0.01]. n=7 for PBS / 
PBS; n=8 for PBS / SP3, SP3-ts / SP3 and SP3-ts + Alum / SP3. 

 

 

IV. B. iii. In vitro/in vivo Data from Challenge Experiments 

 

IV. B. iii. 1. OPAs 

OPAs confirm production of protective antibodies in SP3-Tetrasaccharide + Alum-vaccinated 
animals. 

We next assessed the OPA activity of sera in the experimental groups used for the challenge 

experiments described above. Sera from blood draws performed at day 35 (1 week following the 

second boosting) were implemented in OPAs and showed effective killing in the vaccinated groups at 

titers up to 1:32 (Figure 35), essentially confirming the protective effects observed in the vaccination 

studies.  
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Figure 35. OPAs were performed with pooled serum from mice taken at 1 week following the second boosting. Sera from 10 mice were 
pooled for Alum only and Alum + SP3-Tetrasaccharide (SP3-ts)groups, and 11 mice for the PBS groups . Each experimental condition was 
repeated a total of 4 times.  PBS= sham-vaccinated mice, Alum=adjuvanted only, Alum + SP3-ts= mice treated with adjuvanted vaccine.  

 

These results are comparable with those obtained from the preliminary experiments described in the 

above section on short-term immunity. For the purposes of comparing the effectiveness of the two 

adjuvants used, data-plots from the experiments implementing CFA instead of Alum were added to the 

graph in Figure 35. A comparison of the results indicate that vaccines adjuvanted with CFA seem to 

elicit a more robust antibody OPA-response than the Alum adjuvanted vaccine, producing a reduction 

of 50% of CFU at a titer up to 1:256 (Figure 36). 

 

 

Figure 36. Comparison of bacterial killing with sera obtained from mice treated either with an Alum- or CFA-conjugate. Sera from 10 mice 
were pooled for Alum only and Alum + SP3-ts groups, 11 mice for the PBS groups and 6 for the CFA groups. Experimental conditions were 
repeated a total of 8 times for conditions using mice treated with PBS, Alum, Alum + SP3-Tetrasaccharide (SP3-ts), and 4 times for mice 
treated with CFA + SP3-Tetrasaccharide. 

10 100 1000 10000
0

20
40
60
80

100
120
140

PBS
Alum only
Alum+SP3-ts

Dilution factor

C
FU

 (%
 o

f c
tr)

10 100 1000 10000
0

20
40
60
80

100
120
140

PBS
Alum only
Alum+SP3-ts
CFA+SP3-ts

Dilution factor

C
FU

 (%
 o

f c
tr)



 
 

58 

  

 

IV. C. Results from the Long-Term Vaccination Study. 

 

SP3-Tetrasaccharide + Alum vaccination does not provide clinically effective long-term 
immunity. 

One of the big advantages of vaccines is their capacity to afford long-lasting protective immunity 

against infections. It was therefore critical to assess the long-term efficacy of the newly generated 

semi-synthetic conjugate vaccine in our model. Given the relatively short life span of laboratory mice, 

we chose a 4-month time point as a proxy to determine long-term immune protection. 

A challenge at 35 days, i.e. 7 days following the most recent boosting, corresponds to the end of the 

window in which a primary immune response to a new antigen can still be in effect72,134. Long-term 

memory must take effect for protection to be observed greater than 21-day after boosting134,72. 

Performing a challenge at 116 days following the second boosting creates experimental conditions in 

which the primary response to vaccination will have phased out completely, and the secondary 

immune response to vaccination can be specifically examined for effectivity135.   

Disappointingly, mice were not protected against pneumonia 4 months after vaccination with SP3-

Tetrasaccharide + Alum, as evidenced by high levels of all indices of infection.  

 

IV. C. i. Clinical Data: appearance, bodyweight and temperature. 

 

Bodyweight and temperature as indicators of disease-severity dropped in vaccinated animals by 
a margin comparable to non-vaccinated animals. 

