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Abstract
Given graphs F,H and G, we say that G is (F,H)v-Ramsey if

every red/blue vertex coloring of G contains a red copy of F
or a blue copy of H. Results of Łuczak, Ruciński and Voigt,

and Kreuter determine the threshold for the property that the

random graph G(n, p) is (F,H)v-Ramsey. In this paper we con-

sider the sister problem in the setting of randomly perturbed
graphs. In particular, we determine how many random edges

one needs to add to a dense graph to ensure that with high

probability the resulting graph is (F,H)v-Ramsey for all pairs

(F,H) that involve at least one clique.
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1 INTRODUCTION

For 𝓁 ∈ N, a sequence of (not necessarily distinct) graphs H1,… ,H𝓁 , and a graph G, we say that

G is (H1,… ,H𝓁)v-Ramsey if for every 𝓁-coloring of the vertices of G, there is some i ∈ [𝓁] for

which G contains a copy of Hi whose vertices are all colored in the ith color. Similarly, we say G is

(H1,… ,H𝓁)-Ramsey if for every 𝓁-coloring of the edges of G, there is some i ∈ [𝓁] for which G
contains a copy of Hi whose edges are all colored in the ith color. In the case when 𝓁 = 2 we take

the convention that the colors used are red and blue. If H1 = · · · = H𝓁 = H we write, for example,

(H1,… ,H𝓁)v-Ramsey as (H,𝓁)v-Ramsey.

The classical question in Ramsey theory is to establish the smallest n ∈ N such that the com-

plete graph Kn on n vertices is (H1,… ,H𝓁)-Ramsey. In general, by Ramsey’s theorem such an n is

known to always exist, but relatively few such Ramsey numbers are known precisely. In contrast to
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this, the analogous question in the setting of vertex colorings is completely trivial. Indeed, the pigeon-

hole principle implies Kn is (H1,… ,H𝓁)v-Ramsey if n = v(H1) + · · · + v(H𝓁) − 𝓁 + 1, while it is not

(H1,… ,H𝓁)v-Ramsey if n is any smaller.

1.1 Vertex Ramsey properties of random graphs

On the other hand, vertex Ramsey questions are natural in the setting where the host graph is sparser. In

particular, in the early 1990s Łuczak, Ruciński and Voigt [20] investigated vertex Ramsey properties

of random graphs. Recall that the random graph G(n, p) has vertex set [n] ∶= {1,… , n} and each edge

is present with probability p, independently of all other choices. To state their result we must introduce

the notion of the 1-density of a graph.

Definition 1.1 (1-density). For a graph H, the 1-density of H is defined to be

m1(H) ∶= max

{
eJ

vJ − 1
∶ J ⊆ H, vJ ≥ 2

}
,

where here eJ and vJ denotes the number of edges and vertices in J respectively.

The following result shows that the 1-density of H is the parameter that governs the threshold for

the property that G(n, p) is (H,𝓁)v-Ramsey. Recall that an event occurs in G(n, p) with high probability

(w.h.p.) if its probability tends to 1 as n → ∞.

Theorem 1.2 (Łuczak, Ruciński and Voigt [20]). Let 𝓁 ≥ 2 and let H be a graph with at least one
edge and that is not a matching if𝓁 = 2. Then there exist constants c,C > 0, such that if p ≥ Cn−1∕m1(H),
then w.h.p. G(n, p) is (H,𝓁)v-Ramsey and if p ≤ cn−1∕m1(H), then w.h.p. G(n, p) is not (H,𝓁)v-Ramsey.

Intuitively, Theorem 1.2 states that a typical “sparse” n-vertex graph, that is, one with density at

most cn−1∕m1(H), is not (H,𝓁)v-Ramsey; while a typical “dense” n-vertex graph, that is, one with density

at least Cn−1∕m1(H), is (H,𝓁)v-Ramsey.

The following result of Kreuter [17] provides an asymmetric generalization of Theorem 1.2. To

state it we require an asymmetric version of the 1-density.

Definition 1.3 (Kreuter densities). Given two graphs F and H with at least one edge, such that

m1(F) ≤ m1(H) we define

mK(F,H) ∶= max

{
m1(F) + eJ

vJ
∶ J ⊆ H, vJ ≥ 2

}
.

Note that simple calculations imply that m1(F) ≤ mK(F,H) ≤ m1(H) and thus if m1(F) = m1(H)
then mK(F,H) is also the same value.

Theorem 1.4 (Kreuter [17]). Let 𝓁 ≥ 2 and H1,… ,H𝓁 be graphs such that m1(H1) ≤ … ≤ m1(H𝓁).
Suppose further that H𝓁−1 and H𝓁 contain at least one edge and H𝓁 is not a matching if 𝓁 = 2. Then
there exist constants c,C > 0 such that

• if p ≥ Cn−1∕mK (H𝓁−1,H𝓁), then w.h.p. G(n, p) is (H1,… ,H𝓁)v-Ramsey;
• if p ≤ cn−1∕mK (H𝓁−1,H𝓁), then w.h.p. G(n, p) is not (H1,… ,H𝓁)v-Ramsey.
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Note that there has been significant interest in (edge) Ramsey properties of random graphs also.

See [24] for an analog of Theorem 1.2 in this setting and, for example, [15,21] for results on asymmetric

Ramsey properties of random graphs.

1.2 Randomly perturbed graphs

Theorems 1.2 and 1.4 give us information on the vertex Ramsey properties of typical graphs of a

given density. In this paper, we are interested in measuring how far away a dense graph is from having

a given vertex Ramsey property. The model of randomly perturbed graphs, introduced by Bohman,

Frieze and Martin [4], provides a framework for studying such questions. In their model one starts with

a dense graph and then adds a given number of random edges to it. A natural problem in this setting is

to determine how many random edges are required to ensure that the resulting graph w.h.p. satisfies a

given property.

Over recent years there has been a wealth of research in the area of randomly perturbed graphs,

including results on embedding (spanning) subgraphs (e.g., Hamilton cycles, spanning trees and sub-

graphs of bounded degree) in such graphs (see e.g., [2–6, 8, 9, 13, 18, 19, 22]). In 2006, Krivelevich,

Sudakov and Tetali [19] initiated the study of (edge) Ramsey properties of randomly perturbed graphs.

Combining their work with recent results of the first and third authors [7] and of Powierski [23], we

now know the number of random edges one needs to add to an n-vertex graph of positive density to

w.h.p. ensure the resulting graph is (Kr,Ks)-Ramsey for all values of (r, s), except for the case when

r = 4 and s ≥ 5. See [7] for other results on this topic.

In this paper, we focus on vertex Ramsey properties of randomly perturbed graphs; in particular we

resolve the (Kr,H)v-Ramsey problem for r ≥ 2 and arbitrary H. To state our results we first introduce

the following notation.

Definition 1.5. Fix some 𝑑 ∈ [0, 1]. Then for a pair of graphs (F,H), we say that p = p(n) is a

perturbed vertex Ramsey threshold function for the pair (F,H) at density 𝑑 if:

(i) For any q(n) = 𝜔(p(n)) and any sequence (Gn)n∈N of graphs of density1 at least 𝑑 with vGn = n
for each n ∈ N, with high probability Gn ∪ G(n, q) is (F,H)v-Ramsey.

(ii) There exists a sequence of n-vertex graphs (Gn)n∈N of density at least 𝑑, such that if q(n) = o(p(n)),
then with high probability Gn ∪ G(n, q) is not (F,H)v-Ramsey.

We denote by p(n;F,H, 𝑑), the2 perturbed vertex Ramsey threshold function for (F,H) at density 𝑑.

If there exist C, c > 0 such that q(n) ≥ Cp(n) suffices for (i) and q(n) ≤ cp(n) suffices for (ii), we say

that the threshold function is sharp. If it is the case that every sufficiently large graph of density at

least 𝑑 is (F,H)v-Ramsey then we define p(n;F,H, 𝑑) ∶= 0.

Note we can analogously define the perturbed vertex Ramsey threshold function for the 𝓁-colored

case; that is, given graphs H1,… ,H𝓁 we define the threshold p(n;H1,… ,H𝓁 , 𝑑) in the natural way. If

H1 = · · · = H𝓁 = H we write p(n;H1,… ,H𝓁 , 𝑑) as p(n;H,𝓁, 𝑑).

Example 1.6. Casting Theorem 1.4 into this notation, we have that p(n;F,H, 0) = n−1∕mK (F,H), for a

pair of graphs F,H with m1(F) ≤ m1(H) (when E(F) is nonempty and H is not a matching) and this

threshold is sharp.

1Here we refer to the standard density of G. That is 𝑑(G) = eG

(vG
2 )

.

2As is the case in random graph theory, the threshold function is not uniquely determined but rather determined up to constants.
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Before we state our main result it is instructive to consider the following result of Krivelevich,

Sudakov and Tetali [19], which determines how many random edges need to be added to a dense

graph to force the appearance of H as a subgraph. In our vertex-Ramsey framework, this corresponds

to making the graph (K1,H)v-Ramsey. The corresponding threshold probability requires the following

definition.

Definition 1.7. For a graph H, the appearance threshold for H in the random graph G(n, p) is

determined by the parameter

m(H) ∶= max

{
eJ

vJ
∶ J ⊆ H, vJ > 0

}
.

Now, given any k ∈ N, let

m(H; k) ∶= min
H1∪···∪Hk=H;

max
i∶Hi≠∅

m(Hi),

where the minimum is over all partitions of H into k induced subgraphs.3

Suppose that G is a graph of density more than 1 − 1∕(k − 1) and we wish to find a copy of H in

G ∪ G(n, p). Informally, we partition H into k parts H1,… ,Hk that are as sparse as possible, with the

idea being to use the (few) edges of G(n, p) to build the parts Hi, and then find the edges between parts

in the dense graph, thereby completing a copy of H. Note that m(H; k) = 0 if and only if 𝜒(H) ≤ k, in

which case we can partition H into k independent sets. Then we do not require any random edges; the

dense graph itself will already contain H.

