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ABSTRACT

In the past two decades theoretical and experimental efforts have brought forth
numerous advances in the field of topological matter. Notably, theoretical
predictions like the Quantum Spin Hall phase in mercury/cadmium telluride
quantum well structures have subsequently been confirmed experimentally.
Another example is the prediction of topological superconductivity in systems
combining Zeeman splitting, spin-orbit coupling and conventional supercon-
ductivity which has been tentatively confirmed in various experiments. These
efforts are motivating further research on how to realize systems hosting topo-
logical phases and are bringing forward the possibility of engineering physical
devices using topological states of matter.

One of the first examples of the engineering of a topological phase out of
topological domain-wall states was recently reported in two experiments. Also
following a theoretical prediction, the experiments used graphene nanoribbons
of alternating width to create an effective Su-Schrieffer-Heeger chain composed
of the topological domain-wall states arising at the interfaces of nanoribbon re-
gions of different width. In this thesis we provide a theoretical toy model that
captures the basic physics of these systems. We show the possible end state con-
figurations of the model and how the end states of the engineered topological
phase can interact with those of the underlying topological system.

With most of the theoretical foundations already in place, the research has
focused on finding strategies to realize topological phases in a more reliable,
stable manner and provide unequivocal signatures of the sought-for topolog-
ical states. Within this context, magnetic adatom chains on superconducting
substrates have attracted attention as they are predicted to realize topological
superconductivity and host Majorana quasiparticles at their ends. Due to an
enhanced lateral extension of the Yu-Shiba-Rusinov wave functions of the mag-
netic adatoms in two dimensional superconductors, substrates such as NbSe,
have been proposed. This enhancement increases the coupling between the
adatoms leading to a more robust topological phase. In this doctoral thesis we
show that the effects of the charge-density modulation present in NbSe; must
be taken into account for an optimal engineering of topological superconduc-
tivity.

The signatures of the presence of Majorana quasiparticles at the ends of
a topological superconducting phase are sometimes compatible with those of
other (conventional) states. These states can have near-zero energies and thus be
confused with the desired zero-energy Majorana quasiparticles. In this disser-
tation, we develop a theory of photon-assisted Andreev reflections resonantly
enhanced by subgap states. Our theory is in excellent agreement with a recent
experiment which shows deviations from the Tien-Gordon model, widely suc-
cessful in explaining photon-assisted processes. Of relevance in its own right,
our theory also provides a technique to measure near-zero energies of the sub-
gap states. Indeed, separate threshold conditions for electron and hole tunnel-
ing processes lead to a higher sideband multiplicity in the case of small but
non-zero subgap state energies. Experiments with tunable photon energies can
benefit from this fact to measure the subgap state energy.
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KURZFASSUNG

In den letzten zwei Jahrzehnten wurden zahlreiche theoretische sowie exper-
imentelle Fortschritte auf dem Gebiet der topologischen Materie erzielt. Ins-
besondere wurden theoretische Vorhersagen, wie die Quantum Spin Hall-Phase
in Quecksilber/Cadmium-Tellurid-Quantentopfstrukturen, experimentell be-
statigt. Ein weiteres Beispiel ist die Vorhersage der topologischen Supraleitung
in Systemen, die Zeeman-Effekt, Spin-Bahn-Kopplung und konventionelle
Supraleitung kombinieren, was in verschiedenen Experimenten vorldufig
bestd-tigt wurde. Diese Erkenntnisse motivieren weitere Forschung daran, wie
Systeme, die topologische Phasen enthalten, konstruiert werden kénnen und
erdffnen damit die Moglichkeit der Entwicklung von physikalischen Gerdten
unter Verwendung topologischer Materiezustdnde zu konstruieren.

Vor Kurzem wurde von zwei Experimenten berichtet, in denen topologische
Phasen aus topologischen Doméan-Wand-Zustdden konstruiert wurden. Gra-
phene-Nanobander mit wechselnder Breite wurden verwendet, um ein effek-
tives Su-Schrieffer-Heeger-Modell zu erstellen, bestehend aus topologischen
Dominen-Wand-Zustianden, welche an den Grenzflichen von Nanobdndern
unterschiedlicher Breite entstehen. Wir stellen ein theoretisches Toy-Modell vor,
welches die physikalischen Grundlagen dieser Art von Systemen beschreibt.
Wir zeigen die moglichen Endzustandskonfigurationen des Modells und wie
die Endzustdnde der konstruierten topologischen Phase mit dem des zugrunde
liegenden topologischen Systems interagieren konnen.

Da die meisten theoretischen Grundlagen bereits vorhanden sind, fokussiert
sich die Forschung darauf, Strategien zu finden, um topologische Phasen ver-
lasslicher und stabiler herzustellen und die topologischen Zustinde unver-
wechselbaren Signalen zuzuteilen. In diesem Zusammenhang, erlangten mag-
netische Adatomketten auf supraleitenden Substraten Aufmerksamkeit, da
vorausgesagt wurde, dass sie topologisch supraleitend sind und an ihren En-
den Majorana-Quasiteilchen aufweisen. Die Verwendung von zweidimension-
alen Substraten, wie NbSe,, wurde vorgeschlagen, da die Yu-Shiba-Rusinov-
Wellenfunktionen der magnetischen Adatome seitlich langsamer abfallen als
bei dreidimensionalen Supraleitern. Dies erhoht die Kopplung zwischen Zu-
stinden, was zu einer robusteren topologischen Phase fithrt. Wir zeigen, dass
die Auswirkungen der Ladungsdichtemodulation in NbSe, fiir das optimale
Herstellen einer topologischen Supraleitung berticksichtigt werden miissen.

Die Signale, hervorgerufen durch die Majorana-Quasiteilchen an den En-
den einer topologischen, supraleitenden Phase, sind manchmal vertauschbar
mit denen anderer (konventioneller) Zustinde. Diese Zustinde konnen na-
hezu verschwindende Energien haben und daher mit den gewiinschten Null-
Energie-Majorana-Quasiteilchen verwechselt werden. In der vorliegenden Ar-
beit, entwickeln wir eine Theorie tiber photonenunterstiitze Andreev Reflex-
ionen, die von Subgap-Zustdnden resonant verstirkt werden. Unsere Theorie
stimmt hervorragend mit einem kiirzlich durchgefiihrten Experiment tiberein,
welches Abweichungen von der Tien-Gordon Theorie aufweist. Unsere Theo-
rie ist fiir sich genommen von Bedeutung, bietet aber auch zudem eine Tech-
nik zur Messung von Energien nahe Null der Subgap-Zustiande. Tatsdchlich,
fithren unabhidngige Schwellwertbedingungen fiir Elektronen- und Lochtun-
nelprozesse zu hoheren Seitenband Multiplizititen im Fall von kleinen aber
nicht verschwindenden Energiewerten der Subgap-Zustande. Experimente mit
einstellbaren Photonenenergien kénnen davon profitieren und damit die En-
ergie des Subgap-Zustands messen.
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| INTRODUCTION

Since the first application of topology-related concepts in condensed matter
physics in the 1970s, the field of topological states of matter has developed
greatly. Numerous theoretical efforts have defined and predicted a plethora of
topological phases in a wide variety of systems. At the same time experimental
advances in fields like heterostructure growth, nanowire growth or atomic scale
manipulation, have confirmed some of these predictions and opened the door
for possible applications of the topological phases, bringing forth the field of
topological state engineering.

Topological state engineering comprises two different lines of work. The
first of them consists on the use of topological states of matter as building blocks
for the engineering of quantum systems or devices. This objective has moti-
vated a large amount of research in the past decade. The paradigmatic goal of
these efforts is the realization of a quantum computer using Majorana quasipar-
ticles. Strongly motivated by the first, the second line of work consists on how
to engineer materials or heterostructures to stably realize topological phases of
matter. A prominent example is the recipe for topological superconductivity
through the combination of Zeeman splitting, spin-orbit coupling and conven-
tional superconductivity.

In this thesis we present our scientific contributions to topological state engi-
neering. Closely related to recent experiments, our contributions fall within the
first or the second line of work. Topological boundary states are associated and
confined in space to the domain walls between topologically distinct regions.
Their robust character is the reason they are proposed as ideal candidates for
the construction of devices or interesting physical systems. Recently, the ex-
perimental realization of a topological phase out of topological domain-wall
states was reported for the first time. In this thesis, we introduce a pedagogical
toy model that reproduces the basic physics of these experiments and provides
a playground to understand the interplay between the engineered topological
phase and the underlying topological states that compose it.

The prospect of achieving non-abelian quantum computation using Majo-
rana quasiparticles has resparked interest in Yu-Shiba-Rusinov (YSR) states. In-
deed, it was predicted that magnetic adatom chains could realize topological
superconductivity and host Majorana quasiparticles at their ends. Experiments
have since reported promising, though not always unequivocal signatures. Our
contributions in this context are two-fold. Two- and quasi-two-dimensional ma-
terials such as NbSe; have been proposed as superconducting substrates to en-
hance the coupling between the YSR states. Unfortunately, low-dimensional
materials often develop charge-density modulations that can affect the YSR
state and thus have an impact on the engineering of the magnetic adatom chain.
In this thesis we discuss the effects of the charge-density wave in NbSe; on the



2 INTRODUCTION

energies and wave functions of the YSR states.

Our second contribution is the development of a full theory for photon-
assisted Andreev reflections resonantly enhanced by subgap states. Crucially,
superconductors can support individual states with energies within their su-
perconducting gap such as Majorana, YSR or Andreev bound states. Tunneling
from a lead into the superconductor can be resonantly enhanced by the sub-
gap state and have a single-particle or two-particle (Andreev) character. Our
theory is interesting beyond the field of topological state engineering as it is
in excellent agreement with a recent experiment which notably deviates from
the conventional Tien-Gordon theory, an approach that has been widely suc-
cessful in explaining photon-assisted tunneling processes. As an interesting
by-product of our theory, we propose a photon-based technique to measure
small but non-zero subgap state energies. This technique can be instrumental
to distinguish conventional near-zero-energy states from zero-energy Majorana
quasiparticles.

This doctoral thesis is organized as follows. Chapter [2| serves as an intro-
duction to basic concepts of topological states of matter, including the bulk-
boundary correspondence and Majorana quasiparticles. It also includes the
road map to topological superconductivity that motivates part of our work.
Chapter [B|introduces the Yu-Shiba-Rusinov states, central to Chapters 5} [6| and
We present a derivation of these subgap states and their conductance signa-
tures in STM experiments with superconducting tips. In Chapter 4 we propose
a theoretical toy model that captures the essential physics of two recent exper-
iments on graphene nanoribbons. We explore the phase space of our model,
which constitutes an example of the engineering of systems of interest using
topological states of matter as building blocks. Chapter 5| presents our research
on the effects of a charge density modulation in the substrate on the energy and
wave function of a YSR state. In this collaboration with an experimental group
of the Freie Universitdt Berlin, we unveil the importance of these effects in the
engineering of topological superconductivity with magnetic adatom chains in
charge-density modulated superconductors such as NbSe,. In Chapter [6| we
present an experiment that tests the applicability of the Tien-Gordon theory for
photon-assisted tunneling in superconductor-superconductor junctions. The
experiment shows how this theory, while successful for bare superconducting
junctions, breaks down for resonant-Andreev reflection via YSR states at high
junction conductances. Motivated by this experiment, we develop a theory of
photon-assisted Andreev reflections resonantly enhanced by subgap states in
Chapter[7] We focus on YSR resonances and obtain a full picture of the photon-
assisted processes in excellent agreement with the experiment. We extend our
results to Majorana quasiparticles and we argue that our findings can be instru-
mental in distinguishing conventional subgap states from Majorana quasiparti-
cles. Finally, a summary of the results is provided in Chapter
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2.1 INTRODUCTION

The field of topology in condensed matter systems has become one of the cen-
tral pillars of research in condensed matter physics in the last decades. In this
Chapter, we aim to illustrate some basic concepts of topological matter that play
arole in this thesis and are important to understand the potential of topological
states of matter as building blocks for the engineering of quantum systems.

Before the discovery of topological phases of matter it was widely believed
that Landau’s theory of symmetry breaking sufficed to describe all possible
phases of matter and their phase transitions. In this very general theory, the
value of a local order parameter distinguishes between two phases of matter.
For example, in ferromagnetic materials, the value of the magnetization dis-
tinguishes between a symmetric state (zero magnetization) and a symmetry-
broken state (finite magnetization in one direction). In the 1970s the existence of
distinct phases of matter which cannot be distinguished by a local order param-
eter was realized [Ber70; Weg71}; [KT73; [Tho+82;|Wen95|. These phases became
known as topological phases and are characterized by global (i.e. non-local)
properties. The global character of topological order is key to understanding
its properties. Very generally, a quantity associated with a topological phase
is robust against local perturbations, that is, against perturbations that are not
able to change the global property defining the phase. This robustness against
perturbations makes topological states of matter promising building blocks for
the engineering of quantum systems, among which quantum computation has
a prominent place [Nay+08;|Ali12].

The first electronic topological phase observed experimentally was the In-
teger Quantum Hall Effect (IQHE) by Klitzing et. al. [KDP80]. In their exper-
iment, a two-dimensional electron gas under high magnetic fields showed a
quantized Hall conductivity. This quantization was found to be exceedingly
precise and has since been measured to 1 part in 10° [K1i05]. At the heart of this
precise quantization lie some concepts common to most topological phases: the
bulk-boundary correspondence, the exponential localization and gap closings,
all closely related to one another. After its discovery, the IQHE was explained
in terms of a topological invariant known as a Chern number. This number is
the global property distinguishing between the topological and trivial phases
of this system and is related to the Berry curvature [Ber84].

Since the discovery of the Quantum Hall Effect a wide variety of topological
phases have been identified. These include interacting systems like the Frac-
tional Quantum Hall Effect, symmetry protected phases like Topological Insu-
lators, Higher-Order Topological Insulators or Topological Superconductivity
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among others. For a more complete account of the field we refer the reader to
the literature [HK10; | BH13; |Chi+16;|WZ17;|Sch+18; | CDS19].

22 BULK-BOUNDARY CORRESPONDENCE

In this Section we illustrate the bulk-boundary correspondence by a simple ex-
ample. Generally, the bulk-boundary correspondence relates the presence of
edge states at the boundary of a topological system to its bulk properties. In-
deed, as indicated above, a topological phase is determined by a global (bulk)
property that fixes a topological invariant. In band and topological insulators,
topological invariants are related to gaps in the spectrum of the bulk systems.
Two ground states belong to the same topological phase if they can be related
by a local unitary transformation or parametrical changes that do not close the
spectral gap [CGW10]. Thus, a topological invariant can not change in value as
long as the gap remains opened, being insensitive (robust) to perturbations that
do not close the gap. Consider now two different adjacent regions of space with
different values of a topological invariant. At the boundary between these two
regions there must be a closing of the gap such that the topological invariant can
change. The states that close the gap are called edge states and are exponentially
localized at the boundary. These states are said to be topologically protected,
meaning that their presence is insensitive to topology-preserving perturbations.

In the paradigmatic example of the Quantum Hall Effect, the two-dimen-
sional electron gas has a Chern number n related to the number of filled Lan-
dau levels. At the boundary of the system with the vacuum (with Chern num-
ber equal to zero) n edge states arise, each allowing the Chern number to change
by one unit. These edge states can be pictured semiclassically as skipping or-
bits which can move only in one direction. Thus, these states are chiral and
transport current perfectly even in the presence of impurities because backscat-
tering is not possible. In a finite experimental sample a chiral state and the one
moving in the opposite direction are on opposite sides of the sample, separated
by the bulk. Their exponential localization at the sample edges ensures that a
backscattering process is highly unlikely and, thus, the conductance of these
edge states is quantized with high accuracy.

In the following, we introduce a two-dimensional low-energy model, which
corresponds to a massive Dirac equation, where the edge states arise due to the
bulk-boundary correspondence in a transparent and understandable manner.
The Hamiltonian of the model is:

H = ky0, + kyoy + mo. =h(k) - o, (2.1)

where k, and k, are the momentum, m the mass term and ¢; the Pauli matrices.
The spectrum is E(k) = *|h(k)|. This model is a low energy limit of the BHZ
model [BHZ06], which consists of a two-dimensional square lattice with two
orbitals per site. The first tight-binding model realizing a Chern insulator was
proposed by Haldane featuring a honeycomb lattice [Hal88]. The Chern num-
ber is an intrinsic property of a band and is related to the Berry phase gathered
by completing a loop in momentum space that encloses the Brillouin zone:

v =5 i (a9 oruc). 22)
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with |u(k)) the eigenstate of the band. In two dimension this can be rewritten
in terms of the gauge invariant Berry curvature [Tho+82; HK10]:

yo d*k., k., (2.3)
2 BZ Y
where the Berry curvature 2, 1, for a band is defined in general by:
ou(k) | du(k)
Q =2I . 24
o, = 2 ( S0\ T8 4

In a multiband model, the total Chern number is obtained summing the indi-
vidual Chern numbers of the occupied bands. The Berry curvature for a general
vector h(k) of Eq. can be shown to be [QWZ06]:

1. . .
Qk‘uku = ih (8k“h X 6kuh), (25)
where h = h(k)/|h(k)|. For the specific h(k) of the Hamiltonian of Eq. this

yields:
m

1
Q =- 2.6
ke ky 9 (k% n kz T m2)3/27 ( )
which yields a Chern number
= Slgn;m). 2.7)

Here some remarks are necessary. First, the rigorous mathematical definition
of a Chern number implies that it is an integer [Che45; Nak03]. Nevertheless,
in Eq. we obtained a half-integer. The reason for this is that our model is
not regularized, i.e., its bands extend to infinity with the momentum. This ef-
fectively “pushes” the other half of the Chern number to infinity. Also note that
in the integral of Eq. the Brillouin Zone is taken to be all of k-space. These
are all consequences of working with the low-energy model. The regularized,
tight-binding BHZ model has a properly defined Brillouin Zone and the Chern
number always attains integer values.

The important fact we want to focus on is that the Chern number changes
by a unit between two regions with opposite sign of the mass, a fact that is well
captured by the low-energy model of Eq. (2.7). For the mass to change sign it
has to go through zero, effectively closing the gap in a region of space. The bulk-
boundary correspondence predicts the existence of a gapless mode localized at
the boundary where the mass sign, i.e., the Chern number, changes. To illustrate
this we consider the same low energy model for a spatially varying mass m(z).
Specifically, we choose the mass to change sign at # = 0 so that close to the
origin it can be approximated by m(z) =~ Agz:

Ho(x) = kyoy + kyoy + Aoxos. (2.8)

In the following, we show how this Hamiltonian leads to a topological bound-
ary state localized at # = 0. The same type of behavior will play an important
role in Chapter {4l The presence of a spatially varying mass implies that &, is
no longer a good quantum number. Inversion symmetry leads to a symmetric
spectrum around zero energy allowing one to diagonalize the Hamiltonian by
squaring it:

Ho(z)? = k2 4+ Aja* + k, — Aoy (2.9)
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v=1/2

FIGURE 2.1: Schematic representation of the bulk-boundary correspondence
for a system defined by the Hamiltonian of Eq. where the mass
changes sign twice, defining three regions whose Chern number vary ac-
cross a boundary. The slope of the sign change sets the chirality of the edge
states arising at the boundary.

In orbital space, Ho()? is diagonalized by the eigenstates of o, |+),. As for the
x direction of space, one identifies the first two terms on the r.h.s. of Eq. as
an harmonic oscillator with frequency w = 2|\g|. Thus, the eigenenergies of the
Hamiltonian are given by:

(2.10)

1
E, = :t\/2|/\0|(n + 5) +kj FXo, for [E),,
withn > 0. Thus, the natural basis for the linearized Hamiltonian can be written
as |n, =), , with n denoting the n-th harmonic oscillator eigenstate. Consider
now the case \g > 0. In this case one finds the eigenstate and the eigenenergy
of Hy(z) for n = 0 to be:

0,4), — Ey=k,. (2.11)

Yy
That is, the lowest energy eigenstate is a chiral gapless mode with positive ve-
locity in the y-direction. The wave function along the z-direction is the Oth
harmonic oscillator wave function, i.e. a gaussian centered at = 0. Moreover,
this mode is topologically protected: its energy is independent of the value of
the slope Ay and will be present in the system as long as the mass changes sign.
This chiral gapless mode is the one predicted by the bulk-boundary correspon-
dence for this specific model. The closing of the gap at the boundary allows
for the topological invariant to change. Imagine now that for a positive zy the
mass changes sign again. This time the sign-change slope is A\;, < 0 and the
eigenstate and eigenenergy of the gap-closing state are found to be:

0,-), — Ey=—k, (2.12)

Y

Thus, at this second boundary one finds a chiral gapless mode propagating
in the opposite direction. The system described is depicted in Figure[2.1} where
two changes of sign of the mass m(x) define three distinct regions with different
Chern numbers. At the boundaries, the two counterpropagating chiral states
are depicted. These two chiral modes are localized to their boundaries with a
localization length [, and separated from each other by zy. As long as I /z¢ <
1, the presence of any defects along one of the boundaries has an exponentially
small probability of causing backscattering. As a consequence, the conductance
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of these modes is robustly quantized. This simple model illustrates the kind of
physics present in the IQHE.
For completeness we write the eigenstates of Hy(z) for n > 0 again for Ay >

1
IN) = 70 (VB +Fy n+), + VEn = Fy In=1,-), ). (2.13)

Thus, for higher energies the eigenstates are a combination of the two o, eigen-
states with different harmonic oscillator wave functions. These eigenstates are
gapped but still localized to the boundary. The energies and eigenstates pre-
sented above correspond to the linearized-mass Hamiltonian of Eq. 2.8). In
a more generic case the presence of a zero-energy state and its exponential
(though perhaps not Gaussian) decay is still guaranteed.

In Chapter 4] we introduce a one-dimensional model whose properties are
closely related to the ones of the Hamiltonian in Eq. (2.8). Indeed, the low-
energy model presented in this Section can be straightforwardly reduced to one
dimension by setting &k, = 0. The chiral gapless edge modes reduce to end states
pinned at zero energy. The model we introduce in Chapter [4 consists of a mod-
ified version of the celebrated SSH model [SSH79], presented in the following
Section. Our model has a spatially dependent gap creating boundaries where
the sign of the gap changes. We show how a succession of states localized at
the different boundaries can be engineered to form a topological system of their
own.

The topological protection of the edge states make them attractive for poten-
tial applications as well as for being used as building blocks of more complex
nano-systems. Their exponential localization grants them protection against lo-
cal perturbations as could be caused by thermally excited quasiparticles. The
first application a topological state of matter had was the use of the IQHE quan-
tization to measure with high precision h/ e?, whose value became a standard
of resistance calibration [PS09]. The most exciting prospect of the application
of topological states of matter is the realization of fault-tolerant quantum bits
for the construction of a quantum computer. The topological protection would
play a crucial role in guaranteeing high-fidelity quantum bits and minimizing
undesired decoherence.

0:

2.3 SU-SCHRIEFFER-HEEGER MODEL

In the 1970s the electronic properties of organic polymers were being researched
for their potential technological applications [Hee+88]. Polyacetylene is one
of the simplest possible polymers, consisting of (CH) units forming a quasi-
one-dimensional lattice (see Fig. 2.2h). Attending to the orbital hybridiza-
tion (sp? forming the quasi-1D chain, and a free p, orbital) one expects a half
filled p, band, that is, one expects metallic behavior. However, the quasi-
one-dimensional polymer spontaneously dimerizes leading to a gapped band
structure at the Fermi energy. This is due to the so-called Peierls instability
[Pei96], caused by the electron-phonon coupling in one dimension. Su, Schri-
effer, and Heeger proposed a toy model of such a dimerized system, known
today as Su-Schrieffer-Heeger (SSH) model [SSH79].

The SSH model has since been extensively studied for its (at the time not
fully recognized) topological properties. Indeed, this simple toy model exhibits
a gapped topological phase and charge fractionalization. In this Section we in-
troduce the SSH model, which was the base of our work [AGO20] presented in
Chapter{4] The SSH model consists of a tight-binding chain where the hopping
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alternates between strong and weak hopping. This is depicted in the lower part
of Fig. with two lines and one lines indicating the strong and weak hopping
respectively. The Hamiltonian of the model can be written as:

H=> [t+(-1)A/2] cleji1 +he, (2.14)
J

where ¢; annihilates a fermion at site j of the chain, ¢ is the average hopping
between sites and A the parameter leading to the dimerization of the hopping
to t £ A. Transforming to Fourier space one finds the Bloch Hamiltonian:

_ 0 ty +te 2P\
Hy = (t+ L ik 0 ) =h(k)-o. (2.15)

For this model h(k) = (¢4 + t_ cos 2k, t_sin 2k, 0), and the Brillouin zone is de-
fined by k£ € [~ 7, §]. The two band Hamiltonian has energies:

Ej = +/(t2 — A2) cos? k + A2 (2.16)

Thus, the dimerization parameter A opens a gap at the edges of the Brillouin
zone. Close to the edges, Hj can be expanded into a Dirac Hamiltonian of the
form of Hy of Eq. .I). The trivial and topological phases differ again by the
sign of the gap. Itis easy to check that for A = 0 one recovers the band structure
of a simple tight-binding chain albeit with an artificially doubled unit cell. The
eigenstates of the positive and negative energy bands are:

1 1 . _ hy(k)  t_sin2k
|lus(k)) = 7 (:i:e“i’(k)) ,  with tan¢(k) = ho(k) ~ ot cosk (2.17)

The topological properties of the SSH model are characterized by its sym-
metries. Not allowing for other terms, the Hamiltonian of Eq. presents
time-reversal, particle-hole and chiral symmetry, placing the model in the BDI
symmetry class, which is characterized by a Z topological index in one dimen-
sion [Chi+16]]. The presence of the chiral antisymmetry allows for Z to be de-
fined as a winding number. Furthermore, the SSH model presents inversion
symmetry about the center of the unit cell or about the middle point between
unit cells. Due to the inversion symmetry, the so-called Zak phase can only
take the values 0 or 7, serving also to characterize the topological phases of
the SSH model. The winding number and the Zak phase are closely related in
the SSH model and can be used interchangeably to define its topological and
trivial phase. For more complex models like the one introduced in Chapter [,
there is no such one-to-one correspondence between the two quantities. In the
following, we begin the discussion with the introduction of the Zak phase.

As in the previous Section, one can calculate the Berry phase gathered upon
completing a loop in momentum space. In one-dimensional band systems this
has become known as the Zak phase, defined for a band j by [Zak89; RBB17;
CDS19]:

vy =i [ ks () 0k (). (2.18)
BZ

Given the gauge freedom of the overall phases of the eigenstates, the Zak phase
is only defined mod 27. With the eigenstates of Eq. (2.17) the Zak phase of the
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FIGURE 2.2: (a) Polyacetylene structural diagram (up, taken from com-
mons.wikimedia.org) and SSH model simplified version of it (down). (b)
and (c) mapping of the Brillouin zone to |h(k)| in the trivial (b) and in the
topological phase (c).

negative energy band is:

/2
N = % / dk¢'(k) mod 2r. (2.19)
—m/2

This integral measures the change in the phase ¢(k) as k completes a loop in the
Brillouin zone. Thus, the integral can be zero (¢(k) changes but it retraces its
steps back to zero) or a multiple of 27 (¢(k) winds an integer number of times).
One can thus define the integer v_/7 as the topological invariant of the SSH
model. As advanced above, the winding number Z is closely related to the Zak
phase in this model. It can be defined as the number of times the trajectory of
the vector h(k) winds around zero in a mapping from the Brillouin zone. The
mapping to h(k)/|h(k)| is also commonly used. The mapping to the vector h(k)
leads to a circle centered at (¢4,0) with radius t_. The two possible cases are
depicted in Fig. b) and (c). Panel (b) corresponds to the topologically trivial
case. The dimerization parameter A > 0 causes the intracell bond ¢, to be of the
strong kind. As¢_ <t the circumference does not enclose zero meaning Z = 0.
Equivalently, the angle ¢ (k) remains smaller than 7 /2 retracing its change to its
initial value and leading to a zero Zak phase. Panel (c), with opposite sign of
A, corresponds to the topological phase. With A < 0, the roles of ¢, and ¢_
are interchanged, i.e. ¢ty < t_). In this case the trajectory of h(k) winds once
around zero so that Z = 1. Equivalently, the angle ¢(k) continuously grows
from 0 to 27, yielding a 7 Zak phase. In more complex models there is not such
one-to-one correspondence between the winding number and the Zak phase.
At best, for inversion symmetric models, the Zak phase indicates the parity of
the integer topological index Z.

