
Data-driven analysis of
complex dynamical systems

Dr. Stefan Klus

Habilitationsschrift
Fachbereich Mathematik und Informatik

Scaling Cascades in Complex Systems



Acknowledgements

I would like to thank the co-authors of the publications that constitute the major part
of this thesis for many fruitful collaborations, in particular Christof Schütte, Michael
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The goal is to transform data into information, and information into insight.

Carly Fiorina, former CEO of Hewlett–Packard

1
Introduction

The main focus of this thesis is the data-driven analysis of complex dynamical systems.
Although we will consider mainly molecular dynamics and fluid dynamics problems, the
various methods presented in the following chapters can be applied to arbitrary dynamical
systems. In fact, in order to apply these methods, no a priori knowledge about the system
is required, only simulation or measurement data. Such data-driven methods got a lot of
attention recently due to the availability of large data sets. Gaining insight into the char-
acteristic properties of a system by analyzing such data sets is akin to the metaphorical
search for a needle in a haystack. The goal of data-driven methods is to extract relevant
information about global properties of the underlying system, whose governing equations
might be unknown. Global information can be obtained by analyzing the eigenvalues and
eigenfunctions of transfer operators associated with the system. Examples of such opera-
tors are the Perron–Frobenius operator and the Koopman operator, which are adjoint to
each other in appropriately defined function spaces. The Perron–Frobenius operator de-
scribes the evolution of densities, whereas the Koopman operator describes the evolution
of observables. For a discrete dynamical system Φ: X → X, with X ⊂ Rd, the Koopman
operator is simply defined by

Kf = f ◦ Φ,

where f : X → R is an observable of the system. The definition can be extended in
a straightforward fashion to continuous dynamical systems. That is, instead of analyz-
ing a highly nonlinear but finite-dimensional dynamical system, we consider a linear but
infinite-dimensional operator associated with the system. A pictorial representation of
the relationship between a dynamical system Φ and the Koopman operator K is shown in
Figure 1.1, see also [195]. Since we cannot handle infinite-dimensional problems numer-
ically, the infinite-dimensional operator is typically projected onto a finite-dimensional
space spanned by a given set of basis functions.

A popular data-driven method for the analysis of high-dimensional data sets is dy-
namic mode decomposition (DMD). It was shown that DMD is related to the Koopman
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Figure 1.1: Pictorial representation of the Koopman operator approach based on [195].
The top path maps points xi ∈ X to points Φ(xi) ∈ X, the bottom path maps observables
fi ∈ L∞(X) to functions Kfi ∈ L∞(X). The connection between states and observables is
given by the spectral decomposition of the Koopman operator. The action of the dynam-
ical system Φ can be rewritten in terms of eigenvalues, eigenmodes, and eigenfunctions.

operator, see, e.g., [159, 22]. A generalization of this method, called extended dynamic
mode decomposition (EDMD), allows for more accurate approximations of the Koopman
operator and, as shown in Chapter 2, also of the Perron–Frobenius operator. The data is
in general given by two matrices

X =
[
x1 . . . xm

]
and Y =

[
y1 . . . ym

]
,

where yi = Φ(xi). That is, X,Y ∈ Rd×m. The matrices X and Y can be extracted from
one long trajectory. For a continuous dynamical system, Φ is then the flow map Φτ for a
fixed lag-time τ , i.e., xi = x(ti) and yi = Φτ (xi) = x(ti+τ). In addition to the simulation
or measurement data itself, a set of basis functions {ψ1, . . . , ψk} – also called dictionary –
must be provided. This is typically written as a vector-valued function ψ : X → Rk. We
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then obtain the transformed data matrices

ΨX =
[
ψ(x1) . . . ψ(xm)

]
and ΨY =

[
ψ(y1) . . . ψ(ym)

]
,

with ΨX ,ΨY ∈ Rk×m. For DMD, only the data matrices X and Y are used, whereas
EDMD is based on the transformed data matrices ΨX and ΨY . Similar methods have
also been developed by the molecular dynamics community under the names time-lagged
independent component analysis (TICA) and variational approach of conformation dy-
namics (VAC). The relationships between these methods will be described in detail in
Chapter 3.

There are two typical scenarios: We have one long trajectory or many short trajectories
for a system with a comparably low-dimensional state space, i.e., m � d or m � k, re-
spectively. Alternatively, we sometimes want to consider systems with a high-dimensional
state space but only few snapshots, i.e., d� m, or a large set of basis functions is required
in order to resolve the dynamics accurately so that k � m. The former is, for instance,
the case for molecules comprising only a small number of atoms, the latter for fluid dy-
namics problems, where the state space is often discretized using a regular grid. Based
on the use case, different algorithms have been developed to compute the eigenvalues,
eigenfunctions, and eigenmodes efficiently. This is also the main reason why the tensor-
based methods proposed in Chapter 4 for molecular dynamics problems and Chapter 5
for fluid dynamics problems are rather different. A detailed description and comparison
of data-driven methods can be found in Chapter 3. For a more detailed introduction of
transfer operators and methods to obtain finite-dimensional approximations, we refer to
Chapter 2 and Chapter 3. A kernel-based version of EDMD, proposed in [196], is also
briefly described in Chapter 2.

We are particularly interested in so-called almost invariant sets or meta-stable sets of
dynamical systems. In the molecular dynamics setting, these sets correspond to differ-
ent conformations of a molecule. A frequently used illustrating example is the n-butane
molecule H3C−CH2−CH2−CH3, which is also considered in Chapter 2. The conforma-
tions of this molecule are well-known and can be obtained, for instance, from a long
trajectory, computed with the aid of a molecular dynamics simulator such as Amber [25],
using the data-driven methods presented in this thesis. It is important to note here that
we reduce the dynamics of the system to the essential dynamics given by the dihedral
angle, thus reducing the 42-dimensional state space – three coordinates for each atom –
to a one-dimensional state space. In general, however, the essential coordinates are un-
known a priori. A typical workflow then is to project the dynamics onto the slowest
relaxation processes of the system, which can be estimated using TICA as described in
Chapter 3. Alternatively, tensor-based discretization schemes could be applied as dis-
cussed in Chapter 4. The problem of obtaining the essential dynamics is also addressed
in Appendix A.

One drawback of the various data-driven approaches considered here is that these meth-
ods typically suffer from the curse of dimensionality. Consider, for instance, the deca-
alanine molecule shown in Figure 1.2. Even if we consider only the dihedral angles as our
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Table 1.1: Sizes of eigenvectors for different dimensions d and numbers of basis functions
per dimension k.

k = 2 k = 4 k = 8 k = 16

d = 2 32 B 128 B 512 B 2 kB
d = 4 128 B 2 kB 32 kB 512 kB
d = 8 2 kB 512 kB 128 MB 32 GB
d = 16 512 kB 32 GB 2 PB 128 EB

essential coordinates – as described above for the butane molecule –, the state space is
still 16-dimensional (instead of 309-dimensional). Often basis functions are selected for
each dimension separately and then the tensor product of these one-dimensional basis
functions is defined to be the dictionary. Let us assume that we want to use the same
number of basis functions for each variable of the system, say k. Then overall kd functions
and thus also kd coefficients are required. This is illustrated in Table 1.1. For the deca-
alanine molecule, we have d = 16 dihedral angles. Representing each angle of the system
using only two basis functions is feasible, but would result in a coarse approximation. If
we double the number of basis functions, the eigenvector representation requires already
32 GB and is thus challenging. Increasing the number of basis functions even further
would be prohibitively expensive.

Figure 1.2: Deca-alanine molecule comprised of ten alanine residues.

One way to mitigate this exponential growth in the number of basis functions is to use
low-rank tensor representations of the multidimensional arrays containing the coefficients
for the basis functions. Tensors, in our sense, are simply multidimensional arrays. Instead
of storing these arrays in the full format, only low-rank representations are computed and
stored. This can be regarded as a generalization of the standard singular value decom-
position of matrices. Over the last years, different tensor formats have been developed,
an overview can be found in Chapter 4. We will focus mainly on the tensor train format
or TT format, which is introduced and utilized in Chapter 4 and Chapter 5, where we
show how data-driven methods such as DMD and EDMD can be reformulated in terms
of tensors. A low-rank representation of the pseudoinverse of certain tensor unfoldings,
which is required for the computation of the DMD modes of data given in the TT format,
can be directly computed without converting the tensor to the full format, exploiting
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properties of the TT decomposition. This is described in Chapter 5. For the tensor-based
approximation of the eigenfunctions of the Koopman operator with the aid of Ulam’s
method or EDMD, we construct a (generalized) tensor eigenvalue problem that is then
solved using simple power iteration methods, see Chapter 4. In [71], low-rank transition
matrices are computed based on the reformulated version of Ulam’s method and several
leading eigenvalues and eigenfunctions are computed simultaneously with the alternat-
ing linear scheme (ALS). A tensor-based reformulation of the variational approach of
conformation dynamics and numerical results for the deca-alanine molecule mentioned
above are presented in [138]. Deca-alanine is also analyzed in Chapter 3 by combining
TICA and Markov state models, which can be regarded as a special case of an EDMD
approximation.

