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Abstract

This work focuses on vibrational dynamics of hydrogen bonded complexes. The first task for
a molecular reaction dynamics simulation is to generate the molecular Hamiltonian in terms of
suitable coordinates. To minimize the numerical simulation efforts, the best choice is to adopt
the natural motions of the molecule as coordinates, namely, the bond lengths and angles. The
method for generating this kind of Hamiltonian has been introduced as a starting point for further
numerical applications. In particular we have developed a concise theory to establish the kinetic
energy operator in terms of arbitrary coordinates for this purpose.

Concerning applications we first perform a reduced dimensional simulation for the proto-
nated ammonia dimer [HN---H---NH3]*. The N;HI cation is a strongly hydrogen-bonded
low-barrier system with symmetrical structure caused by zero-point vibration of the central pro-
ton. The fundamental transition for the shared proton stretching mode by our calculation is sig-
nificantly red shifted compared with the harmonic prediction due to the strong hydrogen bond.
The combinations between the shared proton stretching and the termigaNRki stretching are
found to contribute significantly to the vibrational bands below 1100 'cniThe larger clusters
NH; (NH3),, (n = 2 — 4) are investigated with harmonic approximation which gives reasonable
results indicating that the hydrogen bonds are much weaker than thaitigf.\Consequently each
larger cluster has the solvated ammonium structure and no vibrational bands caused by hydrogen
bond stretching dynamics below 1100 thn

A full dimensional simulation is performed for the mono-hydrated hydroxide anion
[HO---H---OH]~. This is the same type of strong hydrogen bonded system as;t& With
the hydrogen located in the center. In detail the energetic and geometric isotope effects are investi-
gated. Among the isotopomers, the hydrogen bond is energetically more stable than the deuterium
bond by about 80 cm' irrespective of the deuteration status of the free terminal OH groups. In
general the conclusion that a hydrogen bond is more stable than a deuteron bond is valid for many
hydrogen bonds but the bond energy difference may differ. Concerning the secondary geometric
isotope effects, for each isotopomer, the- D distance decreases upon deuteration due to the
fact that the deuteron distribution is more localized than the proton distribution.

Apart from gas phase studies, our investigations also cover condensed phase hydrogen bonds.
A general theory for generating reaction surface Hamiltonian and the numerical implementation
for reaction rate constant calculations are developed. With this method we have generated a re-
action path Hamiltonian based on 6-Aminofulvene-1-aldimine and performed some preliminary
calculations for the rate constant of hydrogen/deuterium transfer reaction. The temperature de-
pendence of the reaction rate constant shows Arrhenius rate behavior at high temperature region.
The deuterium transfer needs higher activation energy and has lower rate due to its heavier mass.
When decreasing the temperature the coherent tunneling effects begin to contribute more and more
to the hydrogen/deuterium transfer reaction which flattens the temperature dependence.






Zusammenfassung

Diese Arbeit behandelt die Schwingungsdynamik von Komplexen, die Wasserstatr
bindungen erhalten. Zur Beschreibung molekularer Reaktionsdynamik mugshztinein
Hamilton-Operator in geeigneten Koordinaten entwickelt werden. Um den Rechenaufwand zu
minimieren, empfehlen sich die ratichen Bewegungen des Moligls als Koordinaten, d.h.
Bindungséngen und -winkel. Das Problem ist hierbei die Bestimmung des Operators der kinetis-
chen Energie. Zur &sung wurde in dieser Arbeit ein kompakter und intuitiver Zugang en-
twickelt, um den Operator der kinetischen Energie in &fnfigkeit von beliebigen Koordinaten
aufzustellen. Dieser Operator geht dann zusammen mit den berechneten Potentia&ctezgief
in die numerischen Simulation ein.

Die erste Anwendung konzentriert sich auf das protonierte Ammoniakdimer
[H3N---H---NHs]*, das in reduzierter Dimensiondift behandelt wurde. Das N7 -lon
ist ein System mit niedriger Barriere und starker WassersiofR@mbindung. Das Kation
hat symmetrische Struktur, die durch die Nullpunkt-Schwingungen des zentralen Protons
verursacht wird. Verglichen mit der harmonischeahdrung, zeigt die von uns berechnete
Frequendfr die asymmetrische Streckschwingung des zentralen Protones wegen der starken
Wasserstoffliickenbindung eine dramatische Rotverschiebung. Die Kombinatengnge
zwischen der Protonschwingung und der Stretckschwingung der terminalgrN¥g Gruppen
leisten einen weiteren Beitrag zu den Schwingungsbanden unterhalb von 1100 cur
Untersuchung der gReren Cluster NH(NH3),, (n = 2 — 4) kann auf die harmonischeaierung
zuriickgegriffen werden, da die Wasserstoffbindungen hier viel acher ausgepgt sind. Diese
Cluster ahneln in ihrer Struktur mehr einem solvatisierten Ammoniumion und es gibt keine
Protonstreckschwingungsbanden unterhalb von 1000 ¢cm

Eine weitere Anwendung betrifft das monohydrierte Hydroxidion, [H®- - - OH]~, das in
voller Dimensionali&t behandelt wurde. Auch hier gibt es eine starke Wasserstoffbindungen, bei
der das Wasserstoffatom symmetrisch zwischen den Sauerstoffatomen positioniént iiesEs
System wurden die energetischen und geometrischen Isotopeffektd@ickf untersucht. Die
Bindungsenergieiir den Fall des Wasserstoffs liegt immer 80crhdher als &ir das Deuterium,
unabléngig davon, ob die terminalen OH-Gruppen deuteriert sind oder nicht. Das Resultat, dass
die Wasserstofflircke stabiler als die Deuteriumniloke ist, hat allgemeineren Charaktér $tarke
Wasserstofflitckenbindungen dieser Art. Im Bezug auf den seled geometrischen Isotope-
effekt nimmt der [O- - O]-Abstand bei Deuterierungif jedes Isotopmer ab. Die Ursache ittaf
kann damit erldrt werden, dass die quantenmechanische Deuteron-Verteilung lokalisierter ist als
die des Protons.

Neben diesem Gasphasenuntersuchungen wurde auch die Wasséikeffdynamik in
der kondensierten Phase untersucht. Eine allgemeine Theorie basierend auf einem Reak-
tionsfachen-Hamitonian und eine neue Methode flie numerische Implementation von

Wegintegral-Rechnungen zu den Reaktionsraten wurde entwickelt und auf den Protontrans-



fer im 6-Aminofulvene-1-aldimine angewandt. Die Temperatuéaigiigkeit der Reaktionsrate
zeigt Arrhenius-Verhalten im Hochtemperatur-Bereich, wobei die Aktivierungsendrgigeh
Deuterium-Transfer @fier ist und aufgrund der unterschiedlichen Massen auch ein kinetischer
Isotopieeffekt beobachtet wird. Mit abnehmender Temperatur werden die Signaturen von quan-

tenmechanischem Tunneln gefunden.
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Chapter 1

Motivation and Introduction

1.1 Why Hydrogen Bonds

Hydrogen bonding and transfer are of fundamental importance for tremendously diverse
processes ranging from biomolecular functions, enzymatic reactions to simple acid—base
reactions. The scope of hydrogen bond research is really cross-disciplinary involving
physics, chemistry, and biology [1-8]. The first publication on the hydrogen bond as a
new type of weak bond goes back to 1920 [9, 10] and ten years later the name hydrogen
bond (HB) was first introduced by Pauling [11, 12].

In the 1930s the signatures of the formation of HBs in stationary infrared (IR) absorp-
tion spectra had been realized [13] and IR spectroscopy continued to be a standard tool
to unravel vibrational bands of HBs especially in biomolecules or condensed phases. On
the other hand, very recent progress in IR spectroscopy of isolated protonated clusters
has provided unprecedented insight into the properties of prototypical HBs [16, 17]. In
contrast to condensed phase measurements, these spectra usually appear to be less en-
tangled and therefore should be amenable to theoretical simulations. However, situations
involving strong HBs turned out to provide serious challenges for the theory even in gas
phase.

Apart from the frequency domain point of view of HB dynamics, which can be ob-
tained from stationary IR spectra, we may further want to understand some fundamental
guestions like “What does a proton/hydroxide look like and how does it translocation
in solution [18, 19, 20]?” This became possible with the development of ultrafast time-
resolved spectroscopies developed in the 1980s. With a time-resolution in the femto-
second scale we may eventually capture riged time dynamics of HBs which lead to
broad and sometimes structured stationary absorption spectra [21, 22]. Achievements in
this area are impressive [23-26] yet more extensive investigations are necessary.



2 Motivation and Introduction

Theory is challenged by the quantum nature and multidimensionality, two specific
features of HBs which are already quite intricate even in the gas phase. The small mass of
the proton in a HB makes it the primary quantum nucleus and the phenomena one expects
to encounter in a particular clear way are, for instance, zero-point energy effects, quantum
tunneling, or coherent wave packet dynamics. While this is well established in the limit of
one-dimensional models, the details of the multidimensional aspects of the dynamics of
HBs are just accessible to experiments and numerical simulations. As for the condensed
phase, the situation is more complicated. To include quantum effects into a simulation
which is based on classical dynamics will be the ultimate goal for hydrogen bonded sys-
tems in condensed phase. In general a successful theoretical simulation concerning HB is
highly challenging yet many fundamental questions can be distinctly elucidated with it.

1.2 General Description of Hydrogen Bonds

Let us first grasp some general aspects of HBs which is well established according to pre-
vious investigations. The traditional hydrogen bond A—HB is an attractive interaction
between a proton donor A—H and a proton acceptor B, where A and B can be the same or
different atoms. The most prominent effect due to this interaction/bonding is that the A—H
bond length slightly increases which softens the potential energy curve and leads to a red-
shift of the frequency of the A—H bond stretching mode. As the HB strength increases the
dynamics of the central proton becomes much more complicated than a free covalently
bonded one described by a simple potential well. Actually the shape of the potential en-
ergy curve along the proton transfer reaction coordinate is qualitatively determined by the
bond strength. As has been pointed out by Huggins [27], the (empirical) potential energy
curves of the proton transfer between two oxygen atoms change from double minimum
to single minimum when the O-O distance decreases. Most properties related to the HB
vary according to the bond strength. Consequently the HBs can be classified into weak,
moderate and strong ones by the bond energy.

Generally a weak HB is characterized by the bond energy less than 4 kcal/mol [14].
The weak bond may lead to a double minimum potential energy curve along the hydrogen
transfer reaction coordinate with a rather high potential barrier but significantly lower than
the free A—H covalent bond dissociation energy. The-&8 distance may vary from 3A
to 4.3A. Fig. 1.1 shows a schematic view of such a potential curve for a symmetric double
well case together with the low lying wave functions. The quantum tunneling effect is
clearly demonstrated where the proton wave function penetrates to the central classically
forbidden region. There is a tunneling splitting enefggefined by the energy difference
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of the two nearly degenerate states. It is caused by the bonding interaction therefore
it will increase when the bond strength increases like the case of two weakly coupled
harmonic oscillators. The splitting energy is proportional to the hydrogen tunneling

rate and it increases for higher energy wave function pairs. The apparent consequence of
the tunneling splitting is that the IR spectrum has a doublet structure since the initial state
can be either one of the lowest pair of eigenstates. Fig. 1.1 shows the slight difference
between excitations starting from opposite parities which in principal can be observed by
high resolution IR spectroscopy experiments. Due to the weak bond strength, harmonic
calculations based on a minimum configuration can provide reasonable results.

Energy

Reaction coordinate

Figure 1.1: Schematic plot of potential energy curve and vibrational wave functions of
weak hydrogen bonded system. The solid (dashed) curves are wave functions of even
(odd) parity. The solid (dashed) arrow characterizes transition from even (odd) parity to
odd (even) parity. See the text for more details.

The increase of the bond strength will decrease the potential barrier leading to a rather
anharmonic potential energy curve along the hydrogen transfer reaction coordinate. In
general the increase of bond strength leads to the increase of anharmonicity therefore in-
crease of dimensionality of large amplitude motions. A medium strong HB is character-
ized by the bond energy varying from 4 to 14 kcal/mol. The /B distance is shortened
and generally may vary from 24 to 3.3A. This kind of HBs can be found in many
biological systems.

A strong HB is characterized by the bond energy larger than 14 kcal/mol. The strong
bonding significantly decreases or even annihilate the potential barrier and leads to a quite
flat potential energy curve to ensure high mobility of the bridging proton. Fig. 1.2 shows a
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schematic view of such a potential curve for a symmetric double well case with vanishing
barrier as well as the ground state wave function. As has been pointed out, the potential
energy curve can also be single minimum for even stronger bonding. Even for the double
potential well case the ground state will be found to be energetically above the barrier.
Consequently the wave function has a single maximum exactly in the center with widely
delocalized distribution which makes the proton motion strongly coupled to many other
coordinates. The A - B distance is further shortened to less than®.This kind of HBs

can be found in some simple but quite important clusters which we will investigate in
the next few chapters. Multidimensional or even full dimensional quantum investigations
based on anharmonic potential energy surfaces are necessary for strong hydrogen bonded
systems. This kind of HBs are also very important for some biological processes [15].

Energy

Reaction coordinate

Figure 1.2: Schematic plot of potential energy curve and vibrational ground state wave
function of strong hydrogen bonded system.

1.3 Recent Advances and Challenges

Having in mind the general picture of HBs let us now briefly review some recent ad-
vances. Charged clusters with strong hydrogen-bonds have attracted considerable interest
recently due to the progress of IR spectroscopy and multidimensional quantum dynamical
modeling [16, 17, 28, 29]. In particular the hydrated proton and its negative analogue, the
hydrated hydroxide anion, have been investigated in quite some detail. They are believed
to play key role for proton/hydroxide diffusion in aqueous media. The nature of the excess
proton diffusion in water may throw light on the charge migration in biological systems
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as well as many other commonly encountered reactions. The proton diffusion in water
is not a real particle diffusion but a global structure deformation with charge migration

[30, 31]. This process actually involves the breaking and reforming of several HBs as
show in Fig. 1.3 for the mechanism of proton transfer along a water wire. In reality the

water solvent is constructed by three dimensional hydrogen bonded networks.

USO}%@{" P g °F

Figure 1.3: The Grotthuss shuttling process for the excess proton transfer along a water
wire adapted from Ref. [31]. In this schematic view three HBs are involved.

Among varies protonated water clusters the Eigen catig-{H,O); and the Zun-
del cation [HO---H---OH,]* are found to have significant importance for the proton
conduction in solution. The former has the solvation hydronium structure wjtlsy@n-
metry and the latter has the equally shared proton structure. A molecular dynamics inves-
tigation [32] shows the fluctuation between®i"-(H,0); and H"-(H,O), is the driven
force for proton conduction. As shown in Fig. 1.4 the limiting ¥H,O), structure is the
transition state for proton transfer in water and for the counterpart of hydroxide transfer
the [HO - - H- - - OH]~ structure serves as transition state. Though it is not feasible to find
isolated limiting structures mentioned above in solution, it is still of fundamental impor-
tance to extensively study this kind of charged clusters in gas phase to provide instructions
for unraveling the complexity of solution.

The IR signatures of the motion of the proton shared by the two water molecules in
H+.(H,0), are found around 1000 crh, signifying the exceptional strength of this HB.
From the experimental point of view the first IR spectrum of the shared proton region
has been reported in Ref. [28] using the infrared multiple-photon dissociation (IRMDP)
technique triggered by free electron laser radiation. The interpretation, however, was
hampered by the multiphoton nature of the measurement which prevented unambigu-
ous assignment of intensities for the fundamental and low-order combination transitions.
Subsequently, Johnson et al. reported an infrared vibrational predissociation (IRVPD)
spectrum of the rare gas-tagged species. Since this yields intensity information for one-
photon transitions the spectrum is much simpler showing in particular a prominent double
peak at about 1000 cmh[33], See Fig. 1.5.

From the theoretical point of view, H(H,0),, is a prototype bringing together al-
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Figure 1.4: The schematic view of the proton transfer (panels a-c) and the hydroxide
transfer (panels d-f) mechanisms in solution adapted from Ref. [31].

most all complications of HB research [34], i.e., a high-level quantum chemical potential
energy surface (PES) is required for a multidimensional quantum dynamical problem.
In fact there have been several reports on the spectrum including a reduced dimensional
model [35], classical ab initio molecular dynamics simulations [36], and full-dimensional
diffusion Monte Carlo and vibrational configuration interaction calculations [33]. But,
only recently a full-dimensional quantum dynamical calculation based on multi configu-
ration time dependent Hartree (MCTDH) approach [29] has been able to assign the double
peak structure to a combination of the shared proton motion and wagging torsions of the
water molecules [37, 38, 39]. The nearly perfect agreement between experiment and full
dimensional quantum calculations is shown in Fig. 1.5 which demonstrates the capabili-
ties of full dimensional quantum dynamics for gas phase phenomena.

Similar to the Zundel cation, the IR signatures of the monohydrated hydroxide an-
ion [HO---H---OH]™ is also as challenging due to the strong coupling of the shared
proton and the other degrees of freedom. The first IR spectrum was measured by John-
son and coworkers using argon predissociation spectroscopy. In the range above 3000
cm~! a sharp doublet was detected [40, 41] at about 3650  evhich was subsequently
assigned to the fundamental of the asymmetric stretching of the “free” OH groups dou-
bled by the HO- - OH torsional tunneling splitting [42]. As mentioned in Section 1.2 the
tunneling splitting can cause a doublet of vibrational bands. The potential curve along the
HO-. - - OH torsion contains a double minimum with a barrier leading to tunneling splitting
of several wavenumbers. The spectral range from 1000-1900isrdominated by a peak
at 1090 cn! which was attributed to a combination of the shared proton stretch, wag, and
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Intensity (arb. unit)

800 1000 1200 1400 1600 1800 2000

Wavenumber [Cm'1]

Figure 1.5: The measured and calculated IR spectra for the Zundel catighlJ®),
taken from Ref. [37]. The upper panel is the predissociation spectrunt ¢H:0),-Ne
complex and the lower panel is full dimensional quantum dynamics with MCTDH.

rock motions of the whole complex [43]. Effectively, this corresponds to a displacement
of the shared proton away from the QO axis. The region below 1000 crhwas finally
addressed in Ref. [44]. The spectrum is dominated by an intense and rather narrow peak
at 697 cnt! which has been assigned to the shared proton motion along: th®©Q@uxis.

In addition a small peak at 995 crhwith much weaker intensity was attributed to the
other perpendicular bending of the shared proton, compared to the previously observed
one at 1090 cm! . They have also observed one minor band at 940'amiich might be

the combinations of the shared proton stretching and O stretching. Full dimensional
guantum calculations [45, 46] based on diffusion Monte Carlo, vibrational configuration
interaction approaches and exact diagonalization have qualitatively interpreted the ob-
served bands detailed above.

Compared with the extensive investigations on charged water clusters, the protonated
ammonia cluster ions NHNHs),, have received much less attention. However, they do
play important roles in our everyday life such as nitrogen metabolism. The recent struc-
tural determination of an ammonia channel in an ammonia transporter protein [47] shows
the ammonia transport process is accomplished by breaking and reforming of HBs due to
different diffusion channels of protons and ammonia molecules. On the other hand, the
study of proton conduction along ammonia wires has been motivated by the experimental
work of Leutwyler et al. [48] on excited state hydrogen atom transfer along ammonia wire
—O—-H --NH;3---NH;---NH; - - - N. These authors demonstrated unidirectional H-atom
transfer in the electronically excited state along the three-unit ammonia wire attached to
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an aromatic molecule [48]. In spite of its significant importance the mechanism of proton
transfer in this series of cations is still elusive due to insufficient investigations.

Early IR experimental investigations far= 1 — 10 have been restricted to the 2600-
4000 cnr!range [49]. This study in particular suggested that in the smallest cluster,
H*-(NHs),, the proton is equally shared between the two ammonia molecules, i.e., mid-
way between the two N atoms. Clusters with= 5 — 8 have been considered in the
1045-1091 cm' region with emphasis on the size dependence of the symmetric bend
(») vibration of NH; reflecting the solvation shell structure [50]. The issue of spectral
signatures of solvation shell structures has also been addressed by an free electron laser IR
study of the spectral region from 1020-1210crfor n = 5—8 [51] and from 1070-1680

cm-tforn = 3,4[52].

unit)

s .-
mvesmena et m e eammm T eaiaaaaaan - .~ -
N A cecsravemamaa cema

Intensity (arb.

N N 1

600 800 1000 1200 1400 1600
Wavenumber (cm'l)

Figure 1.6: The IR spectra for NHNH;),, (n=1,4) clusters measured by the IRMPD
method. From bottom to top the size increases from+= 1 ton = 4. The IRMPD

experimental data are provided by Asmis group.

Itis only very recently that a systematic investigation on IR spectra of these cations has
been accomplished by Asmis group with IRMPD technique. The measured spectra region
is from 600 cnt!to 1700 cnt! as shown in Fig. 1.6. Systematic redshifts of the most
intensive bands with increasing cluster size have been observed.drthe spectrum
of H*-(NH5),-Ar has also been measured by Johnson group with IRVPD technique and
the two experiments agree well with each other for major bands. The IRMPD spectrum
involves absorption of many photons which makes it more likely to find all the IR active
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bands in the given region, however, may also artificially increase the intensities of multi-
photon bands. The IRVPD spectrum is more straightforward to interpret since only one
photon is absorbed before the dissociation of-(NH3),-Ar but the absorption bands
structure may be perturbed by Ar messenger atom. To assign the measured IR bands we
should perform high level theoretical simulations.

From theoretical point of view there are several investigations of protonated ammonia
clusters by Meuwly et al. [53, 54, 55] using classical molecular dynamics together with
DFT or self-consistent charge density functional tight-binding derived forces. The focus
has been on proton conduction in free [53] and environmentally restricted [54] clusters,
as well as on the stability and isomerization of clusters [55]. In terms of IR spectroscopy
the predictions of Refs [53, 55] are based either on the harmonic approximation or on the
assumption of classical nuclei. For instance, Fourier transformation of the dipole-dipole
autocorrelation function along trajectories at 50 K for-fNHs), gave shared proton
stretching vibration at 1610 cm, the NH; umbrella vibration at 1000 cmi, and the
N- - - N vibration at 465 cm! [55]. Forn > 1 only spectra in the region 2000 cm~* have
been reported in Ref. [55].

Apart from the IR spectra, some other experimental and theoretical techniques can
also provide valuable informations concerning HBs. For example, isotope effects [7] are
of substantial importance and utility. Experimental techniques such as NMR can directly
probe the geometric isotope effects (GIES) [56] and the kinetic isotope effects (KIES) [57].
From the theoretical point of view, the gas phase GIEs can be clearly elucidated by the
wavefunction and the condensed phase requires help of molecular dynamics. The KIEs
are ratios of the reaction rate constants involving different isotopomers. The rate constants
for high barrier reactions can be effectively predicted by classical transition state theory
[58] while more reliable description should be based on quantum mechanics [59, 60] for
the cases when tunneling is significant.

1.4 Goals and Structure of the Thesis

In this thesis we mainly focus on some prototypical hydrogen bonded clusters as reviewed
in the previous section. Different from previous calculations, most of which rely on har-
monic predictions and semi-classical simulations, we will do multidimensional quantum
dynamics. For this purpose we will develop a general theory for generating vibrational
Hamiltonian which can be straightforwardly applied to both free and constrained systems.
Then we will establish a reasonable reduced dimensional model to study the IR spectrum
of H"-(NH3), quantum mechanically and assign the very recent experimental spectrum
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shown in Fig. 1.6, which can not be well explained by previous theoretical investiga-
tions. We will also rationalize and apply harmonic predictions to assign IR spectra of
larger protonated ammonia clusters. Concerning the:[HB- - - OH]~ anion, there are
six isotopomers of which only two have been investigated with full dimensional quantum
dynamics. We will do full dimensional study for all the six isotopomers to get general
characteristics as well as to confirm or improve the previous results of geometric and en-
ergetic isotope effects. Finally our investigations will go to the condensed phase. We will
develop a new numerical realization of reaction rate constant calculations and illustrate
its applicability and predictability by preliminary calculations.

The subsequent chapters will be arranged in the following way. Chapter 2 provides
a general method for constructing the vibrational Hamiltonian and solving multidimen-
sional Schodinger equation under the Born-Oppenheimer approximation as a theoretical
basis for the other chapters. In Chapter 3 multidimensional quantum calculations on ge-
ometry and IR spectrum of H(NH3), are performed with comparison to experiments.
Chapter 3 also presents the corresponding results fgr(NHs),, (n=2-4), for which the
harmonic approximation gives reasonable results. In Chapter 4 the full dimensional quan-
tum calculations of [HO- - H- - - OH]~ and all its different isotopomers are performed fo-
cusing on the energetic and geometric isotope effects. In Chapter 5 the major topic is
about the condensed phase. A general theory of reaction path/surface Hamiltonian and a
numerical method to calculate reaction rate constants are introduced. Then we generate
a model Hamiltonian based on 6-Aminofulvene-1-aldimine molecule and perform some
preliminary calculations. Chapter 6 summarizes the work presented in this thesis and
makes some brief remarks about ongoing and future work.