Theorem 1.8 (Krivelevich, Sudakov and Tetali [19]). Let 0 < 𝑑 < 1 be fixed and let k ≥ 2 be the
unique integer satisfying 1 − 1∕(k − 1) < 𝑑 ≤ 1 − 1∕k. Let H be a graph with at least one edge. Then

p(n;K1,H, 𝑑) = n−1∕m(H;k),

where here, and throughout, we follow the convention that n−1∕0 ∶= 0.

Our main result (Theorem 1.11) essentially resolves the (H1,H2)v-Ramsey problem for randomly

perturbed graphs for all pairs (H1,H2) involving at least one clique. To state this result we define some

notation capturing the probabilistic vertex Ramsey thresholds for all pairs of graphs.

Definition 1.9. Given graphs F and H, we write

𝛽(F,H) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

mK(F,H) if m1(F) ≤ m1(H), e(F) ≥ 1,

mK(H,F) if m1(H) < m1(F), e(H) ≥ 1,

m(H) if e(F) = 0, e(H) ≥ 1,

m(F) if e(H) = 0, e(F) ≥ 1,

0 if e(F) = e(H) = 0.

3By a partition of H into k induced subgraphs, we mean there are k (possibly empty) graphs H1,… ,Hk such that each Hi is an

induced subgraph of H, the Hi are all pairwise vertex-disjoint, and V(H) = V(H1) ∪ · · · ∪ V(Hk).
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That is, 𝛽(F,H) is defined so that n−1∕𝛽(F,H) is the threshold for the property that G(n, p) is

(F,H)v-Ramsey. We can now define our perturbed vertex Ramsey threshold, which is an extension of

Definition 1.7.

Definition 1.10. Given r ∈ N, k ≥ 2 and a graph H, define

m∗(Kr,H; k) ∶= max
r1+···+rk≤r−1;

min
H1∪···∪Hk=H;

max
i∶Hi≠∅

𝛽(Kri+1,Hi).

Here the first maximum is taken over all tuples (r1,… , rk) of nonnegative integers that sum to at most

r − 1; the minimum is over all partitions of H into k induced subgraphs; the final maximum is over all

i such that Hi contains at least one vertex.

Theorem 1.11. Let 0 < 𝑑 < 1 be fixed and let k ≥ 2 be the unique integer satisfying 1−1∕(k−1) <
𝑑 ≤ 1 − 1∕k. Given any r ∈ N and any graph H we have

p(n;Kr,H, 𝑑) = n−1∕m∗(Kr ,H;k).

Note that Theorem 1.11 is general in the sense that it covers the full range of densities 𝑑 ∈ (0, 1)
(not just small values of 𝑑). Further, Theorem 1.8 is precisely the r = 1 case of Theorem 1.11.

By computing the values of m∗(Ks,Kt; 2) one obtains from Theorem 1.11 the following more

explicit result for pairs of cliques, where for a ≤ b ∈ N, we define Ψ(n; a, b) ∶= n− 1

mK (Ka ,Kb) .

Corollary 1.12. Let 3 ≤ s ≤ t, 𝑑 ∈ (0, 1∕2). Then

p(n;Ks,Kt, 𝑑) =

⎧⎪⎪⎨⎪⎪⎩
Ψ(n; t − 1, t − 1) = n− 2

t−1 if s = t; (i)
Ψ(n; t − s, s) if t+1

2
≤ s < t; (ii)

Ψ(n; s, t∕2) if 3 ≤ s ≤ t∕2 and t = 2t′ is even; (iii)
Ψ(n; ⌊ s+1

2
⌋, t+1

2
) if 3 ≤ s ≤ (t − 1)∕2 and t = 2t′ − 1 is odd. (iv)

Moreover, these thresholds can be taken to be sharp whenever s ∉ {t∕2, t}.

Although Theorem 1.11 does not always guarantee sharp thresholds, by analyzing its proof one

can see that, in all cases except when s ∈ {t∕2, t}, the threshold in Corollary 1.12 is determined by

Theorem 1.4, which does provide a sharp result. Hence, we obtain the moreover part of the corollary.

On the other hand, when s ∈ {t∕2, t}, the threshold probability is not sharp. Indeed, this is since the

threshold comes from the appearance of a subgraph, which does not have a sharp threshold.4

Recall that in the random graph setting one needs Θ(n2−1∕mK (Ks,Kt)) random edges to ensure G(n, p)
is (Ks,Kt)v-Ramsey. Corollary 1.12 demonstrates that one needs far fewer random edges to make any

dense n-vertex graph (Ks,Kt)v-Ramsey. However, the precise number of random edges depends (in a

rather subtle way) on arithmetic properties of the pair (s, t).

4More precisely, consider the case when s = t. Let G be the complete balanced bipartite graph on n vertices with classes A and

B. Given any constant C, define p = CΨ(n; t − 1, t − 1). If we color A red and B blue, G ∪ G(n, p) has a monochromatic copy

of Kt if and only if G(n, p)[A] or G(n, p)[B] contains Kt as a subgraph. The probability of this occurring is bounded away from

both 0 and 1, showing the lack of a sharp threshold. The case when s = t∕2 is similar.
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1.3 Some intuition for vertex Ramsey problems in randomly perturbed graphs

In this section our aim is to convince the reader that the vertex Ramsey problem for randomly perturbed

graphs is in general more subtle than its counterpart in the random graph setting.

In Theorem 1.2 the threshold is universal in the following sense: the threshold for G(n, p) being

(H,𝓁)v-Ramsey is the point above which every linear sized subset of G(n, p) w.h.p. contains a copy of

H. It is easy to see that this property guarantees a graph is (H,𝓁)v-Ramsey (as one of the color classes

in any vertex 𝓁-coloring will have linear size). Thus, crucially the “reason” for the location of the

threshold is the same for every graph H (that is not a matching). Moreover, this reason is independent

of the number of colors used.

Similarly, the threshold in Theorem 1.4 is universal. Indeed, given any sequence of graphs

H1,… ,H𝓁 as in the theorem, the intuition behind the threshold for the property of G(n, p) being

(H1,… ,H𝓁)v-Ramsey is the same: the threshold is the point at which the expected number of

vertex-disjoint copies of H𝓁 is roughly the same order of magnitude as the maximal order of a H𝓁−1-free

subgraph of G(n, p). (See the discussion in [17].) Again this threshold does not depend on the number

𝓁 of colors.

On the other hand, the intuition behind where the parameter m∗(Kr,H; k) comes from is more

involved than the intuition for Theorems 1.2 and 1.4; we discuss this more when proving Theorem 1.11.

Moreover, the threshold for the perturbed vertex Ramsey problem can depend on the number of colors.

Indeed, we saw in Corollary 1.12 that for every r ≥ 3 and 𝑑 ∈ (0, 1∕2) the number of random edges

required to ensure an n-vertex graph of density 𝑑 is w.h.p. (Kr, 2)v-Ramsey is significantly smaller

than p(n;Kr, 2, 0); that is, significantly smaller than the number of edges needed to ensure G(n, p) is

w.h.p. (Kr, 2)v-Ramsey. On the other hand, given any 𝓁 ≥ 4, we actually have that p(n;Kr,𝓁, 𝑑) =
p(n;Kr,𝓁, 0) for all 𝑑 ∈ (0, 1∕2]. In fact, this phenomenon is part of a more general observation.

Observation 1.13. Let 𝓁 ≥ 4 and H be graph with at least one edge. Let 𝑑 ∈ (0, 1∕2]. Then

p(n;H,𝓁, 𝑑) = n−1∕m1(H) = p(n;H,𝓁, 0).

Indeed, if p ≥ Cn−1∕m1(H) for some constant C, Theorem 1.2 shows that G(n, p) itself will be

(H,𝓁)v-Ramsey w.h.p., and hence this is an upper bound on the perturbed vertex Ramsey threshold.

For the lower bound, take G to be a complete balanced bipartite n-vertex graph with vertex classes

A and B. By Theorem 1.2, if p ≤ cn−1∕m1(H) for some constant c, then with high probability both

G(n, p)[A] and G(n, p)[B] are not (H, 2)v-Ramsey. This therefore implies there exists a 4-coloring of

the vertices of G ∪ G(n, p) without a monochromatic copy of H.

Given 𝓁, k ∈ N with 𝓁 ≥ 2k, and any 𝑑 ∈ (0, 1 − 1∕k], notice that by considering the complete

balanced k-partite n-vertex graph, one can similarly conclude that p(n;H,𝓁, 𝑑) = p(n;H,𝓁, 0) for any

graph H with at least one edge.

1.4 Notation

Throughout the paper we omit floors and ceilings whenever this does not affect the argument. Further,

we use standard graph theory and asymptotic notation. In particular, for a graph G, v(G) denotes the

number of vertices of G and e(G) the number of edges of G; note that we often condense this notation

to vG and eG respectively. We say a graph is nonempty if it has a nonempty vertex set, and unless

otherwise specified, we shall take the vertex set to be [vG] ∶= {1, 2,… , vG}. Given a hypergraph H
and a set I ⊂ V(H), degH(I) denotes the number of edges of H that contain the set I.
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Given a set X and r ∈ N we write
(X

r

)
for the set of all subsets of X of size r. Similarly, if V is

a set of vertices and F is a graph, we denote by
(V

F

)
the set of all possible copies of F supported on

vertices in V . Here we consider these copies of F to be distinct if they have distinct sets of edges, so|||(VF)||| = (|V|vF

) vF!
aut(F)

, where aut(F) is the number of automorphisms of F. We also use the notation
(G

F

)
to denote the set of copies of F in a graph G.