Another related data-driven method, which is not presented in this thesis and aims at
identifying the governing equations of a dynamical system directly and not the transfer
operator associated with it, is called sparse identification of nonlinear dynamics (SINDy),
see [20]. Furthermore, a method which first approximates the Koopman operator and
then, based on this operator representation, identifies the governing equations is described
in [121]. This shows the close relationship between the governing equations of a system,
the associated transfer operators, and their generators.

The outline of this thesis is as follows: Chapter 2 contains the publication On the
numerical approximation of the Perron–Frobenius and Koopman operator [92]. Our pub-
lication Data-driven model reduction and transfer operator approximation [93] constitutes
Chapter 3. In Chapter 4, we present our publication Towards tensor-based methods for
the numerical approximation of the Perron–Frobenius and Koopman operator [95] and
in Chapter 5 the publication Tensor-based dynamic mode decomposition [91]. Chapter 6
concludes with a summary of the main contributions of this thesis and possible future
work. One additional publication related to dynamical systems and transfer operators is
presented in Appendix A, where a method to compute reaction coordinates which enable
the estimation of the effective transfer operator preserving the dominant spectrum of the
full transfer operator is proposed.
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2
On the numerical approximation of the

Perron–Frobenius and Koopman operator

Stefan Klus1, Péter Koltai1, and Christof Schütte1,2

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Germany
2 Zuse Institute Berlin, Germany

Journal of Computational Dynamics, 3(1):51–79, 2016

DOI: 10.3934/jcd.2016003

Abstract

Information about the behavior of dynamical systems can often be obtained by ana-
lyzing the eigenvalues and corresponding eigenfunctions of linear operators associated
with a dynamical system. Examples of such operators are the Perron–Frobenius and
the Koopman operator. In this paper, we will review different methods that have
been developed over the last decades to compute finite-dimensional approximations
of these infinite-dimensional operators – in particular Ulam’s method and Extended
Dynamic Mode Decomposition (EDMD) – and highlight the similarities and differ-
ences between these approaches. The results will be illustrated using simple stochastic
differential equations and molecular dynamics examples.

2.1 Introduction

The two main candidates for analyzing a dynamical system using operator-based ap-
proaches are the Perron–Frobenius and the Koopman operator. These two operators are
adjoint to each other in appropriately defined function spaces and it should therefore
theoretically not matter which one is used to study the system’s behavior. Neverthe-
less, different methods have been developed for the numerical approximation of these two
operators.

The Perron–Frobenius operator has been used extensively in the past to analyze the
global behavior of dynamical systems stemming from a plethora of different areas such
as molecular dynamics [152, 171], fluid dynamics [70, 63], meteorology and atmospheric
sciences [180, 179], or engineering [188, 139]. Toolboxes for computing almost invariant
sets or metastable states are available and efficiently approximate the system’s behavior
using adaptive box discretizations of the state space. An example of such a toolbox is
GAIO [38]. This approach is, however, typically limited to low-dimensional problems.
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2 On the approximation of transfer operators

Recently, several papers have been published focusing on data-based numerical methods
to approximate the Koopman operator and to analyze the associated Koopman eigenval-
ues, eigenfunctions, and modes [22, 195, 196]. These methods extract the relevant global
behavior of dynamical systems and can, for example, be used to find lower-dimensional
approximations of a system and to split a system into fast and slow subsystems as de-
scribed in [64]. In many applications, the complex behavior of a dynamical system can
be replicated by a small number of modes [196].

The approximation of the Perron–Frobenius operator typically requires short simula-
tions for a large number of different initial conditions, which, without prior knowledge
about the system, grows exponentially with the number of dimensions; the approxima-
tion of the Koopman operator, on the other hand, relies on potentially fewer, but longer
simulations [22]. However, we will show that this is not necessarily the case, the Perron–
Frobenius operator can also be approximated using just a small number of long simula-
tions. Thus, the latter approach might be well-suited for experimentally obtained data
running just a few tests with different initial conditions for a longer time. Whether the
numerically obtained operator then captures the full dynamics of the system, however,
depends strongly on the initial conditions chosen.

While the Koopman operator is the adjoint of the Perron–Frobenius operator, the
connections between different approaches to approximate these operators have – to our
knowledge – not been fully described. In this paper, we will review different numerical
methods to approximate the Perron–Frobenius operator and the Koopman operator and
illustrate the similarities and differences between these approaches. We will mainly focus
on simple stochastic differential equations and molecular dynamics applications.

The outline of this paper is as follows: In Section 2.2, we will introduce the Perron–
Frobenius operator and the Koopman operator and give a short description of basic prop-
erties. In Section 2.3, we will describe numerical methods (more precisely, generalized
Galerkin methods) to obtain finite-dimensional representations of these operators and
their eigenfunctions. Section 2.4 illustrates the relationship between numerical methods
developed for analyzing these operators. Section 2.5 contains examples demonstrating
the efficiency and characteristic properties of these numerical methods. A conclusion
and possible future work will be outlined in Section 2.6. In Appendix 2.C, we draw a
connection between (i) extended dynamic mode decomposition applied to molecular dy-
namics simulation data and (ii) a special transfer operator used in molecular conformation
analysis.

2.2 Transfer operators

2.2.1 Perron–Frobenius operator

Deterministic systems. Historically, transfer operators have been introduced in the field
of ergodic theory, where the main focus is on a measure-theoretic characterization of the
behavior of dynamical systems [97, 79, 175, 141, 107, 17]. Due to this, the starting point
of the considerations is often a measure space (X,B, µ), a three-tuple of a state space,
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2.2 Transfer operators

a sigma-algebra, and a (probability) measure, respectively. The evolution of the state,
usually in time, is described by a dynamical system Φ : X→ X, where Φ is a µ-measurable
map. When not stated explicitly otherwise, time is considered to be discrete, hence a
state x ∈ X evolves as {x,Φ(x),Φ2(x), . . .}. Nevertheless, most of the concepts carry over
in a straightforward fashion to continuous-time systems, which we denote by Φt, t ≥ 0.

In order to describe the statistical behavior of the dynamical system, we are interested
in how Φ affects distributions over state space. To this end, let us think of f ∈ L1(X) :=
L1(X,B, µ), with f ≥ 0 almost everywhere (a.e.) and ‖f‖L1 = 1, as the density of an
X-valued random variable x, we write x ∼ f . We wish to characterize the distribution
of Φ(x). It turns out that if Φ is non-singular1 with respect to µ, then there is a g ∈ L1(X)
such that Φ(x) ∼ g, and

∫
A g dµ =

∫
Φ−1(A) f dµ for all A ∈ B. The mapping f 7→ g can

be linearly extended to a linear operator P : L1(X)→ L1(X),
∫

A
Pf dµ =

∫

Φ−1(A)
f dµ, A ∈ B,

the so-called Perron–Frobenius operator [107, 17]. It is a linear, positive (i.e., f ≥ 0 implies
Pf ≥ 0), non-expansive (i.e., ‖Pf‖L1 ≤ ‖f‖L1) operator, hence a Markov operator. In
addition, if the underlying measure µ is invariant, i.e., µ ◦ Φ−1 = µ, then P : Lp(X) →
Lp(X) is a well-defined non-expansive operator for every p ∈ [1,∞]; see [3, 17].

The Perron–Frobenius operator P can be seen as a linear, infinite-dimensional rep-
resentation of the nonlinear, finite-dimensional dynamical system Φ. To see the con-
nection, consider for some x ∈ X the Dirac distribution δx(·) as an element of L1(X),
with

∫
A δx(y) dµ(y) = 1 if x ∈ A and 0 otherwise. Then

∫

A
Pδx dµ =

∫

Φ−1(A)
δx dµ =

∫

A
δΦ(x) dµ ,

such that the Perron–Frobenius operator moves the center of the Dirac distribution in
accordance with the dynamics.

Non-deterministic systems. We define the non-deterministic dynamical system Φ as a
mapping acting on X such that Φ(x) is an X-valued random variable over some implicitly
given probability space. We assume that Φ possesses a transition density function k :
X× X→ R≥0 satisfying

P(Φ(x) ∈ A) =

∫

A
k(x, y) dµ(y), A ∈ B . (2.1)

Here, P denotes the probability with respect to the underlying probability space and (2.1)
essentially means that Φ(x) ∼ k(x, ·). The existence of a transition density function can
be seen as an analogue to non-singularity in the deterministic case: it ensures that Φ does
not concentrate significant probability mass in sets of zero measure2.

1Φ is (measure-theoretically) non-singular with respect to µ if µ ◦ Φ−1 � µ; i.e., µ ◦ Φ−1 is absolutely
continuous with respect to µ. This condition ensures that Φ does not map sets of positive measure to
sets of zero measure, that is, it can not destroy probability measure.