Body weight (Figures 37 & 38) in all animals decreased from baseline over the 48 hours following 

challenge, without an observable significant difference between groups. SP3-Tetrasaccharide + Alum 

animals (n=10; 85.1% ± 3.4%) showed a drop in weight similar to that seen in control groups (p>0.05 

for both cases) PBS/SP3-Tetrasaccharide (n=11; 83.4% ± 3.7%) and Alum/SP3 (n=9; 84.1% ± 2.8%), 

thus indicating fulminant disease in all groups, with no protective response to challenge observed in 

vaccinated animals. 
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Figure 37. Average body-weight across groups showing a uniform decline across groups in the 48 hours post- pneumococcal challenge, with 
no statistically significant difference between groups. 1-Way ANOVA. n=10 for SP3-Tetrasaccharide (SP3-ts) + Alum, n=11 for PBS/SP3-
Tetrasachharide, n=9 for Alum/SP3  

 

 

 

 

Figure 38. Distribution of body-weight percent of base-line 48 hours following pneumococcal challenge. 1-Way ANOVA n=10 for SP3-
tetrasacchride (SP3-ts) + Alum, n=11 for PBS/SP3-ts, n=9 for Alum/SP3.  
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Similarly, all groups showed a comparable decline in body-temperature in the 48h following pneumococcal 

challenge. The average value of this parameter did not vary significantly between groups (PBS/SP3 (n=11; 35.0 

°C ± 1.7 °C); Alum/SP3(n=9; 35.0 °C ± 2.1); SP3-Tetrasaccharide + Alum (n=9; 34.8 °C ± 3.1 °C), with p>0.05 

in all cases), indicating that vaccinated animals were not more protected from disease progression than non-

vaccinated animals (Figures 39 & 40). 

 

 

 

 

 
 

Figure 39. Average body-temperature across groups during the 46 hours following pneumococcal challenge, with no statistically significant 
differences between groups.  n=10 for SP3-Tetrasacchraide (SP3-ts) + Alum, n=11 for PBS/SP3-ts, n=9 for Alum/SP3.  
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Figure 40. Distribution of temperatures across groups 48 hours following pneumococcal challenge. 1-Way ANOVA. n= 9 for PS3-ts + Alum; 
n= 11 for PBS/SP3 (n=11); n=9 for  Alum/SP3  

 

 

IV. C. ii. Bacterial Burden in the Lung and in Blood. 

 

CFU-counts in BALF, lung-tissue and whole-blood, performed 116 days following challenge 
show no significant differences across groups. 

 

CFU-counts in BALF 

These general, clinical signs of disease progression and severity in the animals were reflected in the 

more specific indices of disease. CFU counts from BAL fluid, lung-tissue and blood were similar 

across all groups, including high bacterial burden in both SP3-Tetrasaccharide + Alum and control 

groups, reflecting ineffective clearing of bacteria from the lungs.  The CFU counts conducted using 

BAL-fluid were as follows: SP3-Tetrasaccharide+Alum treated mice showed bacterial burden (n=7; 

5.77 x 103 ± 1.30 x 104 CFU/µL BALF) similar to those in sham-vaccinated animals (PBS/PBS: n=8; 

6.87 x 103± 1.67 7 x 104 CFU/µL BALF) and mice treated only with Alum (n=6; 1.53 x 104 ± 3.76 x 

104 CFU/µL BALF), p>0.05 in all cases. (Figure 41).  
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CFU-counts in Lung-Tissue 

Similarly high CFU-counts were seen in the lung-tissue of SP3-tetrasaccharide+Alum treated mice 

(n=7: 8.20 x107 ± 1.49 x108 CFU per 1/2 Lung and 3.89 x108 ± 6.92x108 CFU/g lung-tissue), sham-

vaccinated mice (PBS/SP3) (n=8: 1.50 x108 ± 2.59 x108 CFU per ½ lung and 7.98 x108 ± 1.30 x 109 

CFU/g lung-tissue), as well as only Alum adjuvanted mice (n=6: 4.21 x 107 ± 6.10 x 107 CFU per ½ 

lung and 2.23 x 108 ± 3.09x 108 CFU/g lung-tissue) (Figure 42). 