Chapter 2

Vibrational Hamiltonian Theory and
Method for Application

2.1 Introduction

In the last few decades detailed investigations on chemical reactions at the molecular level
have been accomplished both experimentally and theoretically. Concerning any theoret-
ical simulations the first task is to generate an appropriate system Hamiltonian. The full
system Hamiltonian contains the molecular part, the environmental part and their interac-
tion part. In general the molecular Hamiltonian can be generated awhthetio level
while the latter two parts have to be treated by parametrization, other semi-classical or
classical methods up to now. However, the molecular Hamiltonian is sufficient to describe
the gas phase phenomena since the coupling between a molecule and the environment is
ignorable. As for the condensed phase, the kernel part is still the molecular Hamiltonian.
The molecular Hamiltonian describes the Coulomb interaction between many elec-
trons and nuclei. Due to the significant difference in mass between an elegtron (
1073 kg) and a nucleusng,,.. > 10-2"kg), one can consider the nuclei to be station-
ary on the time scale of electronic motion and the electrons relaxed to the ground state
before the next motion of nuclei. This approximation of separating electronic and nu-
clear motion is known as the Born-Oppenheimer approximation [61] and holds in general
if (me/mpu)/* < 1. The expression for electronic Hamiltonian is trivial and in most
cases it will be directly solved by quantum chemistry programs like Gaussian [62] to pro-
vide PES for the vibration of the nuclei. In this chapter we only focus on the vibrational
Hamiltonian of the nuclei including the kinetic and potential energy operators which need
to be expressed in terms of appropriate variables to simplify the numerical calculations.
Most of the existing theoretical investigations mainly deal with reaction path/surface
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Hamiltonians which involve one or two large amplitude reaction coordinates while the
rest are approximated as small vibrations orthogonal to the reaction coordinates [63-67].
This kind of Hamiltonians have simple forms and make quite good approximations for
rigid systems. However it is inconvenient to describe floppy systems like strong hydro-
gen bonded systems with such Hamiltonians. As mentioned in the previous chapter the
strong hydrogen bonded systems contains correlated motion of many degrees of freedom.
In the following we introduce a concise method to genetéténitio level vibrational
Hamiltonian in terms of arbitrary coordinates as well as the solution to the corresponding
multidimensional Sclirdinger Equation.

2.2 Kinetic Energy Quantization

Let us first consider the kinetic energy quantization. The kinetic energy operator (KEO)
in terms of arbitrary coordinates has been discussed by Podlosky with intricate tensor
analysis [68] right after the foundation of the Satiinger equation. Later studies are
to some extent based on the same mathematical techniques [69, 70, 71]. Approximate
KEOs using normal mode coordinates are widely adopted which go back to contribu-
tions by Eckart [72], Wilson [73], and Watson [74]. In particular, the Eckart equations
[72] enable one to determine an orientation of molecule fixed axes suitable for using nor-
mal modes. The details of the derivation of a rovibrational Hamiltonian can be found
in Ref. [73]. A significant simplification of this rovibrational Hamiltonian in terms of
normal coordinates has been achieved by Watson [74, 75]. In fact the Watson Hamilto-
nian served as a starting point for many later investigations and is implemented, e.g., in
the MULTIMODE program of Bowman, Carter, and coworkers [76]. In principle normal
mode coordinates provide a very compact representation of the PES which is taylored,
however, to the stationary point for which they have been defined. For large amplitude
motions away from this stationary point the above mentioned reaction surface approach
or the use of general curvilinear coordinates such as valance coordinates [71] are more
suitable. A detailed discussion of advantages and disadvantages of various coordinates
for rovibrational Hamiltonians has been presented, e.g., in Ref. [77].

In recent years Gatti and coworkers have developed a general scheme for deriving
a KEO with vector parametrization, i.e., the non-trivial coordinates are expressed with
N — 1 real vectors for a system @¥ atoms [78, 79, 80]. This scheme is quite success-
ful and convenient for a full dimensional description [81]. However, often one needs a
reduced dimensional description for a constrained system [82, 83]. In general it is not
possible, or not convenient, to express the coordinates as components of real vectors for
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constrained systems. Numerical alternatives to the analytical determination of the KEO
have also been suggested in Ref. [84, 85]. Here we introduce a rather straightforward
physical method of kinetic energy quantization scheme which directly quantizes the clas-
sical Lagrange/Hamilton mechanics [86]. The method can be directly applied to both free
systems and constrained systems by following the same procedure summarized in Section
2.2.1.

2.2.1 General Theory for Kinetic Energy Quantization

In the present method we only consider the most common cases where the kinetic
energy includes purely quadratic terms and potential energy does not depend on
the velocity, though the generalization would be straightforward. The classical La-
grangian/Hamiltonian in terms of arbitrary variables can be written as

LQ.Q.H = T@Q) -V(Q=,QM2-V(Q

H(Q,P) = T(P)+V(Q) - %PTMlP +V(Q), (2.1)

where@ and P are single column vectors of the generalized coordinates and correspond-
ing conjugate momenta, respectively. The generalized momentum vector is defined as
P = ;—L — MQ. The generalized mass matit, normally a function of coordi-
nates, is defined to be Hermitian anid fneans Hermitian conjugate which is equivalent
to the transpose in classical mechanics. Classical trajectories can be obtained by this
Lagrangian/Hamiltonian provided initial conditions are known. To obtain the quantum
Hamiltonian operator, the major task is to obtain the quantum KEO in coordinate repre-
sentation.

Since the choice of coordinates is quite arbitrary in Eq. (2.1), we start with Cartesian
ones{ X ,Px}. In this section all the subscripts are associated with Cartesian coordi-
nates. The operator for each component of the momentum vector is Hermitian

At . 0
For non-Cartesian coordinates we define the momentum operators in the same way as the
first order derivative operators

A 0
P=—ih—. 2.3
e (23)
To obtain the quantum KEO in terms of non-Cartesian coordinates, the coordinate
transformation between the Cartesian and non-Cartesian ones should be performed. Sup-

pose we know the relation between two sets of coordinates, which is just the way how we
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define the coordinates, as an invertible mapghg: Q(X). The following relations can
be derived easily by exploiting the general rules of derivative of composite functions

. 0Q .
Q= 8XX
. ox\' .
P=|—
(acz) *
oQ oxX\
(%) &9
where the matrix elements of the transformation matrices are defined as
(8_@) — 9Q;i (6_X> — 8Xi, (2.5)
0X ij 8Xj 0Q ij an

The above criteria to define elements of this kind of matrices is adopted in the whole
thesis, which mean%?? is a single column vector Whil% is a single row vector. Note
J

an operaton% is defined to be a single column vector. The quantum KEO in terms of
non-Cartesian coordinates can be obtained by this coordinate transformation

. 1 - .
1.+0Q .
-P —M
27 9x *% (8X
whereMy is the diagonal Cartesian mass matrix consisting of real mass associated with

99 yip, (2.6)

each Cartesian coordinate.
The momentum operator vect® can be replaced by the derivative operator accord-
ing to previous definition, i.e P = —ih%. However we should find out the expression

for the Hermitian conjugate of momentum operator (HCMO) veddr Since one has
the relation betweed® and the Cartesian onBx it is not difficult to directly apply the
definition of Hermitian conjugate to Eq. (2.4)

@), - ((G)'))
- (»%a)

- 2(m), (%),

0X
. (8_)] , 2.7)
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where the notationhfl, B] means the commutator of two operators.

Eq. (2.7) shows the non-Hermiticity of generalized momenta associated with the non-
Cartesian coordinates. Additional terms appear due to the non-commutability of the
Cartesian momenta and the transformation matrix. In some cases the new momenta are
still Hermitian provided we only perform a coordinate independent transformation, e.g.,
the rotation in three dimensional space or the normal modes transformation. Using the
basic commutatoX;, (Px )x] = ihd,x, EQ. (2.7) can be simplified as (see also Ref. [87])

(B, = (), - DY (a%%) | (2.8)

Here the superscriptmeans a differential operator inside the bracket can not operate on
functions outside, namely the result is just a normal function of coordinates.

Eq. (2.8) clearly shows the relation between a momentum operator and its Hermitian
conjugate. It should be mentioned that any functions of coordingtgs);)} can be
multiplied from the left to the derivative operator in Eg. (2.3) for different schemes of
momenta quantization, i.e(P);, = —ih - f;(Q,) - %j is also an acceptable scheme.
Since this kind of momentum operators are generally non-Hermitian we actually have no
priority to setf;(Q;) = 1. For different schemes of momenta quantization, the HCMOs
will vary correspondingly to keep the KEO invariant. This enable us to optimize momenta
guantization schemes conveniently if necessary. In other words, with proper prepositioned
functions one can obtain desired forms of momentum operators, e.g., symmetric forms.

With Eq. (2.6) and Eq. (2.7) we get the general scheme of constructing KEOs in terms
of arbitrary coordinates. However, the final structure seems to be complicated and actually
it can be simplified. Now we compare Eg. (2.6) and Eq. (2.1) by considering the invariance
of the classical kinetic energy

T = Q'MQ
_ %XTMXX
1ai(0x\'  0X .
- 1o (%) ) (2.9)

. i
Since Q can be any vector we must have the relatidn = (%) Mx%. Cal-

culate the inverse of both sides we immediately see that the complicated central part
T
g—gMgl (2—?() in Eq. (2.6) is exacthyM ! in Eq.(2.1). The final KEO is therefore
simplified as
I

T = 5P M~P. (2.10)
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This means we can directly exploit the result of Eg. (2.1) and quantize the generalized
momenta without the knowledge of the Cartesian kinetic energy. All we need are the gen-
eralized mass matrill and the definition of coordinates which both appear in Eq. (2.1).

Therefore we can identify a concise and physically transparent scheme to construct
the KEO:

1. Get the classical kinetic energy and make sure the mass matrix is symmetric,
namely the same structure as Eq. (271)Q) = %QTM Q.

2. Exploit Eq. (2.7) or Eqg. (2.8) to express HCM@% in terms of P and some func-
tions of Q.

3. Calculate the inverse matrix 8 hence the formal quantum KEO reads =
1pip-1¢
;P M P.

4. ReplaceP by —ih% for coordinate representation.

The first step is quite familiar to everyone and one can choose arbitrary coordinates to
get the classical kinetic energy. Actually we will introduce a useful partition method in
Section 2.2.3 which will significantly simplify this issue. The remaining three steps are
quite straightforward to follow. We can see the major derivation effort is the second step
concerning the HCMOs according to Eq. (2.7) or Eq. (2.8). However, if the coordinates
are spherical coordinates the HCMOs are familiar to us. In Section 2.2.4 we will provide
a detailed study on the HCMOs in spherical coordinates.

After obtaining the KEO, we should also mention the volume element for integra-
tion. Since we start from Cartesian coordinates and all that we have done is a coordinate
transformation. That is to say, the Euclidean normalization remains correct

0X
dT:th::IJdX;:|Da<&i§)|I1d@r (2.11)

2.2.2 KEOs for Systems with Constraints

Reduced dimensional descriptions are always necessary for large systems. In the follow-
ing we will give the general description for systems with constraints. Consider a system
with some active coordinat€@, and some frozen coordinat€k,. The full dimensional
coordinates and corresponding conjugate momenta read

Q P,
Q= P= . (2.12)

Qo P,
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The constraint conditions are given 6y, = 0. Thus we can obtain the constrained
classical kinetic energy

1. )
T = 3Q'MQ
1 bt M1 My Q1
= 5 @ Q .
Mo Moo Q,
1.+ .
= §Q1M11Q1> (2-13)

whereM;; are corresponding sub-matrices.
To get the quantum KEO we have to rewrite the constraint conditions in terms of
momenta. According to the definition of momenta it is not difficult to find the following

relation
—1

Q, My My P,
Qo Mopr Moo P,
A B P,
= , (2.14)
C D Py
A B
where is the inverse of matrid. Thus it is not difficult to rewrite the con-
C D

straint conditions a€ P, + DP, = 0 or P, = —D~'CP;. After quantization we get
the constraint relation for the corresponding quantum operatorsPoe= —D~'CP;.
Based on this point we can obtain the quantum KEO

~ 1~ ~
T::§ﬂM”P
—1
1 M1 My P,
= 5\ P P .
MOI MOO PO
T ) A B P,
- §<P1 (—D_1CP1)T) )
C D D !cP,

M P;. (2.15)
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The final result is quite compact. Compare Eq.(2.13) with Eq. (2.15) we find that
the same procedurenentioned in the full dimensional case can be followed provided we
only consider the active coordinates and completely ignore the frozen ones from the very
beginning when we generate the classical Lagrangian. This is an attractive point since the
present scheme only requires the classical Lagrangian for a constrained system which can
be obtained by traditional methods.

2.2.3 A General Method on the Partition of Classical Kinetic Energy

By now we have explained the general theory of kinetic energy quantization starting from
the classical Lagrangian. In the following we will introduce a method for obtaining the
classical kinetic energy with a partition technique which will greatly simplify the prob-
lem in most cases. It is quite convenient to divide a large system into small subsystems
especially when a subsystems has certain symmetry. If we divide a systeni pads,

the division can be quite arbitrary, the kinetic energy is a sum of\tlsabsystems. Ac-
cording to the Knig theorem [88] we have the following relation

N N
T=) T'=To+) Tf, (2.16)
=1 1=1

whereT '} is the kinetic energy of the pas with respect to the reference frame defined by
B. Here0 is the laboratory reference frame afids the center of mass reference frame.
In the special case whew = 2 the kinetic energy can be written as

T = To+TE +1Ty,
T = TP+ Ty =T + T + T2, + 15> (2.17)
With the help of the two-body relatiof, + 7, = T2 + 1> we finally have
T+ T8 =T + T3 + TS, (2.18)

where(C; is the center of mass of thiéh part ancngl2 is the kinetic energy of the center

of mass of the first part with respect to the center of mass of the second part. It is quite
transparent thaﬁ“gf = TCC; since only two mass points are considered. In particular, if
the two parts are both single atoms we hayé = 752 = 0. Then Eq.(2.18) can be
simplified asT® + T¢ = Tgf = Tg;, which is quite familiar from two-body mechanics.

By exploiting Eq. (2.18) repeatedly we can easily express the total kinetic energy in terms
of kinetic energies of subsystems which are much easier to obtain. We will see this point
in the following chapters, e.g., Eq.(3.1). In the special case when alVteabsystems

are single atoms this procedure will leads to the kinetic energy in terms-efl Jacobi
vectors (also called mobile coordinates).
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2.2.4 Hermitian Conjugates of Momentum Operators

As mentioned in Section 2.2.1, the most tedious task for generating a KEO is to find out
the expressions for the HCMOs. As an example let us consider the two dimensional (2D)
polar coordinate$ R, 6}. The classical kinetic energy and the coordinate transformation
between 2D Cartesian coordinates y} are quite familiar to us

1 . 1 .
T = —mR2+§mR262

2
z = Rcosf
y = Rsin. (2.19)

To derive the HCMOs we simply follow Eq. (2.8). The required derivatives are listed out

as follows
% = cosf = L
OR R
%y = sinf=2
OR R
% = Rsinf =y
dy
e =z. 2.2
20 Rcosf =z (2.20)

Based on above equations it is straightforward to obtain the final results

Py = Po-in (g ot

A ih
. . 0 9 \°
= P, (2.21)

Then we can write out the 2D polar coordinates KEO expression which can be found in
many textbooks but they may not tell you why.

7= %p;pﬁ_%}ppgp@
o
2m \OR R /) OR 2mR206 00
1 0 0 h: 2

= TamRORCOR  amiE o (2.22)
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Similarly, the KEO in terms of 3D spherical coordinatg?, 0, ¢} can be obtained.
The coordinate transformation between 3D spherical coordinates and 3D Cartesian ones
{z,y, 2z} is defined as

xr = Rsinfcosy
y = Rsinfsingp
z = Rcosé. (2.23)

Here we simply list out the corresponding HCMOs leading to the well known KEO for
3D spherical coordinates

. A 2ih 1 0

T — 2

Fro= Pr=p = —ihpaggf

. . 1

P} = Py—ihcotf = —ih——s = sin

. X 0

P; = Pcp:—lFL%

o100 W10 0 &

om R2OR " OR  2mR2smAod > o0 2mR2 sin? 6 Op?’
(2.24)

For more details please see Appendix A.

So far we mentioned everything in laboratory reference frame (LRF). In most cases
we may need one or more molecular reference frames (MRFs) to describe a molecule
in terms of its natural motions, e.g., bond lengths and bond angles. Please note that we
introduce MRF only to define coordinates. All the operators and equations in the thesis are
written in LRF unless with special comments. In the following we will study the HCMOs
associated with MRF spherical coordinates. Consider the LRF and a MRF defined by sets
of unit vectors{e,.e,,e.} and{e, e, e}, respectively. The relation between LRF
and MRF is just an orthogonal transformation characterized by the three Euler &figles

¢, X}
€ = UZ(QZS)Uy(ﬁ)Uz(X)eaa (2.25)

wherea = z,y, z andU,, is a rotation arouné,. The MRF can be obtained by applying
three excessive rotations, (y), U,(v) andU.(¢) to the LRF. The expression for the
rotational transformation matrid,, and more details can be found in Appendix A.

Now let us consider a vectd®; characterized by three spherical coordingt&s, 6;,
©; } in the MRF. According to Appendix A we can expreRs as

Rj = RjUz(¢)Uy(ﬂ>Uz(X)Uz((rpj)Uy(ej)ez- (226)
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This is a vector equation and we can obtain the Cartesian coordinaigsothe LRF by
projecting the equation onto each LRF axis. Based on Eg. (2.26) we can exploit Eq. (2.8)
to derive the expressions for HCMOs associated with MRF coordinates. The details are
shown in Appendix A. The final results are quite concise and they actually have the same
expression as those associated with LRF spherical coordinates. That is to say, for the
momentum operators associated wi) (R;, 0;, ;) the following relations are still

valid

- A 2ih 1 0
T . 2
PRj = PRj — R—g - —ZhR—ia—RJRJ
~ - . , g .
ng = ng — thcot 9]' = —tha—ej S1n 9]'
~ ~ ) 0
Bl = P, = —ma—%. (2.27)

Appendix A also confirms that the momentum operators associated with MRF Cartesian
coordinates are Hermitian. One no longer need to take effort to derive the expressions for
HCMOs provided one uses spherical coordinates, Cartesian coordinates or combinations
of both, no matter they are defined in the LRF or MRFs.

2.2.5 Angular Momentum and Rotation

For a system withV atoms we hav@/N degrees of freedom (DOFs). Not all tBév

DOFs are important for certain topics. They are normally divided into three translational
DOFs, three rotational arglV — 6 vibrational ones. The three translational DOFs can be
separated while the re8ftV — 3 DOFs are coupled. In general the rotational excitation
energies are quite small compared with the vibrational ones therefore the two parts are
approximately separated in many cases. It is better to express KEO as sum of the two
parts and their coupling. As a consequence we need to introduce the angular momentum
J which describes the rotational DOFs.

We can use three angles aBd — 6 other coordinates to describe the coupled ro-
tational and vibrational motions of the system. Specifically, we exploit 3D vegigr
defined as

Qiot:(ﬁ ¢ X)

containing the three Euler angles which connects the LRF and MRF according to
Eq.(2.25). In this Section the subscript is related to rotation. The kinetic energy
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and total angular momentum are defined as

N
=1

N
J = > mR; xR, (2.28)
i=1

where x means vector product. The matrix product of a single row matrix and a single
column one is equivalent to scalar product of two vectors. Note@hatis the angular
velocity of MRF. Therefore the velocities can be re-expressed as

R =Q,, xR+ R, (2.29)

WhereRg is the velocity ofR; measured in the MRF. With the help of Eq. (2.29) and the
following vector algebra relations

R, x (R, x R3) = (RIR;)R; — (RIR,)R;
RI(R,; x R3) = RI(R;x R;) = Ri{(R; x Ry)
(R x Ry)'(R; x R)) = R2R?— (RIR,)?

we can rewrite the kinetic energy and angular momentum

N
2T - Z m (RZ'QQiothot - (QiotRi)z + R; R; + QQIot(Ri X RQ)
=1

N
T = Y mi(RQu — (QRIR: + (Ri x R))). (2.30)
=1
Using Egs. (2.30) it is straightforward to derive the following relation
J = (?T . (2.31)
aQrot

This is exactly the definition of the generalized momentum veEtQy associated with
the three Euler angles.

Now we can draw the following important conclusion. If the set of coordinates con-
tains the three Euler anglé®, ¢, x} which characterize the transformation between the
LRF and a MRF, the total angular momentum vector is just the generalized momentum
vector associated with the three Euler angles

T
Jy = pﬁ:_gﬁ
oT
Yo = RBe=gg
oT
J, = P =2
X X aX

J = e+ €¢P¢ +e. P, (2.32)
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Since we may not have much idea about the directions of the angular veldeifies,,
e}, itis better to transform the expressions to the Cartesian components [73] in the LRF

Jy = sinxPy — csct cos x Py + cot ¥ cos x Py
Jy = cosxPy+ cscisin x P, — cot ¥ sin x Py
J. = P. (2.33)

With the help of Eq.(2.33) it is straightforward to express the KEO in terms of total
angular momentum and generalized momenta associated with vibrational DOFs. In other
words, starting from Eq. (2.30) the KEO can be readily expressed as contributions of
rotational part, vibrational part and their coupling. A detailed example can be found in
Appendix B.

In reality when we study rotational motions we can assume all the generalized mo-
menta associated with the vibrational DOFs are equal to zero since the vibrational ex-
citations need much higher energy. On the other hand when we study the vibrational
dynamics the rotational states may change simultaneously. However since the rotational
excitation energies are much smaller we can normally ignore their influence on the posi-
tion of each vibrational band of the spectrum. In addition, experiments can not distinguish
rotational excitations. They only observed broadening for each vibrational band which is
due to the combination with rotational excitations. Consequently we cad set 0,
namelyP; = P, = P, = 0 for investigations on vibrational DOFs.

2.3 Generating Multidimensional Potential Energy Sur-
face

Compared to the KEO, the potential energy operator in coordinate representation is rela-
tively easy to obtain since it is just a normal function. The most simple way to generate
the PES is to calculate point by point for the required configurations. However, the di-
rect scanning of all required configurations may be quite time demanding. Even if we
only scanl10 points for each degree of freedom, which will not give results of high ac-
curacy, we still need0"» data points forNp-dimensional system. It is only possible

for molecules with no more than three atoms provided we need sufficiently accurate PES.
Thus we have to resort to other methods to reduce the calculation effort while maintain-
ing the accuracy. Correlation expansion [89] of high dimensional PES is a quite good
choice for large molecules since it only needs several low dimensional PESs instead of
one high dimensional one. In the following we will reproduce correlation expansions of
multidimensional functions in terms of different correlation orders in a concise way.
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2.3.1 PES Expansion with Correlation Orders

Considering any multidimensional functidf(Q), we can write the Taylor expansion of
this function as

V(@) = [0@V(Q=0)
. 2
0@ = 1+ Qg + 5 > @Qsp g+ (239

where the vectof) contains all the variables. We show some simple case(6}) for
reduced dimensional situations in the following equations

N n 8” 82
: are; O yn
O(QiQ;) = ; (m+n) (8@) (8Qj)
= 1+ Qzan Q50 5’@3
82 82
<Q28Q2 9z 5, 0@) B

(2.35)

WhereOA(Ql-Qj) means all the other components@fare zero excepd; and@);.
Provided we can tolerate the error of neglecting third and higher correlation orders we
can rewrite the operat@?(Q) as a combination of low-dimensional operators

0 1 0?
o) = 1+ ZQza—QZ + 51 Z Qz’@j—a@a@j +

=1+Z Qi) — 1]+ 2,2 (QiQ;) — O(Q;) — O(Qy) + 1] + -
i#]

= §(ND —1)(Np —2) = (Np — 2) ZO(Qz’) + ;O(Qin) e

(2.36)

where Np, is the dimension of). The final expansion of multi-dimensional function in
terms of low-dimensional functions (Accurate up to the second correlation order) reads

1
V(Q) = 5(Np = 1)(Np=2)V(0) = (Np=2) D V(Qi) + D V(QiQ)) ++++ . (2.37)
i i<j
From Eq. (2.37) we can see only some two-dimensional PESs are needed to expand the
high dimensional PES provided the accuracy up to second correlation order is sufficient.
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In general, this kind of correlation expansion for PES in terms of bond lengths and bond
angles converges faster than the normal Taylor expansion since the correlation expansion
includes some high order contributions of the normal Taylor expansion. With the help of
Eq. (2.37) the total number of data points required is (%m&b(ND —1)NZ2, whereN; is
data points needed for each single dimension (assuming they are equal). The numerical
simulation in the next chapters are based on the expansion of Eq. (2.37).