2Such a mapping is also called in the literature “µ-compatible” or “null preserving” [81, 99].
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2 On the approximation of transfer operators

For such systems, it can be quickly seen that the Perron–Frobenius operator satisfies

Pf(y) =

∫
f(x)k(x, y) dµ(x) , (2.2)

and that the Markov operator property holds as well. If the measure µ is invariant, i.e.,
µ(A) =

∫
A
∫
k(x, y) dµ(x) dµ(y) for every A ∈ B, then P : Lp(X)→ Lp(X) is a well-defined

non-expansive operator for every p ∈ [1,∞], as in the deterministic case.
Invariant (or stationary) densities play a special role. These are densities f (i.e.,

positive functions with unit L1 norm) which satisfy Pf = f . If such a density f is unique,
the system is called ergodic, and satisfies for any g ∈ Lp(X), p ∈ [1,∞], that

lim
n→∞

1

n

n−1∑

k=0

g(Φkx) =

∫
gf dµ (2.3)

P-almost surely (a.s.) for µ-a.e. x ∈ supp(f), where supp(f) is the set {f > 0}. With
some additional assumptions on k, the convergence in (2.3) is geometric, with the rate
governed by the second dominant eigenvalue of P.

In general, eigenfunctions associated with subdominant eigenvalues correspond to the
slowly converging transients of the system and yield information about metastable sets;
sets between which a dynamical transition is a rare event. For more details, we refer
to [125, 171].

2.2.2 Koopman operator

While the Perron–Frobenius operator describes the evolution of densities, the Koopman
operator describes the evolution of observables [22]. An observable could, for instance, be a
measurement or sensor probe. That is, instead of analyzing an orbit {x, Φ(x), Φ2(x), . . . }
of the dynamical system, we consider the measurements {f(x), f(Φ(x)), f(Φ2(x)), . . . }.

The Koopman operator K : L∞(X)→ L∞(X), see e.g. [22, 195, 64], is defined by

Kf = f ◦ Φ . (2.4)

The Koopman operator K is the adjoint of the Perron–Frobenius operator P, i.e.

〈Pf, g〉µ = 〈f, Kg〉µ ,

where 〈·, ·〉µ is the duality pairing between L1 and L∞ functions. For specific combinations

of Φ and µ, the Koopman operator can be defined on L2(X), too3; in what follows, we
assume that this is the case.

Again, K is an infinite-dimensional linear operator that characterizes the finite-dimen-
sional nonlinear system Φ. To obtain the dynamics of a system defined on X ⊂ Rd,
use the set of observables gi(x) = xi, i = 1, . . . , d, or in shorthand, the vector-valued

3For instance, if the measure µ is invariant under Φ [3]; or if k ∈ L∞(X× X).
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2.2 Transfer operators

observable g(x) = x, where g is called full-state observable. On vector-valued functions,
the Koopman operator acts componentwise.

In order to maintain duality with the Perron–Frobenius operator, for the non-determi-
nistic system Φ with transition density function k, the Koopman operator is defined as

Kf(x) = E [f(Φ(x))] =

∫
k(x, y)f(y) dµ(y),

where E[·] denotes the expectation value with respect to the probability measure under-
lying Φ(x). Note that while the Koopman operator was defined here for a discrete-time
dynamical system, the definition can be extended naturally to continuous-time dynamical
systems as described in [22].

If ϕ1 and ϕ2 are eigenfunctions of the Koopman operator with eigenvalues λ1 and λ2,
then also the product ϕ1 ϕ2 is an eigenfunction with eigenvalue λ1λ2. The product of
two functions is defined pointwise, i.e. (ϕ1 ϕ2)(x) = ϕ1(x)ϕ2(x). Analogously, for any
eigenfunction ϕ and r ∈ R, ϕr is an eigenfunction with eigenvalue λr assuming that
ϕ(x) 6= 0 for r < 0.

Example 2.2.1. Consider a linear dynamical system of the form xk+1 = Axk with
A ∈ Rd×d, cf. [22, 195]. Let A have d left eigenvectors4 wi with eigenvalues µi, i.e.
wiA = µiwi for i = 1, . . . , d. Then ϕi(x) = wi x is an eigenfunction of the Koopman
operator K with corresponding eigenvalue λi = µi since

(Kϕi)(x) = ϕi(Ax) = wiAx = µiwi x = µi ϕi(x).

As described above, also products of these eigenfunctions

ϕl(x) =
d∏

i=1

(wi x)li

are eigenfunctions with corresponding eigenvalue λl =
∏d
i=1 λ

li
i , where l ∈ Nd0 is a multi-

index. For

A =

[
0.48 −0.06
−0.16 0.52

]
,

for example, the left eigenvectors are w1 = [0.8, −0.6] and w2 = 1√
5
[2, 1] with eigenvalues

µ1 = 0.6 and µ2 = 0.4. The first eight nontrivial eigenfunctions of the Koopman operator
are shown in Figure 2.1. 4

Let f : X→ R be an observable of the system that can be written as a linear combina-
tion of the linearly independent eigenfunctions ϕi, i.e.

f(x) =
∑

i

ci ϕi(x),

4Here and in what follows, left eigenvectors are represented as row vectors.
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2 On the approximation of transfer operators

Figure 2.1: Eigenfunctions of the Koopman operator for the linear dynamical system
described in Example 2.2.1.

with ci ∈ C. Then
(Kf)(x) =

∑

i

λi ci ϕi(x).

Analogously, for vector-valued functions F = [f1, . . . , fn]T , we get

KF =




∑
i λi ci,1 ϕi

...∑
i λi ci,n ϕi


 =

∑

i

λi ϕi



ci,1
...
ci,n


 =

∑

i

λi ϕi vi,

where vi = [ci,1, . . . , ci,n]T . These vectors vi corresponding to the eigenfunctions ϕi are
called Koopman modes.

Definition 2.2.2. Given an eigenfunction ϕi of the Koopman operator K and a vector-
valued observable F , the vector vi of coefficients of the projection of F onto span{ϕi} is
called Koopman mode.

The connection between the dynamical system Φ and the Koopman operator K is
given by the full-state observable g(x) = x and the corresponding Koopman eigenvalues
λi, eigenfunctions ϕi, and eigenmodes vi required to retrieve the full state [195]. Since
(Kg)(x) = (g ◦ Φ)(x) = Φ(x) and, using the Koopman modes vi belonging to g,

(Kg)(x) =
∑

i

λi ϕi(x) vi,
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2.3 Numerical approximation

we can compute Φ(x) with the aid of the Koopman operator. A pictorial representation
of the relationship between states and observables as well as the evolution operator and
Koopman operator can be found in [195].

2.3 Numerical approximation

2.3.1 Generalized Galerkin methods

The Galerkin discretization of an operator A over some Hilbert space H can be described
as follows. Suppose we have a finite-dimensional subspace V ⊂ H with basis (ψ1, . . . , ψk)
given. The Galerkin projection of A to V is the unique linear operator A : V → V
satisfying

〈ψj , Aψi〉 = 〈ψj , Aψi〉 , for all i, j = 1, . . . , k . (2.5)

If the operator A is not given on a Hilbert space, just a Banach space, it can be advan-
tageous to take basis functions (with respect to which the projected operator is defined)
and test functions (which serve in (2.5) to project objects not necessarily living in the
same subspace) from different sets.

If A : Y → Y is an operator on a Banach space Y, V ⊂ Y a subspace with basis
(ψ1, . . . , ψk), W ⊂ Y∗ a subspace of the dual of Y with basis (ψ∗1, . . . , ψ

∗
k), i.e. dimV =

dimW, then the Petrov–Galerkin projection of A is the unique linear operator A : V→ V
satisfying 〈

ψ∗j , Aψi
〉

=
〈
ψ∗j , Aψi

〉
, for all i, j = 1, . . . , k , (2.6)

where 〈·, ·〉 denotes the duality bracket.

This idea can be taken one step further, resulting in a Petrov–Galerkin-like projection
even if l := dimW > dimV. In this case, (2.6) is over-determined and the projected
operator A is defined as the solution of the least-squares problem

l∑

j=1

k∑

i=1

〈
ψ∗j , Aψi −Aψi

〉2
= min! (2.7)

We refer to this as the over-determined Petrov–Galerkin method.

2.3.2 Ulam’s method

Probably the most popular method to date for the discretization of the Perron–Frobenius
operator is Ulam’s method; see e.g. [187, 27, 10, 64]. Let {B1, . . . , Bk} ⊂ B be a covering
of X by a finite number of disjoint measurable boxes and let 1Bi be the indicator function
for box Bi, i.e.

1Bi(x) =

{
1, if x ∈ Bi,
0, otherwise.

13



2 On the approximation of transfer operators

Ulam’s method is a Galerkin projection of the Perron–Frobenius operator to the sub-
space spanned by these indicator functions. More precisely, if one chooses the basis
functions ψi = 1

µ(Bi)1Bi , then from the relationship

∫
1Bj · P1Bi dµ =

∫
(1Bj ◦ Φ) · 1Bi dµ =

∫
1Φ−1(Bj) · 1Bi dµ

= µ(Φ−1(Bj) ∩ Bi)
(2.8)

we can represent the discrete operator by a matrix P = (pij) ∈ Rk×k with

pij =
µ
(
Φ−1(Bj) ∩ Bi

)

µ(Bi)
. (2.9)

The denominator µ(Bi) normalizes the entries pij so that P becomes a row-stochastic
matrix. Thus, P defines a finite Markov chain and has a left eigenvector with the corre-
sponding eigenvalue λ1 = 1. This eigenvector approximates the invariant measure of the
Perron–Frobenius operator P [112, 130, 62, 40].