 

 

Figure 41. Distribution of CFU counts obtained from BALF. 1-Way ANOVA. n=8 for PBS / SP3; n=6 for Alum/SP3; n=7 for SP3-
Tetrasaccharide (SP3-ts) + Alum.  
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Figure 42. Distribution of CFU counts obtained from homogenized lung tissue Distribution of CFU counts obtained from BALF. 1-Way 
ANOVA. n=8 for PBS / SP3; n=6 for Alum/SP3; n=7 for SP3-ts + Alum. 

 

CFU-counts in Whole-Blood 
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months after vaccination (Figure 43). 
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Figure 43. Distribution of CFU counts from whole blood across groups. 1-Way ANOVA. n=8 for PBS / SP3; n=6 for Alum/SP3; n=7 for 
SP3-ts + Alum. 

 

 

IV. C. iii. Leukocyte Counts in the Lung and in Blood. 

 

Cell recruitment determined by FACS in vaccinated, adjuvanted animals after 116 day shows no 
difference when compared to control animals. 

Absolut and differential cell-counts, as measured by FACS, can indicate both the scale and quantity of 

disease and immune response. An increase in certain cell-lineages can be a gross indicator of disease; 

the relative proportion of those cell-lineages can indicate the predominance of certain elements of the 

immune response135. To this end, absolute and differential cell counts in whole-blood and BALF were 

performed. 

 

Absolute Leukocyte Counts in BALF and Whole-Blood 
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± 1.14 x 103 cells/µL); SP3-Tetrasaccharide+Alum/SP3 (n=6; 1.80 x 103 cells/µL ± 6.79 x 102 

cells/µL) (Figure 45). No significant differences could be found between groups (p>0.05 in all cases).  

 

Figure 44. Distribution of absolute leukocyte-counts obtained from BALF with TruCOUNT. n=8 for PBS / SP3; n=6 for Alum/SP3; n=7 for 
SP3-Tetrasaccharide (SP3-ts) + Alum.  
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concentration of HSA in the BALF and blood provides an indirect measure of barrier integrity; a 

higher ratio indicates greater compromise of the alveolar-capillary barrier137,138. 

Albumin BALF/plasma ratios showed slightly lower ratios in animals treated with Alum-only when 

compared to the two other groups, but this difference was not statistically significant. Albumin 

BALF/plasma ratio in PBS-treated animals (n=8, 36.72 ± 43.71 albumin BALF/Plasma) in adjuvant-

only animals (n=6, 17.83 ± 20.13 albumin BALF/Plasma) and in adjuvanted, vaccinated animals (n=7, 

28.38 ± 39.97 albumin BALF/Plasma) showed no significant differences (Figure 48), reflecting 

comparable histopathological changes in the examined lungs following pneumococcal challenge, and 

thereby no significant protectivity of the adjuvanted vaccine.  

 

Figure 48. Pulmonary endothelial permeability as determined by HSA ELISA and expressed as albumin BALF/plasma-ratio. 1-Way ANOVA 
. n=8 for PBS / SP3; n=6 for Alum/SP3; n=7 for SP3-Tetrasaccharide (SP3-ts) + Alum. 
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V. Discussion 

 

In this study, a semi-synthetic glycoconjugate vaccine candidate for S. pneumoniae type 3 (SP3-

Tetrasaccharide) was evaluated for efficiency both in in-vivo and in-vitro trials. Experiments were 

carried out to determine both the short-term and the long-term efficiency of the vaccine, and to 

characterize the responses in-vitro/ex vivo and in-vivo.  

Our principal finding is that this novel vaccine candidate is generally immunogenic. It provides robust 

protection against SP3 in vaccinated mice challenged at 5 weeks, but the protective effect rapidly 

wanes, and is not detectable at 16 weeks post immunization. These results indicate that additional 

immune activators, potentially targeted adjuvants may need to be added to increase long term 

immunogenicity of the vaccine. 

 

 

V. A. Short-Term Immunity 

 

Applying WHO-criteria for vaccine efficacy to results from the current study. 

