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&e microenvironment plays a vital role in the tumor recurrence of neuroblastoma. &is research aimed at exploring prognostic
genes that are involved in neuroblastoma microenvironment. We used “estimate” R package to calculate the immune/stromal/
ESTIMATE scores of each sample of ArrayExpress dataset E-MTAB-8248 based on the ESTIMATE algorithm.&enwe found that
immune/stromal/ESTIMATE scores were not correlated with age/chromosome 11q, but tumor stage, MYCN gene amplifications,
and chromosome 1p. Samples were then divided into high- and low-score groups, and 280 common differentially expressed genes
(DEGs) were identified. 64 potential prognostic genes were harvested through overall survival analysis from the common DEGs.
14 prognostic genes (ABCA6, SEPP1, SLAMF8, GPR171, ABCA9, ARHGAP15, IL7R, HLA-DPB1, GZMA, GPR183, CCL19, ITK,
FGL2, and CD1C) were obtained after screening in two independent cohorts. GO and KEGG analysis discovered that common
DEGs and 64 potential prognostic genes are mainly involved in T-cell activation, lymphocyte activation regulation, leukocyte
migration, and the interaction of cytokines and cytokine receptors. Correlation analysis showed that all prognostic genes were
negatively correlated with MYCN amplification. Cox analysis identified 5 independent prognostic genes (ARHGAP15, ABCA9,
CCL19, SLAMF8, and CD1C).

1. Introduction

Neuroblastoma is a cancer that develops from immature
nerve cells found in multiple parts of the body, including
neuroblastomas, ganglioblastomas, and ganglion neuromas
[1]. Neuroectodermal cells containing neuroblastomas
originate from the neural crest during fetal development and
are destined for the adrenal medulla and sympathetic ner-
vous system [1]. Neuroblastoma accounts for 97% of all
neuroblastic tumors, is heterogeneous, and differs in loca-
tion, histopathological appearance, and biological charac-
teristics [1]. Neuroblastoma comprises 6% to 10% of all
childhood cancers and causes 15% of all pediatric cancer
deaths [2]. Although its molecular basis is still unknown,

clinical diversity is closely related to numerous clinical and
biological factors, including patient age, tumor stage and
histology, and genetic and chromosomal abnormalities [1].
Better learning the molecular mechanism of neuroblastoma
could provide a crucial message related to prognosis [3].

&e tumor microenvironment is the environment
around a tumor, including the surrounding blood vessels,
immune cells, fibroblasts, signaling molecules, and the ex-
tracellular matrix. &e tumor and the surrounding micro-
environment are closely related and interact constantly [4].
&e tumor microenvironment has been recognized as a
complex milieu where cancer cells interact with immune and
stromal cells via numerous biochemical and physical signals
that are crucial for cancer progression and metastasis [4–6].
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&e activities of immune cells and stromal cells have been
demonstrated owing to the capacity to predict cancer out-
comes [7].

ESTIMATE is a method that uses gene expression
characteristics to infer the ratio of stromal cells to immune
cells in a tumor sample. ESTIMATE scores are correlated
with tumor purity based on DNA copy number in samples
from 11 different tumor types. &ese samples have been
profiled on Agilent and Affymetrix platforms, or based on
RNA sequencing, which can be obtained through &e
Cancer Genome Atlas.&e use of 3,809 transcription profiles
provided elsewhere in the public domain further confirmed
the accuracy of the prediction. &e ESTIMATE method can
be used to evaluate the presence of stromal cells and immune
cell infiltration in tumor samples using gene expression data
[8]. According to the ESTIMATE algorithm, researchers
have performed a prognostic assessment and are exploring
the genetic changes of many malignant tumors [9–11]. But
the immune and stromal scores of neuroblastoma have not
yet been elucidated. No research has clearly shown whether
the ESTIMATE algorithm can be used to predict the
prognosis of neuroblastoma.

To understand the molecular pathogenesis of neuro-
blastoma involved in the tumor microenvironment, in this
work, we used the ESTIMATE algorithm in conjunction
with multiple cohorts to explore underlying genetic factors
in the tumor microenvironment of neuroblastoma and
identify prognostic genes.