The entries pij of the matrix P can be viewed as the probabilities of being mapped
from box Bi to box Bj by the dynamical system Φ. These entries can be estimated by

randomly choosing a large number of test points x
(l)
i , l = 1, . . . , n, in each box Bi and

counting the number of times Φ(x
(l)
i ) is contained in box Bj , that is,

pij ≈
1

n

n∑

l=1

1Bj (Φ(x
(l)
i )) . (2.10)

On the one hand, this is a Monte-Carlo approach to estimate the integrals in (2.8), and
hence a numerical realization of Ulam’s method. On the other hand, it is also an over-
determined Petrov–Galerkin method (2.7) with test functionals ψ∗` being point evaluations
at the respective sample points x`; i.e., for a piecewise continuous function ϕ we have
ψ∗` (ϕ) =

∫
ϕδx` dµ = ϕ(x`). One can see this by noting that due to the disjoint support

of the basis functions 1Bi the sum in (2.7) decouples and the entries of P can be readily
seen to be as on the right-hand side of (2.10). The effect of Monte-Carlo sampling and
the choice of the partition on the accuracy and convergence of Ulam’s method has been
investigated in [11, 131, 96].

Remark 2.3.1. We note that, given independent random test points x
(l)
i ∈ Bi, l =

1, . . . , n, expression (2.10) is a maximum-likelihood estimator for (2.9). This holds true
in the non-deterministic case as well, where (2.9) reads as

pij = P
(
Φ(x

(l)
i ) ∈ Bj

)
,

and the Φ(x
(l)
i ) in (2.10) are replaced by mutually independent realizations of Φ(x

(l)
i ),

l = 1, . . . , n.
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2.3 Numerical approximation

2.3.3 Further discretization methods for the Perron–Frobenius operator

Petrov–Galerkin type and higher order methods. Ulam’s method is a zeroth order
method in the sense that it uses piecewise constant basis functions. We can achieve a
better approximation of the operator (and its dominant spectrum, in particular) if we use
higher order piecewise polynomials in the Galerkin approximation; see [44, 46].

If the eigenfunctions of the Perron–Frobenius operator are expected to have further
regularity, the use of spectral methods can be advantageous [82, 67]. Here, collocation
turns out to be the most efficient, in general; i.e., where basis functions are Fourier
or Chebyshev polynomials [18], and test functions are Dirac distributions centered in
specific domain-dependent collocation points. Mesh-free approaches with radial basis
functions continuously gain popularity due to their flexibility with respect to state space
geometry [66, 197].

A kind of regularity different from smoothness is if functions of interest do not vary
simultaneously strongly in many coordinates, just in very few of them. Sparse-grid type
Galerkin approximation schemes [23] are well suited for such objects; their combination
with Ulam’s method has been considered in [88].

Higher-order approximations do have, however, an unwanted disadvantage: the dis-
cretized operator is not a Markov operator (a stochastic matrix), in general [96, Section
3]. This desirable structural property can be retained if one considers specific Petrov–
Galerkin methods; cf. [45], where the basis functions are piecewise first- or second-order
polynomials and the test functions are piecewise constant.

Maximum entropy optimization methods. Let us consider a Petrov–Galerkin method
for discretizing the Perron–Frobenius operator P, such that ψ∗j (ϕ) =

∫
hjϕdµ for suit-

able hj ∈ L∞(X), j = 1, . . . , k. Then the image Pf of f ∈ V is the unique element g ∈ V
such that

∫
(Pf − g)hj dµ =

∫
f(hj ◦ Φ)− ghj dµ = 0, j = 1, . . . , k . (2.11)

One might as well alleviate the condition g ∈ V, at the cost of not having a unique
solution to (2.11). Then, in order to get a unique solution, one has to impose additional
conditions on g. If one considers (2.11) as constraints, one could formulate an optimization
problem whose solution is g. There is, of course, no trivial choice of objective functional
for this optimization problem, however energy-type (i.e.

∫
g2 dµ) and entropy-type (i.e.∫

g log g dµ) objective functionals turned out to be advantageous to use [43, 13, 12, 14].
The reason for this is that the available convergence analysis for Ulam’s method is quite
restrictive [112, 46, 62], and these optimization-based methods yield novel convergent
schemes to approximate invariant densities of non-singular dynamical systems – to this
end, one sets g = f in (2.11). The down-side of this method is that in order to represent
the approximate invariant density, one has to compute “basis functions” which arise as
non-trivial combinations of the test functions hj and the dynamics Φ.
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2 On the approximation of transfer operators

2.3.4 Extended dynamic mode decomposition

An approximation of the Koopman operator, the Koopman eigenvalues, eigenfunctions,
and eigenmodes can be computed using Extended Dynamic Mode Decomposition (EDMD).
Note that we are using a slightly different notation than [195, 196] here to make the
relationship with other methods, in particular Ulam’s method and Dynamic Mode De-
composition (DMD, defined in Remark 2.3.6 below), more apparent. In order to obtain
EDMD, we take the basis functions ψi, as above, and for the test function(al)s, we take
delta distributions δxj , that is, 〈δx, ψ〉 = ψ(x). EDMD requires data, i.e. a set of values
xi and the corresponding yi = Φ(xi) values, i = 1, . . . ,m, written in matrix form

X =
[
x1 · · · xm

]
and Y =

[
y1 · · · ym

]
, (2.12)

and additionally a set of basis functions or observables

D = {ψ1, ψ2, . . . , ψk}
called dictionary. EDMD takes ideas from collocation methods, which are, for example,
used to solve PDEs, where the xi are the collocation points rather than a fixed grid [196].
Writing

Ψ =
[
ψ1 ψ2 · · · ψk

]T

as a vector of functions, that is Ψ : X→ Rk, this yields

ΨT
Y = ΨT

XK,

with
ΨX =

[
Ψ(x1) . . . Ψ(xm)

]
and ΨY =

[
Ψ(y1) . . . Ψ(ym)

]
,

i.e. ΨX ,ΨY ∈ Rk×m. Here, K ∈ Rk×k applied from the right to vectors in R1×k represents
the projection of K with respect to the basis (ψ1, . . . , ψk). If the number of basis functions
and test functions does not match, (2.6) cannot be satisfied in general and a least squares
solution of the (usually overdetermined) system of equations is given by applying Ψ+

X , the
pseudoinverse of ΨX , giving

KT = ΨY Ψ+
X . (2.13)

A more detailed description can be found in Appendix 2.D. For the sake of convenience
and to compare DMD and EDMD, we define MK = KT . This approach becomes compu-
tationally expensive for large m since it requires the pseudoinverse of the k ×m matrix
ΨX . Another possibility to compute K is

KT = AG+,

where the matrices A, G ∈ Rk×k are given by

A =
1

m

m∑

l=1

Ψ(yl) Ψ(xl)
T ,

G =
1

m

m∑

l=1

Ψ(xl) Ψ(xl)
T .

(2.14)
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2.3 Numerical approximation

In order to obtain the second EDMD formulation from the first, the relationship Ψ+
X =

ΨT
X (ΨX ΨT

X)+ was used. For a detailed derivation of these results, we refer to [195, 196].
An approximation of the eigenfunction ϕi of the Koopman operator K is then given by

ϕi = ξi Ψ,

where ξi is the i-th left eigenvector of the matrix MK = KT .

Example 2.3.2. Let us consider the linear system described in Example 2.2.1 again.
The eigenfunctions computed using EDMD with the basis functions ψl = xl11 x

l2
2 , 0 ≤

l1, l2 ≤ 5, are in very good agreement with the theoretical results. EDMD computes
exactly the eigenfunctions shown in Figure 2.1 with negligibly small numerical errors
ε < 10−10, where we computed the maximum difference between the eigenfunctions and
their approximation. The first eight nontrivial eigenvalues of MK are

λ2 = 0.6000, λ3 = 0.4000, λ4 = 0.3600, λ5 = 0.2400,

λ6 = 0.2160, λ7 = 0.1600, λ8 = 0.1440, λ9 = 0.1296. 4
In order to obtain the Koopman modes for the full-state observable g(x) = x introduced

above, define ϕ = [ϕ1, . . . , ϕk]
T and let B ∈ Rd×k be the matrix such that g = BΨ, then

ϕ = Ξ Ψ and
g = BΨ = B Ξ−1ϕ,

where the matrix

Ξ =




ξ1

ξ2
...
ξk




contains all left eigenvectors of MK. Thus, the column vectors of the (d× k)-dimensional
matrix V = B Ξ−1 are the Koopman modes vi and

g =
∑

i

ϕi vi ⇒ Kg =
∑

i

λi ϕi vi.

Note that since Ξ is the matrix which contains all left eigenvectors of MK, the matrix Ξ−1

needed for reconstructing the full-state observable g contains all right eigenvectors of MK.
That is, the Koopman eigenfunctions ϕ = Ξ Ψ are approximated by the left eigenvectors
of MK and the Koopman modes V = B Ξ−1 by the right eigenvectors (cf. [195], with the
difference that there the observables and eigenfunctions are written as column vectors and
the data matrices ΨX and ΨY are the transpose of our matrices; we chose to rewrite the
EDMD formulation in order to illustrate the similarities with DMD and other methods).