As shown above, the sign of the gap A distinguishes between the trivial and
the topological phase. A finite chain built with topological unit cells (i.e. weak
intracell hopping) exhibits localized states at its ends. The limit A = —t is partic-
ularly transparent as the intracell hopping becomes zero leaving two uncoupled
sites separated by pairs of coupled sites. In a half-filled chain, an exponentially
weak hybridization leads to an occupied electronic state with equal weight at
both ends of the chains. Thus, a fractional charge of e/2 is associated with each
boundary [Hee+88|]. The charge fractionalization in the SSH model constitutes
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the tight-binding version of the previously discovered fermion number frac-
tionalization in quantum field theory [JR76]. It is also possible to derive this
fractionally-charged domain wall from a massive Dirac Hamiltonian for which
the gap in a region of space is adiabatically taken to its opposite-sign value.
Goldstone and Wilczek [GW81] found that this transports half an electronic
charge leaving behind a domain wall with charge e/2. In the last decades, cold
atom experiments have been able to reproduce the SSH lattice [SS+06; F+07], re-
porting the observation of its Zak phase and its topological end states [Ata+13;
MAGI16].

In Chapter [ we introduce a modified SSH model in which we define a spa-
tially varying gap A. We engineer this spatial variation such that the bound
states arising at the domain walls between topological and trivial regions con-
stitute an SSH system on their own.

24 TOPOLOGICAL SUPERCONDUCTIVITY

In this Section we explain the physics behind the emergence of Majorana quasi-
particles in condensed matter systems. In the past two decades, the condensed
matter community has produced a lot of research in Majorana quasiparticles,
both theoretical and experimental [Lut+18]. Chapters [} [} and [7] of this thesis
present basic research motivated by this strong interest. The reason driving this
interest is the potential application of Majorana quasiparticles for the engineer-
ing of a fault-tolerant quantum computer. The suitability of Majoranas for this
task originates from two of their properties:

o First, as edge states of topological systems they enjoy topological protec-
tion. We will not enter into the details on how Majorana quasiparticles
form a quantum bit (qubit). Suffice it to say, a qubit is defined by the same-
fermion-parity subspace spanned by four Majoranas [Bra06;/Aas+16|]. In a
quantum computer the different qubits must be able to entangle with each
other and maintain quantum coherence for times longer than a calculation
would take. The topological protection makes Majoranas less susceptible
to quasiparticle poisoning and decoherence.

e Second, Majorana quasiparticles exhibit non-abelian statistics [Iva01]. As
opposed to bosons or fermions, where the order of successive exchanges
of particles has no influence on the resulting state (i.e. they have abelian
statistics), a successive exchange of Majoranas is affected by the particular
order of the exchanges (frequently referred to as braiding). This allows
one to implement logic gates between qubits in a topologically protected
manner [Nay+08|]. Although this is surely advantageous, it must be noted
that additional not-topologically-protected gates are needed to achieve a
universal set of quantum gates, necessary for the realization of a quantum
computer.

We begin this Section by introducing the basics of the Majorana physics. We
introduce the Kitaev chain and its similarities and differences with the SSH
model. Finally, we explain the most promising proposal for the engineering
of Majoranas in condensed matter systems.

2.4.1 MAJORANA BASICS

In this Section we introduce the basic theoretical concepts to understand the
emergence of Majorana quasiparticles. The defining property of Majorana
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quasiparticles is that they are their own antiparticles or, in other words, their
creation operator is equal to their annihilation operator:

v =~ (2.20)

Indeed, Majoranas owe their name to Ettore Majorana, who found a charge-
conjugation invariant solution to the high-energy-physics Dirac equation
[Maj37]. Contrary to these predicted free-standing particles, condensed mat-
ter Majoranas do not have dynamics of their own and are associated with the
domain walls of topological systems. Furthermore, the building blocks at our
disposal in condensed matter systems are electrons, that is, fermions so that
condensed matter Majoranas are of the form

v~ e+l (2.21)

where c is a fermionic operator. It turns out that the type of systems where
such emergent quasiparticles can arise are spinless p-wave superconductors,
also known as topological superconductors. Below we explain how to realize
such “spinless” systems out of the spinful electrons present in materials.

In the following we introduce the Kitaev Chain [Kit01]], a minimal tight-
binding model of a spinless p-wave superconductor that shares some similari-
ties with the SSH model. Its Hamiltonian is given by:

H= Z [—uc;cj - t(c;-ch + C;Cj+]_) + A(cjqic5 + c}c}H)} . (2.22)
J

Thus, the Kitaev chain consists of a simple tight-binding chain with supercon-
ducting correlations among neighboring sites. Transforming to Fourier space

and writing the Bloch Hamiltonian in Nambu space ¢, = (¢, ¢ )T one finds:
B & 2iAsink)
Hy, = <—2iA ik Y =h(k) o, (2.23)

with & > 0. For this model h(k) = (0, —2Asink, &), with § = —2tcosk — p.
At this level one can already draw similarities with the SSH model. In momen-
tum space, both the Kitaev chain and the SSH model exhibit chirally-symmetric
Hamiltonians. One could even perform a rotation in Pauli matrix space for both
models to involve the same Pauli matrices. Thus, in both models the energies
come in pairs of opposite energies. Also, the chiral symmetry allows one to
define a winding number in the Kitaev chain in the same manner as defined
above for the SSH model. This leads to a phase diagram for the Kitaev chain,
for which one also finds different winding numbers upon sign changes of the
gap A. Although the two models present these structural similarities the char-
acter of their solutions is very different. At the root of this is the fact that, while
for the SSH chain the space of the two-by-two Hamiltonian is spanned by the
two sites of the unit cell (i.e. two fermionic sites), in the case of the Kitaev chain
the Hamiltonian is written in Nambu space (i.e. particle-hole space). This dif-
ference becomes more apparent when considering their respective topological
end states. To this end, it is convenient to write the Kitaev chain in terms of
Majorana operators:

1 .
cj = 5(7A,j +ivB,5)- (2.24)
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Writing the inverse relations one can check that

{Ya, 78} = 2048, (2.25)

where a and 3 can represent more than one subindex. In terms of these Majo-
rana operators the Hamiltonian of Eq. (2.22) is given by:

H=1" {*(t + A)vavB,j+1 + (= D)y jva+1 — g(l + iyA_ﬂBJ)] (2.26)
j

Thus, one obtains two dimerized Majorana-operator chains uncoupled from
each other in the case 4 = 0. Furthermore, each of these chains has a weak
bond at opposing ends of a finite Kitaev chain. Recall that for the SSH chain,
the particular case A = —t yielded two uncoupled sites one at each end of a
finite chain. This means that there are two fermionic states with exactly zero en-
ergy, leading to a four-fold degenerate many-body ground state. An equivalent
special case for the Kitaev chain is found at A = —¢, = 0:

Hs =2t Z YB,jVAj+1- (2.27)

J

It is easy to see that, in a finite N-site chain, one Majorana operator at each end
is uncoupled, yielding two zero-energy Majorana modes. These two Majoranas,
~v4,1 and g, n, define a single highly-non-local fermionic operator

1 .
dy = 5(%4,1 +ivB,N)- (2.28)

As a consequence, the many-body degenerate ground state of a Kitaev chain
with two isolated Majoranas is two-fold degenerate. From this discussion it
is easy to understand why Majoranas are often referred to as “half fermions”.
These specific cases for both the SSH and Kitaev chain are particularly trans-
parent but we must remark that the character of their solutions extends to all
points of the topological regions of their parameter spaces. As a final remark,
we want to point out that the difference in the character of the topological end
states of the SSH and the Kitaev chain are a hallmark of their different respective
short- and long-range entanglement underlying their topological phases [RG00;
CGW10].

In conclusion, the Kitaev chain is a very didactic toy model, wonderful to
get acquainted with topological superconductivity and Majorana quasiparti-
cles. The lack of readily-available spinless fermions in physical condensed mat-
ter systems makes it an oversimplification of what one can achieve in real ma-
terials. The following Section presents a general recipe to engineer topological
superconductivity in real condensed matter systems.

2.4.2 ENGINEERING A TOPOLOGICAL SUPERCONDUCTOR

At the time of the writing of this thesis, a notable number of theoretical pro-
posals for systems hosting Majorana quasiparticles have been put forward. Ex-
amples of these are the fractional QHE at 5/2 filling [MRO91], intrinsic p + ip
superconductivity as predicted for some materials [Kall2] or topological insu-
lator edges proximitized by a superconductor [FKO8; [FK09]. In this Section,
we present the at-the-time most promising proposal: one-dimensional systems
combining Zeeman splitting, spin-orbit coupling and s-wave superconductivity
[LSS10; ORO10;NP+13]. For a more complete account of the different proposals
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and experimental advances we refer the reader to the literature [Ali12; Beel3;
EF15;|SF16; Lut+18].

We begin the Section with a basic account on how one-dimensional elec-
tronic systems can be driven into a topological superconducting phase. As men-
tioned above, spinless fermions are not readily available in condensed matter
and we are forced to make use of spinful electrons and holes. The goal is ob-
taining an effective BAG-Hamiltonian of the type:

Hy =&y + ATz, (2.29)

which is a low energy limit of the Kitaev Bloch Hamiltonian of Eq. (2.23), bar
a rotation of Pauli matrices. The strategy to achieve this is to combine three
easily accessible physical ingredients: Zeeman splitting, spin-orbit coupling
(SOC), and s-wave superconductivity. Following [LS510; (ORO10], this can be
achieved in one-dimensional semiconductor nanowires in the presence of mag-
netic fields proximitized by a conventional superconductor. Such a wire would
be described by the following BAG Hamiltonian:

Hwire == (Ek + akgz)Tz - Bgz + Ava (230)

where the Nambu basis ¥ = (¢, ¥, , Qﬂky —z/ﬂkT )T is used, with v the elec-
tron annihilation operator of momentum & and spin ¢. Here «k is the spin-orbit
coupling, B a magnetic field, and A the s-wave pairing. To understand how
the three ingredients lead to topological superconductivity we follow [OPP17]
to show that this Hamiltonian can be reduced to the one in Eq. in the
correct parameter regime. We begin by considering a one-dimensional band in
the presence of a magnetic field and then include SOC and superconductivity
perturbatively:

1. Magpnetic field: in condensed matter, a “spinless-fermion system” is best
approximated by a system with electrons of only one spin orientation. If
the magnetic field B > |u| only the spin-up band has occupied states. In
this situation one can project out the spin-down band and work in the
basis:

ler) = (1,0,0, O)T7

e} = (0,0,0,1)7. 23D

2. Spin-orbit coupling: s-wave superconducting pairing can not induce su-
perconducting correlations between spin-up electrons and holes,
(et| A7y |hy) = 0. The crucial role of SOC consists of allowing a de-
gree of mixing between the two spin flavours. Including the SOC term
perturbatively, the basis of Egs. changes to:

les) = (1, —ak/2B,0,0)7,

2.32
|h,) = (0,0, —ak/2B,1)T, (2:32)
where the spin is no longer fully polarized.

3. s-wave pairing: introducing the superconducting term again perturba-
tively one finds:

(er|ATylhy) = (hy|ATgley) = —akA /2B, (2.33)
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and zero diagonal terms. The projected Hamiltonian in the {|e;), |h,)}

basis results: A
«
H;Z(af—Bhb—T?km, (2.34)

that is, an effective p-wave superconductor of the form of Eq. (2.29) where
one can identify A, = —aA/B.

The above derivation makes the interplay and role of each of the three ingredi-
ents B, ok and A transparent. Nevertheless, it is not hard to diagonalize the full
Hyire Hamiltonian, for which one finds the energies:

E, = j:\/fk + (ak)? + B2 4+ A2+ \/gz(akﬁ + B2(& + A2). (2.35)
At k = 0 the spectrum is generally gapped:

Ej—o = £|B — /12 + A2). (2.36)

The gap closing given by the relation B = /u? + A2 defines the topological
phase transition of the model, with B > /u? + A2 corresponding to the topo-
logical phase.

Using this recipe a long list of experiments have reported signatures consis-
tent with the presence of Majorana quasiparticles. Most of these use semicon-
ductor nanowires with SOC proximitized by a superconductor in the presence
of a magnetic field (or an insulating ferromagnet). The first such experiments
appeared in 2012 [Mou+12; RLF12; |[Den+12; Das+12] reporting either robust
zero bias peaks or signatures related to a 4w-periodic Josephson junction, which
the presence of Majoranas is predicted to lead to [Lut+18]. One relies on these
signatures given the difficulty of experimentally probing the non-abelian statis-
tics of the Majoranas, which would be an unequivocal evidence of their pres-
ence. Concerns were raised about the compatibility of these signatures with
other non-topological effects such as the Kondo effect or disorder among others
[Lee+12;|Liu+12;/Chu+13; KMB12;|Chu+13]. Progress on the growth techniques
of semiconductor nanowires partially covered with a superconductor have led
to cleaner surfaces and more transparent interfaces providing more reliable data
on the presence of Majorana quasiparticles in these systems [Den+16; Suo+17}
Che+17;|Zha+17a};|G+18; [Vai+20].

There is another kind of systems that also follows the above recipe for topo-
logical superconductivity. They consist of chains of magnetic adatoms on top of
a superconducting substrate. Chapters 5} [} and [7] present research done during
this doctoral thesis in the context of this kind of systems. The magnetic adatoms
lead to spin-polarized in-gap states known as Yu-Shiba-Rusinov states. Due to
their importance for this thesis we dedicate Chapter [3]to introducing them.
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| YU-SHIBA-RUSINOV STATES

3.1 INTRODUCTION

Chapters [5|and [7] of this thesis contain theoretical framework and calculations
developed to explain the results of two experiments performed by Katharina
Franke’s group. The two experiments investigate different aspects of Yu-Shiba-
Rusinov (YSR) states. Theoretically predicted in the second half of the 1960s
[Yu65; |Shi68} |Rus69], these are bound states localized around magnetic impu-
rities placed on top or within a superconductor. The pioneering experimental
study of a YSR using a STM of Yazdani et. al. [Yaz+97] sparked the interest into
this type of bound states and the local electronic properties of superconductors
they open a window into.

More recently, chains of magnetic adatoms have been proposed as a plat-
form for topological superconductivity [NP+13; PGO13]. The research pre-
sented in Chapters 5} [6] and [7] provides important results for the engineering
of topological superconductivity with NbSe, substrates and a radiation based
technique to improve the energy measurement of the sought-for Majorana
quasiparticles. This Chapter introduces the basics of YSR states and their rele-
vant aspects for the subsequent Chapters.

32 YSR STATE ENERGY AND WAVE FUNCTION

The origin of the magnetic moment and the resulting exchange coupling be-
tween an impurity and the electrons in a metal can be understood starting with
an Anderson model and its mapping to a Kondo Hamiltonian in the absence of
valence fluctuations [Hew93|]. However, YSR states are typically well described
within a model which treats the impurity spin in the Kondo model as classi-
cal [[Yu65] |Shi68; Rus69|]. In the following, we derive the basic properties of a
YSR state, namely its energy and the long range behaviour of its wave function.
This derivation follows the lines of [PGO13|], further extended in [Mén+15|] to
include the wave function behavior for 2D superconductors.

A magnetic adatom on top of a 2D or 3D superconductor can be described
by the following Bogoliubov-de Gennes (BdG) Hamiltonian:

H = &7 + Aty + (K7, — JS - 0)8(1), 3.1)

where the first two terms correspond to a translationally invariant supercon-
ductor, with &5 = p?/2m — u the band dispersion measured from the chemi-
cal potential y, A the superconducting gap and the Pauli matrices 7 acting in
particle-hole space. The terms proportional to the delta function correspond
to an impurity placed at the origin, with potential scattering K and exchange
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coupling J between the classical impurity spin S and the electrons’ spin o.
This Hamiltonian is written in the Nambu basis ¥ = (¢4, ¢, 1/)1, —wl)T, with
s = 1, (r) the electronic field operator of spin o.

Choosing S parallel to the z-axis splits the 4 x 4 Hamiltonian into two
2 x 2 independent blocks related by particle-hole symmetry P = i1, K, with
denoting complex conjugation. We focus on the block corresponding to ¥, =
(14,0, LZJI, 0)7, for which we solve the eigenvalue equation:

[€pT: + ATy + (K7, — JS)I(F)] p(r) = Eo(r), (3.2)

with p(r) = (u4(r),v)(r))T. Fourier transforming to momentum space:

_ dp ip-r
o(r) = / (27T)de ©p, (3.3)
where d = 2, 3, one finds
[E —&pTe — ATy] op = (K7, — JS)(0). (3.4)

Solving for ¢, and transforming back to real space yields:

o(r) = / (Qd:)d = _e;%r_ 5 B+ & + A (K. = JS)p(0).  (35)

From this equation one can calculate the shape of the wave function as well as
the energy of the YSR state. The details on how to perform the integral can be
found in [PGO13; Mén+15; [Bry+15]. The steps are: changing the momentum
integral to an energy integral (f ;225 —vo [ dépaq?), linearising p(¢p) on the en-
ergy, performing the contour integral for the energies and, finally, the angular
integral. We have introduced the normal state density of states 1. To find the
energy of the YSR state one evaluates Eq. at r = 0 which, after performing

the integrals, yields:

1+ =2 (B + Ar,)(K7. — JS) | ¢(0) = 0. (3.6)

AZ—F
There is a subgap solution found at the energy:

A(l =%+ k%)

: VA2 + (1 -2+ 22 7

Eys = sign(J

with v = 71 |J|S and k = w1y K. Due to the particle-hole symmetry, the energy
of the ¥, = (0,v,0, —wDT subspace has the opposite sign. Note that for
vanishing exchange interaction (J = 0 — v = 0) there is no subgap solution.
An important property of the YSR energy E. is that it can change sign,
going through zero at the critical value 7. = /1 + k2. This change of sign entails
a quantum phase transition (QPT) between two distinct ground states. This was
first discussed in [Sak70] and has since been experimentally studied [FSP11}
Far+18]. For 7. < v1+ k? and antiferromagnetic coupling (J < 0) the YSR
state has negative energy meaning that the state corresponding to the spin-up
electron and spin-down hole subspace is occupied in the ground state. This
ground state, being on the same side of the QPT as the v = 0 state, is similar
in form to the BCS ground state, consisting only of Cooper pairs, and thus has
a net zero electron spin [BVZ06]. For 7. > v/1 + «? this state is empty in the
ground state, and the one of the spin-down electron and spin-up hole subspace
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is occupied, leading to a total electron spin of -1. The physical picture behind
this is that when the exchange coupling of the impurity becomes strong enough
to overcome the superconducting pairing potential a Cooper pair is broken and
a single electron is bound to the impurity.

It is experimentally challenging to assess to which side of this quantum
phase transition an YSR state is. This has been achieved exploiting the flexibil-
ity of molecules containing a magnetic atom [Far+18]. This flexibility allows for
tuning of the exchange coupling between the magnetic impurity and the sub-
strate. For example, if when increasing the coupling one observes a decrease
of the YSR state energy, according to Eq. (.7), the system is still in the weakly
coupled regime. This knob is generally not available for single adatoms, for
which the exchange coupling depends on the non-tunable adsorption site. In
Chapter 5| we show how a similar knob may be available for materials exhibit-
ing a charge density wave modulation that affects the local density of states in
the vicinity of the adatom.

Finally, we focus on the shape of the YSR wave function. Again, integrating
from Eq. one finds the following expressions:

1 sin(kpr +6%) "

uzp(r),vsp(r) = ﬁ kpr (3.8)

for the three-dimensional case, and:

1 sin(kpr —m/4+ 6%) -y
U2D(T)aU2D(T)—\/ﬁ \/Wpr € ,

for the two-dimensional one. wu;(r) and v;(r) stand for the electron and hole
parts of the wave function, 6T = arctan(k +7), kr is the Fermi momentum
and ¢ = hwp/\/A*—F%; a decay length related to the coherence length of the
superconductor. In both cases, the wave functions are asymptotic expressions
for kpr > 1, kp > £,

The relevant difference between the wave functions in two and three dimen-
sions is their short-range decay. This goes like ~ 1/./r for 2D and like ~ 1/ for
3D. A proposal for the engineering of Majorana boundstates consists in the cou-
pling of several YSR states forming a one-dimensional chain [PGO13; NP+13;
Cho+11; NTN13; [BS13} KIi+13} [VF13; Kim+14; Bry+15; Rub+15a; NP+14]. As
will be explained below, this kind of setup has the necessary ingredients for the
emergence Majorana particles. Going from three to two dimensions provides an
enhancement in the spatial extent of the YSR wave functions which facilitates
the manipulation and coupling of different YSR states.

(3.9)

3.2.1 YSR GREEN’S FUNCTION

Another way of deriving the emergence of a subgap bound state is through
the superconducting Green’s function [Rub+15b]. This derivation is closely re-
lated to the one presented above so we do not go through it in detail. The
Green’s function of a superconductor with an magnetic impurity can be calcu-
lated through the Dyson equation:

g(w)_1 = go(w)_l — (K1, = J9), (3.10)

where .
90(w) = —— == (w + A7) (3.11)
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is the bare superconducting Green’s function (see App. [A). Inverting equation
(3.10) one finds:

mo(w + ATy + (7 + k7)VAZ — w?)
29w — (1 =42+ K2)VAZ — w2

which has a pole at the YSR state energy (3.7). Finally one can expand the
Green'’s function in the vicinity of this energy yielding:

g(w) = (3.12)

1
g(w) =~ @7@[ 3.13
, .
(w) B ( )

with ¢ = ¢(0) = (u,v)T, with u and v the electron and hole part of the YSR
wave function evaluated at the origin:
2
W2t 2yAmvy(1+ (v £ k)?) (3.14)

’ [492 + (1 — 2 + x2)2]¥/%

Equation represents the contribution of the YSR state to the total substrate
Green’s function. This YSR Green'’s function will be used in Chapter [/]to calcu-
late the current between a STM tip and a superconducting substrate through a
YSR resonance.

33 YSR STATES IN STM MEASUREMENTS

Since the first observation of YSR states by STM [Yaz+97], experimental ad-
vances have greatly improved the resolution of YSR resonances, mainly due to
lower temperature setups and the use of superconducting tips in STM measure-
ments [HPF18]. In this Section, we want to give a brief account of the signatures
of the YSR states which play a role in Chapter 5|and, specially, in Chapters [f]
and [} In particular, we present the results of [Rub+15b]], where the interplay
between single-particle and two-particle (Andreev) tunneling was studied as a
function of the junction resistance.

We start the discussion by introducing the four quantities that account for
the different current signatures a single YSR state can lead to. These are I', T's,
I’ and T'y,. T’y is the rate at which a quasiparticle in the YSR state can be ther-
mally excited into the quasiparticle continuum of the substrate. I'; is the rate of
the opposite process, a thermally excited quasiparticle in the continuum relaxes
into the YSR state. I'. can be understood as the tunneling rate of electrons to or
from the positive-energy YSR state. Conversely I'y, is the tunneling rate of holes
to or from the negative-energy YSR state. For superconducting STM tips, these
two quantities are frequency dependent:

Le(w)
Fh (w)

2r|ul?|t)*v(w), (3.15)
2|2t ?v(w) (3.16)

with ¢ the tunneling amplitude across the junction and the BCS density of states

[l
Voo? — A2
Figure provides a schematic representation of the single- and two-

particle processes across a junction formed by two equal-gap superconductors
in the presence of a YSR state. In every panel the left hand side superconductor

v(w) = vy O(Jw| — A). (3.17)
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eV=A+c¢g eV = —(A+ o)

FIGURE 3.1: Single- and two-particle processes in a junction consisting of a su-
perconducting tip (left superconductor) and a superconducting substrate
(right superconductor) with a YSR state. Only processes involving the YSR
state are shown. Panels (a) and (b) depict single-particle processes involv-
ing the relaxation rates I'; and I'; to and from the quasiparticle continuum
and I'.. Analogous processes at opposite bias involve I';,. Panels (c) and
(d) depict resonant Andreev reflection processes at positive and negative
bias respectively.

represents the superconducting tip, which shifts by the applied bias eV indi-
cated at the bottom of each panel relative to the right hand side superconductor,
which includes the YSR resonances at the energies +¢y. The single-particle pro-
cesses involving I'. are depicted in panels (a) and (b). Panel (a) shows the
junction at a bias eV = A + ¢y. At this bias, electrons from the tip can tunnel
into the positive-energy YSR state at a rate I'., and are then excited into the
continuum at a rate I';. Note that this process was not possible at any smaller
positive bias due to the lack of states within the tip superconducting gap. Also,
the current due to this process is maximal at this point due to the high density
of states of the BCS coherence peak. For this reason, one speaks of the bias
eV = A+ ¢ as a threshold bias for the electron tunneling rate I'. beyond which
such tunneling becomes possible. In a experiment, this onset of the current
translates into a peak in the differential conductance. Such peaks can be ob-
served in the YSR spectra displayed in Fig. for which A = 1.35meV and
€0 ~ 0.25meV.

In a similar manner, at eV = —A + ¢, the opposite single-particle process
becomes possible. This is depicted in panel (b), where electrons from the con-
tinuum can relax into the positive-energy YSR state at a rate I'; and then tunnel
into the tip at a rate I'.. Analogous single-particle processes involving I'j, take
place at biases with opposite signs of those in panels (a) and (b), with corre-
sponding opposite sign thresholds. The value of these thresholds plays an im-
portant role in Chapters [6] and [7] where they become important to understand
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the intriguing structures of the sidebands of the two-particle current in the pres-
ence of radiation. For this reason we explicitly write the threshold values:

Vth = ZEA + €0,

thh +A — €. (3-18)
Panels (c) and (d) show Andreev reflection processes resonantly enhanced by
the YSR state. In panel (c), at positive bias, an electron first tunnels from the
tip into the positive-energy YSR state and then combines with another electron
to form a Cooper pair leaving a hole in the negative-energy YSR state. Lastly,
the hole tunnels into the tip. In panel (d), at opposite bias, charge travels in
the other direction, breaking a Cooper pair in the substrate. Note that for these
processes to be allowed both I'. and I';, must be above threshold. Expressions
for the tunneling currents were derived in [Rub+15b]:

[Fl (V) :% /d FleiFEO ) F( F)(L;jl)]’ (319)
_ € —Iy [TE " (w_) =T, " (wy)]

Iny(V) = /dw P F(w’32/4 , (3.20)

I(V) = 2e dwrh(w+)rgp (w—) = Pe(w-)I'}" (wy) (3.21)

h (w—€0)?+T'(w)?/4

where T'(w) = 'y + Ty + Te(w-) + T'h(wy) and wy = w + €V, and where we
defined:

7 (w) = 27t?|ul?v(w)np(w), (3.22)
= (w) = 282 |ul?v(w)[1 — np(w)], (3.23)

for compactness. The corresponding definitions for I'}* and I'; ~"* differ by re-
placing |u|?> — |v|?. The total current is the sum of the three contributions: Ir,
and I, account for the single-particle current and I, accounts for the resonant
Andreev current. The shape of the integral consists of a Lorentzian-shaped reso-
nance centered at the YSR energy ¢, with a broadening I'(w). Note that, in many
cases, tunneling currents are treated perturbatively in the tunneling amplitude
t, as this is normally a small parameter. As a consequence, in such treatments,
the tunneling rates I'. and I, do not appear in the broadening of resonances.
The derivation of [Rub+15b]], which we generalize to include exposure to radi-
ation in Chapter [/, includes the tunneling to all orders. This is very relevant
when the junction conductance is increased, i.e. the tip-to-sample distance re-
duced. Indeed, this was precisely the focus of their experiment, which studied
how the relative contribution of the single-particle and Andreev current to the
total current can be tuned by changing the junction conductance.

