
General Introduction 
 

The actions of neurons can alter the output of the neural circuits that generate the 

many different patterns in movement used by animals during their normal behavior. In order 

to accomplish the orchestrated action and response properties and the precise tuning of the 

many participants in a neural network, the key players have to be well equipped with cellular 

properties such as ion channels. To investigate intrinsic properties underlying behavior, 

isolated cells have proven a good choice for the examination of the neuron`s repertoire of 

electrical equipment in insects (Heidel and Pflüger, 2006; for review see Grolleau and Lapied, 

2000) but also in vertebrates (for review see Fry et al., 2006; Shi et al., 2003) 

 

Identified insect neurons allow relating cellular properties to behavioral function 

In insects many neurons are well characterized and easy to reach. Because of their 

relatively small number and the possibility to identify certain neurons via retrograde labeling 

from target tissues such as muscles insect neurons are valuable targets for investigating their 

involvement in behavior. Several years ago, Hammer (1993) stated that the reward stimulus in 

associative olfactory learning in the honey bee Apis mellifera can be mimicked by current 

injection into one identified DUM neuron. In crickets an identified auditory interneuron is 

used to create an efference copy for inhibiting sensory afference that beckons the cricket its 

own song, so that the animal can discriminate between self-generated and external stimuli 

during behavior (Poulet and Hedwig, 2006). In the moth, Manduca sexta, postembryonic 

changes in the dendritic structure and the excitability of an identified motoneuron has been 

related to changing behavioral requirements during its postembryonic change in function 

when developing from a slow crawling into a fast flight motoneuron (Duch and Levine, 

2000). Therefore, identified insect neurons have proven good models to relate individual 

neuron properties and firing to behavioral function, although the activity patterns of these 

neurons can not be understood without detailed knowledge about the network.   

Ventral nerve cord neurons are easy to identify by their efferent projections onto their 

target muscles. First, these neurons are fast transmitting motoneurons with type I terminals 

that cause muscle contraction upon spiking or, second, these are modulatory neurons which 

release of neuromodulators via type II terminals (for review see Pflüger, 1999). The most 

prominent population of efferent modulatory neurons is DUM (doral unpaired median) 

neurons (for review see Pflüger and Bräunig, 2001) 
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Efferent DUM neurons  

DUM is short for dorsal unpaired median and describes the location of these particular 

neurons along the dorsal midline of many ganglia of the insect ventral nerve cord (Plotnikova, 

1969; Hoyle et al., 1974). Locust DUM neurons project bilaterally symmetric on efferent 

targets on both sides of the body and can be divided into sub-populations depending on the 

nerve they are projecting through (Baudoux and Burrows, 1998). The efferent DUM neurons 

contain the neurotransmitter octopamine. Octopamine is released directly onto the target 

tissues such as muscle (Evans and O`Shea, 1977, 1978; O`Shea and Evans, 1979) and 

modulates its activity when the DUM neuron itself is activated. Octopamine release from 

DUM neurons onto skeletal muscle leads to increases in the amplitude and speed of twitch 

contractions as well as increases in the relaxation rate (O´Shea and Evans, 1979; Whim MD 

and Evans PD, 1988). In contrast to previous suggestions DUM neurons are not recruited as a 

homogeneous group during behavior (Duch et al., 1999; Baudoux and Burrows, 1998). The 

different sub-populations, DUM neurons are divided into, are selectively recruited during 

certain behaviors such as locomotion or take-off for flight, whereas others are specifically 

inhibited during flight (Pflüger and Duch, 2000; Mentel et al., 2003; for review see Pflüger et 

al., 2004). In addition to their modulatory effects on synaptic transmission they also cause 

metabolic changes in muscles (Mentel et al., 2003). DUM neurons are capable of generating 

overshooting somatic action potentials (Goodman and Spitzer, 1981) and are equipped with a 

rich bouquet of ion channels. To investigate intrinsic properties of neurons it is administrable 

to work with isolated somata. Isolated DUM neuron somata express various calcium channels 

as well as sodium channels and also at least five different types of potassium channels (Heidel 

and Pflüger, 2006 and for review see Grolleau and Lapied, 2000). The various potassium 

channels have been reported to take part in initiation (hyperpolarization activated potassium 

current) and termination (sodium-dependent, A-type, delayed rectifier and calcium-dependent 

potassium current) of action potentials as well as setting interspike intervals and also in 

stabilizing the resting membrane potential (inwardly rectifying and A-type potassium current; 

Grolleau and Lapied, 1995, and for review see Grolleau and Lapied, 2000). Locust DUM 

neuron somatic action potentials strongly depend on sodium and calcium (Goodman and 

Spitzer, 1981). Some ion channels are known to be activated and/or modulated by 

intracellular calcium. Wicher et al. (2004) reported an intracellular mechanism that activates 

voltage-independent calcium entry into cockroach DUM neurons via neurohormone D 

mediated intracellular cascades. Calcium is a unique molecule that acts as a charge carrier and 

also as a second messenger which is involved in various intracellular cascades that are, for 
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example, involved in apoptosis (Szalai et al., 1999). In this study, however, we report an 

intracellular mechanism that is voltage-dependent but calcium-independent and most likely 

acts via a voltage activated G-protein located in the DUM soma membrane. Depolarization of 

the isolated DUM neuron membrane under calcium-free conditions led to increased 

intracellular calcium concentrations. This mechanism was mediated by an intracellular 

cascade involving calcium release from internal stores via inositol-1,4,5-triphosphate (IP3) 

receptors (Ryglewski et al., 2007). Calcium release from internal stores is known to be 

mediated by synthesis of IP3 by hydrolysis of phosphatidylinositol (PIP2) by phospholipase C. 