2. Materials and Methods

2.1. ArrayExpress Microarray Data. We searched the
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) data-
base [12] using “neuroblastoma” as the keyword and filtered
the results by checking “Homo sapiens” as the “Organism”
and selecting “ArrayExpress data only.” In the filtered re-
sults, we dug into each detailed description of each dataset to
see if they contain survival data. Finally, dataset E-MTAB-
8248 that comes from the platform of Agilent-020382
Human Custom Microarray 44k (Feature Number version)
was selected for this study. &e processed data of the an-
notation table were obtained from the ArrayExpress website.

2.2. Pretreatment of Microarray Data. To begin with, the
annotation procedure was performed by using the down-
loaded annotation table. &en, “estimate” R package was
used to figure immune, stromal, and ESTIMATE scores of
the dataset by ESTIMATE algorithm [8].

2.3. Distributions of Immune/Stromal/ESTIMATE Scores in
Different Age/Tumor Stage/MYCN Gene Amplifications/
Chromosome 1p/Chromosome 11q/Prognosis. All cases were
grouped according to their status of age/tumor stage/MYCN
gene amplifications/chromosome 1p/chromosome 11q.
Wilcoxon signed-rank test (two groups) or Kruskal–Wallis
H test (more than two groups) was utilized to assess the
distributions of scores.

2.4. Differentially Expressed Gene Analysis. Patients were
then stratified according to the median of immune and
stromal scores. Differentially expressed genes (DEGs) were
explored between high and low immune/stromal score
groups using the “limma” R package [13]. &e cutoff was set
as (1) |log2 (fold-change) |> 1 and (2) false discovery rate
(FDR)< 0.05. &e heatmaps of DEGs were generated from
“pheatmap” R package.

2.5. Enrichment Analysis of Common DEGs. &e “cluster-
Profiler” R package was applied to perform functional en-
richment analysis of common DEGs, including Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG).

2.6. Identification of Potential Prognostic Genes.
Kaplan–Meier analysis was conducted by the “survival” R
package. &e Kaplan–Meier curve illustrated the overall
survival difference between low and high expressions of each
common DEG gene. &is relationship was examined by the
log-rank test.

2.7. Establishment of the Protein-Protein Interaction (PPI)
Network of Potential Prognostic Genes. To better study the
potential prognostic genes, we constructed a PPI network
using the STRING online database (http://string-db.org)
and the Cytoscape software (http://www.cytoscape.org/).
&e degree distribution was calculated using “cytoHubba”
plug-in and Network Analyzer from Cytoscape. &e clusters
(highly interconnected regions) in this PPI network were
discovered by a Cytoscape plug-in named “MCODE.”

2.8. Screening for Prognostic Genes in Two Independent
Cohorts. Neuroblastoma patients with expression and
survival data were available in the datasets of GSE85047 and
GSE49710 from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database. &e gene ex-
pression profiles were measured experimentally using
platforms of GPL5175 and GPL16876, respectively (Table 1).
We screened the identified potential prognostic genes using
the two cohorts by overall survival. p value <0.05 (log-rank
test) was considered statistically significant. &e genes that
are in the intersection of the above two results were con-
sidered prognostic genes.

2.9. Identification of the Independent Prognostic Value of
Prognostic Genes. MYCN amplification was strongly cor-
related with a poor prognosis in neuroblastoma cases [14].
&e status of MYCN and the expression of prognostic genes
were extracted from GSE49710, and their correlation was
checked using the Spearman test. In addition, to explore the
independence of the prognostic genes, we performed uni-
variate and multivariate Cox analysis on prognostic genes
andMYCN in the GSE49710 cohort. In the end, we reviewed
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previous studies related to crucial prognostic genes and
neuroblastoma.

3. Results

3.1. Characteristics of Cohorts Included in 0is Study.
E-MTAB-8248 (n� 223) was chosen for identifying potential
prognostic genes in the TME of neuroblastoma. GSE85047
(n� 283) and GSE49710 (n� 498) were taken as screening
tools to obtain prognostic genes from potential genes. &e

clinical characteristics of the cohorts included in this study
are shown in Table 2.