Figure [3.2|shows experimental data of two YSR spectra of a Mn adatom de-
posited on top of a Pb substrate. Though there is more than one YSR state asso-
ciated with the Mn adatom, we focus on the lowest energy one, which leads to
all the conductance peaks labeled in the plot. At eV = £2A the BSC coherence
peaks are visible. The blue line corresponds to large tip-to-sample distances,
yielding a differential conductance orders of magnitude smaller than in the
shorter tip-to-sample distance case, in orange. At large tip-to-sample distances,
the single-particle current dominates over the Andreev current, the latter being
of higher order in the tunneling amplitude ¢. In this situation, I'y and I'; dom-
inate the broadening I'(w). One can identify each peak with a contribution to
the single particle current as labeled in the plot, where the Fermi distributions
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FIGURE 3.2: YSR spectra of an Mn adatom on top of superconducting Pb taken
with a superconducting STM tip. At low junction conductances (blue line)
the current is dominated by single-particle tunneling. The peaks of the low-
est lying YSR state are identified with the corresponding rates involved. At
high junction conductances (orange line) the current is dominated by reso-
nant Andreev reflections. The tunneling rates dominate the broadening of
the resonance leading to peaks of inverted height with respect to the low
junction conductance case (see text).

were omitted for compactness. The peaks corresponding to I, appear at the
biases eV = £(A + ¢p) and the ratio of their peak heights is a direct signature
of the ratio of the YSR state electron and hole wave function components at the
adatom position |v/u|?. In this case this ratio is highly asymmetric |v/u|* ~ 4
The same ratio is expected for the conductance peaks of Ir,.

For small tip-to-sample distances (orange line) the Andreev current domi-
nates over the single-particle current. Note that in this case there are no distinc-
tive features within the shaded region. This is due to the above-mentioned fact
that both I', and I';, must be above their thresholds for the Andreev current to
be possible. In this case, the tunneling rates I'. and I';, dominate over the re-
laxation rates I'y and I'y in the broadening. This has an important consequence
for the relative height of the peaks. Due to the asymmetry in the wave function
weights |u?| and [v?|, the denominator is bigger at the threshold bias of T, i.e.
eV = —(A + ¢), than at the threshold bias of T, i.e. eVetJlrl = A + €. This
leads to a lower broader peak at negative bias. The relation of the peak heights
is found to be |u/v|'%/3 [Rub+15b].

These relations can all be derived from Eqgs. (3.19)-(3.21). We dedicate the
rest of this Section to derive the peak heights of the conductance due to the
resonant Andreev current in the regime where it dominates over the single-
particle current. We consider two possible situations of electron or hole rate
dominating the broadening. These considerations play an important role in
Chapter|7| We focus on biases in the vicinity of eV ~ eVet}: = A + €. Near this
bias the hole tunneling rate is non-singular and we neglect its weak dependence
on w:

A+2 A
Th(w+ V) = P oo (3.24)

=V =T\

1/ (A + 60)460 460 ’
where we have assumed that the broadening is small compared to ¢y such that
the current integral has weight for w close to the resonance €y. For simplicity, we
further assumed ¢y < A though one must note that this is in no way essential.
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In contrast, the electron tunneling rate becomes singular,

A

Do(w — eV ~ —
elw—e e+) Ve 2(co — w)

O(eg — w). (3.25)

Neglecting I'y and I'; in the broadening and considering Eq. (3.21) for V' =
eV + 8V one can write:

th,e
N Io(w_ )t

I(V) ~ Ia(V) — z (w . 60)2 + i[re(w_) +Fgl7e}2’

(3.26)

where we also set the Fermi distributions to one and zero, respectively. To find
the differential conductance peak it is convenient to shift the integration vari-
able w — w + 0V and then perform the bias derivative:

drf 4e? €0 — w)De(w — eV M)rihe
T L (327)
peakt (60— co)?  [De(eo = eV21) 4+ T5P2]

From this expression one can consider two different regimes. Consider first the
situation where the hole tunneling dominates the broadening of the resonance.
Then, the range ¢y — w = Ft,?’e dominates the integral. Inserting this into Eq.
(3.25) one finds the characteristic electron tunneling rate T™¢ = ~,[A /20'™¢]1/2,
Comparing the two threshold rates in the broadening one finds that the hole
tunneling rate dominates provided that T > (72A)/3. Note that this is pos-
sible for highly asymmetric electron-hole wave functions and ¢y < A. Neglect-
ing the electron tunneling rate in the broadening one can write:

arf s e TR
AV | s hoJe he o 2
peak e (T
= g th)e /Oo x I1/2 - 87r€2 VGES/ZL (3 28)
P e TR A

If, on the contrary, the broadening is dominated by the electron tunneling rate,
the integral is dominated by the range ¢p — w ~ I'.(w — eVeti‘), which leads to
a different characteristic electron tunneling Fz}ée = (y2A/2)'/3 > F;lh’e. Analo-
gously to the previous calculation one finds:

th,e
dr L de’T, / T T 8me? Al (3.29)
h o

W peak,+ B Fg}’; ! x3 + %]2 - 9h ’73/36(1)/2 '
One thus finds two possible behaviors depending on the relation between the
electron and hole tunneling rates. An analogous calculation can be carried out
at the negative threshold bias eV, = — A —¢( for which the roles of the two rates
interchange. Note that for very asymmetric electron and hole wave functions,
say v? > u?, the relation is valid at positive bias, while the equivalent
of at negative bias would take place. This is the situation of the orange
curve in Fig. explaining why the conductance peak is larger at positive bias
than at negative ones.

In summary, single-particle currents dominate the total current at low junc-
tion conductances while resonant Andreev reflections dominate at sufficiently
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high junction conductances. We have explained the different contributions to
the current in terms of relaxation and tunneling rates. The activation thresholds
of the latter are important to understand the peaks position in the bias voltage.
The broadening induced by the tunneling rates plays a crucial role in the sig-
natures at high junction conductances, revealing that a treatment to all orders
in the tunneling amplitude is necessary. These concepts play a central role in
Chapter[7} where we generalize these results to include photon-assisted tunnel-
ing processes across the junction.

34 YSR STATES AS A BASIS FOR MAJORANA QUASI-
PARTICLES

This Section explains how chains of magnetic adatoms can provide a platform
for topological superconductivity. The initial proposals by [Cho+11;[NP+13] has
motivated a number of theoretical studies [NTN13;[Kli+13;|BS13; |VF13;|PGO13;
PGO14; |P+14; Pen+15b||. The basic idea is to use the subgap YSR states to create
a one-dimensional band centered around the YSR state energy. To realize topo-
logical superconductivity it is necessary that this band crosses the Fermi energy.
The band width is set by the magnitude of the coupling between the YSR states
of the magnetic impurities. It is thus desirable to achieve strong coupling be-
tween the YRS states. This has motivated research into quasi-two-dimensional
superconducting substrates such as NbSe; [Mén+15; Kez+18a; [SM19; |GO19;
Lie+19] , where the wave functions of the YSR decay more slowly than for three-
dimensional substrates, see Eq. .

Note that one has some control over several of the relevant physical quanti-
ties of this kind of setup. First, there are different possible choices for the mag-
netic adatom as well as the superconducting substrate. The different possible
combinations provide a variety of YSR state energies, wave function shapes and
spatial extents, superconducting gaps and spin-orbit couplings. Finally, one can
also choose the distance between the adatoms to regulate their hybridization,
thus controlling the width of the YSR band.

In Section we explained how to engineer topological superconductiv-
ity out of three common physical ingredients: Zeeman splitting, spin-orbit cou-
pling and s-wave superconductivity. Magnetic adatom chains on top of a su-
perconducting substrate combine or emulate these ingredients. There are two
possible magnetic orderings for a chain of magnetic adatoms: ferromagnetic
ordering and a spin helix. Ferromagnetic ordering is perhaps more straight-
forward to understand as it more closely resembles the recipe given in Section
to obtain topological superconductivity. Due to the magnetic character of
the adatoms, the one-dimensional band of the adatom chain is spin polarized,
emulating the low energy band of a Zeeman-split pair of bands in the presence
of a magnetic field. Spin-orbit coupling can be present in either the magnetic
adatom or in the superconducting substrate. However, when originating in the
adatoms it can be strongly suppressed due to the strong exchange coupling, a
suppression not present when originating from the superconducting substrate
[OPP17]. Finally, s-wave superconductivity is contributed by the substrate host-
ing the adatoms.

The formation of a spin helix was discussed in [NP+13; [PGO13} [VF13]. In
this case, the magnetic orientation of the adatoms has a varying texture along
the chain. Thus, the YSR states making up the chain are polarized in different
directions and a Cooper pair of the superconducting substrate can tunnel into
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the chain provided its spin-up and spin-down electron enter through different
sites of the chain. Such a process induces p-wave superconductivity without the
need of spin-orbit coupling [OPP17]. It is worth noting, though, that these two
possible spin orderings are related by a unitary transformation [Bra+10].

Shortly after the theoretical proposals, an experiment reported the observa-
tion of Majorana quasiparticles in ferromagnetic adatom chains [NP+14]. They
reported the observation of zero-bias peaks at the ends of adatom chains con-
sistent with the presence of Majorana quasiparticles. The ability to probe dif-
ferent positions of the chain with an STM is a considerable advantage with re-
spect to nanowire experiments, which only rely on transport measurements.
A subsequent experiment using superconducting STM tips found similar, yet
non-conclusive evidence of the presence of Majorana quasiparticles in such
adatom chains [Rub+15al]. Further experiments have reported similar findings
[Paw+16} Fel+16; [Kim+18].
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| MODULATED SSH MODEL

41 INTRODUCTION

This Chapter is based on Ref. [AGO20]. The concept of the bulk-boundary cor-
respondence explained in Section[2.2|and the Su-Schrieffer-Heeger (SSH) model
introduced in Section2.3|play a central role in the present Chapter.

Two recent experiments by Rizzo et al. [Riz+18] and Groning et al. [Gr18]
have reported the observation of energy bands engineered from a sequence of
topological domain-wall states. Both experiments exploited graphene nanorib-
bons with alternating widths. The segments of different widths were predicted
to be topologically distinct [CZL17], leading to the emergence of topological
boundary states localized at the domain walls due to the bulk-boundary corre-
spondence. These topological domain-wall states hybridize across the regions
of fixed nanoribbon width and form bands which have themselves interesting
topological properties.

Due to a difference in the bulk gaps, the domain-wall states decay with
different localization lengths into the two types of segments, leading to alter-
nating coupling strengths. Thus, the domain-wall states form an effective Su-
Schrieffer-Heeger (SSH) chain [SSH79], and an analysis of the Zak phase of the
system successfully predicts the presence or absence of edge states at the ends
of the nanoribbon [Riz+18;|Zak89;|[RBB17]. These two experiments are an excel-
lent example of the potential of topological states of matter as building blocks of
systems with interesting properties. The ability to place topological boundaries
at will translates into spatial control over states whose energies are separated
from the rest of the spectrum by a gap. This, together with the robust character
of the domain-wall states, allows for the engineering of interesting systems.

Here, we propose a minimal model that is motivated by the essential physics
of these experiments. Our model is a modified SSH model with a periodically
modulated dimerization. As explained in Chapter[2.3] the SSH model is charac-
terized by dimerized hopping strengths ¢t + A /2, which yield a two-band spec-
trum with band gap 2A. The topological and trivial phases are separated by
a closing of this gap. In our modulated SSH model, we choose the dimer-
ization A to be periodically varying along the chain. Sign changes of A and
hence of the gap are associated with domain walls between different topologi-
cal phases and host localized topological domain-wall states in the same fash-
ion as in the graphene nanoribbon experiments. We design the model such that
these domain-wall states realize emergent SSH chains and thoroughly analyze
the resulting end states and spectrum. We show how the various configurations
of end states exhibited by our model can be predicted on the basis of the Zak
phases of its bands.
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Our model is a generalized Aubry-André-Harper (AAH) model [GS513]
[LGC15;/Zha+17b;|ZCL16; Liu+17;|CFG16], specifically, a so-called ‘off-diagonal’
AAH model. In addition to topological domain-wall states, the model also has
interesting physics associated with commensurability effects between the peri-
odicity of the lattice and the modulation of the dimerization. The original AAH
model describes a chain with periodically varying onsite potential [Har55;
AA80]. It has been broadly studied as it describes lattice electrons in two
dimensions under a perpendicular magnetic field and exhibits a localization-
delocalization transition. Its spectrum was found to depend fractally on the
periodicity, as captured by the celebrated Hofstadter butterfly [Hof76]. In this
Chapter, we present the corresponding butterfly spectrum of our model, which
exhibits the topological domain-wall states and the emergent SSH chains they
form.

42 THE MODEL

The Hamiltonian of the modulated SSH model takes the form

YSSH — Z [t + (_1)jAj/2] c;r‘cj+1 + h.c., (4.1)

J

where ¢; annihilates a fermion at site j of the chain. For a constant A; = A,
this is the conventional SSH model with dimerized hopping amplitudes ¢ +
A/2. We consider the dimerization A; to be modulated along the chain. For
slowly-varying A;, the chain is effectively locally dimerized and A controls the
local gap between the two bands. We engineer this model to capture the main
ingredients of the nanoribbon experiments, namely: (i) alternating topological
and trivial regions and (ii) alternating hybridization of the states arising at the
resulting domain walls. Ingredient (i) can be realized by a sinusoidal variation
of the gap,

A’ = Bcos (2n€j + ¢), 4.2)

where 3 is the amplitude, ¢ its wavevector, and ¢ a phase. Regions of posi-
tive and negative A’ correspond to distinct topological phases and domain-wall
states arise near locations where A’; = 0. This leads to equally spaced domain-
wall states with uniform hybridization. Ingredient (ii) is readily obtained by
including a constant offset,

Aj=a+ Bcos(2mEj + ). 4.3)

The offset o must be chosen to satisfy |a| < |3 for A; to change sign. The
wavevector ¢, together with the ratio between a and 3, determine the lengths
of the alternating topological and trivial phases. The dimerization only allows
for unit cells with an even number of lattice sites for commensurate £. For this
reason, we write general commensurate ¢ as £ = p/2q¢ with p and ¢ coprime
integers, giving a modulated SSH chain with 2¢ sites per unit cell and 2¢ bands.

With a dimerization as defined in Eq. (#.3), the distance and the gap be-
tween the topological domain-wall states alternate. Thus, their hybridization
dimerizes and these states form an effective SSH chain on their own, similar
to the topological domain-wall states of the graphene nanoribbon experiments
[Riz+18; |Gr18]. This emergent SSH chain is depicted in Fig. .1, where A is
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plotted for a finite chain. The emergent SSH chain behaves just like a conven-
tional SSH chain. It has a trivial, as well as a topological phase with its asso-
ciated end states. Notably, the modulated SSH chain exhibits more intricate
physics as we show below.

The modulated SSH model retains time-reversal and chiral symmetries
of the original SSH chain. The chiral symmetry S has its origin in that H in-
volves only nearest-neighbor hopping terms. It acts on the site operators as:

Se; 87 = (—1)/cl, (4.4)
leaving the Hamiltonian (4.1) invariant:

SHS™ ' =H. (4.5)

In first quantization language, chiral symmetry is a unitary operator that anti-
commutes with the hamiltonian. For example, the low-energy continuum form
of the modulated SSH model, valid for slowly-varying A;,

H. = 2tko. + A(x)oy, (4.6)

where o; (i = ,y, 2) denotes Pauli matrices acting in the basis of left and right
movers, has S = o, as its chiral symmetry operator. Indeed, as H. does not
involve o,, it anticommutes with this Pauli matrix, {o,, H.} = 0. The chiral
symmetry is responsible for the existence of the zero-energy states at the end of
the chain and at the domain walls, it forces the eigenenergies of first-quantized
non-interacting hamiltonians to come in pairs of opposite sign implying that
isolated zero-energy states are protected against local perturbations. The origi-
nal SSH chain also has, by construction, an inversion-symmetric unit cell. This
is not necessarily true for the modulated SSH model, in which the phase ¢ can
shift the modulation of the gap within the unit cell. A unit cell spanning from
sites j = 1 to j = 2¢ is inversion-symmetric for ¢ = 0, .

For slowly-varying A(x) and close to one of its zeros, one can linearize the
mass term in Eq. (4.6),

H (x) = 2tho. + Ma — x0)0y, 4.7)

with |A| = 27€+/ 5% — a? the slope of the mass variation. This Hamiltonian has
has the same structure as the one-dimensional case of Eq. (with k, = 0)
differing only by a rotation in Pauli matrix space. Thus, the results of Chapter
also apply for the Hamiltonian of Eq. [#.7): it is diagonalized by harmonic-
oscillator-like eigenfunctions localized at = with energies,

ESS% = 22/t \n, (4.8)

where n is a non-negative integer. Thus, each domain wall hosts a discrete set
of localized domain-wall states. Those states with energies below the maximal
value of A; are localized at their respective domain wall. This implies that
the modulated SSH chain can generate not only one but several emergent SSH
chains.

Incidentally, similar physics is also present in the AAH model [Har55;
AAB80]. When the onsite potential is close to perfect dimerization (i.e., has a
period close to two lattice sites), the low-energy description of the AAH model
is also a Dirac Hamiltonian with a slowly-varying mass. As in the modulated
SSH model, sign changes of the mass constitute topological domain walls and
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support topological states.

4.2.1 EFFECTIVE MODEL OF THE EMERGENT SSH CHAINS

Taking the n-th domain-wall state arising at each zero of A; and keeping the
hopping only to immediate neighbors, one obtains an effective Hamiltonian for
the n-th emergent SSH chain,

H, = E I+ (tn, + tn, cos2k)o, + tp, sin 2koy, (4.9)

where, for small £, E,, is well approximated by Eq. and t,,,, are the intra-
and intercell hoppings to immediate neighbors (assumed real). This Hamilto-
nian corresponds to an SSH chain shifted in energy by E,,, and thus preserves
chiral symmetry about E,,,

E = Ey 4 \/(th, — tn)? + 4t tns cos? k. (4.10)

The relation between the intra- and the intercell hoppings sets the emergent
SSH chain into the trivial (¢,, > t,.) or the topological (¢,, < t,,) phase. In
either case, due to the exponential localization of the domain-wall states, the
weak hopping is exponentially smaller than the strong one and the resulting
bands are weakly dispersing, that is

E ~ E,, £ (tns + tnw cos 2k), (4.11)

with t,,5 (tny) the stronger (weaker) hopping.

For energies |E,, | comparable to the maximal value of |A/], it is no longer
justified to keep only immediate neighbors as the wave functions extend over
greater distances. The SSH model with long-range hopping was studied in Refs.
[LXC14;|PG+19]. In particular, including the hopping to third neighbors breaks
chiral symmetry due to a term ¢ cos 2kL.

4.2.2 END STATES

To understand and classify the end states of the modulated SSH chain, one
needs to consider the nature of both the microscopic and the emergent SSH
chains. The microscopic SSH chain is in the topological (non-topological) phase
if it terminates in weak (strong) bonds, i.e., if the outermost bonds of the chain
are of the type ¢t — 0 with ¢ positive (negative). The emergent SSH chains can
be characterized in an analogous manner. Thus, there are four possible config-
urations which we label as {(m, e)} = {(n,n), (n,t), (t,n), (t,t)}, where the first
and second entries correspond to the microscopic and the emergent SSH chains,
respectively, and n and ¢ stand for ‘non-topological” and ‘topological’. Consid-
ering a finite chain defined by Egs. and (4.3), with ¢ = 0 and spanning from
j = 1to j = N, these four configurations are uniquely determined by the signs
of @ and 3. The one-to-one correspondence with the configurations ordered as
written above is {(sgn(a),sgn(8))} = {(—1,-1), (+1,—1), (+1,+1),(-1,+1)}.
Each of these configurations gives rise to a different set of end states, differing
in their number and in their energetics. The (n,n) configuration is trivial and
we do not discuss it further.

We explore these configurations by diagonalizing finite chains. We first fo-
cus on p = 1 referring to a discussion of more general cases below. We begin
with the (n,t) configuration (Fig.[4.1). This configuration is the most transpar-
ent as its topological properties arise only from the emergent SSH chains. These,
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FIGURE 4.1: (n,t) configuration. (a) Plot of A; for a finite chain of four unit
B =tp=14¢ = 20and ¢ = 0. The
blue dots below represent the domain-wall states arising at the zeros of
Aj. The weaker (one line) and stronger (two lines) bonds indicate that
they form an emergent SSH chain. (b) Eigenenergies up to |a| + || in
ascending order with ;1 enumerating the states. Four different sets of eight
states with gaps between them are visible. Higher energy states are plotted
in the inset. The dashed lines correspond to 0.93E}°" for n = 0,1, 2 and
3, see Eq. . The red diamonds represent the end states of the emergent
SSH chains. The probability density of one of the two end states of each
group is plotted to the right of the main panel, with a pink arrow indicating
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the correspondence.
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FIGURE 4.2: (t,n) configuration. Equivalent plots to those in Fig. for 4o =
B = tand a twice as long chain (eight unit cells). A longer chain was chosen
to make the exponential localization of the end states more visible. In this
case, the emergent SSH chains are not in the topological phase. Nonethe-
less, there are edge states due to the microscopic SSH chain terminating in
a weak bond. These states appear close in energy to the emergent SSH bulk
states and extend over great distances in units of site spacing. End states
within emergent SSH band gaps are shown in red, while those between
emergent SSH chains with neighboring n are shown in blue. The panels in
(c) are closeup regions of the main panel in (b) corresponding to the n = 0
(left) and the n = 1 (middle and right) emergent SSH chains. The latter was
separated into two plots to show the small bandwidth of the emergent-SSH
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FIGURE 4.3: (t,t) configuration. Equivalent plots to those in Fig. for —da =
B = t. The emergent SSH physics remains the same but the energies of the
edge states increases, sitting in the gaps between emergent SSH chains with
neighboring n (blue diamonds). The microscopic SSH end states hybridize
with the n = 0 emergent SSH end states.

schematically depicted in the lower part of Fig.[4.Tj, are terminated at both ends
by weak bonds and are thus in the topologically nontrivial phase. Hence, they
are expected to support end states falling in energy within the energy gaps of
the corresponding emergent SSH bands. For illustration, we diagonalize a finite
modulated SSH chain with a A; as shown in Fig.[4.Th. The chain contains four
unit cells, each with two zeros of A;. Thus, there are eight domain walls hosting
states and each emergent SSH chain is formed by eight states, as depicted in the
lower part of the plot.

Figure shows the positive eigenenergies of this finite chain in ascend-
ing order with i enumerating the states. Due to chiral symmetry, the nega-
tive eigenenergies are obtained from F, — —FE,. Four groups of eight states
each can be seen, which originate from the emergent SSH chains formed by the
domain-wall states of Eq. with n = 0,1,2,3. The red diamonds indicate
the in-gap end states of these chains, while the black dots correspond to the
weakly dispersing bulk states mentioned above. The remaining states at higher
energies are plotted in the inset and form a continuum. The probability density
of one end state of every emergent SSH chain is plotted to the right of the main
panel, with a pink arrow indicating the correspondence. The end states are lo-
calized not at the ends of the entire chain, but of the emergent SSH chains, i.e,
at the first and last zeros of A;.

Equivalent plots for the (¢,n) configuration and a twice as long chain are
shown in Fig. In this configuration, the emergent SSH chains terminate in
strong bonds and are thus in the topologically trivial phase. On the other hand,
the microscopic SSH chain is in the topologically nontrivial phase and hence
is expected to support end states. Interestingly, Fig. shows the presence
of end states in every gap of the spectrum, i.e., in the gaps of the emergent
SSH chains and in the gaps between emergent SSH chains with neighboring n,
hinting towards a topologically nontrivial index associated to every gap. These
end states appear close in energy to the bulk sates (see Fig.[4.2, for closeups of
the n = 0 and n = 1 emergent SSH chains in panel (b)). Near zero energy, the
end states have a sharply localized amplitude at the end of the chain as well as
less localized amplitude at the closest zeros of A (see the two lower probability
density panels).
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The corresponding plots for the (¢,t) configuration are shown in Fig. In
this case, both the microscopic and the emergent SSH chains are in the topo-
logical phase. This configuration shows end states in the gaps between emer-
gent SSH chains with neighboring n but not within the bulk gaps of each emer-
gent SSH chain. For example, there are no end states at zero energy since the
end states of the microscopic SSH chain and those of the n = 0 emergent SSH
chain hybridize (see lower right panel in Fig. [f.3p), shifting in energy outside
the n = 0 emergent SSH band gap. More generally, this configuration can be
thought of as a ‘superposition’ of the previous two: (t,t) exhibits end states in
the gaps for which only one of the configurations (n,t) and (¢, n) exhibits end
states.

In the following Section, we show how these observations can be under-
stood and predicted based on the bulk spectrum through the study of the Zak
phase of the modulated SSH chain.

423 ZAK PHASE

The topological character of the bands of the modulated SSH model with
inversion-symmetric unit cells can be captured through the Zak phase [Zak89;
RBB17], which was introduced in Chapter For inversion symmetric unit
cells, the Zak phase can only take the values 0 and 7 (mod 27). A phase of =
indicates a topologically nontrivial band. We define a Z; index based on the
Zak phase in each spectral gap. For n-th gap, one has

1
Zon ==Y ~ mod2, 4.12
2, - Zi:V mo ( )

where the sum runs over the i,, bands below the n-th gap and 7; is the Zak
phase of the i-th band. As discussed in Chapter this Z, index based on the
Zak phase indicates the parity of an integer topological index Z. We find the Z,
index sufficient to correctly predict the presence or absence of edge states for a
given spectral gap. We calculate the Zak phase numerically as [Res94; Res00]:

N

vi =i log H <Ui,kj |ui,k_7’+1> ) (4.13)
j=1

with u; 1, the eigenstate of band i for momentum £;, and £; a cyclic discretiza-
tion of the Brillouin zone with kny1 = k4.

Figures , b, and ¢, show the spectra for an infinite modulated SSH chain
in the (n,t), (t,n), and (¢,t) configurations, respectively. We plot the positive
part of the spectrum plus the first negative-energy band. The spectra of the
different configurations are related to one another by a shift of the unit cell or
a change of sign in the dimerization. A shift of the unit cell leads to identical
spectra, while, due to the offset «, a change of sign in the dimerization leads
to different hopping strengths and hence to a different spectrum. These differ-
ences (already imperceptible in Fig. become smaller for smaller {. Bands
carrying zero Zak phase are plotted in black, while bands carrying = Zak phase
are plotted in blue. The light-red coloring indicates the gaps with Z, = 1. Com-
paring the spectra of Fig. and Fig. one sees that the bands are divided
into two disjoint sets with different Zak phases: a high-energy set of bands com-
posed of the highest and lowest energy bands (black bands in Fig. [4.4n), and a
low-energy set of bands encompassing the remaining bands (blue bands in Fig.
[4.4h) and containing the emergent-SSH bands. The number of bands in each set
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depends on the numerical values of & and . A higher (lower) maximal value of
the gap leads to more (less) bands in the low-energy set. One important feature
is that the number of negative- (and positive-) energy bands in the high-energy
set is always odd. This is necessary for the topological/trivial character of the
high-energy set of bands to have an impact on the number of end states at en-
ergies closer to zero. It is also worth noticing that bands at energies well above
the maximal value of the gap, for which one does not expect domain-wall states,
still belong to the low-energy set of bands, exhibiting the same Zak phase as the
emergent-SSH bands.