1.5 Organization of the paper

In Section 2 we prove Theorem 1.11, handling the 0-statement in Section 2.1 and the 1-statement in

Section 2.2. In the latter section, we shall require a “robust” version of the 1-statement of Theorem 1.4

(Theorem 2.8), which we prove in Section 3. Finally, in Section 4 we give some concluding remarks.

2 PROOF OF THE PERTURBED THRESHOLD

In this section we prove Theorem 1.11. We present the arguments for the 0- and 1-statements in separate

subsections below.

2.1 The 0-statement

Here we will show the existence of a graph G of density at least 𝑑 such that, when p = o
(
n−1∕m∗(Kr ,H;k)),

with high probability the vertices of G∪G(n, p) can be two-colored without a red copy of Kr or a blue

copy of H.

2.1.1 Kreuter’s Theorem for families
In showing the existence of a good coloring, we will use the 0-statement of Theorem 1.4, which shows

that G(n, p) can be vertex-colored while avoiding monochromatic subgraphs. However, in our applica-

tion, we will have to avoid several subgraphs in the same color class, and therefore need the following

generalization of Theorem 1.4 to families of graphs.

Proposition 2.1. Let  and  be two finite families of nonempty graphs, and let

m = mK( ,) ∶= min
F∈ ,H∈

𝛽(F,H).

If p = o
(
n−1∕m), then with high probability there is a red/blue-coloring of the vertices of G(n, p)

without a red copy of any graph F ∈  and without a blue copy of any H ∈ .

We remark that Proposition 2.1 is tight, since if p = 𝜔
(
n−1∕m), then with high probability G(n, p)

is (F,H)v-Ramsey by Theorem 1.4, where (F,H) is the minimizing pair in the definition of m.

The proof of Proposition 2.1 is nearly identical to the proof of the 0-statement of Theorem 1.4; that

is, the case when both  and  each contain a single graph. We therefore simply sketch the key idea

here and refer the reader to [17] for the details.

First we handle the degenerate cases. Suppose one of the families, say  , contains a graph F with

no edges. The parameter 𝛽(F,H) is then the appearance threshold for the graph H in G(n, p), and so

if p = o
(
n−1∕m), we have that with high probability G(n, p) has no copy of any graph from , and so

we can color all its vertices blue. The other degenerate case is when all graphs in  and  have edges,

but both families contain matchings, say F and H. In this case, 𝛽(F,H) = 1. If p = o
(
n−1
)
, then with
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high probability G(n, p) is bipartite. We can thus two-color its vertices such that each color class is an

independent set, and thus has no copy of any graph from  or .

We may therefore assume that every graph in  has edges, and that  does not contain a matching,

bringing us to the setting of Theorem 1.4. The proof now follows a similar scheme to other 0-statement

proofs in random Ramsey settings, for example, [15]. One begins by supposing for a contradiction

that you cannot red/blue-color the graph G(n, p) avoiding red copies of graphs in  and blue copies of

graphs in . Using this fact one can define some set  of graphs obtained by “gluing together” copies

of graphs in  and in  in certain ways, and show that G(n, p) must contain a graph in . In [17] 

is defined by way of an algorithm that finds a copy of some G ∈  in G(n, p). In order to do this they

pass to a “critical” subgraph G′ of G(n, p) which is minimal (in terms of copies of graphs in  and )

with respect to the property of not being able to 2-color G′ avoiding red copies of graphs in  and blue

copies of graphs in. In G′, one can see that for every copy T of a graph in or and every vertex v of

T , there is a copy of a graph in the other family which intersects T exactly at the vertex v [17, Claim 1].

The algorithm [17, Procedure Hypertree] which builds a subgraph J of G′ is then defined by repeatedly

adding copies of some F ∈  or H ∈ , so that the copy intersects the previous copy in exactly one

vertex. The proof then works by analyzing this procedure and the graphs in  that can be found using

this procedure. In particular, one keeps track of a function f (i) which controls the exponent of the

expected number of Ji, where Ji is the graph found in G′ after i steps of the algorithm. The procedure

will stop if the f (i) gets too small or if the procedure continues for roughly log n steps. This will lead to a

contradiction, as the graphs in  which are the possible outcomes of this procedure are all dense graphs

and are either large or satisfy a very strong density condition [17, Claim 5] and hence are very unlikely

to occur in G(n, p) at this density. One can also bound the size of  [17, Claim 6] so that a union bound

will guarantee that with high probability no such graph in  is found in G(n, p). In the calculations

involved in the analysis [17, Claims 2,3 and 4] of the effect on f in each step of the algorithm, there are

some minor changes in our setting as we have to consider the possibility of any member of our family

being added by the algorithm to update the Ji. However, it can be seen that adding a “denser” graph

than the graph which is in the minimizing pair for the definition of m will only help the situation, in

that the function f can only decrease further, meaning that the resulting Ji is at most as likely to appear

in G(n, p) as the Ji obtained by adding the minimizing graph as in the calculations in [17].

2.1.2 Proof of the 0-statement
We may assume that m∗(Kr,H; k) > 0, as otherwise there is no 0-statement to prove. We take the dense

graph Gn to be the balanced complete k-partite graph on n vertices, which has density at least 1 − 1

k
,

and let V1,V2,… ,Vk be the k vertex classes.

Let (r1,… , rk) be the maximizing vector in Definition 1.10. For each i ∈ [k], we define a family

of nonempty subgraphs of H by

i =
{

H′ ∶ ∅ ≠ H′ ⊆ H, 𝛽(Kri+1,H′) ≥ m∗(Kr,H; k)
}
.

Claim 2.2. For each i, H ∈ i.

Proof. Suppose H ∉ j for some j ∈ [k], and consider the partition H = H1 ∪ H2 ∪ · · · ∪ Hk, where

Hi = H if i = j and Hi = ∅ otherwise. We then have

max
i∶Hi≠∅

𝛽(Kri+1,Hi) = 𝛽(Krj+1,H) < m∗(Kr,H; k),

which contradicts the definition of m∗(Kr,H; k). ▪
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In particular, each of the families i is nonempty. We can now describe, for each i ∈ [k],
our coloring of the vertices in Vi. Let  = {Kri+1} and  = i. By definition of i, we have

min
F∈ ,H′∈i

𝛽(F,H′) ≥ m∗(Kr,H; k). Since p = o
(
n−1∕m∗(Kr ,H;k)) = o

(|Vi|−1∕m∗(Kr ,H;k)), it follows from

Proposition 2.1 that with high probability we can color Vi such that G(n, p)[Vi] has neither a red Kri+1

nor a blue graph from i. The following claim shows this gives a valid coloring of Gn ∪ G(n, p),
completing the proof of the 0-statement.

Claim 2.3. With this coloring, Gn ∪ G(n, p) has neither a red Kr nor a blue H.

Proof. By construction, the largest red clique in Vi is of order at most ri. The largest red clique in

V(Gn∪G(n, p)) = ∪iVi therefore has at most
∑

i ri ≤ r−1 vertices, and hence the coloring is red-Kr-free.

Suppose there was a blue copy of H, and let H = H1 ∪ · · · ∪ Hk be the partition of H induced by

the parts Vi. By definition of m∗(Kr,H; k), there is some part i ∈ [k] with 𝛽(Kri+1,Hi) ≥ m∗(Kr,H; k)
(and Hi ≠ ∅). It then follows that Hi ∈ i, but our coloring of G(n, p)[Vi] avoids blue copies of any

graph in i, contradicting the existence of this blue copy of H. ▪

2.2 The 1-statement

To prove the 1-statement of Theorem 1.11, we need to show that whenever p = 𝜔
(
n−1∕m∗(Kr ,H;k)),

Gn ∪ G(n, p) will with high probability be (Kr,H)v-Ramsey. When Gn is the complete k-partite graph,

as it was in the proof of the 0-statement, this amounts to finding the sparse parts of the graphs in

G(n, p)[Vi], which can then be joined together since we have a complete k-partite graph.

However, in our more general setting, Gn is an arbitrary graph of density 𝑑 > 1 − 1∕(k − 1).
By employing Szemerédi’s Regularity Lemma [25], we shall find some structure in Gn that mimics

the behavior of a complete k-partite graph. These structural results, together with probabilistic tools

concerning the random graph G(n, p), are collected in the following subsections, before being used in

the proof of Theorem 1.11 in Sections 2.2.3 and 2.2.4.

2.2.1 Structure in dense graphs
Our application of the Regularity Lemma follows the standard lines. We present here the neces-

sary definitions and properties of regular pairs, referring the reader to the survey of Komlós and

Simonovits [16] for further details.

Definition 2.4. Given 𝜀 > 0, a graph G and two disjoint vertex sets A,B ⊂ V(G), the pair (A,B) is

𝜀-regular if for every X ⊆ A and Y ⊆ B with |X| > 𝜀 |A| and |Y| > 𝜀 |B|, we have |𝑑(X,Y) − 𝑑(A,B)| <
𝜀, where 𝑑(S,T) ∶= e(S,T)∕(|S| |T|) for any vertex sets S and T .

In essence, the edges between a regular pair “look random,” in the sense that they are very well

distributed. The next lemma showcases some beneficial properties of these regular pairs: small sets of

vertices typically have many common neighbors, and subsets of regular pairs inherit a large degree of

regularity. We omit the proofs of these facts, which can be found in [16].

Lemma 2.5. Let (A,B) be an 𝜀-regular pair in a graph G with 𝑑(A,B) = 𝑑.