Example 2.3.3. For Example 2.2.1 and the dictionary ψl = xl11 x
l2
2 , 0 ≤ l1, l2 ≤ 5,

the matrix B ∈ R2×36 is zero except for the two entries corresponding to the functions
ψ(1,0) = x1 and ψ(0,1) = x2. Thus, only the two eigenmodes v(1,0) ≈ [0.5, −1]T and v(0,1) ≈√

5
2 [0.6, 0.8]T – eigenvectors of A – are required to construct the full-state observable, all

the other eigenmodes are numerically zero. 4
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2 On the approximation of transfer operators

Remark 2.3.4 (Convergence of EDMD to a Galerkin method). As described
in [195], EDMD converges to a Galerkin approximation of the Koopman operator for
large m if the data points are drawn according to a distribution µ. Using the Galerkin
approach, we would obtain matrices Ã and G̃ with entries

ãij = 〈Kψi, ψj〉µ ,
g̃ij = 〈ψi, ψj〉µ .

Here, 〈f, g〉µ =
∫
X f(x) g∗(x) dµ(x). Then K̃T = Ã G̃−1 would be the finite-dimensional

approximation of the Koopman operator K. Clearly, the entries aij and gij of the matrices
A and G in (2.14) converge to ãij and g̃ij for m→∞, since

aij =
1

m

m∑

l=1

ψi(yl)ψj(xl)
∗ −−−−→
m→∞

∫

X
(Kψi)(x)ψj(x)∗ dµ(x) = 〈Kψi, ψj〉µ = ãij ,

gij =
1

m

m∑

l=1

ψi(xl)ψj(xl)
∗ −−−−→
m→∞

∫

X
ψi(x)ψj(x)∗ dµ(x) = 〈ψi, ψj〉µ = g̃ij .

(2.15)

Remark 2.3.5 (Variational approach for reversible processes). The EDMD ap-
proximation of the eigenfunctions of the Koopman operator is given by the left eigenvec-
tors ξ of the matrix MK = AG+, i.e. ξ MK = λ ξ, and can be – provided that G is regular
– reformulated as a generalized eigenvalue problem of the form ξ A = λ ξ G. This results
in a method similar to the variational approach presented in [134] for reversible processes.
A tensor-based generalization of this method can be found in [138].

Remark 2.3.6 (DMD). Dynamic Mode Decomposition was first introduced in [163]
and is a powerful tool for analyzing the behavior of nonlinear systems which can, for
instance, be used to identify low-order dynamics of a system [186]. DMD analyzes pairs
of d-dimensional data vectors xi and yi = Φ(xi), i = 1, . . . ,m, written again in matrix
form (2.12). Assuming there exists a linear operator ML that describes the dynamics of
the system such that yi = ML xi, define ML = Y X+. The DMD modes and eigenvalues
are then defined to be the eigenvectors and eigenvalues of ML. The matrix ML minimizes
the cost function ‖MLX − Y ‖F , where ‖.‖F is the Frobenius norm. There are different
algorithms to compute the DMD modes and eigenvalues without explicitly computing ML

which rely on the (reduced) singular value decomposition of X. For a detailed description,
we refer to [186].

Remark 2.3.7 (DMD and EDMD). The first EDMD formulation (2.13) shows the
relationship between DMD and EDMD. Let the vector of observables be given by Ψ(x) =
x. Then ΨX = X and ΨY = Y , thus

MK = ΨY Ψ+
X = Y X+ = ML,

i.e. the DMD matrix ML is an approximation of the Koopman operator K using only
linear basis functions. Since B = I, the Koopman modes are V = Ξ−1, which are the
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right eigenvectors of MK and thus the right eigenvectors of ML, which illustrates that the
Koopman modes in this case are the DMD modes. Hence, (exact) DMD can be regarded
as a special case of EDMD.

Remark 2.3.8 (Sparsity-promoting DMD). A variant of DMD aiming at maximizing
the quality of the approximation while minimizing the number of modes used to describe
the data is presented in [87]. Sparsity is achieved by using an `1-norm regularization
approach. The `1-norm can be regarded as a convexification of the cardinality function.
The resulting regularized convex optimization problem is then solved with an alternating
direction method. That is, the algorithm alternates between minimizing the cost function
and maximizing sparsity.

In the same way, a sparsity-promoting version of EDMD could be constructed in order
to minimize the number of basis functions required for the representation of the eigen-
functions.

2.3.5 Kernel-based extended dynamic mode decomposition

In some cases, it is possible to improve the efficiency of EDMD using the so-called ker-
nel trick [196]. In fluid problems, for example, the number of measurement points k
is typically much larger than the number of measurements or snapshots m. Suppose
f(x, y) = (1 + xT y)2 for x, y ∈ R2, then

f(x, y) = 1 + 2x1 y1 + 2x2 y2 + 2x1 x2 y1 y2 + x2
1 y

2
1 + x2

2 y
2
2 = Ψ(x)T Ψ(y)

for the vector of observables Ψ(x) =
[
1,
√

2x1,
√

2x2,
√

2x1 x2, x
2
1, x

2
2

]T
. The kernel

function f(x, y) = (1 + xT y)p for x, y ∈ Rd will generate a vector-valued observable
that contains all monomials of order up to and including p. That is, instead of O(k),
the computation of the inner product is now O(d) since inner products are computed
implicitly by an appropriately chosen kernel function.

In [196], it is shown that any left eigenvector v of MK for an eigenvalue λ 6= 0 can be
written as v = v̂ΨT

X , with v̂ ∈ Rm. Using the relationship Ψ+
X = (ΨT

X ΨX)+ΨT
X , we then

obtain

vMK = v̂ΨT
XMK = v̂ΨT

X(ΨY Ψ+
X) = v̂ (ΨT

X ΨY )(ΨT
X ΨX)+ΨT

X = v̂ M̂K ΨT
X

=

µ v = µ v̂ΨT
X

and thus a left eigenvector of MK can be computed by a left eigenvector of M̂K = K̂T =
Â Ĝ+ multiplied by ΨT

X , where Â = ΨT
X ΨY ∈ Rm×m and Ĝ = ΨT

X ΨX ∈ Rm×m. The

entries of the matrices Â and Ĝ can be computed efficiently by

âij = f(xi, yj),

ĝij = f(xi, xj),

using the kernel function f . The computational cost for the eigenvector computation now
depends on the number of snapshots m rather than the number of observables k. For a
more detailed description, we refer to [196].
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2 On the approximation of transfer operators

2.4 Duality

In this section, we will show how, given the eigenfunctions of the Koopman operator, the
eigenfunctions of the adjoint Perron–Frobenius operator can be computed, or vice versa.
The goal here is to illustrate the similarities between the different numerical methods
presented in the previous sections and to adapt methods developed for one operator to
compute eigenfunctions of the other operator. We will focus in particular on Ulam’s
method and EDMD.

2.4.1 Ulam’s method and EDMD

Let us consider the case where the dictionary contains the indicator functions for a given
box discretization {B1, . . . , Bk}, i.e. D = {1B1 , . . . , 1Bk}. If we now select n test points

x
(l)
i , l = 1, . . . , n, for each box, then

ΨX =




1Tn
1Tn

. . .

1Tn


 ∈ Rk×k n,

where 1n ∈ Rn is the vector of all ones. The pseudoinverse of this matrix is Ψ+
X = 1

nΨT
X

and the matrix MK = ΨY Ψ+
X ∈ Rk×k with entries mij has the following form

mij =
k n∑

l=1

(ΨY )il (ΨX)+
lj =

1

n

n∑

l=1

ψi(y
(l)
j ) =

1

n

n∑

l=1

1Bi(Φ(x
(l)
j )).

Comparing the entries mij of MK with the entries pij of P in (2.10), it turns out that

MK = P T and thus P = K. That is, EDMD with indicator functions for a given box
discretization computes the same finite-dimensional representation of the operators as
Ulam’s method.

2.4.2 Computation of the dual basis

For the finite-dimensional approximation, let ϕi be the eigenfunctions of K and ϕ̃i the
eigenfunctions of the adjoint operator P, i = 1, . . . , k. Since

〈Kϕi, ϕ̃j〉µ = λi 〈ϕi, ϕ̃j〉µ and 〈ϕi, Pϕ̃j〉µ = λj 〈ϕi, ϕ̃j〉µ ,

subtracting these two equations gives 0 = (λi − λj) 〈ϕi, ϕ̃j〉µ. The left-hand side of the
equation is zero due to the definition of the adjoint operator. Thus, if λi 6= λj , the scalar
product must be zero. Furthermore, ϕ̃j can be scaled in such a way that 〈ϕi, ϕ̃i〉µ = 1.
Hence, we can assume that 〈ϕi, ϕ̃j〉µ = δij .
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2.4 Duality

Let now B = (bij) ∈ Ck×k and C = (cij) ∈ Ck×k. Define bij = 〈ϕi, ϕj〉µ and write

ϕ̃j =

k∑

l=1

cjl ϕl,

then

〈ϕi, ϕ̃j〉µ =

〈
ϕi,

k∑

l=1

cjl ϕl

〉

µ

=

k∑

l=1

c∗jl 〈ϕi, ϕl〉µ =

k∑

l=1

bil c
∗
jl =

k∑

l=1

bil clj .

