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der Freien Universiẗat Berlin in der Arbeitsgruppe von Herrn Prof. Dr. Jörn Manz

durchgef̈uhrt.

Erstgutachter: Prof. Dr. Oliver K̈uhn

Zweitgutachter: Prof. Dr. J̈orn Manz

Tag der Disputation: 15.12.2008



Abstract

This work focuses on vibrational dynamics of hydrogen bonded complexes. The first task for

a molecular reaction dynamics simulation is to generate the molecular Hamiltonian in terms of

suitable coordinates. To minimize the numerical simulation efforts, the best choice is to adopt

the natural motions of the molecule as coordinates, namely, the bond lengths and angles. The

method for generating this kind of Hamiltonian has been introduced as a starting point for further

numerical applications. In particular we have developed a concise theory to establish the kinetic

energy operator in terms of arbitrary coordinates for this purpose.

Concerning applications we first perform a reduced dimensional simulation for the proto-

nated ammonia dimer [H3N· · ·H· · ·NH3]+. The N2H+
7 cation is a strongly hydrogen-bonded

low-barrier system with symmetrical structure caused by zero-point vibration of the central pro-

ton. The fundamental transition for the shared proton stretching mode by our calculation is sig-

nificantly red shifted compared with the harmonic prediction due to the strong hydrogen bond.

The combinations between the shared proton stretching and the terminal NH3–NH3 stretching are

found to contribute significantly to the vibrational bands below 1100 cm−1 . The larger clusters

NH+
4 (NH3)n (n = 2 − 4) are investigated with harmonic approximation which gives reasonable

results indicating that the hydrogen bonds are much weaker than that of N2H+
7 . Consequently each

larger cluster has the solvated ammonium structure and no vibrational bands caused by hydrogen

bond stretching dynamics below 1100 cm−1 .

A full dimensional simulation is performed for the mono-hydrated hydroxide anion

[HO· · ·H· · ·OH]−. This is the same type of strong hydrogen bonded system as the N2H+
7 with

the hydrogen located in the center. In detail the energetic and geometric isotope effects are investi-

gated. Among the isotopomers, the hydrogen bond is energetically more stable than the deuterium

bond by about 80 cm−1 irrespective of the deuteration status of the free terminal OH groups. In

general the conclusion that a hydrogen bond is more stable than a deuteron bond is valid for many

hydrogen bonds but the bond energy difference may differ. Concerning the secondary geometric

isotope effects, for each isotopomer, the O· · ·O distance decreases upon deuteration due to the

fact that the deuteron distribution is more localized than the proton distribution.

Apart from gas phase studies, our investigations also cover condensed phase hydrogen bonds.

A general theory for generating reaction surface Hamiltonian and the numerical implementation

for reaction rate constant calculations are developed. With this method we have generated a re-

action path Hamiltonian based on 6-Aminofulvene-1-aldimine and performed some preliminary

calculations for the rate constant of hydrogen/deuterium transfer reaction. The temperature de-

pendence of the reaction rate constant shows Arrhenius rate behavior at high temperature region.

The deuterium transfer needs higher activation energy and has lower rate due to its heavier mass.

When decreasing the temperature the coherent tunneling effects begin to contribute more and more

to the hydrogen/deuterium transfer reaction which flattens the temperature dependence.





Zusammenfassung

Diese Arbeit behandelt die Schwingungsdynamik von Komplexen, die Wasserstoffbrücken-

bindungen erhalten. Zur Beschreibung molekularer Reaktionsdynamik muss zunächst ein

Hamilton-Operator in geeigneten Koordinaten entwickelt werden. Um den Rechenaufwand zu

minimieren, empfehlen sich die natürlichen Bewegungen des Moleküls als Koordinaten, d.h.

Bindungsl̈angen und -winkel. Das Problem ist hierbei die Bestimmung des Operators der kinetis-

chen Energie. Zur L̈osung wurde in dieser Arbeit ein kompakter und intuitiver Zugang en-

twickelt, um den Operator der kinetischen Energie in Abhängigkeit von beliebigen Koordinaten

aufzustellen. Dieser Operator geht dann zusammen mit den berechneten Potentialenergieflächen

in die numerischen Simulation ein.

Die erste Anwendung konzentriert sich auf das protonierte Ammoniakdimer

[H3N· · ·H· · ·NH3]+, das in reduzierter Dimensionalität behandelt wurde. Das N2H+
7 -Ion

ist ein System mit niedriger Barriere und starker Wasserstoffbrückenbindung. Das Kation

hat symmetrische Struktur, die durch die Nullpunkt-Schwingungen des zentralen Protons

verursacht wird. Verglichen mit der harmonischen Näherung, zeigt die von uns berechnete

Frequenzf̈ur die asymmetrische Streckschwingung des zentralen Protones wegen der starken

Wasserstoffbr̈uckenbindung eine dramatische Rotverschiebung. Die Kombinationsüberg̈ange

zwischen der Protonschwingung und der Stretckschwingung der terminalen NH3–NH3 Gruppen

leisten einen weiteren Beitrag zu den Schwingungsbanden unterhalb von 1100 cm−1. Zur

Untersuchung der größeren Cluster NH+4 (NH3)n (n = 2− 4) kann auf die harmonische Näherung

zurückgegriffen werden, da die Wasserstoffbindungen hier viel schwächer ausgeprägt sind. Diese

Cluster ähneln in ihrer Struktur mehr einem solvatisierten Ammoniumion und es gibt keine

Protonstreckschwingungsbanden unterhalb von 1000 cm−1 .

Eine weitere Anwendung betrifft das monohydrierte Hydroxidion, [HO· · ·H· · ·OH]−, das in

voller Dimensionaliẗat behandelt wurde. Auch hier gibt es eine starke Wasserstoffbindungen, bei

der das Wasserstoffatom symmetrisch zwischen den Sauerstoffatomen positioniert ist. Für dieses

System wurden die energetischen und geometrischen Isotopeffekte ausführlich untersucht. Die

Bindungsenergie für den Fall des Wasserstoffs liegt immer 80 cm−1 höher als f̈ur das Deuterium,

unabḧangig davon, ob die terminalen OH-Gruppen deuteriert sind oder nicht. Das Resultat, dass

die Wasserstoffbr̈ucke stabiler als die Deuteriumbrücke ist, hat allgemeineren Charakter für starke

Wasserstoffbr̈uckenbindungen dieser Art. Im Bezug auf den sekundären geometrischen Isotope-

effekt nimmt der [O· · ·O]-Abstand bei Deuterierung für jedes Isotopmer ab. Die Ursache dafür

kann damit erkl̈art werden, dass die quantenmechanische Deuteron-Verteilung lokalisierter ist als

die des Protons.

Neben diesem Gasphasenuntersuchungen wurde auch die Wasserstoffbrückendynamik in

der kondensierten Phase untersucht. Eine allgemeine Theorie basierend auf einem Reak-

tionsf̈achen-Hamitonian und eine neue Methode für die numerische Implementation von

Wegintegral-Rechnungen zu den Reaktionsraten wurde entwickelt und auf den Protontrans-
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fer im 6-Aminofulvene-1-aldimine angewandt. Die Temperaturabhängigkeit der Reaktionsrate

zeigt Arrhenius-Verhalten im Hochtemperatur-Bereich, wobei die Aktivierungsenergie für den

Deuterium-Transfer größer ist und aufgrund der unterschiedlichen Massen auch ein kinetischer

Isotopieeffekt beobachtet wird. Mit abnehmender Temperatur werden die Signaturen von quan-

tenmechanischem Tunneln gefunden.
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Chapter 1

Motivation and Introduction

1.1 Why Hydrogen Bonds

Hydrogen bonding and transfer are of fundamental importance for tremendously diverse

processes ranging from biomolecular functions, enzymatic reactions to simple acid–base

reactions. The scope of hydrogen bond research is really cross-disciplinary involving

physics, chemistry, and biology [1-8]. The first publication on the hydrogen bond as a

new type of weak bond goes back to 1920 [9, 10] and ten years later the name hydrogen

bond (HB) was first introduced by Pauling [11, 12].

In the 1930s the signatures of the formation of HBs in stationary infrared (IR) absorp-

tion spectra had been realized [13] and IR spectroscopy continued to be a standard tool

to unravel vibrational bands of HBs especially in biomolecules or condensed phases. On

the other hand, very recent progress in IR spectroscopy of isolated protonated clusters

has provided unprecedented insight into the properties of prototypical HBs [16, 17]. In

contrast to condensed phase measurements, these spectra usually appear to be less en-

tangled and therefore should be amenable to theoretical simulations. However, situations

involving strong HBs turned out to provide serious challenges for the theory even in gas

phase.

Apart from the frequency domain point of view of HB dynamics, which can be ob-

tained from stationary IR spectra, we may further want to understand some fundamental

questions like “What does a proton/hydroxide look like and how does it translocation

in solution [18, 19, 20]?” This became possible with the development of ultrafast time-

resolved spectroscopies developed in the 1980s. With a time-resolution in the femto-

second scale we may eventually capture thereal timedynamics of HBs which lead to

broad and sometimes structured stationary absorption spectra [21, 22]. Achievements in

this area are impressive [23-26] yet more extensive investigations are necessary.
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Theory is challenged by the quantum nature and multidimensionality, two specific

features of HBs which are already quite intricate even in the gas phase. The small mass of

the proton in a HB makes it the primary quantum nucleus and the phenomena one expects

to encounter in a particular clear way are, for instance, zero-point energy effects, quantum

tunneling, or coherent wave packet dynamics. While this is well established in the limit of

one-dimensional models, the details of the multidimensional aspects of the dynamics of

HBs are just accessible to experiments and numerical simulations. As for the condensed

phase, the situation is more complicated. To include quantum effects into a simulation

which is based on classical dynamics will be the ultimate goal for hydrogen bonded sys-

tems in condensed phase. In general a successful theoretical simulation concerning HB is

highly challenging yet many fundamental questions can be distinctly elucidated with it.

1.2 General Description of Hydrogen Bonds

Let us first grasp some general aspects of HBs which is well established according to pre-

vious investigations. The traditional hydrogen bond A–H· · ·B is an attractive interaction

between a proton donor A–H and a proton acceptor B, where A and B can be the same or

different atoms. The most prominent effect due to this interaction/bonding is that the A–H

bond length slightly increases which softens the potential energy curve and leads to a red-

shift of the frequency of the A–H bond stretching mode. As the HB strength increases the

dynamics of the central proton becomes much more complicated than a free covalently

bonded one described by a simple potential well. Actually the shape of the potential en-

ergy curve along the proton transfer reaction coordinate is qualitatively determined by the

bond strength. As has been pointed out by Huggins [27], the (empirical) potential energy

curves of the proton transfer between two oxygen atoms change from double minimum

to single minimum when the O-O distance decreases. Most properties related to the HB

vary according to the bond strength. Consequently the HBs can be classified into weak,

moderate and strong ones by the bond energy.

Generally a weak HB is characterized by the bond energy less than 4 kcal/mol [14].

The weak bond may lead to a double minimum potential energy curve along the hydrogen

transfer reaction coordinate with a rather high potential barrier but significantly lower than

the free A–H covalent bond dissociation energy. The A· · ·B distance may vary from 3.1̊A

to 4.3Å. Fig. 1.1 shows a schematic view of such a potential curve for a symmetric double

well case together with the low lying wave functions. The quantum tunneling effect is

clearly demonstrated where the proton wave function penetrates to the central classically

forbidden region. There is a tunneling splitting energy∆ defined by the energy difference
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of the two nearly degenerate states. It is caused by the bonding interaction therefore

it will increase when the bond strength increases like the case of two weakly coupled

harmonic oscillators. The splitting energy∆ is proportional to the hydrogen tunneling

rate and it increases for higher energy wave function pairs. The apparent consequence of

the tunneling splitting is that the IR spectrum has a doublet structure since the initial state

can be either one of the lowest pair of eigenstates. Fig. 1.1 shows the slight difference

between excitations starting from opposite parities which in principal can be observed by

high resolution IR spectroscopy experiments. Due to the weak bond strength, harmonic

calculations based on a minimum configuration can provide reasonable results.

E
ne

rg
y

Reaction coordinate

Figure 1.1: Schematic plot of potential energy curve and vibrational wave functions of

weak hydrogen bonded system. The solid (dashed) curves are wave functions of even

(odd) parity. The solid (dashed) arrow characterizes transition from even (odd) parity to

odd (even) parity. See the text for more details.

The increase of the bond strength will decrease the potential barrier leading to a rather

anharmonic potential energy curve along the hydrogen transfer reaction coordinate. In

general the increase of bond strength leads to the increase of anharmonicity therefore in-

crease of dimensionality of large amplitude motions. A medium strong HB is character-

ized by the bond energy varying from 4 to 14 kcal/mol. The A· · ·B distance is shortened

and generally may vary from 2.4̊A to 3.3 Å. This kind of HBs can be found in many

biological systems.

A strong HB is characterized by the bond energy larger than 14 kcal/mol. The strong

bonding significantly decreases or even annihilate the potential barrier and leads to a quite

flat potential energy curve to ensure high mobility of the bridging proton. Fig. 1.2 shows a
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schematic view of such a potential curve for a symmetric double well case with vanishing

barrier as well as the ground state wave function. As has been pointed out, the potential

energy curve can also be single minimum for even stronger bonding. Even for the double

potential well case the ground state will be found to be energetically above the barrier.

Consequently the wave function has a single maximum exactly in the center with widely

delocalized distribution which makes the proton motion strongly coupled to many other

coordinates. The A· · ·B distance is further shortened to less than 2.7Å. This kind of HBs

can be found in some simple but quite important clusters which we will investigate in

the next few chapters. Multidimensional or even full dimensional quantum investigations

based on anharmonic potential energy surfaces are necessary for strong hydrogen bonded

systems. This kind of HBs are also very important for some biological processes [15].

E
ne
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y

Reaction coordinate

Figure 1.2: Schematic plot of potential energy curve and vibrational ground state wave

function of strong hydrogen bonded system.

1.3 Recent Advances and Challenges

Having in mind the general picture of HBs let us now briefly review some recent ad-

vances. Charged clusters with strong hydrogen-bonds have attracted considerable interest

recently due to the progress of IR spectroscopy and multidimensional quantum dynamical

modeling [16, 17, 28, 29]. In particular the hydrated proton and its negative analogue, the

hydrated hydroxide anion, have been investigated in quite some detail. They are believed

to play key role for proton/hydroxide diffusion in aqueous media. The nature of the excess

proton diffusion in water may throw light on the charge migration in biological systems
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as well as many other commonly encountered reactions. The proton diffusion in water

is not a real particle diffusion but a global structure deformation with charge migration

[30, 31]. This process actually involves the breaking and reforming of several HBs as

show in Fig. 1.3 for the mechanism of proton transfer along a water wire. In reality the

water solvent is constructed by three dimensional hydrogen bonded networks.

Figure 1.3: The Grotthuss shuttling process for the excess proton transfer along a water

wire adapted from Ref. [31]. In this schematic view three HBs are involved.

Among varies protonated water clusters the Eigen cation H3O+·(H2O)3 and the Zun-

del cation [H2O· · ·H· · ·OH2]+ are found to have significant importance for the proton

conduction in solution. The former has the solvation hydronium structure with C3v sym-

metry and the latter has the equally shared proton structure. A molecular dynamics inves-

tigation [32] shows the fluctuation between H3O+·(H2O)3 and H+·(H2O)2 is the driven

force for proton conduction. As shown in Fig. 1.4 the limiting H+·(H2O)2 structure is the

transition state for proton transfer in water and for the counterpart of hydroxide transfer

the [HO· · ·H· · ·OH]− structure serves as transition state. Though it is not feasible to find

isolated limiting structures mentioned above in solution, it is still of fundamental impor-

tance to extensively study this kind of charged clusters in gas phase to provide instructions

for unraveling the complexity of solution.

The IR signatures of the motion of the proton shared by the two water molecules in

H+·(H2O)2 are found around 1000 cm−1 , signifying the exceptional strength of this HB.

From the experimental point of view the first IR spectrum of the shared proton region

has been reported in Ref. [28] using the infrared multiple-photon dissociation (IRMDP)

technique triggered by free electron laser radiation. The interpretation, however, was

hampered by the multiphoton nature of the measurement which prevented unambigu-

ous assignment of intensities for the fundamental and low-order combination transitions.

Subsequently, Johnson et al. reported an infrared vibrational predissociation (IRVPD)

spectrum of the rare gas-tagged species. Since this yields intensity information for one-

photon transitions the spectrum is much simpler showing in particular a prominent double

peak at about 1000 cm−1 [33], See Fig. 1.5.

From the theoretical point of view, H+·(H2O)2, is a prototype bringing together al-
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Figure 1.4: The schematic view of the proton transfer (panels a-c) and the hydroxide

transfer (panels d-f) mechanisms in solution adapted from Ref. [31].

most all complications of HB research [34], i.e., a high-level quantum chemical potential

energy surface (PES) is required for a multidimensional quantum dynamical problem.

In fact there have been several reports on the spectrum including a reduced dimensional

model [35], classical ab initio molecular dynamics simulations [36], and full-dimensional

diffusion Monte Carlo and vibrational configuration interaction calculations [33]. But,

only recently a full-dimensional quantum dynamical calculation based on multi configu-

ration time dependent Hartree (MCTDH) approach [29] has been able to assign the double

peak structure to a combination of the shared proton motion and wagging torsions of the

water molecules [37, 38, 39]. The nearly perfect agreement between experiment and full

dimensional quantum calculations is shown in Fig. 1.5 which demonstrates the capabili-

ties of full dimensional quantum dynamics for gas phase phenomena.

Similar to the Zundel cation, the IR signatures of the monohydrated hydroxide an-

ion [HO· · ·H· · ·OH]− is also as challenging due to the strong coupling of the shared

proton and the other degrees of freedom. The first IR spectrum was measured by John-

son and coworkers using argon predissociation spectroscopy. In the range above 3000

cm−1 a sharp doublet was detected [40, 41] at about 3650 cm−1 which was subsequently

assigned to the fundamental of the asymmetric stretching of the “free” OH groups dou-

bled by the HO· · ·OH torsional tunneling splitting [42]. As mentioned in Section 1.2 the

tunneling splitting can cause a doublet of vibrational bands. The potential curve along the

HO· · ·OH torsion contains a double minimum with a barrier leading to tunneling splitting

of several wavenumbers. The spectral range from 1000-1900 cm−1 is dominated by a peak

at 1090 cm−1 which was attributed to a combination of the shared proton stretch, wag, and
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Figure 1.5: The measured and calculated IR spectra for the Zundel cation H+·(H2O)2

taken from Ref. [37]. The upper panel is the predissociation spectrum of H+·(H2O)2·Ne

complex and the lower panel is full dimensional quantum dynamics with MCTDH.

rock motions of the whole complex [43]. Effectively, this corresponds to a displacement

of the shared proton away from the O· · ·O axis. The region below 1000 cm−1 was finally

addressed in Ref. [44]. The spectrum is dominated by an intense and rather narrow peak

at 697 cm−1 which has been assigned to the shared proton motion along the O· · ·O axis.

In addition a small peak at 995 cm−1 with much weaker intensity was attributed to the

other perpendicular bending of the shared proton, compared to the previously observed

one at 1090 cm−1 . They have also observed one minor band at 940 cm−1 which might be

the combinations of the shared proton stretching and O· · ·O stretching. Full dimensional

quantum calculations [45, 46] based on diffusion Monte Carlo, vibrational configuration

interaction approaches and exact diagonalization have qualitatively interpreted the ob-

served bands detailed above.

Compared with the extensive investigations on charged water clusters, the protonated

ammonia cluster ions NH+4 (NH3)n have received much less attention. However, they do

play important roles in our everyday life such as nitrogen metabolism. The recent struc-

tural determination of an ammonia channel in an ammonia transporter protein [47] shows

the ammonia transport process is accomplished by breaking and reforming of HBs due to

different diffusion channels of protons and ammonia molecules. On the other hand, the

study of proton conduction along ammonia wires has been motivated by the experimental

work of Leutwyler et al. [48] on excited state hydrogen atom transfer along ammonia wire

–O–H· · ·NH3 · · ·NH3 · · ·NH3 · · ·N. These authors demonstrated unidirectional H-atom

transfer in the electronically excited state along the three-unit ammonia wire attached to
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an aromatic molecule [48]. In spite of its significant importance the mechanism of proton

transfer in this series of cations is still elusive due to insufficient investigations.

Early IR experimental investigations forn = 1− 10 have been restricted to the 2600-

4000 cm−1 range [49]. This study in particular suggested that in the smallest cluster,

H+·(NH3)2, the proton is equally shared between the two ammonia molecules, i.e., mid-

way between the two N atoms. Clusters withn = 5 − 8 have been considered in the

1045-1091 cm−1 region with emphasis on the size dependence of the symmetric bend

(ν2) vibration of NH3 reflecting the solvation shell structure [50]. The issue of spectral

signatures of solvation shell structures has also been addressed by an free electron laser IR

study of the spectral region from 1020-1210 cm−1 for n = 5−8 [51] and from 1070-1680

cm−1 for n = 3, 4 [52].

 600  800  1000  1200  1400  1600
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Figure 1.6: The IR spectra for NH+4 (NH3)n (n=1,4) clusters measured by the IRMPD

method. From bottom to top the size increases fromn = 1 to n = 4. The IRMPD

experimental data are provided by Asmis group.

It is only very recently that a systematic investigation on IR spectra of these cations has

been accomplished by Asmis group with IRMPD technique. The measured spectra region

is from 600 cm−1 to 1700 cm−1 as shown in Fig. 1.6. Systematic redshifts of the most

intensive bands with increasing cluster size have been observed. Forn = 1 the spectrum

of H+·(NH3)2·Ar has also been measured by Johnson group with IRVPD technique and

the two experiments agree well with each other for major bands. The IRMPD spectrum

involves absorption of many photons which makes it more likely to find all the IR active
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bands in the given region, however, may also artificially increase the intensities of multi-

photon bands. The IRVPD spectrum is more straightforward to interpret since only one

photon is absorbed before the dissociation of H+·(NH3)2·Ar but the absorption bands

structure may be perturbed by Ar messenger atom. To assign the measured IR bands we

should perform high level theoretical simulations.

From theoretical point of view there are several investigations of protonated ammonia

clusters by Meuwly et al. [53, 54, 55] using classical molecular dynamics together with

DFT or self-consistent charge density functional tight-binding derived forces. The focus

has been on proton conduction in free [53] and environmentally restricted [54] clusters,

as well as on the stability and isomerization of clusters [55]. In terms of IR spectroscopy

the predictions of Refs [53, 55] are based either on the harmonic approximation or on the

assumption of classical nuclei. For instance, Fourier transformation of the dipole-dipole

autocorrelation function along trajectories at 50 K for H+·(NH3)2 gave shared proton

stretching vibration at 1610 cm−1 , the NH3 umbrella vibration at 1000 cm−1 , and the

N· · ·N vibration at 465 cm−1 [55]. Forn > 1 only spectra in the region> 2000 cm−1 have

been reported in Ref. [55].

Apart from the IR spectra, some other experimental and theoretical techniques can

also provide valuable informations concerning HBs. For example, isotope effects [7] are

of substantial importance and utility. Experimental techniques such as NMR can directly

probe the geometric isotope effects (GIEs) [56] and the kinetic isotope effects (KIEs) [57].

From the theoretical point of view, the gas phase GIEs can be clearly elucidated by the

wavefunction and the condensed phase requires help of molecular dynamics. The KIEs

are ratios of the reaction rate constants involving different isotopomers. The rate constants

for high barrier reactions can be effectively predicted by classical transition state theory

[58] while more reliable description should be based on quantum mechanics [59, 60] for

the cases when tunneling is significant.

1.4 Goals and Structure of the Thesis

In this thesis we mainly focus on some prototypical hydrogen bonded clusters as reviewed

in the previous section. Different from previous calculations, most of which rely on har-

monic predictions and semi-classical simulations, we will do multidimensional quantum

dynamics. For this purpose we will develop a general theory for generating vibrational

Hamiltonian which can be straightforwardly applied to both free and constrained systems.

Then we will establish a reasonable reduced dimensional model to study the IR spectrum

of H+·(NH3)2 quantum mechanically and assign the very recent experimental spectrum
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shown in Fig. 1.6, which can not be well explained by previous theoretical investiga-

tions. We will also rationalize and apply harmonic predictions to assign IR spectra of

larger protonated ammonia clusters. Concerning the [HO· · ·H· · ·OH]− anion, there are

six isotopomers of which only two have been investigated with full dimensional quantum

dynamics. We will do full dimensional study for all the six isotopomers to get general

characteristics as well as to confirm or improve the previous results of geometric and en-

ergetic isotope effects. Finally our investigations will go to the condensed phase. We will

develop a new numerical realization of reaction rate constant calculations and illustrate

its applicability and predictability by preliminary calculations.

The subsequent chapters will be arranged in the following way. Chapter 2 provides

a general method for constructing the vibrational Hamiltonian and solving multidimen-

sional Schr̈odinger equation under the Born-Oppenheimer approximation as a theoretical

basis for the other chapters. In Chapter 3 multidimensional quantum calculations on ge-

ometry and IR spectrum of H+·(NH3)2 are performed with comparison to experiments.

Chapter 3 also presents the corresponding results for NH+
4 (NH3)n (n=2-4), for which the

harmonic approximation gives reasonable results. In Chapter 4 the full dimensional quan-

tum calculations of [HO· · ·H· · ·OH]− and all its different isotopomers are performed fo-

cusing on the energetic and geometric isotope effects. In Chapter 5 the major topic is

about the condensed phase. A general theory of reaction path/surface Hamiltonian and a

numerical method to calculate reaction rate constants are introduced. Then we generate

a model Hamiltonian based on 6-Aminofulvene-1-aldimine molecule and perform some

preliminary calculations. Chapter 6 summarizes the work presented in this thesis and

makes some brief remarks about ongoing and future work.



Chapter 2

Vibrational Hamiltonian Theory and

Method for Application

2.1 Introduction

In the last few decades detailed investigations on chemical reactions at the molecular level

have been accomplished both experimentally and theoretically. Concerning any theoret-

ical simulations the first task is to generate an appropriate system Hamiltonian. The full

system Hamiltonian contains the molecular part, the environmental part and their interac-

tion part. In general the molecular Hamiltonian can be generated on theab initio level

while the latter two parts have to be treated by parametrization, other semi-classical or

classical methods up to now. However, the molecular Hamiltonian is sufficient to describe

the gas phase phenomena since the coupling between a molecule and the environment is

ignorable. As for the condensed phase, the kernel part is still the molecular Hamiltonian.

The molecular Hamiltonian describes the Coulomb interaction between many elec-

trons and nuclei. Due to the significant difference in mass between an electron (me <

10−30 kg) and a nucleus (mnuc > 10−27 kg), one can consider the nuclei to be station-

ary on the time scale of electronic motion and the electrons relaxed to the ground state

before the next motion of nuclei. This approximation of separating electronic and nu-

clear motion is known as the Born-Oppenheimer approximation [61] and holds in general

if (me/mnuc)
1/4 ¿ 1. The expression for electronic Hamiltonian is trivial and in most

cases it will be directly solved by quantum chemistry programs like Gaussian [62] to pro-

vide PES for the vibration of the nuclei. In this chapter we only focus on the vibrational

Hamiltonian of the nuclei including the kinetic and potential energy operators which need

to be expressed in terms of appropriate variables to simplify the numerical calculations.