(i) If 𝓁 ≥ 1 and (𝑑 − 𝜀)𝓁−1 > 𝜀, then|||{(x1,… , x𝓁) ∈ A𝓁 ∶ |∩iN(xi) ∩ B| ≤ (𝑑 − 𝜀)𝓁 |B|}||| ≤ 𝓁𝜀 |A|𝓁 .
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(ii) If 𝛾 > 𝜀, and A′ ⊂ A and B′ ⊂ B satisfy |A′| ≥ 𝛾 |A| and |B′| ≥ 𝛾 |B|, then (A′,B′) is an 𝜀′-regular
pair of density 𝑑′, where 𝜀′ ∶= max{𝜀∕𝛾, 2𝜀} and |𝑑′ − 𝑑| < 𝜀.

Szemerédi’s Regularity Lemma then famously asserts that the vertices of any sufficiently large

graph can be partitioned into a large but bounded number of parts, such that almost all pairs of parts

are 𝜀-regular. We shall not require the full strength of the Regularity Lemma, but only the following

corollary, which follows in combination with Turán’s Theorem [26].

Proposition 2.6. For every k ≥ 2 and 𝛼, 𝜀 > 0 with 𝛼 ≥ 6𝜀, there is some 𝜂 ∶= 𝜂(k, 𝛼, 𝜀) > 0 and
n0 ∶= n0(k, 𝛼, 𝜀) such that, if n ≥ n0 and G is an n-vertex graph of density at least 1 − 1∕(k − 1) + 2𝛼,
then there are pairwise disjoint vertex sets V1,… ,Vk ⊂ V(G) with |V1| = · · · = |Vk| ≥ 𝜂n such that,
for each 1 ≤ i < j ≤ k, the pair (Vi,Vj) is 𝜀-regular of density at least 𝛼.

2.2.2 Probabilistic tools
While Proposition 2.6 gives us the desired structure in the dense graph, we also require a couple of

results about the random graph. The first of these counts the number of copies of a fixed graph H in

G(n, p). Following [10], we define the following parameter for H and p = p(n),

Φ(H, p) = ΦH,p ∶= min
J⊆H,eJ>0

nvJ peJ . (2.1)

The lemma below shows that we are very unlikely to have significantly fewer copies of H than expected.

Lemma 2.7 (Janson’s inequality). Let H be a nonempty graph, p = p(n) and  ⊆
([n]

H

)
be some

family of Ω(nvH ) potential copies of H on [n]. Letting X be the random variable that counts the number
copies of H in  which appear in G(n, p), we have that

P[X ≤ 3E[X]∕4] ≤ exp(−Ω(ΦH,p)).

The proof of this lemma follows almost immediately from the main result of [11] (see also [10,

Theorem 2.14]). Indeed, for each potential copy S ∈  of H, let XS be the indicator random variable

for the event that S appears in G(n, p). Then X =
∑

S∈ XS and [10, Theorem 2.14] implies that

P[X ≤ 3E[X]∕4] ≤ exp

(
−E[X]2

32Δ

)
,

with

Δ ∶=
∑

(S,S′)∈2∶E(S)∩E(S′)≠∅
E[XSXS′ ].

Lemma 2.7 then follows upon noticing thatΔ = O
(
E[X]2∕ΦH,p

)
as done, for example, in [10, Theorem

3.9].

Second, we shall make use of the vertex Ramsey properties of G(n, p). However, a couple of com-

plications arise in our application. We shall need the monochromatic subgraphs we find to interact

well with the deterministic base graph, and shall therefore require them to be suitably well-located.

Moreover, we will need to appeal to the Ramsey properties of the random graph over various vertex

subsets. The following theorem is thus a “robust” version of the 1-statement of Theorem 1.4, which

guarantees the existence of “good” monochromatic copies of subgraphs, and shows that the Ramsey

properties hold with sufficiently high probability to be applied several times.
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Theorem 2.8. Let F and H be graphs with 0 < m1(F) ≤ m1(H). Then there exist 𝛿0, c > 0 such that
for all 0 < 𝛿 < 𝛿0, t = t(n) ≤ exp(nc) and 𝜂0 > 0, there exists a C > 0 such that the following holds.
Suppose that

 = {(Ui,i,i) ∶ i ∈ [t]}

is a collection of triples such that for each i, Ui ⊆ [n] with |Ui| ≥ 𝜂0n, i ⊆
(Ui

F

)
with |||(Ui

F

)
⧵ i
||| ≤

𝛿|Ui|vF and i ⊆
(Ui

H

)
with |||(Ui

H

)
⧵i
||| ≤ 𝛿|Ui|vH . Then, if p ≥ Cn−1∕mK (F,H), the following holds with

high probability in G(n, p). For any two-coloring of [n] and every i ∈ [t], there is either a red copy
S ∈ i of F or a blue copy T ∈ i of H.

Notice that, unlike in Theorem 1.4, Theorem 2.8 allows for both F and H to be matchings. The

proof is similar to that of the 1-statement of Theorem 1.4, but this strengthened version requires a

few additional ideas and some careful analysis of the failure probabilities at each step. We defer these

details until Section 3.2, and instead complete the proof of Theorem 1.11 next.

2.2.3 An algorithm for the 1-statement
Recall that to prove the 1-statement of Theorem 1.11, we need to show that whenever Gn is an n-vertex

graph of density 𝑑 > 1 − 1∕(k − 1), and p = 𝜔
(
n−1∕m∗(Kr ,H;k)), then with high probability G(n, p) is

such that every vertex coloring of Gn ∪ G(n, p) gives rise to a red copy of Kr or a blue copy of H. To

do this, we use an algorithm that, given a vertex coloring of Gn ∪ G(n, p), returns one of the desired

monochromatic subgraphs. We motivate and describe the algorithm in this subsection, while in the

next we prove that, with high probability, G(n, p) is such that the algorithm succeeds for every vertex

coloring.

By Proposition 2.6, we can find a k-tuple of vertex sets V1,V2,… ,Vk such that each pair is

𝜀-regular and reasonably dense. We then aim to use the Ramsey properties of G(n, p)[Vi] to find suitable

monochromatic subgraphs that can be pieced together to form a red Kr or a blue H.

However, a naïve application of Theorem 1.4 will not work. Indeed, by definition of m∗(Kr,H; k),
there is some vector (r1,… , rk) with

∑
i ri ≤ r − 1 and some partition H = H1 ∪ · · · ∪ Hk such that

p = 𝜔(n−1∕𝛽(Kri+1,Hi)) for all i with Hi ≠ ∅. We can therefore expect that, for each i, we find a red Kri+1

or a blue Hi in any vertex coloring of G(n, p)[Vi].
If these monochromatic subgraphs were all of the same color, then we could hope to combine them

to form a red clique (which would in fact be of size r + k − 1, significantly larger than required) or a

blue copy of H. However, we could well find red cliques in some parts and blue subgraphs in others,

which would leave us unable to complete either of the desired graphs.

Instead, we must use the full power of Definition 1.10, which provides a suitable partition H =
H1 ∪ · · · ∪ Hk not just for some vector (r1,… , rk), but rather for all vectors (r1,… , rk) satisfying∑

i ri ≤ r − 1. We shall therefore proceed in stages, incrementally either increasing the size of a red

clique or finding the next piece needed for a blue copy of H. We let ri denote the size of the largest red

clique we have found in Vi thus far, starting with r⃗ = 0⃗.

Given the current vector r⃗, we let H = H1 ∪ · · · ∪ Hk be the corresponding minimizing partition

of H. We then go through the parts in turn, applying the (Kri+1,Hi)v-Ramsey property of G(n, p)[Vi]
to find a blue Hi or a red Kri+1. In the former case, we proceed to the next part. If we make it through

each of the k parts, we will have found all the parts Hi needed to build a blue copy of H.

Otherwise, in the latter case, we have increased the size of our red clique. We then update the vector

r⃗ and the corresponding partition of H, return to the first part V1, and resume the process. Since this

increases the size of our red clique, we will have built a red Kr if this latter case occurs r times.
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There are still technicalities that need to be dealt with—for instance, to ensure we can combine the

monochromatic structures we find, we will need to restrict ourselves to the common neighborhoods of

the parts we have already found. This further requires us to only consider subgraphs with many com-

mon neighbors in all other parts, which is why we need the more robust 1-statement of Theorem 2.8.

In the following subsection, we provide the formal details of this algorithm and use the tools we have

collected to prove that it runs successfully.

2.2.4 Proof of correctness
Given 𝛼 > 0 and p = 𝜔(n−1∕m∗(Kr ,H;k)), our goal is to show that for any n-vertex graph Gn of density

𝑑 ≥ 1 − 1∕(k − 1) + 2𝛼, the graph Gn ∪ G(n, p) is with high probability (Kr,H)v-Ramsey. Applying

Proposition 2.6 to Gn with some suitably small5 regularity parameter 𝜀 gives k pairwise-disjoint vertex

sets V1,V2,… ,Vk, such that each pair (Vi,Vj) is 𝜀-regular of density at least 𝛼. We initiate by setting

Uj = Vj for j ∈ [k]. The sets Ui will keep track of where we look to find certain subgraphs.

At several stages in the algorithm, we will, for some i, find a (constant sized) subgraph Γ ⊂

G(n, p)[Ui], and will then want to shrink all the other parts Uj to the common neighbors in Gn of the

vertices of Γ. We shall therefore call Γ popular (with respect to some choice of Uj ⊆ Vj for j ∈ [k])
if its vertices have at least ( 𝛼

2
)vΓ |Uj| common Gn-neighbors in each Uj, j ≠ i. Lemma 2.5 ensures that

most potential copies of Γ will be popular, and that when we shrink the sets Uj to their large common

neighborhoods, the pairs will remain 𝜀′-regular with density at least
𝛼′

2
. By choosing the initial value

of 𝜀 small enough, we can ensure that all subsequent values of 𝜀′ remain small.