It follows that the coefficients cij have to be chosen such that C = B−1. In order to
obtain the matrix B, we compute

bij = 〈ϕi, ϕj〉µ ≈ 〈ξi Ψ, ξj Ψ〉µ =
1

m

m∑

l=1

(ξi Ψ(xl)) (ξj Ψ(xl))
∗

=
1

m
(ξi ΨX) (ξj ΨX)∗ =

1

m
ξiGξ

∗
j ,

where again G = ΨXΨT
X . That is,

B =
1

m
ΞGΞ∗ ⇒ C = B−1 = m (Ξ∗)−1G−1 Ξ−1.

Here, we assume that the matrix G is invertible. It follows that

ϕ̃j =

k∑

l=1

cjl ξl Ψ = ξ̃j Ψ,

where Ξ̃ = C Ξ = m (Ξ∗)−1G−1. The drawback of this approach is that all the eigenvec-
tors of the matrix MK need to be computed, which – for a large number of basis functions
– might be prohibitively time-consuming. We are often only interested in the leading
eigenfunctions.

2.4.3 EDMD for the Perron–Frobenius operator

EDMD as presented in Section 2.3 can also directly be used to compute an approximation
of the eigenfunctions of the Perron–Frobenius operator. Since

ãij = 〈Kψi, ψj〉µ = 〈ψi, Pψj〉µ ,

the entries of the matrix ÃT are given by 〈Pψi, ψj〉µ. The matrices A and G are ap-

proximations of Ã and G̃, respectively. Thus, the eigenfunctions of the Perron–Frobenius
operator can be approximated by computing the eigenvalues and left eigenvectors of

MP = AT G+. (2.16)
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2 On the approximation of transfer operators

Analogously, the generalized eigenvalue problem

ξ̃ AT = λ ξ̃ G

can be solved. We discuss an even more general way of approximating the adjoint operator
in Appendix 2.A.

Example 2.4.1. Let us compute the dominating eigenfunction of the Perron–Frobenius
operator for the linear system introduced in Example 2.2.1. Note that the origin is a fixed
point and we would expect the invariant density to be the Dirac distribution δ with center
(0, 0). Using monomials of order up to 10 and thin plate splines of the form ψ(r) = r2 ln r,
where r is the distance between the point (x, y) and the center, respectively, we obtain the
approximations shown in Figure 2.2. This illustrates that the results strongly depend on
the basis functions chosen. EDMD will return only meaningful results if the eigenfunctions
can be represented by the selected basis.

a) b)

Figure 2.2: Approximation of the invariant density of the linear system from Exam-
ple 2.2.1 using a) monomials of order up to 10 and b) thin plate splines. This example
shows that EDMD captures the eigenfunctions only if they can be represented by the
basis chosen.

One possibility to detect whether the chosen basis is sufficient to approximate the
dominant eigenfunctions accurately is to add additional basis functions and to check
whether the results remain essentially unchanged. Here, one should take into account
that the condition number of the problem might deteriorate if a large number of basis
functions is used. Another possibility is to compute the residual

∥∥ΨY −KTΨX

∥∥
F

. A
large error indicates that the set of basis functions cannot represent the eigenfunctions
accurately. 4
Remark 2.4.2. The eigenfunctions computed in the previous subsection are identical to
the ones computed here. The matrix Ξ can be computed as the solution of the following
generalized eigenvalue problem ΞA = Λ ΞG. Hence, we get AT = GT Ξ∗ Λ∗ (Ξ∗)−1. Then
Ξ̃ = (Ξ∗)−1G−1, neglecting the factor m, solves the generalized eigenvalue problem

Ξ̃AT = (Ξ∗)−1G−1GT Ξ∗ Λ∗ (Ξ∗)−1 = Λ∗ (Ξ∗)−1 = Λ∗ Ξ̃G,

using the fact that G is symmetric.
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This shows that the eigenfunctions of the Koopman operator are approximated by
the left eigenvectors and the eigenfunctions of the Perron–Frobenius operator by the
right eigenvectors of the generalized eigenvalue problem with the matrix pencil given by
(A,G). The advantage of this approach is that arbitrary basis functions can be chosen to
compute eigenfunctions of the Perron–Frobenius operator. This might be beneficial if the
eigenfunctions can be approximated by a small number of smooth functions – for instance
monomials, Hermite polynomials, or radial basis functions – whereas using Ulam’s method
a large number of indicator functions would be required.

2.5 Numerical examples

In this section, we will illustrate the different methods described in the paper using simple
stochastic differential equations and molecular dynamics examples.

2.5.1 Double-well problem

Consider the following stochastic differential equation

dxt = −∇xV (xt,yt) dt+ σ dwt,1,

dyt = −∇yV (xt,yt) dt+ σ dwt,2,
(2.17)

where wt,1 and wt,2 are two independent standard Wiener processes. In this example,
the potential, shown in Figure 2.3a, is given by V (x, y) = (x2 − 1)2 + y2 and σ = 0.7.

a) b)

Figure 2.3: a) Double-well potential V (x, y) = (x2 − 1)2 + y2. The x variable typically
stays for a long time close to x = −1 or x = 1 and rarely switches from one state to the
other. The y variable oscillates around the equilibrium y = 0. b) Numerical solution of
the double-well SDE (2.17).

Numerically, this system can be solved using the Euler–Maruyama method, which, for
an SDE of the form

dxt = µ(t,xt) dt+ σ(t,xt) dwt,

23



2 On the approximation of transfer operators

can be written as

xk+1 = xk + hµ(tk,xk) + σ(tk,xk) ∆wk,

where h is the step size and ∆wk = wk+1 − wk ∼ N (0, h). Here, N (0, h) denotes a
normal distribution with mean 0 and variance h. A typical trajectory of system (2.17) is
shown in Figure 2.3b.

In order to compare the different methods described in the preceding sections, we
conputed the leading eigenfunctions with Ulam’s method and EDMD. For Ulam’s method,
we partitioned the domain Ω = [−2, 2]2 into 50× 50 boxes of the same size. For EDMD,
we used monomials of order up to and including 10, i.e.

D = {1, x, y, x2, x y, y2, . . . , x2 y8, x y9, y10}.

That is, Ulam’s method requires 2500 parameters to describe the eigenfunctions while
EDMD requires only 66. For each box, we generated n = 100 test points, i.e. 250000
test points overall, and used the same test points also for EDMD resulting in ΨX ,ΨY ∈
R66×250000. The system (2.17) is solved using the Euler–Maruyama method with a step
size of h = 10−3. One evaluation of the corresponding dynamical system Φ corresponds
to 10000 steps. That is, each initial condition is integrated from t0 = 0 to t1 = 10.
The first two eigenfunctions of the Perron–Frobenius operator and Koopman operator
are shown in Figure 2.4. Observe that the computed eigenvalues are – as expected –
almost identical. The second eigenfunction computed with Ulam’s method is still very
coarse, increasing the number of test points per box would smoothen the approximation.
Since for EDMD only smooth basis functions were chosen, the resulting eigenfunction is
automatically smoothened.

The system has two metastable states and the second eigenfunction of the Perron–
Frobenius operator can be used to detect these metastable states. Also the second
eigenfunction of the adjoint Koopman operator contains information about a possible
partitioning of the state space, it is almost constant in the y-direction and also almost
constant in the x-direction except for an abrupt transition from −1 to 1 between the two
metastable sets. The other eigenvalues of the system are numerically zero.

2.5.2 Triple-well problem

Consider the slightly more complex triple-well potential

V (x, y) = 3 e−x
2−(y− 1

3
)2 − 3 e−x

2−(y− 5
3

)2 − 5 e−(x−1)2−y2 − 5 e−(x+1)2−y2

+ 2
10 x

4 + 2
10

(
y − 1

3

)4 (2.18)

taken from [171]. Here, the variables x and y are coupled, i.e. the potential cannot be
written as V (x, y) = V1(x)+V2(y) anymore. The potential function is shown in Figure 2.5
and the first two nontrivial eigenfunctions of the Perron–Frobenius operator and the
Koopman operator in Figure 2.6. Note that the eigenfunction ϕ2 separates the two deep
wells at (−1, 0) and (1, 0) and is near zero for the well at (0, 1.5), the third eigenfunction ϕ3
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a)

b)

c)

d)

Figure 2.4: The first two eigenfunctions of the Perron–Frobenius operator P for the
double-well problem computed using a) Ulam’s method and b) EDMD and the first two
eigenfunctions of the Koopman operator K computed using c) Ulam’s method and d)
EDMD.
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2 On the approximation of transfer operators

Figure 2.5: Triple-well potential given by (2.18).

separates the two deep wells from the shallow well. Here, the eigenfunctions of the Perron–
Frobenius operator and the eigenfunctions of the Koopman operator essentially encode the
same information. As before, we used EDMD with monomials of order up to and including
10 and 250000 randomly generated test points within the domain Ω = [−2, 2] × [−1, 2].
Each test point was integrated from t0 = 0 to t1 = 0.1 using a step size of h = 10−5. The
parameter σ was set to 1.09.

a)

b)

Figure 2.6: Second and third eigenfunction of a) the Perron–Frobenius operator P and
b) the Koopman operator K for the triple-well problem.
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2.5 Numerical examples