Most of the existing theoretical investigations mainly deal with reaction path/surface
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Hamiltonians which involve one or two large amplitude reaction coordinates while the

rest are approximated as small vibrations orthogonal to the reaction coordinates [63-67].

This kind of Hamiltonians have simple forms and make quite good approximations for

rigid systems. However it is inconvenient to describe floppy systems like strong hydro-

gen bonded systems with such Hamiltonians. As mentioned in the previous chapter the

strong hydrogen bonded systems contains correlated motion of many degrees of freedom.

In the following we introduce a concise method to generateab initio level vibrational

Hamiltonian in terms of arbitrary coordinates as well as the solution to the corresponding

multidimensional Schr̈odinger Equation.

2.2 Kinetic Energy Quantization

Let us first consider the kinetic energy quantization. The kinetic energy operator (KEO)

in terms of arbitrary coordinates has been discussed by Podlosky with intricate tensor

analysis [68] right after the foundation of the Schrödinger equation. Later studies are

to some extent based on the same mathematical techniques [69, 70, 71]. Approximate

KEOs using normal mode coordinates are widely adopted which go back to contribu-

tions by Eckart [72], Wilson [73], and Watson [74]. In particular, the Eckart equations

[72] enable one to determine an orientation of molecule fixed axes suitable for using nor-

mal modes. The details of the derivation of a rovibrational Hamiltonian can be found

in Ref. [73]. A significant simplification of this rovibrational Hamiltonian in terms of

normal coordinates has been achieved by Watson [74, 75]. In fact the Watson Hamilto-

nian served as a starting point for many later investigations and is implemented, e.g., in

the MULTIMODE program of Bowman, Carter, and coworkers [76]. In principle normal

mode coordinates provide a very compact representation of the PES which is taylored,

however, to the stationary point for which they have been defined. For large amplitude

motions away from this stationary point the above mentioned reaction surface approach

or the use of general curvilinear coordinates such as valance coordinates [71] are more

suitable. A detailed discussion of advantages and disadvantages of various coordinates

for rovibrational Hamiltonians has been presented, e.g., in Ref. [77].

In recent years Gatti and coworkers have developed a general scheme for deriving

a KEO with vector parametrization, i.e., the non-trivial coordinates are expressed with

N − 1 real vectors for a system ofN atoms [78, 79, 80]. This scheme is quite success-

ful and convenient for a full dimensional description [81]. However, often one needs a

reduced dimensional description for a constrained system [82, 83]. In general it is not

possible, or not convenient, to express the coordinates as components of real vectors for
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constrained systems. Numerical alternatives to the analytical determination of the KEO

have also been suggested in Ref. [84, 85]. Here we introduce a rather straightforward

physical method of kinetic energy quantization scheme which directly quantizes the clas-

sical Lagrange/Hamilton mechanics [86]. The method can be directly applied to both free

systems and constrained systems by following the same procedure summarized in Section

2.2.1.

2.2.1 General Theory for Kinetic Energy Quantization

In the present method we only consider the most common cases where the kinetic

energy includes purely quadratic terms and potential energy does not depend on

the velocity, though the generalization would be straightforward. The classical La-

grangian/Hamiltonian in terms of arbitrary variables can be written as

L(Q, Q̇, t) = T (Q̇)− V (Q) =
1

2
Q̇
†
MQ̇− V (Q)

H(Q,P ) = T (P ) + V (Q) =
1

2
P †M−1P + V (Q), (2.1)

whereQ andP are single column vectors of the generalized coordinates and correspond-

ing conjugate momenta, respectively. The generalized momentum vector is defined as

P = ∂L

∂
˙Q

= MQ̇. The generalized mass matrixM , normally a function of coordi-

nates, is defined to be Hermitian and “†” means Hermitian conjugate which is equivalent

to the transpose in classical mechanics. Classical trajectories can be obtained by this

Lagrangian/Hamiltonian provided initial conditions are known. To obtain the quantum

Hamiltonian operator, the major task is to obtain the quantum KEO in coordinate repre-

sentation.

Since the choice of coordinates is quite arbitrary in Eq. (2.1), we start with Cartesian

ones{X,PX}. In this section all the subscriptsX are associated with Cartesian coordi-

nates. The operator for each component of the momentum vector is Hermitian

(P̂X

†
)j = (P̂X)j = −i~ ∂

∂Xj

. (2.2)

For non-Cartesian coordinates we define the momentum operators in the same way as the

first order derivative operators

P̂ = −i~ ∂

∂Q
. (2.3)

To obtain the quantum KEO in terms of non-Cartesian coordinates, the coordinate

transformation between the Cartesian and non-Cartesian ones should be performed. Sup-

pose we know the relation between two sets of coordinates, which is just the way how we
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define the coordinates, as an invertible mappingQ = Q(X). The following relations can

be derived easily by exploiting the general rules of derivative of composite functions

Q̇ =
∂Q

∂X
Ẋ

P̂ =

(
∂X

∂Q

)†
P̂X

∂Q

∂X
=

(
∂X

∂Q

)−1

, (2.4)

where the matrix elements of the transformation matrices are defined as
(
∂Q

∂X

)

ij

=
∂Qi

∂Xj

(
∂X

∂Q

)

ij

=
∂Xi

∂Qj

. (2.5)

The above criteria to define elements of this kind of matrices is adopted in the whole

thesis, which means∂Q
∂Xj

is a single column vector while∂Xi

∂Q is a single row vector. Note

an operator ∂

∂Q is defined to be a single column vector. The quantum KEO in terms of

non-Cartesian coordinates can be obtained by this coordinate transformation

T̂ =
1

2
P̂X

†
M−1

X P̂X

=
1

2
P̂
† ∂Q
∂X

M−1
X (

∂Q

∂X
)†P̂ , (2.6)

whereMX is the diagonal Cartesian mass matrix consisting of real mass associated with

each Cartesian coordinate.

The momentum operator vectorP̂ can be replaced by the derivative operator accord-

ing to previous definition, i.e.,̂P = −i~ ∂

∂Q . However we should find out the expression

for the Hermitian conjugate of momentum operator (HCMO) vectorP̂
†
. Since one has

the relation between̂P and the Cartesian onêPX it is not difficult to directly apply the

definition of Hermitian conjugate to Eq. (2.4)

(
P̂
†)

i
=




((
∂X

∂Q

)†
P̂X

)†


i

=

(
P̂X

†∂X
∂Q

)

i

=
∑

j

(
P̂X

)
j

(
∂X

∂Q

)

ji

=
∑

j

(
∂X

∂Q

)

ji

(
P̂X

)
j
+

∑
j

[(
P̂X

)
j
,

(
∂X

∂Q

)

ji

]

=
(
P̂

)
i
+

∑
j

[(
P̂X

)
j
,

(
∂X

∂Q

)

ji

]
, (2.7)
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where the notation[Â, B̂] means the commutator of two operators.

Eq. (2.7) shows the non-Hermiticity of generalized momenta associated with the non-

Cartesian coordinates. Additional terms appear due to the non-commutability of the

Cartesian momenta and the transformation matrix. In some cases the new momenta are

still Hermitian provided we only perform a coordinate independent transformation, e.g.,

the rotation in three dimensional space or the normal modes transformation. Using the

basic commutator[X̂j, (P̂X)k] = i~δjk, Eq. (2.7) can be simplified as (see also Ref. [87])

(P̂
†
)k = (P̂ )k − i~

∑
j

(
∂

∂Xj

∂Xj

∂Qk

)◦
. (2.8)

Here the superscript◦ means a differential operator inside the bracket can not operate on

functions outside, namely the result is just a normal function of coordinates.

Eq. (2.8) clearly shows the relation between a momentum operator and its Hermitian

conjugate. It should be mentioned that any functions of coordinates{fj(Qj)} can be

multiplied from the left to the derivative operator in Eq. (2.3) for different schemes of

momenta quantization, i.e.,(P̂ )j = −i~ · fj(Qj) · ∂
∂Qj

is also an acceptable scheme.

Since this kind of momentum operators are generally non-Hermitian we actually have no

priority to setfj(Qj) = 1. For different schemes of momenta quantization, the HCMOs

will vary correspondingly to keep the KEO invariant. This enable us to optimize momenta

quantization schemes conveniently if necessary. In other words, with proper prepositioned

functions one can obtain desired forms of momentum operators, e.g., symmetric forms.

With Eq. (2.6) and Eq. (2.7) we get the general scheme of constructing KEOs in terms

of arbitrary coordinates. However, the final structure seems to be complicated and actually

it can be simplified. Now we compare Eq. (2.6) and Eq. (2.1) by considering the invariance

of the classical kinetic energy

T =
1

2
Q̇
†
MQ̇

=
1

2
Ẋ

†
MXẊ

=
1

2
Q̇
†
(
∂X

∂Q

)†
MX

∂X

∂Q
Q̇. (2.9)

Since Q̇ can be any vector we must have the relationM =
(

∂X
∂Q

)†
MX

∂X
∂Q . Cal-

culate the inverse of both sides we immediately see that the complicated central part
∂Q
∂X M−1

X

(
∂Q
∂X

)†
in Eq. (2.6) is exactlyM−1 in Eq. (2.1). The final KEO is therefore

simplified as

T̂ =
1

2
P̂
†
M−1P̂ . (2.10)
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This means we can directly exploit the result of Eq. (2.1) and quantize the generalized

momenta without the knowledge of the Cartesian kinetic energy. All we need are the gen-

eralized mass matrixM and the definition of coordinates which both appear in Eq. (2.1).

Therefore we can identify a concise and physically transparent scheme to construct

the KEO:

1. Get the classical kinetic energy and make sure the mass matrix is symmetric,

namely the same structure as Eq. (2.1),T (Q̇) = 1
2
Q̇
†
MQ̇.

2. Exploit Eq. (2.7) or Eq. (2.8) to express HCMOsP̂
†

in terms ofP̂ and some func-

tions ofQ.

3. Calculate the inverse matrix ofM hence the formal quantum KEO readŝT =
1
2
P̂
†
M−1P̂ .

4. ReplacêP by−i~ ∂

∂Q for coordinate representation.

The first step is quite familiar to everyone and one can choose arbitrary coordinates to

get the classical kinetic energy. Actually we will introduce a useful partition method in

Section 2.2.3 which will significantly simplify this issue. The remaining three steps are

quite straightforward to follow. We can see the major derivation effort is the second step

concerning the HCMOs according to Eq. (2.7) or Eq. (2.8). However, if the coordinates

are spherical coordinates the HCMOs are familiar to us. In Section 2.2.4 we will provide

a detailed study on the HCMOs in spherical coordinates.

After obtaining the KEO, we should also mention the volume element for integra-

tion. Since we start from Cartesian coordinates and all that we have done is a coordinate

transformation. That is to say, the Euclidean normalization remains correct

dτ = dτX =
∏

i

dXi = |Det

(
∂X

∂Q

)
|
∏

i

dQi. (2.11)

2.2.2 KEOs for Systems with Constraints

Reduced dimensional descriptions are always necessary for large systems. In the follow-

ing we will give the general description for systems with constraints. Consider a system

with some active coordinatesQ1 and some frozen coordinatesQ0. The full dimensional

coordinates and corresponding conjugate momenta read

Q =




Q1

Q0


 P =




P 1

P 0


 . (2.12)
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The constraint conditions are given bẏQ0 = 0. Thus we can obtain the constrained

classical kinetic energy

T =
1

2
Q̇
†
MQ̇

=
1

2

(
Q̇
†
1 Q̇

†
0

)



M 11 M 10

M 01 M 00







Q̇1

Q̇0




=
1

2
Q̇
†
1M 11Q̇1, (2.13)

whereM ij are corresponding sub-matrices.

To get the quantum KEO we have to rewrite the constraint conditions in terms of

momenta. According to the definition of momenta it is not difficult to find the following

relation



Q̇1

Q̇0


 =




M 11 M 10

M 01 M 00




−1 


P 1

P 0




=




A B

C D







P 1

P 0


 , (2.14)

where




A B

C D


 is the inverse of matrixM . Thus it is not difficult to rewrite the con-

straint conditions asCP 1 + DP 0 = 0 or P 0 = −D−1CP 1. After quantization we get

the constraint relation for the corresponding quantum operators, i.e.,P̂ 0 = −D−1CP̂ 1.

Based on this point we can obtain the quantum KEO

T̂ =
1

2
P̂
†
M−1P̂

=
1

2

(
P̂
†
1 P̂

†
0

)



M 11 M 10

M 01 M 00




−1 


P̂ 1

P̂ 0




=
1

2

(
P̂
†
1 (−D−1CP̂ 1)

†
)




A B

C D







P̂ 1

−D−1CP̂ 1




=
1

2
P̂
†
1

(
A − BD−1C

)
P̂ 1

=
1

2
P̂
†
1M

−1
11 P̂ 1. (2.15)
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The final result is quite compact. Compare Eq. (2.13) with Eq. (2.15) we find that

thesame procedurementioned in the full dimensional case can be followed provided we

only consider the active coordinates and completely ignore the frozen ones from the very

beginning when we generate the classical Lagrangian. This is an attractive point since the

present scheme only requires the classical Lagrangian for a constrained system which can

be obtained by traditional methods.

2.2.3 A General Method on the Partition of Classical Kinetic Energy

By now we have explained the general theory of kinetic energy quantization starting from

the classical Lagrangian. In the following we will introduce a method for obtaining the

classical kinetic energy with a partition technique which will greatly simplify the prob-

lem in most cases. It is quite convenient to divide a large system into small subsystems

especially when a subsystems has certain symmetry. If we divide a system intoN parts,

the division can be quite arbitrary, the kinetic energy is a sum of theN subsystems. Ac-

cording to the K̈onig theorem [88] we have the following relation

T =
N∑

i=1

T 0
i = T 0

C +
N∑

i=1

TC
i , (2.16)

whereTB
A is the kinetic energy of the partAwith respect to the reference frame defined by

B. Here0 is the laboratory reference frame andC is the center of mass reference frame.

In the special case whenN = 2 the kinetic energy can be written as

T = T 0
C + TC

1 + TC
2 ,

T = T 0
1 + T 0

2 = T 0
C1

+ TC1
1 + T 0

C2
+ TC2

2 . (2.17)

With the help of the two-body relationT 0
C1

+ T 0
C2

= T 0
C + TC2

C1
we finally have

TC
1 + TC

2 = TC1
1 + TC2

2 + TC2
C1
, (2.18)

whereCi is the center of mass of theith part andTC2
C1

is the kinetic energy of the center

of mass of the first part with respect to the center of mass of the second part. It is quite

transparent thatTC2
C1

= TC1
C2

since only two mass points are considered. In particular, if

the two parts are both single atoms we haveTC1
1 = TC2

2 = 0. Then Eq. (2.18) can be

simplified asTC
1 + TC

2 = TC2
C1

= TC1
C2

, which is quite familiar from two-body mechanics.

By exploiting Eq. (2.18) repeatedly we can easily express the total kinetic energy in terms

of kinetic energies of subsystems which are much easier to obtain. We will see this point

in the following chapters, e.g., Eq. (3.1). In the special case when all theN subsystems

are single atoms this procedure will leads to the kinetic energy in terms ofN − 1 Jacobi

vectors (also called mobile coordinates).
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2.2.4 Hermitian Conjugates of Momentum Operators

As mentioned in Section 2.2.1, the most tedious task for generating a KEO is to find out

the expressions for the HCMOs. As an example let us consider the two dimensional (2D)

polar coordinates{R, θ}. The classical kinetic energy and the coordinate transformation

between 2D Cartesian coordinates{x, y} are quite familiar to us

T =
1

2
mṘ2 +

1

2
mR2θ̇2

x = R cos θ

y = R sin θ. (2.19)

To derive the HCMOs we simply follow Eq. (2.8). The required derivatives are listed out

as follows

∂x

∂R
= cos θ =

x

R
∂y

∂R
= sin θ =

y

R
∂x

∂θ
= R sin θ = y

∂y

∂θ
= R cos θ = x. (2.20)

Based on above equations it is straightforward to obtain the final results

P̂ †R = P̂R − i~
(
∂

∂x

x

R
+

∂

∂y

y

R

)◦

= P̂R − i~

(
∂

∂x

x√
x2 + y2

+
∂

∂y

y√
x2 + y2

)◦

= P̂R − i~
R

P̂ †θ = P̂θ − i~
(
∂

∂x
y +

∂

∂y
x

)◦

= P̂θ. (2.21)

Then we can write out the 2D polar coordinates KEO expression which can be found in

many textbooks but they may not tell you why.

T̂ =
1

2m
P̂ †RP̂R +

1

2mR2
P̂ †θ P̂θ

= − ~
2

2m

(
∂

∂R
+

1

R

)
∂

∂R
− ~2

2mR2

∂

∂θ

∂

∂θ

= − ~
2

2m

1

R

∂

∂R
R
∂

∂R
− ~2

2mR2

∂2

∂θ2
. (2.22)
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Similarly, the KEO in terms of 3D spherical coordinates{R, θ, ϕ} can be obtained.

The coordinate transformation between 3D spherical coordinates and 3D Cartesian ones

{x, y, z} is defined as

x = R sin θ cosϕ

y = R sin θ sinϕ

z = R cos θ. (2.23)

Here we simply list out the corresponding HCMOs leading to the well known KEO for

3D spherical coordinates

P̂ †R = P̂R − 2i~
R2

= −i~ 1

R2

∂

∂R
R2

P̂ †θ = P̂θ − i~ cot θ = −i~ 1

sin θ

∂

∂θ
sin θ

P̂ †ϕ = P̂ϕ = −i~ ∂
∂ϕ

T̂ = − ~
2

2m

1

R2

∂

∂R
R2 ∂

∂R
− ~2

2mR2

1

sin θ

∂

∂θ
sin θ

∂

∂θ
− ~2

2mR2 sin2 θ

∂2

∂ϕ2
.

(2.24)

For more details please see Appendix A.

So far we mentioned everything in laboratory reference frame (LRF). In most cases

we may need one or more molecular reference frames (MRFs) to describe a molecule

in terms of its natural motions, e.g., bond lengths and bond angles. Please note that we

introduce MRF only to define coordinates. All the operators and equations in the thesis are

written in LRF unless with special comments. In the following we will study the HCMOs

associated with MRF spherical coordinates. Consider the LRF and a MRF defined by sets

of unit vectors{ex, ey, ez} and{ex′ , ey′ , ez′}, respectively. The relation between LRF

and MRF is just an orthogonal transformation characterized by the three Euler angles{ϑ,

φ, χ}
eα′ = Uz(φ)Uy(ϑ)Uz(χ)eα, (2.25)

whereα = x, y, z andUα is a rotation aroundeα. The MRF can be obtained by applying

three excessive rotationsUz(χ), Uy(ϑ) and Uz(φ) to the LRF. The expression for the

rotational transformation matrixUα and more details can be found in Appendix A.

Now let us consider a vectorRj characterized by three spherical coordinates{Rj, θj,

ϕj} in the MRF. According to Appendix A we can expressRj as

Rj = RjUz(φ)Uy(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez. (2.26)
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This is a vector equation and we can obtain the Cartesian coordinates ofRj in the LRF by

projecting the equation onto each LRF axis. Based on Eq. (2.26) we can exploit Eq. (2.8)

to derive the expressions for HCMOs associated with MRF coordinates. The details are

shown in Appendix A. The final results are quite concise and they actually have the same

expression as those associated with LRF spherical coordinates. That is to say, for the

momentum operators associated withRj (Rj, θj, ϕj) the following relations are still

valid

P̂ †Rj
= P̂Rj

− 2i~
R2

j

= −i~ 1

R2
j

∂

∂Rj

R2
j

P̂ †θj
= P̂θj

− i~ cot θj = −i~ 1

sin θj

∂

∂θj

sin θj

P̂ †ϕj
= P̂ϕj

= −i~ ∂

∂ϕj

. (2.27)

Appendix A also confirms that the momentum operators associated with MRF Cartesian

coordinates are Hermitian. One no longer need to take effort to derive the expressions for

HCMOs provided one uses spherical coordinates, Cartesian coordinates or combinations

of both, no matter they are defined in the LRF or MRFs.

2.2.5 Angular Momentum and Rotation

For a system withN atoms we have3N degrees of freedom (DOFs). Not all the3N

DOFs are important for certain topics. They are normally divided into three translational

DOFs, three rotational and3N − 6 vibrational ones. The three translational DOFs can be

separated while the rest3N − 3 DOFs are coupled. In general the rotational excitation

energies are quite small compared with the vibrational ones therefore the two parts are

approximately separated in many cases. It is better to express KEO as sum of the two

parts and their coupling. As a consequence we need to introduce the angular momentum

J which describes the rotational DOFs.

We can use three angles and3N − 6 other coordinates to describe the coupled ro-

tational and vibrational motions of the system. Specifically, we exploit 3D vectorQrot

defined as

Q†
rot = ( ϑ φ χ )

containing the three Euler angles which connects the LRF and MRF according to

Eq. (2.25). In this Section the subscriptrot is related to rotation. The kinetic energy
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and total angular momentum are defined as

2T =
N∑

i=1

miṘi
†
Ṙi

J =
N∑

i=1

miRi × Ṙi, (2.28)

where× means vector product. The matrix product of a single row matrix and a single

column one is equivalent to scalar product of two vectors. Note thatQ̇rot is the angular

velocity of MRF. Therefore the velocities can be re-expressed as

Ṙi = Q̇rot ×Ri + Ṙ′
i, (2.29)

whereṘ′
i is the velocity ofRi measured in the MRF. With the help of Eq. (2.29) and the

following vector algebra relations

R1 × (R2 ×R3) = (R†
1R3)R2 − (R†

1R2)R3

R†
1(R2 ×R3) = R†

2(R3 ×R1) = R†
3(R1 ×R2)

(R1 ×R2)
†(R1 ×R2) = R2

1R
2
2 − (R†

1R2)
2

we can rewrite the kinetic energy and angular momentum

2T =
N∑

i=1

mi

(
R2

i Q̇
†
rot

˙Qrot − (Q̇
†
rotRi)

2 + Ṙ′
i

†
Ṙ′

i + 2Q̇
†
rot(Ri × Ṙ′

i)
)

J =
N∑

i=1

mi

(
R2

i Q̇rot − (Q̇
†
rotRi)Ri + (Ri × Ṙ′

i)
)
. (2.30)

Using Eqs. (2.30) it is straightforward to derive the following relation

J =
∂T

∂Q̇rot

. (2.31)

This is exactly the definition of the generalized momentum vectorP rot associated with

the three Euler angles.

Now we can draw the following important conclusion. If the set of coordinates con-

tains the three Euler angles{ϑ, φ, χ} which characterize the transformation between the

LRF and a MRF, the total angular momentum vector is just the generalized momentum

vector associated with the three Euler angles

Jϑ = Pϑ =
∂T

∂ϑ̇

Jφ = Pφ =
∂T

∂φ̇

Jχ = Pχ =
∂T

∂χ̇
J = eϑ̇Pϑ + eφ̇Pφ + eχ̇Pχ. (2.32)
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Since we may not have much idea about the directions of the angular velocities{eϑ̇, eφ̇,

eχ̇}, it is better to transform the expressions to the Cartesian components [73] in the LRF

Jx = sinχPϑ − cscϑ cosχPφ + cotϑ cosχPχ

Jy = cosχPϑ + cscϑ sinχPφ − cotϑ sinχPχ

Jz = Pχ. (2.33)

With the help of Eq. (2.33) it is straightforward to express the KEO in terms of total

angular momentum and generalized momenta associated with vibrational DOFs. In other

words, starting from Eq. (2.30) the KEO can be readily expressed as contributions of

rotational part, vibrational part and their coupling. A detailed example can be found in

Appendix B.

In reality when we study rotational motions we can assume all the generalized mo-

menta associated with the vibrational DOFs are equal to zero since the vibrational ex-

citations need much higher energy. On the other hand when we study the vibrational

dynamics the rotational states may change simultaneously. However since the rotational

excitation energies are much smaller we can normally ignore their influence on the posi-

tion of each vibrational band of the spectrum. In addition, experiments can not distinguish

rotational excitations. They only observed broadening for each vibrational band which is

due to the combination with rotational excitations. Consequently we can setĴ = 0,

namelyP̂ϑ = P̂φ = P̂χ = 0 for investigations on vibrational DOFs.

2.3 Generating Multidimensional Potential Energy Sur-

face

Compared to the KEO, the potential energy operator in coordinate representation is rela-

tively easy to obtain since it is just a normal function. The most simple way to generate

the PES is to calculate point by point for the required configurations. However, the di-

rect scanning of all required configurations may be quite time demanding. Even if we

only scan10 points for each degree of freedom, which will not give results of high ac-

curacy, we still need10ND data points forND-dimensional system. It is only possible

for molecules with no more than three atoms provided we need sufficiently accurate PES.

Thus we have to resort to other methods to reduce the calculation effort while maintain-

ing the accuracy. Correlation expansion [89] of high dimensional PES is a quite good

choice for large molecules since it only needs several low dimensional PESs instead of

one high dimensional one. In the following we will reproduce correlation expansions of

multidimensional functions in terms of different correlation orders in a concise way.
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2.3.1 PES Expansion with Correlation Orders

Considering any multidimensional functionV (Q), we can write the Taylor expansion of

this function as

V (Q) = [Ô(Q)V (Q = 0)]

Ô(Q) = 1 +
∑

i

Qi
∂

∂Qi

+
1

2!

∑
ij

QiQj
∂2

∂Qi∂Qj

+ · · · , (2.34)

where the vectorQ contains all the variables. We show some simple case ofÔ(Q) for

reduced dimensional situations in the following equations

Ô(Qi) =
∑

n

Qn
i

n!

∂n

∂Qn
i

= 1 +Qi
∂

∂Qi

+
1

2!
Q2

i

∂2

∂Q2
i

+ · · ·

Ô(QiQj) =
∑
mn

Qm
i Q

n
j

(m+ n)!
(
∂

∂Qi

)m(
∂

∂Qj

)n

= 1 +Qi
∂

∂Qi

+Qj
∂

∂Qj

+
1

2!

(
Q2

i

∂2

∂Q2
i

+Q2
j

∂2

∂Q2
j

+ 2QiQj
∂2

∂Qi∂Qj

)
+ · · · ,

(2.35)

whereÔ(QiQj) means all the other components ofQ are zero exceptQi andQj.

Provided we can tolerate the error of neglecting third and higher correlation orders we

can rewrite the operator̂O(Q) as a combination of low-dimensional operators

Ô(Q) = 1 +
∑

i

Qi
∂

∂Qi

+
1

2!

∑
ij

QiQj
∂2

∂Qi∂Qj

+ · · ·

= 1 +
∑

i

[Ô(Qi)− 1] +
1

2!

∑

i6=j

[Ô(QiQj)− Ô(Qi)− Ô(Qj) + 1] + · · ·

=
1

2
(ND − 1)(ND − 2)− (ND − 2)

∑
i

Ô(Qi) +
∑
i<j

Ô(QiQj) + · · · ,

(2.36)

whereND is the dimension ofQ. The final expansion of multi-dimensional function in

terms of low-dimensional functions (Accurate up to the second correlation order) reads

V (Q) =
1

2
(ND−1)(ND−2)V (0)− (ND−2)

∑
i

V (Qi)+
∑
i<j

V (QiQj)+ · · · . (2.37)

From Eq. (2.37) we can see only some two-dimensional PESs are needed to expand the

high dimensional PES provided the accuracy up to second correlation order is sufficient.
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In general, this kind of correlation expansion for PES in terms of bond lengths and bond

angles converges faster than the normal Taylor expansion since the correlation expansion

includes some high order contributions of the normal Taylor expansion. With the help of

Eq. (2.37) the total number of data points required is only1
2
ND(ND − 1)N2

s , whereNs is

data points needed for each single dimension (assuming they are equal). The numerical

simulation in the next chapters are based on the expansion of Eq. (2.37).