We first find copies of the subgraphs of Kr and H that are likely to have appeared in G(n, p). Let t ∶=
max{s ∈ [r] ∶ m(Ks) ≤ m∗(Kr,H; k)} and let  ∶= {H[U] ∶ U ⊆ V(H),m(H[U]) ≤ m∗(Kr,H; k)}.

We then define the graph Γ to be the disjoint union of vH copies of Kt together with one copy of each

graph in . Then, for each i ∈ [k] in turn, find a popular copy Γi of Γ in G(n, p)[Ui], and shrink all

other parts Uj to the common neighbors of V(Γi) in Uj. Note that, at the end of this process, for all i
the graph Γi remains in the set Ui.

We can now start the procedure outlined in the previous subsection. Given an arbitrary red/blue

coloring of the vertices of Gn∪G(n, p), we shall denote by Ri the largest red clique found in G(n, p)[Ui]
thus far, initially setting Ri = ∅ for all i ∈ [k]. The vector r⃗ will be defined by ri ∶= vRi , so we begin

with r⃗ = 0⃗.

The outer loop of the algorithm runs as long as
∑

i ri ≤ r − 1, which means we have not yet

found a red Kr. In this case, we take the minimizing partition H = H1 ∪ · · · ∪ Hk for the vector r⃗ in

Definition 1.10, and try to find a blue copy of H according to this partition.

The inner loop of the algorithm runs over i ∈ [k]. If Hi = ∅, then there is nothing to find in

G(n, p)[Ui], and so we proceed to the next part. Otherwise, since, as we shall soon show, G(n, p)[Ui]
is robustly (Kri+1,Hi)v-Ramsey, we will find a popular blue Hi or a popular red Kri+1. If we have a blue

Hi, we let Bi be this copy of Hi, shrink all other parts Uj to the common neighbors of V(Bi), and then

proceed to the next part.

On the other hand, if we find a red Kri+1, then we have increased the size of our red clique. We

then set Ri to be this larger clique and shrink all other parts Uj to the common neighbors of V(Ri).
We update the vector r⃗, replacing ri with ri + 1, and then break the inner loop and proceed to the next

iteration of the outer loop (trying to find the new optimal partition of H, starting in U1).

5For our purposes, it suffices to take 𝜀 = 𝛿′

4k2rvH (r+2vH )

(
𝛼

2

)2krvH (r+2vH )
, where 𝛿′ is the minimum value of 𝛿0 from Theorem 2.8

when the graph F is a clique on at most r vertices and the graph H in the theorem is a subgraph of our given graph H.
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Since we shrink to common neighborhoods at each step, we ensure that the pieces we find in

G(n, p)[Vi] can be combined to form the graphs we need in Gn ∪ G(n, p). In particular, if the inner

loop were to run through all k steps, then ∪iBi would give a blue copy of H. On the other hand, each

iteration of the outer loop increases the size of our red clique, and after r iterations ∪iRi would give a

red Kr. Thus, after finitely many steps, the algorithm must return either a blue H or a red Kr. Moreover,

since the running time of the algorithm is bounded, the suitably small 𝜀 we required at the beginning

is some constant depending on r, k and H, independent of the actual course taken by the algorithm.

To complete the proof, we need to show that with high probability, G(n, p) is such that the algorithm

succeeds in finding all the necessary subgraphs at each step of the algorithm. Firstly, let us consider

the subgraphs Γi which we find at the beginning of the algorithm. If Γ is an independent set, clearly

one can find these popular copies. Otherwise, noting that m(Γ) ≤ m∗(Kr,H; k), Lemma 2.7 ensures

that we find these popular copies with high probability.

Now we show that with high probability G(n, p)[Ui] will always be robustly (Kri+1,Hi)v-Ramsey,

which we will mostly achieve through use of Theorem 2.8. However, this only applies when ri, e(Hi) ≥
1. For the degenerate cases, we will need to make use of the graphs Γi we found at the beginning.

Suppose first that ri = 0. By definition, we have m∗(Kr,H; k) ≥ 𝛽(Kri+1,Hi) = 𝛽(K1,Hi) = m(Hi),
and so Hi appears in Γi. Then either this copy of Hi is completely blue, or we find a red K1, and so

Γi ⊆ G(n, p)[Ui] is indeed (K1,Hi)v-Ramsey. The other case, when e(Hi) = 0, follows similarly. This

time we have m∗(Kr,H; k) ≥ 𝛽(Kri+1,Hi) = m(Kri+1), and so Γi contains vH copies of Kri+1. Either one

of them is completely red, in which case we are done, or we have vH blue vertices, which in particular

gives a blue copy of Hi.

This leaves us with the case when both Kri+1 and Hi have edges. Again, by definition, we have

m∗(Kr,H; k) ≥ 𝛽(Kri+1,Hi). Thus, since p = 𝜔(n−1∕m∗(Kr ,H;k)), Theorem 1.4 shows we should expect

G(n, p)[Ui] to be (Kri+1,Hi)v-Ramsey. However, we need this to be true for all sets Ui that could arise,

and also need to find popular monochromatic copies of Kri+1 or Hi, and thus we apply Theorem 2.8

instead.

Note that there is some constant s = s(r,H; k) such that the sets Ui that arise are the common

neighborhoods of a set of at most s vertices, and hence there are at most ns many possibilities for the

sequence (Ui ∶ i ∈ [k]). In particular, this is far fewer than the exp(nc) allowed by Theorem 2.8.

Moreover, as these are always neighborhoods of popular subgraphs, there is some constant 𝜂0 > 0 such

that |Ui| ≥ 𝜂0n.

Thus, given a set Γ ⊆
⋃

j Vj of at most s vertices, we let, for each j ∈ [k], Uj ⊆ Vj be the common

neighbors (in Gn) of Γ ⧵ Vj. Provided |Uj| ≥ 𝜂0n for each j, we then define, for every i ∈ [k], a triple

(U′, ′,′) ∈  , where we take U′ = Ui, we let  ′ be all possible popular (with respect to the Uj)

copies of Kri+1 in Ui, and let ′ be all possible popular copies of Hi in Ui. Lemma 2.5 (and our choice

of small 𝜀) ensures that
||||( Ui

Kri+1

)
⧵  ′|||| ≤ 1

2
𝛿0 |Ui|ri+1 and

|||(Ui
Hi

)
⧵′||| ≤ 1

2
𝛿0 |Ui|vHi .

We therefore satisfy all the requirements of Theorem 2.8, and can conclude that with high

probability, the random graph G(n, p) has the property that whenever we require G(n, p)[Ui] to be

(Kri+1,Hi)v-Ramsey, it will be. As there are only finitely many pairs (Kri+1,Hi) to consider, it follows

that the algorithm succeeds with high probability overall, completing the proof.

3 ROBUST RAMSEY PROPERTIES OF RANDOM GRAPHS

The aim of this section is to give a proof of Theorem 2.8. Although our proof here is similar to that

of Kreuter [17], we choose to give the details as the argument is somewhat delicate and our proof

departs from the original in some key steps. In particular, instead of using Turán’s theorem to estimate



996 DAS ET AL.

the maximal size of a set of vertex-disjoint copies of a given graph (as done by Kreuter [17]), we use

a probabilistic approach (as in [1, Lemma 7.3.1]) which allows us to analyse the relevant subgraph

counts at every step of the proof and guarantee that we find monochromatic copies of the graphs on the

desired vertex sets. We first give some probabilistic tools and intermediate lemmas before embarking

on the proof.

3.1 Probabilistic tools

3.1.1 Chebyshev’s inequality
We will use the following well known inequality, see, for example, [1, Chapter 4].

Lemma 3.1. Suppose {Ai ∶ i ∈ I} is a finite set of events in some probability space and for each
i ∈ I, let Xi be the indicator random variable for the event Ai. Write i ∼ j if the events Ai and Aj are
not independent. Further, let X ∶=

∑
i∈I Xi be the sum of the indicator random variables and define

Δ ∶=
∑
i∼j

E[XiXj],

where the sum is over all ordered pairs (i, j) (including diagonal terms). Then for all t > 0,

P[|X − E[X]| ≥ t] ≤ Δ
t2
.

3.1.2 Janson’s inequality for a refined random graph
We are primarily concerned with the appearance of a subgraph H in a random graph G(n, p). While it

is easy to compute the probability of a given copy of H being present in G(n, p), it is inconvenient that

these copies need not be independent—two copies that share edges will be positively correlated.

To smooth the analysis, we will artificially introduce a filtering stage, where we select each copy

of H independently, and then only focus on the selected copies of H that appear in G(n, p). Formally,

let 𝜌(H; q) ∶
([n]

H

)
→ {0, 1} be a function that randomly assigns 1 with probability q and 0 with

probability 1 − q to each copy of H in Kn, independently of the other choices. Recalling that
(G(n,p)

H

)
denotes the family of all copies of H appearing in G(n, p), we let

(G(n,p)
H

)
q

denote the random subfamily

consisting of selected copies of H in G(n, p).
The following lemma shows that even when we are only interested in some dense collection of

“good” copies of H, we are still very likely to have many of them appear in
(G(n,p)

H

)
q
.

Lemma 3.2. Let H be a graph with at least one edge, p = p(n), q = q(n), and  ⊆
([n]

H

)
be some

family of Ω(nvH ) potential copies of H on [n]. Letting Xq ∶= ||| ∩
(G(n,p)

H

)
q
|||, we have that

P[Xq ≤ E[Xq]∕2] ≤ exp(−Ω(ΦH,p)) + exp(−Ω(qnvH peH )),

where ΦH,p is as defined in (2.1).