To gain the physical meaning of Eq. (2.37), we would like to introduce another equiv-
alent form. Reset the energy reference such ¥Hat(Q;) = V(Q,) — V(0) and define
the correlation part of two dimensional functi@t{?(Qin) = V(Q:Q;) — VI(Q:) —
V(Q,) — V(0). We can rewrite Eq. (2.37) as

0)+ > V(@) + Y VENQQ) + -+ . (2.38)

1<j

The expansion form of Eq. (2.38) is the same with that reported in Ref. [89]. The meaning
of each term in Eq. (2.38) is quite transparent and can be easily generalized to including
higher orders of correlations. In general any function can be divided into uncorrelated
parts and different orders of correlated parts.

2.3.2 Fitting of PES within Predefined Symmetry

In some cases the PBE Q) should be fitted to an analytical function for efficient nu-
merical simulation. PES fitting also provides the opportunity to decrease the quantum
chemistry calculation effort by scanning densely around important configurations and
sparsely for trivial area. However the fitting should conserve the symmetry of the PES
to give convincing results. The most simple way is to linearly combine predefined basis
functions{¢>(Q)} which have the same symmetrydsQ)

V(Q) =) (@) (2.39)

n

Various effective fitting methods can be found from previous studies [92, 93]. Here we
briefly recall the most simple and common one, the least square method, which minimize
the sum of squared residuals. Suppose we have a set of@at¥; } and the fitting form
shown in Eq. (2.39). The sum of squared residusals defined by

A=Y (Vi-V(Q))

i

— Z <V; — chqﬁg(Qz)) (V; — ch¢§(Qz>>

= (V-Fe)'(V —Fe)
= VIV 4 ¢'(F'Fe — 2FTV), (2.40)
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where the vectoV andc contain the data points/; } and coefficientgc, }, respectively.

And the matrixF is defined byF;, = ¢°(Q,). Note that in the third line of the above
equation we change the explicit summation to matrix product to simplify the notation and
derivation. The optimized coefficients can be obtained by solving the linear equations

22 — 0} which in matrix notation is simply

A
92 _ Fife—Flv =0
dc
c = (FIF)'Fv. (2.41)

We only need to calculate the inverse of a real symmetric matfxwhich is numerically
straightforward. If we add an additional weight< w; < 1 to each poin{Q,,V;} the
final result becomes = (FTWF)~'FI'WV with W;; = w;6;;.

2.4 Solving Multidimensional Schibdinger Equation

Having the vibrational Hamiltonian at hand we can directly solve the@&bthger equa-

tion to interpret the phenomena we are interested in. Any observables can be obtained
with the help of the time dependent wave function which is the solution of the time de-
pendent Sclidinger equation

ih%\l/(@,t) = HU(Q,1), (2.42)

whereQ denotes a set of general coordinates. For stationary phenomena we can alterna-
tively solve the time independent Séklinger equation

HY,(Q) = E,V(Q), (2.43)

where E,, and ¥,,(Q) are thenth eigen energy and eigenstate, respectively. Once we
have the solution of the time independent $clinger equation we can easily write the
solution of the time dependent one as

V(Q.t) =) cpe PM,(Q), (2.44)

wherec, is the overlap integral between the initial statéQ,t = 0) andV¥,,(Q). The
solution of the time dependent Sdldinger equation tends to be less time consuming
as compared with the time independent one. However, the calculation effort for both
cases increases exponentially with the dimension which strongly hampers any attempt
of treating multidimensional systems with numerically exact methods. Among several
schemes of speeding up the calculations, the MCTDH method [29, 90] as implemented
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in the Heidelberg program package [91] developed by Meyer and coworkers provides a
quite good approximation with only slight loss of accuracy, which makes fairly accurate
solution of multidimensional Schdinger equations possible. In the following Sections
2.4.1 - 2.4.2 we briefly review the essence of MCTDH for propagation of wave packets
and calculation of stationary eigenstates [90].

2.4.1 Propagation of Wave Packets

The idea is borrowed from the MCSCF method in the many-electron theory. The multi-
dimensional wave packet is expanded as a sum of Hartree products

\Ij(Qv t) = Z T Z AI/l,"',VNSD(Vll)(Q:l? t) T (pl(/]]\\/{)(QN’ t)v (245)

vi=1 vy=1

where{A,, .. ., } are time-dependent coefficients ahdﬁ@)(Qj,t)} are time dependent
single particle functions (SPFs) which can be expanded as a superposition of time inde-
pendent primitive basis functions in the traditional way. The discrete variable represen-
tation (DVR) is adopted to represent each SPF [90]. Different from the direct expansion
in terms of time independent basis functions, the MCDTH method needs a much smaller
number of optimized SPFs since they only cover necessary grid points for each specified
moment of time. Fig. 2.1 clearly tell us how the SPFs adapt their shapes according to the
time evolution of the wave packet.

t=0 q2 t>0 T T N
| time IR
q \\ /,
2) 1 /\ o (1)
¢ PP evolution ¢
1, \P \’

G

Figure 2.1: Schematic view of the SPEs) } following the motion of the time dependent
wave packetl. Figure adapted from Ref. [34]

The equations of motion of the time-dependent coefficignts, ... ., } and SPFs
{go(y?(Qj, t)} can be derived by replacing the wave functib{@Q, ¢) in the time dependent
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Schibdinger equation by the expression in Eg. (2.45). The MCTDH working equations are
coupled time derivative equations ffl,, ... ., } and{,%/(Q;, )} which can be solved
by varies numerical integration methods.

The propagation of a MCTDH type of wave packet is quite efficient provided the
Hamiltonian is a sum of products of single particle operators. The kinetic energy part
of the Hamiltonian is automatically a sum of products as can be seen in Section 2.2. To
efficiently exploit MCTDH we have to fit the PES into a sum of products. Concerning
available PES with sufficient accuracy, up to now the highest dimensional one is 15D as
reported by Bowman group [92] for the Zundel cation-HH,0),. They have used least
square fitting with 7962 basis functions. This seven atom case reaches the limits of both
the fitting and the quantum chemistry capability of present computers. Apart from the
most simple least square fitting, a more applicable fitting scheme especially for medium
high dimension has been proposed in Ref. [93]. Combining the expansion technique
introduced in Section 2.3.1 and a proper fitting method one can generate high dimensional
PES with sufficient accuracy.

2.4.2 Calculation of Stationary Eigenstates

The relaxation method [94] is a quite general method to generate especially the ground
state wave function. The basic idea is to propagate in imaginary time daémeainir to
decrease the energy of an initial guess wave packet to approach the ground state energy.
In this case the solution in Eqg. (2.44) becomes

V(Q. ) =) cue ™M,(Q). (2.46)

n

The above equation shows that the components of each eigenstate decay exponentially
at a rate proportional to the corresponding eigenvalue, i.e., all the other eigenstates de-
cay faster than the ground state. If we simply normalize the wave function after each
propagation time step we can get the ground state wave function when the propagation is
sufficiently long, i.e., the components of all the other eigenstates decay to zero.

Basically following the same idea we can get the first excited state provided we first
project out the ground state from the Hilbert space, i€(Q,t = 0) replaced by(1 —
P)¥(Q,t = 0) and H replaced by(1 — Py)H(1 — Py) with By = |¥,)(T,|. However
to obtain then-th excited states we have to calculate all the 1 lower energy excited
states. In MCTDH the ground state is obtained by relaxation while the excited states are
obtained by so called improved relaxation [95].

The improved relaxation starts from an initial state close to the desired excited state
and the iteration procedure is described as follows:
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1. Initial guess of SPF&o)(Q;, ¢ = 0)}

2. Use the basis set §fb;, = ¢\ (Q1,t = 0)--- N (Qn,t = 0)} to generate the
Hamiltonian matrixH ;5 = (| H|P k)

3. Diagonalize the Hamiltonian matrix, get the eigenvegtdy } which corresponds
to the desired excited state

4. The approximated wave functionds= ) ; A;®; which determines the equation
of motion of SPF¢xY)(Q;, 1)}

5. Propagatégo(yi)(Qj, t = 0)} inimaginary time to generate new single particle func-
tion {,o)(Q;.t = At)}

6. Go to step 2 until convergence

Different from a MCTDH wave packet propagation, where bpily} and{A,} are ob-

tained by integrating corresponding time derivative equations, improved relaxation ob-
tains{A;} by diagonalizing the Hamiltonian matrix under the basis s€tdof}. It has

been shown that this method converges to the eigenstates that correspond to the variational
principle applied to the MCTDH ansatz for the wave function [95].

2.5 Summary

In this chapter a concise method for generating vibrational Hamiltonian is described in
detail which is the fundamental starting point for numerical simulations of the coming
chapters. In addition we have also briefly reviewed the efficient MCTDH package [91]
for solving multidimensional Scbhdinger equations. The Hamiltonian can be constructed

in terms of arbitrary coordinates which enables us to use coordinates most suitable for the
natural motions of a molecule. In particular, it is a quite appropriate level of theory for
strong hydrogen bonded systems since multidimensional large amplitude coordinates are
treated efficiently. In Chapter 3 and 4 the applications of the method mentioned above to
strong hydrogen bonded systems for multi- or full- dimensional quantum simulations will
be performed.
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Chapter 3

Models of Hydrogen Bonds in
Protonated Ammonia Clusters

3.1 Introduction

Recent experiment of ammonia transporter proteins [47] implies that hydrogen bonding
and transfer in protonated ammonia cluster cations; (WHs),, as shown in Fig. 3.1,

may play an important role in nitrogen metabolism. Direct hydrogen atom transfer along
ammonia wires [48] has also been observed which in turn triggers the study of direct
proton conduction. To fully interpret the fundamental processes involving these cations
requires extensive investigations at the molecular level. However, the previous investiga-
tions, no matter experimental or theoretical ones, capture little essence concerning the HB
dynamics. As outlined in the introduction, IR spectroscopy can give valuable information
on the properties of HBs.

In the following Section 3.2 we provide a multidimensional quantum simulation for
N,H= focusing on the IR characteristics of the HB. A reduced 6D Hamiltonian is gener-
ated and solved by the method introduced in Chapter 2. We further compare our theoreti-
cal results of the geometry and IR spectrum with some previous investigations as well as
a very recent IR spectrum below 2000 thmeasured by Asmis and coworkers [96, 97].

In Section 3.3 the larger clusters & 2 — 4) are investigated. We have studied the po-
tential curves along the proton transfer coordinate to rationalize the validity of harmonic
predictions and compared the harmonic IR spectra with experiment.
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Figure 3.1: Equilibrium configurations of the protonated ammonia clusterS(NHs),,

as obtained using MP2/aug-cc-pVTZ# (= 1) and MP2/6-311+G(d,p)( = 2 — 4)
optimization. In this chapter when we say MP2/aug-cc-pVTZ it actually means the MP2
level of theory with the aug-cc-pVTZ and cc-pVTZ basis set for N and H, respectively.

3.2 Geometry and IR Spectrum of NHZ

We first focus on the protonated ammonia dimeHN. Using quantum chemistry op-
timization, which treats all the nuclei classically, the two most important equilibrium
configurations shown in Fig. 3.2 are obtained with Gaussian03 [62] program. The min-
imum configuration ha¢’;, symmetry with the proton located asymmetrically with re-
spect to the two terminal ammonia groups while the transition statédhasymmetry

with the proton exactly in the center. The central proton can transfer between two equiv-
alent minimum configurations via a transition state by overcoming the potential barrier
which is characterized by the energy difference of the minimum and transition state con-
figurations if one ignore the zero point energy (ZPE) correction. The barrier height at
the MP2/aug-cc-pVTZ level of theory is 267 cfrand increases to 353 crhif we apply

the CCSD(T)/aug-cc-pVTZ method to the MP2 geometries. The barrier is quite shallow
due to strong hydrogen bonding no matter which level of quantum chemistry method is
concerned. Such a low barrier means a rapid proton translocation between two equivalent
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minima.

Rnn=2.699A

N

-
o]

Rnu=1.116A

Minimum

Rnn=2.599A

Transition State ')

Figure 3.2: Minimum and transition state configurations eHN obtained by MP2/aug-
cc-pVTZ level of theory.

However, conflicting with the classical minimum, the IR spectroscopy experiment in
the 2600-4000 cm range by Lee and coworkers [49] leads to the conclusion thiEtN
should haveD;;, symmetry. This point is also studied quantum mechanically by a one-
dimensional model in Ref. [98]. Concerning the IR spectrum, recent experiments find
rich vibrational bands while the harmonic approximation predicts nothing in the region
from 500 cnT!to 1100 cntlirrespective of the reference geometry, i.e., minimum or
transition state configuration. Therefore only a theoretical investigation beyond the har-
monic approximation is expected to provide reasonable assignments. As has been pointed
out in Chapter 1, multidimensional quantum simulation is the most appropriate level of
theory to investigate this kind of strong hydrogen bonded systems especially concerning
the dynamics of HBs.
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3.2.1 Reduced Dimensional Hamiltonian Operator for NH=

In the following we will provide a reduced dimensional model Hamiltonian for thie:N

cation which is based on internal coordinates. Consisting of 9 atoph} M principle

has 21 internal coordinates to compose the full dimensional Hamiltonian for the total
angular momentund? = (. Focusing on that part of the spectrum which is influenced by
the shared proton motion, one can adopt a reduction by taking into account the following
two conditions: (i) experimental data suggest that the relevant energy range is presumably
below 1000 cm!, but might extend into thes 1500 cm~!range due to combination
bands and (i) symmetry selection rules dominate the anharmonic couplings especially in
this low-energy range.

We first assume that the;Gymmetry of the NHg fragment, i.e., excluding the central
proton, will not be broken. Second, the length of the N-H covalent bonds shall be fixed.
These constraints leave seven internal coordinates to describe the system as shown in Fig.
3.3, i.e., the shared proton stretching and bending with respect to the center of mass of
the rest NHgq fragment,z, z, andy, the relative motion of the centers of mass of the two
ammonia,R, the umbrella type motion of the two ammonég,andé,, and the rotation
(torsion) of the NH fragments with respect to each other,Notef; or §, characterizes
the simultaneous equal-amplitude-wags of the three NH bonds which always keep the C
symmetry of the NHg fragment. The details are visualized in Fig. 3.4.

Figure 3.3: Definition of the seven active coordinates of the redugettl‘model. The
origin of the MRF is the center of mass and thaxis is along the N - N line.

To setup the Hamiltonian for this 7D model we first generate the KEO exploiting the
approach detailed in Chapter 2. For the seven active coordinates in Fig. 3.3 the classical
kinetic energy with all other internal coordinates frozen can be obtained by exploiting
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EqQ. (2.18) repeatedly

T — T]({H) 4 TJS[];%ZG) + T((I]—IV)2H6) _ T](VJ;’;II:G) + T((I]_IV)2H6)

T(N2H6) _ T(NHs) + T(N/Hé) + T(N'Hé)

NoHg = LNm, N'H} (NHs)
T =T + T + TR = T4 + 1R,

where(AB) is the center of mass ofB and the equivalent atoms are simply distinguished
by the prime symbol. Combining the above three equations we finally get the classical
kinetic energy in terms of sub-systems

T — T((IJ{V;HG) X T&V}f;’é) n (TéT) i T((]g)s)) i (TI({fzé) I T((;{%)) (3.1)

RolcosO | ut
\ ‘Rosinei
o,

w0,
W,
X = sy,
P T
W ,
o (KN

Figure 3.4: Schematic view to construct the classical kinetic energy of fidgment.
The notation H means the center of mass of the three H atoms. Left: directi6f akis

(z axis). Center: Motion of Nkl fragment (rotation is not shown). Right: Plane of the
three H atoms.

Consider the three Euler angles which connect the LRF and the MR, y} ac-
cording to Appendix A, wheré and¢ are defined as the two direction angles of the MRF
z axis in the LRF. We will obtain each term in Eq. (3.1) in the following. The kinetic
energy of the central proton with respect to the center of mass ofdHg fkagment reads
(notex, y, andz are MRF coordinates)

Nottg) _ Lo L. L ), b, X
T((H)Q 6) — 5#’1722 + §,up1;2 -+ §ILpr2 + Tp(/l97 gb? X))

wherey, = % According to Eq. (2.30I((g)2H6) should includes four parts, of
which three involve the MRF rotational velocities and the other one is the kinetic energy
measured in the MRF. The three rotation related parts include the Coriolis type couplings
and rotational energy. These terms are simply denoteﬂpb}, P, x) here and they are
very small in the case when the total angular momentum is zero. The two relative motions
NHs---NH; and N - - H; are along the: axis of the MRF which can be described by

spherical coordinates in the LRF according to the definition of the MRF in Appendix A.
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According to Fig. 3.3 and Fig. 3.4 we have the following kinetic energy
. 1 . 1 . o .

T((]]\/'V]I;:)) — ENRRZ + 5/4LRR2 (192 + ng San 19)
1 d(Recod;)\*> 1 N
(N) = §M(N73H) (%) + §M(N,3H)(ROCOS91-)2 (192 + ¢% sin? 19) ,
Where,uR = %(3mH + mN), W(N—3H) = 3mHmN/(3mH + mN), andRQ = 1017;1 is
the free N-H covalent bond length calculated at the MP2/aug-cc-pVTZ level of theory.
The terngf) characterizes the three hydrogen atoms motion in their center of mass
reference frame. According to the right panel of Fig. 3.4 we have

1 [d(Rysing)\> _ 1 SVSCHCINE SO S

where the last two terms characterize the rotational energy which are unnecessary to be
written in detail as will be seen in the following. Due to thg, symmetry the Coriolis
type couplings are canceled with each other. The orientation angle of each individual
ammonia is denoted by, » and only the difference between them is the torsion shown in
Fig. 3.3. Their linear combination which characterize the rotation of tjté;Nragment
will be defined as the third Euler angiein the following.

For an isolated system, apart from the translation of the center of mass which can be
separated, the global rotation can be characterized by pure numbers@ﬁnﬁ@ =0
and their common eigenstates can be classified by the eigenvalﬁés/m discussed in
Section 2.2.5, we will only study the vibrations for the total angular momenfus 0.
In the following we assumé”p(ﬁ, b, x) = 0 for J = 0. This approximation is equiv-
alent to neglecting the coupling of the angular momenta of the central proton and the
N,Hg fragment forJ = 0. According to Section 2.2.5 we have = —2L— where

8Q7'ot
Q. =(yp ¢ x )- With the help of this relation we can immediately see that 0 is

rot
equivalent ta) = ¢ = x = 0 for T,(¥, ¢, ) = 0.
After applying the condition? = ¢ = 0 we simplify the kinetic energy as

1 . 1 . 1 . . 3mgmpy o . .
T = 22+ =i + =i + ppk? R (925 6, + 62sine )
3 . )
+§mHR(2) > " (67cos6; + ¢sin’d;)
i=1,2
1 1 1 1 . 1 . 1 .
= §sz2 + Eﬂpr + 5%92 + §MRRQ + §fmb(91)ef + élmb(%)@;
1 . 1 )
+§[Tot(91)90% + §[r0t(92)90§a (3.2)
where I,;,(0) = Io(coSH + 5 — Sint), L(0) = Iosintd, and Iy = 3myR2.

Exploiting the relative rotation (torsion) = ¢y — ¢, and the global rotationy =
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(Lrot(61) 1 + Lot (02)2) / (1ror(01) + L0t(02)) @s new variables we can rewrite the ki-
netic energy. Apply the conditiof = 0 and we finally get the kinetic energy fdr= 0

1. 1. 1. 1 .
T = g2+ 5md + 5w + Sk’
1 .21 .21 .9
+§fmb(91)91 + §Ivib(92)02 + Eftor(91,92)90 ; (3.3)
where the reduced moment of inertia for the torsionljs(6:,0:) = I (01) *

Lot(602)/(Lrot(01) + L.0t(02)). According to the general procedure detailed in Section
2.2.1 we can obtain the following quantum KEO

o 1 ~14
P,+—PF, P, +
241y 241 T

(3.4)

Now check the seven coordinates we adopted. Three of them are Cartesian and the rest
four are spherical coordinates defined in the MRF. According to Section 2.2.4 we can
write out the HCMOs

P, = P,a=uzy,z2
At n 2th
P = Pp— —
R R R
PAng = pgj - ihCOtgj,j =1,2
B’ = B, (3.5)

The final KEO together with the Euclidean normalization condition are given as follows

h? [ 0? 0? 0? 1o ,0
T = —— | —+—=+— | ——=R—=—
2u, \0x%  0y? 022 2u, R?OR OR
B h? 0? _h_QZ 1 9 sinb; 0
2It0r(61; 92) 8@2 2 i—12 sin 01 891 [mb(ﬁl) 891
dr = R?sin#;sin Oodxdydzd RdA,dOsdp. (3.6)

The torsion angler of the two NH; fragments can be separated from the other six
variables if the potential energy does not depend on it. We have confirmed that the ab
initio potential energy surface depends only very weakly on this angle (the barrier is as
low as 12 cm! based on an MP2/aug-cc-pVTZ level of investigation). Moreover, there is
a clear separation between the rotational and vibrational excitation energies. The former
is only several cm! while the latter is several hundred cin Thus, we can separate this
torsion and replace the operatela% by its expectation value, saif>.
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For the numerical implementation below it is more convenient to use another set of
coordinates and a new gauge of wave function which simplify both the kinetic energy
operator and the normalization volume element. Assuniiffg= 0 we will use the
following six-dimensional (6D) kinetic energy operator

h* [ 02 02 02 n* 92 h? 0 0
T (o o ) DT

2”1?, 8R2 2]0 i—1.9 8

dr = dxdydzdRdu,dus, , (3.7b)

whereu; = cos§; andg(u) = (1—u?)(3mpy+my)/(3mpu®+my). The relation between
the new and old wavefunctions @& = RV, i.e., in terms of the new wavefunction and
coordinates the 1D reduced densities are simly) = |®(R)|* andp(w;) = |P(w;)|?,
while in terms of the old ones they apéR) = |RY(R)|? andp(6;) = sin 6;|¥(6;)|*. This
criteria, density is just absolute square of wavefunction, can be generalized to other kind
of coordinate or gauge transformations for simplification.

According to Eqg. (2.38) the corresponding 6D PES can be constructed by cumulative
expansion in terms of different correlation orders

V(@) = V(Qu)+ D V(@) + D V(@i Q)

1<j
+ ) VOQ Q. Q) + - (3.8)
i<j<k
whereQ is a vector comprising the six model coordinates appearing in Eq. (3.7&)&hd
Is then-mode correlation potential energy. The reference configur&pipfor expansion
IS the transition state as shown in Fig. 3.2. Our final expansion includes all the two-mode
correlations as well as those three-mode correlations concerningcth@erdinate except
VO (z,u1,uy) andV® (2, R, u; ») which are assumed to be negligible as compared with
the those involving two proton coordinates liké® (z, z, R).

3.2.2 Numerical Implementation

The required PESs are calculated using the MP2/aug-cc-pVTZ level of theory [62] to
generate the 6D PES. According to Eg. (3.8) the numbers of 1D, 2D and 3D PESs are
( ? ) =6, ( g ) =15 and( g ) = 20, respectively. We can make use of the symme-
try operations to decrease the calculation effort. The first symmetry is system inversion
V(=z,R, 01,05, —x,—y) = V(z, R, 05,6, z,y) which ensure us to generate low dimen-
sional PESs of),/0, from 6,/6,. The second symmetry is that the permutation of the
two bending modes andy, i.e., the two modes are equivalent since the slight difference
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caused by torsion has been ignored. By considering the symmetry the corresponding
numbers of PESs which we need to scan@r%) =4, ( ;1 ) + ( g ) + ( % > = 8 and

( g ) + ( % ) ( ? ) + ( % ) < i’ ) = 10. As mentioned above concerning three-mode
correlations we are only interested in those involvingith relatively strong couplings.
The actual numbers of 1D, 2D and 3D PESs we finally scanned are 4, 8 and 3 which
produce 6, 15 and 7 ones after applying symmetry. The selected 3D PESs for scanning
areV(z,x,y), V(z,z,R), andV(z,z,0;) which can generat& (z,y, R), V(z,z,0s),
V(z,y,601), andV(z,y, 02). For each PES scan we use the bond lengths and bond angles
as variables. In total about 10000 points have been calculated and applying symmetry we
obtain more than 90000 points spanning the energy range up to 10000 Timese PESs
has been subsequently fitted to a polynomial of up to 10th order by the fitting method
introduced in Section 2.3.2 with fitting error less than one percent.