The spectra in Fig. [4.4] correspond to a modulated SSH chain with £ = p/2q,
with p = 1and ¢ = 20, that is, 40 sites per unit cell (40 bands). In this case, where
g = Neven, the Zak phases of the high- and low-energy set of bands are set by
the microscopic- and emergent-SSH outer bonds, respectively. Thus, in the (n, t)
configuration (Fig.[4.4p), the high-energy set of bands (seven highest and lowest
energy bands) carry a zero Zak phase (plotted in black), while the low-energy
set of bands carry 7 Zak phase (plotted in blue). As a consequence, the gap at
zero energy has Z, = 1. Adjacent gaps separated by a topologically nontrivial
band have different Z, indices. End states are expected to be present in gaps
with Zy = 1. The first two bands shown correspond to the n = 0 emergent SSH
chain (multiplied by a factor of 10 for clarity.) The next two bands correspond
to the n = 1 chain and so on. The Zak phase predicts the presence of end
states within the bulk gaps of the emergent SSH chains. As Z, = 0 for the
gaps between bands of emergent SSH chains with neighboring n, there are no
end states associated with these gaps. Beyond the energy || + | 3| the gaps are
exponentially small, and the end states predicted by the Z; number, though in
principle present, extend over great distances. The predictions of the Zak phase
match completely with the end states found in Fig. for a finite chain in this
configuration.

In the (¢, n) configuration (Fig. 4.4b), both outer bonds change with respect
to panel (a). The stronger outer bond of the emergent SSH chains sets a zero
Zak phase for the emergent-SSH set of bands. Conversely, the weaker outer
bond of the microscopic SSH chain sets a m Zak phase for the high-energy set.
Consequently, all the energy gaps of the low-energy set of bands have Z, = 1,
explaining the presence of the many end states exhibited by the corresponding
finite chain in Fig.

Finally, in the (,¢) configuration (Fig. 4.4k) both the microscopic and the
emergent SSH chains are in the topological phase and, as a result, every band in
the spectrum is topological. The gaps of the emergent SSH chains have a topo-
logical index Z; = 0, while the gaps between bands of emergent SSH chains
with neighboring n are nontrivial. Hence, the end states of the finite chain
shown in Fig. 4.3|fall within the latter gaps, and no zero-energy end states are
present.

The case p = 1, ¢ = Neven is particularly transparent as each set of bands
is topological (trivial) if the corresponding outer bond is weak (strong). Figure
shows an equivalent plot for the case p = 1, ¢ = noaqa = 21, in which the
high-energy set of bands exhibits the opposite behavior if the low-energy set
is nontrivial. Thus, the topological character of the high-energy set of bands is
dependent on both the microscopic and the emergent outer bonds. Compared
to the previous case, the low-energy set of bands has two additional bands (one
more each at positive and negative energies). This enforces this change of be-
havior needed for the end states to be present in the same gaps as in the previous
case (compare the light-red coloring of Figs. [£.4]and [4.5).
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FIGURE 4.4: First negative and positive energy bands of an infinite chain for
the configurations: (a) (n,t), (b) (¢,n), (c) (t,n). Blue (black) bands carry
a Zak phase of 7 (zero). The colored regions between the bands indicate
gaps with topologically nontrivial Z> number. The first two bands shown
are multiplied by a factor of 10 for clarity. The lower part of each plot
shows the outer bonds of a finite chain build with the corresponding unit
cell. Parameters: 4|a| = |8| = ¢, p =1, ¢ = 20.
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FIGURE 4.5: Equivalent to Fig. 4.4/with ¢ = 21. In this case the low-energy set
of bands has two more bands (one at positive and one at negative energies)
leading to a change in behavior for the Zak phase of the high-energy set of

bands (see main text).
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FIGURE 4.6: Spectra of the (n,t) configuration for (a) p = 1, ¢ = 10 and (b)
p = 2, ¢ = 21 . Wavevectors ¢ with neighboring denominators n; and
ny + 1 differ in the number of bands by n1 + 2. Bands in (a) appear as pairs
of bands in (b) which keep the overall topological character of the original
band. As a consequence, gaps in (a) and their equivalents in (b) have the
same topological index Z; (compare red coloring).
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FIGURE 4.7: Equivalent to Fig. @with p = 2, ¢ = 21. In spite of the band
folding and different assignments of the Zak phases, the Z; index remains

the same for the equivalent gaps to those in Figs. .4 and [4.5] (compare red
coloring).
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Finally, we consider cases with p > 1. In the AAH model, a wavevector
& =p'/q close in value to a fraction 1/n; leads to an spectrum divided into n,
groups of bands with p’ bands per group. This is also true for the modulated
SSH model. The two models exhibit different total numbers of bands. In the
AAH model an irreducible wavevector £’ = p’ /¢’ leads to ¢’ bands while in the
modulated SSH model £ = p’ /¢’ leads to ¢’ bands for even ¢’ and 2¢’ bands for
odd ¢’. We illustrate this in Fig. which compares two spectra in the (n,t)
configuration for (a) p = 1, ¢ = 10 and (b) p = 2, ¢ = 21. Roughly, single
bands in panel (a) appear in groups of p = 2 bands in panel (b) albeit with a
slightly lower energy. The overall topological character of each pair of bands
matches with the topological character of the single bands in panel (a). More
generally, a single band with trivial (nontrivial) Zak phase splits into p bands
with an even (odd) number of trivial (topological) bands. Due to this behavior
the gaps in (a) and the equivalent ones in (b) have the same Z; index (compare
red coloring). This is also true for the other two configurations (see Fig. [4.7).
Notably, the emergent SSH bands in the (¢, n) configuration split into two bands
with nontrivial Zak phase, preventing the appearance of end states in the small
gaps separating them. For other cases, the gaps within a group of p bands can
exhibit end states and the specific assignment of Zak phases in the group of
bands depends on the numerical values of a and .

In general, despite different possible behaviors of the bands in terms of their
Zak phases for the different £, the phenomenology is common to all cases: the
presence or absence of end states in the gaps of the spectra depends only on
the configuration (m, ), that is, it is uniquely determined by the weak or strong
character of the outermost bonds of the microscopic and emergent SSH chains.
This fact can also be appreciated in the butterfly spectrum of the model pre-
sented below.

43 BUTTERFLY SPECTRUM

This Section introduces the butterfly spectrum of the modulated SSH model
(4.1) similar to the celebrated Hofstadter butterfly. The bands formed by the
topological domain-wall states and the gaps of the emergent SSH chains are
visible in this kind of plot.

To generate the butterfly spectrum we plot the energy bands of infinite mod-
ulated SSH chains with different values of the wavevector £ = p/2q, with p/q
coprime integers, in the (n,t), (t,n), and (¢, t) configurations. The spectrum has
a unit periodicity in the wavevector . We choose to plot the range € € (—3, ) to
keep the resemblance with the Hofstadter butterfly. Figure[4.8|shows the butter-
fly spectrum for |a| = 0.5t and | 3| = 1.5t, with the energy bands shown in black.
Gaps with a topological index Z, = 1 for the (n,t) and (¢,¢) configurations are
colored in red and blue, respectively. Every colored gap also corresponds to a
topologically nontrivial gap in the (¢,n) configuration. One can check that this
is in accordance with the spectra in Figs. and

Some features of the butterfly spectrum can be readily explained. For values
of ¢ close to % the spectrum is gapped at zero energy. For these wavevec-
tors the system behaves as a conventional SSH chain with gap 2|a| and a band-
width modulated by 3 cos(2r|¢ — 1|j). The regions of maximal bandwidth host
harmonic-oscillator-like states whose energies depend linearly on &, explaining

the “Landau level” fan structures at high positive and negative energies. This
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FIGURE 4.8: Butterfly spectrum of the modulated SSH model. The energy
bands are plotted in black. Gaps with a Z> = 1 are colored: red for the
(n,t) and blue for the (t,t) configurations. For the (¢,n) case, both blue
and red gaps are topological. The non-zero o opens a gap at zero energies
for most values of £&. The bands around ¢ = 0 are formed by the domain-
wall states associated with topological domain walls.

feature is also present in the original Hofstadter butterfly. Having the same ori-
gin, the bands of these harmonic-oscillator-like states exhibit all the same topo-
logical or trivial character, explaining why even-numbered gaps in this region
(counting from the top or bottom) are trivial for all configurations (white gaps
in Fig. [£.8).

The low energy bands around £ = 0 correspond to the emergent SSH chains
formed by topological domain wall states (the n = 0 band is particularly recog-
nizable). As |{| increases away from zero, the gaps of the emergent SSH chains
grow and become resolved. Self-similar structures can be found at other £ val-
ues albeit gapped at zero energy due to « being nonzero.

A remarkable difference with respect to the Hofstadter butterfly is found at
the band edges for values of ¢ close to zero. For these values, the Hofstadter
butterfly exhibits another Landau level fan due to a slow modulation of the
bandwidth. In the modulated SSH model, the bandwidth in this region has a
constant value of 4t (as long as |a| + |3| < 2t), so that this Landau level fan
structure is absent. This fact, together with the low energy gap opened by «,
leads to a less pronounced self-similarity in the modulated SSH butterfly than
in the Hofstadter butterfly.

To illustrate how a nonzero value of « leads to the formation of the emergent
SSH bands, Fig. 4.9|shows a closeup of the low-energy, small-|¢| region of two
butterfly spectra with parameters: (a) o = 0, § = 2t and (b) |o| = 0.5¢, | 5] = 1.5¢.
The bands in this region are formed by the domain-wall states of the modulated
SSH chain. The band of n = 0 states is clearly visible in both plots. The blue



4.4. CONCLUSION 37

o=0, B=2t o=0.5t, B=1.5t
g T
1 3 / - £ -
E/t o5 ' i i
E,~n+E : #sub-SSH gaps
0 | L L | L 1 x]

| |
0 0.025 0.05 0 0.025 0.05

S S

FIGURE 4.9: Close-ups of the small £ = p/q, low energy regions of butterfly
spectra. The blue lines follow equation for n = 1,2, 3 with the corre-
sponding parameters. The zero energy n = 0 band is visible in both plots.
(@) @ = 0, B = 2t. The bottom plot depicts the bound states at the topo-
logical domain walls. (b) @ = 0.5¢t, 8 = 1.5t. The non-zero « causes the
domain-wall states to form emergent SSH chains (depicted in the bottom
plot). The gap of the n = 0, 1, 2, 3 chains are marked with a red asterisk in
the plot.

lines correspond to Eq. for n = 1,2,3 with the corresponding values of
a and 8. The bands follow this line more accurately the smaller £ is. As ¢
grows, the domain-wall states come closer together and the approximation of
an isolated zero of A; of Hamiltonian loses its validity. For Fig. .9, with
a = 0, the topologically distinct regions of the chain have the same length and
the domain-wall states have the same decay length in both directions. Thus,
they do not dimerize and their bands remain ungapped. For Fig. f.9b, with
a # 0, the domain-wall states form emergent SSH chains. As ¢ grows, the
domain-wall states come closer together, increasing their coupling and making
the gaps of the emergent SSH chains visible in the butterfly plot. These gaps are
marked by a red asterisk in Fig.£.9b. Due to the greater spatial extent of states
with higher n, these gaps become resolved for smaller £ the higher n is.

44 CONCLUSION

We have introduced a modulated SSH model, in which the gap has a periodic
modulation and can change sign, creating topological domain walls along the
chain. The arising domain-wall states hybridize and form emergent SSH chains
that can exhibit end states of their own. The model supports various end state
configurations that can be explained through the Zak phase of its bands. We
presented the topological character of each band gap in a compact form in a
butterfly-type spectrum. This model provides a simple tight-binding frame-
work to study the physics observed in the experiments of Refs. [Riz+18; |(Gr18]
and serves as a toy model to explore possible end states arising in systems en-
gineered from topological domain-wall states.
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| YSR STATES IN THE CHARGE-
DENSITY MODULATED
SUPERCONDUCTOR NbSey

51 INTRODUCTION

Reproduced in part with permission from E. Liebhaber et al. “Yu-Shiba-Rusinov
states in the charge-density modulated superconductor NbSe2”. Nano Lett.
(2019). DOI: 10.1021/acs .nanolett . 903988. Copyright 2019 Ameri-
can Chemical Society. EI https://pubs.acs.org/articlesonrequest/
AOR-aAAgqiEt JpSYEUgwaYScR

As mentioned in Chapter (3 NbSes has recently attracted atention as a sub-
strate for the engineering of topological superconducting phases. The signif-
icant spatial extent of YSR states in 2D superconductors was first experimen-
tally demonstrated in Ref. [Mén+15] with iron impurities embedded in 2H-
NbSe;. This work led to theoretical studies about topological state engineering
in NbSes [SM19;/GO19] as well as an expermiental observation of hybridization
of two YSR states in the material [Kez+18a].

The work presented in this Chapter provides another pertinent piece of
knowledge for engineering of topological superconducting phases using mag-
netic adatoms on NbSe;. Specifically, we studied experimentally and theoret-
ically the interplay between YSR states and the charge density wave (CDW)
present in NbSe,. Indeed, a charge density modulation coexists with supercon-
ductivity in various transition metal dichalcogenides such as monolayer NbSe,,
NbSes, 2H-NbSey, 2H-TaSey, 2H-TaS, and 17-TaS, [GVA02; Rit+13}; Xi+15].
Our experiment reveals the effect of the charge density wave on the YSR state
energy and symmetry of the wave function. We explain these effects within a
simple theoretical model that captures the qualitative effects of this interplay.

Our findings show that the CDW environment felt by the adatom deter-
mines the symmetry of the YSR wave function. Depending on the position of
the adatom relative to the CDW, the YSR wave function can exhibit behaviors
ranging from three-fold symmetry to no symmetry at all. We also explain how
the CDW affects the YSR energies through its effect on the local density of states
and the local scattering potential. Our simple theoretical model is able to cap-
ture the experimentally observed behaviors, hinting that the underlying mech-
anisms are general and apply to range of materials.

IThis Chapter is based on the colaboration published as Ref. [Lie+19]. The author of this the-
sis was only involved in the theoretical contributions to the collaboration. All the credit for the
experimental results go to the experimental collaborators.
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We begin the Chapter introducing NbSe; in its monolayer and bulk forms,
as well as its charge-density-wave order. We continue by presenting our experi-
mental findings in Section[5.3} Finally, Section[5.4|contains the theoretical model
developed and Section 5.5 our numerical results.

5.2 NbSGQ

Many properties of NbSe; have been studied in the literature. There is evi-
dence for anisotropic as well as multiband superconductivity [HRW90; Yok+01}
Boa+03; [RV04; Fle+07; (Gui+08a; |Gui+08b; [Noa+10; Noa+15], and the spin
physics is highly nontrivial due to strong spin-orbit coupling, most promi-
nently in monolayers of NbSe; [Xi+16]). In this Section, we briefly introduce the
material focusing on the relevant aspects for this thesis. Though our work was
based on an experiment using 2H-NbSe;, it is convenient to first understand
monolayer NbSe;, which is simpler and can be regarded as the building block
of 2H-NbSe,.

5.2.1 MONOLAYER NbSey

Monolayer NbSe; consists of three atomic layers: one Nb layer sandwiched by
two Se layers. Looked from the out of plane direction, this trilayer projects into
a honeycomb lattice, with the Nb atoms occupying, say, the A sublattice, and
the Se atoms (spatially on top of each other) occupying the B sublattice. The
band structure can be understood by rough analogy with graphene with three
important modifications:

e The sublattice asymmetry breaks the inversion symmetry opening a gap
at the K points.

o The stoichiometry shows that the Fermi level lies within the valence band,
leading to Fermi pockets around the K points. Also, there is an additional
Fermi pocket around the I" points [Nak+18].

o There is strong spin-orbit coupling. This leads to what is know as Ising
superconductivity: in a NbSe, monolayer crystal fields are in-plane due
to its plane mirror symmetry; as electron momenta are also restricted to
the plane, spin-orbit interactions polarize the spins in the out-of-plane di-
rection, with opposite signs at the two K points. This causes the Fermi
pockets to split into spin-polarized Fermi surfaces. This splitting is more
prominent for the K-point Fermi pockets. The spin polarization allows
for high in-plane critical magnetic fields [Xi+16; |[Xin+17].

Monolayer NbSes, as well as bulk NbSe;, exhibits a charge density wave phase
that coexists with superconductivity below its critical temperature. In compari-
son with the better studied bulk NbSe,, the CDW phase is enhanced, occurring
at higher temperatures. On the other hand, the superconducting gap is smaller
than in the bulk crystal [Xi+15; Uge+16; Nak+18].

5.2.2 2H-NbSes

2H-NDbSe; is the most commonly studied form of NbSe,. As anticipated above,
charge-density-wave order (Tcpw = 33K) coexists with superconductivity
(I. = 7K) at low temperatures [Ros+01; JMHO6a; Kis+07; [JMO08; Web+11}
Rah+12; MK13;|Sou+13; [Dai+14; |Arg+14; |Arg+15; [FW15]. The superconductiv-
ity exhibits an anisotropic gap as well as multiband character [HRW90; |Yok+01;
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Boa+03; [RV04; [Fle+07; |Gui+08a; (Gui+08b; [Noa+10; Noa+15]. The precise in-
terplay between CDW ordering and superconductivity remains only partially
understood at present [Sud+05; Kis+07; |Bor+09; Cho+18al.

2H-NDbSe; is a layered material where the basic unit are two monolayers of
NbSe; rotated by 180° with respect to one another (see Fig. 5.Ip). The inter-
layer coupling is much weaker than the intralayer couplings and the literature
often refers to 2H-NbSe; as a quasi-2D material. Due to this, YSR states in
2H-NDbSe; fall off laterally like in a 2D superconductor, instead of the faster
decay one would expect for a 3D superconductor. This enhances the coupling
between the YSR states of neighboring magnetic impurities [Kez+18b], poten-
tially increasing the energy scale and thus the stability of possible topological
phases. 2H-NbSe; is also a relatively robust material which may enable one to
build nontrivial adatom structures by manipulation using a scanning tunneling
microscope tip.

The band structure of 2H-NbSe; can be understood starting from the mono-
layer NbSe; bands. Indeed, if one neglects the weak interlayer coupling, the
two trilayers of the unit cell present the same band structure profile, differing
only in the spin assignments. Thus, the bulk crystal also exhibits Fermi pockets
around the I', K and K’ points, but its bands are spin degenerate, consistent
with the fact that it has an inversion center located between the two NbSe, tri-
layers. These bands are not isotropic but present a six-fold symmetry. Moreover,
these bands are predominantly derived from the Nb d-orbitals and are weakly
dispersing in the out-of-plane direction even when interlayer coupling is con-
sidered. This is not the case for an Se-derived band arising around the I" point,
which shows a substantial bandwidth along the out-of-plane direction [Mat73b;
Mat73a; JMHO6b; CMMO09].

5.2.3 CHARGE DENSITY WAVE ORDER IN 2H-NbSe,

The CDW order can be readily studied via STM imaging. Indeed, clean surface
imaging reveals the modulation of the local DOS induced by the CDW super-
imposed on the atomic corrugation as shown in Fig.[5.Tp. The CDW has a lattice
constant acpw 2 3a, making it incommensurate with the underlying atomic lat-
tice. Here a is the lattice constant of the triangular lattice of Nb atoms. Thus, the
phase of the CDW relative to the atomic lattice varies smoothly across the sur-
face [GOY19;/Gus+19]. The close-ups show in Fig. show two extremal cases
for which the maxima coincide either with a Se atom (chalcogen-centered, CC,
red circle) or a hollow site (hollow-centered, HC, green circle). Areas with Nb-
centered CDW maxima (metal-centered, MC) do not appear in the STM images,
as they energetically unfavourable [GOY19; Gus+19].

i) THEORETICAL DESCRIPTION OF THE CHARGE DENSITY WAVE

In the following, we present a phenomenological mean-field description of
charge density waves in solids. We start with a generic Frohlich-type Hamilto-
nian describing electrons coupled to phonons [Gru%94],

H=> actox+ Y wablbg + D gqlbg + b g)ek, ek (5.1)
k q k,q

Here, ¢k annihilates electrons with momentum k and energy ey, b4 annihilates
a phonon with wave vector q and frequency wq, and gq denotes the strength of
the electron-phonon coupling. Within mean-field theory, we assume that certain
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FIGURE 5.1: (a) Atomic-resolution STM images showing the incommensurate
CDW modulation with close-ups of the two different regions. (b) Unit cell
and top view of 2H-NbSe3, with different lattice sites labeled as HC, CC
and MC. Grey dashed lines indicate mirror axes. (c) Topography of HC
and MC adatoms. (d) Line profiles across the atoms shown in (c). (e)
Constant-height dI/dV spectra taken on the substrate (black) and on the
atoms shown in (c) . 2A; is indicated by the shaded area.

phonon modes (denoted by Q) go soft due to their coupling to the electronic
system and develop a finite expectation value. Restricting to the lowest Fourier
components and neglecting phonon dynamics beyond the static charge-density
wave (CDW) distortions, we find the mean-field Hamiltonian

H=> ackac+Y Y galbq+b g)el,qox (5.2)
k k Q

for the electronic degrees of freedom. Within this approach, the CDW acts on
the electrons as a periodic potential V(r). Indeed, the electron-phonon interac-
tion term can also be expressed in real space as

Hagn = [ eV ()01 ()0, 53
where the mean-field CDW potential takes the form

V(r) =) e gqlbq + b g)- (54)
Q
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To find the vectors Q of the CDW in 2H-NbSe,, we consider a triangular lattice
of Nb atoms with lattice vectors

a; = a(l, O)7 (55)
ay = a(1/2,V3/2) (5.6)

and bond length a = 3.445 A. The corresponding reciprocal lattice vectors b;
satisfying a; - b; = 2md;; are

47

b, = E(ﬁ/z -1/2), (5.7)
4
by = E(O’ 1). (5.8)

The unit cell of the CDW has a linear dimension which is approximately three
times larger than the unit cell of the atomic lattice, aJ®" ~ 3a; (for i = 1,2).
Correspondingly, the reciprocal lattice vectors of the CDW are approximately a
factor of three smaller, bf®" =~ b, /3. Then, the first harmonics of the CDW have

wave vectors
Qi = (1 -6)(V3/2,-1/2),

Qs = q(1—6)(—v3/2,-1/2) = —(Q1 + Qq),

where ¢ = 3?/%@’ and § < 1 accounts for the fact that the CDW is not exactly
commensurate with the lattice. The CDW potential V' (r) is constructed from

these main Fourier components,

V(r)=Vo > cos(Q;-r+ ), (5.10)

i=1,2,3

where V; denotes the amplitude of the CDW potential. As will be shown be-
low, the experiment revealed a CDW with an absolute maximum, an absolute
minimum and a local minimum or saddle point. Except for ¢1 = ¢ = ¢3 and
similar fine-tuned cases, typical choices of the phases ¢; yield CDW potentials
with the desired symmetry and shape. For definiteness, we choose ¢; = ¢ =0
and ¢3 = 7/3. We will include this electrostatic potential in a tight-binding
model of 2H-NbSe; to study its effects on the YSR states.

53 YSR STATES IN 2H-NbSe,

To realize topological superconductivity through a magnetic adatom chain on
a superconductor one needs YSR states of neighboring adatoms to hybridize.
This hybridization is particularly strong when the YSR energies of the isolated
adatoms are identical and their wave functions extend sufficiently far along
their connecting line [Rub+18; (Cho+18bj Kez+18b; Kam+18; [Kim+18]. Using
NbSe; as a superconducting substrate, this is not trivial to achieve due to the
CDW ordering. Indeed, as the CDW and the underlying atomic lattice are in-
commensurate, adatoms with equivalent atomic adsorption sites, will in gen-
eral be positioned differently with respect to the CDW. In our experiment, one
observes that both the energy and the wave function of YSR states depend sen-
sitively on the adatom position relative to the CDW. This dependence on the
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CDW needs to be taken into account when designing adatom structures to real-
ize topological superconducting phases. This Section contains the main exper-
imental results that motivated our theoretical work. In Section we provide
model calculations to understand these effects qualitatively.

5.3.1 ADATOMS IN 2H-NbSe,

To isolate the effect of the CDW on the YSR states, the experiment focused on
iron (Fe) adatoms on clean 2H-NbSe, surfaces instead of buried impurities,
as used in previous experiments [Mén+15; Sen+19]. This provides full con-
trol over the adsorption site and allows one to compare adatoms which dif-
fer only in their locations relative to the CDW. Note that numerous previous
studies [Yaz+97; Ji+08; Rub+15b; Rub+16; (Cho+17} |(Cor+17; |Kam+18] on other
substrates show that, in the absence of CDW ordering, YSR spectra and wave
functions are fully reproducible for a particular adsorption configuration of the
adatom on the substrate.

A Fe adatom can stably adsorb into two inequivalent positions with respect
to the atomic lattice. These two positions exhibit different apparent heights
(Fig..1k,d). By atomic-resolution imaging, one can assign adatoms with small
and large apparent height to adsorption in the two inequivalent hollow sites of
the terminating Se layer, identified as hollow-centered (HC) and metal-centered
(MC) sites, respectively (Fig. ). Differential conductance (dI/dV’) spectra
taken above the centers of HC and MC adatoms (blue and orange in Fig. [5.1¢)
show several YSR states inside the superconducting gap as well as in the energy
range of the substrate’s coherence peaks as observed previously for buried im-
purities [Sen+19]. The energy and intensity of the YSR states differ between the
two species. Presumably, the splitting of the adatom d-levels is sensitive to the
different local environments of the adsorption sites, which in turn affects the
potential- and exchange-scattering strengths [Rub+16].

5.3.2 EFFECTS OF THE CDW ON THE YSR STATES

To study the influence of the CDW, the experiment focused on Fe atoms sitting
in the same atomic adsorption site (HC). Six different atoms (labeled by I-VI)
are shown in Fig.[5.2h. The adatoms differ in their position with respect to the
CDW as is shown more clearly in Fig.[5.2d. The corresponding dI/dV spectra
(Fig.p.2b) reveal that the energy and intensity of their YSR states differ strongly
even though their atomic adsorption sites are identical with respect to the un-
perturbed lattice.

YSR states in the energy range of the superconducting coherence peaks are
difficult to disentangle from the background. To avoid this complication, the
experiment focused on deep-lying YSR states, specifically the two lowest YSR
pairs labeled as +a and £4 in the close-up view of Fig.[5.2k.

i) EFFECTS ON THE WAVE FUNCTIONS

The wave function shape of an YSR state can be accessed by recording df/dV
maps at its corresponding bias voltage. Such maps for the +« and +3 YSR states
are shown in Fig. for adatoms I-VI. The main panels show the extended
patterns while the insets focus on the immediate vicinity of the adatom. All
extended maps show patterns with oscillating intensity, which is in accordance
with the expression of Eq. (3.9). The overall symmetries of the patterns clearly
differ between adatoms I-VI.



5.3. YSR STATES IN 2H-NbSey

45

L/
7/

1

sample bias (mV)

7/

+o B

x5
-0 +a

_13 XS +

= -oB +o.,B

§ /8 ‘
L>U/ B -l +a +

s | Xi-/\/\,
B 1 \/[3\/\’\ ]

o

a +a P
'? +a
B x0.5 V4B
45 1212 15
sample bias (mV)

FIGURE 5.2: (a) STM maps (5 x 5 nm?) of several HC Fe atoms labeled by I-
VI. A non-linear color code is used to resolve the atomic background. (b)
Spectra taken at the center of atoms I-VI (color) and on the substrate (grey).
Spectra offset for clarity. (c) Close-ups of the spectra in (b). YSR resonances
are labeled by +a, +3. (d) Superimposed atomic (grey) and CDW lattices
(black) for two CDW structures (HC and CC). The Se atoms are located at
vertices of the atomic grids, so that the HC (MC) adsorption sites corre-
spond to triangles pointing up (down). In the CDW lattice, vertices (dots)
are maxima (minima) of the CDW. Colored symbols indicate the positions
of atoms I-VI.
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FIGURE 5.3: (a) STM maps (9.5 x 9.5 nm?) of the YSR (a, 3) states of HC
atoms (I-VI). Black dashed circles (diameter 1 nm) outline the adatoms’ po-
sition. The insets show a 2 x 2 nm? close-up view around the center of the
adatoms. (b) Numerical results for YSR states within a phenomenological
description of the CDW (field of view: 40a x 40a around adatom). Thick
(thin) grey lines in the maps indicate presence (absence) of mirror axes. (c)
Close-up view around the center of the adatoms I, II, IV, and V with su-
perimposed triangles illustrating the presence (orange circles) and absence
(blue circles) of intensity at their vertices. For adatom III, states o and /3
overlap. Adatom VI exhibits no symmetry.