The lemma follows from an application of Lemma 2.7, which gives concentration for the number

of copies S ∈  of H that appear in G(n, p). Each copy is then kept with probability q, independently

of the others, and so Chernoff’s inequality (see e.g., [10, Theorem 2.1]) gives concentration for the

number of these copies that appear in
(G(n,p)

H

)
q
.
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3.1.3 An exponential upper tail bound
Janson’s inequality (Lemma 2.7) allows us to conclude that the probability that the number of embed-

dings of a graph H in G(n, p) is significantly smaller than its expectation is exponentially small. On

the other hand, one can use Lemma 3.1 to give a bound on the probability that the number of copies

of H is much higher than expected. However, the concentration given by Lemma 3.1 is not enough for

our purposes. We therefore need the following bound for the upper tail of the distribution of subgraph

counts in random graphs. This is a simplification of the main result in [12] and the proof is almost

identical. The only departing point from the exposition in [12] is that Lemma 3.3 allows us to apply

the result to the number of copies of H on prescribed vertex subsets6 (as opposed to the total number

of copies of H in G(n, p)). This results in a factor of 1∕𝜖m in the upper bound of E[Xm] in the proof of

[12, Theorem 1.2], which can be counteracted by choosing a smaller constant c > 0 below.

Lemma 3.3. Let H be a graph with at least one edge, 𝜖 > 0 and p = p(n) such that Φ ∶= ΦH,p ≥ 1.
Then there exists some c = c(H, 𝜖) > 0 such that the following holds. Let  ⊂

([n]
H

)
be some family

of 𝜖nvH potential copies of H. Letting X be the random variable that counts the number copies S ∈ 

which appear in G(n, p) on [n], we have that

P[X ≥ 2E[X]] ≤ exp
(
−cΦ

1

eH

)
.

3.1.4 Kim-Vu polynomial concentration
The last tool we need is the result of Kim and Vu [14] (see also [1, Section 7.8]). We state here a

simplified version which is catered to our purposes.

Lemma 3.4. Given k ∈ N, let c ∶= 8−1(4k!)−1∕(2k), and let H = (V ,E) be a k-uniform hypergraph
with |V| = N, |E| = M. Now consider the set V ′ obtained by keeping each vertex of V with some
probability q = q(N) ∈ [0, 1], independently of the other vertices. We are interested in the random
variable Y ∶= eH[V ′] and we fix 𝜇 ∶= E[Y] = Mqk. Then setting

𝜈 ∶= max
1≤i≤k

max
I∈([N]

i )
degH(I)qk−i,

we have that if 𝜈 ≤ 𝜇, then

P

(|Y − 𝜇| ≥ 𝜇

2

)
≤ 2e2Nk−1 exp

(
−c
(𝜇
𝜈

) 1

2k

)
.

3.2 Proof of Theorem 2.8

Toward proving Theorem 2.8, we first prove some lemmas. For a fixed nonempty graph H, we define

(H) ∶= {H1 ∪ H2 ∶ H1 ≡ H2 ≡ H,V(H1) ∩ V(H2) ≠ ∅,H1 ∪ H2 ≢ H}

to be the set of graphs that can be obtained by taking the union of two distinct copies of H which

intersect in at least one vertex. Recall also the definition of
(G(n,p)

H

)
q

from Section 3.1.2.

6In fact, although we will only use this result to restrict to copies of H that lie on prescribed vertex sets, note that the statement

could be applied in more generality, to an arbitrary (large enough) family of potential copies.



998 DAS ET AL.

Lemma 3.5. Let H be a graph with at least one edge, and let Φ′ ∶= min{n,ΦH,p}. Then there exists
C = C(H) > 0 such that the following holds for all q = q(n, p) such that q ≤ Φ′∕(nvH peH ). Let
XH = |||(G(n,p)

H

)
q
||| be the number of selected copies of H in G(n, p), and for each H ∈ (H), let YH be

the random variable counting the number of intersecting pairs of copies of H in
(G(n,p)

H

)
q

whose union

is isomorphic to H. Then we have that

P

⎛⎜⎜⎝
∑

H∈(H)

YH ≥
CE[XH]2

Φ′

⎞⎟⎟⎠ ≤ CΦ′

E[XH]2
.

Proof. This is a simple application of Chebyshev’s inequality, Lemma 3.1. The proof of [10, Theorem

3.29] contains a similar calculation.

Let us fix some H = H1 ∪ H2 ∈ (H) and show that YH ≥ C′E[XH]2∕Φ′ with probability at most

CΦ′∕E[XH]2 for some C′,C > 0. The conclusion will then follow by a union bound, as there are only

finitely many possible H ∈ (H). First, let us upper bound the expectation of YH as follows. Defining

J = H1 ∩ H2 as the intersection of the two copies of H that comprise H, we have that

E[YH] ≤ q2nv(H1∪H2 )pe(H1∪H2 ) =
q2n2vH p2eH

nvJ peJ
≤

C′E[XH]2

2Φ′ ,

for some appropriately defined C′ > 0, using that vJ ≥ 1 and nvJ peJ ≥ ΦH,p if eJ ≠ 0. We now turn

to concentration and look to apply Lemma 3.1. In order to do this, we need an upper bound estimate

on Δ, which counts the expected number of nonindependent pairs of copies of H, each of whose two

copies of H are in
(G(n,p)

H

)
q
. In particular, it counts the number of pairs of copies of H which overlap in

at least one edge. So let us fix some graph H∗ = H1 ∪H2 ∪H′
1
∪H′

2
such that both H1 ∪H2 and H′

1
∪H′

2

are copies of H, each Hi and H′
i is copy of H, and H1 ∪ H2 intersects H′

1
∪ H′

2
in at least an edge, and

let YH∗ count the number of quadruples of copies of H in
(G(n,p)

H

)
q

whose union is isomorphic to H∗.

There are finitely many such H∗, and we have the upper bound Δ ≤
∑

H∗ E[YH∗ ].
Given such a configuration H∗, let x̃ be 2 if H∗ = H1∪H2 = H′

1
∪H′

2
is a single copy of H, 1 if Hi =

H′
j in H∗ for some i, j ∈ {1, 2} and 0 otherwise. In other words, x̃ indicates the number of “repeated”

copies of H in H∗. Swapping the indices 1 and 2 if necessary, let J1 = H1 ∩ H2, J2 = H′
1
∩ (H1 ∪ H2)

and J3 = H′
2
∩ (H1 ∪H2 ∪H′

1
) such that each Ji contains at least one vertex. This is possible due to the

fact that H1 and H2 intersect in at least a vertex in H and the two copies of H intersect in at least an

edge. Then we have that

E[YH∗ ] ≤ q4−x̃nv(H1∪H2∪H′
1
∪H′

2
)pe(H1∪H2∪H′

1
∪H′

2
)

=
q4−x̃n4vH p4eH

nvJ1
+vJ2

+vJ3 peJ1
+eJ2

+eJ3

≤ C′′
E[XH]4−x̃∕(Φ′)3−x̃

≤ C′′
E[XH]2∕Φ′,

for appropriately defined C′′ > 0, using that at least x̃ of J2 and J3 are copies of H, and using that

E[XH] ≤ qnvH peH ≤ Φ′ in the final step (recall that by hypothesis q ≤ Φ′∕(nvH peH )). Thus, summing

over all possible H∗, we get that Δ ≤ C̃E[XH]2∕Φ′ for some C̃ > 0 and by Lemma 3.1,

P

(
YH ≥

C′E[XH]2

Φ′

)
≤ P

(
YH ≥ E[XH] +

C′E[XH]2

2Φ′

)
≤

CΦ′

E[XH]2
,
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for C = 4C̃∕C′2. Thus summing over all H ∈ (H) and taking a union bound on the failure

probabilities, we can choose C > 0 appropriately so that the statement of the lemma is satisfied. ▪

Let
⨆k H denote the graph obtained by taking k vertex-disjoint copies of H. We say that a set

K ∈
([n]

k

)
is a transversal of a copy S of

⨆k H if K contains one vertex from each of the copies of H
that comprise S. Further, given  ⊆

([n]
k

)
, we say a copy of

⨆k H on [n] is -spanning if it contains a

set from  as a transversal.

Lemma 3.6. Let H be a graph with at least one edge, k ∈ N and 𝛿 > 0. Set 𝛿1 ∶= 𝛿(kvH)k. Then there
exists a c > 0 and n0 ∈ N such that if p = p(n) ≥ n−1∕m(H) and q = q(n, p) satisfy qnvH peH > (log n)3k

then the following holds for all n ≥ n0. Suppose that  ⊂
([n]

k

)
is such that || ≤ 𝛿nk. Letting Y be

the random variable that counts the number of -spanning copies of
⨆k H, composed of copies of H

in
(G(n,p)

H

)
q
, we have that

P(Y ≥ 4𝛿1(nvH peH q)k) ≤ exp
(
−cΦ(H, p)

1

keH

)
+ exp
(
−c (qnvH peH )

1

2k

)
.

Proof. It suffices to prove the lemma in the case when || = 𝛿nk. For this, we split the analysis of(G(n,p)
H

)
q

into looking at the random edges given by G(n, p) and the random function 𝜌(H; q) ∶
([n]

H

)
→

{0, 1} separately. Firstly consider the -spanning copies of
⨆k H in the complete graph Kn. There are

at most 𝛿1nkvH such copies and each appears with probability pkeH . Thus, in expectation, the number

of -spanning copies of
⨆k H in G(n, p) is at most 𝛿1(nvH peH )k. Moreover, Lemma 3.3 tells us that

the count of such copies in G(n, p) is at most twice this with probability at least 1− exp
(
−c3.3Φ

1

keH

)
,

where c3.3 = c(H, 𝛿) as given by Lemma 3.3 and Φ = Φ
(⨆k H, p

)
. Now note that

Φ
(⨆k

H, p
)
= min

{∏
i∈[k]

nvJi peJi ∶ J =
⨆
i∈[k]

Ji ⊆
⨆k

H, eJ > 0

}

≥ min

{
nvJj peJj ∶ J =

⨆
i∈[k]

Ji ⊆
⨆k

H, eJj > 0

}
≥ Φ(H, p),

where we split subgraphs J ⊆
⨆k H according to their subgraphs Ji in the ith copy of H in

⨆k H and

in the second step we single out a j = j(J) such that Jj ⊆ J has a nonempty edge set.