To gain the physical meaning of Eq. (2.37), we would like to introduce another equiv-

alent form. Reset the energy reference such thatV (1)(Qi) = V (Qi) − V (0) and define

the correlation part of two dimensional functionV (2)
cor (QiQj) = V (QiQj) − V (1)(Qi) −

V (1)(Qj)− V (0). We can rewrite Eq. (2.37) as

V (Q) = V (0) +
∑

i

V (1)(Qi) +
∑
i<j

V (2)
cor (QiQj) + · · · . (2.38)

The expansion form of Eq. (2.38) is the same with that reported in Ref. [89]. The meaning

of each term in Eq. (2.38) is quite transparent and can be easily generalized to including

higher orders of correlations. In general any function can be divided into uncorrelated

parts and different orders of correlated parts.

2.3.2 Fitting of PES within Predefined Symmetry

In some cases the PESV (Q) should be fitted to an analytical function for efficient nu-

merical simulation. PES fitting also provides the opportunity to decrease the quantum

chemistry calculation effort by scanning densely around important configurations and

sparsely for trivial area. However the fitting should conserve the symmetry of the PES

to give convincing results. The most simple way is to linearly combine predefined basis

functions{φS
n(Q)} which have the same symmetry asV (Q)

V (Q) =
∑

n

cnφ
S
n(Q). (2.39)

Various effective fitting methods can be found from previous studies [92, 93]. Here we

briefly recall the most simple and common one, the least square method, which minimize

the sum of squared residuals. Suppose we have a set of data{Qi, Vi} and the fitting form

shown in Eq. (2.39). The sum of squared residuals∆ is defined by

∆ =
∑

i

(Vi − V (Qi))
2

=
∑

i

(
Vi −

∑
n

cnφ
S
n(Qi)

)(
Vi −

∑
n

cnφ
S
n(Qi)

)

≡ (V − Fc)†(V − Fc)

= V †V + c†(F†Fc− 2F†V ), (2.40)
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where the vectorV andc contain the data points{Vi} and coefficients{cn}, respectively.

And the matrixF is defined byFin = φS
n(Qi). Note that in the third line of the above

equation we change the explicit summation to matrix product to simplify the notation and

derivation. The optimized coefficients can be obtained by solving the linear equations

{ ∂∆
∂cn

= 0} which in matrix notation is simply

∂∆

∂c
= F†Fc− F†V = 0

c = (F†F)−1F†V . (2.41)

We only need to calculate the inverse of a real symmetric matrixF†F which is numerically

straightforward. If we add an additional weight0 < wi < 1 to each point{Qi, Vi} the

final result becomesc = (F†WF)−1F†WV with Wij = wiδij.

2.4 Solving Multidimensional Schr̈odinger Equation

Having the vibrational Hamiltonian at hand we can directly solve the Schrödinger equa-

tion to interpret the phenomena we are interested in. Any observables can be obtained

with the help of the time dependent wave function which is the solution of the time de-

pendent Schr̈odinger equation

i~
∂

∂t
Ψ(Q, t) = HΨ(Q, t), (2.42)

whereQ denotes a set of general coordinates. For stationary phenomena we can alterna-

tively solve the time independent Schrödinger equation

HΨn(Q) = EnΨn(Q), (2.43)

whereEn andΨn(Q) are thenth eigen energy and eigenstate, respectively. Once we

have the solution of the time independent Schrödinger equation we can easily write the

solution of the time dependent one as

Ψ(Q, t) =
∑

n

cne
−iEnt/~Ψn(Q), (2.44)

wherecn is the overlap integral between the initial stateΨ(Q, t = 0) andΨn(Q). The

solution of the time dependent Schrödinger equation tends to be less time consuming

as compared with the time independent one. However, the calculation effort for both

cases increases exponentially with the dimension which strongly hampers any attempt

of treating multidimensional systems with numerically exact methods. Among several

schemes of speeding up the calculations, the MCTDH method [29, 90] as implemented
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in the Heidelberg program package [91] developed by Meyer and coworkers provides a

quite good approximation with only slight loss of accuracy, which makes fairly accurate

solution of multidimensional Schrödinger equations possible. In the following Sections

2.4.1 - 2.4.2 we briefly review the essence of MCTDH for propagation of wave packets

and calculation of stationary eigenstates [90].

2.4.1 Propagation of Wave Packets

The idea is borrowed from the MCSCF method in the many-electron theory. The multi-

dimensional wave packet is expanded as a sum of Hartree products

Ψ(Q, t) =

n1∑
ν1=1

· · ·
nN∑

νN=1

Aν1,··· ,νN
ϕ(1)

ν1
(Q1, t) · · ·ϕ(N)

νN
(QN , t), (2.45)

where{Aν1,··· ,νN
} are time-dependent coefficients and{ϕ(j)

νj (Qj, t)} are time dependent

single particle functions (SPFs) which can be expanded as a superposition of time inde-

pendent primitive basis functions in the traditional way. The discrete variable represen-

tation (DVR) is adopted to represent each SPF [90]. Different from the direct expansion

in terms of time independent basis functions, the MCDTH method needs a much smaller

number of optimized SPFs since they only cover necessary grid points for each specified

moment of time. Fig. 2.1 clearly tell us how the SPFs adapt their shapes according to the

time evolution of the wave packet.

Figure 2.1: Schematic view of the SPFs{ϕ(j)} following the motion of the time dependent

wave packetΨ. Figure adapted from Ref. [34]

The equations of motion of the time-dependent coefficients{Aν1,··· ,νN
} and SPFs

{ϕ(j)
νj (Qj, t)} can be derived by replacing the wave functionΨ(Q, t) in the time dependent
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Schr̈odinger equation by the expression in Eq. (2.45). The MCTDH working equations are

coupled time derivative equations of{Aν1,··· ,νN
} and{ϕ(j)

νj (Qj, t)} which can be solved

by varies numerical integration methods.

The propagation of a MCTDH type of wave packet is quite efficient provided the

Hamiltonian is a sum of products of single particle operators. The kinetic energy part

of the Hamiltonian is automatically a sum of products as can be seen in Section 2.2. To

efficiently exploit MCTDH we have to fit the PES into a sum of products. Concerning

available PES with sufficient accuracy, up to now the highest dimensional one is 15D as

reported by Bowman group [92] for the Zundel cation H+·(H2O)2. They have used least

square fitting with 7962 basis functions. This seven atom case reaches the limits of both

the fitting and the quantum chemistry capability of present computers. Apart from the

most simple least square fitting, a more applicable fitting scheme especially for medium

high dimension has been proposed in Ref. [93]. Combining the expansion technique

introduced in Section 2.3.1 and a proper fitting method one can generate high dimensional

PES with sufficient accuracy.

2.4.2 Calculation of Stationary Eigenstates

The relaxation method [94] is a quite general method to generate especially the ground

state wave function. The basic idea is to propagate in imaginary time domaint = −iτ to

decrease the energy of an initial guess wave packet to approach the ground state energy.

In this case the solution in Eq. (2.44) becomes

Ψ(Q, t) =
∑

n

cne
−Enτ/~Ψn(Q). (2.46)

The above equation shows that the components of each eigenstate decay exponentially

at a rate proportional to the corresponding eigenvalue, i.e., all the other eigenstates de-

cay faster than the ground state. If we simply normalize the wave function after each

propagation time step we can get the ground state wave function when the propagation is

sufficiently long, i.e., the components of all the other eigenstates decay to zero.

Basically following the same idea we can get the first excited state provided we first

project out the ground state from the Hilbert space, i.e.,Ψ(Q, t = 0) replaced by(1 −
P̂0)Ψ(Q, t = 0) andH replaced by(1 − P̂0)H(1 − P̂0) with P̂0 = |Ψ0〉〈Ψ0|. However

to obtain then-th excited states we have to calculate all then − 1 lower energy excited

states. In MCTDH the ground state is obtained by relaxation while the excited states are

obtained by so called improved relaxation [95].

The improved relaxation starts from an initial state close to the desired excited state

and the iteration procedure is described as follows:
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1. Initial guess of SPFs{ϕ(j)
νj (Qj, t = 0)}

2. Use the basis set of{ΦJ = ϕ
(1)
ν1 (Q1, t = 0) · · ·ϕ(N)

νN (QN , t = 0)} to generate the

Hamiltonian matrixHJK = 〈ΦJ |H|ΦK〉

3. Diagonalize the Hamiltonian matrix, get the eigenvector{AJ} which corresponds

to the desired excited state

4. The approximated wave function isΨ =
∑

J AJΦJ which determines the equation

of motion of SPFs{ϕ(j)
νj (Qj, t)}

5. Propagate{ϕ(j)
νj (Qj, t = 0)} in imaginary time to generate new single particle func-

tion {ϕ(j)
νj (Qj, t = ∆t)}

6. Go to step 2 until convergence

Different from a MCTDH wave packet propagation, where both{ΦJ} and{AJ} are ob-

tained by integrating corresponding time derivative equations, improved relaxation ob-

tains{AJ} by diagonalizing the Hamiltonian matrix under the basis set of{ΦJ}. It has

been shown that this method converges to the eigenstates that correspond to the variational

principle applied to the MCTDH ansatz for the wave function [95].

2.5 Summary

In this chapter a concise method for generating vibrational Hamiltonian is described in

detail which is the fundamental starting point for numerical simulations of the coming

chapters. In addition we have also briefly reviewed the efficient MCTDH package [91]

for solving multidimensional Schrödinger equations. The Hamiltonian can be constructed

in terms of arbitrary coordinates which enables us to use coordinates most suitable for the

natural motions of a molecule. In particular, it is a quite appropriate level of theory for

strong hydrogen bonded systems since multidimensional large amplitude coordinates are

treated efficiently. In Chapter 3 and 4 the applications of the method mentioned above to

strong hydrogen bonded systems for multi- or full- dimensional quantum simulations will

be performed.
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Chapter 3

Models of Hydrogen Bonds in

Protonated Ammonia Clusters

3.1 Introduction

Recent experiment of ammonia transporter proteins [47] implies that hydrogen bonding

and transfer in protonated ammonia cluster cations, NH+
4 (NH3)n as shown in Fig. 3.1,

may play an important role in nitrogen metabolism. Direct hydrogen atom transfer along

ammonia wires [48] has also been observed which in turn triggers the study of direct

proton conduction. To fully interpret the fundamental processes involving these cations

requires extensive investigations at the molecular level. However, the previous investiga-

tions, no matter experimental or theoretical ones, capture little essence concerning the HB

dynamics. As outlined in the introduction, IR spectroscopy can give valuable information

on the properties of HBs.

In the following Section 3.2 we provide a multidimensional quantum simulation for

N2H
+
7 focusing on the IR characteristics of the HB. A reduced 6D Hamiltonian is gener-

ated and solved by the method introduced in Chapter 2. We further compare our theoreti-

cal results of the geometry and IR spectrum with some previous investigations as well as

a very recent IR spectrum below 2000 cm−1 measured by Asmis and coworkers [96, 97].

In Section 3.3 the larger clusters (n = 2 − 4) are investigated. We have studied the po-

tential curves along the proton transfer coordinate to rationalize the validity of harmonic

predictions and compared the harmonic IR spectra with experiment.
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Figure 3.1: Equilibrium configurations of the protonated ammonia clusters NH+
4 (NH3)n

as obtained using MP2/aug-cc-pVTZ* (n = 1) and MP2/6-311+G(d,p) (n = 2 − 4)

optimization. In this chapter when we say MP2/aug-cc-pVTZ it actually means the MP2

level of theory with the aug-cc-pVTZ and cc-pVTZ basis set for N and H, respectively.

3.2 Geometry and IR Spectrum of N2H+
7

We first focus on the protonated ammonia dimer N2H
+
7 . Using quantum chemistry op-

timization, which treats all the nuclei classically, the two most important equilibrium

configurations shown in Fig. 3.2 are obtained with Gaussian03 [62] program. The min-

imum configuration hasC3v symmetry with the proton located asymmetrically with re-

spect to the two terminal ammonia groups while the transition state hasD3d symmetry

with the proton exactly in the center. The central proton can transfer between two equiv-

alent minimum configurations via a transition state by overcoming the potential barrier

which is characterized by the energy difference of the minimum and transition state con-

figurations if one ignore the zero point energy (ZPE) correction. The barrier height at

the MP2/aug-cc-pVTZ level of theory is 267 cm−1 and increases to 353 cm−1 if we apply

the CCSD(T)/aug-cc-pVTZ method to the MP2 geometries. The barrier is quite shallow

due to strong hydrogen bonding no matter which level of quantum chemistry method is

concerned. Such a low barrier means a rapid proton translocation between two equivalent
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minima.

Figure 3.2: Minimum and transition state configurations of N2H
+
7 obtained by MP2/aug-

cc-pVTZ level of theory.

However, conflicting with the classical minimum, the IR spectroscopy experiment in

the 2600-4000 cm−1 range by Lee and coworkers [49] leads to the conclusion that N2H
+
7

should haveD3h symmetry. This point is also studied quantum mechanically by a one-

dimensional model in Ref. [98]. Concerning the IR spectrum, recent experiments find

rich vibrational bands while the harmonic approximation predicts nothing in the region

from 500 cm−1 to 1100 cm−1 irrespective of the reference geometry, i.e., minimum or

transition state configuration. Therefore only a theoretical investigation beyond the har-

monic approximation is expected to provide reasonable assignments. As has been pointed

out in Chapter 1, multidimensional quantum simulation is the most appropriate level of

theory to investigate this kind of strong hydrogen bonded systems especially concerning

the dynamics of HBs.
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3.2.1 Reduced Dimensional Hamiltonian Operator for N2H+
7

In the following we will provide a reduced dimensional model Hamiltonian for the N2H
+
7

cation which is based on internal coordinates. Consisting of 9 atoms, N2H
+
7 in principle

has 21 internal coordinates to compose the full dimensional Hamiltonian for the total

angular momentumJ2 = 0. Focusing on that part of the spectrum which is influenced by

the shared proton motion, one can adopt a reduction by taking into account the following

two conditions: (i) experimental data suggest that the relevant energy range is presumably

below 1000 cm−1 , but might extend into the< 1500 cm−1 range due to combination

bands and (ii) symmetry selection rules dominate the anharmonic couplings especially in

this low-energy range.

We first assume that the C3 symmetry of the N2H6 fragment, i.e., excluding the central

proton, will not be broken. Second, the length of the N-H covalent bonds shall be fixed.

These constraints leave seven internal coordinates to describe the system as shown in Fig.

3.3, i.e., the shared proton stretching and bending with respect to the center of mass of

the rest N2H6 fragment,z, x, andy, the relative motion of the centers of mass of the two

ammonia,R, the umbrella type motion of the two ammonia,θ1 andθ2, and the rotation

(torsion) of the NH3 fragments with respect to each other,ϕ. Noteθ1 or θ2 characterizes

the simultaneous equal-amplitude-wags of the three NH bonds which always keep the C3

symmetry of the N2H6 fragment. The details are visualized in Fig. 3.4.

Figure 3.3: Definition of the seven active coordinates of the reduced N2H
+
7 model. The

origin of the MRF is the center of mass and thez axis is along the N· · ·N line.

To setup the Hamiltonian for this 7D model we first generate the KEO exploiting the

approach detailed in Chapter 2. For the seven active coordinates in Fig. 3.3 the classical

kinetic energy with all other internal coordinates frozen can be obtained by exploiting
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Eq. (2.18) repeatedly

T = T
(H)
H + T

(N2H6)
N2H6

+ T
(N2H6)
(H) = T

(N2H6)
N2H6

+ T
(N2H6)
(H)

T
(N2H6)
N2H6

= T
(NH3)
NH3

+ T
(N ′H′

3)

N ′H′
3

+ T
(N ′H′

3)

(NH3)

T
(NH3)
NH3

= T
(H3)
H3

+ T
(N)
N + T

(H3)
(N) = T

(H3)
H3

+ T
(H3)
(N) ,

where(AB) is the center of mass ofAB and the equivalent atoms are simply distinguished

by the prime symbol. Combining the above three equations we finally get the classical

kinetic energy in terms of sub-systems

T = T
(N2H6)
(H) + T

(N ′H′
3)

(NH3) +
(
T

(H3)
H3

+ T
(H3)
(N)

)
+

(
T

(H′
3)

H′
3

+ T
(H′

3)

(N ′)

)
(3.1)

Figure 3.4: Schematic view to construct the classical kinetic energy of NH3 fragment.

The notation H3 means the center of mass of the three H atoms. Left: direction ofC3 axis

(z axis). Center: Motion of NH3 fragment (rotation is not shown). Right: Plane of the

three H atoms.

Consider the three Euler angles which connect the LRF and the MRF{ϑ, φ, χ} ac-

cording to Appendix A, whereϑ andφ are defined as the two direction angles of the MRF

z axis in the LRF. We will obtain each term in Eq. (3.1) in the following. The kinetic

energy of the central proton with respect to the center of mass of the N2H6 fragment reads

(notex, y, andz are MRF coordinates)

T
(N2H6)
(H) =

1

2
µpż

2 +
1

2
µpẋ

2 +
1

2
µpẏ

2 + Tp(ϑ̇, φ̇, χ̇),

whereµp = 2mH(3mH+mN )
7mH+2mN

. According to Eq. (2.30)T (N2H6)
(H) should includes four parts, of

which three involve the MRF rotational velocities and the other one is the kinetic energy

measured in the MRF. The three rotation related parts include the Coriolis type couplings

and rotational energy. These terms are simply denoted byTp(ϑ̇, φ̇, χ̇) here and they are

very small in the case when the total angular momentum is zero. The two relative motions

NH3· · ·NH3 and N· · ·H3 are along thez axis of the MRF which can be described by

spherical coordinates in the LRF according to the definition of the MRF in Appendix A.
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According to Fig. 3.3 and Fig. 3.4 we have the following kinetic energy

T
(NH3)
(NH3) =

1

2
µRṘ

2 +
1

2
µRR

2
(
ϑ̇2 + φ̇2 sin2 ϑ

)

T
(H3)
(N) =

1

2
µ(N−3H)

(
d(R0cosθi)

dt

)2

+
1

2
µ(N−3H)(R0cosθi)

2
(
ϑ̇2 + φ̇2 sin2 ϑ

)
,

whereµR = 1
2
(3mH + mN), µ(N−3H) = 3mHmN/(3mH + mN), andR0 = 1.017Å is

the free N-H covalent bond length calculated at the MP2/aug-cc-pVTZ level of theory.

The termT (H3)
H3

characterizes the three hydrogen atoms motion in their center of mass

reference frame. According to the right panel of Fig. 3.4 we have

T
(H3)
H3

= 3 · 1

2
mH

(
d(R0sinθi)

dt

)2

+ 3 · 1

2
mH(R0sinθi)

2ϕ̇2
i +

1

2
Iϑϑ̇

2 +
1

2
Iφφ̇

2,

where the last two terms characterize the rotational energy which are unnecessary to be

written in detail as will be seen in the following. Due to theC3v symmetry the Coriolis

type couplings are canceled with each other. The orientation angle of each individual

ammonia is denoted byϕ1,2 and only the difference between them is the torsion shown in

Fig. 3.3. Their linear combination which characterize the rotation of the N2H6 fragment

will be defined as the third Euler angleχ in the following.

For an isolated system, apart from the translation of the center of mass which can be

separated, the global rotation can be characterized by pure numbers since[Ĵ2, Ĥ] = 0

and their common eigenstates can be classified by the eigenvalues ofĴ2. As discussed in

Section 2.2.5, we will only study the vibrations for the total angular momentumJ = 0.

In the following we assumeTp(ϑ̇, φ̇, χ̇) = 0 for J = 0. This approximation is equiv-

alent to neglecting the coupling of the angular momenta of the central proton and the

N2H6 fragment forJ = 0. According to Section 2.2.5 we haveJ = ∂T

∂
˙Qrot

, where

QT
rot = ( ϑ φ χ ). With the help of this relation we can immediately see thatJ = 0 is

equivalent toϑ̇ = φ̇ = χ̇ = 0 for Tp(ϑ̇, φ̇, χ̇) = 0.

After applying the conditioṅϑ = φ̇ = 0 we simplify the kinetic energy as

T =
1

2
µpż

2 +
1

2
µpẋ

2 +
1

2
µpẏ

2 + µRṘ
2 +

3mHmN

2(3mH +mN)
R2

0

(
θ̇2
1sin2θ1 + θ̇2

2sin2θ2

)

+
3

2
mHR

2
0

∑
i=1,2

(θ̇2
i cos2θi + ϕ̇2

i sin2θi)

=
1

2
µpż

2 +
1

2
µpẋ

2 +
1

2
µpẏ

2 +
1

2
µRṘ

2 +
1

2
Ivib(θ1)θ̇

2
1 +

1

2
Ivib(θ2)θ̇

2
2

+
1

2
Irot(θ1)ϕ̇

2
1 +

1

2
Irot(θ2)ϕ̇

2
2, (3.2)

where Ivib(θ) = I0(cos2θ + mN

3mH+mN
sin2θ), Irot(θ) = I0sin2θ, and I0 = 3mHR

2
0.

Exploiting the relative rotation (torsion)ϕ = ϕ2 − ϕ1 and the global rotationχ =
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(Irot(θ1)ϕ1 + Irot(θ2)ϕ2) / (Irot(θ1) + Irot(θ2)) as new variables we can rewrite the ki-

netic energy. Apply the conditioṅχ = 0 and we finally get the kinetic energy forJ = 0

T =
1

2
µpż

2 +
1

2
µpẋ

2 +
1

2
µpẏ

2 +
1

2
µRṘ

2

+
1

2
Ivib(θ1)θ̇1

2
+

1

2
Ivib(θ2)θ̇2

2
+

1

2
Itor(θ1, θ2)ϕ̇

2, (3.3)

where the reduced moment of inertia for the torsion isItor(θ1, θ2) = Irot(θ1) ∗
Irot(θ2)/(Irot(θ1) + Irot(θ2)). According to the general procedure detailed in Section

2.2.1 we can obtain the following quantum KEO

T̂ =
1

2µp

P̂z
†
P̂z +

1

2µp

P̂x
†
P̂x +

1

2µp

P̂y
†
P̂y +

1

2µR

P̂R
†
P̂R

+
1

2
P̂θ1

†
Ivib(θ1)

−1P̂θ1 +
1

2
P̂θ2

†
Ivib(θ2)

−1P̂θ2 +
P̂ϕ

†
P̂ϕ

2Itor(θ1, θ2)
.

(3.4)

Now check the seven coordinates we adopted. Three of them are Cartesian and the rest

four are spherical coordinates defined in the MRF. According to Section 2.2.4 we can

write out the HCMOs

P̂α
†

= P̂α, α = x, y, z

P̂R
†

= P̂R − 2i~
R

P̂θj

†
= P̂θj

− i~cotθj, j = 1, 2

P̂ϕ
†

= P̂ϕ. (3.5)

The final KEO together with the Euclidean normalization condition are given as follows

T = − ~2

2µp

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− ~2

2µ
R

1

R2

∂

∂R
R2 ∂

∂R

− ~2

2Itor(θ1, θ2)

∂2

∂ϕ2
− ~

2

2

∑
i=1,2

1

sin θi

∂

∂θi

sin θi

Ivib(θi)

∂

∂θi

dτ = R2 sin θ1 sin θ2dxdydzdRdθ1dθ2dϕ. (3.6)

The torsion angleϕ of the two NH3 fragments can be separated from the other six

variables if the potential energy does not depend on it. We have confirmed that the ab

initio potential energy surface depends only very weakly on this angle (the barrier is as

low as 12 cm−1 based on an MP2/aug-cc-pVTZ level of investigation). Moreover, there is

a clear separation between the rotational and vibrational excitation energies. The former

is only several cm−1 while the latter is several hundred cm−1 . Thus, we can separate this

torsion and replace the operator− ∂2

∂ϕ2 by its expectation value, say,K2.
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For the numerical implementation below it is more convenient to use another set of

coordinates and a new gauge of wave function which simplify both the kinetic energy

operator and the normalization volume element. AssumingK2 = 0 we will use the

following six-dimensional (6D) kinetic energy operator

T = − ~2

2µp

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− ~2

2µ
R

∂2

∂R2
− ~2

2I0

∑
i=1,2

∂

∂ui

g(ui)
∂

∂ui

, (3.7a)

dτ = dxdydzdRdu1du2, , (3.7b)

whereui = cos θi andg(u) = (1−u2)(3mH+mN)/(3mHu
2+mN). The relation between

the new and old wavefunctions isΦ = RΨ, i.e., in terms of the new wavefunction and

coordinates the 1D reduced densities are simplyρ(R) = |Φ(R)|2 andρ(ui) = |Φ(ui)|2,
while in terms of the old ones they areρ(R) = |RΨ(R)|2 andρ(θi) = sin θi|Ψ(θi)|2. This

criteria, density is just absolute square of wavefunction, can be generalized to other kind

of coordinate or gauge transformations for simplification.

According to Eq. (2.38) the corresponding 6D PES can be constructed by cumulative

expansion in terms of different correlation orders

V (Q) = V (Q0) +
∑

i

V (1)(Qi) +
∑
i<j

V (2)(Qi, Qj)

+
∑

i<j<k

V (3)(Qi, Qj, Qk) + . . . , (3.8)

whereQ is a vector comprising the six model coordinates appearing in Eq. (3.7a) andV (n)

is then-mode correlation potential energy. The reference configurationQ0 for expansion

is the transition state as shown in Fig. 3.2. Our final expansion includes all the two-mode

correlations as well as those three-mode correlations concerning thez coordinate except

V (3)(z, u1, u2) andV (3)(z,R, u1,2) which are assumed to be negligible as compared with

the those involving two proton coordinates likeV (3)(z, x,R).

3.2.2 Numerical Implementation

The required PESs are calculated using the MP2/aug-cc-pVTZ level of theory [62] to

generate the 6D PES. According to Eq. (3.8) the numbers of 1D, 2D and 3D PESs are(
6
1

)
= 6,

(
6
2

)
= 15 and

(
6
3

)
= 20, respectively. We can make use of the symme-

try operations to decrease the calculation effort. The first symmetry is system inversion

V (−z, R, θ1, θ2,−x,−y) = V (z, R, θ2, θ1, x, y) which ensure us to generate low dimen-

sional PESs ofθ1/θ2 from θ2/θ1. The second symmetry is that the permutation of the

two bending modesx andy, i.e., the two modes are equivalent since the slight difference
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caused by torsion has been ignored. By considering the symmetry the corresponding

numbers of PESs which we need to scan are
(

4
1

)
= 4,

(
4
2

)
+

(
2
2

)
+

(
2
2

)
= 8 and

(
4
3

)
+

(
2
2

)(
3
1

)
+

(
2
2

) (
3
1

)
= 10. As mentioned above concerning three-mode

correlations we are only interested in those involvingz with relatively strong couplings.

The actual numbers of 1D, 2D and 3D PESs we finally scanned are 4, 8 and 3 which

produce 6, 15 and 7 ones after applying symmetry. The selected 3D PESs for scanning

areV (z, x, y), V (z, x, R), andV (z, x, θ1) which can generateV (z, y, R), V (z, x, θ2),

V (z, y, θ1), andV (z, y, θ2). For each PES scan we use the bond lengths and bond angles

as variables. In total about 10000 points have been calculated and applying symmetry we

obtain more than 90000 points spanning the energy range up to 10000 cm−1 . These PESs

has been subsequently fitted to a polynomial of up to 10th order by the fitting method

introduced in Section 2.3.2 with fitting error less than one percent.