The symmetry of the patterns associated with YSR states is expected to orig-
inate from the anisotropy of the Fermi surface through electron focusing
and the local crystal field felt by the adatom [Rub+16]]. The sixfold sym-
metry of the Fermi surface together with the threefold-symmetric atomic ad-
sorption site should therefore lead to D3 symmetry (threefold rotation as well
as three mirror axes, indicated by dashed lines in Fig. @). Indeed, this D3
symmetry is observed for both YSR states o and 3 of adatoms I and III, which
reside at a maximum and a minimum of the CDW, respectively (Figs. , ).
However, this symmetry is lost in both, the long-range and the immediate vicin-
ity of the adatoms for the other atoms shown in Fig. . For adatoms II, IV,
and V, the symmetry is reduced to D; symmetry (single mirror axis) while no
symmetry axis can be discerned for adatom VI.

The symmetry reductions of the YSR wave functions coincide with the re-
ductions of the local symmetry of the adsorption sites by the CDW (Fig. [5.2d).
Adatom I (III) is positioned at a maximum (minimum) of the CDW. In this case,
the CDW respects the atomic D3 symmetry (HC structure of the CDW). Atoms
II, IV, and V are located on one of the three equivalent symmetry axes connect-
ing the high-symmetry positions, but unlike adatoms I and III do not fall on
an extremum (CDW in the CC domain). Thus, the CDW breaks the atomic D3
symmetry, leaving only D; symmetry consistent with the observed YSR wave
functions. Finally, the position of adatom VI is totally asymmetric with respect
to the CDW, which is reflected in the absence of any symmetry in the corre-
sponding dI/dV maps.

In Section[5.4, we show how the microscopic physics behind these symmetry
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FIGURE 5.4: (a) Energy of the a-,5-YSR states as a function of their position
relative to the CDW. Displayed points are obtained from averaging the en-
ergies of various atoms within intervals of « & 0.05acaw. (b) Linecut along
the orange-dashed line through a FFT-filtered constant-height d//dV map
taken above T. shown in the inset representing the variation of the lo-
cal DOS. (c) CDW potential (blue), local DOS (orange) and YSR energies
(black) obtained from the theoretical model for JS = 360meV,i.e. in the
strong-coupling regime.

reductions can be understood theoretically within a phenomenological mean-
field description of the CDW combined with a tight-binding model of the 2H-
NbSe; band structure. Corresponding numerical results are shown in Fig.
for a subset of the adsorption sites investigated experimentally. Our numeri-
cal calculations show the same symmetry patterns for the equivalent adatom
positions.

ii) EFFECTS ON THE ENERGIES

Analyzing the short-range patterns of the YSR states it is possible to track which
YSR signature corresponded to « or 5 as a function of the position relative to the
CDW. The key point here is that the 5 YSR state exhibits intensity (conductance)
at the vertices of the triangles overlaid on its short range patterns (see Fig.[5.3).
On the contrary, the o YSR state exhibits pronounced nodes.

Using this distinction, the energies of both YSR states were tracked as a func-
tion of position relative to the CDW. Due to the small incommensurability of the
CDW and substrate one can obtain data for numerous positions along its sym-
metry axis, like for positions I to V and also other in between. Approximately
90 adatoms adsorbed close to one of the three equivalent CDW symmetry axes
were studied, combining data from several samples and Pb tips.

Figure plots the average of the energies of both the o and 3 states as a
function of adatom position along a high-symmetry axis of the CDW. Here, it
was assumed that the energy dependences of both resonances follow the same
trend which implies that the energy of the o resonance changes sign and crosses
the quantum phase transition [Cho+17;|FSP11; |Far+18;|Mal+18] as a function of
adatom position. It is not possible to obtain data in the shaded regions in Fig.
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b.4h. These regions correspond to the energetically unfavorable configuration
of the CDW having a maxima above a Nb atom (MC).

The energies of the oo and § YSR states are correlated with the local density
of states. Fig. shows the local density of states at the Fermi level induced
by the CDW. The data is obtained through a constant-height dI/dV map at zero
bias above T, along the symmetry axes (dashed line) shown in the inset. After
removing the atomic corrugation with a FFT filter, the remaining signal is the
local density of states induced by the CDW. The correlation of the energies with
the local density of states can be understood from the expression of the energy of
a YSR state for a simple model of Eq. (3.7). If the exchange coupling J S is larger
than the scattering potential K, the YSR state energy can cross zero energy and
enter the screened spin state. In this situation, an increase in the local density
of states leads to an increase in the energy of the YSR state in absolute terms.
Thus, experimentally one finds that the iron adatoms are in the screened spin
state.

A qualitatively similar dependence of the energy of the YSR states is found
in the model calculations presented below. For better comparison with the ex-
perimental data, Fig. shows numerical data of the CDW potential, local
density of states, and YSR energy along the equivalent symmetry axis. Our
model reproduces a similar local density of states behavior induced by the CDW
and a YSR state energy correlated with it. In the next Sections, we introduce our
theoretical modeling and numerical results that explain the experimental data
of this Section.

54 TIGHT-BINDING MODEL

In this Section, we introduce the theoretical model of NbSe; and the magnetic
adatom on its surface. In spite of the simplicity of the model and its short-
comings the numerical results of the model explain the experimental findings
satisfactorily.

Our theoretical model foregoes a realistic description of the Fe d-orbital
physics. We model the adatom as a classical impurity with isotropic potential
and exchange couplings to the substrate. The wave functions (and the number)
of the YSR states are quite sensitive to details of the band structure and the
neglected d-orbital physics, so that one expects agreement only for qualitative
aspects of symmetry. As explained in Section[5.2.3]fi} due to the electron-phonon
interaction, the CDW acts on the electrons as a weakly incommensurate, static
periodic potential. In our model, this potential reduces the symmetry of the
YSR wave functions in a manner consistent with the experimental results.

5.4.1 MODEL FOR THE BAND STRUCTURE

To illustrate the effect of the CDW on the YSR state wave function, we perform
model calculations within an effective tight-binding description. Specifically,
we implement a model for the NbSe; band structure first introduced in Ref.
[SKD85] and later used in Refs. [Ros+05; Ino+08}; Ino+09; Rah+12; [Mén+15].
The model uses that the relevant states near the Fermi energy have mostly
Nb character and therefore focuses on one atomic d-orbital per niobium atom.
(The model neglects an additional band centered at the I" point which predom-
inantly derives from Se orbitals and has strongly three-dimensional character
[Baw+16].) Reducing the band-structure problem to the triangular Nb lattice
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to tl t2 t3 t4 t5
band1 109 868 1399 296 35 3.3
band2 2030 460 2575 44 -150 6.0

TABLE 5.1: Values of the fitting parameters ¢,, in Eq. (5.11) in meV.

makes it necessary to include hopping up to fifth nearest neighbors to repro-
duce the NbSe; band structure. The resulting band structure

E(k) = to+t1(2cos& cosn + cos 2§)
+t2(2 cos 3¢ cosn + cos 2n)
+t3(2 cos 2€ cos 2n + cos 4€) (5.11)
+t4(cos € cos 3n + cos 5E cosn + cos 4€ cos 2n)
+t5(2 cos 3¢ cos 3n + cos 6€)

is sixfold symmetric about the I' point. Here, we defined { = k,/2 and n =
V/3k, /2. The hopping strengths t,, are used as fitting parameters to reproduce
the NbSe; band structure. The values of the parameters t,, are given in Table
[Rah+12] for the two bands. The parameters for band 1 reproduce the inner
cylindrical bands of NbSe;, while the parameters for band 2 reproduce the outer
bands. Figure[5.5a shows the Fermi surfaces of the two bands, with the Brillouin
zone outlined in gray.

While this model accounts for the symmetries of the band structure and the
approximate shapes of the Fermi surfaces, it is limited in other ways. It neglects
interlayer couplings, effectively resulting in a purely two-dimensional model.
2H-NbSe; is a quasi-two-dimensional material whose interlayer couplings are
expected to be weak compared to the intralayer ones. Together with the fact that
the adatom predominantly couples to the outermost trilayer, it should suffice to
consider only a single NbSe; monolayer. The model also neglects the significant
spin-orbit interactions in monolayer NbSe; [Xi+16]. This precludes a one-to-one
identification of the two sets of bands in Fig. with specific spin directions.
Following Ref. [Mén+15], we model the system either by band 1 or band 2,
taking these bands as spin degenerate.

Superconductivity is included by incorporating the tight-binding Hamilto-
nian into a Bogoliubov-de Gennes Hamiltonian with conventional (isotropic)
s-wave pairing. We choose the pairing strength to be A = 1meV. In exper-
iment, one finds multiple coherence peaks for 2H{-NbSe,. Since we focus on
YSR states far from the gap edge, we choose a representative value for A which
falls into the range of the peak distribution (0.7 — 1.4 meV) found in experiment.

The multiple coherence peaks originate from multiband or anisotropic su-
perconductivity, or both. Our modeling does not account for these effects. In
principle, an anisotropic gap function affects the wave function patterns of the
YSR states. However, the (observable) spatial extent of YSR states is smaller
than the coherence length through which effects of the pairing function would
enter. We thus expect that the effect of an anisotropic pairing function on the
YSR wave functions is weak and therefore account for superconductivity via an
isotropic pairing function.
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FIGURE 5.5: (a) Fermi surfaces of bands 1 and 2 (see Eq. (5.11) and Table .
(b), (c): Electronic probability density |u(r)|? of the YSR state in the absence
of the CDW for JS = 120meV, K = 0 and a lattice of size 504 x 504 with
periodic boundary conditions for band 1 (b) and band 2 (c). The region
shown includes 40 x 40 lattice spacings.
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5.4.2 COUPLING TO THE MAGNETIC IMPURITY

We model a magnetic impurity as a classical spin S which interacts with the
substrate electrons through the exchange interaction JSo, and accompanying
potential scattering K. In our experiment, we focus on magnetic impurities lo-
cated above the center of a Nb triangle (hollow-centered, see Fig.[5.1b). The im-
purity induces not only separate exchange and potential couplings to its three
neighbors, but also nonlocal exchange couplings which scatter electrons be-
tween the three sites via the impurity. It is essential to retain the latter to ensure
that the impurity induces only one pair of YSR resonances. If we assume iden-
tical hopping amplitudes between the three sites and the impurity and assume
that the impurity spin is aligned along the z-direction, we obtain the exchange

coupling
JS b
Hexch = _? g g Cis0s5/Cjs’ (512)

%,j S,s’

and potential scattering terms
K T
Hpot = 3 ;j ES CisCis- (5.13)

Here, the sums over ¢ and j run over the three nearest-neighbor Nb sites of the
impurity, 0¥ denotes a Pauli matrix, and ¢;; annihilates an electron on site ¢ with
spin s.

Figures and c show the probability densities of the YSR states for (a
spin-degenerate version of) bands 1 and 2, respectively, for a specific choice
of impurity parameters. The spatial distribution of the probability density is
threefold symmetric in both cases. Due to the more isotropic character of band
1, the corresponding YSR state is also more spatially isotropic than its band 2
counterpart, which exhibits a more pronounced anisotropy. In a more realistic
modeling including the effects of spin-orbit coupling on the band structure (but
within the approximation that the impurity is coupled only to a single trilayer),
the YSR states would be simultaneously coupled to spin-textured, but polarized
versions of both bands. While this implies that our results for the YSR wave
functions are only qualitative, the symmetry of the YSR wave functions should
not be affected by this approximation. Similarly, we expect that the qualitative
variation of the YSR energies with the location of the adsorption site relative to
the CDW would also be unaffected.
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In the experiment one observes several YSR states for a single impurity. As
our model neglects the complicated d-orbital physics and models the impurity
as a classical spin, we obtain a single pair of YSR states per magnetic impurity.
This would also be the case when considering a magnetic impurity coupled
simultaneously to two bands. Indeed, if we write the matrix of exchange cou-
plings J;; between two bands ¢ and j, it rather robustly satisfies the relation
Jiidjj = JijJji. With this relation, a classical magnetic impurity generates only
a single pair of YSR states. For instance, this was shown explicitly for a generic
model motivated by the multiband superconductor MgBs [Moc+08] and for a
quantum dot coupled to multiple superconducting leads [Kir+15|]. This conclu-
sion would remain valid even when spin-orbit splitting of the bands was taken
into account. This can be seen by expressing the Hamiltonian in terms of cre-
ation and annihilation operators for Kramers pairs of electron states rather than
conventional spin states.

5.4.3 COUPLING TO THE CHARGE-DENSITY WAVE

As explained above, the effect of the CDW on the electrons of the substrate can
be described through a periodic potential. Within the tight-binding model, we
include the CDW as a modulation of the on-site potential,

Heaw = Y _ gV (r)cro, (5.14)

where the sum runs over the lattice sites of the triangular Nb lattice. The CDW
potential V' (r) is constructed from the main Fourier components of the CDW as
shown in Egs. and (5.10).

Due to the small deviations from commensurability, the CDW shifts slowly
as a function of position relative to the underlying atomic lattice. On the scale of
the YSR states, these shifts can be considered constant so that the CDW potential
can be written as

V(r) = Vo [2eos (V3E (2 —20) ) cos (2 (y— y0)) +cos (aly = yo) + 6)]

(5.15)
where ¢ = 47/3v/3. The offsets zy and y, originate from the deviation ¢ from
commensurability, and describe the local shift of the CDW relative to the atomic
lattice. In the experiment, the measured maxima of the CDW correspond to re-
gions where the lattice deformation compresses the ions, creating an attractive
potential for the electrons. For this reason, we choose the potential V'(r) to have
minima where the measured tunneling density of states has maxima, i.e., posi-
tion I of the adatom corresponds to a minimum of V(r) and position III corre-
sponds to a maximum. In principle, the CDW may also modulate the hopping
parameters of the tight-binding model, but the effective long-range hopping
processes of the model make this cumbersome to include.

55 NUMERICAL RESULTS

Within the model presented in the previous Section, we study how the wave
function and the energy of YSR states depend on the adatom position relative
to the CDW. As discussed above, the model cannot reproduce the experimental
results quantitatively as it neglects various relevant effects. Nevertheless, the
model is expected to capture the symmetries of the YSR wave functions and
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(a) Position |, E=0.44meV x102’°00(b) Position Il, E=0.42meV

0.00

FIGURE 5.6: Electronic probability density |u(r)|? of the YSR state in the pres-
ence of the CDW potential for band 2 and for adatoms located at positions
equivalent to those studied experimentally (see Fig.[5.2). For all plots, the
parameters are JS = 120meV, K = 0, V; = —30meV, ¢ = 7n/3 and a
lattice of size 504 x 504 with periodic boundary conditions. The region
shown includes 40 x 40 lattice spacings. The white lines outline the CDW,
with crossing lines indicating a maximum of the CDW.

to provide insights into the qualitative dependence of the YSR energy on the
adsorption site relative to the CDW.

5.5.1 EFFECT OF THE CDW ON THE YSR WAVE FUNCTIONS

Figure [5.6] shows the probability density of the YSR wave function for the six
different positions of the adatom relative to the CDW studied in the experi-
ment. The results are obtained for the parameters of band 2. The adatoms in
positions I and III are at the maximum and the minimum of the CDW, respec-
tively, i.e., at points with a threefold symmetric environment. Consequently, the
corresponding density plots (Fig. and c) exhibit threefold symmetry. Posi-
tions II, IV, and V exhibit reflection symmetry about an axis that passes through
the adatom. For the corresponding plots shown in Fig.[5.6p, d, and e, this axis
is aligned along the vertical direction. Finally, position VI has no symmetries
with respect to the CDW and consequently, the state shown in Fig. also ex-
hibits no symmetries. Interestingly, the YSR state seems to retain the original
threefold symmetry (without CDW) to some degree (compare with Fig. [5.5c).

Figure shows equivalent plots for band 1. Due to the more isotropic
character of band 1, the threefold symmetry is less pronounced in these plots.
Remarkably, position VI (Fig.[5.7f) does not preserve any of the original three-
fold symmetry in the vicinity of the adatom. More generally, a comparison
between Figs. [5.6|and [5.7| shows that the detailed YSR wave functions depend
quite sensitively on the band structure parameters.

It is worth noting that the effects of the CDW on the symmetry of the YSR
wave functions is reproduced within our model (compare with Fig. in spite
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Position Ill, E=0.66meV

(a) Position I, E=0.37meV X104 (®)  position Il, E=0.42mev x10;¢ ()

(d) Position IV, E=0.69meV

FIGURE 5.7: Analogous plots to those in Fig. for band 1. Parameters: JS =
120meV, K = 0, Vp = —30meV, ¢ = /3 and a lattice of size 504 x 504 with
periodic boundary conditions. The region shown includes 40 x 40 lattice
spacings.

of neglecting various relevant effects present in the experimental setting. This
indicates that the Fermi surface and the CDW suffice to explain these phenom-
ena and that our results can be extended to other materials in which the super-
conductivity coexists with a charge density wave.

5.5.2 EFFECT ON THE YSR ENERGIES

Finally, we discuss the correlation of the energy of the YSR state with the mod-
ulation of the local density of states induced by the CDW, explaining the exper-
imental data shown in Fig. As explained in Chapter 3 a simple model of a
classical magnetic impurity leads to a YSR pair of states with energy given by:

1—~2+ k2

EYSR ==+A )
\/472 T (1 _ 72 i H2)2

(5.16)

where v = mpJS and k = T K. The experiment finds that one of the YSR
resonances crosses zero energy as a function of its position relative to the CDW.
Note that Eq. can only be zero if v > . It is instructive to consider Eq.
(5.16) in the limiting case of x = 0:
2

B = iAiTzQ. (5.17)
From this expression the effect of a change in the density of states 1y on the
energy becomes more transparent. The direction of the energy shift of the pos-
itive energy state depends on which side of the quantum phase transition the
system is in, i.e., on whether the impurity is weakly or strongly coupled. For
a weakly (strongly) coupled impurity, an increase in the density of states, i.e.,
an increase in v, leads to a decrease (increase) in the energy of the positive YSR
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FIGURE 5.8: Tight-binding calculations for the energy of the YSR state as a
function of the position of the adatom relative to the CDW, for various
potential scattering strengths K. Panels (a) and (e) show the energy of
the YSR state £ vs. K for the weakly and strongly coupled regimes, re-
spectively [as obtained by averaging over different positions of the adatom
relative to the CDW (black) and as given by Eq. for an appropriately
chosen vg (red)]. Panels (b)-(d) show E vs. adatom position in the weakly
coupled regime for three different K. The plots show the local density of
states (LDOS, orange) to anticorrelate with the CDW potential V' (blue).
Panels (c) and (d) show the energy to correlate with the CDW potential V/
(anticorrelate with the LDOS). For K = —180meV shown in panel (b) the
correlation inverts due to the shift of K to K + V(ro) (see main text). Pan-
els (f)-(h) show equivalent plots for the strongly coupled regime, where the
K-shift effect is less relevant. The energy E is correlated with the LDOS as
expected from Eq. @ For all plots, the parameters are V; = —30meV,
¢ = /3, and a lattice size of 750 x 750.

state. Based on this picture, the experiment suggests that the impurity is in the
strongly coupled regime.

This interpretation is consistent with our theoretical results. However, we
find that in general the CDW affects the energy of the YSR state through two
mechanisms. In addition to the density-of-states effect, the CDW potential has
a second effect which can be rationalized as the CDW affecting the strength
of potential scattering from the impurity and thereby shifting the YSR energy.
Roughly, the CDW potential V seems to shift K to K + V(r(), where r( denotes
the adsorption site of the impurity.

To illustrate these two effects of the CDW potential, we calculate the YRS en-
ergy for different adatom positions and various values of K. Figure 5.8 shows
numerical results of the YSR energy dependence on the position relative to the
CDW. First we would like to point out that panels (b) to (d) and (f) to (h) show
the same CDW potential (blue line) as given by Eq. along the path equiv-
alent to the dashed line in the inset of Fig.[5.4b. These panels also show the
local density of states (LDOS, orange line) as obtained from a band structure
calculation including the CDW. Minima (maxima) of the CDW potential corre-
spond to maxima (minima) in the LDOS, i.e., they are anticorrelated. The value
of the LDOS varies by 7% between its minimum and maximum (not visible in
the plots for the sake of presentation).

Consider first the results for weak coupling (first row of panels in Fig. 5.8).
Fig. shows the dependence of the energy of the YSR state on K in the
weak-coupling regime. The black curve averages data for the energy of the YSR
state over the six different adatom positions. The red curve corresponds to Eq.
with the same values for JS and K and an appropriately chosen density
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of states 1y. Both curves exhibit similar “parabolic’ behaviors, with the black
curved shifted to a positive K value. Fig. shows the dependence of the YSR
energy (black) on the position relative to the CDW for K = 0. At this K, the K-
shift effect is weak, as this case corresponds to being close to the bottom of the
parabola of panel (a). The behavior of the energy can be understood from Eq.
(5.17). Indeed, panel (c) shows that an increase in the LDOS leads to a decrease
in the YSR energy, i.e., they are anticorrelated. Fig. shows a similar plot for
K = 180meV. In this case, the K-shift effect is in the positive slope region of
the parabola in panel (a). Thus, a shift of K to K + V(ry) increases (decreases)
the energy for positive (negative) V'(ry). For this reason, both effects contribute
in the same direction to the YSR energy change and one finds the YSR energy
correlated with the CDW potential and anticorrelated with the LDOS.

There is a change of behavior for K = —180meV, case shown in panel (b).
For this K, the K-shift effect is in the negative slope region of the parabola in
panel (a) and it overcomes the LDOS effect on the energy. This leads to a YSR
energy anticorrelated with the CDW potential and correlated with the LDOS, as
opposed to the cases of panels (c) and (d).

For the strongly coupled regime (second row of panels in Fig.[5.8), we find
that the YSR energy and the CDW potential are anticorrelated — and thus cor-
related with the LDOS — for all values of K, see Fig. ,g and h. These cor-
relations between the density of states and the YSR energy are consistent with
experiment. To start with, the anticorrelations at K = 0 are consistent with the
expected density-of-states effect according to Eq. (5.17). For strong coupling,
the dependence of the YSR energy on K is generally weaker compared to the
weak coupling case, see Fig.[5.8¢. For this reason, the shift of K by the CDW
potential no longer overcomes the density-of-states effect.

Our theoretical analysis indicates that the adatoms in the experiment are in
the strongly coupled regime. It is in this regime where the YSR energies are
correlated with the changes in the local density of states induced by the CDW.
Such a correlation is also possible in the weakly coupled regime, albeit for a
strong scattering potential for which it is not possible to find YSR energies in
the vicinity of zero. Our experiment and theoretical analysis provide a novel
method to identify on which side of the quantum phase transition a magnetic
impurity finds itself. This method requires knowledge about the band structure
of the material and a charge density wave modulation that changes the local
density of states at the impurity. Thus, our method might be applied to adatoms
and materials other than iron and NbSe,.

56 CONCLUSION

This Chapter, based on Ref. [Lie+19]], presents the experimental findings of the
effects of a charge density wave on the wave functions and energies of Yu-Shiba-
Rusinov states are explained within a simple theoretical model. We show that,
despite the complexity and different effects present in the experiment (d-orbital
physics, anisotropic superconductivity, spin-orbit interaction, etc), its results
are qualitatively reproduced in a model that accounts for the symmetry of the
bands of 2H-NbSe; at the Fermi energy and that includes the charge density
wave as an electrostatic potential.

The charge density wave modulation affects the symmetry of the YSR wave
functions depending on the position of the adatom relative to it. Thus, a YSR
wave function in 2H-NbSe, can exhibit three-fold symmetry, mirror symme-
try along one axis, or no symmetry at all. Similarly, the energy of the YSR
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states is also affected by the CDW modulation. We find that this occurs through
two mechanisms. First, the CDW changes the local density of states, which in-
fluences both the exchange and potential scattering coupling of the magnetic
adatom. And second, the CDW potential shifts the potential scattering. Thanks
to our study it is possible to identify that the iron adatoms on 2H-NbSe; are in
the strongly coupled regime (screened spin state). We would like to note that
this is a novel method to determine on which side of the quantum phase tran-
sition (unscreened or screened spin) a magnetic adatom is. This method could
be applied to other substrates where superconductivity coexists with a charge-
density-modulated phase.

Our findings are of relevance in the context of the engineering of topological
phases. NbSe; has attracted attention as a stable and reliable substrate on which
to build chains of magnetic adatoms. For the adatoms of such a chain to couple
as desired, one needs to take into account our findings. Namely, the adatoms
have to be positioned such that the YSR wave functions overlap and that the
energies of the isolated YSR states are similar. It is thus necessary to place the
adatoms of the chain within the CDW accordingly.
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| PHOTON-ASSISTED RESONANT
ANDREEV REFLECTIONS:
BEYOND SIMPLE TIEN-GORDON
THEORY

6.1 INTRODUCTION

Tunneling across superconducting junctions can take place through a variety of
processes involving single-electron transfer, two-electron (Cooper pair) trans-
fer, or even higher numbers of electrons in multiple Andreev reflections. In
the presence of radiation, the widely successful Tien-Gordon theory has been
implemented in many contexts to identify the tunneling processes across su-
perconducting junctions. A recent experiment [Pet+20] showed that, while it
correctly predicts the conductance across a junction composed of bare super-
conductors, it breaks down for resonant tunneling via subgap states at suffi-
ciently high junction conductances. In this Chaptelﬂ we present the results of
this experiment and give a phenomenological explanation, leaving the more
systematic analysis for Chapter |/}, where we also make the connection to topo-
logical state engineering.

At subgap temperatures and voltages, charge transfer between conventional
superconductors typically occurs by multi-electron processes. The transfer of
Cooper pairs is responsible for Josephson currents flowing between supercon-
ductors [Jos62] and leaves the superconductors in their ground state. Cooper
pairs can also be extracted from, injected into, or transferred between super-
conductors with the simultaneous generation of quasiparticles [SW63; And64].
In these processes — termed multiple Andreev reflections — electrons impinging
on one of the superconducting electrodes are reflected as holes, while a Cooper
pair is transmitted into the superconductor. As a result, one or several Cooper
pairs are transferred between the superconductors while generating a pair of
quasiparticles [SW63].

At subgap voltages, single-electron transmission is possible only due to ther-
mally excited quasiparticles. In tunnel junctions, these processes can compete
with two-electron tunneling since the latter are of higher order in the tunneling
amplitude and hence exponentially suppressed. As explained in Section
the interplay of single-electron and two-electron tunneling can be elucidated
in scanning-tunneling-spectroscopy experiments where the junction resistance

IThis Chapter is based on Ref. [Pet+20]. The author of this thesis collaborated in the analysis
of the experimental data, the development of the theoretical framework, and provided numerical
simulations. All the credit for the experimental results go to the experimental collaborators.
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is readily changed by orders of magnitude, thereby tuning the relative impor-
tance of these two tunneling processes. The experiment [Rub+15b]] studied this
interplay for tunneling resonantly enhanced by a YSR state and found that the
two-particle current dominates at high junction conductances. These resonant
Andreev reflections transfer a Cooper pair between the superconductors while
generating a pair of quasiparticles. The nature of these processes was further
studied in Ref. [Pet+20] which aimed at distinguishing single-electron and two-
electron tunneling through YSR states by means of photon-assisted tunneling
in the presence of high-frequency (HF) radiation.

We begin the Chapter by introducing Tien-Gordon theory. Then, we present
the experimental results on photon-assisted tunneling from a superconduct-
ing STM tip into a pristine superconducting substrate. For such a junction,
Tien-Gordon theory correctly identifies single-electron tunneling both above
and within the superconducting gap, as well as Cooper-pair tunneling and
Andreev reflections at subgap voltages. We continue with the corresponding
results for photon-assisted processes between superconductors through a YSR
state. Here, the tunability of the junction conductance allows one to explore
the regime where resonant Andreev reflections dominate the current. In this
high-conductance regime, Tien-Gordons theory breaks down and fails to pre-
dict the shape of sidebands as well as the amount of charge transferred in the
underlying tunneling process.