3.2. Distributions of Immune/Stromal/ESTIMATE Scores in
Different Age/Tumor Stage/MYCN Gene Amplifications/
Chromosome 1p/Chromosome 11q/Prognosis. &e distribu-
tions of immune/stromal/ESTIMATE scores did not vary
with age/chromosome 11q (Figure 1). However, in the tu-
mor stage section, the distribution of stromal scores was
significantly different in the stages, but immune and

Table 1: Genes identified in this study as prognostic markers.

Gene
Kaplan–Meier analysis (p value)

Prognostic correlation Regulation in TME
E-MTAB-8248 GSE85047 GSE49710

ABCA6 0.048329644 0.000456 1.38E− 11 Positively Upregulated
SEPP1 0.043655597 0.000644 4.85E− 05 Positively Upregulated
SLAMF8 0.016798116 0.00237 1.44E− 09 Positively Upregulated
GPR171 0.013243245 0.006901 3.27E− 07 Positively Upregulated
ABCA9 0.04278403 0.007713 5.43E− 09 Positively Upregulated
ARHGAP15 0.013917259 0.010945 1.6E− 05 Positively Upregulated
IL7R 0.001138517 0.012055 1.44E− 07 Positively Upregulated
HLA-DPB1 0.014579249 0.020717 2.25E− 05 Positively Upregulated
GZMA 0.00900038 0.023614 0.000124 Positively Upregulated
GPR183 0.010691506 0.024086 4.64E− 06 Positively Upregulated
CCL19 0.013557588 0.034966 8.77E− 07 Positively Upregulated
ITK 0.016816901 0.044203 2.78E− 06 Positively Upregulated
FGL2 0.007567598 0.045289 2E− 06 Positively Upregulated
CD1C 0.013928199 0.047954 2.7E− 09 Positively Upregulated
TME: the tumor microenvironment.

Table 2: Clinical characteristics of cohorts involved in the study.

Characteristics E-MTAB-8248, n� 223 GSE85047, n� 283 GSE49710, n� 498
Age (months)
≤18 103 (46.19%) 144 (50.88%) 300 (60.24%)
>18 120 (53.81%) 134 (47.35%) 198 (39.76%)
Unknown 0 5 (1.77%) 0

Gender
Female NA NA 211 (42.37%)
Male NA NA 287 (57.63%)

MYCN
Amplified 46 (20.63%) 55 (19.43%) 92 (18.47%)
Nonamplified 176 (78.92%) 222 (78.45%) 401 (80.52%)
Unknown 1 (0.45%) 6 (2.12%) 5 (1%)

Stage (INSS)
1 29 (13%) 50 (17.67%) 121 (24.3%)
2 39 (17.49%) 36 (12.72%) 78 (15.66%)
3 36 (16.14%) 43 (15.19%) 63 (12.65%)
4 89 (39.91%) 124 (43.82%) 183 (36.75%)
4s 30 (13.45%) 27 (9.54%) 53 (10.64%)
Unknown 0 3 (1.06%) 0

1p status
Del/im 67 (30.04%) NA NA
Normal 137 (61.43%) NA NA
Unknown 19 (8.52%) NA NA

11q status
Del 18 (8.07%) NA NA
Normal 46 (20.63%) NA NA
Unknown 159 (71.3%) NA NA
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ESTIMATE scores not. In the distribution of scores of
MYCN gene amplifications, immune and ESTIMATE scores
mattered, but stromal score not. &e same happened in the
distribution of chromosome 1p scores, the stromal score
could not differentiate the status of chromosome 1p, but
immune and ESTIMATE scores could.

3.3. Immune/Stromal/ESTIMATE Scores and Prognosis.
223 neuroblastoma patients were divided into high- and
low-score groups according to their median scores.
Kaplan–Meier survival curves showed that high immune
score patients had a better trend of overall survival than that
the low-score group (p value� 0.091 in the log-rank test)
(Figure 2(a)). Analogously, as shown in Figures 2(b) and
2(c), patients with high stromal/ESTIMATE scores achieved

a better trend on overall outcomes than those with low
scores (p value >0.216). Not noticeable significant statistical
results simply predict that fewer microenvironment-related
genes may be found in the next steps and do not negate the
role of the microenvironment in neuroblastoma. So, we still
will focus on the genes related to both the immune and
stromal scores.