Applying Lemma 3.3 also to the counts of
⨆k′ H, for smaller values of k′, we can conclude that

there exists a c′ > 0 so that, with probability at least

1 − exp
(
−c′Φ(H, p)

1

keH

)
,

there are at most 2𝛿1(nvH peH )k -spanning copies of
⨆k H in G(n, p) and there are at most 2(nvH peH )k′

copies of
⨆k′ H in G(n, p) for all 1 ≤ k′ ≤ k − 1. On the other hand there are at least 𝛿nkvH∕(2kvH)!

-spanning copies of
⨆k H in Kn. So by Lemma 2.7 there is a c′′ > 0 such that with probability at least

1 − exp
(
−c′′Φ(H, p)

)
,

there are at least 2𝛿2(nvH peH )k -spanning copies of
⨆k H in G(n, p) where 𝛿2 ∶= 𝛿∕4(2kvH)!.
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Now we condition on all these events occurring in G(n, p) and turn to analyse the effect of 𝜌(H, q).
We know that the probability that each copy of H in a -spanning copy of

⨆k H is selected in
(G(n,p)

H

)
q

with probability qk, and we will obtain concentration via a simple application of Lemma 3.4. Indeed,

consider the auxiliary k-uniform hypergraph H whose vertex set is given by copies of H in G(n, p)
and whose edge set is given by copies of H which comprise a -spanning copy of

⨆k H. From above

we have that H has at most 2nvH peH vertices (the copies of H in G(n, p)) and between 2𝛿2(nvH peH )k
and 2𝛿1(nvH peH )k edges. We also know, from the concentration on the number of copies of

⨆k′ H in

G(n, p), that for any set I of i copies of H with 1 ≤ i ≤ k, the number of edges of H containing I is

at most 2(nvH peH )k−i. Thus, Lemma 3.4 tells us that conditioning on the outcome of G(n, p) as above,

with probability at least

1 − 2e2 (2nvH peH )k−1 exp
(
−c3.4 (𝛿2nvH peH q)

1

2k

)
,

the number of -spanning copies of
⨆k H whose copies of H are all selected in

(G(n,p)
H

)
q

is at most

4𝛿1(nvH peH q)k, where c3.4 is the constant given by Lemma 3.4. The conclusion then follows from a

simple calculation on the error probability that either the counts in G(n, p) are not as desired or the

count in
(G(n,p)

H

)
q

is too high, given that we get the desired counts in G(n, p). ▪

We now turn to proving Theorem 2.8.

Proof of Theorem 2.8. It suffices to prove the theorem in the case when p = Cn−1∕mK (F,H) for some

sufficiently large C > 0. We begin with a calculation. Let

𝓁 ∶= min
J⊆H,eJ>0

(
vJ −

eJ

mK(F,H)

)
, (3.1)

so that Cn𝓁 ≤ ΦH,p ≤ CeH n𝓁 . Letting c1 ∶= m1(F)∕mK(F,H) > 0, we have that c1 ≤ 𝓁 ≤ 1. Indeed

let J be the minimizing subgraph of H in the definition of 𝓁 and let J′ be the maximizing subgraph of

H in the definition of mK(F,H). The lower bound on 𝓁 then follows from the fact that

vJmK(F,H) − eJ ≥ vJ

(
m1(F) + eJ

vJ

)
− eJ = m1(F). (3.2)

The upper bound on 𝓁 follows because

m1(F) ≤ mK(F,H) = m1(F) + eJ′

vJ′
=⇒ m1(F)

m1(F) + eJ′
≤

1

vJ′
, (3.3)

and hence

𝓁 ≤ vJ′ −
eJ′

mK(F,H)
= vJ′

(
1 − eJ′

m1(F) + eJ′

)
= vJ′

(
m1(F)

m1(F) + eJ′

)
≤ 1.

Now we turn to the proof of the theorem. We first fix constants. We fix 𝛿0 > 0 such that

𝛿0 <
1

32 ⋅ vF!(4(2vH)!vFvH)vF
(3.4)
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and c > 0 such that c <
c1

4vFeFeH
. Further, for each 0 ≤ i ≤ t we fix 𝜂i ∶= |Ui|∕n so that 𝜂i ≥ 𝜂0 for all

i. Further, fix

𝛾i ∶=
(1∕(vH!) − 𝛿)2(𝜂0𝜂i)vH

16C3.5

for all 0 ≤ i ≤ t, where C3.5 = C3.5(H) is the constant obtained from Lemma 3.5. By considering a

large enough constant C, we expose G(n, p) in two rounds so that G(n, p) = G1(n, p1) ∪G2(n, p2), with

p1, p2 ≥ C′n−1∕mK (F,H) for C′ such that C′ >
2 log vH
𝛾

vF
0

. Let us briefly sketch the proof which splits into

proving two main claims. The first claim states that with high probability in G1, for each i ∈ [t], there

is a (large) subfamily i ⊂ i of pairwise vertex-disjoint copies of H, all of whose edges appear in

G1. We define

i ∶= {W ⊂ Ui ∶ |W ∩ T| = 1 for all T ∈ i} (3.5)

to be the sets which can be obtained by choosing one vertex from each copy of H in i. The second

claim is that with high probability in G2, for each i and each set W ∈ i, there is a copy of F which lies

in
(W

F

)
∩ i whose edges appear in G2. The proof then follows easily from these two claims. Indeed,

consider a red/blue coloring of G(n, p) = G1 ∪G2 and some i ∈ [t]. If there is no blue copy of H in i
then in particular, every copy of H in i must contain a red vertex. By choosing one red vertex in each

copy T of H in i, we get a set W ∈ i which is entirely red. The second claim then tells us that this

set hosts a copy of F which lies in i and so we are done. It remains to prove the two claims above.

In order to prove the first claim, it will be useful to consider only the selected copies
(G1(n,p1)

H

)
q

as

introduced in Section 3.1.2. As these copies all appear in G1(n, p1), it will suffice to find a suitable

family i ⊆
(G1(n,p1)

H

)
q
. So we fix

q ∶=
𝜂

vH
0
(1∕(vH!) − 𝛿)

4C3.5

(
n𝓁

nvH p1
eH

)
=
√

𝛾0

C3.5

(
n𝓁

nvH p1
eH

)
.

Now we apply Lemma 3.5, observing that Φ′ ≥ n𝓁 due to our calculation at the beginning of this

proof (Φ′ = ΦH,p1
≥ n𝓁 if 𝓁 < 1 and Φ′ = n𝓁 = n if 𝓁 = 1). As the expected number of copies of

H in
(G1(n,p1)

H

)
q

is Ω(qnvH p1
eH ) = Ω(n𝓁), we have that with high probability (with probability at least

1 − O(n−𝓁)) there are at most

C3.5q2n2vH p1
2eH

n𝓁
= 𝛾0n𝓁

overlapping copies of H in
(G1(n,p1)

H

)
q
. For a given i ∈ [t], we can conclude from Lemma 3.2 that with

high probability there at least

(1∕(vH!) − 𝛿)q|Ui|vH p1
eH

2
≥ 2𝛾in𝓁

copies of H in i ∩
(G1(n,p1)

H

)
q
. As this holds with probability at least 1 − exp(−nc1 ), we have that this

holds for all i ∈ [t] with high probability. Thus we obtain a family i ⊂ i of vertex-disjoint copies

of H by taking the copies in i ∩
(G1(n,p1)

H

)
q

and deleting one copy from any pair of overlapping copies.

Our calculations above guarantee that with high probability, for every i ∈ [t], i has size at least

ñi ∶= 𝛾in𝓁 , and we restrict each family to one of size exactly ñi.
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We now turn to the second exposure, namely G2 = G2(n, p2), and look to prove that for every

i ∈ [t] and every set W ∈ i there is a copy of F in
(W

F

)
∩ i which appears in G2, where i is as

defined in (3.5). Fixing an i ∈ [t] and a W ∈ i, we consider G2 restricted to W. We look to apply

Lemma 2.7 and so need a lower bound on the parameter

Φ̃i ∶= ΦF,p2
= min

I⊆F,eI>0
ñvI

i peI
2
,

which is calculated with respect to the vertex set W. As at the beginning of the proof, we set J ⊂ H to

be the minimizing subgraph in the definition of 𝓁 (3.1) and use that for all I ⊆ F with eI > 0, we have

that

𝓁mK(F,H) = vJmK(F,H) − eJ ≥ m1(F) ≥
eI

vI − 1
,

by (3.2). Rearranging, we obtain that

vI −
eI

𝓁mK(F,H)
≥ 1,

and so

min
I⊆F,eI>0

(
𝓁vI −

eI

mK(F,H)

)
≥ 𝓁.

We conclude that Φ̃i ≥ Φ̃0 ≥ 𝛾
vF
0

C′n𝓁 . As t ≤ exp(nc) and for each i, and |i| = (vH)ñi ≤

exp(n𝓁 log vH), we can take a union bound and conclude from Lemma 2.7 that for all choices of i ∈ [t]
and W ∈ i, we have that there are at least

ñvF
i p2

eF

2
copies of F on W in G2 with high probability. Note

here that we used that C′ >
2 log vH
𝛾

vF
0

. It remains to prove that for each i ∈ [t] and W one of these copies

of F belongs to i.

To this end we definei ∶=
(Ui

F

)
⧵i to be the copies of F which do not lie in our desired collection.