For the solution of the nuclear Sédinger equation we use the MCTDH approach
as detailed in Chapter 2. The wave function is represented on the primitive grid using a
harmonic oscillator DVR. The details about the basis set for MCTDH are shown in Table
3.1. The MCTDH equations of motion have been solved using the Adams-Bashforth-

Table 3.1: MCTDH parameters for solving Sodmger equation (lengths iﬁn). Npyr:
number of DVR points)Nspr: number of SPFs.

mode z R Uy Us x Y

min. grid | -0.58 | 2.20| -0.61 -0.61| -0.53 -0.53
max. grid| 0.58 | 3.26| 0.13 0.13| 0.53 0.53

Npvr 59 | 39 | 39 39 39 39

Moulton predictor-corrector integrator of 6th order [90]. We have calculated low lying
excited state by diagonalizing the Hamiltonian with the Lanczos iteration algorithm as
implemented in the MCTDH program package. The wave functions which serve for the
assignment of the spectrum have been obtained using the improved relaxation method
[95] introduced in Section 2.4.2. The assignment below will be based on variables quite
close to certain normal modes, i.e.,

(2RO,0,xy|mnklij) = Vi (2, R, 05,04, 2, y) (3.9)
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wherem, n,k,li and j are quantum numbers associated witl, 6, = “3%.6, =
01—062
2

,x, andy respectively.

3.2.3 Geometry and Eigenstates

3.2

2.8

2.6

(@) L ®

1 I | I I I
-0.6 0.3 0 0.3 0.6 -0.6 -0.3 0 0.3 0.6

NH,-NHj stretching R (A)

Proton transfer z (&) Proton transfer z(A)

Figure 3.5: (a) 2D cut of the 6D PES, contour levels from -150 to 1550'émsteps of
100 cntt. (b) 2D reduced probability density (solid line) of the ground state.

In Fig. 3.5(a) we show a two-dimensional cut of the 6D PES along the proton trans-
fer coordinatez and the NH-NH; stretching coordinaté& with other coordinates fixed
at transition state, i.ef; = 6, = 111.7° andxz = y = 0 at the current level of quan-
tum chemistry. The shape of the PES resembles what one would expect for symmetric
medium to weak HBs, i.e., a double minimum with a transition state at a compressed
NH3-NH; distance [34]. The minima and transition state correspond te (i0.24,&,

R = 2.833,&) and(z = 0,R = 2.733,&), respectively, similar to what has been reported
for a 6-311++G(d,p) basis set in Ref. [98].

Calculating the 6D vibrational ground state yields the probability density. The 2D
reduced probability density concerning the proton transfer and theN\HH stretching
coordinates is shown in Fig.3.5(b). The most notable feature is that this function has
a single maximum at the symmetric configuration. In other words, as compared to the
barrier height, the quantum mechanical ZPE related to the proton transfer mode is large
enough tosymmetrizeéhe hydrogen bond. This feature agrees well with the experiment
in the context of IR spectroscopy in the 2600-4000 émange in Ref. [49].

An interesting case may occur upon deuteration when the ZPE locates below the reac-
tion barrier and the central deuteron distribution becomes bimodal. Taking the transition
state energy as reference, the total ZPE ¢HN and N,DI are 3355 cm' and 2323
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Figure 3.6: The 1D reduced probability density along the shared proton/deuteron transfer
coordinatez for the I\bH;f/NQD;f. The central inset shows the details of the bimodal
characteristics with the vertical axis in a different scale.

cm~!, respectively. We have also investigated the fully deuterated isotoposfer, dnd

the ground state distribution along the deuteron transfer coordinatehown in Fig. 3.6

with comparison to the M case. From the slightly bimodal deuteron distribution of the
N,D: we can imagine the ZPE associated to the deuteron transfer mode slightly goes be-
low the reaction barrier leading to an essential difference from ti&Nase. To clearly

show this point we provide an enlarged view in the central inset for the related area distri-
bution. The bimodal deuteron distribution agrees well with a very recent work based on
path integral molecular dynamics simulation [99].

Table 3.2: Ground state mean values and variances of each coordinategfomith
lengths inA and angles in degree. For comparison we report the varianeg=6fcos 6;

instead of),.
coordinates z R 0, 0y x Y
mean valug O 2.796 111.576 111.576 0 0

variance | 0.174 0.067 0.066 0.066 0.106 0.106

To get an even better picture of the ground state geometry we can study the mean
value and variance of each coordinate as shown in Table 3.2. The quantum ground state
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has the samés,; symmetry as the classical transition state. From the variances we can
see the proton stretching motion has the largest amplitude and the bending follows. The
strong hydrogen bond makes the proton distribution highly delocalized. Due to the large
amplitude zero point vibration of the central proton the JNWH; distance increases as
compared to the transition state. This is typical for strong hydrogen bonded systems
[45, 100].

Usually the N - - N distance is investigated to reflect the hydrogen bonding strength as
well as some other geometrical effects. It has been pointed out that in the ABltype
HB there exists an empirical correlation between the A—H and Bl distances irrespec-
tive of the A—H - - B angle [57, 101, 102, 103]. This correlation may provide us with some
rough picture of the geometric changes of the real time hydrogen transfer dynamics. On
the other hand, we may use just one variable to describe stationary HB geometry, which
actually reflects the bond strength. A typical geometric correlation for -N-N type
hydrogen bonded systems established by Limbach and coworkers is shown in Fig. 3.7. In
this figure the proton displacement from the bonding center is characterizgdby the
N- - - N distance isj;. Experimentally the proton displacementcan be obtained based
on NMR measurement of the chemical shift. Combined with low temperature neutron
diffraction data one can establish the empirical correlation curve for the N-AHtype
HBs.

In our caser and Ry y are justg; andg, in the figure since the mean valueszocnd
y are both zero. The variableé we adopted in the numerical simulation is not equal to
Ry, therefore we have generated the corresponding operata@tfgrin terms of the
model coordinates

Ry n=R+ nRo(u1 + us), (3.10)

wheren = 3my/(3mg + my). Itis straightforward to calculate the mean value of the
N- - - N distance at ground state with the operafr_y and the ground state wavefunc-
tion. This mean value is found to éyy = 2.6631A which agrees well with the figure,
giving support for the empirical correlation curve by Limbach and coworkers.

Apart from the ground state, some typical excited states are also calculated not only
to assign the IR spectrum but also to provide an essential grasp of how the final states
for the fundamental and combination transitions look like. The reduced probability den-
sities of these excited states are shown in Fig.3.8. The fundamental transitions of the
proton transfer mode, NH;-NH; stretching modeR, asymmetric umbrella mode,
and proton bending mode are labeled a$100000), [010000), |000100) and|000010),
respectively. For fundamental transitions there is only one nodal plane along to the cor-
responding mode. The nodal plane is simply defined by the corresponding coordinate
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Figure 3.7: Correlation between HB length= r; + r, and hydrogen transfer coordinate

¢ = (r1 — re)/2 adapted from Ref. [57]. The solid line is calculated by a classical
relation on valence bond orders pointed out by Pauling and the dotted line is an empirical
correlation based on experimental HB geometries established by low temperature neutron
diffraction and NMR data. In the empirical curve Limbach and coworkers have taken
into account the correction caused by zero point vibration. The red cross is the calculated
value by 6D quantum simulation.

equal to zero (e.gz = 0, 0, = 0 andx = 0) or its equilibrium value (e.gR = R.,).

The fundamental transitions of the symmetric umbrella m@dand proton bending,

which are not shown in the figure, are similar to that/pfand = except for the nodal

plane is defined by, = 6., = 111.6° andy = 0, respectively. In other words, the corre-
sponding reduced densities can be obtained by a simple rotation of 90 degrees from those
of , andx shown in Fig. 3.8 since we have ignored the slight difference caused by tor-
sion. Some combinations efand R are also listed in Fig. 3.8 §$10000) and|120000)

which clearly shows the characters of this kind of combinatjens)000). Combinations
between other modes have much higher excitation energies than those we are interested
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in, therefore they are not covered by our investigation. The excited state wave functions

provide us a quite clear picture of assignment of each vibrational band as obtained by IR

spectroscopy. We can see more details in the next section.
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details.
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3.2.4 IR Spectrum

Before discussing the IR spectrum, it is instructive to recall the selection rules for dipole-
allowed transitions as determined by the cation’s symmetry. The Hamiltonian, Egs. (3.8)
and (3.7), and the dipole moment obey the following symmetry relations under the oper-
ation of inversion

H(_Z7 Ru _gaa 087 -, _y) = H(Z7 R7 Qa, 087 z, y) 9 (3113)

[,L(—Z, R7 _eaa 957 -, _y) = —[,L(Z, R7 6(17 087‘%'7 y) : (Bllb)

The Hamiltonian (or dipole moment) is an symmetric (or antisymmetric) under inversion.
Thus we can derive an selection rule for the dipole transition. Due to symmetry all the
non-degenerate eigenstates of the system have a definite parity

wmnklij(_za R, _eaa 957 -, _y) = (_1)m+k+i+j¢mnkli]’(27 R7 eaa 957 X, y) (312)

The final absorption intensity is proportional to the square of the matrix element of the
dipole momentmnklij||000000) (See Appendix D for the details) at zero temperature.
Thereforegni; (—z, R, —04, 05, —x, —y) must be antisymmetric to make the matrix el-
ement nonzero, i.e., the absorption intensity is nonzero only if the sum of related quantum
numbers of the transition final state+ & + 7 + j is odd.

The IR spectrum can be calculated by Fourier transform of dipole-dipole autocorrela-
tion function or by matrix elements of dipole moment as mentioned above. The related
theory adapted from Ref. [120] is detailed in Appendix D. Most quantum chemistry pro-
grams can calculate IR spectrum based on so called double harmonic approximation, i.e.,
harmonic potential energy and linear dipole moment function for each mode. Either the
anharmonicity of PES or nonlinearity of dipole moment surface will leads to a failure of
this kind of harmonic approximation. That is the reason why the harmonic predictions
fails to interpret the experimental spectrum as we mentioned in the beginning. However,
it can give right position of the fundamental of certain mode if the potential energy curve
along the mode is not significantly anharmonic. In our 6D simulation we first obtained the
eigenfunctions of the IR active transition final states. The IR spectrum is consequently
calculated by matrix elements of dipole moment. The experimental and theoretical IR
spectra are compared in Fig. 3.9.

The first IR active fundamental obtained by 6D theoretical calculation is located at 409
cm~! due to the shared proton stretching fundamental excitation. This agrees nicely
with the IRMPD banda located at 374 cm' . Though the observed baaimay be en-
ergetically more close to the calculated value, sHendamental excitation is expected to
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Figure 3.9: Experimental vs. theoretical IR spectrum. The upper two panels are exper-
imental spectra obtained with different instruments by IRMPD technique by the Asmis
group [96, 97]. The lower panel is the 6D simulation. See the text for details.

be the most intense feature in this region because the displacement of the shared proton
along the N-N atom axis produces a large dipole oscillation. The other IR active mode
in this frequency range could be the doubly degenerate wagging vibration which is not
covered by our 6D model. The frequency of this mode is calculated at 418within

the harmonic approximation which may be assigned to the secondahamtie respec-

tive reduced probability of the shared proton stretching fundamental excitation is shown
in Fig. 3.8 (100000)). It is interesting to note that the probability density for this state is
more localized in the two well regions than the ground state distribution since the wave
packets almost locate at the two potential minima. Notice that as compared to the har-
monic prediction of this fundamental transition the frequency is significantly red-shifted
by about 1500 cm'. The details can be found in the summary of assignments com-
piled in Table 3.3. The overtone of this mode is much larger than twice the fundamental
transition which also reflects the considerable anharmonicity. In passing we note that an
effective one-dimensional calculation in Ref. [98] captures part of this anharmonicity by
predicting the transition at 707 crh, however, this number is still too large.

The second IR active fundamental transition, calculated at 1369,dsidue to the
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antisymmetric umbrella like motions of the two terminal Ngroups and it agrees very
well with the experimental banB’ at 1325 cm!. The antisymmmetric combination
character is obvious from the reduced density in Fig. 8180(00)). The third IR active
fundamental transition, which is doubly degenerate due to the two equivalent bending
modes perpendicular to the N-N line, is located at 1542'awhich agrees perfectly with

the experimenG’ at 1545cn!. One reduced density of the degenerate states is shown
in Fig. 3.8 (000010)).

Apart from these fundamental, combination transitions are also found to contribute
significantly to the absorption spectrum. The transition at 713'cagrees nicely with
the prominent experimental bard at 743 cn! which therefore can be assigned to the
combined excitation of the proton transfer and ;NkRH3 stretching modegl10000). In
fact we find two more transitions in this progression which are IR active according to
the symmetry selection rule, naméi20000) at 1002 cn! and|130000) at 1306 cn'.
This exemplifies the strong correlation between the shared proton motion and the HB
geometry deformation. TH@20000) transition agrees reasonably with the observed band
C’ at 1097 cmi! . Beyond the fundamental of the asymmetric umbrella motion at 1325
cm~!, however, the assignment for the combinations becomes more tentative in part due
to the limitations of the 6D model. The observed b&idit 1451 cm! could be due to
the|130000) transition. In the Argon tagged IRVPD spectrum reported in Ref. [96] there
are in fact only two dominant bands at 743 ©hand 1325 cm! corresponding to the
|110000) and|000100) transition in the present model.

The comparison of theory and experiment as well as the assignments are summarized
in Table 3.3. Apart from the 6D simulations the harmonic calculations and a 4D simu-
lation reported by us previously [96] are also provided. The 4D calculation ignores the
proton bending coordinatesandy. The 4D Hamiltonian is generated in the same spirit
as the 6D one but the 4D PES expansion contains no three-mode correlations. The 4D
dipole moment surface is generated in the same way as the PES expansion up to all the
two-mode correlations. Having at hand the 4D Hamiltonian and dipole moment surface
we have calculated the dipole-dipole autocorrelation function by exploiting MCTDH to
propagate the 4D wave function. The IR spectrum based on 4D simulation is obtained
by Fourier transform of dipole-dipole autocorrelation function. The 4D simulation has
predicted the proton stretching fundamental to be at 460'@nd the subsequent exper-
iment has observed this band at 374 ¢mas shown in the left upper panel of Fig. 3.9.

The 4D model has almost 20% error for this specific mode due to the ignoring of proton
bending which has slight coupling with the other modes yet may strongly couple to the
proton transfer mode. The 6D simulation which covers the bendiagdy as has been
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Table 3.3: Experimental and theoretical excitation energies (in'¢rof N,HI below

1600 cntt. The 4D result only relates to the first four quantum numbers hence no bend-
ing values. Harmonic predictions are performed with MP2/aug-cc-pVTZ. The modes
labeled by stars are not exactly the same as the assignments.

anharmonic harmonic

|mnklij) | 4D 6D | TS Min | experiment assignment

010000 | 421 403 | 565 313* NH;-NH; stretchvy
100000 | 460 409 | 843 1944 374 proton stretch,
020000 | 729 701 2 - vp overtone
110000 | 766 713 743 1l-v,+1-vg

030000 | 1030 981
120000 | 1089 1002 1097 l-v,+2-vp
001000 | 1348 1336| 1342 1264* symm. umbrella,,

000100 | 1354 1369 1362 1380* 1325 asym. umbrellavy,

130000 | 1488 1306 1451 l-v,+3 vg

000001 - 1542 | 1777 1779* 1545 proton bending,
000010 - 1542 | 1777 1779* 1545 proton bending,
200000 | 1546 2 - v, overtone

mentioned in Section 3.2.1 greatly decreases this error.

We further demonstrate the comparison between our theoretical calculations and the
experimental results in Fig. 3.10. As can be seen the multidimensional anharmonic simu-
lations agree well with the experiment. It should be noted that the 4D simulation excludes
the bendst andy thus the degenerate bending mode is missing in the 4D result. One
may argue that the 4D result fits the experiment even better for the combination bands
|mn00). In 4D model we cover all the coordinates which conserve they@metry since
the couplings between different symmetries are much smaller than those within the same
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Figure 3.10: Comparison of theoretical and experimental IR active bands. The six bands
in increasing order ard 00000), |110000), |120000), |000100), |130000) and the degen-
erate bending mod@00010) or |[000001), respectively. See the text for more details.

symmetry. The 4D model is a reasonable truncation with respect to its lower level of ac-
curacy yet the 6D truncation is slightly less reasonable with respect to the corresponding
higher level of accuracy. A more reasonable description is to consider the modes which
have relatively stronger couplings to the NNHj; stretching mode, i.e., the wags of the

two terminal ammonias. This is why 6D result needs refinements for the combination
bands while the 4D result gives a reasonable explanation at the corresponding lower level
of accuracy. However, concerning the proton transféundamental transition, the 4D
result agrees with the experiment not as well because this mode does couple relatively
strongly to certain modes which break the §ymmetry, i.e., the two bending modes

andy. This is why we greatly decrease the errorzdindamental in our 6D simulation

by accounting for the bending. The other reason is the accuracy of the PES expansion.
Though the 6D PES expansion includes major three-mode correlations it is still slightly
less accurate than the 4D expansion concerning the correlation part. We need more cor-
relation terms for the higher dimensional (6D) PES expansion at least all the fourth order
correlations which involves the three proton coordinategandz. A better solution for

high dimensions is to combine certain strongly coupled coordinates as a group to treat
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high dimensional correlations more conveniently, which will be applied to a full dimen-
sional study in the next chapter. In principle the grouping coordinates method can also
be applied to the present system but we would need high dimensibnaltio PES data
which are unfortunately not available up to now.

Intensity (arb. unit)

O 200 400 600 800 1000 1200 1400 1600
Wavenumber (cm'l)

Figure 3.11: Comparison of IR spectra of i (solid) and ND- (dashed) obtained by
6D simulation. See the text for details.

We have also performed a 6D simulation fosD¥. The calculated IR spectra is
shown in Fig.3.11. The five IR active bands for both cations|&8000), |110000),
|120000), 000100}, and the degenerate bending m¢@#010) or |000001) with increas-
ing frequency. For the00000) state, the red shift due to deuteration is 50% which reflects
strong anharmonicity. An interesting effect is that the combination b&ards00) and
|120000) also have about 45% redshifts though the deuteration has small effect on the
R mode. For the000100), [000010) and|000001), the redshifts do not deviated signifi-
cantly from the harmonic onés — 1/+/2) which reflects less anharmonicity as compared
to the proton transfer mode.

3.3 Geometries and IR Spectra of Larger Clusters

In principle it would be straightforward to apply the method outlined above to larger clus-
ters to perform reasonable reduced dimensional descriptions. It turns out, however, that
the HB in N,H is exceptional insofar as it is particularly strong compared tg (H3),,

(n = 2 — 4). Consequently, the PES is considerably less anharmonic for larger clusters
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Table 3.4: HBs parameters (Iengthsaihfor NH; (NHs),, (n = 2—4). The same notation
¢: is adopted to characterize the hydrogen displacement as in Fig. 3.7.

sizen | N---N distance| N-H length| H displacemeni,

2 2.82 1.07 0.34
3 2.90 1.05 0.40
4 2.96 1.04 0.44

which means that simple harmonic predictions may successfully describe them. To con-
firm whether this is true we first study the anharmonicity of the corresponding PES to
check the validity of harmonic predictions.

3.3.1 Geometries and PESs of Larger Clusters

We have calculated the equilibrium geometries of these clusters using the MP2/6-
311+G(d,p) level of theory, see Fig.3.1. The exact configuration of each classical
minimum slightly deviates from the expected symmetry, i.e., the §¥mmetry of

NH; (NH;),, the G, symmetry of NH (NH3); and the T, symmetry of NH (NHs3),.

This is due to the limitation of the assumption of classical nuclei. In general the configu-
ration with highest symmetry does not correspond to the minimum. However the quantum
ground state of each cluster does have the corresponding symmetry mentioned above just
like what we have studied in the;N: case. In the following we will ignore the sym-
metry deviations of classical minimum configurations. Each larger cluster has a solvated
ammonium structure with a central NHunit which turns out to be quite stable hence
significantly decreases the HB strength. The details of HBs parameters are compiled in
Table 3.4 which further reflects slight decrease of the HB strength with increasing cluster
sizen for n = 2 — 4. The HBs geometries also agrees well with the empirical correlation
curves shown in Fig. 3.7.

To address the degree of anharmonicity the potential curve along one of the hydrogen-
bonded N-H stretching coordinates, i.e., the proton transfer modes, has been determined
with the other coordinates frozen. The results in Fig. 3.12 show that upon increasing
the cluster sizex the potential becomes less anharmonic. The solid line is calculated by
MP2/aug-cc-pVTZ fom = 2 and the dashed lines are calculated by MP2/6-311+G(d,p)
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forn = 2 — 4. Forn = 2 it still shows some double minimum topology, although a
barrier as high as 4000 crhis required to overcome to reach the higher proton transfer
minimum. A quite deep potential well hampers the proton transfer process, i.e., the proton
distribution is well confined around the lower minimum configuration. et 3, 4 there

is no stable proton transfer minimum at all and the depths of potential wells increase
with the cluster size. Notice that the actual well depth depends on the level of quantum
chemistry. We have performed both MP2/aug-cc-pVTZ and MP2/6-311+G(d,p) level of
calculations fom = 2 and the difference turns out to be negligible especially around the
deep potential well, i.e., the nearly harmonic region. This in turn makes the accuracy of
MP2/6-311+G(d,p) PESs reliable around the deep potential well as can be seen clearly in
Fig. 3.12.
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Figure 3.12: One dimensional potential energy curves off (i), cations (n=2-4)
along an N-H proton transfer coordinate at the MP2/6-311+G(d,p) (dashed) and MP2/aug-
cc-pVTZ (solid) level of theories. The asymmetric characteristics can be understood from
the structures shown in Fig. 3.2.

Though the classical minimum forQIHI;L also contains the NHstructure it turns out
to be symmetrized by quantum zero point vibration since the potential well is sufficiently
shallow. Different from the BH case, the PES of each NKNH;), (n > 1) cation
shows a rather deep potential well due to significant weakening of HB. As has been dis-
cussed in Chapter 1 the harmonic approximation may catch some essence of this kind of
weak HBs. Based on Fig. 3.12 we will restrict our discussion within harmonic approxi-
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mation only, but including a scaling factor of 0.95 for the MP2 frequencies. This will turn
out to be sufficient for analyzing the size dependence of the experimental spectra.

3.3.2 IR Spectra for NH; (NH3),, (n =2 — 4)
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Figure 3.13: Left: Experimental IR spectra of NHNH3),, (n = 2 —4) [97]. Forn = 3,4

the spectra obtained by Tono et al [52] are also shown (b). RightnFer2 — 4 the
calculated harmonic MP2/6-311+G(d,p) frequencies (scaled by 0.95) are shown as open
or solid bars for transitions having no or finite oscillator strength, respectively.

The infrared spectra of the NHINH3),, clusters ¢ = 1 — 4) measured by the Asmis
group with the IRMPD technique as well as harmonic calculations are shown in Fig. 3.13.
As discussed above the significant weakening of the HBs decrease the anharmonicity
of the PES. Therefore, we can compare the measured spectra with the results of the har-
monic approximation. There are systematic redshifts of the most intense absorption peaks
with increasing size. The calculated frequencies for relevant transitions at the MP2/6-
311+G(d,p) level of theory are compiled in Tab. 3.5. For the most intense absorption
band between 1100 and 1200 chthis gives an excellent agreement, allowing the as-
signment of this band to the collectivg bending mode of side NHwhich corresponds
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to the asymmetric umbrella motion in the " case. To have a clearer picture, the
bending mode of an ammonia molecule is shown in Fig. 3.14a).

Figure 3.14: Visualization of selected modes of ammonia and ammonium; tgpe
bending mode of ammonia. b) type bending mode of ammonia, only one of the 2-fold
degenerate modes are shown.vglype bending mode of ammonium, only one of the
3-fold degenerate modes are shown.

Notice that the red shift of this band with increasing cluster size, discussed 34
in Ref. [52], is also consistent with the data for2. Weakening of the HBs, responsible
for the red shift of the ammonia, mode, is reflected also in the increase of the N-N
distances calculated by MP2/6-311+G(d,p): 288 n=2, 2.94 in n=3, and 2.98 in
n=4, thus softening the NfHbending PES. For comparison, themode of an isolated
ammonia molecule is 950 crh[104] which can be imagined as the limit case where the
N- - - N distance goes to infinity.

The region between 1400 and 1600 cris composed of several collective asymmet-
ric NH3 bending vibrationsi, type) as well as of N v, type bending fundamentals.
One of the degenerate type vibrations of NH (NH;) is shown in Fig. 3.14. The collec-
tive v, modes of both Nkland NH; have blue shifts with increasing cluster size which
agree with the experiments.