6.2 TIEN-GORDON THEORY

Photon-assisted tunneling constitutes a powerful method to probe the nature of
charge transfer. The absorption and emission of photons leads to the appear-
ance of sidebands in the conductance both in the absence [DM62;|Roy+15] and
in the presence [Kou+94; |Bli+95; [INT99; MEKO07; GBS15; [Zan+19]] of Coulomb
blockade. Frequently, the spacing of the sidebands in bias voltage as well as
their modulation as a function of the amplitude of the HF radiation directly re-
veal the amount of charge that is transferred in an elementary tunneling event
[PAO4]. The theory of such processes goes back to the classic work of Tien and
Gordon [TG63], and their early results on single-electron transfer between su-
perconductors has been extended in multiple directions. In many situations,
one finds Tien-Gordon-like relations

G(V) = zn: J? (%) GOV + nhQ/ke), (6.1)

which express the junction conductance G(V) = dI/dV in the presence of HF
radiation in terms of the junction conductance G(?) (V) without HF radiation.
Here, k denotes the number of electrons transferred in an elementary tunneling
event [FBS91]], 2 is the frequency of the HF radiation, and Vyr its amplitude.
The conductance is a sum over sidebands spaced in bias voltage by hQ/ke,
whose strength is controlled by the Bessel functions J,,. The oscillations of the
Bessel functions as a function of their argument imply a characteristic modula-
tion of the sideband intensity as a function of Vyp.

Relations like have been shown to describe not only photon-assisted
sidebands of the coherence peaks [TG63]||, but also incoherent Josephson tunnel-
ing near zero bias [FBS91|] or multiple Andreev reflections [ZK96]. In the con-
text of scanning-tunneling-microscopy (STM) experiments, these Tien-Gordon
expressions are found to describe the sidebands of the coherence peaks [Pet+20;
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Kot+20]], the Josephson peak [Roy+15; Pet+20; [Kot+20], as well as multiple An-
dreev peaks [Pet+20; Kot+20]. These relations can be understood from the tun-
neling Hamiltonian Hy. Measuring the energies in both electrodes from their
respective chemical potentials (explained in the next Chapter, Section[7.3), the
tunneling is found to carry a time-dependent phase factor

e—id)(‘r) — e—i(%‘r-&- EZIS{ZF sin QT)7 (62)
which accounts for the change in energy of the tunneling electrons due to the
voltage bias across the junction. The amplitude for transferring multiple elec-
trons can be obtained from higher-order terms in the Born series for the 7-
matrix, T = Hr + HrGoHr + ... While in general, the unperturbed Green
function G is nonlocal in time, it is effectively local on the scale of 2! when
the energy denominator of the virtual intermediate states is large compared to
the energy transfer from the HF radiation. In this case, the factors of e~**(")
from the different tunneling terms simply combine into a single factor e=*#¢(7),
and a Fermi golden rule calculation leads to Eq. (6.I). This argument applies
to incoherent Cooper pair tunneling as well as multiple Andreev reflections for
plain superconducting electrodes as long as 7{2, eVr < A.

This reasoning does not extend to resonant Andreev reflections via YSR
states as the amplitude for tunneling is sharply peaked in energy due to the
bound state. Indeed, the experiment performed in [Pet+20] shows that photon-
assisted resonant Andreev reflections exhibit rich physics that is qualitatively
different from the Tien-Gordon-like expression (6.1).

6.3 PHOTON-ASSISTED TUNNELING PROCESSES BE-
TWEEN PRISTINE SUPERCONDUCTORS

The experiment implemented a high-frequency circuit into the STM setup with
a cable terminating close to the STM-substrate junction acting as a HF antenna.
The experiment used Pb, with a superconducting gap Apy, ~ 1.35meV, for the
coating of the STM tip and for the superconducting substrate, and a radiation
frequency of Q/2m =40GHz. In this Section, we review the different tunnel-
ing processes across a superconductor-superconductor junction and show the
corresponding experimental results.

Single-electron tunneling between superconductors leaves behind an un-
paired electron in the source and injects an unpaired electron into the drain.
Each of these electrons requires a minimal excitation energy equal to the su-
perconducting gap A (assumed equal for source and drain superconductors
for simplicity). Thus, single-electron tunneling becomes possible at voltages
elV| > 2A. The BCS singularity of the superconducting density of states leads to
coherence peaks in the differential conductance at the threshold voltages eV =
+2A. In the presence of an ac field with frequency (, the tunneling electrons
not only gain energy eV due to the bias voltage, but can also emit or absorb
photons. Then, the threshold condition for single-electron tunneling becomes
eV +nhf) = £2A, where the integer n is positive for photon absorption and neg-
ative for photon emission, and one obtains a set of coherence peaks displaced
in voltage by multiples of the photon energy 7€2/e [TG63; DM62]. The number
of emitted or absorbed photons per tunneling event is bounded by the maximal
energy eVyr that the tunneling electrons can exchange with the ac field, where
Vir denotes the amplitude of the ac bias across the junction. This implies that
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FIGURE 6.1: Experimental (left) and simulated (right) dI/dV spectra in the
presence of radiation. (a, b) V-shaped splitting of the BCS coherence peaks
in a Pb-Pb junction. (c, d) Close-up view of the negative-bias V-shape at
low radiation amplitudes. The sideband spacing in bias is equal to hQ2/e.
(e, f) Splitting of the Josephson peak with sideband spacing of /§2/2e, re-
flecting Cooper-pair tunneling. (g, h) d>7/dV? spectra recorded on a Pb
adatom showing the m = 2 multiple Andreev reflection sidebands at
eV = £A split by i2/2e. Insets in (a) and (g) show STM images of the
location where the spectra were recorded (indicated by a cross, scale bars
equal 1nm). The simulations are based on the Tien-Gordon-like Eq.
with the corresponding Viir, the experimental frequency Q = 2740 GHz,
and G°) (V) as the measured differential conductance in the absence of ra-
diation, with k = 1 for the single-electron processes in (a) and (d) and k = 2
for the two-electron processes in (e) and (g).
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coherence-peak sidebands are limited to [n| < nmax = eVur/AQ and thus ob-
servable in the voltage ranges |eV £ 2A| < eVur. Indeed, the experiment shows
sidebands that are clearly limited to these two voltage ranges, forming two V-
shapes with vertices starting at eV = +2A ~ +2.7meV (Fig.[6.1p). The radia-
tion splits the sidebands in maxima separated by a measured 161(10)xV, well
in accordance with the predicted 7£2/e = 165,V for single-electron tunneling
(see Fig. for a close-up of the negative-energy low-HF-amplitude where the
splitting is better appreciated). The Tien-Gordon approach, as embodied by Eq.
(6.1), correctly reproduces these results (Figs. and d) for the single-electron
k = 1 case, using as input the measured conductance in the absence of radiation
and the experimental parameters Vyr and 2.

In the vicinity of zero bias, current flows between superconductors via
Cooper pair tunneling. This leads to a zero-bias peak in the differential con-
ductance, reflecting that Cooper pair tunneling does not excite either of the
superconducting electrodes. The ac field splits this Josephson peak into side-
bands. The Cooper pairs gain an energy 2¢V due to the applied bias and nAf}
due to the photon field. Thus, these sidebands occur at eV = nh€2/2, exhibiting
half the spacing in bias voltage compared to single-electron processes. The
tunneling Cooper pairs change their energy at most by 2eVyr due to the ac
field. Consequently, the Josephson peaks are limited to |n| < nmax = 2eViur /A
and visible in the voltage range |eV| < eVur [NT99; NTDO01; Roy+15; Pet+20;
Kot+20]. The measurement of these sidebands is shown in Fig. , for which
a spacing of 82(5)uV~ hf)/2e is found. This indicates that the charge transfer
of the tunneling events corresponds to k = 2 electrons, as confirmed by the
corresponding Tien-Gordon simulation in Fig. [6.Tf.

Current can also flow at subgap voltages due to multiple Andreev reflec-
tions. Electrons with subgap energies impinging on the source or drain super-
conductor are reflected as holes, with a Cooper pair transferred into the super-
conductor (or vice versa). Then, the required excitation energy of 2A for the
two generated quasiparticles can be acquired in the course of multiple traver-
sals across the junction, and the threshold condition becomes meV = 2A, where
the (positive) integer m denotes the number of junction traversals and thus the
number of electrons transmitted into the drain superconductor. In the presence
of the ac field, photons can be emitted or absorbed in the tunneling process, and
the threshold condition becomes meV + nhif) = 2A [Cha+06|]. The spacing of
the photon sidebands in voltage is then given by 7£2/me and directly reflects
the number of transferred electrons per tunneling process. Specifically, the low-
est multiple Andreev process with m = 2 has a threshold voltage of eV = A
without ac field, transmits a Cooper pair into the drain, and has sidebands with
the same voltage spacing of 1{2/2e as for the Josephson peak [Cue+02; UWO05;
Pet+20; Kot+20]. The corresponding measurement in Fig. [6.1lg, shows the sec-
ond derivative of the current to enhance the contrast. Sidebands are observed
at eV = £A with a splitting of 82(5)ueV~ hQ/2 corresponding again to an
underlying two-electron process. The corresponding simulation using Eq.
reproduces the experimental results faithfully.

Atnonzero temperatures, there are additional single-electron processes even
at subgap voltages which originate from thermally excited quasiparticles. These
processes (not measured in the experiment) lead to a peak in the differential
conductance when the coherence peaks of the two superconductors align. This
causes a zero-bias peak when source and drain have gaps of the same magni-
tude, and more generally a peak at eV = +|A; — A,|, when the superconductors
have different gaps [Ter+06; FSP11].
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FIGURE 6.2: YSR spectra of an Mn adatom on top of superconducting Pb taken
with a superconducting STM tip. At high junction resistances (blue line)
the current is dominated by single-particle tunneling. The peaks of the low-
est lying YSR state are identified with the corresponding rates involved. At
low junction resistances (orange line) the current is dominated by resonant
Andreev reflections. The tunneling rates dominate the broadening of the
resonance leading to peaks of inverted height with respect to the high junc-
tion resistance case (see Section.

In conclusion, the experimental results for photon-assisted tunneling be-
tween pristine superconductors are well explained by Tien-Gordons theory, suc-
cessfully predicting the sideband spacing as well as the modulation of the con-
ductance as a function of the radiation amplitude. Next Section reveals that
resonant Andreev processes via YSR states produce signatures that do not con-
form with Tien-Gordon theory.

6.4 PHOTON-ASSISTED TUNNELING PROCESSES VIA
YSR STATES

The tunneling processes in a superconducting junction via a YSR state in the
absence of radiation were explained in Section [3.3in terms of the thermal ex-
citation and relaxation rates I'y and I';, and the electron and hole tunneling
rates I'. and I',. We refer the reader to Section [3.3] as its content is of central
importance for the present discussion. The experiment focused on the lowest-
energy YSR resonance (¢ = 0.25meV) found on a Mn adatom deposited on
the Pb substrate. Figure [6.2| (shown in Chapter [3|and reproduced here for the
sake of discussion) shows the conductance spectrum of the adatom in the ab-
sence of radiation for both low (blue) and high (orange) junction conductances.
At low junction conductances single-electron processes dominate the current,
I ~ Ip, + I, (see Egs. (3.19),(3.20)). These contributions lead to the four con-
ductance peaks labeled in the blue line in Fig. (note that the peak labeled
as I';T. is almost absent or barely distinguishable from the background noise).
From this spectrum, the Tien-Gordon model predicts the formation of four dif-
ferent V-shapes of sidebands when measuring the differential conductance in
the presence of radiation. The vertices of these V-shapes are expected to be lo-
cated at the threshold voltages:

6‘/:; = +A + €,

(6.3)
eVl = £A — .
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FIGURE 6.3: Differential conductance spectra of photon-assisted tunneling via
a YSR state under HF irradiation. (a) At a low junction conductance, three
V-shaped splittings stemming from the three YSR peaks in the absence of
radiation (Fig. blue) are visible. (b) At a high junction conductance, a
V-shape is visible at positive bias while a Y-shape appears at negative bias,
showing a double-peak structure along its low-bias arm. The sideband
spacings correspond to A€, seemingly indicating single-electron tunneling.
(c, d) Numerical simulations corresponding to the junction conductances in

(a, b), based in the effective tunneling rates and Egs. (3.19)-(3.21). The

parame’cers2 are common to (c) and (d) except for the tunneling ¢ across the
junction.

This is indeed what the experiment measures, see Fig.[7.2h. Starting from the
left, the first V-shape appears at the hole threshold eV}® = —A — ¢; and it is
the most prominent one, as it derives from the highest peak in the blue spec-
trum in Fig. The V-shape at the threshold eV!" = —A + ¢ is absent as it
would stem from the barely visible peak labeled as I'sI'. in Fig. The other
two V-shapes at positive voltages can also be appreciated, though faintly due to
a small signal-to-noise ratio. Furthermore, the sideband spacing is found to be
hA) as expected for single-electron tunneling. Thus, the Tien-Gordon approach
does apply for the single-electron tunneling via a YSR state at low junction con-
ductances. Before explaining this success, it is useful to understand why this
approach fails to explain the measurement at high junction conductances, as is
discussed in the following.

At high junction conductances, the current is dominated by resonant An-
dreev reflections similar to the m = 2 multiple Andreev reflections explained
above. The high conductance spectrum in the absence of radiation exhibits two
peaks at the threshold voltages eV = £(A + ¢) (Fig. orange line). A naive
application of the Tien-Gordon-like Eq. (6.1), would lead to one V-shape stem-
ming from each of these two threshold voltages with sidebands spaced by /£2/2
corresponding to two-electron processes. Strikingly, the experiment revealed
a very different behavior. Figure shows the conductance measurement as
a function of the radiation amplitude at high junction conductances. At the
positive bias eV = A + €y, a V-shape is indeed visible although its sideband
spacing as well as its modulation with the radiation amplitude both correspond
to hf), seemingly indicating single-electron tunneling. More intriguingly still, a

2Parameters: |u|?/vg = 0.21meV, [v|>/ry = 0.83meV, 't = 0.70peV, 'y = 0.11peV,
votloW = 8.1 x 1074, yothish = 39 x 8.1 x 10~%. The BCS densities of states included a
Dynes parameter [DNG78|| I's = 20 peV and the spectra where Gaussian-averaged with a width
Fbroadening = 60peV.
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Y-shape structure appears at negative voltages. Note that such a structure can
not be reproduced by Eq. (6.1).

Chapter [/ introduces a full theory of photon-assisted resonant Andreev re-
flection via subgap states where we explain most aspects of the problem in con-
siderable depth. Here, we content ourselves with a phenomenological expla-
nation of the features observed in Fig. [p.3p. The Tien-Gordon approach fails
to explain the photon-assisted resonant Andreev reflections due to two facts:
the separate thresholds of the electron and hole tunneling rates and their dom-
inant contribution to the broadening of the YSR state. Indeed, excellent the-
oretical agreement can be obtained from Egs. (3.19)-(3.21) when applying the
Tien-Gordon approach to the electron and hole tunneling rates separately:

Deenr(w) = 20t [ul? D J2 (f?f) v(wn),

eVur

F:,Feff(w) = 27Tt2‘u|2 zn: J72z ( Q) ) V(Wn)nF(wn)7 (64)

Do (w) = 20t uf? Y J2 (SZSF) v(wn)[1 = np(wy,)],

with w,, = w + nhS2. The corresponding definitions for I', o replace |u|* — |v]2.
Note that we assumed a /£ spacing as each rate corresponds to a single-particle
tunneling event. Figures[6.3c and d are numerical simulations of the differential
conductance obtained from the total current calculated by inserting these effec-
tive rates in Egs. —. Unlike the simulations for bare superconductors,
these simulations use only a few experimental parameters as input, with Figs.
and d differing only in the magnitude of the tunneling ¢ across the junction.
The agreement between theory and experiment is remarkable.

Let us now briefly explain why these effective rates lead to the differential
conductance spectra measured in Fig. [6.3p. In the absence of radiation, the res-
onant Andreev reflection current in Eq. is non-zero only when both the
electron and hole tunneling rates are beyond their respective thresholds (6.3).
In the presence of radiation, the effective rates I'c o and I';, o, give rise to four
V-shaped regions with vertices at the thresholds as a result of the maximal
number of emitted or absorbed photons eViur. Below the low-voltage thresh-
old of the V-shapes, the corresponding tunneling rate is zero. Thus, current can
only be measured within the outermost V-shapes, that is, the ones originating
at eV = £(A + ¢). The Y-shape has its origin in the asymmetry in the elec-
tron and hole YSR wave functions |u|?> < |v|?. This leads to a hole tunneling
rate I'y, o in general significantly larger than the electron tunneling rate I'; 5.
Thus, the electron tunneling is the rate-limiting process in the resonant Andreev
reflection and its features translate into stronger conductance signals. This also
explains why in Fig. the positive-voltage V-shape only shows features orig-
inating in the photon-assisted electron tunneling thresholds. Similarly, at neg-
ative voltages, the signatures at the left arm and the inner part of the Y-shape
correspond to electron thresholds. More mathematically, the suppression of the
hole threshold signatures has its origin in the dominance of the hole tunneling
rate 'y, o in the resonance broadening I'(w), which leads to smaller, broader
peaks at the hole thresholds. Only at the low-voltage arm of the Y-shape do
the hole thresholds contribute noticeably in Fig.[6.3p. In this region, where the
hole tunneling just sets in, both rates are comparable, so that the individual
electron and hole thresholds contribute to the conductance signatures leading
to the double structure visible in this region.
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FIGURE 6.4: Numerical differential conductance spectra at negative bias via a
YSR state under HF irradiation. Parameters are chosen to reproduce the
Y shape observed in experiment. The peaks of the low voltage arm of the
Y shape correspond to hole thresholds while the ones immediately above
correspond to electron thresholds. In panel (a), the YSR energy satisfies
2eg = 3182, causing the peaks of both branches to occur at the same sample
bias. This situation is close to the actual experimental parameters. In panel
(b), with 2eg = 2.57, the electron and hole thresholds are shifted by 7£2/2
from one another. The insets show the difference between the hole and
electron tunneling rates in arbitrary units. Hole threshold peaks are only
visible in the region were electron and hole tunneling rates are comparable
and both nonzero, i.e., the white region between the blue and red areas.

The origin of the double structure is further illustrated in the numerical sim-
ulations of Fig. Panel (a) shows the low-voltage arm of a Y-shape for which
the YSR energy and the radiation frequency satisfy 2¢p = 3h€), as is the case in
the experiment. Due to this relation, the peaks originating from electron and
hole thresholds that form the double structure occur at the same voltages, ap-
pearing vertically on top of each other. Panel (b) differs only in the parameter
€0, made to satisfy 2¢p = 2.5h€). This change shifts the peaks from electron and
hole thresholds in opposite directions causing them to alternate in bias voltage.
The insets show the difference between the electron and hole tunneling rates for
each case. The asymmetry in the electron and hole YSR wave functions causes
the hole tunneling rate to dominate for most bias voltages and radiation ampli-
tudes with the exception of its low-voltage arm, where it has not yet completely
set in. It is around this white region where the two rates are comparable, giving
rise to the double structure.

In view of this discussion and the modifications to the rates in the current
Egs. (3.19)-(3.2]) it is easy to understand why single-electron tunneling at low
junction conductances does comply with the predictions of the Tien-Gordon-
like Eq. . At low conductances, the resonance broadening is dominated
by the frequency-independent thermal rates I'y and I'y, leading to current in-
tegrands that are effectively linear in the electron or hole tunneling rates. This
gives rise to independent conductance signatures at the corresponding electron
and hole thresholds, as is well captured by Eq. (6.1).

6.5 CONCLUSION

Photon-assisted tunneling is a powerful tool to investigate and identify the dif-
ferent possible tunneling processes between two superconductors. For bare su-
perconductors, the Tien-Gordon model successfully predicts the sideband split-
ting and modulation with radiation amplitude based on the charge transferred
in an elementary tunneling event. These predictions break down for resonant
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Andreev reflections via YSR states at high junction conductances. In this case,
the individual electron and hole thresholds and their dominance of the broad-
ening of the resonance require a more complete treatment that include effective
photon-assisted electron and hole tunneling rates.

In the context of topological state engineering, resonant Andreev reflections
underlie the tunneling signatures when probing putative Majorana modes
[LLNO9; [Flel0] in chains of magnetic adatoms on s-wave superconductors
[NP+14; Rub+15aj Paw+16} [Fel+17; [Jeo+17; Kim+18]. In the following Chapter,
we develop a full theory of photon-assisted Andreev reflections via subgap
states and argue that photon-assisted tunneling can be implemented to dis-
tinguish true zero-energy subgap states from states with a small but non-zero
energy.
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| PHOTON-ASSISTED RESONANT
ANDREEV REFLECTIONS:
YU-SHIBA-RUSINOV AND MA-
JORANA STATES

7.1 INTRODUCTION

As discussed in the previous Chapter, photon-assisted tunneling frequently
provides information on the underlying charge-transfer process. In particular,
the Tien-Gordon approach and its extensions predict that the sideband spacing
in bias voltage is a direct fingerprint of the number of electrons transferred in
a single tunneling event. In this Chaptelﬂ we develop a full theory of photon-
assisted tunneling into subgap states in superconductors in the limit of small
temperatures and bias voltages where tunneling is dominated by resonant An-
dreev processes and does not conform to the predictions of simple Tien-Gordon
theory. Our analysis is based on a systematic Keldysh calculation of the sub-
gap conductance and provides a detailed analytical understanding of photon-
assisted tunneling into subgap states, in excellent agreement with the experi-
ment of Ref. [Pet+20]. Our theory includes tunneling to all orders in perturba-
tion theory, generalizing the results of [Rub+15b]. We focus on tunneling from
superconducting electrodes and into Yu-Shiba-Rusinov states associated with
magnetic impurities or adatoms, but also explicitly extend our results to include
normal-metal electrodes or other types of subgap states in superconductors. In
particular, we argue that photon-assisted Andreev reflections provide a high-
accuracy method to measure small, but nonzero energies of subgap states which
can be important for distinguishing conventional subgap states from Majorana
bound states.

Indeed, resonant Andreev reflections are an important tunneling process
not only for YSR states, but also for other subgap states in superconductors.
In particular, they dominate tunneling into Majorana bound states, where they
are predicted to lead to a universal zero-bias conductance of 2¢?/h for tunnel-
ing from a normal-metal lead [LLNO9; [Fle10]. This has been at the focus of a
large number of experiments [Lut+18] and recent measurements show evidence
for this quantized conductance [Nic+17]. Our theory for photon-assisted reso-
nant Andreev reflections is readily adapted to include tunneling into Majorana
bound states [TZL15; Zan+19|], and we find that photon-assisted tunneling can
be an important tool to differentiate Majorana bound states from other subgap

1 This Chapter is based on Ref. [AG+20] © 2020 American Physical Society. The author con-
tributed to the development of the theory, the writing of the manuscript, wrote one of the two
independently-developed codes, performed the numerical calculations and elaborated the Figures.
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eV=A+¢gg eV =—(A+ )

FIGURE 7.1: Resonant Andreev reflections via YSR bound states in
superconductor-superconductor junctions at threshold (schematic, no
high-frequency radiation). (a) For positive bias voltages, an electron (blue)
first tunnels from the coherence peak of the superconducting tip (left
superconductor) into the positive-energy YSR state, then forms a Cooper
pair with another electron creating a hole (red) in the negative-energy YSR
state. Finally, the hole tunnels back into the tip. Thus a Cooper pair is
transferred into the substrate (right superconductor). (b) For negative bias
voltages, a hole first tunnels from the coherence peak of the tip into the
negative-energy YSR state. Then a Cooper pair breaks up in the substrate
filling the hole and occupying the positive-energy YSR state. Finally the
electron tunnels into the tip. The processes at positive and negative bias
both create a pair of quasiparticles in the tip and generate or break up a
Cooper pair in the substrate.

states. This is particularly true for tunneling from superconducting tips which
have been extensively used for improved resolution in Majorana experiments
on chains of magnetic adatoms [NP+14}; Rub+15a} [Fel+17; Rub+17]. Since tun-
neling into a Majorana bound state leaves behind an unpaired electron in the
superconducting tip, it leads to two symmetric Majorana peaks at bias voltages
eV = £A, where A denotes the superconducting gap of the tip [Pen+15a]. This
should be contrasted with tunneling into a conventional subgap state with a
small, but nonzero energy ¢, which appears as differential-conductance peaks
at eV = (A + €y). Thus, the small energy of the subgap state can only be
extracted from experiment as a difference of two much larger energies, the po-
sition of the resonance peak in d//dV and the superconducting gap of the tip.
This is inherently prone to errors and requires an accurate determination of the
tip gap. We find that in photon-assisted tunneling, the subgap energy appears
directly as a spacing between resonant peaks in the spectrum, even for a super-
conducting tip. Moreover, these splittings appear in differential-conductance
maps with high multiplicity, which effectively enhances the ability to resolve
closely-spaced peaks. Before engaging in the technical derivation of the photon-
assisted tunneling current, we begin with a more qualitative discussion of reso-
nant Andreev reflections.

72 RESONANT ANDREEV PROCESSES VIA YSR STATES

YSR states induce additional resonances in the tunneling conductance at sub-
gap voltages e|V| < 2A. At zero temperature, the subgap current cannot be
carried by single electrons. Due to the absence of bulk states at these energies,
single electrons cannot leave the junction region. Instead, the dominant current-
carrying process is an Andreev process closely related to the lowest multiple
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FIGURE 7.2: Photon-assisted resonant Andreev reflections via YSR bound
states in superconductor-superconductor junctions (schematic). Panel (a)
shows the process for positive bias voltages, panel (b) for negative biases.
The basic process is as in Fig. The high-frequency radiation (frequency
Q) allows electrons and holes to change their energy by multiples of 7.
The number of relevant sidebands is limited by the maximal energy eVur
that the tunneling electrons and holes can gain or lose due to the high-
frequency field and therefore grows linearly in Vir.

Andreev process discussed in Section with m = 2 [Dea+10; Rub+15b;
Ran+16; [Lee+17; Bra+18} [Far+18]. This resonant Andreev reflection is best
viewed as a coherent multistep process and was already explained in Section
Due to its central importance to this Chapter, we reproduce and expand
the explanation here. Consider first the situation when electrons are tunneling
from the tip into the substrate (positive bias voltage, Fig. [/.Th). In this case,
the tunneling amplitude involves the following steps. An electron from the tip
tunnels into the positive energy YSR state. Subsequently, the electron combines
with an electron in the substrate to form a Cooper pair, allowing the charge to
exit the junction region and creating a hole in the negative-energy YSR state.
Finally, the hole tunnels back into the tip.

This process must satisfy two conditions to be energetically allowed, one
each for electron and hole [Rub+15bj [Pet+20]. The electron tunneling process
virtually occupies the YSR state of energy € and leaves an unpaired electron
behind in the tip, and is thus allowed when eV > A + €. The hole tunneling
process injects a hole into the quasiparticle continuum and thus requires eV >
A — ¢y. Since ¢y > 0, the condition for hole tunneling is automatically satisfied
whenever the condition for electron tunneling is met. Thus, resonant Andreev
reflection induces a peak in the differential conductance at the threshold bias
voltage eV;i1 = A + ¢ of electron tunneling. In contrast, there is no peak at the
hole threshold eV,ﬁ‘ = A — ¢ since the electron process is not yet energetically
allowed.