3.4. Identification of Common DEGs from Immune and
Stromal Scores. 223 neuroblastoma patients were grouped
based on their median scores. As shown in Figure 3(a), 601
DEGs were found among immune score groups (Table S1).
503 DEGs among stromal score groups were discovered,
which are shown in Figure 3(b) and Table S2. 279 common
upregulated DEGs (Figure 3(c)) and 1 common
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Figure 1: Correlations between immune/stromal/ESTIMATE scores and age/tumor stage/MYCN gene amplifications/chromosome 1p/
chromosome 11q. Distribution of immune scores (upper), stromal scores (middle), and ESTIMATE scores (bottom) plotted against age (a),
tumor stage (b), MYCN gene amplifications (c), chromosome 1p (d), and chromosome 11q (e). p value <0.05 was considered statistically
significant.
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Figure 2: Association of immune/stromal/ESTIMATE scores with overall survival. High (red) and low (blue) immune (a)/stromal (b)/
ESTIMATE (c) scores have correlations with prognosis.
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downregulated DEG (Figure 3(d)) were identified then by
comprehensive analysis. &e 280 common DEGs (Table S3)
then entered into the next steps.

GO enrichment analysis (Table S4) showed top GO terms
identified in the 280 common DEGs mainly involved

with lymphocyte differentiation, T-cell activation, regulation
of lymphocyte activation, external side of the plasma mem-
brane, collagen-containing extracellular matrix, G protein-
coupled receptor binding, and the peptide binding
(Figure 3(e)). KEGG analysis (Figure 3(f) and Table S5) of 280
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Figure 3: Identification of common DEGs from immune and stromal scores in neuroblastoma. (a) Heatmap of the DEGs of immune scores
(cutoff: |log2(fold-change) |>1, FDR< 0.05). (b) Heatmap of the DEGs of stromal scores (cutoff: |log2 (fold-change) |>1, FDR< 0.05). (c, d)
Venn diagrams of commonly upregulated (c) and downregulated (d) DEGs in stromal and immune score groups. (e, f ) Top ten GO terms (e)
and top thirty KEGG pathway (f) enrichment of common DEGs (FDR< 0.05). DEG: differential gene expression; GO: gene ontology; BP:
biological process; CC: cellular component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false
discovery rate.
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common DEGs was mainly observed for cytokine-cytokine
receptor interaction, viral protein interactionwith cytokine and
cytokine receptor, Staphylococcus aureus infection, &17 cell
differentiation, and chemokine signaling pathway.

3.5. Identification of Potential Prognostic Genes.
Kaplan–Meier survival curves were built for the 280 com-
mon DEGs based on overall survival. According to the log-
rank test (p value <0.05), 64 common DEGs had survival
predictive ability (all were upregulated in TME), of which 60
and 4 were positively and negatively correlated with survival,
respectively (Figure 4 and Table S3).

3.6. Functional Enrichment Analysis and Protein-Protein
Interaction Construction of Potential Prognostic Genes.
GO enrichment was conducted using the 64 prognostic
genes, and the enriched items in GOwere involved largely in
T-cell activation and the regulation of lymphocyte activa-
tion, MHC class II protein complex and the MHC protein
complex, and antigen binding and the cytokine activity
(Figure 5(a)). KEGG pathways were mainly enriched for
hematopoietic cell lineage, herpes simplex virus 1 infection,

influenza A, and cytokine-cytokine receptor interaction
(Figure 5(b)).

A PPI network was constructed by the online STRING
tool and Cytoscape software. After hiding disconnected
nodes, there were 50 nodes and 239 edges in this network
(Figure 5(c)). All genes positively correlated with the overall
outcomes of neuroblastoma cases. CD69, CD3D, CD2,
CCL5, CCR2, CD48, LCK, IL7R, IRF8, and HLA-DRB1 were
the top ten genes in this network sorted by degree. RGS1 had
the strongest predictive ability in this network for overall
survival; however, FYB had the weakest ability to do so. &e
interaction between HLA-DRA and CD74 was the tightest in
this PPI network, with a combine score of 0.999. &e loosest
relationship happened between CD52 and CCR2, with a
combine score of 0.409.