The observed bands in the region between 600'dm 1100 cnt! are most likely
dominated by the complicated relative motions of centraliNid terminal NH groups.

We can consider the NHand NH; as rigid fragments to efficiently describe this kind of
motions. However, to obtain the corresponding multidimensional PESs are time consum-
ing, though feasible concerning present computer abilities. As for the harmonic approx-
imations, we have found some relevant modes in the region between 60Qacfl00

cm~! without absorption intensity under the linear dipole approximation. These modes
are all relative motions of rigid NHand NH; fragments as mentioned above, more specif-
ically they are the hindered rotations of central Nfiagment. Fomn = 2, located at 657
cm~!, the hindered rotation is in the plane of three fragments.rFer 3 there are two
hindered rotations, one perpendicular and one parallel to the plane of three termipal NH
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Table 3.5: Assignment of IR spectra for NNH5),, (n = 2 — 4). The calculations have
been performed in harmonic approximation using the MP2/6-311+G(d,p) level of theory
and a scaling factor of 0.95 has been applied. Energies are expressedin cm

n experiment| This work Ref. [52] assignment

2 1182 | 1213 vo(NH;)
1424 | 1456 v4(NHY)
1475 1548 va(NHI)+v4(NH3)
1540 | 1572 v4(NH;)

3 1151 1189 1157 v5(NHs3)
1468 1472 1491 v4(NHJ)
1521 1543 umbrella NH

1573 1624 v4(NH3)

4 635
719
955
1135 1168 1132 vo(NHS3)
1422
1497 | 1508 1483 v4s(NHY)
1546 1574 1599 v4(NH3)

fragments, located at 536 crhand 712 cm' respectively. The NEI(NHs), is similar to
the NH} (NH;); except for the two modes are nearly degenerate at 639 doe to its
higher symmetry.
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3.4 Summary

In this chapter we have studied the geometries and low frequency IR spectra of protonated
ammonia clusters and obtained reasonable agreement with experiments,Hrhedtion

is a strongly hydrogen-bonded low-barrier system with symmetrical structure caused by
zero-point vibration. Multidimensional quantum dynamics is necessary to pursue reli-
able interpretations of the IR spectrum. Therefore we select six coordinates which most
closely relate to the HB. The quantum dynamics of the reduced 6D model describes the
system quite well. By reasonably incorporating the anharmonicity, our results [96, 97]
have successfully interpreted the very recent experimental IR spectrum which is very dif-
ficult to be explained with previous theoretical work [53, 55, 98]. The fundamental for the
shared proton stretching mode at 409 ¢y our calculation is significantly red shifted
compared with the harmonic prediction (by more than 1500'cndue to the strong HB.
Though an effective one-dimensional calculation in Ref. [98] captures part of this anhar-
monicity by predicting the transition at 707 cfn it is still too large. The combinations
between the shared proton stretching and the termingHNHS; stretching are also found

to contribute significantly to the IR bands below 1100¢m

For NH; (NH3),, (n = 2—4) we apply harmonic approximation since the weakening of
HB with the increasing of cluster size significantly reduces the anharmonicity. The calcu-
lated IR spectra agree with the recent experiments by the Asmis group and have assigned
the most intense band to be the asymmetric collectiveending motions of the terminal
ammonia [97]. The systematic red shift of this band is due to the weakening of the HB
strength. As a result of different bond strength, th¢dll cation has a strong HB which
leads to the shared proton structure and rich IR bands below 1100.dhile the large
clusters have weak HBs which lead to solvation ammonium structures consequently no
vibrational bands caused by HB stretching dynamics below 1100 cidowever, from
the experimental data for large clusters especialy 4, there may be some complicated
relative motions of central NHand terminal NH fragments resulting the measured IR
bands in the low frequency region which can be unraveled by multidimensional quantum
investigation with a reduced model.

The multidimensional quantum dynamics provide us rather convincing results for
clear interpretation of fundamental processes as long as our reduced model is reason-
able. However if the system we are interested in is quite floppy or the point we intend to
elucidate entangles the whole system we have to resort to the full dimensional dynamics.
In the next chapter we will perform a full dimensional study on the deprotonated water
dimer.



Chapter 4

Full-Dimensional Study of H3O, and
Its Isotopomers

4.1 Introduction

The hydrated proton and its negative analogue, the hydrated hydroxide anion, have al-
ready been investigated in quite some detail. However it is only very recently that the
Zundel cation, HOZ, has been clearly elucidated bl initio quantum dynamical calcu-
lations [37, 38, 39], however, the corresponding breakthrough;{,Hs not available.

The principal difficulty in assigning the 4D, spectrum arises from the fact that similar

to the Zundel cation one has to deal with a strong HB in a floppy structure which affects
especially the transition frequency of the central hydrogen stretching vibration drastically.
In other words, the vibrational dynamics is rather anharmonic and any calculation bound
to the harmonic approximation is likely to fail at least for the HB dynamics. This points to
the need for a multidimensional treatment of the infrared spectrum as reported by J. Bow-
man and coworkers who used the multi-mode reaction path along the- @8 torsion
coordinate and diffusion Monte Carlo techniques [42, 45]. Their results have qualitatively
interpreted the related experiments by Johnson group [40, 43, 44]. For the specific case of
the shared hydrogen stretch fundamental, these methods gave 74am644 cm!,
respectively. However combinations will play an important role just like other strong
hydrogen bonded systems.

In this chapter we will not focus on the IR spectrum since qualitative interpretations
are already available. Instead we focus on the effect of H/D isotopic substitution on the
properties of the HB in this complex. One may naturally ask whether deuteration of the
hydroxide ([D-Q- - H- - - O—H]") or the “solvent” water ([H-©®- - D- - - O—H]~ yields an
energetically more stable structure. This issue is related to the problem of isotopic ex-
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change equilibrium configurations and associated fractionation factors which have been
discussed for gas phase reactions of hydrogen-bonded ions [105, 106] as well as in aque-
ous [107, 108] and other [109, 110] solutions. An extensive account on the stability of
various charge and neutral water clusters has been given by Scheiner and coworker em-
ploying the MP2 method together with a (small) 6-31+G** basis set [111]. Itis important

to note that their conclusions for the relative stabilities of different isotopomers have been
drawn from harmonic calculations with respect to a nonsymmetric equilibrium structure.
The view of the discussion above calls for having a second look at this problem from the
perspective of a quantum mechanical treatment in full dimensionality.

The change in strength of the HB upon isotopic substitution is also reflected in GIEs
which is yet another manifestation of the multidimensional anharmonic nature of the PES
[34, 112]. For weak HBs with a double minimum PES, deuteration leads to a shorter O—
D distance as compared to O—H. This in turn weakens the HB consequently increase the
O--- O distance. For strong symmetric HBs where the ZPE is above the barrier and the
vibrational distribution has its maximum at the barrier top, deuteration reduces the width
of this distribution which pulls the oxygens towards the deuterium, that is, thed®
distance decreases. An interesting case occurs when the ZPE in the deuterated case is
below the reaction barrier and the vibrational distribution becomes bimodal. This would
correspond more to the situation of a weak HB and the- O distance should increase.

For the fully deuterated case;0;, its distribution may be bimodal only after the influ-
ence of environment at finite temperature is taken into account as reported in Ref. [113]
by ab initio path integral simulations. Here we will address the GIEs for all the different
isotopomers on the basis of the full-dimensional ground state wave functions.

In the following Section 4.2.1 we will present a nine-dimensional (9D) Hamiltonian
which describes the vibrational motion ok@&, in full-dimensionality for total angu-
lar momentum equal to zero. This Hamiltonian is based on the CCSD(T)/aug-cc-pVTZ
level of PES developed by Bowman and coworkers [45]. The corresponding operator for
the kinetic energy is given in the Appendix C. The vibrational ground state is obtained
by imaginary time-propagation using MCTDH method [90, 29]; numerical details of the
calculation are given in Section 4.2.2. In Section 4.3 we will present results on the vi-
brational ground state of the different isotopomers as well as on the GIEs. The torsional
tunneling splittings are also investigated in this section.
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4.2 Theoretical Model

4.2.1 9 Dimensional Hamiltonian

The choice of coordinates is crucial as it determines the strength of correlations between
different degrees of freedom in the potential and kinetic energy operator thus directly
affects the accuracy if truncation of correlations are made. For the present case the issue
is complicated as there is the possibility of large amplitude torsional motion. This made

it necessary to use a reaction path approach in Ref. [45], which combined the torsional
reaction coordinate with orthogonal normal mode displacements taken with respect to the
C, transition structure. Here we will use internal coordinates, which is less restrictive but
comes at the expense of a more complicated KEO.

Figure 4.1: The four Jacobi vectors used for defining the nine internal coordinates. See
the text for the definition of the nine coordinates.

We first derive the full dimensional KEO in the LRF. After separating the total center
of mass motion, the four Jacobi vectors shown in Fig. 4.1 will be uggdand R, each
connecting one oxygen and the “free” hydrogen atétinconnecting two centers of mass
of the OH groups, and; connecting the shared hydrogen atom and the center of mass
of the GQ;H, fragment (for the deuterated cases one or more hydrogen atoms are replaced
by deuterium atoms). We can use only nine internal coordinates to describe the system
for the total angular momentuth = 0 according to Section 2.2.5. Based on these Jacobi
vectors the following nine internal coordinates are chosen: the lergjth®,, and R4,
of the vectorsR,, R,, and R, respectively, the angle, (6;) betweenR; and R, (R,
and R,), and the dihedral angle between the planes spanned by the vect®s R,)
and (R, R,) which describes the torsional motion. Notice that due to its definition with
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respect to the Jacobi vectors,is slightly different from the torsional coordinate used

in Ref. [45], since our torsional axis is the direction Bf,. For R; we use Cartesian
components, y, andz in certain MRF which contribute negligible Coriolis couplings.
The origin of the MRF is the center of mass and defined along the direction dg,,

i.e. it roughly corresponds to the shared proton stretch mode. zTh@ane equally
divides the torsional angle if the reduced mass associated with is the same with that
associated witlR,. Otherwise the division ratio is 1:2 or 2:1 depending on whether the
mass ratio is 2:1 or 1:2. For the details as well as the expression for the 9D KEO please
see Appendix C. Notice that in the following numerical simulations we will use the new
variablesu; = cos6;(i = 1,2) as in Chapter 3.

The full-dimensional potential energy surface can be constructed by cumulative ex-
pansion of different correlation orders according to Eq. (2.38). Following the strategy of
Ref. [38] we will combine certain groups of coordinates to treat their correlations exactly.
Specifically we have chosen the three grogps= [Ri, Rs, R4], g5 = [u1, u2, ], and
g; = [z, vy, z]. The final expansion we used to generate the 9D PES reads

V(91,92,93) = %—FZV(l)(gi) +ZV(2)(givg]’)v (4.1)
i i<j
whereV (" gives then-set correlation between sets of coordinates. Notice, however, that
this PES contains up to 6-mode correlations between individual coordinates. In Eq. (4.1)
Vo = V(g?) is the energy of the reference geome¥).

-

>

Roo=2.446A J

Figure 4.2: The g, transition state configuration with five atoms in the same plane.

According to the error of Taylor expansion we know that the expansion error of
Eqg. (4.1) increases if the geomewywe want to calculate significantly differs from the
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reference geometry(”). Since we are mainly interested in the ground state properties the
most natural thing will be to increase the accuracy of the PES expansion around the region
where the quantum ground state wave function coversgi®.should correspond to the
most probable geometry or average geometry of the quantum ground state. One should
further be careful to chose the reference geomgfttysince inappropriatg® will break

the symmetry of the original PES. One can find out that the expansion of Eq. (4.1) con-
serves the symmetry if the symmetry of the reference geonmagthyis not lower than

that of the PES. An obvious choice for this symmetry adapted reference is the classical
transition state geometry. There are several transition state configurations even in the low
energy region. When we say transition state we actually mean the trans- configuration as
shown in Fig. 4.2 with G,, the highest symmetry among all the low energy equilibrium
configurations [45].

We have performed a ground state calculation based on the classical transition state
reference geometry and obtained an error of about 2-3' p@r degree of freedom as
compared to the Quantum Monte Carlo results fgOH reported in Ref. [45]. This is
a rather small error with respect to the full ground state energy which is more than 6000
cm-! yet the accuracy can be further improved by definjffty according to the quantum
ground state as mentioned above. And we get essentially a quantitative agreement when
we take the symmetry of the classical transition state yet replace the corresponding bond
lengths and angles by the expectation values of quantum mechanical ground state (as
obtained from the calculation for HOHOHbased on classical transition state reference)
to define the reference geomeydf). For simplicity as well as the consistence of PES
expansion we have employed this reference for all isotopomers (see Table 4.1).

For generating the PES in the given coordinates we have used the fitted CCSD(T)/aug-
cc-pVTZ potential of Bowman and coworkers [45]. Two representative cuts of the PES
are shown in Fig. 4.3. In Fig. 4.3 (a) we show the PES along two most strongly coupled
coordinates: and R, (O---O distance). The shape looks similar to Fig.4.3(a) of the
N,HZ investigated in Chapter 3 since they are both strong hydrogen bonded symmetric
dimers. Apart from the two asymmetric minimum configurations there exists a transition
state with compressed-© O distance in between with a rather shallow barrier around
70 cnv ! for fully relaxed proton transfer according to Ref. [42]. The barrier height can
be read from the minimum of Fig. 4.3 (b) since the energy reference is energy of the
minimum configuration. This number is larger than 70¢mue to the freezing of the
other coordinates at the transition state. The potential energy curve along the torsion
coordinatep is shown in Fig. 4.3 (b) with a double minimum shape. The barrier for the
torsion motion is about 150 cmiwhich is large enough to cause tunneling splitting since
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Figure 4.3: (a) PES along-© O distance ;) and proton transfer coordinatgcontour
lines at (in cnT!): 230, 260, 300, 600, 900, 1300, 1700, 2100, 2500, 3000). (b) Potential
energy curve along torsion coordinate In both cases all other coordinates have been
kept frozen at the transition state geometry.

the zero point energy related to the torsion mode is much less than the barrier height.

4.2.2 Numerical Implementation

The vibrational ground state of the different isotopomers has been obtained by the
MCTDH method [90, 29] detailed in Chapter 2. Three needed 6D PESs which are
VI(gy) + V®(g,g,), VP (gy) + VP (g,, g3) andV N (gy) + V)(g,, g5) have been
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Table 4.1: MCTDH parameters for the imaginary time propagation (lengtAs N¥yr:
number of DVR points;Ngpr: number of SPFs.) and reference geomaify), for the

PES expansion in EqQ. (4.1) &H or D). The last row is the transition state described with
coordinates of HOXOH. For the details of the nine coordinates please see Fig. 4.1, here

u; = cos0;.

Rl R2 R4 U1 U9 (2 € ) z

min. grid 0.740 0.740 2.27% -1.0 -0.7 0-0.635 -0.635 -0.529
max. grid 1.322 1.322 3.069 0.7 1.0 2r| 0.635 0.635 0.529

Npvr 11 11 16 13 13 17| 13 13 17

Ngpr 5 10 13

g HOXOH- | 0.979 0.979 2519 -025 025 =7 | 0.0 0.0 0.0
g”: DOXOD~ | 0.979 0.979 2.547-0.288 0.288 = | 0.0 0.0 0.0
g©: DOXOH~ | 0.979 0.979 2.532-0.269 0.269 = |-0.012 0.021 0.043

TS:HOXOH™ | 0.962 0.962 2.477-0.282 0.282 7 0.0 0.0 0.0

fitted to a sum of products using the POTFIT approach [29]. For the representation of the
SPFs a discrete variable representation (DVR) has been utilized. For the torsional coordi-
natey an exponential DVR representation with periodic basis functions (eigenfunctions
of %) has been used. All other coordinates have been expressed via a harmonic oscillator
DVR. The SPF basis functions cover the range energies below 10000 tine smallest
natural orbital population in the ground state is 0.0003. All parameters are compiled in
Tab. 4.1.

The reference geometry(”), for the PES expansion in Eq. (4.1) is also detailed in
Tab. 4.1 in terms of our nine coordinates. Note that the coordinates of the reference
geometry are based on expectation values for the HOHO&be. The actual different
values reported here for the different isotopomers are purely due to the fact that the Jacobi
vectors defining the coordinate system are mass-dependent. The classical transition state
(TS) reference is also given in terms of coordinates of HOX@&f comparison.
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4.3 Results

4.3.1 Vibrational Ground State Geometry
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Proton transfer z (TA)

Figure 4.4. Reduced probability density for the vibrational ground states of the different
isotopomers along the proton transfer coordinatee the text for more details.

Some general features are similar to th&iN, which have been discussed in Chapter
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Table 4.2: Coordinate expectation values and their variance&)(for the 9D ground
states of the different isotopomers.

HOHOH" HODOH" DOHOH~
coordinatel mean variance mean variance mean variance
Ry 0.981 0.070 | 0.981 0.070 | 0.976  0.059
R, 0.981 0.070 | 0.981 0.070 | 0.981 0.070
R, 2521 0.063 | 2515 0.064 | 2536 0.065
Uy -0.259 0.173 | -0.261 0.172 | -0.267 0.149
Us 0.259 0.173 | 0.261 0.172 | 0.269 0.174
%) 3.138 1.240 | 3.136 1.238 | 2.886 1.258
x 0.000 0.125 | 0.000 0.107 | -0.022 0.126
Yy 0.000 0.120 | 0.000 0.104 | 0.029 0.123
z 0.000 0.150 | 0.000 0.140 | 0.029 0.152

2, e.g., the correlation of the ground state density alorand R4. In this chapter we
mainly focus on the isotope effects. Representative cuts of the full 9D ground state vi-
brational density are shown for the different isotopomers in Fig. 4.4 and Fig.4.5. More
specifically the coordinate expectation values and variances are compiled in Tab. 4.2 and
Tab. 4.3.

Fig. 4.4 shows the reduced probability densities along the shared proton coordinate
for different isotopomers. For each symmetric case [X—@- - - O—-X]~, where X,Y=H
or D, the distribution has its single maximumzat 0 as shown in the upper and bottom
panels indicating the symmetrization due to zero point vibration with energy above the
classical barrier in Fig. 4.3 (a). For each asymmetric case [D-0 - - O—H]~ the dis-
tribution also has single maximum due to the same reason as shown in the middle panel
yet it is slightly asymmetric. We have further studied the asymmetry by the geometry of
[D-O-:--X---O—-H] and found the © - X- - - O angle is slightly different from&80° and
the central X atom is closer to the side O—H group instead of O-D since O-D has a shorter
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Table 4.3: Coordinate expectation values and their variance&)(for the 9D ground
states of the different isotopomers.

DODOD~ DOHOD~ DODOH"
coordinatel mean variance mean variance mean variance
Ry 0.976 0.059 | 0.976 0.059 | 0.976  0.059
Ry 0.976 0.059 | 0.976 0.059 | 0.981 0.070
R, 2.544 0.064 | 2.549 0.064 | 2.528 0.064
Uy -0.281 0.148 | -0.279 0.148 | -0.270 0.146
Us -0.281 0.148 | 0.279 0.148 | 0.272 0.172
% 3.139 1.290 | 3.135 1.293 | 2.889 1.254
x 0.000 0.120 | 0.000 0.135 | -0.021 0.109
Yy 0.000 0.104 | 0.000 0.120 | 0.028 0.105
z 0.000 0.142 | 0.000 0.151 | -0.027 0.140

bond length leading to a higher repulsion on the central atom.

As expected the width of the distribution narrows upon centrabHD substitution
irrespective whether the side OH groups are deuterated or not as can be seen from all the
three panels of distributions in Fig. 4.4. Inspecting Tab. 4.2 and Tab. 4.3 one finds,
that this amounts te- 6% for thez coordinate, but to as much as 13 % for the bridging
hydrogen’s bending coordinatesandy. The distributions along the other coordinates are
much less affected, e.g., the difference for the torsion coordipnasenot noticeable on
the scale of Fig. 4.5 hence only [X—-OH- - - O-Y]~ cases have been plotted. Similarly
the deuteration of the side O—H group also leads to negligible effects ardik&ibution
on the scale of Fig. 4.4.

The major effects of the side position deuteration are the O-D bond contraction as
well as the distribution along the torsion coordinate According to Tab. 4.2 and Tab.
4.3 the free covalent O—H bond length is 0.98Wwhile the O-D one is 0.97&. The
associated bond fluctuation width drops by 15% due to the wider delocalization area of
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hydrogen. The reduced density alopgs shown in Fig. 4.5. The distribution has sym-
metric/asymmetric double peak for symmetric/asymmetric anion. Each side position H
— D substitution leads to a narrowing of the distribution since the reduced moment of
inertia is dominated by the two side O—H/O-D groups.
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Figure 4.5: Reduced probability density for the vibrational ground states of the different
isotopomers along the torsional coordinateSee the text for more details.

Apart from the major effects the side position deuteration also causes slight influence
on the central H/D atom. As we have discussed above the side O-D group has a higher
repulsion than the O—H group. Hence it will narrow thelistribution and expand the
x, y distribution like a ball being squeezed into an ellipse. However this secondary effect
is not as profound as the primary reduction effect and in some cases almost comparable
with our estimated calculation error.

4.3.2 Vibrational Ground State Energy

Now we focus on the ZPEs of the different isotopomers which are analyzed in terms of
the contributions of the different parts of the Hamiltonian. The details are compiled in
Tab. 4.4. First we notice, that the ZPE of [H-OH- - - O—-H] is calculated as 6606
cm~ !, which essentially reproduces the DMC result (6605 cm!) obtained on the

fully coupledPES [45]. The sef, gives the largest contribution to the ZPE as it contains
the high frequency OH stretching vibrations. Further, the strongest correlations between
different sets of coordinates are those involving the shared proton motion due to its wide
delocalization. For the fully deuterated case we obtain 4481' evhich is also in accord

with the DMC result (448Z 5cnm!).
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Table 4.4: Energy expectation values (in ©nh of the different isotopomers in the vi-
brational ground state. The subscripts refer to single sets for one set operators or to
pairs of sets for the two-set operators, el = (V?(g,,g,)). The three groups are

g, = [R1, Re, Ry), g5 = [u1,us, 9], andg; = [z,y, z]. Note that thél;, in Eq. (4.1) is

462 cnrt,

kinetic energy potential energy total

species | Ty Ty T; Vi Va Vi Vi Viz Vo | THV

HOHOH™ | 1995 338 935 1976 425 944 -5 -80 -3846606

HODOH™ | 1998 349 647 1960 417 672 -5 -64 -3476087

DOHOH™ | 1741 299 940 1731 392 994 -4 -122 -4286005

DODOH™ | 1745 309 651 1698 374 685 -5 -68 -3685483

DOHOD™ | 1489 259 941 1459 385 1005 -6 -93 -4965405

DODOD™ | 1491 268 653 1445 378 740 -6 -83 -4674881

Next we discuss the general trend in ZPE change upon H/D substitution. Inspecting
Table 4.4 we observe that replacing H by D in one of the side O—H groups lowers the ZPE
by about 600 cm! irrespective whether the other site is deuterated or not. Replacing H
by D in the bridging site lowers the total ZPE by about 520 ¢nly, again irrespective
of the other site’s deuteration. The difference is due to the existence of a HB and its bond
strength changes when replaced by a deuterium bond. We can describe the effects more
explicitly with different channels of the following reaction

DOH + OX~ — [D-0---H---O-X]~ + Egg
HOD + OX~ — [H-O---D---O-X]~ + Epp

where g and by are hydrogen bond and deuterium bond energies, respectively. There-
fore we can conclude that the difference betwegg Bnd B3 is just the ground state
energy difference between [H-OD---O-X]~ and [D-O--H--- O-X], i.e., Big-Epg
=600 cnT! — 520 cnT! =80 cnt!. In other words, in terms of the ZPE the H-bond is
about 80 cm! stronger than the D-bond in this series of anions.

Let us have a more detailed look at the single substitutions of [H-HD - - O—
H]~. Here, we find that in terms of ZPE [D-O H- - - O—H]~ is more stable than [H—
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O---D---O-HJ] by 82 cnt!. First of all, this confirms the qualitative result of Scheiner
and coworker [111] who have obtained a value of 52 tbrased on the harmonic approx-
imation of the PES around a nonsymmetric structure. Their normal mode treatment has
led to the conclusion that it is the intramolecular water OH(D) stretching which is respon-
sible for the increased stability of [D-© H- - - O—H]~ . However, as discussed before

the structure is symmetrized by ZPE and their analysis in terms of a water molecule
hydrogen-bonded to a OH(D)is not adequate. Instead, inspecting Tab. 4.4 we find the
following behavior: First, ZPE changes in [D-OH- - - O—H]~ are mainly due to the set

g,, i.e. mostly the OH-stretching at the deuteration site since the torsion frequency is so
small that its contribution is ignorable, while in [H-OD- - - O—H] it is the setg, in-
volving the shared proton resulting ZPE changes. We can further notice that the net effect
contributed by all the single mode potentials is 37-¢imy which the D-bond would be
more stable whereas the correlation energy difference of -119 finally leads to the
preference for the H-bond.