For the solution of the nuclear Schrödinger equation we use the MCTDH approach

as detailed in Chapter 2. The wave function is represented on the primitive grid using a

harmonic oscillator DVR. The details about the basis set for MCTDH are shown in Table

3.1. The MCTDH equations of motion have been solved using the Adams-Bashforth-

Table 3.1: MCTDH parameters for solving Schrödinger equation (lengths in̊A). NDVR:

number of DVR points;NSPF: number of SPFs.

mode z R u1 u2 x y

min. grid -0.58 2.20 -0.61 -0.61 -0.53 -0.53

max. grid 0.58 3.26 0.13 0.13 0.53 0.53

NDVR 59 39 39 39 39 39

NSPF 9 8 9 3

Moulton predictor-corrector integrator of 6th order [90]. We have calculated low lying

excited state by diagonalizing the Hamiltonian with the Lanczos iteration algorithm as

implemented in the MCTDH program package. The wave functions which serve for the

assignment of the spectrum have been obtained using the improved relaxation method

[95] introduced in Section 2.4.2. The assignment below will be based on variables quite

close to certain normal modes, i.e.,

〈zRθsθaxy|mnklij〉 = Ψmnklij(z, R, θs, θa, x, y) (3.9)
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wherem, n,k,l,i and j are quantum numbers associated withz,R, θs = θ1+θ2

2
,θa =

θ1−θ2

2
,x, andy respectively.

3.2.3 Geometry and Eigenstates

Figure 3.5: (a) 2D cut of the 6D PES, contour levels from -150 to 1550 cm−1 in steps of

100 cm−1 . (b) 2D reduced probability density (solid line) of the ground state.

In Fig. 3.5(a) we show a two-dimensional cut of the 6D PES along the proton trans-

fer coordinatez and the NH3-NH3 stretching coordinateR with other coordinates fixed

at transition state, i.e.,θ1 = θ2 = 111.7◦ andx = y = 0 at the current level of quan-

tum chemistry. The shape of the PES resembles what one would expect for symmetric

medium to weak HBs, i.e., a double minimum with a transition state at a compressed

NH3-NH3 distance [34]. The minima and transition state correspond to (z = ±0.24Å,

R = 2.833Å) and (z = 0,R = 2.733Å), respectively, similar to what has been reported

for a 6-311++G(d,p) basis set in Ref. [98].

Calculating the 6D vibrational ground state yields the probability density. The 2D

reduced probability density concerning the proton transfer and the NH3-NH3 stretching

coordinates is shown in Fig. 3.5(b). The most notable feature is that this function has

a single maximum at the symmetric configuration. In other words, as compared to the

barrier height, the quantum mechanical ZPE related to the proton transfer mode is large

enough tosymmetrizethe hydrogen bond. This feature agrees well with the experiment

in the context of IR spectroscopy in the 2600-4000 cm−1 range in Ref. [49].

An interesting case may occur upon deuteration when the ZPE locates below the reac-

tion barrier and the central deuteron distribution becomes bimodal. Taking the transition

state energy as reference, the total ZPE of N2H
+
7 and N2D

+
7 are 3355 cm−1 and 2323
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Figure 3.6: The 1D reduced probability density along the shared proton/deuteron transfer

coordinatez for the N2H
+
7 /N2D

+
7 . The central inset shows the details of the bimodal

characteristics with the vertical axis in a different scale.

cm−1 , respectively. We have also investigated the fully deuterated isotopomer N2D
+
7 , and

the ground state distribution along the deuteron transfer coordinatez is shown in Fig. 3.6

with comparison to the N2H
+
7 case. From the slightly bimodal deuteron distribution of the

N2D
+
7 we can imagine the ZPE associated to the deuteron transfer mode slightly goes be-

low the reaction barrier leading to an essential difference from the N2H
+
7 case. To clearly

show this point we provide an enlarged view in the central inset for the related area distri-

bution. The bimodal deuteron distribution agrees well with a very recent work based on

path integral molecular dynamics simulation [99].

Table 3.2: Ground state mean values and variances of each coordinates for N2H
+
7 with

lengths inÅ and angles in degree. For comparison we report the variance ofui = cos θi

instead ofθi.

coordinates z R θ1 θ2 x y

mean value 0 2.796 111.576 111.576 0 0

variance 0.174 0.067 0.066 0.066 0.106 0.106

To get an even better picture of the ground state geometry we can study the mean

value and variance of each coordinate as shown in Table 3.2. The quantum ground state
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has the sameD3d symmetry as the classical transition state. From the variances we can

see the proton stretching motion has the largest amplitude and the bending follows. The

strong hydrogen bond makes the proton distribution highly delocalized. Due to the large

amplitude zero point vibration of the central proton the NH3-NH3 distance increases as

compared to the transition state. This is typical for strong hydrogen bonded systems

[45, 100].

Usually the N· · ·N distance is investigated to reflect the hydrogen bonding strength as

well as some other geometrical effects. It has been pointed out that in the A–H· · ·B type

HB there exists an empirical correlation between the A–H and H· · ·B distances irrespec-

tive of the A–H· · ·B angle [57, 101, 102, 103]. This correlation may provide us with some

rough picture of the geometric changes of the real time hydrogen transfer dynamics. On

the other hand, we may use just one variable to describe stationary HB geometry, which

actually reflects the bond strength. A typical geometric correlation for N–H· · ·N type

hydrogen bonded systems established by Limbach and coworkers is shown in Fig. 3.7. In

this figure the proton displacement from the bonding center is characterized byq1 and the

N· · ·N distance isq2. Experimentally the proton displacementq1 can be obtained based

on NMR measurement of the chemical shift. Combined with low temperature neutron

diffraction data one can establish the empirical correlation curve for the N–H· · ·N type

HBs.

In our casez andRNN are justq1 andq2 in the figure since the mean values ofx and

y are both zero. The variableR we adopted in the numerical simulation is not equal to

RNN , therefore we have generated the corresponding operator forRNN in terms of the

model coordinates

R̂N−N = R + ηR0(u1 + u2), (3.10)

whereη = 3mH/(3mH + mN). It is straightforward to calculate the mean value of the

N· · ·N distance at ground state with the operatorR̂N−N and the ground state wavefunc-

tion. This mean value is found to beRNN = 2.6631Å which agrees well with the figure,

giving support for the empirical correlation curve by Limbach and coworkers.

Apart from the ground state, some typical excited states are also calculated not only

to assign the IR spectrum but also to provide an essential grasp of how the final states

for the fundamental and combination transitions look like. The reduced probability den-

sities of these excited states are shown in Fig. 3.8. The fundamental transitions of the

proton transfer modez, NH3-NH3 stretching modeR, asymmetric umbrella modeθa

and proton bending modex are labeled as|100000〉, |010000〉, |000100〉 and |000010〉,
respectively. For fundamental transitions there is only one nodal plane along to the cor-

responding mode. The nodal plane is simply defined by the corresponding coordinate
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Figure 3.7: Correlation between HB lengthq2 = r1 +r2 and hydrogen transfer coordinate

q1 = (r1 − r2)/2 adapted from Ref. [57]. The solid line is calculated by a classical

relation on valence bond orders pointed out by Pauling and the dotted line is an empirical

correlation based on experimental HB geometries established by low temperature neutron

diffraction and NMR data. In the empirical curve Limbach and coworkers have taken

into account the correction caused by zero point vibration. The red cross is the calculated

value by 6D quantum simulation.

equal to zero (e.g.,z = 0, θa = 0 andx = 0) or its equilibrium value (e.g.R = Req).

The fundamental transitions of the symmetric umbrella modeθs and proton bendingy,

which are not shown in the figure, are similar to that ofθa andx except for the nodal

plane is defined byθs = θeq = 111.6◦ andy = 0, respectively. In other words, the corre-

sponding reduced densities can be obtained by a simple rotation of 90 degrees from those

of θa andx shown in Fig. 3.8 since we have ignored the slight difference caused by tor-

sion. Some combinations ofz andR are also listed in Fig. 3.8 as|110000〉 and|120000〉
which clearly shows the characters of this kind of combinations|mn0000〉. Combinations

between other modes have much higher excitation energies than those we are interested
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in, therefore they are not covered by our investigation. The excited state wave functions

provide us a quite clear picture of assignment of each vibrational band as obtained by IR

spectroscopy. We can see more details in the next section.

Figure 3.8: Two-dimensional reduced densities of typical excited states. See the text for

details.
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3.2.4 IR Spectrum

Before discussing the IR spectrum, it is instructive to recall the selection rules for dipole-

allowed transitions as determined by the cation’s symmetry. The Hamiltonian, Eqs. (3.8)

and (3.7), and the dipole moment obey the following symmetry relations under the oper-

ation of inversion

H(−z,R,−θa, θs,−x,−y) = H(z,R, θa, θs, x, y) , (3.11a)

µ(−z, R,−θa, θs,−x,−y) = −µ(z, R, θa, θs, x, y) . (3.11b)

The Hamiltonian (or dipole moment) is an symmetric (or antisymmetric) under inversion.

Thus we can derive an selection rule for the dipole transition. Due to symmetry all the

non-degenerate eigenstates of the system have a definite parity

ψmnklij(−z,R,−θa, θs,−x,−y) = (−1)m+k+i+jψmnklij(z, R, θa, θs, x, y). (3.12)

The final absorption intensity is proportional to the square of the matrix element of the

dipole moment〈mnklij|µ|000000〉 (See Appendix D for the details) at zero temperature.

Therefore,ψmnklij(−z, R,−θa, θs,−x,−y) must be antisymmetric to make the matrix el-

ement nonzero, i.e., the absorption intensity is nonzero only if the sum of related quantum

numbers of the transition final statem+ k + i+ j is odd.

The IR spectrum can be calculated by Fourier transform of dipole-dipole autocorrela-

tion function or by matrix elements of dipole moment as mentioned above. The related

theory adapted from Ref. [120] is detailed in Appendix D. Most quantum chemistry pro-

grams can calculate IR spectrum based on so called double harmonic approximation, i.e.,

harmonic potential energy and linear dipole moment function for each mode. Either the

anharmonicity of PES or nonlinearity of dipole moment surface will leads to a failure of

this kind of harmonic approximation. That is the reason why the harmonic predictions

fails to interpret the experimental spectrum as we mentioned in the beginning. However,

it can give right position of the fundamental of certain mode if the potential energy curve

along the mode is not significantly anharmonic. In our 6D simulation we first obtained the

eigenfunctions of the IR active transition final states. The IR spectrum is consequently

calculated by matrix elements of dipole moment. The experimental and theoretical IR

spectra are compared in Fig. 3.9.

The first IR active fundamental obtained by 6D theoretical calculation is located at 409

cm−1 due to the shared proton stretching (z) fundamental excitation. This agrees nicely

with the IRMPD banda located at 374 cm−1 . Though the observed banda′ may be en-

ergetically more close to the calculated value, thez fundamental excitation is expected to
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Figure 3.9: Experimental vs. theoretical IR spectrum. The upper two panels are exper-

imental spectra obtained with different instruments by IRMPD technique by the Asmis

group [96, 97]. The lower panel is the 6D simulation. See the text for details.

be the most intense feature in this region because the displacement of the shared proton

along the N-N atom axis produces a large dipole oscillation. The other IR active mode

in this frequency range could be the doubly degenerate wagging vibration which is not

covered by our 6D model. The frequency of this mode is calculated at 418 cm−1 within

the harmonic approximation which may be assigned to the second banda′. The respec-

tive reduced probability of the shared proton stretching fundamental excitation is shown

in Fig. 3.8 (|100000〉). It is interesting to note that the probability density for this state is

more localized in the two well regions than the ground state distribution since the wave

packets almost locate at the two potential minima. Notice that as compared to the har-

monic prediction of this fundamental transition the frequency is significantly red-shifted

by about 1500 cm−1 . The details can be found in the summary of assignments com-

piled in Table 3.3. The overtone of this mode is much larger than twice the fundamental

transition which also reflects the considerable anharmonicity. In passing we note that an

effective one-dimensional calculation in Ref. [98] captures part of this anharmonicity by

predicting the transition at 707 cm−1 , however, this number is still too large.

The second IR active fundamental transition, calculated at 1369 cm−1, is due to the
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antisymmetric umbrella like motions of the two terminal NH3 groups and it agrees very

well with the experimental bandD′ at 1325 cm−1 . The antisymmmetric combination

character is obvious from the reduced density in Fig. 3.8 (|000100〉). The third IR active

fundamental transition, which is doubly degenerate due to the two equivalent bending

modes perpendicular to the N-N line, is located at 1542 cm−1 which agrees perfectly with

the experimentG′ at 1545cm−1 . One reduced density of the degenerate states is shown

in Fig. 3.8 (|000010〉).
Apart from these fundamental, combination transitions are also found to contribute

significantly to the absorption spectrum. The transition at 713 cm−1 agrees nicely with

the prominent experimental bandA′ at 743 cm−1 which therefore can be assigned to the

combined excitation of the proton transfer and NH3-NH3 stretching modes|110000〉. In

fact we find two more transitions in this progression which are IR active according to

the symmetry selection rule, namely|120000〉 at 1002 cm−1 and|130000〉 at 1306 cm−1.

This exemplifies the strong correlation between the shared proton motion and the HB

geometry deformation. The|120000〉 transition agrees reasonably with the observed band

C′ at 1097 cm−1 . Beyond the fundamental of the asymmetric umbrella motion at 1325

cm−1 , however, the assignment for the combinations becomes more tentative in part due

to the limitations of the 6D model. The observed bandE′ at 1451 cm−1 could be due to

the |130000〉 transition. In the Argon tagged IRVPD spectrum reported in Ref. [96] there

are in fact only two dominant bands at 743 cm−1 and 1325 cm−1 corresponding to the

|110000〉 and|000100〉 transition in the present model.

The comparison of theory and experiment as well as the assignments are summarized

in Table 3.3. Apart from the 6D simulations the harmonic calculations and a 4D simu-

lation reported by us previously [96] are also provided. The 4D calculation ignores the

proton bending coordinatesx andy. The 4D Hamiltonian is generated in the same spirit

as the 6D one but the 4D PES expansion contains no three-mode correlations. The 4D

dipole moment surface is generated in the same way as the PES expansion up to all the

two-mode correlations. Having at hand the 4D Hamiltonian and dipole moment surface

we have calculated the dipole-dipole autocorrelation function by exploiting MCTDH to

propagate the 4D wave function. The IR spectrum based on 4D simulation is obtained

by Fourier transform of dipole-dipole autocorrelation function. The 4D simulation has

predicted the proton stretching fundamental to be at 460 cm−1 and the subsequent exper-

iment has observed this band at 374 cm−1 , as shown in the left upper panel of Fig. 3.9.

The 4D model has almost 20% error for this specific mode due to the ignoring of proton

bending which has slight coupling with the other modes yet may strongly couple to the

proton transfer mode. The 6D simulation which covers the bendingx andy as has been
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Table 3.3: Experimental and theoretical excitation energies (in cm−1 ) of N2H
+
7 below

1600 cm−1 . The 4D result only relates to the first four quantum numbers hence no bend-

ing values. Harmonic predictions are performed with MP2/aug-cc-pVTZ. The modes

labeled by stars are not exactly the same as the assignments.

anharmonic harmonic

|mnklij〉 4D 6D TS Min experiment assignment

010000 421 403 565 313* NH3-NH3 stretchνR

100000 460 409 843i 1944 374 proton stretchνz

020000 729 701 2 · νR overtone

110000 766 713 743 1 · νz + 1 · νR

030000 1030 981

120000 1089 1002 1097 1 · νz + 2 · νR

001000 1348 1336 1342 1264* symm. umbrellaνθs

000100 1354 1369 1362 1380* 1325 asym. umbrellaνθa

130000 1488 1306 1451 1 · νz + 3 · νR

000001 - 1542 1777 1779* 1545 proton bendingνy

000010 - 1542 1777 1779* 1545 proton bendingνx

200000 1546 2 · νz overtone

mentioned in Section 3.2.1 greatly decreases this error.

We further demonstrate the comparison between our theoretical calculations and the

experimental results in Fig. 3.10. As can be seen the multidimensional anharmonic simu-

lations agree well with the experiment. It should be noted that the 4D simulation excludes

the bendsx andy thus the degenerate bending mode is missing in the 4D result. One

may argue that the 4D result fits the experiment even better for the combination bands

|mn00〉. In 4D model we cover all the coordinates which conserve the C3 symmetry since

the couplings between different symmetries are much smaller than those within the same
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Figure 3.10: Comparison of theoretical and experimental IR active bands. The six bands

in increasing order are|100000〉, |110000〉, |120000〉, |000100〉, |130000〉 and the degen-

erate bending mode|000010〉 or |000001〉, respectively. See the text for more details.

symmetry. The 4D model is a reasonable truncation with respect to its lower level of ac-

curacy yet the 6D truncation is slightly less reasonable with respect to the corresponding

higher level of accuracy. A more reasonable description is to consider the modes which

have relatively stronger couplings to the NH3-NH3 stretching mode, i.e., the wags of the

two terminal ammonias. This is why 6D result needs refinements for the combination

bands while the 4D result gives a reasonable explanation at the corresponding lower level

of accuracy. However, concerning the proton transferz fundamental transition, the 4D

result agrees with the experiment not as well because this mode does couple relatively

strongly to certain modes which break the C3 symmetry, i.e., the two bending modesx

andy. This is why we greatly decrease the error ofz fundamental in our 6D simulation

by accounting for the bending. The other reason is the accuracy of the PES expansion.

Though the 6D PES expansion includes major three-mode correlations it is still slightly

less accurate than the 4D expansion concerning the correlation part. We need more cor-

relation terms for the higher dimensional (6D) PES expansion at least all the fourth order

correlations which involves the three proton coordinatesx, y andz. A better solution for

high dimensions is to combine certain strongly coupled coordinates as a group to treat
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high dimensional correlations more conveniently, which will be applied to a full dimen-

sional study in the next chapter. In principle the grouping coordinates method can also

be applied to the present system but we would need high dimensionalab initio PES data

which are unfortunately not available up to now.
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Figure 3.11: Comparison of IR spectra of N2H
+
7 (solid) and N2D

+
7 (dashed) obtained by

6D simulation. See the text for details.

We have also performed a 6D simulation for N2D
+
7 . The calculated IR spectra is

shown in Fig. 3.11. The five IR active bands for both cations are|100000〉, |110000〉,
|120000〉, |000100〉, and the degenerate bending mode|000010〉 or |000001〉 with increas-

ing frequency. For the|100000〉 state, the red shift due to deuteration is 50% which reflects

strong anharmonicity. An interesting effect is that the combination bands|110000〉 and

|120000〉 also have about 45% redshifts though the deuteration has small effect on the

R mode. For the|000100〉, |000010〉 and|000001〉, the redshifts do not deviated signifi-

cantly from the harmonic ones(1−1/
√

2) which reflects less anharmonicity as compared

to the proton transfer mode.

3.3 Geometries and IR Spectra of Larger Clusters

In principle it would be straightforward to apply the method outlined above to larger clus-

ters to perform reasonable reduced dimensional descriptions. It turns out, however, that

the HB in N2H
+
7 is exceptional insofar as it is particularly strong compared to NH+

4 (NH3)n

(n = 2 − 4). Consequently, the PES is considerably less anharmonic for larger clusters
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Table 3.4: HBs parameters (lengths inÅ) for NH+
4 (NH3)n (n = 2−4). The same notation

q1 is adopted to characterize the hydrogen displacement as in Fig. 3.7.

sizen N· · ·N distance N–H length H displacementq1

2 2.82 1.07 0.34

3 2.90 1.05 0.40

4 2.96 1.04 0.44

which means that simple harmonic predictions may successfully describe them. To con-

firm whether this is true we first study the anharmonicity of the corresponding PES to

check the validity of harmonic predictions.

3.3.1 Geometries and PESs of Larger Clusters

We have calculated the equilibrium geometries of these clusters using the MP2/6-

311+G(d,p) level of theory, see Fig. 3.1. The exact configuration of each classical

minimum slightly deviates from the expected symmetry, i.e., the C2v symmetry of

NH+
4 (NH3)2, the C3v symmetry of NH+

4 (NH3)3 and the Td symmetry of NH+
4 (NH3)4.

This is due to the limitation of the assumption of classical nuclei. In general the configu-

ration with highest symmetry does not correspond to the minimum. However the quantum

ground state of each cluster does have the corresponding symmetry mentioned above just

like what we have studied in the N2H
+
7 case. In the following we will ignore the sym-

metry deviations of classical minimum configurations. Each larger cluster has a solvated

ammonium structure with a central NH+
4 unit which turns out to be quite stable hence

significantly decreases the HB strength. The details of HBs parameters are compiled in

Table 3.4 which further reflects slight decrease of the HB strength with increasing cluster

sizen for n = 2− 4. The HBs geometries also agrees well with the empirical correlation

curves shown in Fig. 3.7.

To address the degree of anharmonicity the potential curve along one of the hydrogen-

bonded N-H stretching coordinates, i.e., the proton transfer modes, has been determined

with the other coordinates frozen. The results in Fig. 3.12 show that upon increasing

the cluster sizen the potential becomes less anharmonic. The solid line is calculated by

MP2/aug-cc-pVTZ forn = 2 and the dashed lines are calculated by MP2/6-311+G(d,p)
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for n = 2 − 4. For n = 2 it still shows some double minimum topology, although a

barrier as high as 4000 cm−1 is required to overcome to reach the higher proton transfer

minimum. A quite deep potential well hampers the proton transfer process, i.e., the proton

distribution is well confined around the lower minimum configuration. Forn = 3, 4 there

is no stable proton transfer minimum at all and the depths of potential wells increase

with the cluster size. Notice that the actual well depth depends on the level of quantum

chemistry. We have performed both MP2/aug-cc-pVTZ and MP2/6-311+G(d,p) level of

calculations forn = 2 and the difference turns out to be negligible especially around the

deep potential well, i.e., the nearly harmonic region. This in turn makes the accuracy of

MP2/6-311+G(d,p) PESs reliable around the deep potential well as can be seen clearly in

Fig. 3.12.

 0

 2000

 4000

 6000

 8000

 10000

 12000

-0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4

E
ne

rg
y 

(c
m

-1
)

Proton transfer coordinate (°A)

NH4
+(NH3)2-aug

NH4
+(NH3)2

NH4
+(NH3)3

NH4
+(NH3)4

Figure 3.12: One dimensional potential energy curves of NH+
4 (NH3)n cations (n=2-4)

along an N-H proton transfer coordinate at the MP2/6-311+G(d,p) (dashed) and MP2/aug-

cc-pVTZ (solid) level of theories. The asymmetric characteristics can be understood from

the structures shown in Fig. 3.2.

Though the classical minimum for N2H
+
7 also contains the NH+4 structure it turns out

to be symmetrized by quantum zero point vibration since the potential well is sufficiently

shallow. Different from the N2H
+
7 case, the PES of each NH+

4 (NH3)n (n > 1) cation

shows a rather deep potential well due to significant weakening of HB. As has been dis-

cussed in Chapter 1 the harmonic approximation may catch some essence of this kind of

weak HBs. Based on Fig. 3.12 we will restrict our discussion within harmonic approxi-
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mation only, but including a scaling factor of 0.95 for the MP2 frequencies. This will turn

out to be sufficient for analyzing the size dependence of the experimental spectra.

3.3.2 IR Spectra for NH+
4 (NH3)n (n = 2− 4)

Figure 3.13: Left: Experimental IR spectra of NH+
4 (NH3)n (n = 2−4) [97]. Forn = 3, 4

the spectra obtained by Tono et al [52] are also shown (b). Right: Forn = 2 − 4 the

calculated harmonic MP2/6-311+G(d,p) frequencies (scaled by 0.95) are shown as open

or solid bars for transitions having no or finite oscillator strength, respectively.

The infrared spectra of the NH+4 (NH3)n clusters (n = 1 − 4) measured by the Asmis

group with the IRMPD technique as well as harmonic calculations are shown in Fig. 3.13.

As discussed above the significant weakening of the HBs decrease the anharmonicity

of the PES. Therefore, we can compare the measured spectra with the results of the har-

monic approximation. There are systematic redshifts of the most intense absorption peaks

with increasing size. The calculated frequencies for relevant transitions at the MP2/6-

311+G(d,p) level of theory are compiled in Tab. 3.5. For the most intense absorption

band between 1100 and 1200 cm−1 this gives an excellent agreement, allowing the as-

signment of this band to the collectiveν2 bending mode of side NH3 which corresponds
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to the asymmetric umbrella motion in the N2H
+
7 case. To have a clearer picture, theν2

bending mode of an ammonia molecule is shown in Fig. 3.14a).

Figure 3.14: Visualization of selected modes of ammonia and ammonium. a)ν2 type

bending mode of ammonia. b)ν4 type bending mode of ammonia, only one of the 2-fold

degenerate modes are shown. c)ν4 type bending mode of ammonium, only one of the

3-fold degenerate modes are shown.

Notice that the red shift of this band with increasing cluster size, discussed forn=3, 4

in Ref. [52], is also consistent with the data forn=2. Weakening of the HBs, responsible

for the red shift of the ammoniaν2 mode, is reflected also in the increase of the N-N

distances calculated by MP2/6-311+G(d,p): 2.82Å in n=2, 2.90̊A in n=3, and 2.96̊A in

n=4, thus softening the NH3 bending PES. For comparison, theν2 mode of an isolated

ammonia molecule is 950 cm−1 [104] which can be imagined as the limit case where the

N· · ·N distance goes to infinity.

The region between 1400 and 1600 cm−1 is composed of several collective asymmet-

ric NH3 bending vibrations (ν4 type) as well as of NH+4 ν4 type bending fundamentals.

One of the degenerateν4 type vibrations of NH3 (NH+
4 ) is shown in Fig. 3.14. The collec-

tive ν4 modes of both NH3 and NH+
4 have blue shifts with increasing cluster size which

agree with the experiments.

The observed bands in the region between 600 cm−1 to 1100 cm−1 are most likely

dominated by the complicated relative motions of central NH+
4 and terminal NH3 groups.