We will upper bound the number of copies S of F in i which appear in G2, such that each vertex of S
lies in a different copy of H in i. In order to do this, we return to analyse our construction of i and

in particular our use of
(G1(n,p1)

H

)
q
. Let i be the collection of vF-sets in Ui which host a copy of F in

≧ and note that |i| ≤ 𝛿|Ui|vF . We say a set K ∈ i is dangerous if each vertex of K is contained

in a distinct copy of H in i. In order to be dangerous, a set K has to lie in a transversal of a copy of⨆vF H, composed of copies of H in
(G1(n,p1)[Ui]

H

)
q

(see the paragraph before Lemma 3.6 for the relevant

definitions). Therefore in order to upper bound the number of dangerous sets, it suffices to upper bound

the number of i-spanning copies of
⨆vF H in

(G1(n,p1)[Ui]
H

)
q
. It follows then from Lemma 3.6 that for

all i ∈ [t], there are at most

4𝛿(vFvH)vF (|Ui|vH p1
eH q)vF = (vFvH)vF ⋅ 22vF+2𝛿

(1∕(vH!) − 𝛿)vF
ñvF

i

(3.4)
≤

ñvF
i

8vF!

dangerous sets with high probability, using that 𝛿 < 𝛿0. As for a fixed i ∈ [t], this holds with probability

1 − exp

(
−Ω
(

n
𝓁

2vF eH

))
and t ≤ exp(nc), we can conclude that there at most ñvF

i ∕(8vF!) dangerous

sets for each i ∈ [t] with high probability.

Finally, we calculate how many copies of F in G2 are hosted on dangerous sets. For a fixed i, we

consider G2 restricted to the vertex set Di ∶= ∪T∈i V(T). We have that |Di| = vHñi and from the
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previous paragraph we may assume that there are at most ñvF
i ∕8 potential copies of F on dangerous

sets in Di. Each of these appears with probability peF
2

and by Lemma 3.3 we have that with probability

at least 1 − exp

(
−Ω
(

n
𝓁

eF

))
, there are at most ñvF

i peF
2
∕4 copies of F in G2 which are hosted on

dangerous sets. The failure probability here follows from a calculation of the appropriate ΦF,p2
similar

to the calculation of Φ̃ above. Thus we can take a union bound to conclude that for all i ∈ [t], there are

at most ñvF
i peF

2
∕4 copies of F ∈ i which lie in Di, whose edges appear in G2 and whose vertices are

contained in distinct copies of H in i. Thus with high probability, for all i ∈ [t] and for all W ∈ i,

there is a copy T ∈
(W

F

)
∩ i of F, whose edges appear in G2, as required. ▪

4 CONCLUDING REMARKS

In this paper, we have determined, at essentially every density 𝑑, the perturbed vertex Ramsey threshold

p(n;Kr,H, 𝑑) for cliques versus arbitrary graphs. One could investigate how these thresholds change

with the introduction of additional colors, but the most pressing problem that remains open is to extend

our results to all pairs of graphs (F,H), with the symmetric case F = H of particular interest. Our

methods do provide lower and upper bounds on the threshold in the general case, which we discuss

below.

We start with the 1-statement, where we wish to know what p ensures Gn ∪ G(n, p) is

(F,H)v-Ramsey when Gn is a graph of density more than 1− 1∕(k − 1). Recall that in our algorithmic

proof of the 1-statement in Theorem 1.11, we worked in an 𝜀-regular k-tuple in Gn, using the vertex

Ramsey properties of the random graph in each part to iteratively grow a red clique or try to build a

copy of H.

In the general setting, when we seek a red copy of F instead, we can adopt the same approach. The

main difference is that there are many ways we could try to build F over the k parts. To keep track of

these, we define a partial partition of F to be a partition of the vertices V(F) = U1 ∪ · · · ∪ Uk ∪ W,

where W ≠ ∅. This represents the stage in the algorithm where we have found red subgraphs F[Ui] in

the parts Vi, and W represents the vertices of F that are still missing. Thus, when we try to extend this

red subgraph, we will require G(n, p)[Vi] to be (F[Ui ∪ {ui}],Hi)v-Ramsey for some optimal choice of

ui ∈ W and partition H = H1 ∪ · · · ∪ Hk. In this way, we either get one vertex closer to having a red

copy of F, or we find one of the parts we need for a blue copy of H. Our proof then shows that, if we

write p(n;F,H, 𝑑) =∶ n−1∕m∗(F,H;k), we have

m∗(F,H; k) ≤ max
V(F)=U1∪···∪Uk∪W;

W≠∅

min
H=H1∪···∪Hk;

u1,…,uk∈W

max
i∶Hi≠∅

𝛽(F[Ui ∪ {ui}],Hi). (4.1)

Note that when F = Kr, all that matters is the size |Ui| and not the set Ui itself, since each induced

subgraph of Kr is itself a clique. Hence we recover the bound of Theorem 1.11.

Unfortunately, this upper bound need not be tight. For instance, when F and H are complete bipar-

tite graphs, it is not hard to see that m∗(F,H; 4) = 0. However, by considering sets Ui that, for each i,
span both color classes of F, we can ensure that each subgraph F[Ui] has edges, which results in the

right-hand side of (4.1) being positive.

One issue with (4.1) is that it considers all partial partitions of F, but we need only maximize over

those that could feasibly arise in the algorithm. While it may not be easy to describe these partitions

explicitly, we can construct the family of feasible partial partitions recursively.
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To do so formally, we define the extension function f which, given the sets U1,… ,Uk of a partial

partition of F, returns the vertices (u1,… , uk) ∈ Wk that are used to extend the red subgraph. For each

such extension function, we can build the family  (f ) of feasible partitions in the following way. We

start with (∅, · · · , ∅) ∈  (f ). Then, for each i ∈ [k], we add (U1,… ,Ui−1,Ui ∪ {f (U⃗)i},Ui+1,… ,Uk)
to  (f ), provided this is still a partial (and not complete) partition of F. Note that this represents the

larger red subgraph we would obtain if, in G(n, p)[Vi], we would find a monochromatic red subgraph

when applying the (F[Ui ∪ {f (U⃗)i}],Hi)v-Ramsey property.

We then need only maximize over the feasible partitions  (f ), and can choose the extension

function f that gives the lowest possible threshold. That is, we have the upper bound

m∗(F,H; k) ≤ min
f

max
(U1,…,Uk)∈ (f );

min
H=H1∪···∪Hk;

max
i∶Hi≠∅

𝛽(F[Ui ∪ {f (U⃗)i}],Hi). (4.2)

Note again that in the case F = Kr, the choice of extension function f is irrelevant, since all that

matters are the sizes |Ui|.
This is strictly better than (4.1), as one can find an extension function f that shows m∗(F,H; 4) = 0

whenever F and H are bipartite. Unfortunately, even (4.2) need not be tight, as we should also have

m∗(F,H; 3) = 0 for such F and H, but the right-hand size is positive when we only have three parts.

It would therefore be very interesting to find a sharper bound for the 1-statement. A useful step in that

direction could be to characterize which extension functions f are optimal for a given graph F.

In the other direction, we can provide lower bounds on m∗(F,H; k) by generalizing the coloring

we gave in proving the 0-statement of Theorem 1.11. We shall once again take Gn to be a complete

k-partite graph, and will describe how one can color the vertices of the random graphs G(n, p)[Vi] to

avoid both a red F and a blue H in Gn ∪ G(n, p).
To this end, we call a k-tuple (1,… ,k) of families of nonempty graphs a k-cover of F if, for any

k-partition V(F) = U1 ∪ · · · ∪ Uk of the vertices of F, there is some i ∈ [k] such that F[Ui] ∈ i. That

is, a k-cover is a collection of induced subgraphs that are bound to appear in any k-partition of F.

Given this definition, we have the following lower bound.

m∗(F,H; k) ≥ max
(1,…,k) k-cover of F;

min
H=H1∪···∪Hk;

max
i∶Hi≠∅;

min
F′∈i

𝛽(F′,Hi). (4.3)

When F = Kr, this recovers the bound from Theorem 1.11, since we have k-covers of the form i =
{Kri+1,… ,Kr}, where

∑
i ri = r − 1.

To describe the coloring in the general case, fix a maximizing k-cover (1,… ,k), let 𝛽∗ be the

right-hand side of (4.3), and let p = o(n−1∕𝛽∗ ). For each i ∈ [k], we define i = {H′ ⊆ H ∶ ∀F′ ∈
i, 𝛽(F′,H′) ≥ 𝛽∗}. As before, one can argue that H ∈ i, and so these families are all nonempty.

Applying Proposition 2.1, we can color the vertices of G(n, p)[Vi] so as to avoid any red graph from

i and any blue graph from i.

It is now tautological that this coloring of Gn ∪ G(n, p) has neither a red F nor a blue H. Suppose

for contradiction there is a red copy of F, partitioned as F = F1 ∪ · · · ∪ Fk. Since (1,… ,k) is a

k-cover of F, there is some i with Fi ∈ i, but then there is no red Fi in G(n, p)[Vi]. On the other hand,

if there is a blue H, partitioned as H = H1 ∪ · · · ∪Hk, then we must have some i ∈ [k] such that Hi ≠ ∅
and 𝛽(F′,Hi) ≥ 𝛽∗ for all F′ ∈ i. But then Hi ∈ i, and so there is no blue Hi in G(n, p)[Vi] either.

The challenge arises from the fact that when F is not a clique, there could be many ways to partition

it into k induced subgraphs, and so there will be a wide variety of complicated k-covers. This makes

it hard to analyse (4.3), and in particular to compare it to the upper bound of (4.2). Indeed, it is not

obvious at first sight that the right-hand side of (4.2) is at least that of (4.3). To close the gap between
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the bounds, it would help to better understand the k-covers of a graph F, and to see if there are different

colorings of Gn ∪ G(n, p) that show (4.3) is not tight.
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