Now we discuss the general reason for the relative stability of isomers. From the
table we can see the dominate parts which leads to the ZPE changes of different isomers
are the correlation potential energies. The strength of the correlations between sets of
coordinates can be evaluated by the absolute value of corresponding mean correlation
potentialV;;. The major correlations are those involve the central H/D magipoaused
by the H/D bond. Tab. 4.4 shows the correlations related to H-bond are larger than the
ones related to D-bond. This can be rationalized by the observation that the wave function
for the bridging proton is more delocalized than for the deuteron (cf. also Tab. 4.2 and
Tab. 4.3) and therefore facilitates stronger couplings to other coordinates by exploring an
extended region of the anharmonic PES. This is the fundamental reason why H-bond is
more stable than D-bond and can be generalized to other strong hydrogen bonded systems
since correlations normally make negative contributions to the total ZPE, i.e., correlations
tend to make the total system more stable.

The side position H/D substitution also has certain secondary effects on the correlation
energies. Tab. 4.4 shows that the correlations increase upon each deuteration of the
side O—H group. As has been discussed in Section 4.3.1, the side position deuteration
makes the effective volume of the single anion more compressed therefore the coupling
increases.

4.3.3 Secondary Geometric Isotope Effects

Having at hand the ground state wave functions we can calculate the secondary GIEs,
i.e., the change of Q- O distance upon isotopic substitution. Note tRatdoes not fully
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correspond to the O- O distanceRy_o (cf. Fig. 4.1). The corresponding operator for
Ro_o can be expressed in terms of our model coordinates

Ro o = \/(R4 + mRiuy — naRous)? + d*(mRi/ 1 — ui, R/ 1 — u3, @)

d*(z,y,¢) = 2% + y* — 2y cos o, (4.2)

wheren; = mp n/(mpu + mo) depends on whether the corresponding side O—H group

is deuterated or not. Since we have obtained the ground state wave function and the
operator we can directly calculate the expectation value by integratiadRy o >=
(To|Ro_o|Ty).

Table 4.5: Expectation values for the ©O distance (irii) and reductions for deuteration
of bridging site for the different isotopomers. The classical value at the transition state is
2.448,

case (Ro-0) case (Ro_o) case (Ro_o0)
HOHOH~ 2.492 || DOHOH~ 2.495|| DOHOD~ 2.493
HODOH~ 2.487 || DODOH~ 2.486 | DODOD~ 2.488

The resulting expectation values for the different isotopomers are compiled in Tab.
4.5. The classical value fa&@y_¢ in [H-O- - - H- - - O—H]~ at the MP2/aug-cc-pVTZ tran-
sition state is 2.44@\. In the quantum case this value increases to 243% a conse-
guence of zero-point vibration. This value is reduced to 2 Ag@r deuteration of the
bridging site, i.e. in the [H-O-D---O-H] case. In all cases the deuteration of the
bridging site leads to a reduction of the -©O distance. For the symmetric cases the
reduction is about 0.00& while for the asymmetric case it is 0.089 Such a bond com-
pression due to reduced zero-point vibration, i.e., localization of the wave function, is
typical for strong hydrogen bonds.

The trends of the reduction éf,_o upon bridging site deuteration are in good agree-
ment with the DMC calculations in Ref. [45] ford@; and D;O;, only the absolute
values of the DMCR_ are larger by 0.008. In passing we note that the fully deuter-
ated case has also been investigated using the finite temperature path integral method at
a lower level of quantum chemistry [113]. For this situation Tachikawa and coworker
obtained 2.498 for H;0; and 2.504A for D;0;, that is, the opposite trend which has
been explained by the bimodal character of the calculated distribution;f05 Raused
by the influence of the environment at finite temperature.



4.3 Results 71

4.3.4 Torsional Tunneling Splittings

As has been mentioned above there will be a tunneling splitting due to the side O—H group
torsional motion via the transition state overcoming the appropriately high potential bar-
rier along the torsion coordinate That is to say the ground state wave function is sym-
metric while the upper splitting state wave function is antisymmetric with respect to the
torsion coordinate. This wave function can be obtained by improved relaxation embed-
ded in the MCTDH package. We first do this improved relaxation for [H-@- - - O—

H]~ with an initial wave function as a product of the ground state wave functioriand

The converged result of upper splitting state is then taken as initial wave function for the
improved relaxations of the other isotopomers. The final results of the tunneling splitting
energyA of different isotopomers are compiled in Table 4.6. The non-deuterated and
fully deuterated cases have been investigated by different methods [45, 46]. Our results
agree reasonably with the existing investigations.

Table 4.6: Energy splitting\ of the lowest pair of eigenstates (in ci) for different
isotopomers.

case A case A case A
HOHOH- 18.8| DOHOH- 13.0/ DOHOD~ 5.8
HODOH~- 18.7| DODOH- 11.7| DODOD~ 4.2

As expected the side position deuteration increases the reduced inertia of moment
consequently decreases the torsional frequency, which can be reflected from the energy
splitting. Upon each side position deuteration the energy splitting decreases by 6-7 cm
As has been discussed in Section 4.3.1, the bridging site H/D substitution almost has no
effect on the torsion wave function. Therefore it should not affect the tunneling splitting,
either. It should be mentioned that it is sometimes difficult for the the improved relaxation
method to converge exactly to the desired wave functions and consequently larger errors
may exist as compared with the ground state calculations. From this point, Table 4.6
can also be used to estimate the energetic error of our calculation. According to the
differences, the total error is less than 2 Trtherefore the ground state energy error
should be less than 1 crh.
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4.4 Summary

The mono-hydrated hydroxide anion is a prototype strongly hydrogen-bonded low-barrier
system whose structure is symmetrized by zero-point vibration. An accurate theoretical
prediction of the associated ground state wave function requires to treat the dynamical
problem in full-dimensionality. Using the CCSD(T) potential energy surface of Bowman
and coworkers [45] we have shown that the MCTDH approach for wave packet propaga-
tion [90] can meet this challenge. For the four partly deuterated isotopomers, this work is
the first full dimensional quantum investigation.

Comparing the vibrational ground state wave functions and ZPEs for different iso-
topomers several important conclusions can be drawn. First, in accord with the general
view for ions, bridging donor and acceptor by a hydrogen atom is more favorable than
bridging by a deuterium. The general trend for the considered systems is that in terms of
ZPE the H-bonds are about 80 ch{~1 kJ/mol) more stable than the D-bonds, irrespec-
tive the deuteration state of the O—H groups. Specifically, we find [D-4® - - O—H] is
energetically more stable than [H-OD- - - O—H]~ by 82 cn1!. Although this seems
merely to confirm the results of the harmonic analysis reported in Ref. [111], the present
full-dimensional treatment is providing a more realistic physical picture by accounting
not only for the symmetrization of the structure due to zero point motion but also for the
anharmonicity of the potential energy surface. It is not only the loss of an intra-molecular
OH vibration of the water molecule which reduces the ZPE more than the loss of the in-
termolecular bridging hydrogen vibration as argued in Ref. [111] from the perspective of
harmonic vibrations. In fact we find that correlations between the bridging H/D atom mo-
tion and the other coordinates predominate the change of ZPEs. The fundamental reason
why the H-bond is about 80 crhmore stable than D-bond is that the proton distribution
is more delocalized consequently leading to larger correlations.

The second result concerns the H/D isotope effect on the heavy atom® @is-
tance. Here, we find that as compared with the classical prediction, zero-point vibrational
motion of the bridging nucleus increasBg_, for all the isotopomers. Each H-bonded
isotopomer has a slightly longét,_o distance than the D-bonded one due to the fact
that proton distribution is more delocalized than the deuteron distribution. The corre-
spondingRo_o distance reduction due to bridging site deuteration is about 00 (5}
the symmetric cases and 0.08%or the asymmetric cases. Apart from these we have
further investigated the small tunneling splitting due to the torsional motion via the tran-
sition state. The energy splitting for [H-O H- - - O—H] " is 18.8 cnT! and decreases by
6-7 cnt ! upon each side position deuteration. The results for the @distance and tor-
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sional tunneling splitting agree with previous investigations fgdk and D;O, [45, 46].

In this and previous chapters we have demonstrated the multidimensional quantum
dynamics as an appropriate level of theory for strong hydrogen bonded systems. However
guantum dynamics is only possible for gas phase study of small systems as far as present
computing ability is concerned. Though gas phase investigations provide us clear pictures
of even fundamental processes as well as key features of condensed phase phenomena,
it is still quite necessary to accomplish condensed phase studies which directly relate to
many experiments. In the next chapter we will provide a condensed phase study of the
hydrogen transfer reaction rate constant.
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Chapter 5

Hydrogen Transfer Kinetics in the
Condensed Phase

5.1 Motivation and Introduction

Unlike the gas phase study which can provide quantitative analysis not only well interpret-
ing the related experiments but also throwing light on the condensed phase phenomena,
normally the condensed phase study can only provide qualitative explanations since only
the key part of the Hamiltonian is treated at thh@nitio level. However, this kind of study

IS quite important as most experiments have to be accomplished in condensed phase. In
addition a good simulation also enables the experimentalist to adjust certain parameters
to the range where interesting effects are predicted. Essential progress has been made in
condensed phase studies yet lots of challenges still remain including theoretical method
development.

Condensed phase hydrogen transfer is the most common reaction even in our daily
life. Since the proton is the lightest nucleus it has much in common with the electron con-
cerning the transfer rate constant. However, we do not have a general theory to describe
the proton transfer rate like the famous Marcus theory [114] in the electron transfer coun-
terpart. Though intensive studies have been done both experimentally and theoretically
[2, 8] there are still open questions concerning even the mechanism.

Fig.5.1 shows a very recent NMR experiment by Limbach group concerning the
KIEs of tautomerism of 6-Aminofulvene-1-aldimine molecule [115]. The KIEs at 298
K has been reported to Bé’, /k5, = 9 for crystalline and 4 for amorphous environment.

The temperature dependence of the rate constant shows the Arrhenius behavior in the
high temperature region indicating the predominated mechanism for hydrogen/deuterium
transfer is the thermal activation. The ratio of the thermal activation energies is about
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Figure 5.1: The KIEs for the tautomerism of 6-Aminofulvene-1-aldimine. The exper-
imental curves are measured in both amorphous and crystalline environment, adapted
from Ref. [115].

Ef/EP = 2/3, almost irrespective of environment. In the low temperature region the
temperature dependence is flattened due to increasing quantum tunneling effects. Two

Figure 5.2: (a) Minimum configuration. (b) Transition state for the hydrogen atom trans-
fer. The blue ones are nitrogen atoms.

equilibrium configurations obtained by B3LYP/6-31+G(d,p) optimization are shown in
Fig.5.2. The minimum configuration corresponds to the reactant or product. The hydro-
gen atom transfer process can take place from the reactant via the transition state to the



5.2 Theory 77

product or inversely. The reaction barrier height as calculated by the energy difference
of the minimum and the transition state is 3.84 kcal/mol at the B3LYP/6-31+G(d,p) level
of theory. In general the real activation energy will be decreased by the influence of the
environment as compared to the gas phase reaction barrier.

In the case of high barrier reaction processes, the classical transition state theory [58]
can make good predictions of the thermal activation energy. While a uniform quantum
theory for the reaction rates [59, 116, 117] is expected to explain both high- and low-
temperature behaviors. In this chapter we will develop a general theory of reaction sur-
face Hamiltonian and reaction rate constant calculations based on it. Then we perform a
preliminary study based on a model 1D reaction path Hamiltonian for 6-Aminofulvene-
1-aldimine.

5.2 Theory

5.2.1 Reaction Surface Hamiltonian

The reaction surface Hamiltonian contains many small amplitude displacef@p}s
and several large amplitude coordinafes} [63, 66, 67]. The latter ones form the so
called reaction surface. To generate this Hamiltonian from the exact Cartesian coordinate
Hamiltonian we can directly exploit the method developed in Chapter 2.

Suppose we have the Cartesian Hamiltonian

H(R) = T(R)+V (R)
1 n* 9
T = —P*= —
(R) 2 2 OR”’
whereR is the3N dimensional vector of mass weighted Cartesian coordinates for sys-

tem with N atoms andP = —iﬁ% is the corresponding linear momentum vector. In

(5.1)

this Chapter all the operators are quantum mechanical ones and the “hat” notations are
omitted. Suppose it is feasible to find a reaction surface defined by a one-to-one mapping
along the reaction coordinates
R=Ry(s). (5.2)
The potential energy functiovi (R) can be expanded around the reaction surface
rV r OV
OR Ry OR?

whereAR (s) = R— Ry (s) and the superscriptmeans transpose. The reaction surface

V(R) =V (Ro) + AR(s) 4 %AR(s) R ARG+ (53)

is defined in such a way that the potential energyRR) can be approximated within low
orders of orthogonal displacements, i.e., Eqg. (5.3) can be truncated in the given form.
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To obtain the reaction surface Hamiltonian we first need to define the new coordinates,
i.e., the reaction coordinatds, } and the orthogonal displacemeri9,}. The former
are already defined by the reaction surface as well as the unit véetp(s)} according
to which we have the reaction coordinate vector

D
s = Z Sa€a- (5.4)
a=1
To get the latter we need a projection operator to project out the reaction coorslinate

s)=1-— Zeaeg. (5.5)

Then we can diagonalize the projected Hessian m&drix) for each point of the reaction
surface by an orthogonal transformatiois (s)

Uns (8) K (8) Ugs (s) = diag{- -« (s)---wj (8) - wii(s) -}, (5.6)

whereK (s) = P (S>%§|ROP (s) is real symmetric.
In total there areéD + 6 zero eigenvalueg? } and{w?} corresponding to the reaction
coordinates and six dimensional global translation and rotation, respectively

QN

w, = 0,aa=1,---,D

w

ESEI N

The orthogonal transformation matrix contains the corresponding eigenvecisr&sof

Urs(s) = (---ea(s) --eg(s)---ex(s) ). (5.8)
The six dimensional global translation and rotation as well agthe- 6 — D displace-
ments orthogonal to the reaction surface are defined by
R, = e]AR
Q. = eiAR. (5.9

The original3 NV dimensional vector is now expressed with the new unit vectors

R=Ry;+ ) saa+ Y Reeg+ Y Qe (5.10)
« g k

where the reference geometR,.; = R (s = 0) is the origin of the new coordinates
system.

Based on the knowledge of the new coordinates it is not difficult to find the potential
energy

V(s Q)= ka ) Qi+ = Zwk 202, (5.11)
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wheref, (s) = —el nIR,-

It is obvious that the potential energy does not depend Bp}, however, the KEO
does depend ofiR,} and normally it is not possible to exactly separate them. Using the
method in Chapter 2 (See Eq. (2.6), note in this case the mass matrix is a unit matrix) the
following formal KEO can be obtained

~ ~ T
1., OR (OR )
T=3Phos <ﬁ> Pp, (5.12)

where R’ = ( s R,S” QT ) is the full set of the new coordinates arRIR =

—iﬁ%. According to Appendix A one can find out that all the other componenl?,ﬁf

are Hermitian due to the orthogonality of transformation exdépt Eq. (5.12) has a fully
coupled form in case the reaction surface is quite arbitrary. The only factor which makes
the complexity is that all the unit vectors dependspme., the orthogonal transformation
matrix U(s) depends o thus we have to calculate the derivatives with respest to

5.2.2 Linear Reaction Surface Hamiltonian

As mentioned in the last section the reaction surface Hamiltonian has a diagonal potential
energy function but a quite complicated KEO. The most natural thing will be to transform
to another representation provided we do not want to treat such a complicated KEO di-
rectly. The linear reaction surface Hamiltonian exploit constant unit vectors to describe
the reaction coordinatesthus greatly decrease the complexity of the KEO. With the help

of certain predefined constant unit vectdes,} we can easily obtain the equation for the
linear reaction surface

Ro(s) =Ry + Y Sa€a. (5.13)

The coordinates transform relations can be obtained by the same procedure mentioned in
the last section

R = RO (3> + Z lek = Rref + Z Sa€q t Z lek
k a k
sa = elAR, Qr = el AR, (5.14)

whereAR = R — R, is different fromAR (s) in Eq. (5.3) while{Q,} and{ex (s)}

have the same definition as in the last section. Please note here we have combined the
{R,} and{Qy} into the same set of index¢§); } to simplify the notation. With the help

of EqQ.(5.12) and Eg. (5.14) we can derive the much more simplified KEO for a linear
reaction surface. We will do it in the following explicitly.
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We first calculate the elements of the needed Jacobi matrices starting from Eq. (5.14).
Remember thafe,, (s)} actually depends os. Using the normal chain rule to calculate
the derevatives from Eq. (5.14) leads to the following results

0sa  p

oR ~

an . T T Taek:

R = ek+%:ea AR Bs. (5.15)

Thus the elements for the matrix product can be obtained
(6 (GR) ), - e
<8R (gg) )ak = e (ek +Ze5 (ARTZE;)> ARng
<ag <ag) )kk = O + Z (ARTng) (Amgi':) , (5.16)

Based on above equations we can simplify the Eq. (5.12) as

= —ZP2+ ZP <5kk/+ZBakBak’> Py

kK’
+ <§Pa z}; Bor Py, + h.c.) : (5.17)

where B, = ART% andh.c. means Hermitian conjugate. Note here all the compo-

nents of momentum are Hermitian according to Appendix A. The kinetic couplings are
caused by thes dependence ofe,} as can be seen from the expressionf.. The
potential energy has the same expansion as Eq. (5.11). This expression is essentially the
same with the one in Ref. [116].

The KEO can be further simplified by using more constant unit vectors to expand the
new coordinate space, i.e., we get rid of thelependence ofe;}. The most simple
case, in which the kinetic energy has a quite trivial form while the potential energy is no
longer diagonal, is the space whose unit vectors are all constants. This can be achieved
by diagonalizing the projected Hessian matrix on only one p&iRt instead of on each
point on the reaction surface. The new representation is obtained by a pjaependent
rotation and the new variables are defined by

Sa = €5 (R — Rycy)
Qr=¢e; (R— R,;). (5.18)



5.2 Theory 81

Here{Q\} denote all the restN — D variables which are the global translation, rotation
and normal modes only at the reference point but have no meaning at the other points
whens # 0. Note the difference is that all the unit vectors are constant vectors defined
by the reference geomet#y, .. The Hamiltonian in terms of the new coordinates reads

T(s,Q) = %ZPC%JF%ZP,E
0? h?
) 882_ Za@2

V(5,Q) = V(Ro)— > fr(s)Qi+5 Zﬂk w (8) QuQw, (5.19)
k k k!

wheref; has the same definition as before dngd. (s) = e} BRVQ |R ew. In Ref. [116]
a method to separate the translation and rotational DOFs is also introduced. For approx-
imate separations one can also refer to the procedure how we get the KEQGprit
Chapter 4. Our further investigations start from this Hamiltonian. It should be mentioned
that start from Eq. (5.17) is also feasible, where the off-diagonal parts of the KEO can be
treated analytically and the potential energy is diagonal which may be more convenient
for numerical investigation.

5.2.3 Reaction Rate Constant Theory

The reaction rate constakiiz can be obtained by integrating over the flux-flux auto-
correlation functiorC';(t) according to previous studies [59, 60, 117, 118]. We will only
give the main formulas in the following

1 o
Cp(t) = Ty {Fefte/hpeifite/n} (5.20)

whereZ = Tr (—(H,.qc) IS the canonical partition function of the reactant Hamiltonian
andF = 5 (p,d(s) + 6(s)ps) is the symmetrized 1D flux operator for the special case
of 1D reaction path. The complex timg = ¢ — ih3/2 is due to the combination of
the evolution operator and the Boltzmann operator Witk +—. Their key point is to
define a 1D flux operator which can identify the direction of the momentum consequently
whether the momentum contributes to the reactant or the product. The trace is over the full
Hamiltonian but the flux-flux correlation operator will gets rid of the flux which reflect
back to the reactant.

The flux correlation function can be calculated by second order finite difference of a
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certain generating function [117, 11B](s1, Sn+1, SN+2, S2N+2)
h2

Crlte) = 2m2As?

Re [K(As, As,0,0,t.) — K(0,As, 0, As, t.)], (5.21)

where

K(s1,8n41, Sn+2, Sanvy2) = [ o dQ(Q|{sansa|e™e/ M sn 5) (sivyale ™ [his1)] Q).
The path integral technique which divides the complex tiiato N slices is adopted to
calculate this generating function [117, 118]

K(Sh SN+4+1; SN+2, 52N+2)

— / / dQdss - - -dsydsyys -+ - dsaoni1

N+2 1
QI T (swerle™™ @ s,) T] (snale ™ s,)|Q)
n=2N+1 n=N
= / e / dsg - dSNdSN+3 T d52N+1Ft(317 $2, , S2N+2, tc)
N+2 1
< T Guealem ™™ s, TT (supale 0™ s,), (5.22)

n=2N+1 n=N

where the time step§),, } are defined as follows:

T .
5, = &é,n:N+3,---,2N+1
Sy = b= g
5, = %,an,---,N. (5.23)

The expressioit; is called influence functional which is defined as

1

Fiy(s1, 82, , san2, Le) _/ Q@ ] e it (5 Q)| g), (5.24)
% n=2N+2
whereH, = H — Hy, and Hy, = —%2(.?—; + V (Ry) is the zeroth order reaction path

Hamiltonian. The partition function can be calculated following the same idea detailed
above

Z:/ / dsidsy -+~ dsn,Fp(s1,82, " ,5n,)
1

x(s1le 01 sy ) T (sneale ™00 ]s,)
n:Nﬁ—l
1

Fa(s1, 0, 15w,) = / T aQQ| [ (@), (5.25)

n:Nﬂ
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wherejs = —]i,—i and Ny is the number of time slices for the imaginary timeng.
In both cases we need to calculate the influence functionals which have the same form,
namely

1

Fopi (5,8) — / dQ(Q| T e (@) Q)

- n=N

= /_ /_ dQldQ2...dQN<Q1|€*iH1(5N’Q)6N|QN>

1
< T (@ule 6@ Q). (5.26)

n=N-1

The short time propagator @f; can be calculated by splitting; into the harmonic part
and perturbation part

k

AVi($0,Q,) = Vi(sn, Q) = Viar(Q,) = Vilsn, Q,,) — —Zkank
‘/1(8”, Qn) = - Z fk Sn an: + = Z Qk k' Sn anan’ (527)
kK’

With the help of the exact propagator for harmonic oscillators [119] one can obtain the
following result

—iH1(5n)0n _ . / Wk
<Qn+1 |6 |Qn> = €Xp { /L‘/l (S’R7 Qn)éﬂ} g 271‘1/ Sln(Wkén)
571 n n.
X exp{ E 1wk [(cot (widn) + (Wl; )) 2 %] } ) (5.28)

One should properly choosg, to minimize the difference betweén(s,,, Q,,) and har-

monic potential}.,(Q,,), i.e., AVi(s,, Q,,). However, it is not very strict to chooss,
since we already assumeégto be small enough. In the following we set = 2, (0) to

be the same for different grig, on the reaction path. Based on Eg. (5.28) we can simplify
the influence function by a Gaussian type integration

Figi (5,0) = FQ/ / 10,dQ, - dQ,,
exp{g(s,{Q})}
o(s.4Q)) = zzwk{(cm ) + 80 gz, Qreas

sin(wy0y,)

+i Z On fr(Sn)Qnik — % Z Qe ekr (5n) Qe+ (5.29)
nk

nkk’
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274 sin(wgn )

whereFy =[], 1/5==-2—— is path independent.