In the presence of an ac field, both the electron and the hole can emit or
absorb photons during tunneling and the energetic conditions change to eV’ >
A + ¢y + nhS) for the electron and eV > A — ¢y + mhS) for the hole. Corre-
spondingly, there are two sets of sidebands in the differential conductance, one
at eV = A + ¢y + nh§2 due to the condition for electron tunneling and another
ateV = A — eg + mhf) due to the condition for hole tunneling. The junction in
the presence of radiation is depicted in Fig. where the absorption or emis-
sion of only one photon is considered. Electron and hole can both gain or lose
a maximal energy of eVyr due to the ac field. Thus, the electron sidebands are
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FIGURE 7.3: Differential conductance (color scale) as a function of bias voltage
eV and amplitude eVur of the high-frequency radiation for tunneling into
YSR state from a superconducting tip via resonant Andreev reflections. The
panels differ in the ratio between electron and hole wave functions v and
v (left to right) and in the ratio between YSR state energy o and photon
energy 1€} (top to bottom). Numerical values are indicated in the figure.
These results are obtained for u® 4+ v? = 1 fixed for all panels. The regions
with electron and hole sidebands are indicated by white dashed and dot-
ted V-shapes, respectively, centered at e[V| = A1 = A + 9. Notice the
appearance of V and Y-shaped regions, as highlighted in panel (c1). For a
detailed discussion, see Sec. Parameters: /A = 0.05, vo|t| = 0.04.

restricted to the voltage region

leV — (A +¢o)| S eV, (7.1)
and the hole sidebands to

leV — (A —€o)| < eVar. (7.2)

These V-shaped regions are indicated in Fig. [/.3|as dashed (electrons) and dot-
ted (holes) lines. The sidebands are observable only as long as both electron
and hole tunneling are allowed. For positive bias, this limits them to the voltage
range for electron sidebands. Within this region, only electron sidebands
are observed for eV > A — ¢y + eV, i.e., outside the dotted V-shape for hole
sidebands. Both electron and hole sidebands contribute for eV < A — g+ eVar,
which corresponds to the region where the dashed and dotted V-shapes over-
lap.

At negative bias voltages, there is a corresponding process in which a hole
tunnels from the tip into the negative-energy YSR state, a Cooper pair breaks
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up and occupies both YSR states at positive and negative energies, and finally,
an electron tunnels back from the positive energy YSR state into the tip, see Fig.
[7.2b. In this process, the hole sidebands are limited to the region

leV + (A +eo)| S eVar, (7.3)
while electron sidebands can appear in the region
eV + (A —eo)| < eV (7.4)

In the absence of high-frequency radiation, it is now the electron process that
is above threshold whenever the hole process is, and sidebands can only be
observed within the hole sideband region (7.3).

Based on our full theoretical results (see Section [7.4), Fig. exhibits the
differential conductance as a function of both bias voltage V and amplitude Vi
of the ac field. From top to bottom, the panels differ in the ratio between YSR
energy ¢y and photon energy h(2. From left to right, the panels differ in the ratio
between electron and hole wave functions u and v, respectively, evaluated at the
tip position. First consider the column of central panels for equal amplitudes
of electron and hole wave functions, |u|?> = |v|?. The differential conductance
exhibits pronounced V-shapes centered at eV = £(A + ¢y). At positive bias,
this V-shape reflects the region with electron sidebands given in Eq. (7.I), at
negative biases the region with hole sidebands given in Eq. (7.3).

These panels also show clear evidence for the importance of both the elec-
tron and the hole condition. The panels in Fig. [7.3| delineate the V-shaped re-
gions both for electron tunneling (dashed white lines) and for hole tunneling
(dotted white lines). The sideband structure within the outer V-shaped regions
differs markedly between the overlap region of the two V-shapes and the re-
gion outside the inner V-shape. Generically, one observes a larger number of
sidebands within the overlap region where both electron and hole thresholds
contribute. Only when 2¢; is commensurate with 72, electron and hole thresh-
olds coincide and the sidebands in the overlap region appear brighter, but not
more NuMerous.

Notably, the inner arms of the V-shapes appear brighter than the outer ones.
This can be understood as follows. The sidebands appear brighter in the dif-
ferential conductance, if the YSR resonance is sharp. The width of the YSR res-
onance is controlled by the electron and hole tunneling rates. Along the inner
arm, one of the tunneling processes is just barely setting in, so that the width
is considerably smaller than along the outer arm, where both electron and hole
tunneling are fully allowed.

The patterns depend strongly on the ratio between electron and hole wave
functions. Consider now the leftmost column of panels in Fig. for which
the hole wave function is considerably larger than the electron wave function,
|u|?> = |v]?/9. While one still observes a V-shaped region of sidebands for pos-
itive bias voltages, the region takes on a Y-shape for negative biases. Since the
hole wave function is much larger, hole tunneling rates are intrinsically larger
than electron tunneling rates. In this case, electron tunneling is effectively the
rate-limiting process (see Section for a careful discussion of this state-
ment) and electron thresholds are considerably more pronounced than hole
thresholds. Thus, sidebands are only observed within the overlap region. The
only exception is the “stem” of the Y-shape along which hole tunneling just sets
in and is still comparable in magnitude to electron tunneling. The situation is
analogous in the rightmost column in Fig. for which the electron tunneling
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FIGURE 7.4: Alternative representations of electron and hole tunneling in the
presence of a bias voltage: (a) Left and right superconductors have chemi-
cal potentials which are shifted relative to one another by the applied bias
voltage eV. In this representation, tunneling is horizontal, leaving the en-
ergy unchanged. (b) Alternatively, a time-dependent unitary transforma-
tion, see Eq. , shifts the chemical potentials of left and right supercon-
ductor such that they become equal, and tunneling of electrons and holes
is associated with an energy transfer equal to el’. We use the representa-
tion in panel (a) for figures, but the calculations (and their description) are
systematically performed using the representation in panel (b).

rate is typically much larger than the hole tunneling rate and a (reflected) Y-like
shape appears at positive bias voltages.

Since one set of sidebands dominates for strongly asymmetric electron and
hole wave functions, the sidebands no longer depend sensitively on the com-
mensurability between 2¢y and €2, but appear with a regular voltage spacing of
€2 In view of the simple Tien-Gordon relation in Eq. (6.1), this seemingly sug-
gests that the underlying tunneling process is a single-electron process. Nev-
ertheless, resonant Andreev reflections transfer electron pairs into the substrate
superconductor and should be viewed as a single coherent process. This em-
phasizes that photon-assisted resonant Andreev reflections do not conform to
the predictions of a simple Tien-Gordon approach.

73 MODEL

We consider a junction involving a superconducting tip and substrate (or other
kinds of superconducting electrodes) with Hamiltonians H, and Hp, respec-
tively. Electrons can tunnel between tip and substrate as described by the tun-
neling Hamiltonian

=3 [tcga(R)cR,(,(R) + h.c.} , (7.5)

g

where cLU(r) creates an electron at position r and spin ¢ in the tip (o« = L) or
the substrate (o« = R) and R denotes the position of the tip. The Hamiltonian

HZFIL—&—HR—FHT (7.6)

measures energy on an absolute scale and conserves the total particle number
N = Np + Ng. The time-dependent bias V(1) between tip and substrate is
included by holding tip and substrate at different chemical potentials /.7, and
MR,

eV(r) = pur — pr, (7.7)
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and is the sum of an applied dc voltage V' and an ac voltage
Vae(T) = Vir cos(Q7) (7.8)

generated by the radiation field of frequency 2 [TG63].

To apply the usual BCS mean-field description of the superconducting tip
and substrate, we perform a time-dependent canonical transformation (setting
h=1)

U(T) = exp {z/ dr'[pur (7") N, + MR(T’)NR]} , (7.9)
0
so that single-particle energies in tip and substrate are measured from the re-

spective chemical potentials p; and pur. The transformed Hamiltonian H =
UHUT — U8, U takes the form

H = (Hy — prNe) + (Hg — prNg) + UHp U, (7.10)

Here, we used that H;, and Hp conserve Ny, and Ny, so that UH, U = H,,.
Then, the time dependence enters only through the transformed tunneling
Hamiltonian Hy = UH7UT with

Hr=Y" [tei¢<r>0270(R)CR70(R) thel, (7.11)

g

where the tunneling amplitude ¢ acquires a time-dependent phase

o(r) = eVr + e‘g” sin(Q7) (7.12)

as a result of the canonical transformation. While the time-independent Hy
conserves the energy of the tunneling electron or hole, the time-dependent Hr
changes the energy due to both, the applied dc and ac biases. This corresponds
to different representations of the same tunneling process as illustrated in Fig.
!

In the transformed Hamiltonian, we can now make the usual BCS mean
field approximation for both H; = H; — pr Ny and Hi = Hp — urNg. The
unperturbed Hamiltonian Hy = H, + Hp can then be written as

HO = Z Z |:§k7aCL,ko_Ca7ka + (ACL,kTCL,—k,L + hC>:|

k,a o

+Y N (K - JS0)ch oo (7.13)
k

k! o

where &k o = ex — o denotes the normal-state dispersion and cL’ka creates an

electron with momentum k. The superconducting gap A is taken to be identical

for tip and substrate. A magnetic adatom with spin S is located at the origin

and modeled as a classical impurity which couples to the substrate electrons

via potential scattering of strength K and exchange coupling J. Note that we

choose the spin quantization axis of the electrons parallel to the impurity spin.
The current operator I = —eN;, takes the form

1

—ie[HT, NL]
> (tew(T)cTL’U(R)cR,U(R) - h.c.) (7.14)
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and the current becomes
I(t) =€Tr {Tz [f(T)GEL(T, ) — GrR(T, T)f*(T)]} ) (7.15)

Here, we have expressed the expectation values in terms of the lesser Green
function in Nambu space,

G (rima) = i ( éc%T(Tz)c?T(ﬁ» <65¢(72)c?¢(71§> ) | 7.16)

introduced the hopping matrix

R tet®(T) 0
t(T):( 0 —t*e—w(ﬂ)’ (7.17)

and used the Pauli matrix 7, in Nambu space. Here and in the following, elec-
tron operators (as well as Green functions and self energies) without momen-
tum or position labels refer to the tip position R.

Writing Dyson equations for the Keldysh Green function and using the Lan-
greth rules, the lesser Green functions can be written as

Gip=(9riGR)S =griGy +griGR (7.18)
Gy = (Gri*gr)< = Git*gi + Gi*g5. '
The superscripts r and a denote retarded and advanced Green functions. The
bare Green function (in Nambu space) of tip or substrate in the absence of tun-
neling is denoted as g, (o = L, R), while the Green function of the substrate
which accounts for the tip-substrate tunneling through a self energy

Sr(1,7) = t*(1)gr(r, 7T (7.19)

takes the form Gg = [gp' — Zg]~'. Inserting Egs. (7.18) into the expression
(7.15) for the current, we find

I(r) = e/dT’ Tr{r. [GR(r,7)S%(7', 7) + GR(r,7)S57(7', 7)
=S5, TGH(T T) = ZR(7, TG R(T )]} (7.20)

Here, we used that the hopping matrix # commutes with 7.

74 RESONANT ANDREEV REFLECTIONS

While the YSR states resonantly enhance Andreev processes in the substrate,
no such enhancement occurs for Andreev reflections in the tip. For this reason,
we effectively neglect the latter. In this approximation, there are no multiple
Andreev reflections, and the dominant processes contributing to the subgap
conductance involve a single resonant Andreev reflection in the substrate. We
can implement this approximation by neglecting the off-diagonal contributions
to the Nambu Green function g;, of the tip when computing the self energy
Y r. In this approximation, gz, is proportional to the unit matrix (see App.|[A|for
details).
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To compute the self energy ¥ within this approximation, we note that

. > eVh )
where J,, () denotes a Bessel function. Inserting this into Eq. (7.19), we obtain

() = 0 3 0 () ()

n,m

Xe—z’(eV+nQ)TTZgL (7_ _ T/)ei(eV—&-mQ)T/Tz A (722)

This expression can be viewed as a sum of a diagonal (n = m) and an off-
diagonal (n # m) contribution,

Sp= 3% 4Tk (7.23)
with
SR ) =12 2 (eVar /)
e UEVAR)TT o (o) i(eVn )T (7.24)

The calculation simplifies significantly when retaining only the diagonal self
energy X%. We find that this is frequently an excellent approximation. For this
reason, we first discuss this simplified situation (referred to below as diagonal
approximation) before presenting the more general case.

74.1 DIAGONAL APPROXIMATION

i) DERIVATION

Within the diagonal approximation, the self energy is only a function of the
difference 7 — 7’ of its time arguments and thus diagonal in frequency represen-
tation. Then, the exponential factors in Eq. effectively act as translation
operators and we obtain

S%(w) = 2> T2 (eVirr /Q)gr (w—(eV +nQ)T). (7.25)

Here, the frequency argument of the Green function gy, reflects that due to bias
voltage and ac field, electrons (holes) propagating in the substrate lose (gain) an
energy eV + n{l when tunneling into the tip.

As we are considering subgap energies in the substrate, we only retain the
contribution to the substrate Green function which originate from the YSR state
with energy €;. Then, the retarded and advanced Green functions become (see
App. [B]for details)

1 i

w—co—Aw) £ il(w) " (7.26)

G w) = ¢

[N

Here, ¢ = (u,v)” denotes the Bogoliubov-de Gennes wave function of the
positive-energy YSR state at the tip position R and we separated the retarded
and advanced self energy projected onto the YSR state

£ (@) = ¢ Sh(w)p = AW) F 3T0) 7.27)
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into real and imaginary parts.
The projected self energy takes the explicit form

Sh(w) = [t? Z J2(eVar /Q)
x { |u?gr(w—(eV +nQ)) + |v]*gr (w+(eV +nQ))} . (7.28)
Using Eq. in App.[A] the imaginary part I'(w) is given by
T(w) =Y Jr(eVar /)
X [Fe?w—(eV+nQ)) + T (w+(eV+nQ))], (7.29)

which combines contributions to the broadening of the YSR state due to photon-
assisted tunneling of electrons and holes into the tip. Here, we defined the
electron and hole tunneling rates

Low) = 2nfulPtfuw), (7.30)
Th(w) = 27v]?|t|*r(w) (7.31)
with the BCS density of states
v(w) = S O(lw] — A 7.32
W) - Vom (|W| ) ( . )

of the tip. (1 is the normal-state density of states per spin direction.) Similarly,
the real part of the self energy becomes

Aw) = —mwglt? Y T2 (eVaar /)

y [u|?[w—(eV +nQ)] Mo (eV 4m
{\/AQ - [w—(eV+nQ)]29(A o= (eVn))

o [ (eV 4]
\/A2 — [w+(eV+nQ)]?

(A — |w+(eV+nQ)|)} , (7.33)

describing a (frequency-dependent) renormalization of the energy of the YSR
state.
The lesser self energy can be expressed by inserting Eq. into Eq. (7.28).
This yields
X[Te(w—(eV4+nQ))np(w—(eV+n))
4T (w+(eV+nQ))|np(w+(eV+nQ))]. (7.34)

This also yields the lesser Green function

Si(w)
[w—e0 — Aw)]? + 112 (w)

Grlw) =9 o (7.35)

of the substrate using the relation in App.
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(b)

eV:eo

FIGURE 7.5: Resonant Andreev reflections from a YSR state with a normal-
state electrode for (a) positive and (b) negative polarity of the bias voltage
V (schematic, no high-frequency radiation).

Within the diagonal approximation, we can then express Eq. (7.20) for the
current in frequency representation,

I(r) = e/g—iTr {7, [GR(w)Zh(w) + GRr(w)ER(w)
—YRw)Gh(w) — E%(w)Gé(w)} } . (7.36)

This can be written in the alternative form

I = e [ G20 {r [Ch@)(Ehw) - SHW)CHWERW)
G (W) SH@) G(w@) (Sh(w) — Sh(@)]} (7.37)

using that the self energy X is also diagonal in Nambu space and commutes
with 7 as well as the identities G, —G%, = G (Y% —X%)G% and G = GG

(see Appendix B).
With this, we are now in a position to evaluate the current in Eq. (7.37) and
obtain

d
=2 / & ;n T2 (Vi /) J2 (Vi /)

" Ce(w—(eV+n)T(w+(eV+m))
0 — o~ AW)P T I2(w)
x[np(w—(eV+nQ)) — np(w+(eV+ms))] (7.38)

after some straightforward algebra. This expression generalizes the results of
Ref. [Rub+15b] to include photon-assisted processes and is a main result of this
Chapter. While the current does not obey the simple Tien-Gordon relations
(6.1), the electron and hole tunneling rates by themselves behave in a Tien-
Gordon-like manner. Equation (7.38) is not only in excellent agreement with
the more complete treatment shown below, but also with recent experimental
results [Pet+20]. Note that we have approximated the substrate Green function
by retaining the contribution of the subgap state only. As a result, Eq.
describes only those sidebands which fall within the superconducting gap. In
effect, this imposes upper cutoffs on the frequency and amplitude of the HF
radiation. Except for these cutoffs, the results are independent of the substrate

&ap-
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ii)) NORMAL-METAL TIP

As a first application of Eq. (7.38), consider a normal-metal tip (temporarily
setting A = 0 in the self energy) in the absence of the ac field. Then, the self
energy is purely imaginary and frequency independent, so that the bias voltage
enters only into the Fermi functions (see Fig.[7.5/for a schematic representation).
This allows one to evaluate the zero-temperature differential conductance,

dar _ 2 Ve
dV b = (eV £ e0)? + (e + )2 /4]

(7.39)

where we have reinstated Planck’s constant and defined v. = 27 |u|?|t|*vp as
well as v, = 27|v|?|t|*vp. This yields two symmetric resonances at eV = ¢
with peak height

dI

Ar| 2 djuff?
dVv

e ]l (7.40)
peak h (‘u|2 + |U|2)2

Thus, the peak height depends on the relative magnitudes of the electron and
hole wave functions of the YSR state and has a maximal value of 2¢?/h, as long
as the positive- and negative-energy peaks are well separated. Specifically, the
peak height becomes maximal when the electron and hole wave functions at
the tip position are equal, |u|? = |v|%. For a YSR state with zero energy, the two
peaks coalesce and the maximal peak height equals 4¢?/h. This should be com-
pared to analogous results for Majorana bound states which give a peak con-
ductance of 2¢2/h [LLNO09; Fle10], reflecting the fact that unlike YSR states, Ma-
jorana bound states effectively correspond to only half a conventional fermionic
excitation. We elaborate on this in Section[Z.5]

In the presence of the ac field, the zero-temperature differential conductance
becomes

Z Z I (eViar /hQ)vemn (7.41)

dV (eV +nhQ) £+ €)? + 7(%2%)2 ’

using the Bessel-function identity Y, J2(z) = 1. Thus, the conductance peaks
at eV = +¢y develop sidebands whose spacings are given by the photon fre-
quency 72 and whose amplitudes are controlled by Bessel functions.

At finite temperatures, the peaks become convolutions of the Lorentzian
with derivatives of the Fermi function. Here, we assume that the temperature
is still sufficiently small compared to the substrate gap so that we can neglect
inelastic processes which couple the YSR state to the quasiparticle continuum of
the substrate. Once the latter become relevant, there is an additional contribu-
tion to the current originating from single-electron tunneling. (An experimental
fingerprint of the latter is that it generically leads to asymmetric conductance
peaks at eV = £¢, [BVZ06; Rub+15b].)

iii) SUPERCONDUCTING TIP

We can now make contact with the physical discussion for a superconducting
tip in Section The advantages of superconducting tips are twofold. First,
they enhance energy resolution owing to the sharp peak in the BCS density of
states at the gap edge. Second, when the tip is superconducting, the YSR peaks
appear at eV = (A + ¢p) and the Fermi-function factor in Eq. equals £1
to exponential precision in T'/A. Thus, the current is insensitive to temperature
as long as T < A, a much weaker condition than for normal-state tips where
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temperature should be compared to the intrinsic width of the YSR resonance
[Zit16].

Expression clearly exhibits the coherent nature of the underlying tun-
neling process. Analogous to conventional resonant tunneling through a bound
state [Bra97; [LY+97], the electron and hole tunneling rates I'. and I';, enter not
only in the numerator, but also determine the broadening of the YSR resonance
denominator, as advanced in Section The current is then nonperturbative
in the tip-substrate tunneling, and consequently sublinear in the normal-state
conductance of the tunnel junction [Rub+15b].

An explicit evaluation of the differential conductance must take into account
that as a consequence of the BCS density of states of the tip, the tunneling rates
are themselves functions of w [Rub+15b|. In the following, we partially repro-
duce the derivation of the differential conductance peaks in the absence of ra-
diation of Section for which Eq. reduces to Eq. (3.21). For positive
bias voltages near the threshold eV = A + ¢; the hole tunneling rate is non-

singular:
A
IO o g [ — 7.42
h Th 460 ’ ( )

where we have assumed that the resonance broadening is small compared to ¢
such that the current integral has weight for w close to €y. We further assumed
eo < A. In contrast, the electron tunneling rate becomes singular,

A

To(w— Vi) oy [ — =
(w—eVg) ~n 3o — )

9(60 — w) . (74:3)

This situation corresponds to the schematic representation of Fig.[7.1(a), where
the positive-energy YSR state matches with the BCS singularity while the nega-
tive-energy YSR is at a distance 2¢p from the singularity. Thus, the charac-
teristic electron scattering rate I'" depends on whether the broadening T is
dominated by electron or hole tunneling. If the hole tunneling dominates the
broadening, F',:?’e > th’e, the characteristic electron tunneling rate becomes
rthe ~ 4, (A/T)1/2, and we find

ARt S 4
dv peak,+ h Fg"e h 72/2A1/4. '

If, on the contrary, electron tunneling dominates the broadening, Tth¢ > F;lh’e,
we can find I''"¢ by comparing I'. (w — eV;P) to the w — € term in the resonance

denominator of Eq. 1; This yields Fg}; ~ (v2A)Y/3, and Eq. l) gives the
peak differential conductance

dr

dar 2¢2 Fg“e 2762 YR A/
dv

~ T Tthe 2/3 1/2°
h 1“6,26 h 'ye/ 60/

(7.45)
peak,+

Analogous considerations apply to negative bias voltages near the threshold
eV = —(A + ¢), where the hole tunneling rate becomes singular at thresh-
old while the electron tunneling rate I'™" = ~,_(A/4¢y)'/? remains regular, see
Fig. b). When electron tunneling dominates, Tth" > Fg"h, we find the char-
acteristic hole tunneling rate Fgl’h ~ Y (A/TH")1/2 and the peak differential
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conductance becomes

dI

dr 220" 27 ey
dVv

h rthh h 72/2A1/4'

(7.46)

peak,—

If on the other hand, broadening is dominated by hole tunneling, Fg“h > Tthh,
we find F;&*Qh ~ (y2A)'/3 and

ar
dv

2e2 T 262 4 AV/6

thh 73 _2/3 1/2°
h Ih h Vh/ 60/

(7.47)

peak,—

In the presence of the high-frequency radiation, Eq. exhibits photon-
assisted sidebands in the differential conductance as reflected in the frequency
arguments which are shifted by multiples of ). The strength of these side-
bands, set by the Bessel functions, oscillates as a function of Vir. Moreover, the
Bessel functions rapidly diminish as their argument becomes larger than their
index, so that the sums over n and m — and thus the photon-assisted sidebands
— are effectively restricted to the range |n|, |m| < eViur/AQ2. These are the limits
indicated in Fig. [7.3|by white (dashed and dotted) lines and reflect the fact that
the tunneling electrons and holes can gain or lose at most eV in energy due
to the HF field.

Equation also makes the separate thresholds for electron and hole
tunneling explicit, which were underlying much of our discussion in Section
The tunneling rates I'. /, are proportional to the BCS density of states with
its onset of density of states at +A. Using the resonance denominator in Eq.
to replace w by the bound state energy ¢ in the electron and hole tun-
neling rates I'c (w— (eV +n€)) and T'y, (w+ (eV +m)), we read off thresholds at
eV = £A + ¢y — n{ for electron tunneling and at eV = £A — ¢y — mf2 for hole
tunneling, in agreement with the results quoted in Section[7.2]

We now use Eq. to analyze the strength of the photon-assisted side-
bands more systematically. In the presence of the high-frequency radiation, the
electron and hole tunneling rates split into photon-assisted sidebands, see Eq.
(7.29). To understand the pattern of sidebands in the differential conductance,
we assume that the broadening I' is small compared to the photon energy (2.
Then, we can write the electron and hole tunneling rates as

Z J? (e‘gg ) Le(w — (eV +nhQ)) ~T. g+ 6l (w), (7.48)
S <e¥?f ) Th(w+ (€V +mhQ)) ~ Ty o + 004 (w). (7.49)

Here, I'. o and I'j, o denote the contributions of all nonresonant sidebands which
are independent of w to leading order, while ¢I'.(w) and ¢I',(w) are the w-
dependent contributions of the resonant sidebands. The distribution of weight
over sidebands implies that with one exception discussed below, we can typ-
ically neglect the contribution of 6I'c(w) and éI';,(w) to the broadening in the
denominator of Eq. (7.38). Similarly, we need to retain the contribution of a
resonant sideband in the numerator to obtain a nonzero contribution to the dif-
ferential conductance. (Recall that the Fermi functions as well as I'c o and I';, o
are essentially independent of bias voltage.) With these considerations, we ob-

tain the estimate
dr 2€2 T o6 + Ty, ooTth

av h (Teo+Tho)?

(7.50)

peak
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where 6Ft€h/ » is given by evaluating 6T, /5, (w) within T'c o + 1T o of the resonance.

When |u|? = |v|?, we have, in magnitude, .o &~ ' o and T ~ 6T, We
then expect electron and hole sidebands to have comparable strengths and we
find a peak conductance of order

I 22 oI,

— _— 7.51
dv h Ije,O + Ijh’o ( 5 )

peak

Here, we assume for simplicity that the electron and hole sidebands are not
overlapping when writing the numerator. This situation corresponds to the cen-
tral column of Figure where one can see both electron and hole sidebands
within their respective V-shapes but always restricted to the outer V-shape at
both negative and positive bias. Next consider asymmetric electron and hole
wave functions, say |u|?> < |v]%. Then, I'. o < I'j, o, and Eq. reduces to

dar
dVv

(7.52)

2
peak h Fh,O Fh_’o

2¢? [Fe,oél‘%‘ 5rt€h]

At first sight, the first term in the square brackets is suppressed because of the
additional factor I'c o /T';, 0. However, the asymmetry between the electron and
hole wave functions also implies 6T > 6T, so that the two terms in the square
brackets are of the same order as they stand. However, the first term is indeed
suppressed since the denominator also includes the resonant contributions. For
|u|> < |v|?, these are dominated by 6I';,(w). This contribution thus suppresses
the sidebands of the numerator due to 6I';,. We can then indeed neglect the first
term in square brackets and obtain

dI 2¢2 (5Fteh

il = e 7.
av h Tho (7.53)

peak

This explains why hole sidebands are suppressed relative to electron sidebands
and thus the appearance of the Y-shaped pattern at negative bias voltages as
well as the appearance of only a single (electron) set of sidebands at positive
bias voltages. This is the situation corresponding to the Y-shape of the left-most
column in Figure where only the electron sidebands within the outer V-
shape are visible (in addition to the Y-shape stem sidebands). Similarly, when
|v|? < |u|?, we have T, o < T 0, and we find

dar 2¢? oLy
AV | e h Teo’

(7.54)

so that hole sidebands are dominant. This is the situation corresponding to the
Y-shape of the right-most column in Figure[7.3] We finally note that these results
imply that the sidebands reduce in strength as electron and hole wave function
become more asymmetric, in agreement with Figure

Equation also includes the effects of the real part A of the self energy.
It is interesting to note that in the absence of the ac field, the real part does
not contribute. Indeed, without ac field, the self energy is either purely real or
purely imaginary. Current only flows when both imaginary parts I'. and I'y, are
nonzero, and consequently, A(w) does not contribute. The situation is differ-
ent in the presence of the ac field, since now the imaginary parts must only be
nonzero when absorbing or emitting certain numbers of photons. Contributions
to the self energy when absorbing or emitting a different number of photons can
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still be real and contribute to the resonance denominator in the expression for
the current.