As discussed in the Introduction, the WHO-guidelines for determining conjugate vaccine protection 

include parameters from both in-vitro/ex vivo and in-vivo studies. These guidelines outline measures 

for both the conference of protection from morbidity and mortality to vaccinated subjects, as well as 

the quantity of specific IgG and the functionality of those immunoglobulins, as measured by ELISA 

and OPAs, respectively82,139,81. The guidelines also quantify efficacy for both parameters as follows:  

Vaccine efficacy = 

1 - [% of vaccine subjects with [Ab]<Ab(protective)/% of control subjects with [Ab]<Ab(protective)] 

= 1 – [ probability of disease in vaccinated group/probability of disease in the control group]. 

 (The established, specific antibody concentration associated with clinical efficacy lies between 0.20 
and 0.35 µg IgG/mL. 81,139) 

 

In-vitro studies confirm vaccine efficacy when SP3-Tetrasaccharide is combined with CFA. 

OPAs represent a test for the functionality of the antibodies identified with the ELISA by giving a 

direct indication of whether bacterial killing can be affected by these antibodies. Titer-response curves 

yield further, more precise information about the relative efficacy of the antibody response. A CFU-

counts equal to, or below 50% of the control-CFU count is considered to be indicative of effective 

killing 82,139,140,101, and to correspond to a minimum IgG concentration of 0.20 µg/mL141. 
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The preliminary studies conducted by Prof. Seeberger’s group in MPIKG described in the previous 

section using quantitative ELISA conducted with sera from mice treated with SP3-Tetrasaccharide + 

CFA showed a high concentration of specific IgG (unpublished data).  

OPAs performed with these sera show significant killing of bacteria at one and two-weeks after 

administration of booster-vaccine, with titers as high as 1:256 achieving 50% killing or greater at both 

intervals. 

Notable, also, is the significant increase in killing achieved with sera taken from mice at 2 weeks post-

boosting compared to that taken from 1 week post-boosting. These findings could suggest antibody 

maturation and avidity after booster-vaccination 142. 

In contrast, this killing efficacy was not seen in animals treated with SP3-Tetrasaccharide + Alum. 

This is probably a reflection of the influence of confounding variables on that particular day of testing: 

poor killing was achieved not only with serum from vaccinated mice, but also with the WHO-serum. 

The factors influencing efficacy in killing can range from degree of differentiation of HL-60 derived 

psudogranulocytes to improper execution of the experiment. Unfortunately, there was insufficient 

serum available to perform repeat-trials.  

Scarcity of material represents one barrier in normalizing the OPA-data. From our experience in 

establishing this procedure, the variability of results (as reflected in the date displayed in Figures 16, 

17 and 20) can be applied to a multitude of factors. The differentiation of HL-60 cells probably 

represents the process which introduces the greatest variability into this procedure.  Reasons for this 

may include: differentiation of HL-60 cells to pseudogranulocytes-stock will likely vary between 

trials;  and survivability of differentiated cells may shift as well, often leaving significant detritus 

which may interfere with opsonization and even phagocytosis.  The former of the two potential 

problems might be addressed by adding further criteria for better assessing the degree of 

differentiation: using flow cytometry for accurately identifying cell size may be used to better 

categorize cells in terms of their morphology thereby adding an additional reference-point for 

adjusting conditions in which HL-60 are differentiated.[1] The latter of the two issues might be 

addressed by filtering viable cells from deceased ones, possibly with a density gradient as described 

above for sorting granulocytes.  

Another likely factor that might introduce variability is the bacterial stock itself: freezing stabs of 

bacterial culture, and their subsequent expansion may both represent steps in which significant 

fluctuation of viable cells between trials might arise. And, while controlling for optical density as a 

marker for the relative reproducibility of the bacteria, it makes no provision for viability. It is 

conceivable that bacterial components from lysed or otherwise deceased cells may also interfere with 
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opsonization by adsorbing antibodies, complement or both. Establishing viability using cytology or 

plating samples of bacterial culture might both represent methods for further reducing this factor’s 

contribution to inter-trial variability. 