To get reasonable rate constant we consider a molecule coupled with the environment.
To describe the environment effect we should include additional terms in the full Hamil-
tonian

2 92
HQ = Z {—%aa_qg + waqa} Zd QQ + Z Cak qua; (530)

whereq,, is the bath oscillator coordinate ang the corresponding frequency which can
be continuous. Starting from the full Hamiltoniadh = Hy + H; + H, we follow the
same procedure mentioned above exceptihahould be replaced by, + H,. We can
get the new influence functional

1

Fonpi (5,8) = / dqu<q|<Q|H [ (o0 Q)+ (0. R D)o gy )

— EF, / / 1Q,dQ; - AQ ydq,dg, - dqy
explg(s, {Q). {a})}
o(5.4Q} {a}) - Zzwk{(cot ) + ““’“5”)) 2 _ Duiralins

2 sin(wy0y,)

41 Z On fr(80)Qnk — = Z QS ety (5n) Qe

nkk’

Wq 2
+; sin(wady) [c08(atn) s = ot

_225 d Sn Gna — ZZ(S Oak Sn anQnaa (531)

nka

— Wao
Wherqu - Hna 2mi sin(wa dn) ©

Having the above result at hand what we need to do is just to calculate the complex-
coefficient Gaussian type integrals

/OO e /OO dxidxs - - - dxy exp{— Z ATy + 1 Z BrnTmTy + Z Wy, },
D o " T (5.32)
where bothA andB are real symmetric matrices. For any physical case the integration
converges, i.e., the matrix is positive-definite. It is then easy to find one invertible real

matrix U, to congruently diagonalize both andB simultaneously sincd is positive-
definite. The detailed procedure is shown in the following equations

UITAUI = a= diag{ala Ag, - ,GN}
U,7a :U,"BUja 2U, = b =diag{b,bs, by},
(5.33)
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where bothU; andU, are orthogonal matrices which diagonalize the corresponding real
symmetric matrices, respectively. Since the mafixs positive-definite all eigenvalues
{a,} are positive. The final transformation matrix is defined as— Ula—%UZ which
transformsU’ AU, = 1 andU’BU, = b. Using the new variable§y, } defined by

Yn = >, (U ) umam the integration in Eq. (5.32) can be solved analytically

/ _ / dxidxs - - - dry exp{— Z AT T + 1 Z BTy, + Z Whx,}
= |Det(U. 1) / e / dy1dys - - - dyy exp{— Z(l — iby)y2 + Z Wy Yn }

- (\/: F i }) 539

Wherewn = > (U)nmW,,. Here and in the following the square root of a complex

number means its principal value, i.e., the one with non-negative real part.

In principle it is now possible to solve Eq. (5.31). However, it is numerically impossi-
ble to diagonalize a large matrix feachspecified path. We can first solve the environ-
ment part since the quadratic coefficients of the bath oscillators are path independent and
assumed to be uncorrelated between each other. Based on above mentioned procedure we
can find a frequency dependent real invertible maltrixw) to congruently diagonalize
each bath mode

Z sinzzjén) [COS(W5 ), qnﬂqn] - Z<1 — ib%(w))ds,

n

(5.35)

where{al(w)} (which will appear in the following) anflb? (w) } are the eigenvalues while
diagonalizing the corresponding coefficients matrix according the procedure introduced
in Eq. (5.33). Using the new variablés, = >, [U;l(wa)]m/qn/a the integration over
{@no} can be calculated analytically. The final result for influence functional is simplified
as

Fopi(8.8) = F,FyF, / / 1Q,dQ, - dQy exply(s, {Q))}

9(s.1Q)) = zm{(cot<wk5n>+<w§n>) 2, - Qs

nk

+1 Z Onfr(80)Qnk — = Z Qi ek (8n) Quir + A(8)

nkk:’

+Z25 Afk Sn an + Z Ink, n/k’/anQn’k’ (536)

nkn'’k’
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whereF, =[], . Y A .y and the additional terms caused by the environment

ar (Wa)

are defined as follows:

2

A(s) = Zﬁgg(wa)]

no

Wpa = —1 Z[UQ(wa)]n’n(sn’da(sn’)
Wn!aUn! o nk
A _ )
fk(Sn) ; 2[1 _ in/ (wa)]
un’a,nk(sn) = _i[Uq(wa)]””/&”O&k(Sn)
Un' ankUn! an'k!
Gkt (Sn5) = ) A[L = b (wa)] 0

n'a

By now we have obtained the final expression for the influence functional shown in
Eq. (5.36). Directly applying the procedure of Eq. (5.33) we can obtain the result for the
integration in Eq. (5.36)

~ [7 [ 1 w?
Fyngi (8,6) = FyligFye®® H ( ane V 1 — ibpy, exp{4(1 — fb k) }> ’ (5:39)
nk n n n

where{a,;}, {b,x} and{w,;} should be determined by the diagonalization of the com-

plex coefficient matrix as detailed in Eq. (5.33).

5.2.4 Application to Large Systems

In general we can assume the coupling strength betwgeand ¢, does not strongly
depend ons. Thus we ignore the-dependence of the coupling strength betwéiln
andq,, i.e, {C,x} are simply constants and henf@.i. i (Sn, Sn/) = Gnknw } are also
constants. Concerning large molecules, it may be still not feasible to diagonalize a large
matrix for each specified path. However, not all the mofi@s} strongly depend on
the reaction patls, which makes it a reasonable approximation to replace the weak
dependent modes by certain mean values. In the following we @s¢ to denote the
relatively more important DOFs, i.e., they significantly depend.oAnd the rest DOFs
are denoted by@, }. In Eq. (5.36), the following quadratic coefficients will be replaced
by their s-independent mean values along the reaction path

1 L

QVV/(Sn) —< Q,/V/ >= — le(s)ds, (539)
°L |,

where2L is the length of the reaction path. Under this approximation, we need to diago-
nalize a large matrix just once while for each specified path we only need to diagonalize
a much smaller matrix since only a few number of DOFs significantly depend on
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Following the idea of Eq. (5.33) we can find a real invertible mat#i® which con-
gruently diagonalizes the quadratic coefficient matrix related on{yxo}

(Cdy5n) Qn ’VQnV
Zzwy Kcot wy0) + 5 ) mw ~ Sle((l,d—l,(sn):|

_5 Z 5n < Quu’ > Qm/Qrw’ + Z gnu,n’u’inlQn’u’

nvv’ nvn'v’

_ Z 2 (5.40)

whereQ,, = 3., (UQ);Vln,V/ Q.. With the help of this transformation we can ana-

lytically integrate over thgQ,,,} part. This will further contribute a pre-factdf, and
some modifications to the exponential factor compared with Eq. (5.36)

Fup(s.8) = FiFofifo [ [ 1Qud@,-dQyexpla(s.{Qu)}
9(8,{Qnr}) = Ziwk [(cot(wk(gn) + (wk5n)) Qik _ M

— 2 sin(wy0y,)

+1 Z O fre(80)Quk — = Z Qi (Sn) Qi + A(8)

nkk’

+ZZ§ Afk Sn an: + Z Ink, n’k’anQn’k’ +A( )

nkn'k’

—HZ ) Afk $n)Quk + Z Gk b Qi Qi s (5.41)

nkn'k’

where Fp = [, /= \/ i=s— and the additional terms caused by the reduction of
DOFs are defined as follows:

2

A Wy
Als) = ; A(1 — ibyy)
Wpy = Z(Uq)n’u’,nu [ién/fl/’(sn’) + Z.(sn'Afl//<Sn/)}

an/

~ Wn ' Unk,n'v'
Af(sn) = Z 2(1 — ibyr,)

unk,n’u’ = 2 Z(UQ)n”V,n’V’gnk‘,n”u - Z.z:(-[—IQ)nu,n’l/(SanV(Sn)

v

~ unk’n”uun’k’ v
Gk (Sny Sw) = Z b (5.42)

n''v

The final numerical calculations can start from Eq. (5.41) which is feasible since only a
very low dimensional matrix needs to be diagonalized for each specified path.
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5.3 Results of a Preliminary Study

For a specific application, we have performed a preliminary simulation based on a model
Hamiltonian of the 6-Aminofulvene-1-aldimine. For simplicity we did not start from
Eq. (5.41). In stead, we start from Eq. (5.36) by selecting one intra-molecular @ode
which most strongly couples to the reaction path. The intra-molecular mode which we se-
lect is the one involving large amplitude stretching of nitrogen atoms. We have to mention
that the present simulation is a very preliminary one since the other 104 intra-molecular
modes together with the environment are simply treated as bath DOFs. The purpose is
to show that this new method does work for the numerical calculation of reaction rate
constants.

The unit vector which defines the linear reaction path is just the direction pointing
from the reactant to the product, i.e,, = % The reactant and the product
are two equivalent minimum configurations as shown in Fig.5.2. The required quantities
for generating the reaction path Hamiltonian, namé@R,), fi(s), and€2 x (s) appear-
ing in EqQ. (5.19), are calculated according to Section 5.2.2 based on the Hessian matrix
by the B3LYP/6-31+G(d,p) level of theory. The coupling between the environment and
the molecular DOFs are defined as

dy(s) = dle"di/d%(s—%nﬁ)
Cop(s) = Cap=cre” @)/ (5.43)

whered;, do, wg, 1, ¢1, @andc, are parameters. Thedependence has been expanded to

the second order and the bath frequency dependence has been simply chosen to have the
Gaussian form. The environment modes are assumed to have uniform density of states in
the region of which we take into account the coupling with the molecular DOFs.

According to the present linear reaction path, the barrier is as high as 14.85 kcal/mol.
The details of the potential curve along the reaction coordinate are shown in Fig.5.3. As
expected, the shapes of potential cures for hydrogen and deuterium transfers are the same.
The only difference lies in the length of the stAp which appears in Eq. (5.21). The ratio
for the steps is only slightly different from oné&ys(H)/As(D) = 0.9978, due to the
fact that the linear reaction path involves many modes’ contributions which decrease the
effective isotope mass ratio. The effective barrier will decrease to the appropriate value
as compared to the barrier in Fig. 5.3 after taking into account of all the intra- and inter-
molecular couplings.

The calculated KIEs are reasonable as shown in Fig.5.4. At 298 K the calculated
value iskfl /kD) = 10. The parameters we adopted are= d; = 1076, ¢, = dy = 0.01
Hartree= 6.28 kcal/mol, andy = 0.2As~!. The involved bath frequency region starts
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Figure 5.3: The zeroth order potential energy curve obtained by B3LYP/6-31+G(d,p) for
the hydrogen/deuterium atom transfer reaction in 6-Aminofulvene-1-aldimine as shown
in Fig. 5.1. The reference geometrysis= 0 and the reactant/productds= +6.

from 3 to 30 kcal/mol with 50 harmonic oscillators equally distributed. The major draw-
back of the present study is that the activation energies are too high (3-4 times of the
experimental values) and the difference between the activation energies of different iso-
topomers are too small, the latter can be explained by the Aatié? ) /As(D) = 0.9978

which implies that the ratio of H/D transfer rates can be correctly described only after
taking into account many intra-molecular modes. In general the effective reaction barrier
will decrease if the number of coupled modes or the coupling strength increases. There-
fore one can expect that the calculated results will be more reasonable if one includes all
the 105 intra-molecular modes according to Section 5.2.4 and more bath modes.

We have to mention that in principle the curves in Fig. 5.4 can give the correct thermal
activation energy in the high temperature region but wrong behavior in the low tempera-
ture region due to an approximation we have adopted to decrease the numerical efforts.
As can be seen in Eg. (5.22), we have to do a multi-fold integration over the path variable
s to calculate the rate constant. One can imagine that the thermal activation behavior can
be correctly described by taking into account only a few configurations around the tran-
sition state, while the low temperature tunneling process can be correctly described once
we include the configurations which locate near the tunneling energy. In Fig. 5.4 we have
only considered three configurations near the reference geometry, namely, the integration
over s has been substituted by a sum over —1,0, 1. For the partition function the in-
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Figure 5.4: The calculated temperature dependence of H/D transfer rate constants in
the thermal activation region based on a 1D linear reaction path coupled to one intra-
molecular modes and 50 bath modes.

tegration is replaced by a sum ovwer —7, —6, —5. In this specific case, the calculation
effort will be greatly decreased froi9?" path integrals t@>" ones.
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Figure 5.5: The left and middle panels show the convergence of the thermal activation en-
ergy (the slope) in the high temperature region by only considering configurations which
are important for thermal activation, i.e., around= 0. The right panel schematically
shows the quantum tunneling effects (see e.g., Fig. 1.1) in the low temperature region by
covering some configurations which are important for tunneling (specifisaly+5 for

the solid curve). See the text for more details.

To clearly show how this technique works, we have studied the parameter dependence
of the results in Fig.5.5. Let us first check the convergence of the results. The left panel



5.4 Summary of this Chapter 91

of Fig. 5.5 shows two different rate curves for different numbers of time sli€es,4 and

N = 5, respectively. From this figure we can say that the result is converged fost

less than 4. In all the other figures the time slices are set t§ be4. The middle panel
shows the path dependence of the results. One (3 sites) is obtained by only taking into
accounts = —1,0, 1 while the other (5 sites) by taking into account —2, —1,0, 1, 2.

The ignorable difference shows the applicability of the simplification technique which
we have adopted for the high temperature calculations. Finally the right panel shows
how the H/D transfer mechanism changes from the high temperature thermal activation
predominated process to the low temperature quantum tunneling predominated process.
The dashed curve is obtained by covering= —2,—1,0, 1, 2 while the solid curve is
obtained by covering = —5,—1,0,1,5. The change of mechanics is already reflected

in the solid curve in the right panel of Fig. 5.5 by only covering two configurations for
tunneling. The results will be better if we cover more related configurations or even all
the 19 configurations from = —9 to s = 9. Apart from the knowledge of the critical
temperature, we can further find out which configurations contributes to the tunneling
process most significantly if we cover more and more configurations along the reaction
path step by step until convergence.

5.4 Summary of this Chapter

In this chapter we have studied condensed phase proton transfer rates. The reaction rate
constants predicted by the classical transition state theory is not reliable especially for low
barrier reactions. We have developed a new method to generate a reaction surface Hamil-
tonian and to calculate the reaction rate constant based on the work of Miller and Makri
[59, 60, 117, 118]. A preliminary application is performed based on a 1D linear reac-
tion path Hamiltonian and the calculated results show reasonable trends for the change of
predominated proton transfer mechanics from high temperature thermal activation to low
temperature tunneling. We have also discussed the parameter dependence of the results
and introduced a practical technique to greatly reduce the numerical effort. The results
become more reasonable when increasing calculation efforts, which consequently imply
the applicability and predictability of the present theory.
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Chapter 6
Summary and Outlook

Few problems in recent years have attracted as much attention as the hydrogen bonding
and transfer in solution, biomolecular systems, and material sciences. However, a molec-
ular level of description of HBs remains elusive since the proton behaves in a quantum
mechanical way on the scale of typical HB lengths and couples to many degrees of free-
dom. Among the widely investigated phenomena of HBs the finite charged clusters are
believed to play an essential role in many fundamental processes. The present theoretical
work mainly focus on the charged clusters associated by HBs in the gas phase to grasp
some essential features of HBs involving the geometry, IR spectrum and isotope effects.

The most important limiting structures in the aqueous solution are the Eigen cation
H;O"-(H,0); and the Zundel cation [$O- - - H- - - OH,]™ which are responsible for the
proton diffusion processes. And the anion counterpart is the [H@ - - OH]~ structure
which play the same role for hydroxide diffusion as the Zundel cation for proton diffu-
sion. The understanding for Zundel cation is rather deep and extensive based on previous
investigations in particular the breakthrough of recent full dimensional quantum study by
MCTDH. However the investigations on the anion counterpart[H@- - - OH]~ is less
impressive therefore further investigations are required. For this kind of strong hydrogen
bonded systems we need multidimensional quantum dynamics to appropriately describe
them. A concise theory for generating the vibrational Hamiltonian and method on solving
multidimensional Sclirdinger equation has been introduced in Chapter 2 for this purpose.

As isoelectronic analogies of the protonated water clusters, the protonated ammonia
clusters are also very important in our daily life such as nitrogen metabolism. For the
protonated ammonia dimer,N-", a quantum simulation based on a reduced 6D model
has been performed. The six coordinates mainly focus on the HB including the shared
proton stretching and bending, the NH- NH; stretching and the umbrella like motions
of the terminal ammonia molecules. We first scan the required PESs at MP2/aug-cc-
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pVTZ level of theory and generate a 6D PES by correlation expansion containing all (6)

1D PESs, all (15) 2D PESs and some most important (7) 3D PESs. The 6D kinetic energy
operator for the case of total angular momentum equal to zero is derived analytically

exploiting the theory developed in Chapter 2. After generating the Hamiltonian operator

the Schodinger equation is solved by MCTDH.

The ground state of M has B; symmetry with the proton locating in the center
which agrees well with previous investigations. This kind of symmetrization by zero point
vibration is typical for strong HBs. The calculated IR spectrum shows that the first and
also the most intense band is the central proton stretching fundamental transition at 409
cm~!. Then comes the fundamental transition of asymmetric umbrella type motion of
the terminal ammonias at 1336 c In between we have the combination bands of the
proton stretching and NH - - NH; stretching modes which also significantly contribute
to the rich IR bands. The last one is the fundamental transition of the two fold degenerate
bending mode at 1542 crh. The calculated IR spectrum agrees well with the recent
experiment by Asmis group [96, 97].

For large NH (NHs),, (n=2-4) clusters we first investigate the potential energy curve
along the proton transfer coordinate. All of them are found to be much less anharmonic
due to weakening of HB. Therefore we study the large clusters with harmonic analysis
at the MP2/6-311+G(d,p) level of theory. Each large cluster has the solvated ammonium
structure with a stable central NHragment different from I}H;r. The calculated IR
spectra agree qualitatively with the experiment by Asmis group [97]. The most intense IR
absorption band between 1100 and 1200 tfar each cluster is caused by the collective
v, bending mode (which corresponds to the asymmetric umbrella motion in4Hé N
case) of side Nkl There is a systematic red shift of this band when the cluster size in-
creases. The reason is the weakening of HB leads to a largeNNlistance consequently
soften the potential curve for this mode.

Still there is something more to be done in the future as has been mentioned in Chapter
3. The 6D model for hNH should be enlarged to a 9D model to include three wags
of the two terminal NH fragments. Meanwhile a sufficiently accurate PES is also a
severe challenge to quantum chemistry. A full dimensional investigation will be definitely
impressive yet it seems to be hardly feasible concerning present computer abilities. For
large clusters there are also lots of phenomena which go out of the range of harmonic
predictability. An appropriate reduced model involving the relative motions of the central
NH; and the terminal NklIfragments might be capable of interpreting the anharmonic
effects which already appear in the low frequency region IR spectra of a recent experiment
by the Asmis group.
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Concerning the fundamental water clusters we have investigated the deprotonated wa-
ter dimer [HO--- H --- OH] in full dimensionality. The kinetic energy operator for the
case of total angular momentum equal to zero is derived analytically exploiting the theory
developed in Chapter 2 for each isotopomer (cf. Appendix C). Concerning the 9D PES
construction, we use the PES subroutine by Bowman group which is based on fitting of a
sufficient number of CCSD(T)/aug-cc-pVTZ data points. The nine coordinates have been
divided into three groups and the 9D PES is expanded with all the two-group correlations.
This means the expansion actually incorporate six-mode correlations among nine individ-
ual coordinates. Then each ground state is obtained by wave function relaxation and the
torsional splitting state is also calculated by improved relaxation with MCTDH.

The first conclusion is that the general trend of the primary energetic isotope effects
in this series of isotopomers. Each side O—H group deuteration lowers the ZPE by about
600 cnT! and each central position deuteration lowers the ZPE by about 520,dmoth
irrespective of whether the rest positions are deuterated or not. The difference between
the side and central position deuteration is that the central position deuteration includes
the H-bond to D-bond substitution at the same time. Their difference is nothing but the
difference between the bond energy of H-bond and D-bond, namely the H-bond is more
stable than D-bond by about 80 ci(cf. Section 4.3.2) for this series of isotopomers.
The reason is that the proton distribution is more delocalized consequently the couplings
between the central proton motion and the rest coordinates, which make the system more
stable, are larger than the deuteron case. Since the reason is general we can draw the
conclusion that H-bond is in general more stable than D-bond for strong HBs yet the
bond energy difference may differ for different cases.

The secondary geometry isotope effects as well as the tunneling splitting effects as-
sociated with the torsion are also investigated. For each isotopomer the quantum mean
value of O - - O distance increases compared with the classical transition state due to the
zero point vibration. Upon deuteration of the central proton the O distance slightly
decreases due to the more localized distribution of deuteron. One should realize that in
general a shorter HB length corresponds to a stronger bonding. However, it is not true
for slight differences such as this series of isotopomers. The reduction oOQlistance
due to central deuteration is about 0.08%0r symmetric cases and 0.0@9for asym-
metric cases. The tunneling splitting is related to the torsion frequency determined by the
side O—H group deuteration status. Each side position deuteration increases the reduced
moment of inertia therefore the energy splitting is decreased by 6-7 cm

We have to mention that the investigations of [HCH- - - OH]~ anion are far from a
final conclusion despite the existing extensive investigations. Concerning MCTDH which
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requires sum of products form of PES we have to fit the PES. Limited by the computer
ability and algorithms a fitting of 9D PES with high accuracy is extremely difficult. It
would be quite interesting to use the original 9D PES instead of correlation expansion to
see further refinements.

In addition the present work also covers condensed phase proton transfer process. A
general theory for reaction surface Hamiltonian and reaction rate constant calculations
has been developed. A preliminary simulation for a model Hamiltonian based on 6-
Aminofulvene-1-aldimine has been performed. The calculated reaction rate constant ver-
sus temperature shows Arrhenius rate behavior at high temperature region and the activa-
tion energy for deuterium atom is larger than hydrogen atom due to its heavier mass. The
calculated results show reasonable trends for the change of predominated proton transfer
mechanics from high temperature thermal activation to low temperature tunneling. The
results become more reasonable when increasing calculation efforts, which consequently
imply the applicability and predictability of the present theory. Our further investigation
will be picking out suitable parameters, covering more grid points along the reaction path,
and including more intra- and inter- molecular modes for specified problems.

To elucidate the complexity of hydrogen bonding and transfer in real solution or bio-
environment is the ultimate goal. Successful theoretical description of condensed phase
phenomena is a long time pursuing for numerous theoreticians. However, there is no
generally accepted method which in most cases gives convincing results. We still strongly
rely on the gas phase features and make some reasonable arguments about environmental
influence on the deviation of condensed phase from gas phase. Up to now most of the
interesting gas phase systems have been investigated at certain level and the future work
will mainly focus on condensed phase.



Appendix A

Hermitian Conjugates of Momentum
Operators

To derive the expressions for the HCMOs in LRF is the most tedious part as mentioned
in Chapter 2. The things become much more complicated when we exploit coordinates
defined in MRF. Consider the LRF defined by three orthogonal unit ve¢tqrs:,, e }

and a MRF defined by three orthogonal unit vectats, e,/, e, }. The orientation angles

of e, in the LRF argv, ¢). To obtain the connection between the LRF and the MRF we
first apply two excessive rotations, (¢) and U.(¢) to the LRF, whereU,(¢) means
rotatingy arounde,, andU,(¢) means rotating arounde.. The matrix representation of
them are

costy 0 sind
U,(J) = 0 1 0
—sind 0 cos?

cos¢p —sing 0

U.(¢) = sing cos¢ 0O |- (A.1)

0 0 1

The new reference frame generated by applyihgy) andU.(¢) to the LRF has the
same:z axis as the MRF, i.e., the only difference between the two reference frames is just
a rotation of angley arounde... Therefore the MRF can be obtained by applying three
excessive rotationd, (9), U,(¢) andU,(x) to the LRF, namely

€y = Uz’(X)Uz(¢)Uy<79)eaa a=2x,Y,=z, (A2)
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whereU.,(y) means rotating; arounde,.. The matrix representation far..(y) in the
MRF is the same witlJ,, () in the LRF. Since the third rotatiod..(x) in Eq. (A.2) has
no effects ore,, we actually havee,, = U.(¢)U,(V)e,. Exploiting the rules between
vector and operator transformations we can obtain the expressithfar) in the LRF

U (x) = [U2(6)U, (9)] U= (x) [U=(0)U, ()] (A.3)
Consequently Eq. (A.2) can be rewritten as
ey = U, (0)U,(NU.(x)ea a=z,v,z2. (A.4)

Eq. (A.4) tells us that an equivalent way to obtain the MRF is to apply three excessive
rotationsU.,(x), U, () andU,(¢) to the LRF. The three angld®), ¢, x} which connect
the LRF and the MRF are called Euler angles [73].

Now let us consider vector®,; characterized by spherical coordinatég, 0;, ¢;) in
the MRF (j = 1 — N). With Eq. (A.4) and the rule between basis vectors and components
transformations we can obtain the Cartesian components of these vectors in LRF

RJQc ij/
Ry, | = V(U (V.00 | Ry, | (A.5)
R; Rj.

where R;, and R, are Cartesian components Hf; in the LRF and the MRF, respec-
tively. We can rewrite Eg. (A.5) in a more formal way for some other applications.

R; = R;U.(¢)Uy(9)U.(x)U.(;)Uy(0;)e-, (A.6)

Eq. (A.6) is a vector equation, therefore, it is also valid for arbitrary reference frame.