We can consider the NH+4 and NH3 as rigid fragments to efficiently describe this kind of

motions. However, to obtain the corresponding multidimensional PESs are time consum-

ing, though feasible concerning present computer abilities. As for the harmonic approx-

imations, we have found some relevant modes in the region between 600 cm−1 to 1100

cm−1 without absorption intensity under the linear dipole approximation. These modes

are all relative motions of rigid NH+4 and NH3 fragments as mentioned above, more specif-

ically they are the hindered rotations of central NH+
4 fragment. Forn = 2, located at 657

cm−1 , the hindered rotation is in the plane of three fragments. Forn = 3 there are two

hindered rotations, one perpendicular and one parallel to the plane of three terminal NH3
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Table 3.5: Assignment of IR spectra for NH+
4 (NH3)n (n = 2− 4). The calculations have

been performed in harmonic approximation using the MP2/6-311+G(d,p) level of theory

and a scaling factor of 0.95 has been applied. Energies are expressed in cm−1 .

n experiment This work Ref. [52] assignment

2 1182 1213 ν2(NH3)

1424 1456 ν4(NH+
4 )

1475 1548 ν4(NH+
4 )+ν4(NH3)

1540 1572 ν4(NH3)

3 1151 1189 1157 ν2(NH3)

1468 1472 1491 ν4(NH+
4 )

1521 1543 umbrella NH+
4

1573 1624 ν4(NH3)

4 635

719

955

1135 1168 1132 ν2(NH3)

1422

1497 1508 1483 ν4(NH+
4 )

1546 1574 1599 ν4(NH3)

fragments, located at 536 cm−1 and 712 cm−1 respectively. The NH+4 (NH3)4 is similar to

the NH+
4 (NH3)3 except for the two modes are nearly degenerate at 639 cm−1 due to its

higher symmetry.
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3.4 Summary

In this chapter we have studied the geometries and low frequency IR spectra of protonated

ammonia clusters and obtained reasonable agreement with experiments. The N2H
+
7 cation

is a strongly hydrogen-bonded low-barrier system with symmetrical structure caused by

zero-point vibration. Multidimensional quantum dynamics is necessary to pursue reli-

able interpretations of the IR spectrum. Therefore we select six coordinates which most

closely relate to the HB. The quantum dynamics of the reduced 6D model describes the

system quite well. By reasonably incorporating the anharmonicity, our results [96, 97]

have successfully interpreted the very recent experimental IR spectrum which is very dif-

ficult to be explained with previous theoretical work [53, 55, 98]. The fundamental for the

shared proton stretching mode at 409 cm−1 by our calculation is significantly red shifted

compared with the harmonic prediction (by more than 1500 cm−1 ) due to the strong HB.

Though an effective one-dimensional calculation in Ref. [98] captures part of this anhar-

monicity by predicting the transition at 707 cm−1 , it is still too large. The combinations

between the shared proton stretching and the terminal NH3–NH3 stretching are also found

to contribute significantly to the IR bands below 1100 cm−1 .

For NH+
4 (NH3)n (n = 2−4) we apply harmonic approximation since the weakening of

HB with the increasing of cluster size significantly reduces the anharmonicity. The calcu-

lated IR spectra agree with the recent experiments by the Asmis group and have assigned

the most intense band to be the asymmetric collectiveν2 bending motions of the terminal

ammonia [97]. The systematic red shift of this band is due to the weakening of the HB

strength. As a result of different bond strength, the N2H
+
7 cation has a strong HB which

leads to the shared proton structure and rich IR bands below 1100 cm−1 . While the large

clusters have weak HBs which lead to solvation ammonium structures consequently no

vibrational bands caused by HB stretching dynamics below 1100 cm−1 . However, from

the experimental data for large clusters especiallyn = 4, there may be some complicated

relative motions of central NH+4 and terminal NH3 fragments resulting the measured IR

bands in the low frequency region which can be unraveled by multidimensional quantum

investigation with a reduced model.

The multidimensional quantum dynamics provide us rather convincing results for

clear interpretation of fundamental processes as long as our reduced model is reason-

able. However if the system we are interested in is quite floppy or the point we intend to

elucidate entangles the whole system we have to resort to the full dimensional dynamics.

In the next chapter we will perform a full dimensional study on the deprotonated water

dimer.



Chapter 4

Full-Dimensional Study of H3O
−
2 and

its Isotopomers

4.1 Introduction

The hydrated proton and its negative analogue, the hydrated hydroxide anion, have al-

ready been investigated in quite some detail. However it is only very recently that the

Zundel cation, H5O
+
2 , has been clearly elucidated byab initio quantum dynamical calcu-

lations [37, 38, 39], however, the corresponding breakthrough in H3O
−
2 is not available.

The principal difficulty in assigning the H3O
−
2 spectrum arises from the fact that similar

to the Zundel cation one has to deal with a strong HB in a floppy structure which affects

especially the transition frequency of the central hydrogen stretching vibration drastically.

In other words, the vibrational dynamics is rather anharmonic and any calculation bound

to the harmonic approximation is likely to fail at least for the HB dynamics. This points to

the need for a multidimensional treatment of the infrared spectrum as reported by J. Bow-

man and coworkers who used the multi-mode reaction path along the HO· · ·OH torsion

coordinate and diffusion Monte Carlo techniques [42, 45]. Their results have qualitatively

interpreted the related experiments by Johnson group [40, 43, 44]. For the specific case of

the shared hydrogen stretch fundamental, these methods gave 741 cm−1 and 644 cm−1 ,

respectively. However combinations will play an important role just like other strong

hydrogen bonded systems.

In this chapter we will not focus on the IR spectrum since qualitative interpretations

are already available. Instead we focus on the effect of H/D isotopic substitution on the

properties of the HB in this complex. One may naturally ask whether deuteration of the

hydroxide ([D–O· · ·H· · ·O–H]−) or the “solvent” water ([H–O· · ·D· · ·O–H]− yields an

energetically more stable structure. This issue is related to the problem of isotopic ex-
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change equilibrium configurations and associated fractionation factors which have been

discussed for gas phase reactions of hydrogen-bonded ions [105, 106] as well as in aque-

ous [107, 108] and other [109, 110] solutions. An extensive account on the stability of

various charge and neutral water clusters has been given by Scheiner and coworker em-

ploying the MP2 method together with a (small) 6-31+G** basis set [111]. It is important

to note that their conclusions for the relative stabilities of different isotopomers have been

drawn from harmonic calculations with respect to a nonsymmetric equilibrium structure.

The view of the discussion above calls for having a second look at this problem from the

perspective of a quantum mechanical treatment in full dimensionality.

The change in strength of the HB upon isotopic substitution is also reflected in GIEs

which is yet another manifestation of the multidimensional anharmonic nature of the PES

[34, 112]. For weak HBs with a double minimum PES, deuteration leads to a shorter O–

D distance as compared to O–H. This in turn weakens the HB consequently increase the

O· · ·O distance. For strong symmetric HBs where the ZPE is above the barrier and the

vibrational distribution has its maximum at the barrier top, deuteration reduces the width

of this distribution which pulls the oxygens towards the deuterium, that is, the O· · ·O
distance decreases. An interesting case occurs when the ZPE in the deuterated case is

below the reaction barrier and the vibrational distribution becomes bimodal. This would

correspond more to the situation of a weak HB and the O· · ·O distance should increase.

For the fully deuterated case D3O
−
2 , its distribution may be bimodal only after the influ-

ence of environment at finite temperature is taken into account as reported in Ref. [113]

by ab initio path integral simulations. Here we will address the GIEs for all the different

isotopomers on the basis of the full-dimensional ground state wave functions.

In the following Section 4.2.1 we will present a nine-dimensional (9D) Hamiltonian

which describes the vibrational motion of H3O
−
2 in full-dimensionality for total angu-

lar momentum equal to zero. This Hamiltonian is based on the CCSD(T)/aug-cc-pVTZ

level of PES developed by Bowman and coworkers [45]. The corresponding operator for

the kinetic energy is given in the Appendix C. The vibrational ground state is obtained

by imaginary time-propagation using MCTDH method [90, 29]; numerical details of the

calculation are given in Section 4.2.2. In Section 4.3 we will present results on the vi-

brational ground state of the different isotopomers as well as on the GIEs. The torsional

tunneling splittings are also investigated in this section.
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4.2 Theoretical Model

4.2.1 9 Dimensional Hamiltonian

The choice of coordinates is crucial as it determines the strength of correlations between

different degrees of freedom in the potential and kinetic energy operator thus directly

affects the accuracy if truncation of correlations are made. For the present case the issue

is complicated as there is the possibility of large amplitude torsional motion. This made

it necessary to use a reaction path approach in Ref. [45], which combined the torsional

reaction coordinate with orthogonal normal mode displacements taken with respect to the

C2 transition structure. Here we will use internal coordinates, which is less restrictive but

comes at the expense of a more complicated KEO.

Figure 4.1: The four Jacobi vectors used for defining the nine internal coordinates. See

the text for the definition of the nine coordinates.

We first derive the full dimensional KEO in the LRF. After separating the total center

of mass motion, the four Jacobi vectors shown in Fig. 4.1 will be used:R1 andR2 each

connecting one oxygen and the “free” hydrogen atom,R4 connecting two centers of mass

of the OH groups, andR3 connecting the shared hydrogen atom and the center of mass

of the O2H2 fragment (for the deuterated cases one or more hydrogen atoms are replaced

by deuterium atoms). We can use only nine internal coordinates to describe the system

for the total angular momentumJ = 0 according to Section 2.2.5. Based on these Jacobi

vectors the following nine internal coordinates are chosen: the lengthsR1, R2, andR4,

of the vectorsR1, R2, andR4, respectively, the angleθ1 (θ2) betweenR1 andR4 (R2

andR4), and the dihedral angleϕ between the planes spanned by the vectors (R1, R4)

and (R2, R4) which describes the torsional motion. Notice that due to its definition with
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respect to the Jacobi vectors,ϕ is slightly different from the torsional coordinate used

in Ref. [45], since our torsional axis is the direction ofR4. For R3 we use Cartesian

componentsx, y, andz in certain MRF which contribute negligible Coriolis couplings.

The origin of the MRF is the center of mass andz is defined along the direction ofR4,

i.e. it roughly corresponds to the shared proton stretch mode. Thexz plane equally

divides the torsional angleϕ if the reduced mass associated withR1 is the same with that

associated withR2. Otherwise the division ratio is 1:2 or 2:1 depending on whether the

mass ratio is 2:1 or 1:2. For the details as well as the expression for the 9D KEO please

see Appendix C. Notice that in the following numerical simulations we will use the new

variablesui = cos θi(i = 1, 2) as in Chapter 3.

The full-dimensional potential energy surface can be constructed by cumulative ex-

pansion of different correlation orders according to Eq. (2.38). Following the strategy of

Ref. [38] we will combine certain groups of coordinates to treat their correlations exactly.

Specifically we have chosen the three groupsg1 = [R1, R2, R4], g2 = [u1, u2, ϕ], and

g3 = [x, y, z]. The final expansion we used to generate the 9D PES reads

V (g1, g2, g3) = V0 +
∑

i

V (1)(gi) +
∑
i<j

V (2)(gi, gj), (4.1)

whereV (n) gives then-set correlation between sets of coordinates. Notice, however, that

this PES contains up to 6-mode correlations between individual coordinates. In Eq. (4.1)

V0 = V (g(0)) is the energy of the reference geometry,g(0).

Figure 4.2: The C2h transition state configuration with five atoms in the same plane.

According to the error of Taylor expansion we know that the expansion error of

Eq. (4.1) increases if the geometryg we want to calculate significantly differs from the
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reference geometryg(0). Since we are mainly interested in the ground state properties the

most natural thing will be to increase the accuracy of the PES expansion around the region

where the quantum ground state wave function covers, i.e.,g(0) should correspond to the

most probable geometry or average geometry of the quantum ground state. One should

further be careful to chose the reference geometryg(0) since inappropriateg(0) will break

the symmetry of the original PES. One can find out that the expansion of Eq. (4.1) con-

serves the symmetry if the symmetry of the reference geometryg(0) is not lower than

that of the PES. An obvious choice for this symmetry adapted reference is the classical

transition state geometry. There are several transition state configurations even in the low

energy region. When we say transition state we actually mean the trans- configuration as

shown in Fig. 4.2 with C2h, the highest symmetry among all the low energy equilibrium

configurations [45].

We have performed a ground state calculation based on the classical transition state

reference geometry and obtained an error of about 2-3 cm−1 per degree of freedom as

compared to the Quantum Monte Carlo results for H3O
−
2 reported in Ref. [45]. This is

a rather small error with respect to the full ground state energy which is more than 6000

cm−1 yet the accuracy can be further improved by definingg(0) according to the quantum

ground state as mentioned above. And we get essentially a quantitative agreement when

we take the symmetry of the classical transition state yet replace the corresponding bond

lengths and angles by the expectation values of quantum mechanical ground state (as

obtained from the calculation for HOHOH− based on classical transition state reference)

to define the reference geometryg(0). For simplicity as well as the consistence of PES

expansion we have employed this reference for all isotopomers (see Table 4.1).

For generating the PES in the given coordinates we have used the fitted CCSD(T)/aug-

cc-pVTZ potential of Bowman and coworkers [45]. Two representative cuts of the PES

are shown in Fig. 4.3. In Fig. 4.3 (a) we show the PES along two most strongly coupled

coordinatesz andR4 (O· · ·O distance). The shape looks similar to Fig. 4.3(a) of the

N2H
+
7 investigated in Chapter 3 since they are both strong hydrogen bonded symmetric

dimers. Apart from the two asymmetric minimum configurations there exists a transition

state with compressed O· · ·O distance in between with a rather shallow barrier around

70 cm−1 for fully relaxed proton transfer according to Ref. [42]. The barrier height can

be read from the minimum of Fig. 4.3 (b) since the energy reference is energy of the

minimum configuration. This number is larger than 70 cm−1 due to the freezing of the

other coordinates at the transition state. The potential energy curve along the torsion

coordinateϕ is shown in Fig. 4.3 (b) with a double minimum shape. The barrier for the

torsion motion is about 150 cm−1 which is large enough to cause tunneling splitting since
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Figure 4.3: (a) PES along O· · ·O distance (R4) and proton transfer coordinatez (contour

lines at (in cm−1 ): 230, 260, 300, 600, 900, 1300, 1700, 2100, 2500, 3000). (b) Potential

energy curve along torsion coordinateϕ. In both cases all other coordinates have been

kept frozen at the transition state geometry.

the zero point energy related to the torsion mode is much less than the barrier height.

4.2.2 Numerical Implementation

The vibrational ground state of the different isotopomers has been obtained by the

MCTDH method [90, 29] detailed in Chapter 2. Three needed 6D PESs which are

V (1)(g1) + V (2)(g1, g2), V
(2)(g2) + V (2)(g2, g3) andV (1)(g3) + V (2)(g1, g3) have been
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Table 4.1: MCTDH parameters for the imaginary time propagation (lengths inÅ, NDVR:

number of DVR points;NSPF: number of SPFs.) and reference geometry,g(0), for the

PES expansion in Eq. (4.1) (X=H or D). The last row is the transition state described with

coordinates of HOXOH−. For the details of the nine coordinates please see Fig. 4.1, here

ui = cos θi.

R1 R2 R4 u1 u2 ϕ x y z

min. grid 0.740 0.740 2.275 -1.0 -0.7 0 -0.635 -0.635 -0.529

max. grid 1.322 1.322 3.069 0.7 1.0 2π 0.635 0.635 0.529

NDVR 11 11 16 13 13 17 13 13 17

NSPF 5 10 13

g(0): HOXOH− 0.979 0.979 2.519 -0.25 0.25 π 0.0 0.0 0.0

g(0): DOXOD− 0.979 0.979 2.547 -0.288 0.288 π 0.0 0.0 0.0

g(0): DOXOH− 0.979 0.979 2.532 -0.269 0.269 π -0.012 0.021 0.043

TS: HOXOH− 0.962 0.962 2.477 -0.282 0.282 π 0.0 0.0 0.0

fitted to a sum of products using the POTFIT approach [29]. For the representation of the

SPFs a discrete variable representation (DVR) has been utilized. For the torsional coordi-

nateϕ an exponential DVR representation with periodic basis functions (eigenfunctions

of d
dϕ

) has been used. All other coordinates have been expressed via a harmonic oscillator

DVR. The SPF basis functions cover the range energies below 10000 cm−1 ; the smallest

natural orbital population in the ground state is 0.0003. All parameters are compiled in

Tab. 4.1.

The reference geometry,g(0), for the PES expansion in Eq. (4.1) is also detailed in

Tab. 4.1 in terms of our nine coordinates. Note that the coordinates of the reference

geometry are based on expectation values for the HOHOH− case. The actual different

values reported here for the different isotopomers are purely due to the fact that the Jacobi

vectors defining the coordinate system are mass-dependent. The classical transition state

(TS) reference is also given in terms of coordinates of HOXOH− for comparison.
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4.3 Results

4.3.1 Vibrational Ground State Geometry
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Figure 4.4: Reduced probability density for the vibrational ground states of the different

isotopomers along the proton transfer coordinatez. See the text for more details.

Some general features are similar to the N2H
+
7 , which have been discussed in Chapter
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Table 4.2: Coordinate expectation values and their variances (inÅ) for the 9D ground

states of the different isotopomers.

HOHOH− HODOH− DOHOH−

coordinate mean variance mean variance mean variance

R1 0.981 0.070 0.981 0.070 0.976 0.059

R2 0.981 0.070 0.981 0.070 0.981 0.070

R4 2.521 0.063 2.515 0.064 2.536 0.065

u1 -0.259 0.173 -0.261 0.172 -0.267 0.149

u2 0.259 0.173 0.261 0.172 0.269 0.174

ϕ 3.138 1.240 3.136 1.238 2.886 1.258

x 0.000 0.125 0.000 0.107 -0.022 0.126

y 0.000 0.120 0.000 0.104 0.029 0.123

z 0.000 0.150 0.000 0.140 0.029 0.152

2, e.g., the correlation of the ground state density alongz andR4. In this chapter we

mainly focus on the isotope effects. Representative cuts of the full 9D ground state vi-

brational density are shown for the different isotopomers in Fig. 4.4 and Fig. 4.5. More

specifically the coordinate expectation values and variances are compiled in Tab. 4.2 and

Tab. 4.3.

Fig. 4.4 shows the reduced probability densities along the shared proton coordinatez

for different isotopomers. For each symmetric case [X–O· · ·Y· · ·O–X]−, where X,Y=H

or D, the distribution has its single maximum atz = 0 as shown in the upper and bottom

panels indicating the symmetrization due to zero point vibration with energy above the

classical barrier in Fig. 4.3 (a). For each asymmetric case [D–O· · ·X· · ·O–H]− the dis-

tribution also has single maximum due to the same reason as shown in the middle panel

yet it is slightly asymmetric. We have further studied the asymmetry by the geometry of

[D–O· · ·X· · ·O–H]− and found the O· · ·X· · ·O angle is slightly different from180◦ and

the central X atom is closer to the side O–H group instead of O–D since O–D has a shorter
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Table 4.3: Coordinate expectation values and their variances (inÅ) for the 9D ground

states of the different isotopomers.

DODOD− DOHOD− DODOH−

coordinate mean variance mean variance mean variance

R1 0.976 0.059 0.976 0.059 0.976 0.059

R2 0.976 0.059 0.976 0.059 0.981 0.070

R4 2.544 0.064 2.549 0.064 2.528 0.064

u1 -0.281 0.148 -0.279 0.148 -0.270 0.146

u2 -0.281 0.148 0.279 0.148 0.272 0.172

ϕ 3.139 1.290 3.135 1.293 2.889 1.254

x 0.000 0.120 0.000 0.135 -0.021 0.109

y 0.000 0.104 0.000 0.120 0.028 0.105

z 0.000 0.142 0.000 0.151 -0.027 0.140

bond length leading to a higher repulsion on the central atom.

As expected the width of the distribution narrows upon central H→ D substitution

irrespective whether the side OH groups are deuterated or not as can be seen from all the

three panels ofz distributions in Fig. 4.4. Inspecting Tab. 4.2 and Tab. 4.3 one finds,

that this amounts to∼ 6% for thez coordinate, but to as much as 13 % for the bridging

hydrogen’s bending coordinatesx andy. The distributions along the other coordinates are

much less affected, e.g., the difference for the torsion coordinateϕ is not noticeable on

the scale of Fig. 4.5 hence only [X–O· · ·H· · ·O–Y]− cases have been plotted. Similarly

the deuteration of the side O–H group also leads to negligible effects on thez distribution

on the scale of Fig. 4.4.

The major effects of the side position deuteration are the O-D bond contraction as

well as the distribution along the torsion coordinateϕ. According to Tab. 4.2 and Tab.

4.3 the free covalent O–H bond length is 0.981Å while the O–D one is 0.976̊A. The

associated bond fluctuation width drops by 15% due to the wider delocalization area of
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hydrogen. The reduced density alongϕ is shown in Fig. 4.5. The distribution has sym-

metric/asymmetric double peak for symmetric/asymmetric anion. Each side position H

→ D substitution leads to a narrowing of the distribution since the reduced moment of

inertia is dominated by the two side O–H/O–D groups.
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Figure 4.5: Reduced probability density for the vibrational ground states of the different

isotopomers along the torsional coordinateϕ. See the text for more details.

Apart from the major effects the side position deuteration also causes slight influence

on the central H/D atom. As we have discussed above the side O–D group has a higher

repulsion than the O–H group. Hence it will narrow thez distribution and expand the

x, y distribution like a ball being squeezed into an ellipse. However this secondary effect

is not as profound as the primary reduction effect and in some cases almost comparable

with our estimated calculation error.

4.3.2 Vibrational Ground State Energy

Now we focus on the ZPEs of the different isotopomers which are analyzed in terms of

the contributions of the different parts of the Hamiltonian. The details are compiled in

Tab. 4.4. First we notice, that the ZPE of [H–O· · ·H· · ·O–H]− is calculated as 6606

cm−1 , which essentially reproduces the DMC result (6605± 5 cm−1 ) obtained on the

fully coupledPES [45]. The setg1 gives the largest contribution to the ZPE as it contains

the high frequency OH stretching vibrations. Further, the strongest correlations between

different sets of coordinates are those involving the shared proton motion due to its wide

delocalization. For the fully deuterated case we obtain 4481 cm−1 which is also in accord

with the DMC result (4487± 5 cm−1 ).
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Table 4.4: Energy expectation values (in cm−1 ) of the different isotopomers in the vi-

brational ground state. The subscripts refer to single sets for one set operators or to

pairs of sets for the two-set operators, e.g..V12 = 〈V (2)(g1, g2)〉. The three groups are

g1 = [R1, R2, R4], g2 = [u1, u2, ϕ], andg3 = [x, y, z]. Note that theV0 in Eq. (4.1) is

462 cm−1 .

kinetic energy potential energy total

species T1 T2 T3 V1 V2 V3 V12 V13 V23 T+V

HOHOH− 1995 338 935 1976 425 944 -5 -80 -384 6606

HODOH− 1998 349 647 1960 417 672 -5 -64 -347 6087

DOHOH− 1741 299 940 1731 392 994 -4 -122 -4286005

DODOH− 1745 309 651 1698 374 685 -5 -68 -368 5483

DOHOD− 1489 259 941 1459 385 1005 -6 -93 -4965405

DODOD− 1491 268 653 1445 378 740 -6 -83 -467 4881

Next we discuss the general trend in ZPE change upon H/D substitution. Inspecting

Table 4.4 we observe that replacing H by D in one of the side O–H groups lowers the ZPE

by about 600 cm−1 irrespective whether the other site is deuterated or not. Replacing H

by D in the bridging site lowers the total ZPE by about 520 cm−1 only, again irrespective

of the other site’s deuteration. The difference is due to the existence of a HB and its bond

strength changes when replaced by a deuterium bond. We can describe the effects more

explicitly with different channels of the following reaction

DOH + OX−→ [D–O· · ·H· · ·O–X]− + EHB

HOD + OX−→ [H–O· · ·D· · ·O–X]− + EDB

where EHB and EDB are hydrogen bond and deuterium bond energies, respectively. There-

fore we can conclude that the difference between EHB and EDB is just the ground state

energy difference between [H–O· · ·D· · ·O–X]− and [D–O· · ·H· · ·O–X]−, i.e., EHB-EDB

= 600 cm−1− 520 cm−1 = 80 cm−1 . In other words, in terms of the ZPE the H-bond is

about 80 cm−1 stronger than the D-bond in this series of anions.

Let us have a more detailed look at the single substitutions of [H–O· · ·H· · ·O–

H]− . Here, we find that in terms of ZPE [D–O· · ·H· · ·O–H]− is more stable than [H–
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O· · ·D· · ·O–H]− by 82 cm−1 . First of all, this confirms the qualitative result of Scheiner

and coworker [111] who have obtained a value of 52 cm−1 based on the harmonic approx-

imation of the PES around a nonsymmetric structure. Their normal mode treatment has

led to the conclusion that it is the intramolecular water OH(D) stretching which is respon-

sible for the increased stability of [D–O· · ·H· · ·O–H]− . However, as discussed before

the structure is symmetrized by ZPE and their analysis in terms of a water molecule

hydrogen-bonded to a OH(D)− is not adequate. Instead, inspecting Tab. 4.4 we find the

following behavior: First, ZPE changes in [D–O· · ·H· · ·O–H]− are mainly due to the set

g1, i.e. mostly the OH-stretching at the deuteration site since the torsion frequency is so

small that its contribution is ignorable, while in [H–O· · ·D· · ·O–H]− it is the setg3 in-

volving the shared proton resulting ZPE changes. We can further notice that the net effect

contributed by all the single mode potentials is 37 cm−1 by which the D-bond would be

more stable whereas the correlation energy difference of -119 cm−1 finally leads to the

preference for the H-bond.

Now we discuss the general reason for the relative stability of isomers. From the

table we can see the dominate parts which leads to the ZPE changes of different isomers

are the correlation potential energies. The strength of the correlations between sets of

coordinates can be evaluated by the absolute value of corresponding mean correlation

potentialVij. The major correlations are those involve the central H/D motiong3 caused

by the H/D bond. Tab. 4.4 shows the correlations related to H-bond are larger than the

ones related to D-bond. This can be rationalized by the observation that the wave function

for the bridging proton is more delocalized than for the deuteron (cf. also Tab. 4.2 and

Tab. 4.3) and therefore facilitates stronger couplings to other coordinates by exploring an

extended region of the anharmonic PES. This is the fundamental reason why H-bond is

more stable than D-bond and can be generalized to other strong hydrogen bonded systems

since correlations normally make negative contributions to the total ZPE, i.e., correlations

tend to make the total system more stable.

The side position H/D substitution also has certain secondary effects on the correlation

energies. Tab. 4.4 shows that the correlations increase upon each deuteration of the

side O–H group. As has been discussed in Section 4.3.1, the side position deuteration

makes the effective volume of the single anion more compressed therefore the coupling

increases.

4.3.3 Secondary Geometric Isotope Effects

Having at hand the ground state wave functions we can calculate the secondary GIEs,

i.e., the change of O· · ·O distance upon isotopic substitution. Note thatR4 does not fully
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correspond to the O· · ·O distanceRO−O (cf. Fig. 4.1). The corresponding operator for

RO−O can be expressed in terms of our model coordinates

R̂O−O =

√
(R4 + η1R1u1 − η2R2u2)2 + d2(η1R1

√
1− u2

1, η2R2

√
1− u2

2, ϕ)

d2(x, y, ϕ) = x2 + y2 − 2xy cosϕ, (4.2)

whereηi = mD,H/(mD,H +mO) depends on whether the corresponding side O–H group

is deuterated or not. Since we have obtained the ground state wave function and the

operator we can directly calculate the expectation value by integration< RO−O >=

〈Ψ0|R̂O−O|Ψ0〉.

Table 4.5: Expectation values for the O· · ·O distance (in̊A) and reductions for deuteration

of bridging site for the different isotopomers. The classical value at the transition state is

2.446Å.

case 〈RO−O〉 case 〈RO−O〉 case 〈RO−O〉

HOHOH− 2.492 DOHOH− 2.495 DOHOD− 2.493

HODOH− 2.487 DODOH− 2.486 DODOD− 2.488

The resulting expectation values for the different isotopomers are compiled in Tab.