&en, we explored the PPI network using the Cytoscape
“MCODE” plug-in and found 3 main clusters. &e top two
modules had more than 9 nodes, which were plotted by us
(Figures 5(d) and 5(e)). In cluster one, CCL5, HLA-DRA,
HLA-DRB1, IRF8, and CD74 were the top five genes sorted
by degree, and HLA-DMA, IGHV4-38-2, HLA-DPB1,
CCL5, and HLA-DMB were the top five genes sorted by
prognostic ability. In cluster two, CD69, CCR2, CD48, LCK,
and TLR8 were on the top five sorted by degree distribution,

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(a)

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(b)

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(c)

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(d)

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(e)

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

High
Low

(f )

Figure 4: Representative Kaplan–Meier curves of potential prognostic genes based on overall survival in the ArrayExpress dataset E-MTAB-
8248. p value <0.05 was used to assess differences in the log-rank test. (a) RGS1 (p< 0.001). (b) CXCR6 (p< 0.001). (c) CYP1B1 (p< 0.001).
(d) IL7R (p � 0.001). (e) PTGDS (p � 0.001). (f ) SMOC2 (p � 0.004).
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and CXCR6, CXCL14, CD69, TLR8, and GPR183 were on
the top five sorted by prognostic ability.

3.7. Screening inTwoGEOCohorts. We then screened the 64
potential prognostic genes described above using the
GSE85047 and GSE49710 cohorts from the GEO database. p

value <0.05 in the log-rank test was set as the cutoff. 14 genes

were screened from GSE85047 cohort (Table S6), 56 genes
were found from GSE49710 (Table S7), and 14 in the in-
tersection were identified as prognostic genes (Table 1).

3.8. Identification of the Independent Prognostic Value of
Prognostic Genes. MYCN amplification was strongly cor-
related with a poor prognosis in neuroblastoma cases [14].
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Figure 5: Identification of the enrichments of GO and KEGG of the potential prognostic genes and PPI network construction. (a) Top ten
GO terms (FDR< 0.05). (b) Top thirty KEGG pathways (FDR< 0.05). (c, d, e) PPI network (c) with two clusters: cluster one and cluster two
(d, e).&e p values shown in (c, d, e) were harvested from the overall survival analysis on the ArrayExpress dataset E-MTAB-8248. “Degree”
was generated using the “cytoHubba” plugin of Cytoscape software (http://www.cytoscape.org/). “Combine score” means the strength
between two-gene, and it was from STRING online database (http://string-db.org). GO: gene ontology; BP: biological process; CC: cellular
component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate; PPI: protein-protein
interaction; Edge score: combine score.
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&e status of MYCN and the expression of prognostic genes
were extracted from GSE49710, and their correlation was
checked using the Spearman test. &e correlation results
shown in Table 3 indicated that all prognostic genes were
negatively correlated with the amplification of MYCN. In

univariate Cox analysis, all prognostic genes and MYCN
amplification were related to prognosis. In multivariate Cox
analysis, MYCN amplification, ARHGAP15, ABCA9,
CCL19, SLAMF8, and CD1C could still predict prognosis
(Table 4). &e above results suggested that ARHGAP15,
ABCA9, CCL19, SLAMF8, and CD1C were potential in-
dependent prognostic factors for neuroblastoma. Finally, we
did a literature review, finding that, among 14 prognostic
genes identified in the present study, 3 had been reported
having experimental evidence involving in the progression
of neuroblastoma, none of them had been previously ex-
perimentally proofed affecting neuroblastoma prognosis
(Table 5).

4. Discussion

In this study, we attempted to identify tumor microenvi-
ronment-related genes that contribute to neuroblastoma
outcome from anArrayExpress dataset. By comparing global
gene expression between high- and low-score patients, 280

Table 4: &e Cox analysis on prognostic genes and MYCN in the GSE49710 cohort.