Now we turn to the main task of deriving the Hermitian conjugate of momentum
operators. This can be done step by step according to Eq. (2.8) with the help of the coor-
dinates transformation Eq. (A.5). From Eq. (A.5) we can see(thaip;) only appear in
the Cartesian components Bf;. This greatly simplifies the expression for the Hermitian
conjugates of momentum operators as follows

~ - _ 9 ORjn\°
A= fo-in T (55 9)
J

a=x,Y,z
- A 9 OR:,\°
Pl = P —ih < J“)
0; a;, ORjo 00,
. R 9 OR:,\°
Pl = P, —ih e A7
©; p; — ¥ Z (3Rja 0; ) (A.7)
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To calculate the derivatives in Eqg. (A.7) the three Euler angles in Eq. (A.5) are purely
parameters. We first write out some useful relations according the orthogonality of the
transformation Eq. (A.5)

ORja OR;p
Z OR. » ]5/ Rjﬁl = - aRja Rja
aRja ) ( OR; o )2
= pu— ]_
OR;s  OR;p
— A.
8Rj5/ (9Rja ( 8)

wherea = z,y,z andf’ = 2/,y, 2. The last equation is just the property that!

is equal toU” for an orthogonal matrixJ. Note that for the derivation purpose in this
appendix all the derivative{s?f%} are parameters only depends on the three Euler angles
since we do not need to calculate derivatives with respect to the Euler angles.

Let us first derive the expression férf%j. It is straightforward to get the following
derivatives of MRF Cartesian coordinates

OR,y _ R

8—}% = sinfjcosp; = RJ]

OR,y _ _ R,

8—Rjj = siné;sing; = R+j

OR;. R

—= = 0, = == A9
oR, cos 0 R, (A.9)

whereR = R}, + R, + R, = R}, + R?, + RZ,,. Based on Eq. (A.9) we can obtain
the derivatives of Cartesian coordinates in LRF with respeét;to

aR]‘a . (‘)Rja 6R]~5/ . Rjﬁ/ aRja

= = . A.10

0 aRm ©
Then we can calculatém R ) based on Eqg. (A.10)

( 0 3Rja>o -y iaRjﬁ,+R45/3(R§I+R§y+R§Z)_5 ORjo
- J

Oy, OR, 2\ R, R, IR;0 R,
| ORjy  RypRja\ ORja

- , | All

Z (R OB, B ) ORy (A1D)
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Making the summation we obtain the needed quantity for Eq. (A.7)

3 0 ORi\° _ 3 1 0Rjp  RigRja\ ORja
— \ ORjo OR, R; OR;a R ) ORjy

a,’

B Z 1 _Rfa

- e\r R/
3 1 2

- 2 _ - _ = A.12
R R R ( )

where Eg. (A.8) has been used at the first step. Finally we can get the HCMO associated

Pl = Pp, — = = —ih—-—R>. (A.13)

Next we will derive the expression fd?gj following the same procedure. The deriva-
tives of MRF Cartesian coordinates read

OR;y
2 = Rjcosb;cosp; = R cot b
00,
OR;y .
a—éj = Rjcost;sinp; = R;, cotb;
OR;. R;.
= = —R;sinf; = ——-. A.l4
20 IR T ot (A.14)

Based on Eqg. (A.14) we can obtain the derivatives of Cartesian coordinates in LRF with
respect td,
OR;o  Rj» ORj,

OR,. R,
_ R coth, , cot 0, 200 _ A.15
go; T O B ot ot OR,. (A.15)

BRN

The next step is to calcula eﬁ ) . We will do it step by step in the following.

0 OR;u\° — cotf ORjo OR;y +c0t948Rj°‘ OR;y B 1 ORjo OR;
8Rja 89] N 3 8R]x aR]a J aRjy/ 8Rja cot (9]' 8Rjz/ 8Rja
OR; OR;q R, OR;,\ Ocotf;
R Ile | p jz jou J
( R YV BR,,  cot20 aRjz,> ORom
1 OR;o OR .
= cotf; — ! ]

sinf; cos0; OR;. OR;q

+ (Rja + (tan6; — 1)R; /aRja) d cot 0

. . A.16
R ) ORa (A.16)
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R.

Sincecot #; = ——==—— we can get the following derivatives
RJ’Z’+RJ‘y’
dcotl; Rjy R
ORjw 3
f VR R,
8 cot 0] . Rjy’ R]Z’
Ry 3
dcotl; 1
OR;.  [p2 | p2
J R?Z” + Rjzy/
(A.17)
Based on Eq. (A.17) we have
8(301;9]- 1 8R/ 6R/ 8R/
— —R'I'R‘Z'J—R"R‘z/i R2, + R?2 \ 2
Mo B R, (i s = B+ e B
1 OR; .
- ; 3 (_Rjz’Rja + R} 8Rjja) (A.18)
\ i T By
Combining Eq. (A.16) and Eg. (A.18) we can finally derive
Z O ORjo\°
— \ORjo 00,
1 ; o
S o] (e — AT
- sinf; cos0; OR;, ORjq
1 OR; OR;./
+ 0y . (Rja + (tan®6; — 1)Rjz,#) (—Rjz,Rja + Rﬁﬁ)
Y Rjz'x/ + RJQ'y/ jz I
1
= t0, — —
3 cott; sin 0; cos 0;
1
+ s (—Rj2 RS + RiR;. + (tan6; — 1)(— R, R + RiR;.1))
\/ R+ RS,
= th, — ————— + (tan?6; — 1) cot 0,
3 cot b, sin9jcosﬁj+(an ;— 1) cot b,
= cot0); (A.19)

The Hermitian conjugate of eao%j associated with the corresponding MRF polar angle
¢, can be finally expressed as

wh 0

————¢sinf,. A.20
sinﬁj OHJ St J ( )

ng = pgj —ihcotf; = —
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Finally we come toﬁj)j. The procedure is the same however it is much more simple
compared tof’gj. First the derivatives of MRF Cartesian coordinates read

OR;.
0—90]- = —R;sinf;sinp; = — R,y
J
é;if = Rj;sinf;cosp; = Ry
J
Ofz _ (A.21)
dip;
Then the derivatives of LRF Cartesian coordinates read
OR,; OR; OR;
=Ry —2 — R —2=. (A.22)
8g0j ! 6Rjy/ 7Y aRjgg/
The final summation of needed derivatives is
0 8Rja ° aRj$/ aRja aRjy/ aRja
o — — =0 A.23
(2&: 8Rja ngj ) 204: (8Rja 3Rjy/ aRja 8ij/ ( )

The momentum operator associated with each orientation anggedHermitian according
to Eq. (A.23), namely

. . 0
Bl =P, = —ma—%. (A.24)

Now let us recall the above detailed procedure. The only condition we need is that
the transformation matrix between Cartesian coordinates in the LRF and those in a MRF
is orthogonal. First, if we set all the three Euler angles equal to zero we can obtain the
HCMOs associated with spherical coordinates in the LRF. The final results are the same
with Eqg. (A.13), Eq. (A.20) and Eqg. (A.24) since a unit matrix is also an orthogonal ma-
trix. Second, we can use more rotations to define more MRFs and the HCOMs associated
with the spherical coordinates in each different MRF obey Eg. (A.13), Eq. (A.20) and
Eqg. (A.24). As an important consequence the Hermitian conjugates of all the momen-
tum operators associated witbal bond lengths, bond angles and dihedral angles obey
Eq. (A.13), Eq. (A.20) and Eq. (A.24) respectively irrespective of how complicated the
molecule might be. Similarly, the result holds for any reference frame provided there
exists an orthogonal transformation to transform it to the LRF. Base on above mentioned
conclusions we can see the HCMOs associated with the three Euler angles obey the same

relations
. . , th 0 .
Pg = Pﬁ—zhcotﬁ:—sinﬁa—ﬁsmi?
A - 0
T o - .
P¢ P¢ = _Zh6’_¢
At ~ 0
P, = P =—ih—. (A.25)
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We can obtain the HCMOB, associated with MRF Cartesian coordinates following
the same procedure. Singéﬁ is just a parameter which does not explicitly depends on
R;., R;, or R;, according to Eq. (A.5), we can easily obtain the HCMOs associated with
MRF Cartesian coordinates

A - 0 OR:i\°
P!, = Py —ih o
iB B — zo; (aRja aRj@/)

= Pjﬂ/a (A26)

whered’ = 2/, ¢/, z’. We can see the momenta associated with MRF Cartesian coordinates
are Hermitian.

In general we have great freedom to define spherical coordinates, Cartesian coordi-
nates or combination of both with one or several MRFs. The corresponding HCMOs are
just the same as HCMOs associated with the LRF coordinates if the only difference be-
tween the LRF and the corresponding MRF is an orthogonal transformation. Typically an
orthogonal transformation may be a rotation or product of many excessive rotations since
product of many orthogonal matrices is still an orthogonal matrix. This will cover most
of the cases we may encounter therefore our kinetic energy quantization procedure can be
easily applied to them.
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Appendix B

KEO in Terms of Polyspherical
Coordinates

As an example we will consider the KEO in terms of so called polyspherical coordinates
[78] defined in the LRF and a MRF. The LRF and the MRF are connected by three Euler
angles(v, ¢, x) as detailed in Appendix A

ew = U.(O)U, (V. ()eas  a=a,y,2 (B.1)

Consider a molecular system composedof 1 atoms. After separating the total center
of mass motion we can describe it witth Jacobi vectordR;, R,, ---, Ry. The three
Euler anglegd, ¢, x) are chosen in such a way that the spherical coordinatBs,dh the
LRF are(Ry, Y, ¢) and the spherical coordinates Bf in the MRF arg( Ry, 61, p1 = 0).
That is to say thes., axis of the MRF is defined to be along the directionf®f;,. The
remainingN — 2 vectors are characterized by spherical coordingfesé,, »,} in the
MRF (j =2,--- , N —1). In the following we will establish the KEO in terms of tBé&/
coordinates mentioned above.

According to Appendix A we can express thevectors as

Rj = R]UZ(QS)Uy(ﬁ)Uz(X)Uz(QOJ)Uy(HJ)ezv (BZ)

wherej = 1,--- , N andfy = pn = @1 = 0. With the help of Eq. (B.2) we can derive
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the LRF components of the N velocity vectors

R, R;9U. (¢
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R;p;U.(0)U, (9)U.(x)U.(¢;)U,(6;)e., (B.3)

wherel' is the first order derivative of the corresponding rotational transformation matrix.
The above equations are still vector equations however they are only valid in the LRF
since we have used the relatien = 0. To make them valid in arbitrary reference frame
we only need to add the corresponding terms consigting the right side. However, it

is not needed for our purpose.

Itis better to discuss the orthogonality of the terms appeared in Eq. (B.3) before further
derivation. The last three terms in Eq. (B.3) are just the spherical velocity components
measured in the MRF while the first three terms are components of the velocity caused by
the non-inertial MRF. Each term in Eq. (B.3) can be expressed in a formally simple way
in terms of angular velocity vectors

Rj = 19619 X Rj+gz.56¢ X Rj—f‘).(e)‘( X Rj
-+ RjRj/Rj + éjegj X Rj + (pj€¢j X Rj, (B4)

wheree; is the direction of the angular velocit§, and similar fore,, ey, €5, ande,,.
According to Eq. (B.4) one can immediately see that the fourth term is paraliglwhile
the other terms are perpendicular®. Recalling the velocity in spherical coordinates
we know that the last three terms are orthogonal to each other. Therefore, in Eq. (B.3) (or
Eq. (B.4) ), the fourth term (namely the; term) is orthogonal to the other terms and the
last three terms are orthogonal to each other.

Having at hand all the velocities it is quite straightforward to write the classical kinetic
energy according to

N
1 .t
j=1

If non- Jacobl vectors are used the kinetic energy obeys a more generallfoen
: Zj o1 p]kR Rk with a matrix {1.;,} combines the reduced masses and the transfor-
mation matrix between adopted vectors and Jacobi vectors [121]. The final results in LRF
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can be easily written as a symmetric form

1 - f . Qrot

Qvib

where the coordinates are separated as rotational and vibrational DOFs
Qiot = ( 0 ¢ X ) ’

QL = ( Ry -+ Ry 01 -+ Ov1 w2 -+ N1 )
The only difference between Jacobi- and non-Jacobi- vectors is that in the latter case
the generalized mass matfix has more non-zero matrix elements. For Jacobi vectors
there is no vibrational couplings, and no Coriolis couplings invohlﬁ;gaccording to the
discussions of orthogonality about Eq. (B.3). In this case it is also quite transparent to get
each non-zero matrix elementdf according to Eq. (B.3), e.g.,

My, = Mgy
= 1 R;RnelU, (6;)TU.(9;)TU. () TU; (9)TU.(6)TU. (¢)U, (9)U. (Xx)U (05)U, (6; ) e.

=y RjRnelUy (—0;)U.(—p;)U.(—x)U;, () U, (9)U. (X ) UL (;)U, (6; ) e-.

Next step is to calculate the inverse matrivbto generate the quantum KEO. Aiming
at the separation of the rotational and vibrational DOFs, we divide the nMtito the
following four blocks

Miot Mcor
M = , (B.7)
ML, Mg
where the subscripts;, ¢, and,; correspond to rotational, Coriolis and vibrational
terms, respectively. That is to s&,.;, M, andM;;, are3 x 3, 3 x (3N — 3) and
(3N — 3) x (3N — 3) dimensional matrices, respectively. Suppose the inverse matrix of
M is divided in the same spirit as

1 Grot GCO'I‘
ML= : (B.8)

GTCOT Gvib

we can express the quantum KEO as a sum of rotational, vibrational and Coriolis terms

T = Trot + Tvib + TCOT
1ot . 1.4 . 1 /a1 .
= SPLuGraPro+ 5P LGP+ 5 (PryGou Pus + hic.)

(B.9)
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According to Section 2.2.5, the generalized momentum vePtor associated with the
rotational DOFs is just the total angular momentum vedtoif we are interested in the
rotational DOFs we can exploit the rotational Hamiltonian at the vibrational ground state.
The corresponding KEO reads

~ 1. A 1 .
Trat - §Pj~otGTotPr0t - §JTGT0tJ» (BlO)

where the components of should be along the directions ef;, e; ande, according

to Eq.(2.32). One can also transform the components to Cartesian ones according to
Eqg. (2.33). On the other hand, if we are interested in the vibrational DOFs, the KEO for

the total angular momentuoh = 0 reads

~ 1 - ~
Tvib = §Piivaivaib~ (Bll)

Now we will give details on how to calculate the different blocks of the inverse ma-
trix of M. One can see that the matiix can be congruently block-diagonalized in the
following way

1 M CorM 171}) Mrot MCor 1 0
0 1 M 207’ M vib -M ;iM TCOT 1
Mrot - MC’OTM;Z‘},MTCOT 0
= . (B.12)
0 Mm’b
Calculating the inverse of both side of Eq. (B.12) leads to
—1
M 1 Grot GCO'I‘ Mrot M Cor
GTCor Gvib M TCOT M vib
-1
1 0 Mot — McoMZIME 0 1 —M¢M3L
_M;i})MTCor 1 O Mvib 0 1
(B.13)
Calculating the matrix product in above equation leads to the final results
-1
G'rot = (M rot — M COTM;})M TCOT>
GCOT‘ = _GrotMCorM;Z‘})
Gy = M,L+MIML, Geor (B.14)
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For the special case of Jacobi vectdrs,, is diagonal which will greatly simplify the
calculation of Eq. (B.14). It is straightforward to obtain the diagonal elements according
to Eq. (B.3)

(Mvib)RjRj = Ky
(Mvib)ejej = MJR?
Mui),,, = 11 R3 sin® 0. (B.15)

The inverse matrix oM ,;, is quite trivial. We only need to calculate the inverse matrix

of 3x3 dimension as well as some matrix products to get the final results. The results are
essentially the same with what have been reported in Ref. [78]. In the following we give
the matrix elements fd&,;;, (Hermitian) which are required in Appendix C.

0ii
GRiRj = ,LL_j" GRiGj = 07 GRZ‘QD]' = Oa
i cos(p; — ;)
Gog, = I
00 1 3 " pn R
cot 8, sin(p; — ¢;) — cot b sin p;
GGiSOj = /LNR?V )
0ii 1
G@i@j = ’

+
piR2sin*6;  py R} sin® 0,
cot 6; cot B cos(p; — ;) + cot? 01 — cot b1 (cos p; cot §; + cos @, cot b;)
pin Ry
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Appendix C

9D KEO for H 30, and its Isotopomers

In this chapter we derive the 9D vibrational KEO fog®, . The coordinates are defined
in the MRF characterized by three Euler andlésyp, y) as detailed in Appendix A. The
four Jacobi vectors shown in Fig.4.1 are adopted. The three Euler angles are chosen
in the same way as introduced in Appendix B, i.e., the MRF spherical coordifates
and R, are(R,,0,0) and(R;,, 01,0), respectively. The other two vectors can be charac-
terized by their spherical coordinates in the MRIE;, 6;, ;) (j = 2,3). According to
the conclusion of Appendix B we can write out the exact 9D KEO for the total angular
momentumJ = 0 directly. However, to make things less intricate, we assume some ap-
proximations. The basic idea is to introduce a new MRF with ignorable angular velocities
and expres; with Cartesian coordinates:, y, z). The remaining six coordinates are
spherical coordinates in the old MRR;, Ry, 01,02, Ry, 0 = pa — @1 = ©2).

The new MRF is associated with the old MRF by a rotation of amglearound the
R, (thez-axis). The spherical coordinates fBy in the new MRF aré R3, 65, ¢3) with

P3 = P3 — NP, (C.1)

wheren = 1 /(p1 + p2) is defined to minimize the Coriolis type couplings involving the
central hydrogen so that we can ignore them. Andy.) is the reduced mass associated
with the Jacobi vectoR, (R,). The Cartesian coordinates for the central proton read

r = Rs3sinfzcos o3
y = Rssinfssing;
z = RscoslOs (C.2)

and the KEO for it is simply

n* [ 0 0? o?
T3 = —— <——|———|——), (C.3)
243
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where s is the reduced mass associated with the Jacobi véeioand Coriolis terms
are ignored. Since the directief) is defined along the direction d®,, the = coordinate
corresponds to the central hydrogen stretching mode.

For the rest 6 DOFs concerning the (QHnagment, the 6D KEO is written out ac-
cording to Appendix B. Similar to the idea adopted in Chapter 2, we take the angular
momentum of the (OH)fragment as total angular momentum. Combining the central
proton part and the (OH)¥ragment we finally obtain the 9D KEO. The new coordinates
u; = cosf; (i = 1,2) have been used. For the simulation an additional normalization
transform as detailed in Chapter 3 was performed to reduce the numerical effort. This
gives the following 9D KEO:

T=T1+1Ty+ T3

with
o2 R 9 RO
T, = — _ _
1 2 OR? 215 0R3 24 OR]
1 1 0 0 1 1 o D)
L = - 1-— 2 — 1 — 2y Y
: <2M1Rf ! 2M4RQ> 8ul( “Dou, (2qu2 " mRﬁ) 5 " 5w,

1 /_ 0
B 2M4R2 ( 8u1 6uQ 2 E)ul \/1 U \/1 2 E)u2)
02

> T
Q[LZRQ 1—wu?  2uRI1—u?) Op?

i=1,2

N 1 Uy Us 8 0
N4Ri\/1—u \/1—u QOaSD

1 U 0 8 0 . 0 )
— siny/1 — 1 —u?sin p—
2usR3 /1 — (&p 14 8 Uy aul ! 4'08@
1 Uy 0 a 0 . 0
. J1— 21— w2singZ) |
2usR3 /1 — u? (&p sin 8u2 + Ous 2 Smw&p)

The non-Euclidean normalization according to the volume elementd,is =
dR1dRydRydxdydzdu,dusde. The reduced masses are defined as follows: HOHOH
— 1 = pig = muamo/(mu + mo), pz = 2mu(mu + mo)/(B3mu + 2mo), pa =
(mu + mo)/2; HODOH™ — g = 2mp(my + mo)/(mp + 2my + 2mep); HOHOD™

— 1 = mpmo/(my + mo) andus andp, change correspondingly. For DODODRQhe
corresponding masses of HOHOHre modified by replacing.y by mp. In the same
way we get the masses for DOHOIy exchangingny andmp in HODOH-, and sim-
ilarly one can obtain DODOH from DOHOH".




Appendix D

Infrared Absorption Spectrum Theory

We want to investigate the infrared absorption spectra of molecules in the gas phase.
First we would like to recall certain general theory for light induced excitations. The
following theory in this appendix is adapted from Ref. [120]. The total Hamiltonian in
the interaction picture includes three parts

H=H,+ Hyy + Hy (D.1)

whereH, and H; describe the system we are interested in and the external electric field,
respectively. The interaction between the two subsystems is descrildég byhe exter-

nal field will be treated classically and we mainly focus on the molecule-light interaction
induced state transfer in the molecular system. Let us start from the golden rule which
characterizes this kind of transfer rate

Kw) = 25 57 PUE) (FIH.gli) Po(ho — By (02)
fi

wherew is the frequency of the external electrical field aR@F;) = % is the
thermal weight of théth initial state. The linear absorption coefficient which character-
izes the exponential decay of the filed intensity along the propagation direction can be

obtained as

hw
ow) = k)
2
= Sp 2 PBSHugli) PO — Ey)
fi
- Z_;‘; :Tr[WeqHsf(t)Hsf]dt (D.3)

wheren is the density of molecules andd is the field intensity in free space. In the

last equation the Fourier transform of delta functign) = - [°

o widt was applied

€
oo
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and we replace one summation by the equilibrium molecular density opéfator=
>, P(E;)|i)(i|. The time dependent operators are defined in the Heisenberg picture with
respect tall,, i.e., Hyf(t) = st/ H e~ iHst/h,

In the weak field limit it is reasonable to use the dipole interaction. The electrical field
change due to the molecular response is neglected, and in the small range of the molecular
volume the electric field can be regarded as a constant. Thus the interaction Hamiltonian
reads

1
Hy = =5 (WE+ E'p)

= - ) mE, (D.4)
T=T,Y,2
wherep and E are molecular dipole moment operator and amplitude of electric field,
respectively. In general it is more convenient to describe dipole moment in MRF. Con-
sidering the MRF described by three Euler andlésp, x} and LRF withe,, in the same
direction ask we can rewrite the interaction Hamiltonian as

HSf = - Z ,u’y’E'y/
"/,:$/7y,72,
0
= - ( Py s ) [Uz(cb)Uy(@)Uz(X)]*l 0
E
= pyEsinfcosyx — pyEsinfsinx — pE coso. (D.5)

Introduce the above interaction Hamiltonian to Eq. (D.3) and after average over all orien-
tations (which are assumed to be randomly orientated) we have

2nw [ , _iH,
a(w) = g [ ST P il ) (D.6)

wherec is the light velocity in the molecular medium afgl= ceo£?/2 = co ) E7/2
has been used. The average values of related quantities are
- o T 2T (sin 0 cos y)? sin Odfdedy 1
((sinfcosx))a = 0o -
ST ST JST sin 0dOdedy
Jo 027r f027r(sjn 0sin x)? sin 0dfdgdx
I 2T 2 sin 0d0ddy
Iy 0% Ozﬂ(cos 0)?sin 0dfdpdy 1

cos 0)? = —. D.7
((cos8)a 77 27 sin 0dbdedy 3 (B.7)

W =

((sinfsinx)?q =
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From Eg. (D.6) we can see the absorption coefficient is given by the auto-correlation
function of molecular dipole moment. Eq.(D.6) can be easily solved by wave packet
propagation. On the other hand Eq. (D.6) can also be written as a time independent form
according to Eq. (D.3)

Adrnw

> PE)(fluy D)6 (h — Eyy). (D.8)

fiy

a(w) = 3ceg
The spectrum of an ideal noninteracting molecular system is just a sum of a series of delta
functions. For zero temperature only the ground state has probability one and all the other
states are unpopulated which will greatly reduce the calculation efforts.

Concerning the real experiment the resolution is not high enough to distinguish the
nearly continuous rotational excitations. Therefore around each vibrational absorption
bands there will be many symmetry allowed rotational excitations which simply broaden
this vibrational band. From the numerical calculation point of view, it is also not pos-
sible to directly calculate the Fourier transformation of the dipole-dipole autocorrelation
function since it is non-decaying. Therefore we artificially add certain lifefini@ each
eigenenergy to make the dipole-dipole autocorrelation function decay exponentially. The
numerical equation for the IR absorption spectrum is

5 .
- 3022}71 / Z P(Ey)e /M | e 0, m) dt. (D-9)

The difference between Eq. (D.6) and the above equation is that the spectrum calculated
by the latter is broadened as a sum of a series of Lorentz type peaks. However, they
do give the same result for the position of each excitation which is the most important
guantity for the spectrum.
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