4.5. The classical value forRO−O in [H–O· · ·H· · ·O–H]− at the MP2/aug-cc-pVTZ tran-

sition state is 2.446̊A. In the quantum case this value increases to 2.492Å as a conse-

quence of zero-point vibration. This value is reduced to 2.487Å for deuteration of the

bridging site, i.e. in the [H–O· · ·D· · ·O–H]− case. In all cases the deuteration of the

bridging site leads to a reduction of the O· · ·O distance. For the symmetric cases the

reduction is about 0.005̊A while for the asymmetric case it is 0.009Å. Such a bond com-

pression due to reduced zero-point vibration, i.e., localization of the wave function, is

typical for strong hydrogen bonds.

The trends of the reduction ofRO−O upon bridging site deuteration are in good agree-

ment with the DMC calculations in Ref. [45] for H3O
−
2 and D3O

−
2 , only the absolute

values of the DMCRO−O are larger by 0.005̊A. In passing we note that the fully deuter-

ated case has also been investigated using the finite temperature path integral method at

a lower level of quantum chemistry [113]. For this situation Tachikawa and coworker

obtained 2.498̊A for H3O
−
2 and 2.504Å for D3O

−
2 , that is, the opposite trend which has

been explained by the bimodal character of the calculated distribution for D3O
−
2 caused

by the influence of the environment at finite temperature.
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4.3.4 Torsional Tunneling Splittings

As has been mentioned above there will be a tunneling splitting due to the side O–H group

torsional motion via the transition state overcoming the appropriately high potential bar-

rier along the torsion coordinateϕ. That is to say the ground state wave function is sym-

metric while the upper splitting state wave function is antisymmetric with respect to the

torsion coordinateϕ. This wave function can be obtained by improved relaxation embed-

ded in the MCTDH package. We first do this improved relaxation for [H–O· · ·H· · ·O–

H]− with an initial wave function as a product of the ground state wave function andsinϕ.

The converged result of upper splitting state is then taken as initial wave function for the

improved relaxations of the other isotopomers. The final results of the tunneling splitting

energy∆ of different isotopomers are compiled in Table 4.6. The non-deuterated and

fully deuterated cases have been investigated by different methods [45, 46]. Our results

agree reasonably with the existing investigations.

Table 4.6: Energy splitting∆ of the lowest pair of eigenstates (in cm−1 ) for different

isotopomers.

case ∆ case ∆ case ∆

HOHOH− 18.8 DOHOH− 13.0 DOHOD− 5.8

HODOH− 18.7 DODOH− 11.7 DODOD− 4.2

As expected the side position deuteration increases the reduced inertia of moment

consequently decreases the torsional frequency, which can be reflected from the energy

splitting. Upon each side position deuteration the energy splitting decreases by 6-7 cm−1 .

As has been discussed in Section 4.3.1, the bridging site H/D substitution almost has no

effect on the torsion wave function. Therefore it should not affect the tunneling splitting,

either. It should be mentioned that it is sometimes difficult for the the improved relaxation

method to converge exactly to the desired wave functions and consequently larger errors

may exist as compared with the ground state calculations. From this point, Table 4.6

can also be used to estimate the energetic error of our calculation. According to the

differences, the total error is less than 2 cm−1 therefore the ground state energy error

should be less than 1 cm−1 .
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4.4 Summary

The mono-hydrated hydroxide anion is a prototype strongly hydrogen-bonded low-barrier

system whose structure is symmetrized by zero-point vibration. An accurate theoretical

prediction of the associated ground state wave function requires to treat the dynamical

problem in full-dimensionality. Using the CCSD(T) potential energy surface of Bowman

and coworkers [45] we have shown that the MCTDH approach for wave packet propaga-

tion [90] can meet this challenge. For the four partly deuterated isotopomers, this work is

the first full dimensional quantum investigation.

Comparing the vibrational ground state wave functions and ZPEs for different iso-

topomers several important conclusions can be drawn. First, in accord with the general

view for ions, bridging donor and acceptor by a hydrogen atom is more favorable than

bridging by a deuterium. The general trend for the considered systems is that in terms of

ZPE the H-bonds are about 80 cm−1 (∼1 kJ/mol) more stable than the D-bonds, irrespec-

tive the deuteration state of the O–H groups. Specifically, we find [D–O· · ·H· · ·O–H]− is

energetically more stable than [H–O· · ·D· · ·O–H]− by 82 cm−1 . Although this seems

merely to confirm the results of the harmonic analysis reported in Ref. [111], the present

full-dimensional treatment is providing a more realistic physical picture by accounting

not only for the symmetrization of the structure due to zero point motion but also for the

anharmonicity of the potential energy surface. It is not only the loss of an intra-molecular

OH vibration of the water molecule which reduces the ZPE more than the loss of the in-

termolecular bridging hydrogen vibration as argued in Ref. [111] from the perspective of

harmonic vibrations. In fact we find that correlations between the bridging H/D atom mo-

tion and the other coordinates predominate the change of ZPEs. The fundamental reason

why the H-bond is about 80 cm−1 more stable than D-bond is that the proton distribution

is more delocalized consequently leading to larger correlations.

The second result concerns the H/D isotope effect on the heavy atoms O· · ·O dis-

tance. Here, we find that as compared with the classical prediction, zero-point vibrational

motion of the bridging nucleus increasesRO−O for all the isotopomers. Each H-bonded

isotopomer has a slightly longerRO−O distance than the D-bonded one due to the fact

that proton distribution is more delocalized than the deuteron distribution. The corre-

spondingRO−O distance reduction due to bridging site deuteration is about 0.005Å for

the symmetric cases and 0.009Å for the asymmetric cases. Apart from these we have

further investigated the small tunneling splitting due to the torsional motion via the tran-

sition state. The energy splitting for [H–O· · ·H· · ·O–H]− is 18.8 cm−1 and decreases by

6-7 cm−1 upon each side position deuteration. The results for the O· · ·O distance and tor-
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sional tunneling splitting agree with previous investigations for H3O
−
2 and D3O

−
2 [45, 46].

In this and previous chapters we have demonstrated the multidimensional quantum

dynamics as an appropriate level of theory for strong hydrogen bonded systems. However

quantum dynamics is only possible for gas phase study of small systems as far as present

computing ability is concerned. Though gas phase investigations provide us clear pictures

of even fundamental processes as well as key features of condensed phase phenomena,

it is still quite necessary to accomplish condensed phase studies which directly relate to

many experiments. In the next chapter we will provide a condensed phase study of the

hydrogen transfer reaction rate constant.
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Chapter 5

Hydrogen Transfer Kinetics in the

Condensed Phase

5.1 Motivation and Introduction

Unlike the gas phase study which can provide quantitative analysis not only well interpret-

ing the related experiments but also throwing light on the condensed phase phenomena,

normally the condensed phase study can only provide qualitative explanations since only

the key part of the Hamiltonian is treated at theab initio level. However, this kind of study

is quite important as most experiments have to be accomplished in condensed phase. In

addition a good simulation also enables the experimentalist to adjust certain parameters

to the range where interesting effects are predicted. Essential progress has been made in

condensed phase studies yet lots of challenges still remain including theoretical method

development.

Condensed phase hydrogen transfer is the most common reaction even in our daily

life. Since the proton is the lightest nucleus it has much in common with the electron con-

cerning the transfer rate constant. However, we do not have a general theory to describe

the proton transfer rate like the famous Marcus theory [114] in the electron transfer coun-

terpart. Though intensive studies have been done both experimentally and theoretically

[2, 8] there are still open questions concerning even the mechanism.

Fig. 5.1 shows a very recent NMR experiment by Limbach group concerning the

KIEs of tautomerism of 6-Aminofulvene-1-aldimine molecule [115]. The KIEs at 298

K has been reported to bekH
12/k

D
12 = 9 for crystalline and 4 for amorphous environment.

The temperature dependence of the rate constant shows the Arrhenius behavior in the

high temperature region indicating the predominated mechanism for hydrogen/deuterium

transfer is the thermal activation. The ratio of the thermal activation energies is about



76 Hydrogen Transfer Kinetics in the Condensed Phase

Figure 5.1: The KIEs for the tautomerism of 6-Aminofulvene-1-aldimine. The exper-

imental curves are measured in both amorphous and crystalline environment, adapted

from Ref. [115].

EH
a /E

D
a = 2/3, almost irrespective of environment. In the low temperature region the

temperature dependence is flattened due to increasing quantum tunneling effects. Two

Figure 5.2: (a) Minimum configuration. (b) Transition state for the hydrogen atom trans-

fer. The blue ones are nitrogen atoms.

equilibrium configurations obtained by B3LYP/6-31+G(d,p) optimization are shown in

Fig. 5.2. The minimum configuration corresponds to the reactant or product. The hydro-

gen atom transfer process can take place from the reactant via the transition state to the
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product or inversely. The reaction barrier height as calculated by the energy difference

of the minimum and the transition state is 3.84 kcal/mol at the B3LYP/6-31+G(d,p) level

of theory. In general the real activation energy will be decreased by the influence of the

environment as compared to the gas phase reaction barrier.

In the case of high barrier reaction processes, the classical transition state theory [58]

can make good predictions of the thermal activation energy. While a uniform quantum

theory for the reaction rates [59, 116, 117] is expected to explain both high- and low-

temperature behaviors. In this chapter we will develop a general theory of reaction sur-

face Hamiltonian and reaction rate constant calculations based on it. Then we perform a

preliminary study based on a model 1D reaction path Hamiltonian for 6-Aminofulvene-

1-aldimine.

5.2 Theory

5.2.1 Reaction Surface Hamiltonian

The reaction surface Hamiltonian contains many small amplitude displacements{Qk}
and several large amplitude coordinates{sα} [63, 66, 67]. The latter ones form the so

called reaction surface. To generate this Hamiltonian from the exact Cartesian coordinate

Hamiltonian we can directly exploit the method developed in Chapter 2.

Suppose we have the Cartesian Hamiltonian

H (R) = T (R) + V (R)

T (R) =
1

2
P 2 = −~

2

2

∂2

∂R2 , (5.1)

whereR is the3N dimensional vector of mass weighted Cartesian coordinates for sys-

tem withN atoms andP = −i~ ∂

∂R is the corresponding linear momentum vector. In

this Chapter all the operators are quantum mechanical ones and the “hat” notations are

omitted. Suppose it is feasible to find a reaction surface defined by a one-to-one mapping

along the reaction coordinatess

R = R0 (s) . (5.2)

The potential energy functionV (R) can be expanded around the reaction surface

V (R) = V (R0) + ∆R(s)T ∂V

∂R
|
R0

+
1

2
∆R(s)T ∂

2V

∂R2 |R0
∆R(s) + · · · , (5.3)

where∆R (s) = R−R0 (s) and the superscriptT means transpose. The reaction surface

is defined in such a way that the potential energyV (R) can be approximated within low

orders of orthogonal displacements, i.e., Eq. (5.3) can be truncated in the given form.
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To obtain the reaction surface Hamiltonian we first need to define the new coordinates,

i.e., the reaction coordinates{sα} and the orthogonal displacements{Qk}. The former

are already defined by the reaction surface as well as the unit vectors{eα (s)} according

to which we have the reaction coordinate vector

s =
D∑

α=1

sαeα. (5.4)

To get the latter we need a projection operator to project out the reaction coordinates

P (s) = 1−
∑

α

eαeT
α . (5.5)

Then we can diagonalize the projected Hessian matrixK (s) for each point of the reaction

surface by an orthogonal transformationURS (s)

URS (s)†K (s)URS (s) = diag{· · ·ω2
α (s) · · ·ω2

g (s) · · ·ω2
k (s) · · · }, (5.6)

whereK (s) = P (s) ∂2V

∂R2 |R0
P (s) is real symmetric.

In total there areD+6 zero eigenvalues{ω2
α} and{ω2

g} corresponding to the reaction

coordinates and six dimensional global translation and rotation, respectively

ω2
α = 0, α = 1, · · · , D
ω2

g = 0, g = 1, · · · , 6 (5.7)

The orthogonal transformation matrix contains the corresponding eigenvectors ofK (s)

URS (s) = (· · · eα (s) · · · eg (s) · · · ek (s) · · · ) . (5.8)

The six dimensional global translation and rotation as well as the3N − 6 −D displace-

ments orthogonal to the reaction surface are defined by

Rg = eT
g ∆R

Qk = eT
k ∆R. (5.9)

The original3N dimensional vector is now expressed with the new unit vectors

R = Rref +
∑

α

sαeα +
∑

g

Rgeg +
∑

k

Qkek, (5.10)

where the reference geometryRref = R0 (s = 0) is the origin of the new coordinates

system.

Based on the knowledge of the new coordinates it is not difficult to find the potential

energy

V (s,Q) = V [R0 (s)]−
∑

k

fk (s)Qk +
1

2

∑

k

ωk (s)2Q2
k, (5.11)
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wherefk (s) = −eT
k

∂V

∂R |R0
.

It is obvious that the potential energy does not depend on{Rg}, however, the KEO

does depend on{Rg} and normally it is not possible to exactly separate them. Using the

method in Chapter 2 (See Eq. (2.6), note in this case the mass matrix is a unit matrix) the

following formal KEO can be obtained

T =
1

2
P †

˜R

∂R̃

∂R

(
∂R̃

∂R

)T

P ˜R
, (5.12)

whereR̃
T

=

(
sT Rg

T QT

)
is the full set of the new coordinates andP ˜R

=

−i~ ∂

∂
˜R

. According to Appendix A one can find out that all the other components ofP ˜R
are Hermitian due to the orthogonality of transformation exceptPs. Eq. (5.12) has a fully

coupled form in case the reaction surface is quite arbitrary. The only factor which makes

the complexity is that all the unit vectors depend ons, i.e., the orthogonal transformation

matrixU(s) depends ons thus we have to calculate the derivatives with respect tos.

5.2.2 Linear Reaction Surface Hamiltonian

As mentioned in the last section the reaction surface Hamiltonian has a diagonal potential

energy function but a quite complicated KEO. The most natural thing will be to transform

to another representation provided we do not want to treat such a complicated KEO di-

rectly. The linear reaction surface Hamiltonian exploit constant unit vectors to describe

the reaction coordinatess thus greatly decrease the complexity of the KEO. With the help

of certain predefined constant unit vectors{eα} we can easily obtain the equation for the

linear reaction surface

R0 (s) = Rref +
∑

α

sαeα. (5.13)

The coordinates transform relations can be obtained by the same procedure mentioned in

the last section

R = R0 (s) +
∑

k

Qkek = Rref +
∑

α

sαeα +
∑

k

Qkek

sα = eT
α∆R, Qk = eT

k ∆R, (5.14)

where∆R = R −Rref is different from∆R (s) in Eq. (5.3) while{Qk} and{ek (s)}
have the same definition as in the last section. Please note here we have combined the

{Rg} and{Qk} into the same set of indexes{Qk} to simplify the notation. With the help

of Eq. (5.12) and Eq. (5.14) we can derive the much more simplified KEO for a linear

reaction surface. We will do it in the following explicitly.
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We first calculate the elements of the needed Jacobi matrices starting from Eq. (5.14).

Remember that{ek (s)} actually depends ons. Using the normal chain rule to calculate

the derevatives from Eq. (5.14) leads to the following results

∂sα

∂R
= eT

α

∂Qk

∂R
= eT

k +
∑

α

eT
α

(
∆RT ∂ek

∂sα

)
. (5.15)

Thus the elements for the matrix product can be obtained
(
∂s

∂R

(
∂s

∂R

)T
)

αβ

= eT
αeβ = δαβ

(
∂s

∂R

(
∂Q

∂R

)T
)

αk

= eT
α

(
ek +

∑

β

eβ

(
∆RT ∂ek

∂sβ

))
= ∆RT ∂ek

∂sα

(
∂Q

∂R

(
∂Q

∂R

)T
)

kk′

= δkk′ +
∑

α

(
∆RT ∂ek

∂sα

)(
∆RT ∂ek′

∂sα

)
. (5.16)

Based on above equations we can simplify the Eq. (5.12) as

T (s,Q) =
1

2

∑
α

P 2
α +

1

2

∑

kk′
P †k

(
δkk′ +

∑
α

BαkBαk′

)
Pk′

+

(
1

2
Pα

∑

αk

BαkPk + h.c.

)
, (5.17)

whereBαk = ∆RT ∂ek

∂sα
andh.c. means Hermitian conjugate. Note here all the compo-

nents of momentum are Hermitian according to Appendix A. The kinetic couplings are

caused by thes dependence of{ek} as can be seen from the expression ofBαk. The

potential energy has the same expansion as Eq. (5.11). This expression is essentially the

same with the one in Ref. [116].

The KEO can be further simplified by using more constant unit vectors to expand the

new coordinate space, i.e., we get rid of thes dependence of{ek}. The most simple

case, in which the kinetic energy has a quite trivial form while the potential energy is no

longer diagonal, is the space whose unit vectors are all constants. This can be achieved

by diagonalizing the projected Hessian matrix on only one pointRref instead of on each

point on the reaction surface. The new representation is obtained by a pures independent

rotation and the new variables are defined by

sα = eT
α (R−Rref )

Qk = eT
k (R−Rref ) . (5.18)
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Here{Qk} denote all the rest3N −D variables which are the global translation, rotation

and normal modes only at the reference point but have no meaning at the other points

whens 6= 0. Note the difference is that all the unit vectors are constant vectors defined

by the reference geometryRref . The Hamiltonian in terms of the new coordinates reads

T (s,Q) =
1

2

∑
α

P 2
α +

1

2

∑

k

P 2
k

= −~
2

2

∑
α

∂2

∂s2
α

− ~
2

2

∑

k

∂2

∂Q2
k

V (s,Q) = V (R0)−
∑

k

fk (s)Qk +
1

2

∑

k,k′
Ωk,k′ (s)QkQk′ , (5.19)

wherefk has the same definition as before andΩk,k′ (s) = eT
k

∂2V

∂R2 |R0
ek′. In Ref. [116]

a method to separate the translation and rotational DOFs is also introduced. For approx-

imate separations one can also refer to the procedure how we get the KEO for H3O
−
2 in

Chapter 4. Our further investigations start from this Hamiltonian. It should be mentioned

that start from Eq. (5.17) is also feasible, where the off-diagonal parts of the KEO can be

treated analytically and the potential energy is diagonal which may be more convenient

for numerical investigation.

5.2.3 Reaction Rate Constant Theory

The reaction rate constantkPR can be obtained by integrating over the flux-flux auto-

correlation functionCf (t) according to previous studies [59, 60, 117, 118]. We will only

give the main formulas in the following

kPR =
1

Z

∫ ∞

0

Cf (t)dt

Cf (t) = Tr
{
FeiHt∗c/~Fe−iHtc/~} , (5.20)

whereZ = Tr (−βHreac) is the canonical partition function of the reactant Hamiltonian

andF = 1
2m

(psδ(s) + δ(s)ps) is the symmetrized 1D flux operator for the special case

of 1D reaction path. The complex timetc = t − i~β/2 is due to the combination of

the evolution operator and the Boltzmann operator withβ = 1
KBT

. Their key point is to

define a 1D flux operator which can identify the direction of the momentum consequently

whether the momentum contributes to the reactant or the product. The trace is over the full

Hamiltonian but the flux-flux correlation operator will gets rid of the flux which reflect

back to the reactant.

The flux correlation function can be calculated by second order finite difference of a
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certain generating function [117, 118]K(s1, sN+1, sN+2, s2N+2)

Cf (tc) =
~2

2m2∆s2
Re [K(∆s,∆s, 0, 0, tc)−K(0,∆s, 0,∆s, tc)] , (5.21)

where

K(s1, sN+1, sN+2, s2N+2) =
∫∞
−∞ dQ〈Q|〈s2N+2|eiHt∗c/~|sN+2〉〈sN+1|e−iHtc/~|s1〉|Q〉.

The path integral technique which divides the complex timetc intoN slices is adopted to

calculate this generating function [117, 118]

K(s1, sN+1, sN+2, s2N+2)

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQds2 · · · dsNdsN+3 · · · ds2N+1

×〈Q|
N+2∏

n=2N+1

〈sn+1|e−iH(s)δn|sn〉
1∏

n=N

〈sn+1|e−iH(s)δn|sn〉|Q〉

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ds2 · · · dsNdsN+3 · · · ds2N+1Ft(s1, s2, · · · , s2N+2, tc)

×
N+2∏

n=2N+1

〈sn+1|e−iH0(s)δn|sn〉
1∏

n=N

〈sn+1|e−iH0(s)δn |sn〉, (5.22)

where the time steps{δn} are defined as follows:

δ2N+2 = δN+2 =
−t∗c
2N~

δn =
−t∗c
N~

, n = N + 3, · · · , 2N + 1

δN+1 = δ1 =
tc

2N~
δn =

tc
N~

, n = 2, · · · , N. (5.23)

The expressionFt is called influence functional which is defined as

Ft(s1, s2, · · · , s2N+2, tc) =

∫ ∞

−∞
dQ〈Q|

1∏
n=2N+2

e−iH1(sn,Q)δn |Q〉, (5.24)

whereH1 = H − H0 andH0 = −~2
2

∂2

∂s2 + V (R0) is the zeroth order reaction path

Hamiltonian. The partition function can be calculated following the same idea detailed

above

Z =

∫ ∞

−∞
· · ·

∫ ∞

−∞
ds1ds2 · · · dsNβ

Fβ(s1, s2, · · · , sNβ
)

×〈s1|e−iH0(s)δβ |sNβ
〉

1∏
n=Nβ−1

〈sn+1|e−iH0(s)δβ |sn〉

Fβ(s1, s2, · · · , sNβ
) =

∫ ∞

−∞
dQ〈Q|

1∏
n=Nβ

e−iH1(sn,Q)δβ |Q〉, (5.25)
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whereδβ = − iβ
Nβ

andNβ is the number of time slices for the imaginary time−i~β.

In both cases we need to calculate the influence functionals which have the same form,

namely

Finfl (s, δ) =

∫ ∞

−∞
dQ〈Q|

1∏
n=N

e−iH1(sn,Q)δn|Q〉

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQ1dQ2 · · · dQN〈Q1|e−iH1(sN ,Q)δN |QN〉

×
1∏

n=N−1

〈Qn+1|e−iH1(sn,Q)δn|Qn〉. (5.26)

The short time propagator ofH1 can be calculated by splittingH1 into the harmonic part

and perturbation part

H1(sn) =
1

2

∑

k

(
P 2

k + ωkQ
2
nk

)
+ ∆V1(sn,Qn)

∆V1(sn,Qn) = V1(sn,Qn)− Vhar(Qn) = V1(sn,Qn)− 1

2

∑

k

ωkQ
2
nk

V1(sn,Qn) = −
∑

k

fk (sn)Qnk +
1

2

∑

k,k′
Ωk,k′ (sn)QnkQnk′ . (5.27)

With the help of the exact propagator for harmonic oscillators [119] one can obtain the

following result

〈Qn+1|e−iH1(sn)δn |Qn〉 = exp {−iV1(sn,Qn)δn}
∏

k

√
ωk

2πi sin(ωkδn)

× exp

{∑

k

iωk

[(
cot(ωkδn) +

(ωkδn)

2

)
Q2

nk −
Qn+1,kQnk

sin(ωkδn)

]}
. (5.28)

One should properly chooseωk to minimize the difference betweenV1(sn,Qn) and har-

monic potentialVhar(Qn), i.e.,∆V1(sn,Qn). However, it is not very strict to chooseωk

since we already assumedδn to be small enough. In the following we setωk = Ωkk(0) to

be the same for different gridsn on the reaction path. Based on Eq. (5.28) we can simplify

the influence function by a Gaussian type integration

Finfl (s, δ) = FQ

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQ1dQ2 · · · dQN

exp{g(s, {Q})}
g(s, {Q}) =

∑

nk

iωk

[(
cot(ωkδn) +

(ωkδn)

2

)
Q2

nk −
Qn+1,kQnk

sin(ωkδn)

]

+i
∑

nk

δnfk(sn)Qnk − i

2

∑

nkk′
QnkΩkk′(sn)Qnk′ , (5.29)
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whereFQ =
∏

nk

√
ωk

2πi sin(ωkδn)
is path independent.

To get reasonable rate constant we consider a molecule coupled with the environment.

To describe the environment effect we should include additional terms in the full Hamil-

tonian

H2 =
∑

α

{
−~

2

2

∂2

∂q2
α

+
1

2
ω2

αq
2
α

}
+

∑
α

dα(s)qα +
∑

α,k

Cα,k(s)Qkqα, (5.30)

whereqα is the bath oscillator coordinate andωα the corresponding frequency which can

be continuous. Starting from the full HamiltonianH = H0 + H1 + H2 we follow the

same procedure mentioned above except thatH1 should be replaced byH1 +H2. We can

get the new influence functional

Finfl (s, δ) =

∫ ∞

−∞
dqdQ〈q|〈Q|

1∏
n=N

e−i[H1(sn,Q)+H2(sn,Q,q)]δn|Q〉|q〉

= FqFQ

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQ1dQ2 · · · dQNdq1dq2 · · · dqM

exp{g(s, {Q}, {q})}
g(s, {Q}, {q}) =

∑

nk

iωk

[(
cot(ωkδn) +

(ωkδn)

2

)
Q2

nk −
Qn+1,kQnk

sin(ωkδn)

]

+i
∑

nk

δnfk(sn)Qnk − i

2

∑

nkk′
QnkΩkk′(sn)Qnk′

+
∑
nα

iωα

sin(ωαδn)

[
cos(ωαδn)q2

nα − qn+1,αqnα

]

−i
∑
nα

δndα(sn)qnα − i
∑

nkα

δnCαk(sn)Qnkqnα, (5.31)

whereFq =
∏

nα

√
ωα

2πi sin(ωαδn)
.

Having the above result at hand what we need to do is just to calculate the complex-

coefficient Gaussian type integrals
∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1dx2 · · · dxN exp{−

∑
mn

Amnxmxn + i
∑
mn

Bmnxmxn +
∑

n

Wnxn},
(5.32)

where bothA andB are real symmetric matrices. For any physical case the integration

converges, i.e., the matrixA is positive-definite. It is then easy to find one invertible real

matrix Uc to congruently diagonalize bothA andB simultaneously sinceA is positive-

definite. The detailed procedure is shown in the following equations

U1
TAU1 = a ≡ diag{a1, a2, · · · , aN}

U2
Ta−

1
2U1

TBU1a
− 1

2U2 = b ≡ diag{b1, b2, · · · , bN},
(5.33)
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where bothU1 andU2 are orthogonal matrices which diagonalize the corresponding real

symmetric matrices, respectively. Since the matrixA is positive-definite all eigenvalues

{an} are positive. The final transformation matrix is defined asUc = U1a
− 1

2U2 which

transformsUT
c AUc = 1 andUT

c BUc = b. Using the new variables{yn} defined by

yn =
∑

m(U−1
c )nmxm the integration in Eq. (5.32) can be solved analytically

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1dx2 · · · dxN exp{−

∑
mn

Amnxmxn + i
∑
mn

Bmnxmxn +
∑

n

Wnxn}

= |Det(U−1
c )|

∫ ∞

−∞
· · ·

∫ ∞

−∞
dy1dy2 · · · dyN exp{−

∑
n

(1− ibn)y2
n +

∑
n

wnyn}

=
∏
n

(√
π

an

√
1

1− ibn
exp{ w2

n

4(1− ibn)
}
)
, (5.34)

wherewn =
∑

m(Uc)nmWm. Here and in the following the square root of a complex

number means its principal value, i.e., the one with non-negative real part.