Variable
Univariate Cox analysis Multivariate Cox analysis∗

Coef HR (95% CI) z p value Coef HR (95% CI) z p value
ABCA6 −0.345 0.708 (0.651–0.77) −8.1 5.38E− 16 0.0186 1.02 (0.776–1.34) 0.134 0.894
SEPP1 −0.392 0.676 (0.602–0.759) −6.64 3.11E− 11 −0.0928 0.911 (0.644–1.29) −0.524 0.6
SLAMF8 −0.505 0.603 (0.537–0.677) −8.54 1.29E− 17 −0.274 0.76 (0.586–0.986) −2.07 0.0389
GPR171 −0.415 0.66 (0.582–0.749) −6.44 1.21E− 10 −0.108 0.898 (0.581–1.39) −0.484 0.629
ABCA9 −0.387 0.679 (0.613–0.753) −7.34 2.10E− 13 −0.303 0.738 (0.574–0.95) −2.36 0.0183
ARHGAP15 −0.393 0.675 (0.598–0.763) −6.31 2.77E− 10 0.583 1.79 (1.22–2.62) 3 0.00272
IL7R −0.375 0.687 (0.617–0.765) −6.86 7.05E− 12 −0.112 0.894 (0.624–1.28) −0.607 0.544
HLA-DPB1 −0.403 0.668 (0.588–0.759) −6.21 5.40E− 10 0.0422 1.04 (0.735–1.48) 0.236 0.813
GZMA −0.305 0.737 (0.666–0.816) −5.86 4.62E− 09 0.216 1.24 (0.993–1.55) 1.89 0.0581
GPR183 −0.387 0.679 (0.604–0.763) −6.51 7.63E− 11 −0.0716 0.931 (0.746–1.16) −0.633 0.527
CCL19 −0.184 0.832 (0.783–0.884) −5.94 2.81E− 09 0.147 1.16 (1.01–1.33) 2.09 0.0362
ITK −0.35 0.705 (0.641–0.775) −7.25 4.04E− 13 −0.125 0.883 (0.662–1.18) −0.85 0.395
FGL2 −0.383 0.682 (0.612–0.76) −6.95 3.66E− 12 0.0172 1.02 (0.677–1.53) 0.0827 0.934
CD1C −0.356 0.701 (0.64–0.767) −7.68 1.65E− 14 −0.235 0.791 (0.633–0.989) −2.06 0.0393
MYCN amplification 2.05 7.8 (5.26–11.5) 10.2 1.19E− 24 1.7 5.45 (3.22–9.21) 6.33 2.48E− 10
∗Concordance� 0.809 (se� 0.022), likelihood ratio test� 129.7 on 15 df, p≤ 2e− 16; Wald test� 139.2 on 15 df, p≤ 2e – 16; score (log-rank) test� 186.3 on 15
df, p≤ 2e− 16.

Table 5: Prognostic genes identified related to the tumor micro-
environment in neuroblastoma.

Categories# Gene symbols$

Molecular
function

ABCA6, ABCA9, IL7R [15], GPR183, CCL19
[16]

Extracellular
region SEPP1, GZMA [17], FGL2

Plasma membrane GPR171, HLA-DPB1, CD1C
Signal
transduction ARHGAP15, ITK

Membrane SLAMF8
#Classified by gene ontology terms. $Genes in bold were previously reported
having experimental evidence involving in the progression of
neuroblastoma.

Table 3: &e correlations between prognostic genes and the status of MYCN status tested by Spearman correlation.

Gene R p value
ABCA6 −0.433035927 5.96E− 24
SEPP1 −0.43773706 1.71E− 24
SLAMF8 −0.485479 1.62E− 30
GPR171 −0.449936802 6.05E− 26
ABCA9 −0.371500185 1.40E− 17
ARHGAP15 −0.452056568 3.34E− 26
IL7R −0.457452749 7.23E− 27
HLA-DPB1 −0.418455553 2.55E− 22
GZMA −0.411284919 1.51E− 21
GPR183 −0.415347624 5.55E− 22
CCL19 −0.462592772 1.64E− 27
ITK −0.483115504 3.40E− 30
FGL2 −0.459540146 3.97E− 27
CD1C −0.466033388 5.99E− 28
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common DEGs were found. &en 64 genes were identified
owning potential prognostic value via survival analysis.
Importantly, we screened the 64 genes in two independent
GEO cohorts, identifying 14 genes (ABCA6, SEPP1,
SLAMF8, GPR171, ABCA9, ARHGAP15, IL7R, HLA-DPB1,
GZMA, GPR183, CCL19, ITK, FGL2, and CD1C) as
prognostic genes. Moreover, ARHGAP15, ABCA9, CCL19,
SLAMF8, and CD1C were found via Cox analysis having
independent prognostic value (Figure 6).