2.5.3 Molecular dynamics and conformation analysis

Classical molecular dynamics. Classical molecular dynamics describes the motion of
atoms, or groups of atoms, in terms of Hamiltonian dynamics under the influence of atomic
interaction forces resulting from a potential. The position or configuration space Q ⊂ Rd
describes all possible positions of the atoms, while the momentum space P = Rd contains
all momenta. The potential V : Q → R is assumed to be a sufficiently smooth function.
The phase space X = Q × P of the molecule consists of all possible position-momenta
pairs x = (q, p). The evolution of a molecule in phase space under ideal conditions is
described by Hamilton’s equations of motion

q̇t = M−1pt,

ṗt = −∇V (qt),
(2.19)

where M denotes the symmetric positive definite mass matrix. Since molecules do not
stand alone, but are rather subject to interaction with their surrounding molecules, differ-
ent models incorporating these interactions are more commonly used. One way to account
for the collisions with the surrounding molecules is to include a damping and a stochastic
forcing term in (2.19) to obtain the Langevin equation

dqt = M−1ptdt,

dpt = −∇V (qt)dt− γM−1ptdt+ σdwt.
(2.20)

This is an SDE giving rise to a non-deterministic evolution, hence positions and momenta
are random variables. Here, wt is a standard Wiener process in Rd. Further, γ and σ
satisfy the fluctuation-dissipation relation 2γ = βσσT , where 0 < β is called the inverse
temperature. This is due to the fact that β = (kBT )−1, where T is the macroscopic
temperature of the system, and kB is the Boltzmann constant. The fluctuation-dissipation
relation ensures that the energy of the system is conserved in expectation.

It can also be shown (cf. [119, 171]) that the Langevin process, governed by (2.20), has a
unique invariant density with respect to which it is ergodic. This density is also called the
canonical density, and has the explicit form fcan(q, p) = Z−1 exp

(
−β(1

2p
TMp+ V (q))

)
,

where Z is a normalizing constant.

Spatial transfer operator. One of the main features of molecules we are interested in
is that it has several important geometric forms, called conformations, between which
it “switches”. Hereby it spends “long” times (measured on the time scales of its inter-
nal motion) in one conformation, and passes quickly to another. Due to this time scale
separation the conformations are called metastable. The identification of metastable con-
formations is of major interest, and it is connected to the sub-dominant eigenfunctions
of a special transfer operator which is adapted to the problem at hand [167]: although
the more appreciated models describe the dynamics of a molecule in the complete phase
space including positions and momenta, metastability is observed (and described) in the
positional coordinate only.
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2 On the approximation of transfer operators

This problem-adapted transfer operator is called the spatial transfer operator (cf. (2.21)
below), and describes positional density fluctuations in a molecule which is in thermal
equilibrium. More precisely, if an ensemble of molecules with positional coordinates dis-
tributed according to the density w : Q → R with respect to the canonical distribution
is given, then its image under the spatial transfer operator with lag time t describes the
density of the positional coordinate of the ensemble after time t, again with respect to
the canonical distribution:

Stw(q) =
1

fQ(q)

∫

P

(
PtLanwfcan

)
(q, p) dp, (2.21)

where fQ is the positional marginal of the canonical density, i.e.

fQ(q) =

∫

P
fcan(q, p) dp,

and PtLan is the transfer operator of the Langevin process governed by (2.20).
The operator St : L2(Q, µQ) → L2(Q, µQ), where dµQ(q) = fQ(q)dq, is self-adjoint

(i.e. has pure real point spectrum), and due to the ergodicity of the Langevin process it
possesses the isolated and simple eigenvalue 1 with corresponding eigenfunction 1Q [9].

With the right chemical intuition at hand the range of positional coordinates possibly
interesting for conformation analysis can be drastically reduced to just a handful of es-
sential coordinates; as it is shown in Section 2.5.4. The spatial transfer operator can be
adapted to this situation, as we describe in Appendix 2.C. There we also show that if we
carry out the EDMD procedure in the space of these reduced observables, we actually ap-
proximate a Galerkin projection of the corresponding reduced spatial transfer operator. A
similar technique has been developed in [134, 137]. Chekroun et al [26] also approximate
a reduced transfer operator from observable time series from climate models, but only for
the case where the basis functions are characteristic functions, as in Ulam’s method.

2.5.4 n-butane

Let us now consider the n-butane molecule H3C−CH2−CH2−CH3 shown in Figure 2.7
(drawn with PyMOL [166]). We want to analyze this molecule since the energy landscape
and conformations are well-known. The four configurations illustrated in Figure 2.7 can
be obtained by rotating around the bond between the second and third carbon atom. The
potential energy of a molecule depends on the structure. The higher the potential energy
of a conformation, the lower the probability the system will remain in that state. Thus,
we would expect a high probability for the anti configuration, a slightly lower probability
for the gauche configuration, and low probabilities for the other configurations. Indeed,
the anti and gauche configurations are metastable conformations.

Molecular dynamics simulators are standard tools to analyze the conformations and
conformational dynamics of biological molecules such as proteins and the extraction of
this essential information from molecular dynamics simulations is still an active field
of research [138]. We simulated the n-butane molecule for an interval of 10 ns with a
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a) ϕ = 0 ◦

b) ϕ = 60 ◦
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c) ϕ = 120 ◦

d) ϕ = 180 ◦

Figure 2.7: Potential of the n-butane molecule as a function of the dihedral angle ϕ and
different conformations. a) Fully eclipsed. b) Gauche. c) Partly eclipsed. d) Anti.

Figure 2.8: Definition of the dihedral angle ϕ for the butane molecule.

step size of 2 fs using AmberTools15 [25] and, downsampling by a factor of 100, created
one trajectory containing 50,000 data points. From this 42-dimensional trajectory – 3
coordinates for each of the 14 atoms –, we extracted the dihedral angle ϕ shown in
Figure 2.8 as

cosϕ =
n1 · n2

‖n1‖ ‖n2‖
, (2.22)

where n1 = vij × vjk and n2 = vlk × vjk are the vectors perpendicular to the planes
spanned by the carbon atoms i, j, k and j, k, l, respectively, and vij is the bond between
i and j.

In order to compute the dominant eigenfunctions of the spatial transfer operator for this
one essential coordinate, we used 41 basis functions {1, cos(i x), sin(i x)}, i = 1, . . . , 20,
for the interval [0, 2π]. The resulting leading eigenfunctions are shown in Figure 2.9.
As expected, the first eigenfunction predicts high probabilites for the gauche and anti
configurations and low probabilites for the other configurations. The (sign) structure of
the second and third eigenfunctions contain information about the metastable sets.
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Figure 2.9: First three eigenfunctions of the Perron–Frobenius operator obtained from
a simulation of the n-butane molecule computed with EDMD.

2.6 Conclusion

The global behavior of dynamical systems can be analyzed using operator-based ap-
proaches. We reviewed and described different, projection-based numerical methods
such as Ulam’s method and EDMD to compute finite-dimensional approximations of the
Perron–Frobenius operator and the Koopman operator. Furthermore, we highlighted the
similarities and differences between these methods and showed that methods developed
for the approximation of the Koopman operator can be used for the Perron–Frobenius
operator, and vice versa. We demonstrated the performance of different methods with
the aid of several examples. If the eigenfunctions of the Perron–Frobenius operator or
Koopman operator are smooth, EDMD enables an accurate approximation with a small
number of basis functions. Thus, this approach is well suited also for higher-dimensional
problems.

The next step could be to investigate the possibility of extending the methods reviewed
within this paper using tensors as described in [138] for reversible processes. Currently, not
all numerical methods required for generalizing these methods to tensor-based methods are
available. Nevertheless, developing tensor-based algorithms for these eigenvalue problems
might enable the analysis of high-dimensional systems.
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2.A Adjoint EDMD

Notation

We will use the same notation as in the main text. More precisely, let us use the set of
(linearly independent), piecewise continuous basis functions (dictionary)

D = {ψ1, . . . , ψk}, ψi : Rd → R, i = 1, . . . , k,

and let us denote V = span(D). For every f ∈ Rk, we define f̄ =
∑k

i=1 fiψi ∈ V. We
also identify a linear operator A : V → V with its matrix representation A ∈ Rk×k with
respect to the basis D. Here we mean multiplication from the left, i.e. Kf is identified
with Kf̄ . Further, let

Ψ =



ψ1
...
ψk


 ,

a vector-valued function, and for sets of points (collected column-wise into a d×m matrix)

X = [x1 x2 . . . xm], Y = [y1 y2 . . . ym]

define

ΨX = [Ψ(x1) Ψ(x2) . . . Ψ(xm)], ΨY = [Ψ(y1) Ψ(y2) . . . Ψ(ym)] .

Scalar products

Given f, g ∈ Rk and some positive measure µ, such that |
∫
ψiψj dµ| < ∞ for all i, j =

1, . . . , k, we wish to express the µ-weighted L2 scalar products of elements of V. To this
end, we compute

〈f̄ , ḡ〉µ =

∫
f̄ ḡ dµ =

k∑

i,j=1

figj

∫
ψiψj dµ = fTSg ,

where S ∈ Rk×k with Sij =
∫
ψiψj dµ. Since µ is positive, S is symmetric positive definite,

hence invertible.