In principle it is now possible to solve Eq. (5.31). However, it is numerically impossi-

ble to diagonalize a large matrix foreachspecified path. We can first solve the environ-

ment part since the quadratic coefficients of the bath oscillators are path independent and

assumed to be uncorrelated between each other. Based on above mentioned procedure we

can find a frequency dependent real invertible matrixUq(ω) to congruently diagonalize

each bath mode

q̃n =
∑

n′
[U−1

q (ω)]nn′qn′

∑
n

iω

sin(ωδn)

[
cos(ωδn)q2

n − qn+1qn
]

= −
∑

n

(1− ibqn(ω))q̃2
n,

(5.35)

where{aq
n(ω)} (which will appear in the following) and{bqn(ω)} are the eigenvalues while

diagonalizing the corresponding coefficients matrix according the procedure introduced

in Eq. (5.33). Using the new variables̃qnα =
∑

n′ [U
−1
q (ωα)]nn′qn′α the integration over

{q̃nα} can be calculated analytically. The final result for influence functional is simplified

as

Finfl (s, δ) = FqFQF̃q

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQ1dQ2 · · · dQN exp{g(s, {Q})}

g(s, {Q}) =
∑

nk

iωk

[(
cot(ωkδn) +

(ωkδn)

2

)
Q2

nk −
Qn+1,kQnk

sin(ωkδn)

]

+i
∑

nk

δnfk(sn)Qnk − i

2

∑

nkk′
QnkΩkk′(sn)Qnk′ + ∆(s)

+i
∑

nk

δn∆fk(sn)Qnk +
∑

nkn′k′
gnk,n′k′QnkQn′k′ , (5.36)
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whereF̃q =
∏

nα

√
π

aq
n(ωα)

√
1

1−ibq
n(ωα)

and the additional terms caused by the environment

are defined as follows:

∆(s) =
∑
nα

w2
nα

4[1− ibqn(ωα)]

wnα = −i
∑

n′
[Uq(ωα)]n′nδn′dα(sn′)

∆fk(sn) =
∑

n′α

wn′αun′α,nk

2[1− ibqn′(ωα)]

un′α,nk(sn) = −i[Uq(ωα)]nn′δnCαk(sn)

gnk,n′k′(sn, sn′) =
∑

n′′α

un′′α,nkun′′α,n′k′

4[1− ibqn′′(ωα)]
. (5.37)

By now we have obtained the final expression for the influence functional shown in

Eq. (5.36). Directly applying the procedure of Eq. (5.33) we can obtain the result for the

integration in Eq. (5.36)

Finfl (s, δ) = FqFQF̃qe
∆(s)

∏

nk

(√
π

ank

√
1

1− ibnk

exp{ w2
nk

4(1− ibnk)
}
)
, (5.38)

where{ank}, {bnk} and{wnk} should be determined by the diagonalization of the com-

plex coefficient matrix as detailed in Eq. (5.33).

5.2.4 Application to Large Systems

In general we can assume the coupling strength betweenQk and qα does not strongly

depend ons. Thus we ignore thes-dependence of the coupling strength betweenQk

andqα, i.e, {Cαk} are simply constants and hence{gnk,n′k′(sn, sn′) = gnk,n′k′} are also

constants. Concerning large molecules, it may be still not feasible to diagonalize a large

matrix for each specified path. However, not all the modes{Qk} strongly depend on

the reaction paths, which makes it a reasonable approximation to replace the weaks-

dependent modes by certain mean values. In the following we use{Qk} to denote the

relatively more important DOFs, i.e., they significantly depend ons. And the rest DOFs

are denoted by{Qν}. In Eq. (5.36), the following quadratic coefficients will be replaced

by theirs-independent mean values along the reaction path

Ωνν′(sn) →< Ωνν′ >≡ 1

2L

∫ L

−L

Ωνν′(s)ds, (5.39)

where2L is the length of the reaction path. Under this approximation, we need to diago-

nalize a large matrix just once while for each specified path we only need to diagonalize

a much smaller matrix since only a few number of DOFs significantly depend ons.
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Following the idea of Eq. (5.33) we can find a real invertible matrixUQ which con-

gruently diagonalizes the quadratic coefficient matrix related only to{Qν}

∑
nν

iων

[(
cot(ωνδn) +

(ωνδn)

2

)
Q2

nν −
Qn+1,νQnν

sin(ωνδn)

]

− i
2

∑

nνν′
δn < Ωνν′ > QnνQnν′ +

∑

nν,n′ν′
gnν,n′ν′QnνQn′ν′

= −
∑
nν

(1− ibnν)Q̃
2
nν , (5.40)

whereQ̃nν =
∑

n′ν′
(
UQ

)−1

nν,n′ν′ Qnν′. With the help of this transformation we can ana-

lytically integrate over the{Q̃nν} part. This will further contribute a pre-factor̃FQ and

some modifications to the exponential factor compared with Eq. (5.36)

Finfl (s, δ) = FqFQF̃qF̃Q

∫ ∞

−∞
· · ·

∫ ∞

−∞
dQ1dQ2 · · · dQN exp{g(s, {Qnk})}

g(s, {Qnk}) =
∑

nk

iωk

[(
cot(ωkδn) +

(ωkδn)

2

)
Q2

nk −
Qn+1,kQnk

sin(ωkδn)

]

+i
∑

nk

δnfk(sn)Qnk − i

2

∑

nkk′
QnkΩkk′(sn)Qnk′ + ∆(s)

+i
∑

nk

δn∆fk(sn)Qnk +
∑

nkn′k′
gnk,n′k′QnkQn′k′ + ∆̃(s)

+i
∑

nk

δn∆̃fk(sn)Qnk +
∑

nkn′k′
g̃nk,n′k′QnkQn′k′ , (5.41)

where F̃Q =
∏

nν

√
π

anν

√
1

1−ibnν
and the additional terms caused by the reduction of

DOFs are defined as follows:

∆̃(s) =
∑
nν

w2
nν

4(1− ibnν)

wnν =
∑

n′ν′
(UQ)n′ν′,nν [iδn′fν′(sn′) + iδn′∆fν′(sn′)]

∆̃fk(sn) =
∑

n′ν′

wn′ν′unk,n′ν′

2(1− ibn′ν′)

unk,n′ν′ = 2
∑

n′′ν

(UQ)n′′ν,n′ν′gnk,n′′ν − i
∑

ν

(UQ)nν,n′ν′δnΩkν(sn)

g̃nk,n′k′(sn, sn′) =
∑

n′′ν

unk,n′′νun′k′,n′′ν

4(1− ibn′′ν)
(5.42)

The final numerical calculations can start from Eq. (5.41) which is feasible since only a

very low dimensional matrix needs to be diagonalized for each specified path.



88 Hydrogen Transfer Kinetics in the Condensed Phase

5.3 Results of a Preliminary Study

For a specific application, we have performed a preliminary simulation based on a model

Hamiltonian of the 6-Aminofulvene-1-aldimine. For simplicity we did not start from

Eq. (5.41). In stead, we start from Eq. (5.36) by selecting one intra-molecular modeQk

which most strongly couples to the reaction path. The intra-molecular mode which we se-

lect is the one involving large amplitude stretching of nitrogen atoms. We have to mention

that the present simulation is a very preliminary one since the other 104 intra-molecular

modes together with the environment are simply treated as bath DOFs. The purpose is

to show that this new method does work for the numerical calculation of reaction rate

constants.

The unit vector which defines the linear reaction path is just the direction pointing

from the reactant to the product, i.e.,es =
(Rprod−Rreac)
|Rprod−Rreac|

. The reactant and the product

are two equivalent minimum configurations as shown in Fig. 5.2. The required quantities

for generating the reaction path Hamiltonian, namelyV (R0), fk(s), andΩk,k′(s) appear-

ing in Eq. (5.19), are calculated according to Section 5.2.2 based on the Hessian matrix

by the B3LYP/6-31+G(d,p) level of theory. The coupling between the environment and

the molecular DOFs are defined as

dα(s) = d1e
−ω2

α/d2
2(s+ ηs2)

Cα,k(s) = Cα,k = c1e
−(ωk−ωα)2/c22 , (5.43)

whered1, d2, ω0, η, c1, andc2 are parameters. Thes dependence has been expanded to

the second order and the bath frequency dependence has been simply chosen to have the

Gaussian form. The environment modes are assumed to have uniform density of states in

the region of which we take into account the coupling with the molecular DOFs.

According to the present linear reaction path, the barrier is as high as 14.85 kcal/mol.

The details of the potential curve along the reaction coordinate are shown in Fig. 5.3. As

expected, the shapes of potential cures for hydrogen and deuterium transfers are the same.

The only difference lies in the length of the step∆swhich appears in Eq. (5.21). The ratio

for the steps is only slightly different from one,∆s(H)/∆s(D) = 0.9978, due to the

fact that the linear reaction path involves many modes’ contributions which decrease the

effective isotope mass ratio. The effective barrier will decrease to the appropriate value

as compared to the barrier in Fig. 5.3 after taking into account of all the intra- and inter-

molecular couplings.

The calculated KIEs are reasonable as shown in Fig. 5.4. At 298 K the calculated

value iskH
12/k

D
12 = 10. The parameters we adopted arec1 = d1 = 10−6, c2 = d2 = 0.01

Hartree= 6.28 kcal/mol, andη = 0.2∆s−1. The involved bath frequency region starts
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Figure 5.3: The zeroth order potential energy curve obtained by B3LYP/6-31+G(d,p) for

the hydrogen/deuterium atom transfer reaction in 6-Aminofulvene-1-aldimine as shown

in Fig. 5.1. The reference geometry iss = 0 and the reactant/product iss = ±6.

from 3 to 30 kcal/mol with 50 harmonic oscillators equally distributed. The major draw-

back of the present study is that the activation energies are too high (3-4 times of the

experimental values) and the difference between the activation energies of different iso-

topomers are too small, the latter can be explained by the ratio∆s(H)/∆s(D) = 0.9978

which implies that the ratio of H/D transfer rates can be correctly described only after

taking into account many intra-molecular modes. In general the effective reaction barrier

will decrease if the number of coupled modes or the coupling strength increases. There-

fore one can expect that the calculated results will be more reasonable if one includes all

the 105 intra-molecular modes according to Section 5.2.4 and more bath modes.

We have to mention that in principle the curves in Fig. 5.4 can give the correct thermal

activation energy in the high temperature region but wrong behavior in the low tempera-

ture region due to an approximation we have adopted to decrease the numerical efforts.

As can be seen in Eq. (5.22), we have to do a multi-fold integration over the path variable

s to calculate the rate constant. One can imagine that the thermal activation behavior can

be correctly described by taking into account only a few configurations around the tran-

sition state, while the low temperature tunneling process can be correctly described once

we include the configurations which locate near the tunneling energy. In Fig. 5.4 we have

only considered three configurations near the reference geometry, namely, the integration

overs has been substituted by a sum overs = −1, 0, 1. For the partition function the in-
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Figure 5.4: The calculated temperature dependence of H/D transfer rate constants in

the thermal activation region based on a 1D linear reaction path coupled to one intra-

molecular modes and 50 bath modes.

tegration is replaced by a sum overs = −7,−6,−5. In this specific case, the calculation

effort will be greatly decreased from192N path integrals to32N ones.

Figure 5.5: The left and middle panels show the convergence of the thermal activation en-

ergy (the slope) in the high temperature region by only considering configurations which

are important for thermal activation, i.e., arounds = 0. The right panel schematically

shows the quantum tunneling effects (see e.g., Fig. 1.1) in the low temperature region by

covering some configurations which are important for tunneling (specificallys = ±5 for

the solid curve). See the text for more details.

To clearly show how this technique works, we have studied the parameter dependence

of the results in Fig. 5.5. Let us first check the convergence of the results. The left panel
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of Fig. 5.5 shows two different rate curves for different numbers of time slices,N = 4 and

N = 5, respectively. From this figure we can say that the result is converged forN not

less than 4. In all the other figures the time slices are set to beN = 4. The middle panel

shows the path dependence of the results. One (3 sites) is obtained by only taking into

accounts = −1, 0, 1 while the other (5 sites) by taking into accounts = −2,−1, 0, 1, 2.

The ignorable difference shows the applicability of the simplification technique which

we have adopted for the high temperature calculations. Finally the right panel shows

how the H/D transfer mechanism changes from the high temperature thermal activation

predominated process to the low temperature quantum tunneling predominated process.

The dashed curve is obtained by coverings = −2,−1, 0, 1, 2 while the solid curve is

obtained by coverings = −5,−1, 0, 1, 5. The change of mechanics is already reflected

in the solid curve in the right panel of Fig. 5.5 by only covering two configurations for

tunneling. The results will be better if we cover more related configurations or even all

the 19 configurations froms = −9 to s = 9. Apart from the knowledge of the critical

temperature, we can further find out which configurations contributes to the tunneling

process most significantly if we cover more and more configurations along the reaction

path step by step until convergence.

5.4 Summary of this Chapter

In this chapter we have studied condensed phase proton transfer rates. The reaction rate

constants predicted by the classical transition state theory is not reliable especially for low

barrier reactions. We have developed a new method to generate a reaction surface Hamil-

tonian and to calculate the reaction rate constant based on the work of Miller and Makri

[59, 60, 117, 118]. A preliminary application is performed based on a 1D linear reac-

tion path Hamiltonian and the calculated results show reasonable trends for the change of

predominated proton transfer mechanics from high temperature thermal activation to low

temperature tunneling. We have also discussed the parameter dependence of the results

and introduced a practical technique to greatly reduce the numerical effort. The results

become more reasonable when increasing calculation efforts, which consequently imply

the applicability and predictability of the present theory.
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Chapter 6

Summary and Outlook

Few problems in recent years have attracted as much attention as the hydrogen bonding

and transfer in solution, biomolecular systems, and material sciences. However, a molec-

ular level of description of HBs remains elusive since the proton behaves in a quantum

mechanical way on the scale of typical HB lengths and couples to many degrees of free-

dom. Among the widely investigated phenomena of HBs the finite charged clusters are

believed to play an essential role in many fundamental processes. The present theoretical

work mainly focus on the charged clusters associated by HBs in the gas phase to grasp

some essential features of HBs involving the geometry, IR spectrum and isotope effects.

The most important limiting structures in the aqueous solution are the Eigen cation

H3O+·(H2O)3 and the Zundel cation [H2O· · ·H· · ·OH2]+ which are responsible for the

proton diffusion processes. And the anion counterpart is the [HO· · ·H· · ·OH]− structure

which play the same role for hydroxide diffusion as the Zundel cation for proton diffu-

sion. The understanding for Zundel cation is rather deep and extensive based on previous

investigations in particular the breakthrough of recent full dimensional quantum study by

MCTDH. However the investigations on the anion counterpart [HO· · ·H· · ·OH]− is less

impressive therefore further investigations are required. For this kind of strong hydrogen

bonded systems we need multidimensional quantum dynamics to appropriately describe

them. A concise theory for generating the vibrational Hamiltonian and method on solving

multidimensional Schr̈odinger equation has been introduced in Chapter 2 for this purpose.

As isoelectronic analogies of the protonated water clusters, the protonated ammonia

clusters are also very important in our daily life such as nitrogen metabolism. For the

protonated ammonia dimer N2H
+
7 , a quantum simulation based on a reduced 6D model

has been performed. The six coordinates mainly focus on the HB including the shared

proton stretching and bending, the NH3 · · ·NH3 stretching and the umbrella like motions

of the terminal ammonia molecules. We first scan the required PESs at MP2/aug-cc-
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pVTZ level of theory and generate a 6D PES by correlation expansion containing all (6)

1D PESs, all (15) 2D PESs and some most important (7) 3D PESs. The 6D kinetic energy

operator for the case of total angular momentum equal to zero is derived analytically

exploiting the theory developed in Chapter 2. After generating the Hamiltonian operator

the Schr̈odinger equation is solved by MCTDH.

The ground state of N2H
+
7 has D3d symmetry with the proton locating in the center

which agrees well with previous investigations. This kind of symmetrization by zero point

vibration is typical for strong HBs. The calculated IR spectrum shows that the first and

also the most intense band is the central proton stretching fundamental transition at 409

cm−1 . Then comes the fundamental transition of asymmetric umbrella type motion of

the terminal ammonias at 1336 cm−1 . In between we have the combination bands of the

proton stretching and NH3 · · ·NH3 stretching modes which also significantly contribute

to the rich IR bands. The last one is the fundamental transition of the two fold degenerate

bending mode at 1542 cm−1 . The calculated IR spectrum agrees well with the recent

experiment by Asmis group [96, 97].

For large NH+
4 (NH3)n (n=2-4) clusters we first investigate the potential energy curve

along the proton transfer coordinate. All of them are found to be much less anharmonic

due to weakening of HB. Therefore we study the large clusters with harmonic analysis

at the MP2/6-311+G(d,p) level of theory. Each large cluster has the solvated ammonium

structure with a stable central NH+
4 fragment different from N2H

+
7 . The calculated IR

spectra agree qualitatively with the experiment by Asmis group [97]. The most intense IR

absorption band between 1100 and 1200 cm−1 for each cluster is caused by the collective

ν2 bending mode (which corresponds to the asymmetric umbrella motion in the N2H
+
7

case) of side NH3. There is a systematic red shift of this band when the cluster size in-

creases. The reason is the weakening of HB leads to a larger N· · ·N distance consequently

soften the potential curve for this mode.

Still there is something more to be done in the future as has been mentioned in Chapter

3. The 6D model for N2H
+
7 should be enlarged to a 9D model to include three wags

of the two terminal NH3 fragments. Meanwhile a sufficiently accurate PES is also a

severe challenge to quantum chemistry. A full dimensional investigation will be definitely

impressive yet it seems to be hardly feasible concerning present computer abilities. For

large clusters there are also lots of phenomena which go out of the range of harmonic

predictability. An appropriate reduced model involving the relative motions of the central

NH+
4 and the terminal NH3 fragments might be capable of interpreting the anharmonic

effects which already appear in the low frequency region IR spectra of a recent experiment

by the Asmis group.
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Concerning the fundamental water clusters we have investigated the deprotonated wa-

ter dimer [HO· · · H · · · OH]− in full dimensionality. The kinetic energy operator for the

case of total angular momentum equal to zero is derived analytically exploiting the theory

developed in Chapter 2 for each isotopomer (cf. Appendix C). Concerning the 9D PES

construction, we use the PES subroutine by Bowman group which is based on fitting of a

sufficient number of CCSD(T)/aug-cc-pVTZ data points. The nine coordinates have been

divided into three groups and the 9D PES is expanded with all the two-group correlations.

This means the expansion actually incorporate six-mode correlations among nine individ-

ual coordinates. Then each ground state is obtained by wave function relaxation and the

torsional splitting state is also calculated by improved relaxation with MCTDH.

The first conclusion is that the general trend of the primary energetic isotope effects

in this series of isotopomers. Each side O–H group deuteration lowers the ZPE by about

600 cm−1 and each central position deuteration lowers the ZPE by about 520 cm−1 , both

irrespective of whether the rest positions are deuterated or not. The difference between

the side and central position deuteration is that the central position deuteration includes

the H-bond to D-bond substitution at the same time. Their difference is nothing but the

difference between the bond energy of H-bond and D-bond, namely the H-bond is more

stable than D-bond by about 80 cm−1 (cf. Section 4.3.2) for this series of isotopomers.

The reason is that the proton distribution is more delocalized consequently the couplings

between the central proton motion and the rest coordinates, which make the system more

stable, are larger than the deuteron case. Since the reason is general we can draw the

conclusion that H-bond is in general more stable than D-bond for strong HBs yet the

bond energy difference may differ for different cases.

The secondary geometry isotope effects as well as the tunneling splitting effects as-

sociated with the torsion are also investigated. For each isotopomer the quantum mean

value of O· · ·O distance increases compared with the classical transition state due to the

zero point vibration. Upon deuteration of the central proton the O· · ·O distance slightly

decreases due to the more localized distribution of deuteron. One should realize that in

general a shorter HB length corresponds to a stronger bonding. However, it is not true

for slight differences such as this series of isotopomers. The reduction of O· · ·O distance

due to central deuteration is about 0.005Å for symmetric cases and 0.009̊A for asym-

metric cases. The tunneling splitting is related to the torsion frequency determined by the

side O–H group deuteration status. Each side position deuteration increases the reduced

moment of inertia therefore the energy splitting is decreased by 6-7 cm−1 .

We have to mention that the investigations of [HO· · ·H· · ·OH]− anion are far from a

final conclusion despite the existing extensive investigations. Concerning MCTDH which
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requires sum of products form of PES we have to fit the PES. Limited by the computer

ability and algorithms a fitting of 9D PES with high accuracy is extremely difficult. It

would be quite interesting to use the original 9D PES instead of correlation expansion to

see further refinements.

In addition the present work also covers condensed phase proton transfer process. A

general theory for reaction surface Hamiltonian and reaction rate constant calculations

has been developed. A preliminary simulation for a model Hamiltonian based on 6-

Aminofulvene-1-aldimine has been performed. The calculated reaction rate constant ver-

sus temperature shows Arrhenius rate behavior at high temperature region and the activa-

tion energy for deuterium atom is larger than hydrogen atom due to its heavier mass. The

calculated results show reasonable trends for the change of predominated proton transfer

mechanics from high temperature thermal activation to low temperature tunneling. The

results become more reasonable when increasing calculation efforts, which consequently

imply the applicability and predictability of the present theory. Our further investigation

will be picking out suitable parameters, covering more grid points along the reaction path,

and including more intra- and inter- molecular modes for specified problems.

To elucidate the complexity of hydrogen bonding and transfer in real solution or bio-

environment is the ultimate goal. Successful theoretical description of condensed phase

phenomena is a long time pursuing for numerous theoreticians. However, there is no

generally accepted method which in most cases gives convincing results. We still strongly

rely on the gas phase features and make some reasonable arguments about environmental

influence on the deviation of condensed phase from gas phase. Up to now most of the

interesting gas phase systems have been investigated at certain level and the future work

will mainly focus on condensed phase.



Appendix A

Hermitian Conjugates of Momentum

Operators

To derive the expressions for the HCMOs in LRF is the most tedious part as mentioned

in Chapter 2. The things become much more complicated when we exploit coordinates

defined in MRF. Consider the LRF defined by three orthogonal unit vectors{ex, ey, ez}
and a MRF defined by three orthogonal unit vectors{ex′ , ey′ , ez′}. The orientation angles

of ez′ in the LRF are(ϑ, φ). To obtain the connection between the LRF and the MRF we

first apply two excessive rotationsUy(ϑ) and Uz(φ) to the LRF, whereUy(ϑ) means

rotatingϑ aroundey andUz(φ) means rotatingφ aroundez. The matrix representation of

them are

Uy(ϑ) =




cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ




Uz(φ) =




cosφ − sinφ 0

sinφ cosφ 0

0 0 1



. (A.1)

The new reference frame generated by applyingUy(ϑ) and Uz(φ) to the LRF has the

samez axis as the MRF, i.e., the only difference between the two reference frames is just

a rotation of angleχ aroundez′. Therefore the MRF can be obtained by applying three

excessive rotationsUy(ϑ), Uz(φ) andUz′(χ) to the LRF, namely

eα′ = Uz′(χ)Uz(φ)Uy(ϑ)eα, α = x, y, z, (A.2)
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whereUz′(χ) means rotatingχ aroundez′. The matrix representation forUz′(χ) in the

MRF is the same withUz(χ) in the LRF. Since the third rotationUz′(χ) in Eq. (A.2) has

no effects onez′ we actually haveez′ = Uz(φ)Uy(ϑ)ez. Exploiting the rules between

vector and operator transformations we can obtain the expression forUz′(χ) in the LRF

Uz′(χ) = [Uz(φ)Uy(ϑ)] Uz(χ) [Uz(φ)Uy(ϑ)]−1 . (A.3)

Consequently Eq. (A.2) can be rewritten as

eα′ = Uz(φ)Uy(ϑ)Uz(χ)eα α = x, y, z. (A.4)

Eq. (A.4) tells us that an equivalent way to obtain the MRF is to apply three excessive

rotationsUz(χ), Uy(ϑ) andUz(φ) to the LRF. The three angles{ϑ, φ, χ} which connect

the LRF and the MRF are called Euler angles [73].

Now let us consider vectorsRj characterized by spherical coordinates(Rj, θj, ϕj) in

the MRF (j = 1−N ). With Eq. (A.4) and the rule between basis vectors and components

transformations we can obtain the Cartesian components of these vectors in LRF



Rjx

Rjy

Rjz




= Uz(φ)Uy(ϑ)Uz(χ)




Rjx′

Rjy′

Rjz′



, (A.5)

whereRjα andRjα′ are Cartesian components ofRj in the LRF and the MRF, respec-

tively. We can rewrite Eq. (A.5) in a more formal way for some other applications.

Rj = RjUz(φ)Uy(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez, (A.6)

Eq. (A.6) is a vector equation, therefore, it is also valid for arbitrary reference frame.

Now we turn to the main task of deriving the Hermitian conjugate of momentum

operators. This can be done step by step according to Eq. (2.8) with the help of the coor-

dinates transformation Eq. (A.5). From Eq. (A.5) we can see that(θj, ϕj) only appear in

the Cartesian components ofRj. This greatly simplifies the expression for the Hermitian

conjugates of momentum operators as follows

P̂ †Rj
= P̂Rj

− i~
∑

α=x,y,z

(
∂

∂Rjα

∂Rjα

∂Rj

)◦

P̂ †θj
= P̂θj

− i~
∑

α=x,y,z

(
∂

∂Rjα

∂Rjα

∂θj

)◦

P̂ †ϕj
= P̂ϕj

− i~
∑

α=x,y,z

(
∂

∂Rjα

∂Rjα

∂ϕj

)◦
. (A.7)
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To calculate the derivatives in Eq. (A.7) the three Euler angles in Eq. (A.5) are purely

parameters. We first write out some useful relations according the orthogonality of the

transformation Eq. (A.5)

Rjα =
∑

β′

∂Rjα

∂Rjβ′
Rjβ′ , Rjβ′ =

∑
α

∂Rjβ′

∂Rjα

Rjα

∑

β′

(
∂Rjα

∂Rjβ′

)2

=
∑

α

(
∂Rjα

∂Rjβ′

)2

= 1

∂Rjα

∂Rjβ′
=
∂Rjβ′

∂Rjα

(A.8)

whereα = x, y, z andβ′ = x′, y′, z′. The last equation is just the property thatU−1

is equal toUT for an orthogonal matrixU. Note that for the derivation purpose in this

appendix all the derivatives{∂Rjβ′
∂Rjα

} are parameters only depends on the three Euler angles

since we do not need to calculate derivatives with respect to the Euler angles.