IP3 then binds to IP3 receptors located in the membrane of the endoplasmic reticulum (ER) 

and calcium is released from the ER into the cytoplasm.  

 

The role of ionic currents and other cellular properties for behavior 

In order to overcome the descriptive level and unravel the functions of cellular 

properties of identified neurons for behavior one needs to work with a system that fulfils two 

requirements: First, one has to work with identified neurons with well defined functions. 

Second, one has to be able to selectively manipulate the cellular properties of these identified 

neurons, ideally without affecting the rest of the circuitry. Both requirements are pretty well 

fulfilled by flight motoneurons in the adult fly, Drosophila melanogaster. First, insect flight is 

a very well investigated and well described behavior. Groundbreaking work on flight behavior 

in locusts set the generally accepted concept of central pattern generation (Wilson, 1961 and 

1966; Edwards, 2006). In Drosophila the giant fiber mediated jump and flight escape pathway 

is a valuable system for investigations on behavior (Levine and Tracey, 1973; Tanouye and 

Wyman, 1980). About one decade ago, Engel and Wu (1996, 1998) linked the escape 

pathway to physiology by using gene mutations. Another approach for understanding the 

modulatory control of flight behavior is to genetically alter enzymes regulating biogenic 

amine levels in the Drosophila flight system (Brembs et al., 2007). And second, Drosophila is 

one of the best genetic model systems. Expression of specific genes in Drosophila can be 

achieved by using enhancer trap lines (O´Kane and Gehring, 1987; Bellen et al., 1989). 

Together with the GAL4-UAS expression system the enhancer trap technique is a powerful 

tool for targeted genetic manipulation. To activate genes specifically at a special time 

temperature sensitive alleles can be used. Therefore, we use this system to unravel the role of 

intrinsic cellular properties for the behavioral function of identified motoneurons. 
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The identified flight motoneurons MN1-5 

The Drosophila flight system is well described. The dorsolongitudinal flight muscle 

(DLM) in Drosophila is an indirect asynchronous flight muscle that consists of six muscle 

fibers. The muscle fibers 1-4 are ipsilaterally innervated by the DLM motoneurons MN1-4 

whereas MN5 innervates the fibers 5 and 6 contralaterally (Ikeda and Koenig, 1988). The five 

DLM flight motoneurons are born embryonically, but only MN1-4 innervate the larval 

precursor of the DLM until dendritic regression occurs at the onset of metamorphosis 

followed by outgrowth to innervate the developing DLM. MN5 is not involved in embryonic 

or larval innervation but starts to grow out during early pupal stages and joins MN1-4 

(Consoulas et al., 2002). The MN1-5 obtain their behavioral function and physiological 

properties while the development from the larva to the adult fly occurs (Consoulas et al., 

2000). The dendritic development of MN5 until maturation is well described (Consoulas et 

al., 2002). Due to its location close to the midline of the adult Drosophila ventral ganglion and 

contralateral to the DLM, MN5 is individually identifiable. MN5 is well characterized with 

regard to morphology and dendritic development and it is involved in the Drosophila giant 

fiber mediated escape response which is an important behavior. Therefore, we were 

particularly interested in the intrinsic properties of MN5. According to Fayazzuddin et al. 

(2006) synaptic transmission onto MN5 via an interneuron is blocked by genetic alteration of 

the Dα7 acetylcholine receptor subunit, as demonstrated by stimulation of the escape pathway 

in vivo. In order to set the bedrock for interpreting targeted genetic manipulation of identified 

neuron properties in Drosophila a detailed description of the wildtype properties is necessary. 

Therefore, the second aim of this study was to describe potassium currents and their related 

genes in MN5 in situ.  

On the basis of our understanding of the wildtype properties of MN5, we can now use 

genetic manipulations to address a number of important questions of modern neuroscience, 

such as what are the functions of specific ion channel proteins for the generation of motor 

behavior, what are the functions of genetic manipulations of intrinsic or synaptic activity for 

dendritic growth or synaptogenesis, what are the roles of transcription factors or other signals 

for the developmental acquisition of the adult neurons properties? As a first start step into 

such analysis in this thesis we asked whether targeted manipulations of intrinsic excitability of 

MN5 affect its dendritic architecture during postembryonic development. Therefore, we tested 

the effects of genetic alterations in potassium channel genes onto intrinsic excitability of the 

MN5, and we tested whether genetically altered intrinsic excitability affected dendritic growth 

and flight motor performance.  
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The results are presented in three chapters based on three manuscripts, one of which is already 

published and two of which are ready for submission. 

 

Chapter 1: Ryglewski S, Pflüger HJ, Duch C (2007) Expanding the Neuron`s Calcium 

Signaling Repertoire: Intracellular Calcium Release via Voltage-Induced PLC and IP3R 

activation. PLoS Biol 5(4): e66. doi:10.1371/journal.pbio.0050066  

 

Chapter 2: Ryglewski S, Duch C (ready for submission) Potassium currents of an identified 

adult Drosophila motoneuron in situ. 

 

Chapter 3: Duch C, Vonhoff F, Ryglewski S (ready for submission) Dendrite elongation and 

dendritic branching are separately affected by different forms of intrinsic motoneuron activity.  
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