 

Note that CFA is not licensed for human use because of its tendency to produce severe local and 

systemic side-effects78. For this reason, CFA was not implemented as an adjuvant for the in-vivo 

experiments conducted in mice in our facilities. Instead, an adjuvant containing aluminum was 

implemented, which has been accepted widely for use in humans, including the licensed PCV13 

vaccine Prevenar®31.  

The clinical data gathered, as well as the laboratory-parameters measured, in the short-term, in-vivo 

experiments conducted in our facilities indicate that vaccinated mice are protected when compared to 

controls. Mice from the SP3-Tetrasaccharide + Alum group showed stable body-weights and body-

temperatures, in contrast to unvaccinated controls. Clinically, vaccinated mice also showed far fewer 

signs of illness than control mice; the latter progressed into states of inactivity, showed a tendency 

towards progressive illness in mice104. 

Similarly, laboratory analyses showed pronounced signs of illness in control groups, but none in 

vaccinated animals. Effective bacterial clearance, as measured by CFU-counts, was observed in the 

blood, BALF and lung-tissue of vaccinated animals. Unvaccinated animals showed heavy bacterial 

burden in BALF and lung-tissue, as well as severe bacteremia. These findings are in line with previous 

studies showing that elevated CFU counts from BALF, whole blood and lung tissue from mice 

correlate positively with disease severity in mice, and negatively with a protected, vaccinated 

state107,108. 

The immune response to infection in the different groups was measured using FACS, and 

encompassed total leukocyte, neutrophil, lymphocyte and monocyte levels in BALF and whole blood. 

FACS studies using BALF showed, most notably, pronounced increases in % neutrophils and 

reductions in % macrophages across all groups when compared to healthy controls.  Lung neutrophilia 

is well-documented as an important innate response to bacterial invasion96,95,120. The role of 

macrophages seems to be less well understood, but some evidence does suggest that these cells play 

less of a role in bacterial clearance than they do in regulating the inflammatory response of, and 

phagocytosis by, lung-neutrophils120. It is conceivable, therefore, that this inverse relationship in the 

two populations is a reflection of alveolar macrophage-consumption in response to massive 

neutrophilia.  

In whole blood, the most prominent finding was the higher level of monocytes and a concomitant 

lower level of lymphocytes in both infected control groups compared to the vaccinated group. The 
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latter finding is consistent with previous studies showing changes in the proportion of lymphocytes in 

peripheral blood105.  

Pulmonary function tests revealed both a reduction in compliance and an increase in resistance in 

control-mice. As discussed in the Results-section, these findings likely reflect the effects of key 

virulence factors such as autolysin and pneumolysin, both of which play a central role in the 

destruction of lung-paranchyma observed in pneumococcal pneumonia107,105,136. Vaccinated mice, in 

contrast, showed no change relative to healthy controls. These contrasting findings show further 

support for the protective effects of the vaccine within this time-frame.  

In summary, the data stemming from the in vivo evaluation of short-term efficacy of the vaccine 

present a convincing picture of the efficacy of the SP3-Tetrasaccharide vaccine when adjuvanted with 

Alum.  

OPAs conducted with sera obtained at day 35 in the vaccination procedure (i.e. 1 week following the 

second boosting at day 28) showed significant killing of bacteria in vaccinated animals compared to 

controls, indicating an effective immune response to the vaccine.  OPAs using serum from mice 

vaccinated using an Alum adjuvant only were not conducted, as other experiments using these sera 

were prioritized. Ideally, confirmation of adequate IgG production and functionality should have been 

obtained.  

Thus, applying equation (1), we obtain: 

Vaccine efficacy =  1 - (0 morbidity in vaccinated group)/(22 mice with morbidity/22 mice in control group) = 1. 

We conclude that SP3-Tetrasaccharide, when adjuvanted with Alum, shows highly effective 

protection from SP3.  

 

The role of Alum in facilitating the immune-response to vaccination. 