We deployed the ESTIMATE algorithm to figure the
immune/stromal/ESTIMATE scores of neuroblastoma cases
and found these scores were not correlated with age/chro-
mosome 11q, but tumor stage, MYCN gene amplifications,
and chromosome 1p. &e MYCN, a member of the MYC
family, has been associated with high-risk disease and poor
prognosis in approximately 25% of cases of neuroblastoma.
Currently, the amplification of MYCN is still one of the most
risky genetic markers in neuroblastoma [18]. Neuroblastoma
tumor cells lacking parts of chromosome 1 or 11 (known as
1p deletion or 11q deletion) may be predictive of poor
prognosis [19]. In our study, we found that the scores were
related to the MYCN gene amplifications and chromosome

1p, which may reveal a new understanding of this disease,
but need further research. And we also found the scores were
related to the prognosis of neuroblastoma. Immune cells and
stromal cells are essential components active in the tumor
microenvironment, which affect the survival, proliferation,
and treatment resistance of neuroblastoma [20–24]. &e
crosstalk between tumor and microenvironment influences
the inflammatory response: cancer cells interact with both
the innate and the adaptive immune system and use immune
cells for tumor survival and protection from immunological
attacks [21, 24–26].

GO analysis showed the common DEGs were largely
enriched in T-cell activation, external side of the plasma
membrane, and G protein-coupled receptor binding. Be-
sides, the KEGG analysis demonstrated that cytokine-cy-
tokine receptor interaction, viral protein interaction with
cytokine and cytokine receptor, and Staphylococcus aureus
infection were mostly enriched. Previous studies have
shown that the biological processes of the immune system
are critical to the formation of a complex tumor micro-
environment, which is consistent with our findings
[21, 22, 24]. In the last few years, the immunological

E-MTAB-8248

223
neuroblastoma

cases

Immune scores
601 DEGs

Stromal scores
503 DEGs

Survival analysis

Cox analysis

Screening in GSE85047
and GSE49710 cohorts

280 common
DEGs

64 potential
prognostic

genes

14 prognostic
genes

5 with
independent

prognostic value

Figure 6: &e workflow of the present study. Dataset E-MTAB-8248 was from ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/); Datasets GSE85047 and GSE49710 were from Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/); DEG: differentially expressed gene.
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characteristics of neuroblastoma have been more deeply
understood, and the development of effective neuroblas-
toma immunotherapy strategies has attracted widespread
attention [27–29].