Our calculation assumes that we can retain only the contribution of the YSR
bound state to the substrate Green function. This requires that the tip-induced
broadening of the YSR state remains small compared to the superconducting
gap. The characteristic magnitude of the tip density of states is given by the
normal-state density of states vy and the YSR wave function at the tip position
is of order |ul?, [v]> ~ vyA [PGO13]. This yields the estimate |t|>/ZA for the
broadening of the YSR state. Our approximation for the substrate Green func-
tion is thus accurate as long as vy|t| < 1. In view of the normal-state tunneling
conductance of the junction, Gy = (2e?/h)4m?(v|t|)?, this is equivalent to the
condition G < 2¢%/h.

7.4.2 EXACT TREATMENT

i) DERIVATION

We now consider the exact self energy (setting again i = 1)

Sr(T7) =2 Jn(eViar /Q) I (€Vir /Q)

Xe—’i(eV-‘rnQ)TngL (T _ T/)ei(€V+TVLQ)T/TZ ) (755)
including the nondiagonal contribution. In frequency representation defined
through

_ [deds

—twr+iw' 7’ /
=/ 5.5 ¢ Yr(w,w), (7.56)

Sr(r,7")

this becomes

Sr(w,w) = [t Ju(eViar/Q) Jm (Vi /Q)

n,m

X216 (w — W' — (n—m)Qr.)gr(w — (eV +n)1.). (7.57)

As this is nonzero only when the frequency arguments w and w’ differ by mul-
tiples of €2, we can write

Yr(w,w') = Z 2710 (w — w' — mQ) 2, (W) (7.58)
with
_ Jn mgL(wf,n) 0
S (W) = Zn: Jn { + 0 Tnmgn(rn) | (7.59)

Here, we temporarily omitted the arguments of the Bessel functions and intro-
duced w ,, = w £ (eV + n2) for compactness. We also note that the self energy
satisfies the relation

Yom(w+mQ) =%, (w), (7.60)

which can be confirmed using the explicit expression (7.59).
Iteration of the Dyson equation Gr = gr + grE¥rGr implies that the Green
function Gr(w, w’) is also nonzero only when its frequency arguments w and w’
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differ by multiples of €. Thus, we define

Gr(w,w') = Z 278(w — w' — mQ) Gy (W) (7.61)
with
Gr(r, ™)=Y QW isrrinr g () (7.62)
R(T, | 2 n(w). .

Inserting Eqs. (7.58) and (7.61) into the Dyson equation, we find

Gn(w) = gr(w)ono
+> gr(w + 1) T (@ + MQ) G (w), (7.63)

m

which provides a set of linear equations to compute the G, (w).
Writing the current in Eq. (7.20) using Egs. (7.58) and (7.61) and focusing on

the dc contribution, we find

dw
lac = / Gy ZTI’{TZ
X [Gr (W)E%, (w4 n) + Gl (w) 25, (w + nQ)
N (W)G® (W + 1) — X7 (W) G, (w + n)] } (7.64)

This can be made more compact by using Eq. (7.60),

Ly — / gi; S . 05 (@)Z5 () + Gh)D5 (@)
55 (W)Ga () — TG @)] }- (7.65)

Together with the expressions (7.59) and (7.63) for the self energy and the Green
function, respectively, this constitutes our final result.

ii) RESULTS

We solve Eq. numerically by truncating the system of equations at a suf-
ficiently high |n| > Vir/Q and compute the current from Eq. (7.65). Due to
the terms of the self energy which are off-diagonal in frequency, the exact solu-
tion is sensitive to Green functions which are evaluated at frequencies shifted
by integer multiples of the photon energy. This suggests that the exact solution
deviates from the diagonal approximation when the tunneling-induced broad-
ening of the Green functions becomes of the order of or larger than the photon
energy. Conversely, the diagonal approximation is expected to be accurate in
the limit of small broadening and well-resolved photon sidebands.
Figure[7.6|compares representative numerical results obtained in the diago-
nal approximation and the numerically exact solution. The results consider the
parameter regime u? = v?/9 where the Y-shape appears at negative voltages.
The choice of Vur /2 = 2 implies that the resonances at negative voltages are
associated with the lower part (stem) of the Y-shape. Panel (a) shows both neg-
ative and positive voltages for strong tunneling-induced broadening. At pos-
itive biases, we find that the sidebands are no longer well resolved due to the
broadening and the differences between the diagonal approximation and exact
result are largely quantitative. The self energy already present in the diagonal
approximation, including the hole contribution to the broadening, dominates
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e Diag. approx.

(a) v -

= Exact solution

ol

= o P J
A
-

2.0 \ "

1.0

it g =1/8

0 . : s, !

-A-€0-2Q -A-eo A-eg+2Q  -A-eg+4Q
eV

FIGURE 7.6: Comparison between diagonal approximation (different colors)
and the exact solution (green) for eo/A = 0.4, Q/A = 0.025 and u? = v?/9.
(a) dI/dV at negative and positive voltages at strong tip-sample tunneling
(Ft,?’h = 2Q). The resonances at negative bias voltages are shifted relative to
the diagonal approximation, while the differences are merely quantitative
at positive biases. (b) Closeup of threshold region at negative bias voltages
region for increasing tip-sample tunneling T'™"" as indicated in the figure
(from bottom to top; offset for clarity). The differences between exact so-
lution (green) and diagonal approximation become substantial once T'""
becomes comparable to the photon energy Q2. Dashed lines indicate multi-
ples of the photon energy €.
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over additional contributions in the exact solution. In contrast, we find distinct
differences at negative voltages: Here, the hole contribution to the broadening is
still suppressed around the threshold voltage along the stem of the Y-shape and
the resonances remain well resolved. One then observes that the sidebands are
distinctly shifted to higher bias voltages in the exact solution, while the width
of the resonances remains essentially unchanged, i.e., the dominant effect is as-
sociated with the real part of the self energy.

Panel (b) explores the dependence on the strength of tip-substrate tunnel-
ing, focusing on the region of negative voltages. We quantify the four different
strengths of tip-substrate tunneling by the threshold value for the hole tunnel-
ing rate

i — % (v2a)"?, (7.66)

as evaluated for the regime of dominant hole tunneling. For weak tip-substrate
tunneling, Fg"h /S = 1/8, the brodening is small compared to the photon en-
ergy and in agreeement with expectations, the diagonal approximation is essen-
tially identical to the exact solution. For Ft,?’h /2 = 1/2, quantitative differences
such as modified peak heights begin to appear, but the peak positions still re-
main identical. The differences become more pronounced for I''"" /Q = 1 and
Fg"h /S = 2, where we observe substantial shifts of the peaks to higher bias
voltages. Also note that the resonance width grows with increasing le’h /Y as
expected. These results show that the diagonal approximation is accurate in the
regime of highly resolved sidebands.

We finally point out that the diagonal approximation is exact for a normal-
state tip with a constant density of states 1. In this case, the retarded and ad-
vanced self energies in Eq. are purely imaginary,

xR (r, ') = ZFi7r|t\21/0(5(T -7, (7.67)

and independent of the ac field. This makes also the retarded and advanced
substrate Green functions independent of the ac field, so that ¥]>* is nonzero
for n = 0 only,

yrlow) = Firltf . (7.68)
Then, GJ;* is nonzero for n = 0 only and only the n = 0 term contributes to
the dc current in Eq. (7.65). Moreover, one readily ascertains from the Dyson
equation (7.63) and the Langreth rules that the n = 0 components satisfy a
closed set of equations which is just the set of equations which leads to the
diagonal approximation.

75 MAJORANA BOUND STATES

7.5.1 BASIC RESULTS

Our considerations for YSR states apply to photon-assisted tunneling into Majo-
rana bound states with only minor modifications. First, Majorana bound states
have zero energy so that we set ¢ = 0. Second, their electron and hole wave
functions are equal in magnitude, satisfying u = v* for spinless fermions (and
corresponding expressions for spinful electrons in a four-component Nambu
formalism). Finally, an isolated Majorana bound state is a solution of the
particle-hole symmetric Bogoliubov-de Gennes equation which doubles the
degrees of freedom. Due to this doubling of degrees of freedom, the expression
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FIGURE 7.7: Differential conductance (color scale) as a function of bias volt-
age eV and amplitude eVir of the high-frequency radiation for tunneling
into a YSR state with equal electron and hole wave functions, |u|*> = |v|?
and small YSR energies ¢ increasing from zero to 7£2/2 from top to bot-
tom as indicated in the panels. The regions with electron and hole side-
bands are indicated by white dashed and dotted lines, respectively. The
five panels show clearly that a nonzero energy of the YSR state generates a
splitting of the photon-assisted sidebands which appears with high multi-
plicity throughout the V-shaped region. This provides the basis for a high-
resolution measurement of the energy of the subgap state, which can be
used to identify YSR (or Andreev) bound states with near-zero energy e
with high resolution, and thereby distinguish them from Majorana bound
states. Parameters: /A = 0.05, vp|t| = 0.04.
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for the current must be multiplied by a factor of 1/2 relative to the case of a YSR
state.

First consider photon-assisted resonant Andreev processes into Majorana
bound states from a normal-metal tip. Using these translation rules, we ob-
tain corresponding results directly from the results for YSR states given in Sec-
tion The equal magnitude of electron and hole wave functions makes
the peak conductance universal and equal to 2¢?/h for Majorana bound states
[LLNO9; [Fle10]. This corresponds to half of the maximal peak conductance of
a zero-energy YSR state, reflecting that Majorana bound states are effectively
only half of an ordinary subgap state.

In the presence of high-frequency radiation, there are photon-assisted side-
bands and, reinstating again Plank’s constant, one obtains from Eq. that

2

dr - 22 9 0
===\ 0 7.
v~ h Xn: Tn(eViar/hCY) (eV + nhQ))? + 42’ (7.69)

where we introduced v = v, = 5. Thus, the familiar Majorana zero-bias peak
of height 2e?/h splits into photon sidebands with a sideband spacing in bias
voltage of /if2/e. As for YSR states, this can be traced back to the existence
of separate threshold conditions for electrons and holes. For Majorana bound
states, these two sets of conditions coincide by particle-hole symmetry, leading
to a sideband spacing of 7f)/e seemingly indicating single-electron tunneling
despite the underlying resonant Andreev process.

For a superconducting tip, we focus on the limit of well-resolved sidebands
where the diagonal approximation is accurate and obtain

1= esgn(V) [ 52 7 T2eViae/ 92 (Var /)

n,m

xFe(wf(eV+nQ))Fh(w+(6V+mQ)), 7.70)

[w— € — AWw)]? + 12 (w)
where I, (w) and T'j,(w) are now evaluated with |u|? = |v|? and thus equal. Up
to an overall scale factor of 1/2, the result is identical to that for a YSR state
with ¢ = 0 and |u]? = |v|* as shown in the top panel in Fig. For ¢g = 0,
the V-shapes for the electron and hole conditions coincide and are centered on
eV = +A. This also implies that similar to the case of a normal-state tip, there
is only one set of sidebands with spacing €2 which is enhanced by the fact
that electron and hole resonances coincide. While the pattern of resonances at
eV = %A is necessarily symmetric with respect to a change of sign of the bias
voltage, the individual V-shapes are asymmetric about eV = A (or, analogously,
eV = —A). This is a consequence of the fact that the broadening is smaller
on the small-bias side of the V shape, leading to sharper features and a larger
differential conductance (see Fig. this is not properly reflected by the color
scale in Fig.|7.8|due to saturation effects).

7.5.2 MAJORANA VS. YSR STATES

It is frequently a challenge to distinguish zero-energy Majorana bound states
from other low-energy subgap states. Moreover, in many experiments, puta-
tive Majorana states might be accompanied by close-lying YSR states [NP+14;
Rub+15a} |Fel+17; Kim+18; [Sch+20]. Our results on YSR and Majorana bound
states imply that photon-assisted tunneling provides a high-resolution method
to determine the energy of subgap states. In principle, superconducting tips are
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u?2=v2/9 u2=v2?/3 u2=yv? u?=3v2 u2=9v?

FIGURE 7.8: Differential conductance (color scale) as a function of bias voltage
eV and amplitude eVir of the high-frequency radiation for tunneling into
YSR state into a YSR state with various ratios of electron and hole wave
functions and small YSR energies ¢ increasing from zero to /2 from top
to bottom, as indicated in the panels. The regions with electron and hole
sidebands are indicated by white dashed and dotted lines, respectively.
The splitting of the sidebands due to a small nonzero energy ey appear-
ing for equal electron and hole wave functions (central column of panels)
are less pronounced for asymmetric electron and hole wave functions. For
YSR states, the ratio of electron and hole wave functions typically varies as
a function of position. In STM experiments, one can therefore generically
choose a tip position for which electron and hole wave functions have sim-
ilar magnitude. Parameters: /A = 0.05, vo|t| = 0.04.

preferable over normal-metal tips because the gap suppresses thermal excita-
tions and the strongly peaked BCS density of states allows for high energy reso-
lution. At the same time, dI/dV peaks due to subgap states with a zero or small
energy €p no longer appear as (near) zero-bias peaks, but rather at eV = A 4 ¢
[NP+14; Rub+15a; [Fel+17]]. Thus, the small energy ¢, of the bound states is ef-
fectively extracted as a difference of two much larger energies, A + ¢y and A.
In particular, this implies that inaccuracies in the determination of the tip gap
carry over fully into the accuracy with which the bound state energy can be
determined.

The existence of independent thresholds for electrons and hole tunneling
in photon-assisted resonant Andreev reflections provides a method to extract
the bound state energy from a line splitting which appears directly in the mea-
sured tunneling spectra [Pet+20]. Moreover, this line splitting appears with a
high multiplicity throughout the V-shaped region within which one observes
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thresholds for photon-assisted tunneling. To illustrate this, consider first res-
onant Andreev reflections into a YSR state with equal electron and hole wave
functions and a small energy ¢, as shown in Fig. Up to an overall prefactor
of 1/2, the panel for ¢y = 0 is identical to the result for a Majorana bound state.
One observes that even a small ey which is just a fraction of the photon energy
h$2 leads to a splitting of the sidebands and can thus be accurately detected.
This is most evident for ¢y = 7/4, making experiments with variable photon
energies particularly advantageous.

In addition to the line splitting, there is also a characteristic change in the
dependence of the sideband strengths as a function of the amplitude Vi of the
high-frequency radiation. As seen in Fig.[7.7jand Fig.[7.§] the sideband strengths
exhibit repeated zeros as a function of Vir. The zeros originate from the oscilla-
tions of the Bessel functions in Eq. (7.38). Physically, these can be considered a
result of interference between various sequences of emissions and absorptions
of “‘photons’ contributing to a sideband. (Notice that the sideband strength is
nonperturbative in Vigr and emerges from processes of all orders when viewed
from the point of view of perturbation theory.) Different sidebands are con-
trolled by Bessel functions of different order, and the corresponding phase shift
leads to a shift in the locations of the zeros between neighboring sidebands.

The behavior of the zeros in Figs.[7.7|then emerges as follows. The separate
thresholds for electron and hole tunneling coincide for ¢y = 0, but move apart
when ¢) becomes nonzero. When ¢, = 0, a particular sideband ‘combines’ elec-
tron and hole sidebands described by Bessel functions of the same order, and
the zeros of the Bessel functions are preserved. For 2¢y = RS2, the electron and
hole sidebands are described by Bessel functions of neighboring orders. Their
zeros no longer coincide and thus the zeros in the observed sideband strengths
disappear. This allows one to distinguish true zero-energy states from situa-
tions with nonzero ¢; in which electron and hole sidebands coincide because
2¢o and 7€) are commensurate.

Corresponding results with unequal electron and hole wave functions are
shown in Fig. Clearly, the splitting due to a small ¢ is most pronounced
for equal electron and hole wave functions, for which sidebands emerging from
electron and hole sidebands are both equally prominent, as discussed in Section
For a YSR state, the ratio of electron and hole wave functions varies as
a function of position. In STM experiments, one should thus choose a tip posi-
tion where electron and hole wave functions are equal to optimize sensitivity.
Finally, notice that the modulations of the sideband strength as a function of
Vir reemerge even for 2¢, = hif) once electron and hole wave functions are suf-
ficiently different. In this case, the electron and hole thresholds contribute with
different strengths, and the sidebands are dominated by one or the other.

7.6 CONCLUSION

We have developed a theory for photon-assisted resonant Andreev tunneling
into subgap states in superconductors. Our results are in excellent agreement
with recent STM measurements on YSR states [Pet+20], fully reproducing the
observed patterns of sidebands which differ markedly from predictions of a
simple Tien-Gordon-like theory.

A central aspect of the theory are independent sideband conditions for the
electron and hole tunneling processes. This leads to two sets of sidebands
whose relative shift in bias voltage depends on the ratio of the energy of the
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subgap state and the photon energy. As an interesting consequence, this pro-
vides a sensitive technique to measure near-zero energies of subgap states. In
the context of topological states of matter this can be instrumental in distin-
guishing conventional subgap states from Majorana bound states. Simultane-
ous visibility of the two sets of sidebands is optimal when electron and hole
wave functions are of similar magnitude. For YSR states, the ratio of electron
and hole wave functions typically varies widely with lateral position [Yaz+97;
Mén+15;Rub+16;/Cho+17]. This can be exploited in STM experiments by choos-
ing an appropriate lateral position of the STM tip for optimal resolution. The
absence of spatial resolution may make this technique less flexible in transport
experiments using gate defined tunnel junctions.

The observability of the photon-assisted sidebands of resonant Andreev
reflections is constrained by two requirements. On the one hand, tunneling
should be sufficiently weak for the tunneling-induced broadening to be small
compared to the sideband spacing so that the sidebands are well resolved. At
the same time, the underlying resonant Andreev reflections require tunneling
to be fast compared to inelastic relaxation processes. The latter provide compet-
ing channels which transfer electrons into the quasiparticle continuum of the
substrate via the subgap state and which transfer only a single electron between
tip and substrate. The experiment of Ref. [Pet+20] shows that these conditions
on the junction conductance can be simultaneously satisfied at a temperature of
order 1K using a photon frequency of 40 GHz. Since inelastic excitations have
an activated temperature dependence, their rate drops rapidly as temperature
is lowered. This implies that even though the broadening of the sidebands is
independent of temperature, the attainable resolution of small subgap energies
improves rapidly at lower temperatures.

In view of recent experiments, we focus on YSR states. However, we empha-
size that our theoretical approach is in no way specific to YSR states and applies
equally well to other subgap states. Consequently, photon-assisted tunneling
could also contribute to distinguishing Andreev from Majorana bound states.
At present, our theory assumes a single subgap state. Magnetic impurities fre-
quently induce multiple subgap states within the superconducting gap [Ji+08}
Rub+16;|Cho+17; [Hat+15]. It would thus be interesting to extend the theory to
include several subgap states where one would expect additional spectroscopic
features to arise when the photon energy becomes comparable to the level spac-
ing between subgap states.
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| CONCLUSION

This thesis provides theoretical frameworks and calculations to explain three
different experiments. While each of them are interesting pieces of research
within their own context, the three of them are of relevance in the context of
topological state engineering. One can distinguish two branches in this field:
one focusing on the engineering of basic physical phenomena to realize topo-
logical states of matter, such as Majorana quasiparticles, and a second aiming at
the use of topological states of matter to engineer systems of interest. The goal
of realizing a quantum computer is the paradigmatic example of such systems
and has motivated much scientific effort.

Chapters[2]and [3|introduced basic physical concepts, which are necessary to
understand the work presented in this thesis. Among these we highlight: the
bulk-boundary correspondence, the recipe to engineer topological supercon-
ductivity from Zeeman splitting, spin-orbit coupling and s-wave superconduc-
tivity, the physics of magnetic impurities on superconducting substrates leading
to Yu-Shiba-Rusinov states, and their signatures in STM measurements.

In Chapter [ we proposed a theoretical toy model to understand and study
the physics of two recent experiments with graphene nanoribbons. These ex-
periments engineered an effective Su-Schrieffer-Heeger (SSH) model from topo-
logical boundary states arising at the domain walls of nanoribbons of different
widths, predicted to be in distinct topological phases. Our toy model, based
on the original SSH model itself, reproduces this behavior through a spatially
dependent dimerization parameter. Indeed, the boundary states at the domain
walls between distinct topological regions are engineered to develop couplings
of alternating strengths among one another, thus realizing an effective SSH of
their own. We studied the different possible end state configurations of the
model, revealing the interplay between the microscopic and the emergent SSH
end states. The model admits a “butterfly” representation, which provides
a compact representation of its properties. The graphene nanoribbon experi-
ments, together with our work, constitute a first step in the engineering of more
complex systems using topological boundary states as building blocks. It will
be interesting to see how this field develops in the coming years.

Chapter |5| presents the first study of the effect of a charge density wave on
the wave function and energy of a YSR state. Having sparked interest as a sub-
strate for the realization of magnetic adatom chains hosting Majorana quasi-
particles, NbSe, exhibits a charge-density wave (CDW) order coexisting with
superconductivity. For the engineering of a topological superconductor from
YSR states, one needs to achieve sufficiently strong coupling among them. The
quasi two-dimensional character of 2H-NbSe; makes it a good candidate, as
YSR wave functions have a greater spatial extent than in conventional three-
dimensional superconductors. Nevertheless, our study shows that it is crucial
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to take into account the effects of the CDW on the YSR state. There are two main
reasons: first the CDW affects the energy of the YSR state and these couple more
strongly if they have similar energies when separated, and secondly, the CDW
affects the wave function shape of the YSR state and can reduce or enhance its
weight in specific directions of space. We thus find that a careful study of these
effects is necessary for the optimal coupling of YSR states in an adatom chain.
Preferably, the different adatoms should be placed in equivalent positions with
respect to both the atomic lattice and the CDW modulation and along symmetry
lines with significant weight of the YSR wave functions. Our theoretical model
neglects various physical effects present in the experiment but, in spite of its
simplicity, it explains the experimental results satisfactorily making our model
in principle applicable to a wider range of adatoms and superconducting sub-
strates.

Chapter [f] presented the results of a recent experiment on photon-assisted
tunneling between superconducting leads. In this collaboration, we confirmed
that the venerable Tien-Gordon theory successfully explains the experimental
results for single-particle tunneling, Cooper pair transfer, and multiple An-
dreev reflections in pristine superconductors, and showed that it also applies
to single-particle tunneling resonantly enhanced by a YSR state. In these cases
the Tien-Gordon theory successfully predicts the intensity modulation of the
conductance peaks as a function of the radiation amplitude as well as the spac-
ing of the sidebands in bias voltage, both a signature of the amount of charge
transferred in the underlying tunneling events. More interestingly, the experi-
ment found a breakdown of this theory when the current though a YSR state is
dominated by resonant Andreev reflections. These two-particle processes lead
to sidebands spaced as would correspond to single-particle tunnelings in the
Tien-Gordon theory. Moreover, the conductance measurements showed previ-
ously unseen sideband structures forming a Y-shape. We explained how the
individual threshold conditions for electron and hole tunneling, together with
their dominance in the broadening of the resonance and the asymmetry in the
weight of electron and hole YSR wave function explain these signatures. We
showed how applying the Tien-Gordon approach to the individual tunneling
rates, modifying the previously-known expressions for the tunneling current,
reproduced the experimental measurements excellently.

Chapter [/ develops a full theory of photon-assisted Andreev tunneling res-
onantly enhanced by subgap states, motivated by the experiment of Chapter [6|
Our theoretical framework provides a general picture for the photon-assisted
resonant Andreev reflections, applicable to both normal and superconducting
tips as well as to YSR states or other subgap states such as Majorana bound
states. Our derivation includes the tunneling amplitude to all orders and con-
firms that individual threshold conditions for the electron and hole tunneling
rates play a crucial role in explaining the deviations from the Tien-Gordon ap-
proach. We find that a frequency-local (diagonal) approximation of our full the-
ory is in excellent agreement for typical experimental parameters. This approx-
imation is valid as long as the broadening of the resonance remains small com-
pared to the photon energy. Our results show the potential of photon-assisted
tunneling as a technique to measure small but non-zero energies of the subgap
states. Indeed, the position of the sidebands are directly related of the subgap
state energy and the photon energy, allowing a more accurate measurement of
the subgap state energy than previous methods. In the context of topological
state engineering, this can be instrumental to distinguish conventional subgap
states from the sought-for Majorana quasiparticles.
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Appendix A

TiP GREEN FUNCTION

In this appendix, we briefly review the derivation of the tips Green function
used in Chapter[/] The Nambu Green function g of a BCS superconductor (in
the absence of tunneling or a magnetic impurity) takes the form

g1 (k,w) = [w — &eTo — AT, (A1)

where 7, and 7, denote Pauli matrices in Nambu space. Performing the ma-
trix inversion and computing the corresponding local Green function at the tip
position yields

AT,
gn(w) = %Zg(k,w) - /dkm. (A2)
k

Finally doing the integral gives the result

_mow+ AT)

— (A3)

gr(w) =
This can be used to find the retarded and advanced as well as lesser Green
functions which are used throughout the main text.
The retarded and advanced Green functions are purely real at frequencies
below the gap, |w| < A, where one finds

Ty (w + A1)

r/a

gr, (W) = A2 (A4)
and purely imaginary at frequencies above the gap, |w| > A,
ra imvg(w + ATy)
QL/ (w) = :FW sgn(w). (A5)
To derive the lesser Green function, we use the relation
91 (W) = —nr(w)lgL (W) — g7 (W)] (A.6)
and obtain
A
5 20l £ A7) g () — A)sgn(). (A7)

g7 (w) = 2ming(w) N

where 6(x) denotes the Heaviside function.

Within our calculation of the resonant Andreev reflections through subgap
states in the substrate, neglecting Andreev reflections in the tip is equivalent
to dropping the off-diagonal contributions to the tip Green function. In this
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approximation, gr,(w) becomes proportional to the unit matrix in Nambu space
and we find

r/a _7TVO+“)2> ‘w‘ < A
g/ w)y =g VA (A8)
Fi1mg \/ﬁ s ‘UJ ‘ > A
for the retarded and advanced Green functions and
< —~ O vo|wl .
g7 (W) = 2minp(w) N O(|w| — A) (A.9)

for the lesser Green function. The above-gap expressions can be expressed more
compactly in terms of the BCS density of states in Eq. (7.32).
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Appendix B

SUBSTRATE GREEN FUNCTION

This appendix discusses the Green function of the superconducting substrate
of Chapter [7] We first consider the bare substrate Green function at subgap
energies. In keeping with our approximation of neglecting the (nonresonant)
Andreev reflections in the tip, we retain only the bound state contributions to
the substrate Green function which are responsible for the resonant Andreev
reflections. This approximation was derived in Section[3.2.1| where we wrote:

1
QOT

Ir(W) = ¢ —— o (B.1)
for the approximate subgap state contribution to the substrate Green function,
where ¢ = (u,v)” at the tip position R. (We assume here for simplicity that
there is only one pair of YSR states.)

Tunneling introduces a self energy into the denominator of the retarded and

advanced Green functions,

T/a 1
R ®2
w—€ —Xp
with
E%T/a _ @TZ%T/‘I@, (B.3)

Note that we have written the last two expressions in general operator notation
since with ac field, the self energy is generally no longer diagonal in frequency
representation.

We also review a general relation for the lesser Green function (including
the tunneling to the tip). Using the Langreth rules, the Dyson equation for Gr
gives

GR =95 + 96ERGR + 96ERGR + 9655GE, (B.4)

which can be readily shown to become

]‘ <
9r
L —gpXp™ "1 —gp¥k

Gy = + GREFGE. (B.5)
The first term on the right-hand side vanishes generally as long as the system

was noninteracting in the infinite past. Here, we can also use the explicit ex-
pression (A.6), with L replaced by R, to write

1 -1

~r IR
1—gp¥%"" 1 - 92Xk

1 1
——ar R — Rl (B.6)
T ke o

= —nr(w)
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Inserting the identity
9r — 9k = ~2iN9RIR (B.7)

with a positive infinitesimal 7 yields

1
1—gp¥hR

5 = 2i rG% = 0. B.
9r 1— ga%e inmp(w)GRrGH =0 (B.8)
Thus, we find the identity
Gy = GRE;Gh. (B.9)
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