Results from the afore-mentioned in vivo experiments underscore the importance of adjuvants in 

supporting an effective response to vaccines; protectivity, or lack thereof, in those mice treated only 

with SP3-Tetrasaccharide was essentially the same as that observed in PBS-treated animals, 

demonstrating that an adjuvant is necessary for the elicitation of immune-response to the conjugate 

vaccine. 

Many substances have been employed as adjuvants, ranging from Alum, to oil-emulsions, to heat-

inactivated bacteria, as in the case of CFA. The precise mechanism through which these substances 

have their effect is still not completely understood75, but it is generally accepted that all induce a local 

inflammatory reaction that results in recruitment of phagocytotic cells and subsequent antigen 

presentation by dendritic cells and B-cells to T-helper cells143,71,80,144. Adjuvants therefore represent an 
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essential component of non-live vaccines, as they are required for bridging the innate and adaptive arm 

of the immune system, both of which are needed to elicit protective immunity.  

This effect is not the same for all adjuvants: different adjuvants produce different qualitative effects 

upon the immune system70,143,71,80; the magnitude of the immune response also differs across 

substances144,145. The latter point, at least, is reflected in our own findings demonstrating higher killing 

in OPAs using sera from mice treated with SP3-Tetrasaccharide + CFA compared to mice treated with 

SP3-Tetrasaccharide + Alum (see Results). The importance of adjuvants in vaccinations will be 

revisited in a later section addressing strategies for improving a long-term response to SP3-

Tetrasaccharide. 

 

V. B. Long-Term Immunity 

The same measures of morbidity and mortality implemented in the short-term in vivo experiments 

described above were applied to animals challenged 16 weeks following the same vaccination regime. 

We also conducted pulmonary endothelial/capillary barrier studies on these mice.  

The protective effects of Alum-adjuvanted SP3-Tetrasaccharide at 5 weeks were not observed at 16 

weeks. Indeed, no significant differences in morbidity and mortality could be established between 

vaccinated animals and controls, nor were there significant differences in any of the gross clinical 

indicators of disease between groups. All infected groups exhibited the telltale signs of clinical 

illnesses described in the section above. Body-weight and temperature both decreased dramatically 

from their baseline values in infected mice, with no significant differences between vaccinated and 

non-vaccinated animals. 

Bacterial burden in both blood and in the lungs (both BALF and tissue-samples) was elevated in all 

groups, indicating no improvement in bacterial clearance in vaccinated animals.  

In all groups, FACS-studies showed marked, non-specific leukocytosis in BALF and whole-blood 

samples, without the differentiated expression of cell-types between cell-groups observed in the FACS 

studies from the short-term in-vivo experiments. 

We included lung-endothelial/capillary barrier integrity as an additional parameter to establish disease 

in these animals. Inflammation of endothelium causes an increase in permeability in the 

microvasculature146,147. In pneumococcal pneumonia, inflammation leads to a weakening of the 

pulmonary endothelial/capillary barrier and extravasation of bacteria into the blood-stream148,85. To 

estimate the integrity of the lung- endothelial/capillary barrier, the albumin BALF/plasma ratio was 

measured by comparing serum and BALF- human serum albumin (HAS) concentrations with ELISA. 

Higher quotients were observed in all infected animals, with no significant differences between 
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groups, indicating a compromised barrier function as a result of pneumococcal invasion in all groups 

examined105,137. These studies further underline the inefficacy of the vaccine in protecting animals 

from pneumococcal challenge in the long term.  

Results from the OPAs conducted with sera obtained 16 weeks after vaccination showed no significant 

killing of bacteria, and no efficacy according to the WHO-criteria outlined above. 

As the vaccinated animals in this series of studies examining the long-term protectivity of SP3-

Tetrasaccharide showed pronounced morbidity in all cases, with no significant differences in the 

described parameters from those of non-vaccinated, infected mice, we conclude that the vaccine’s 

efficacy in conveying long-term protection is 0.  

 

Inducing a long-term immune-response and implications for the current study. 