Overall survival analysis of the common DEGs found 64
genes owned potential prognosis capacity in neuroblastoma
cases. In the PPI network of these 64 potential prognostic
genes, we are particularly interested in CCL5 in cluster one
(Figure 5(d)) and CD69 and TLR8 in cluster two
(Figure 5(e)), of whom hold the top five degree and
prognostic ability in their own cluster. CCL5 is an in-
flammatory chemokine that is widely secreted from natural
killer cells, T cells, fibroblasts, epithelial cells, and platelets
[30] and promotes chemotaxis on cells involved in the
immune/inflammatory response [31]. Studies demon-
strated that CCL5 is related to certain tumor cells, such as
malignant melanoma cells [32], ovarian [33], prostate [34],
and breast cancer cells [35]. &e exact functions of CCL5 in
tumor biology are still unclear. CCL5 production is rele-
vant to inducing proper immune responses against tumors
[36]. &e current research showed that CCL5 promotes
tumor migration and invasion. CCL5 secreted by tumor
cells and other cells in the breast cancer tumor microen-
vironment can recruit tumor-associated macrophages into
the tumor microenvironment [31]. Evidence on the direct
relationship between CCL5 and neuroblastoma is still
lacking and requires further study. CD69, a type II gly-
coprotein known to regulate inflammation through T-cell
migration and retention in tissues, plays an important role
in inducing the exhaustion of tumor-infiltrating T cells
[37]. CD69 expression is readily upregulated upon acti-
vation in most leukocytes, which mainly underlies its
widespread use as a marker of activated lymphocytes and
NK cells [38]. Mita et al. reported that the use of anti-CD69
monoclonal antibodies to treat tumor-bearing mice sig-
nificantly reduced tumor-infiltrating T-cell failure and
enhanced protection against metastasis, indicating the
efficacy of anti-CD69 antibodies in the treatment of ma-
lignant tumors [37]. CD69 expression is associated with
hypoxia in the tumor microenvironment [39]. &e research
on the relationship between CD69 and tumors is still
scarce, is still in infancy, and needs more in-depth research.
TLR7 and TLR8 are phylogenetically and structurally
closely related members of the TLR family; together with
TLR9, they constitute one of the six major TLR clades [40].
TLR8 has been identified as a natural receptor for single-
stranded RNA and is thought to act as an effective activator
of the innate immune response after viral infection [41–43].
TLR8 is the only TLR that has been shown to be necessary
and sufficient to reverse the suppressive function of Treg
cells, resulting in strong tumor-suppressive effects [44].
Numerous reports have described the Toll-like receptor
(TLR) expression in the tumor microenvironment as it
relates to cancer progression, as well as their involvement
in inflammation [45]. Inflammation triggered by TLR
signaling can directly influence tumor-induced senescence
in tumor microenvironments, and the effects are variable
depending on different TLR signaling and tumor types
[46].

In this study, GSE85047 and GSE49710 cohorts were
used for the screening tools for prognostic genes. We
screened the prognostic value of these 64 genes based on the
cohorts, of which 14 genes were identified as prognostic
genes. ARHGAP15, ABCA9, CCL19, SLAMF8, and CD1C
could predict prognosis independently. We then conducted
a small-scale review of these 14 genes, finding IL7R, CCL19,
and GZMA have been demonstrated having experimental
evidence with the progression of neuroblastoma by the
previous research [15–17], while no gene has been experi-
mentally confirmed having roles in prognosis to neuro-
blastoma. Several gene expression studies indicate that IL7
has increased expression in NB specifically in tumors with a
better prognosis, making IL7 a key candidate for this soluble
factor. Prasad’s finding implicated IL7 within the Schwan-
nian stroma of the neuroblastoma tumor architecture as
having a paracrine signaling effect on neighboring neuro-
blasts which may provide the antiproliferative and differ-
entiation signals postulated [15]. Walker and colleagues
found that changes in the CCL19 signal transduction
pathway can lead to defects in the migration of dendritic
cells in neuroblastoma, which in turn affects tumor pro-
gression [16]. Yarmarkovich demonstrated that GZMA has a
strong correlation with T-cell factors, and GZMA is very
active in the neuroblastoma tumor microenvironment [17].
Most of the prognostic genes obtained in our study have not
been clarified the mechanism in neuroblastoma, and more
efforts need to be implemented in the future.

5. Conclusion

In summary, by applying ESTIMATE algorithm, andmining
from ArrayExpress dataset and other two independent GEO
cohorts, we got 14 prognostic genes (ABCA6, SEPP1,
SLAMF8, GPR171, ABCA9, ARHGAP15, IL7R, HLA-DPB1,
GZMA, GPR183, CCL19, ITK, FGL2, and CD1C) having the
capacity to illustrate the prognosis of neuroblastoma pa-
tients. Besides, ARHGAP15, ABCA9, CCL19, SLAMF8, and
CD1C had independent prognostic value. Interestingly, only
3 of the 14 genes have been previously experimentally
identified to be involved in the progression of neuroblas-
toma. It would be anticipated to test whether this set of genes
can provide better survival prediction capabilities than in-
dividual genes. More efforts on the further research of the 14
genes may reveal a potential relationship among tumor
microenvironment and neuroblastoma prognosis in a novel
and comprehensive means.
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