Let us first derive the expression for̂P †Rj
. It is straightforward to get the following

derivatives of MRF Cartesian coordinates

∂Rjx′

∂Rj

= sin θj cosϕj =
Rjx′

Rj

∂Rjy′

∂Rj

= sin θj sinϕj =
Rjy′

Rj

∂Rjz′

∂Rj

= cos θj =
Rjz′

Rj

(A.9)

whereR2
j = R2

jx + R2
jy + R2

jz = R2
jx′ + R2

jy′ + R2
jz′. Based on Eq. (A.9) we can obtain

the derivatives of Cartesian coordinates in LRF with respect toRj

∂Rjα

∂Rj

=
∑

β′

∂Rjα

∂Rjβ′

∂Rjβ′

∂Rj

=
∑

β′

Rjβ′

Rj

∂Rjα

∂Rjβ′
. (A.10)

Then we can calculate
(

∂
∂Rjα

∂Rjα

∂Rj

)◦
based on Eq. (A.10)

(
∂

∂Rjα

∂Rjα

∂Rj

)◦
=

∑

β′


 1

Rj

∂Rjβ′

∂Rjα

+Rjβ′
∂

(
R2

jx +R2
jy +R2

jz

)− 1
2

∂Rjα


 ∂Rjα

∂Rjβ′

=
∑

β′

(
1

Rj

∂Rjβ′

∂Rjα

− Rjβ′Rjα

R3
j

)
∂Rjα

∂Rjβ′
. (A.11)
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Making the summation we obtain the needed quantity for Eq. (A.7)

∑
α

(
∂

∂Rjα

∂Rjα

∂Rj

)◦
=

∑

α,β′

(
1

Rj

∂Rjβ′

∂Rjα

− Rjβ′Rjα

R3
j

)
∂Rjα

∂Rjβ′

=
∑

α

(
1

Rj

− R2
jα

R3
j

)

=
3

Rj

− 1

Rj

=
2

Rj

, (A.12)

where Eq. (A.8) has been used at the first step. Finally we can get the HCMO associated

with Rj

P̂ †Rj
= P̂Rj

− 2i~
Rj

= −i~ 1

R2
j

∂

∂Rj

R2
j . (A.13)

Next we will derive the expression for̂P †θj
following the same procedure. The deriva-

tives of MRF Cartesian coordinates read

∂Rjx′

∂θj

= Rj cos θj cosϕj = Rjx′ cot θj

∂Rjy′

∂θj

= Rj cos θj sinϕj = Rjy′ cot θj

∂Rjz′

∂θj

= −Rj sin θj = − Rjz′

cot θj

. (A.14)

Based on Eq. (A.14) we can obtain the derivatives of Cartesian coordinates in LRF with

respect toθj

∂Rjα

∂θj

= Rjx′ cot θj
∂Rjα

∂Rjx′
+Rjy′ cot θj

∂Rjα

∂Rjy′
− Rjz′

cot θj

∂Rjα

∂Rjz′
(A.15)

The next step is to calculate
(

∂
∂Rjα

∂Rjα

∂θj

)◦
. We will do it step by step in the following.

(
∂

∂Rjα

∂Rjα

∂θj

)◦
= cot θj

∂Rjα

∂Rjx′

∂Rjx′

∂Rjα

+ cot θj
∂Rjα

∂Rjy′

∂Rjy′

∂Rjα

− 1

cot θj

∂Rjα

∂Rjz′

∂Rjz′

∂Rjα

+

(
Rjx′

∂Rjα

∂Rjx′
+Rjy′

∂Rjα

∂Rjy′
+

Rjz′

cot2 θj

∂Rjα

∂Rjz′

)
∂ cot θj

∂Rjα

= cot θj − 1

sin θj cos θj

∂Rjα

∂Rjz′

∂Rjz′

∂Rjα

+

(
Rjα + (tan2 θj − 1)Rjz′

∂Rjα

∂Rjz′

)
∂ cot θj

∂Rjα

. (A.16)
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Sincecot θj =
Rjz′q

R2
jx′+R2

jy′
we can get the following derivatives

∂ cot θj

∂Rjx′
= − Rjx′Rjz′√

R2
jx′ +R2

jy′
3

∂ cot θj

∂Rjy′
= − Rjy′Rjz′√

R2
jx′ +R2

jy′
3

∂ cot θj

∂Rjz′
=

1√
R2

jx′ +R2
jy′

(A.17)

Based on Eq. (A.17) we have

∂ cot θj

∂Rjα

=
1√

R2
jx′ +R2

jy′
3

(
−Rjx′Rjz′

∂Rjx′

∂Rjα

−Rjy′Rjz′
∂Rjy′

∂Rjα

+ (R2
jx′ +R2

jy′)
∂Rjz′

∂Rjα

)

=
1√

R2
jx′ +R2

jy′
3

(
−Rjz′Rjα +R2

j

∂Rjz′

∂Rjα

)
(A.18)

Combining Eq. (A.16) and Eq. (A.18) we can finally derive

∑
α

(
∂

∂Rjα

∂Rjα

∂θj

)◦

=
∑

α

(
cot θj − 1

sin θj cos θj

∂Rjα

∂Rjz′

∂Rjz′

∂Rjα

)

+
∑

α

1√
R2

jx′ +R2
jy′

3

(
Rjα + (tan2 θj − 1)Rjz′

∂Rjα

∂Rjz′

)(
−Rjz′Rjα +R2

j

∂Rjz′

∂Rjα

)

= 3 cot θj − 1

sin θj cos θj

+
1√

R2
jx′ +R2

jy′
3

(−Rjz′R
2
j +R2

jRjz′ + (tan2 θj − 1)(−R2
jz′Rjz′ +R2

jRjz′)
)

= 3 cot θj − 1

sin θj cos θj

+ (tan2 θj − 1) cot θj

= cot θj (A.19)

The Hermitian conjugate of eacĥPθj
associated with the corresponding MRF polar angle

θj can be finally expressed as

P̂ †θj
= P̂θj

− i~ cot θj = − i~
sin θj

∂

∂θj

sin θj. (A.20)
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Finally we come toP̂ †ϕj
. The procedure is the same however it is much more simple

compared tôP †θj
. First the derivatives of MRF Cartesian coordinates read

∂Rjx′

∂ϕj

= −Rj sin θj sinϕj = −Rjy′

∂Rjy′

∂ϕj

= Rj sin θj cosϕj = Rjx′

∂Rjz′

∂ϕj

= 0. (A.21)

Then the derivatives of LRF Cartesian coordinates read

∂Rjα

∂ϕj

= Rjx′
∂Rjα

∂Rjy′
−Rjy′

∂Rjα

∂Rjx′
. (A.22)

The final summation of needed derivatives is
(∑

α

∂

∂Rjα

∂Rjα

∂ϕj

)◦

=
∑

α

(
∂Rjx′

∂Rjα

∂Rjα

∂Rjy′
− ∂Rjy′

∂Rjα

∂Rjα

∂Rjx′

)
= 0 (A.23)

The momentum operator associated with each orientation angleϕj is Hermitian according

to Eq. (A.23), namely

P̂ †ϕj
= P̂ϕj

= −i~ ∂

∂ϕj

. (A.24)

Now let us recall the above detailed procedure. The only condition we need is that

the transformation matrix between Cartesian coordinates in the LRF and those in a MRF

is orthogonal. First, if we set all the three Euler angles equal to zero we can obtain the

HCMOs associated with spherical coordinates in the LRF. The final results are the same

with Eq. (A.13), Eq. (A.20) and Eq. (A.24) since a unit matrix is also an orthogonal ma-

trix. Second, we can use more rotations to define more MRFs and the HCOMs associated

with the spherical coordinates in each different MRF obey Eq. (A.13), Eq. (A.20) and

Eq. (A.24). As an important consequence the Hermitian conjugates of all the momen-

tum operators associated withreal bond lengths, bond angles and dihedral angles obey

Eq. (A.13), Eq. (A.20) and Eq. (A.24) respectively irrespective of how complicated the

molecule might be. Similarly, the result holds for any reference frame provided there

exists an orthogonal transformation to transform it to the LRF. Base on above mentioned

conclusions we can see the HCMOs associated with the three Euler angles obey the same

relations

P̂ †ϑ = P̂ϑ − i~ cotϑ = − i~
sinϑ

∂

∂ϑ
sinϑ

P̂ †φ = P̂φ = −i~ ∂
∂φ

P̂ †χ = P̂χ = −i~ ∂
∂χ

. (A.25)
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We can obtain the HCMOŝP †jβ′ associated with MRF Cartesian coordinates following

the same procedure. Since∂Rjα

∂Rjβ′
is just a parameter which does not explicitly depends on

Rjx,Rjy orRjz according to Eq. (A.5), we can easily obtain the HCMOs associated with

MRF Cartesian coordinates

P̂ †jβ′ = P̂jβ′ − i~
∑

α

(
∂

∂Rjα

∂Rjα

∂Rjβ′

)◦

= P̂jβ′ , (A.26)

whereβ′ = x′, y′, z′. We can see the momenta associated with MRF Cartesian coordinates

are Hermitian.

In general we have great freedom to define spherical coordinates, Cartesian coordi-

nates or combination of both with one or several MRFs. The corresponding HCMOs are

just the same as HCMOs associated with the LRF coordinates if the only difference be-

tween the LRF and the corresponding MRF is an orthogonal transformation. Typically an

orthogonal transformation may be a rotation or product of many excessive rotations since

product of many orthogonal matrices is still an orthogonal matrix. This will cover most

of the cases we may encounter therefore our kinetic energy quantization procedure can be

easily applied to them.
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Appendix B

KEO in Terms of Polyspherical

Coordinates

As an example we will consider the KEO in terms of so called polyspherical coordinates

[78] defined in the LRF and a MRF. The LRF and the MRF are connected by three Euler

angles(ϑ, φ, χ) as detailed in Appendix A

eα′ = Uz(φ)Uy(ϑ)Uz(χ)eα, α = x, y, z. (B.1)

Consider a molecular system composed ofN + 1 atoms. After separating the total center

of mass motion we can describe it withN Jacobi vectorsR1, R2, · · · , RN . The three

Euler angles(ϑ, φ, χ) are chosen in such a way that the spherical coordinates ofRN in the

LRF are(RN , ϑ, φ) and the spherical coordinates ofR1 in the MRF are(R1, θ1, ϕ1 = 0).

That is to say theez′ axis of the MRF is defined to be along the direction ofRN . The

remainingN − 2 vectors are characterized by spherical coordinates{Rj, θj, ϕj} in the

MRF (j = 2, · · · , N − 1). In the following we will establish the KEO in terms of the3N

coordinates mentioned above.

According to Appendix A we can express theN vectors as

Rj = RjUz(φ)Uy(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez, (B.2)

wherej = 1, · · · , N andθN = ϕN = ϕ1 = 0. With the help of Eq. (B.2) we can derive
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the LRF components of the N velocity vectors

Ṙj = Rjϑ̇Uz(φ)U′
y(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez

+ Rjφ̇U′
z(φ)Uy(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez

+ Rjχ̇Uz(φ)Uy(ϑ)U′
z(χ)Uz(ϕj)Uy(θj)ez

+ ṘjUz(φ)Uy(ϑ)Uz(χ)Uz(ϕj)Uy(θj)ez

+ Rj θ̇jUz(φ)Uy(ϑ)Uz(χ)Uz(ϕj)U′
y(θj)ez

+ Rjϕ̇jUz(φ)Uy(ϑ)Uz(χ)U′
z(ϕj)Uy(θj)ez, (B.3)

whereU′ is the first order derivative of the corresponding rotational transformation matrix.

The above equations are still vector equations however they are only valid in the LRF

since we have used the relationėz = 0. To make them valid in arbitrary reference frame

we only need to add the corresponding terms consistingėz to the right side. However, it

is not needed for our purpose.

It is better to discuss the orthogonality of the terms appeared in Eq. (B.3) before further

derivation. The last three terms in Eq. (B.3) are just the spherical velocity components

measured in the MRF while the first three terms are components of the velocity caused by

the non-inertial MRF. Each term in Eq. (B.3) can be expressed in a formally simple way

in terms of angular velocity vectors

Ṙj = ϑ̇eϑ̇ ×Rj + φ̇eφ̇ ×Rj + χ̇eχ̇ ×Rj

+ ṘjRj/Rj + θ̇jeθ̇j
×Rj + ϕ̇jeϕ̇j

×Rj, (B.4)

whereeϑ̇ is the direction of the angular velocitẏϑ, and similar foreφ̇, eχ̇, eθ̇j
andeϕ̇j

.

According to Eq. (B.4) one can immediately see that the fourth term is parallel toRj while

the other terms are perpendicular toRj. Recalling the velocity in spherical coordinates

we know that the last three terms are orthogonal to each other. Therefore, in Eq. (B.3) (or

Eq. (B.4) ), the fourth term (namely thėRj term) is orthogonal to the other terms and the

last three terms are orthogonal to each other.

Having at hand all the velocities it is quite straightforward to write the classical kinetic

energy according to

T =
1

2

N∑
j=1

µjṘ
†
jṘj. (B.5)

If non-Jacobi vectors are used the kinetic energy obeys a more general formT =
1
2

∑N
j,k=1 µjk

˙̃R†
j
˙̃Rk with a matrix{µjk} combines the reduced masses and the transfor-

mation matrix between adopted vectors and Jacobi vectors [121]. The final results in LRF
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can be easily written as a symmetric form

T =
1

2
Q̇
†
MQ̇, Q =




Qrot

Qvib


 , (B.6)

where the coordinates are separated as rotational and vibrational DOFs

Q†
rot =

(
ϑ φ χ

)
,

Q†
vib =

(
R1 · · · RN θ1 · · · θN−1 ϕ2 · · · ϕN−1

)
.

The only difference between Jacobi- and non-Jacobi- vectors is that in the latter case

the generalized mass matrixM has more non-zero matrix elements. For Jacobi vectors

there is no vibrational couplings, and no Coriolis couplings involvingṘj according to the

discussions of orthogonality about Eq. (B.3). In this case it is also quite transparent to get

each non-zero matrix element ofM according to Eq. (B.3), e.g.,

Mϑϕj
= Mϕjϑ

= µjRjRNe†zUy(θj)
†Uz(ϕj)

†Uz(χ)†U′
y(ϑ)†Uz(φ)†Uz(φ)Uy(ϑ)Uz(χ)U′

z(ϕj)Uy(θj)ez

= µjRjRNe†zUy(−θj)Uz(−ϕj)Uz(−χ)U′
y(ϑ)†Uy(ϑ)Uz(χ)U′

z(ϕj)Uy(θj)ez.

Next step is to calculate the inverse matrix ofM to generate the quantum KEO. Aiming

at the separation of the rotational and vibrational DOFs, we divide the matrixM into the

following four blocks

M =




M rot MCor

M †
Cor M vib


 , (B.7)

where the subscriptsrot, Cor and vib correspond to rotational, Coriolis and vibrational

terms, respectively. That is to sayM rot, MCor andM vib are3 × 3, 3 × (3N − 3) and

(3N − 3)× (3N − 3) dimensional matrices, respectively. Suppose the inverse matrix of

M is divided in the same spirit as

M−1 =




Grot GCor

G†
Cor Gvib


 , (B.8)

we can express the quantum KEO as a sum of rotational, vibrational and Coriolis terms

T̂ = T̂rot + T̂vib + T̂Cor

=
1

2
P̂
†
rotGrotP̂ rot +

1

2
P̂
†
vibGvibP̂ vib +

1

2

(
P̂
†
rotGCorP̂ vib + h.c.

)
.

(B.9)
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According to Section 2.2.5, the generalized momentum vectorP̂ rot associated with the

rotational DOFs is just the total angular momentum vectorJ . If we are interested in the

rotational DOFs we can exploit the rotational Hamiltonian at the vibrational ground state.

The corresponding KEO reads

T̂rot =
1

2
P̂
†
rotGrotP̂ rot =

1

2
Ĵ
†
GrotĴ , (B.10)

where the components ofJ should be along the directions ofeϑ̇, eφ̇ andeχ̇ according

to Eq. (2.32). One can also transform the components to Cartesian ones according to

Eq. (2.33). On the other hand, if we are interested in the vibrational DOFs, the KEO for

the total angular momentumJ = 0 reads

T̂vib =
1

2
P̂
†
vibGvibP̂ vib. (B.11)

Now we will give details on how to calculate the different blocks of the inverse ma-

trix of M . One can see that the matrixM can be congruently block-diagonalized in the

following way



1 −MCorM−1
vib

0 1







M rot MCor

M †
Cor M vib







1 0

−M−1
vibM

†
Cor 1




=




M rot −MCorM−1
vibM

†
Cor 0

0 Mvib


 . (B.12)

Calculating the inverse of both side of Eq. (B.12) leads to

M−1 =




Grot GCor

G†
Cor Gvib


 =




M rot MCor

M †
Cor M vib




−1

=




1 0

−M−1
vibM

†
Cor 1







M rot −MCorM−1
vibM

†
Cor 0

0 Mvib




−1 


1 −MCorM−1
vib

0 1


 .

(B.13)

Calculating the matrix product in above equation leads to the final results

Grot =
(

M rot −MCorM−1
vibM

†
Cor

)−1

GCor = −GrotMCorM−1
vib

Gvib = M−1
vib + M−1

vibM
†
CorGCor. (B.14)
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For the special case of Jacobi vectors,M vib is diagonal which will greatly simplify the

calculation of Eq. (B.14). It is straightforward to obtain the diagonal elements according

to Eq. (B.3)

(M vib)RjRj
= µj

(M vib)θjθj
= µjR

2
j

(M vib)ϕjϕj
= µjR

2
j sin2 θj. (B.15)

The inverse matrix ofM vib is quite trivial. We only need to calculate the inverse matrix

of 3×3 dimension as well as some matrix products to get the final results. The results are

essentially the same with what have been reported in Ref. [78]. In the following we give

the matrix elements forGvib (Hermitian) which are required in Appendix C.

GRiRj
=

δij
µj

, GRiθj
= 0, GRiϕj

= 0,

Gθiθj
=

δij
µjR2

j

+
cos(ϕi − ϕj)

µNR2
N

,

Gθiϕj
=

cot θj sin(ϕi − ϕj)− cot θ1 sinϕi

µNR2
N

,

Gϕiϕj
=

δij
µjR2

j sin2 θj

+
1

µ1R2
1 sin2 θ1

+
cot θi cot θj cos(ϕi − ϕj) + cot2 θ1 − cot θ1(cosϕi cot θi + cosϕj cot θj)

µNR2
N
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Appendix C

9D KEO for H 3O
−
2 and its Isotopomers

In this chapter we derive the 9D vibrational KEO for H3O
−
2 . The coordinates are defined

in the MRF characterized by three Euler angles(ϑ, φ, χ) as detailed in Appendix A. The

four Jacobi vectors shown in Fig. 4.1 are adopted. The three Euler angles are chosen

in the same way as introduced in Appendix B, i.e., the MRF spherical coordinatesR4

andR1 are(R4, 0, 0) and(R1, θ1, 0), respectively. The other two vectors can be charac-

terized by their spherical coordinates in the MRF(Rj, θj, ϕj) (j = 2, 3). According to

the conclusion of Appendix B we can write out the exact 9D KEO for the total angular

momentumJ = 0 directly. However, to make things less intricate, we assume some ap-

proximations. The basic idea is to introduce a new MRF with ignorable angular velocities

and expressR3 with Cartesian coordinates(x, y, z). The remaining six coordinates are

spherical coordinates in the old MRF(R1, R2, θ1, θ2, R4, ϕ = ϕ2 − ϕ1 = ϕ2).

The new MRF is associated with the old MRF by a rotation of angleηϕ around the

R4 (thez-axis). The spherical coordinates forR3 in the new MRF are(R3, θ3, ϕ̃3) with

ϕ̃3 = ϕ3 − ηϕ, (C.1)

whereη = µ1/(µ1 + µ2) is defined to minimize the Coriolis type couplings involving the

central hydrogen so that we can ignore them. Andµ1 (µ2) is the reduced mass associated

with the Jacobi vectorR1 (R2). The Cartesian coordinates for the central proton read

x = R3 sin θ3 cos ϕ̃3

y = R3 sin θ3 sin ϕ̃3

z = R3 cos θ3 (C.2)

and the KEO for it is simply

T3 = − ~
2

2µ3

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (C.3)
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whereµ3 is the reduced mass associated with the Jacobi vectorR3 and Coriolis terms

are ignored. Since the directione′z is defined along the direction ofR4, thez coordinate

corresponds to the central hydrogen stretching mode.

For the rest 6 DOFs concerning the (OH)2 fragment, the 6D KEO is written out ac-

cording to Appendix B. Similar to the idea adopted in Chapter 2, we take the angular

momentum of the (OH)2 fragment as total angular momentum. Combining the central

proton part and the (OH)2 fragment we finally obtain the 9D KEO. The new coordinates

ui = cos θi (i = 1, 2) have been used. For the simulation an additional normalization

transform as detailed in Chapter 3 was performed to reduce the numerical effort. This

gives the following 9D KEO:

T = T1 + T2 + T3

with

T1 = − ~
2

2µ1

∂2

∂R2
1

− ~2

2µ2

∂2

∂R2
2

− ~2

2µ4

∂2

∂R2
4

T2 = −
(

1

2µ1R2
1

+
1

2µ4R2
4

)
∂

∂u1

(1− u2
1)

∂

∂u1

−
(

1

2µ2R2
2

+
1

2µ4R2
4

)
∂

∂u2

(1− u2
2)

∂

∂u2

− 1

2µ4R2
4

(√
1− u2

1

∂

∂u1

∂

∂u2

√
1− u2

2 +
∂

∂u1

√
1− u2

1

√
1− u2

2

∂

∂u2

)

−
∑
i=1,2

(
1

2µiR2
i

1

1− u2
i

+
1
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√
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2µ4R2
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u1√
1− u2
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(
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∂

∂u2
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∂
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)
.

The non-Euclidean normalization according to the volume element isdτ =

dR1dR2dR4dxdydzdu1du2dϕ. The reduced masses are defined as follows: HOHOH−

– µ1 = µ2 = mHmO/(mH + mO), µ3 = 2mH(mH + mO)/(3mH + 2mO), µ4 =

(mH + mO)/2; HODOH− – µ3 = 2mD(mH + mO)/(mD + 2mH + 2mO); HOHOD−

– µ1 = mDmO/(mH + mO) andµ3 andµ4 change correspondingly. For DODOD− the

corresponding masses of HOHOH− are modified by replacingmH by mD. In the same

way we get the masses for DOHOD− by exchangingmH andmD in HODOH−, and sim-

ilarly one can obtain DODOH− from DOHOH−.



Appendix D

Infrared Absorption Spectrum Theory

We want to investigate the infrared absorption spectra of molecules in the gas phase.

First we would like to recall certain general theory for light induced excitations. The

following theory in this appendix is adapted from Ref. [120]. The total Hamiltonian in

the interaction picture includes three parts

H = Hs +Hsf +Hf (D.1)

whereHs andHf describe the system we are interested in and the external electric field,

respectively. The interaction between the two subsystems is described byHsf . The exter-

nal field will be treated classically and we mainly focus on the molecule-light interaction

induced state transfer in the molecular system. Let us start from the golden rule which

characterizes this kind of transfer rate

k(ω) =
2π

~
∑

fi

P (Ei)|〈f |Hsf |i〉|2δ(~ω − Efi) (D.2)

whereω is the frequency of the external electrical field andP (Ei) = exp(−Ei/KBT )

Tr(e−Hs/KBT )
is the

thermal weight of theith initial state. The linear absorption coefficient which character-

izes the exponential decay of the filed intensity along the propagation direction can be

obtained as

α(ω) =
n~ω
I0

k(ω)

=
2πnω

I0

∑

fi

P (Ei)|〈f |Hsf |i〉|2δ(~ω − Efi)

=
nω

~I0

∫ ∞

−∞
Tr[WeqHsf (t)Hsf ]dt (D.3)

wheren is the density of molecules andI0 is the field intensity in free space. In the

last equation the Fourier transform of delta functionδ(ω) = 1
2π

∫∞
−∞ e

iωtdt was applied



114 Infrared Absorption Spectrum Theory

and we replace one summation by the equilibrium molecular density operatorWeq =∑
i P (Ei)|i〉〈i|. The time dependent operators are defined in the Heisenberg picture with

respect toHs, i.e.,Hsf (t) = eiHst/~Hsfe
−iHst/~.

In the weak field limit it is reasonable to use the dipole interaction. The electrical field

change due to the molecular response is neglected, and in the small range of the molecular

volume the electric field can be regarded as a constant. Thus the interaction Hamiltonian

reads

Hsf = −1

2

(
µ†E + E†µ

)

= −
∑

γ=x,y,z

µγEγ, (D.4)

whereµ andE are molecular dipole moment operator and amplitude of electric field,

respectively. In general it is more convenient to describe dipole moment in MRF. Con-

sidering the MRF described by three Euler angles{θ, φ, χ} and LRF withez in the same

direction asE we can rewrite the interaction Hamiltonian as

Hsf = −
∑

γ′=x′,y′,z′
µγ′Eγ′

= −
(
µx′ µy′ µz′

)
[Uz(φ)Uy(θ)Uz(χ)]−1




0

0

E




= µx′E sin θ cosχ− µy′E sin θ sinχ− µz′E cos θ. (D.5)

Introduce the above interaction Hamiltonian to Eq. (D.3) and after average over all orien-

tations (which are assumed to be randomly orientated) we have

α(ω) =
2nω

3cε0~

∫ ∞

−∞

∑
mγ

P (Em)eiEmt/~〈m|µγe
−iHstµγ|m〉dt (D.6)

wherec is the light velocity in the molecular medium andI0 = cε0E
2/2 = cε0

∑
γ E

2
γ/2

has been used. The average values of related quantities are

〈(sin θ cosχ)2〉Ω =

∫ π

0

∫ 2π

0

∫ 2π

0
(sin θ cosχ)2 sin θdθdφdχ∫ π

0

∫ 2π

0

∫ 2π

0
sin θdθdφdχ

=
1

3

〈(sin θ sinχ)2〉Ω =

∫ π

0

∫ 2π

0

∫ 2π

0
(sin θ sinχ)2 sin θdθdφdχ∫ π

0

∫ 2π

0

∫ 2π

0
sin θdθdφdχ

=
1

3

〈(cos θ)2〉Ω =

∫ π

0

∫ 2π

0

∫ 2π

0
(cos θ)2 sin θdθdφdχ∫ π

0

∫ 2π

0

∫ 2π

0
sin θdθdφdχ

=
1

3
. (D.7)
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From Eq. (D.6) we can see the absorption coefficient is given by the auto-correlation

function of molecular dipole moment. Eq. (D.6) can be easily solved by wave packet

propagation. On the other hand Eq. (D.6) can also be written as a time independent form

according to Eq. (D.3)

α(ω) =
4πnω

3cε0

∑

fiγ′
P (Ei)|〈f |µγ′|i〉|2δ(~ω − Efi). (D.8)

The spectrum of an ideal noninteracting molecular system is just a sum of a series of delta

functions. For zero temperature only the ground state has probability one and all the other

states are unpopulated which will greatly reduce the calculation efforts.

Concerning the real experiment the resolution is not high enough to distinguish the

nearly continuous rotational excitations. Therefore around each vibrational absorption

bands there will be many symmetry allowed rotational excitations which simply broaden

this vibrational band. From the numerical calculation point of view, it is also not pos-

sible to directly calculate the Fourier transformation of the dipole-dipole autocorrelation

function since it is non-decaying. Therefore we artificially add certain lifetimeΓ to each

eigenenergy to make the dipole-dipole autocorrelation function decay exponentially. The

numerical equation for the IR absorption spectrum is

α(ω) =
2nω

3cε0~

∫ ∞

−∞

∑
mγ

P (Em)eiEmt/~−Γt〈m|µγe
−iHstµγ|m〉dt. (D.9)

The difference between Eq. (D.6) and the above equation is that the spectrum calculated

by the latter is broadened as a sum of a series of Lorentz type peaks. However, they

do give the same result for the position of each excitation which is the most important

quantity for the spectrum.
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(2007).

[113] M. Tachikawa and M. Shiga. J. Am. Chem. Soc.127, 11908 (2005).

[114] R.A. Marcus and N. Sutin. Biochim. Biophys. Acta.811, 265 (1985).

[115] J. M. L. del Amo, U. Langer, V. Torres, G. Buntkowsky, H.-M. Vieth, M. Pérez-
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