The immune-response to a threat can be described as arising in roughly two stages: the primary 

response to a new, invasive pathogen, and the secondary response to re-introduction of that pathogen 

into the host.36 The current model of the secondary immune response suggests that the generation of 

memory B-cells and long-lived plasma cells, supported by memory-T cells, is required for a  

sustained, long-term immune response36,149,150,151. Plasma cells represent the population of B-cells that 

produce specific levels of antibodies to a pathogen; their production and maintenance in the long-term 

appear to be contingent upon the presence of so-called long-lived plasma cells (LL-PC) and the rapid 

re-invigoration of a protective immune response is contingent on the presence of memory B-cells152,153. 

One can surmise that the vaccine’s lack of efficacy in conferring long-term protection was due to a 

failure in the systems producing a long-lived memory response.  

Establishing whether memory B-cells and/or long-lived plasma cells were produced would be a 

guiding step in characterizing the response that took place. Following the primary immune response, 

plasma cell-levels in peripheral blood are reduced, and a few are sequestered by the bone marrow, 

where they survive for longer periods and are replenished by memory B-cells located either in the 

spleen or lymph nodes149,150,151,152. An examination of bone marrow, lymph nodes and spleen for 

antigen-specific plasma cells and memory-B cells could help to shed light on whether a memory-

response was induced at all.  

In an effort to expand these data on long-term protection by SP3-Tetrasaccharide, it might be 

advisable to include another correlates of vaccine-protection by conducting survival studies in mice. 

This would give an absolute measure of clinical protectivity by establishing whether improved 

survivability following challenge can be observed. 

 

Strategies for improving long-term immune-response to vaccination. 
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Adjuvants 

Alum is a commonly employed adjuvant, because it has a long record of safely producing a robust 

immune response and consequently immunity154,74–76. The relative safety of this adjuvant comes at a 

cost, however, when compared to the efficacy of other adjuvants, such as Incomplete Freund’s 

Adjuvant (IFA) and CFA. The former has been shown to produce significantly stronger immune 

responses to vaccination than aluminum144, but is not approved for use in humans because of a 

relatively high frequency of potentially severe local and systemic reactions144. Even in our own 

experiments we were able to show that SP3-Tetrasaccharide administered with CFA produced 

significantly greater killing than SP3-Tetrasaccharide administered with Alum, demonstrating that also 

in this case, adjuvants significantly influence immune response to vaccines. 

The identification and development of novel adjuvants is a topic of growing interest in research73, as 

they play a critical role not only in eliciting a significant immune response to vaccines, but also in 

influencing the course of the innate, and subsequently the adaptive, immune-response155. Identifying a 

suitable adjuvant for this particular pathogen may play the decisive role in promoting a sustained 

immune-response to the vaccine in the current study.  

 

 

 

Carrier Proteins 

As discussed in the Introduction, carrier proteins are necessary for inducing a thymus-dependent 

response to the vaccine to which it is conjugated39,40.  Both the carrier protein itself and the linking 

bond to the carbohydrate-antigen play a role in the response of the immune system to a vaccine36,39,40.  

The type of carrier protein and its respective linkage have been shown to correlate with a varying 

degree of robustness of long-term immune-response when coupled with the same carbohydrate 

antigen35,156,157. As mentioned above, it is the magnitude of the immune response, not antigen 

specificity, that appears to govern the production of long-term immunity in the case of this antigen. 

However, the exact mechanisms that underly the generation of long-lived immune memory are still a 

matter of debate. An alternative carrier-protein may more strongly amplify the immune response and 

promote immune-memory longevity. In addition, alternative carriers, e.g. conserved pneumococcal 

surface proteins or virulence factors may provide useful additional vaccine targets and increase the 

overall efficacy of semi-synthetic and conventional PCVs. 
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VI. Conclusions 

The apparent, clear specificity of the immune response elicited by the novel semi-synthetic conjugate 

vaccine candidate turned out not to be long-lived under the conditions described here. Yet the 

achievement of that response strongly supports the conjecture that the vaccine’s design and synthesis 

hold out considerable promise as a way of developing new, efficacious vaccines of this kind.  
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