Adjoint operator

With this, we are ready to express the adjoint A∗ of any (linear) operator A : V→ V with
respect to the scalar product 〈·, ·〉µ. By successive reformulations of the defining equation
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for the adjoint, we obtain

〈Af̄, ḡ〉µ = 〈f̄ , A∗ḡ〉µ ∀f̄ , ḡ ∈ V,
m

〈
k∑

i=1

(Af)iψi,
k∑

i=1

giψi〉µ = 〈
k∑

i=1

fiψi,
k∑

i=1

(A∗g)iψi〉µ ∀f, g ∈ Rk,

m
fTATSg = fTSA∗g ∀f, g ∈ Rk.

Thus,
A∗ = S−1ATS . (2.23)

Remark 2.A.1. From (2.23) we can see that AT represents the adjoint of A if S is a
multiple of the identity matrix, implying that the basis functions are orthogonal with
respect to 〈·, ·〉µ. This is the case for Ulam’s method, given the boxes have all the same
measures.

The Perron–Frobenius operator

Let Φ : Rd → Rd be some dynamical system. The following properties hold also, if Φ,
such as the basis functions and the measure µ are restricted to some set X.

Recall equations (2.1) and (2.4), stating that the Perron–Frobenius operator Pµ : L1 →
L1 with respect to the measure µ is (uniquely) defined by

∫

A
Pµh dµ =

∫

Φ−1(A)
h dµ, for all measurable A ,

and the Koopman operator K : L∞ → L∞ is defined by

Kh = h ◦ Φ ,

respectively. They satisfy the duality relation

〈Pµh1, h2〉µ = 〈h1,Kh2〉µ ∀h1 ∈ L1, h2 ∈ L∞ .
We have seen in section 2.3.4, that if the data points satisfy yi = Φ(xi), i = 1, . . . ,m,

then K, with KT = ΨY Ψ+
X , is a data-based approximation of the Koopman operator.

More precisely, in the infinite-data limit m → ∞, xi ∼ µ, the operator K converges to
a Galerkin approximation of K on V with respect to 〈·, ·〉µ. Using (2.15), we can also
conclude that

1

m
ΨXΨT

X → S as m→∞ ,

where S is the symmetric positive definite weight matrix from above. This suggests,
using (2.23), that if there is a sufficient amount of data points at hand, then we can
approximate the Galerkin projection of the Perron–Frobenius operator Pµ to V by

Pµ = S−1KTS = (ΨXΨT
X)−1ΨY Ψ+

X(ΨXΨT
X) = (ΨXΨT

X)−1ΨY ΨT
X . (2.24)

32



2.B On the ergodic behavior of one-step pairs

The same matrix representation has been obtained in equation (2.16), by a different
consideration. Note also, that if one can compute the matrix S with Sij =

∫
ψiψj dρ with

respect to a different measure ρ, the Perron–Frobenius operator with respect to ρ can be
approximated as well, one is not restricted to use the empirical distribution µ of the data
points.

Remark 2.A.2. All these considerations can be extended to the case where the dynam-
ics Φ is non-deterministic.

2.B On the ergodic behavior of one-step pairs

We will need the result of this section, equation (2.25), in the following section.
Let the non-deterministic dynamical system Φ be given with transition density func-

tion k, that is,

P (Φ(x) ∈ A) =

∫

A
k(x, y) dµ(y), A ∈ B,

for a.e. y ∈ X. Further, let f denote the unique invariant density of Φ,
∫
f(x)k(x, y) dµ(x) = f(y) for a.e. y ∈ X,

with respect to which Φ is geometrically ergodic. Geometric ergodicity of the Langevin
process (2.20) has been established in [119].

For φ, ψ ∈ L2(X) we wish to determine the ergodic limit

lim
N→∞

1

N

N−1∑

n=0

φ
(
Φn(x)

)
ψ
(
Φn+1(x)

)
.

To this end, we consider the non-deterministic dynamical system Ψ : X×X→ X×X with

Ψ :

(
x
y

)
7→
(

y
Φ(y)

)
.

In order to find the transition density function of Ψ, note that

P
(
Ψ(x, y) ∈ A× B

)
= 1A(y)

∫

B
k(y, z) dµ(z) =

∫

A×B
δy(u)k(u, z) dµ(u) dµ(z) ,

yielding kΨ((x, y), (u, z)) = δy(u)k(u, z) as the transition density function of Ψ. From
this we immediately find its invariant density.

Lemma 2.B.1. The density f(x)k(x, y) is invariant under Ψ.

Proof. Direct computation shows
∫∫

f(x)k(x, y)kΨ((x, y), (u, z)) dµ(x) dµ(y)
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2 On the approximation of transfer operators

=

∫∫
f(x)k(x, y)δy(u)k(u, z) dµ(x) dµ(y)

= k(u, z)

∫
f(x)

∫
k(x, y)δy(u) dµ(y) dµ(x)

= k(u, z)

∫
f(x)k(x, u) dµ(x)

= f(u)k(u, z),

the last equality following from the invariance of f under Φ.

Geometric ergodicity of Φ with respect to f implies ergodicity of Ψ with respect
to f(x)k(x, y). Thus, for ζ ∈ L2(X× X) we have

lim
N→∞

1

N

N−1∑

n=0

ζ
(
Ψn(x)

)
=

∫∫
ζ(x, y)f(x)k(x, y) dµ(x) dµ(y) .

With ζ(x, y) = φ(x)ψ(y) this implies

lim
N→∞

1

N

N−1∑

n=0

φ
(
Φn(x)

)
ψ
(
Φn+1(x)

)

= lim
N→∞

1

N

N−1∑

n=0

ζ
(
Ψn(x)

)

=

∫∫
ζ(x, y)f(x)k(x, y) dµ(x) dµ(y)

=

∫∫
φ(x)f(x)ψ(y)k(x, y) dµ(x) dµ(y)

=

∫
ψ(y)

∫
(φ(x)f(x))k(x, y) dµ(x) dµ(y)

=

∫
ψP(φf) dµ ,

(2.25)

where the last equality follows from (2.2), the definition of the Perron–Frobenius operator.

2.C EDMD for the reduced spatial transfer operator

We shall first discuss the restriction of the spatial transfer operator, introduced in (2.21),
to a collection of coordinates which we assume to be sufficient to describe the metastable
behavior of the system. Let ξ : Q → U ⊂ Rr be a smooth, possibly nonlinear mapping
of the configuration variable q to these so-called essential (or reduced) coordinates. For
instance, in case of n-butane in Section 2.5.4 we have r = 1 and ξ describes the map-
ping q 7→ ϕ given implicitly by (2.22). Let ξ have the property that for every regular
value z ∈ U of ξ,

Mz := {q ∈ Q | ξ(q) = z} ⊂ Q
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2.C EDMD for the reduced spatial transfer operator

is a smooth, codimension r manifold. We suppose that ξ is a physically relevant observable
of the dynamics, e.g. a reaction coordinate.

To define the spatial transfer operator for the essential coordinates, we need a non-
linear variant of Fubini’s theorem, the so-called coarea formula [58, Section 3.2]. For an
integrable function h : Q→ R it holds

∫

Q
h(q) dq =

∫

U

(∫

Mz

hGdσz

)
dz, (2.26)

where G(q) =
∣∣det∇ξT∇ξ

∣∣−1/2
is the Gramian, and dσz denotes the Riemannian volume

element on Mz. It follows that the (marginal) canonical density for the observable ξ is

fU(z) =

∫∫

Mz×P
fcanGdσz dp .

Thus, the spatial transfer operator for the essential coordinates given by ξ reads as

Stessw(z) =
1

fU(z)

∫∫

Mz×P
PtLan(fcan · w ◦ ξ)Gdσz dp , (2.27)

for w ∈ L2(U, µU), with dµU(z) = fU(z)dz.
To see what EDMD does with the molecular trajectory data, we have to consider the

limit

lim
N→∞

1

N

N−1∑

n=0

φ(ξ(qn))ψ(ξ(qn+1)),

where q0, q1, q2, . . . are the positional coordinates of the time-t-sampled simulation, and
φ, ψ : U → R are basis functions. We know that the Langevin dynamics is ergodic with
respect to the canonical density [119], hence (2.25) yields

lim
N→∞

1

N

N−1∑

n=0

φ(ξ(qn))ψ(ξ(qn+1)) =

∫∫

Q×P
ψ(ξ(q))PtLan (fcan · φ ◦ ξ) (q, p) dq dp

=

∫

Q
ψ(ξ(q))

∫

P
PtLan (fcan · φ ◦ ξ) (q, p) dq dp

(2.26)
=

∫

U
ψ(z)

∫∫

Mz×P
PtLan (fcan · φ ◦ ξ) (q, p)G(q) dp dσzdz

(2.27)
=

∫

U
ψ(z)fU(z)Stessφ(z) dz

=
〈
ψ, Stessφ

〉
µU
.

Due to ergodicity it follows also

lim
N→∞

1

N

N−1∑

n=0

φ(ξ(qn))ψ(ξ(qn)) =

∫∫

Q×P
ψ(ξ(q))φ(ξ(q))fcan(q, p) dq dp
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(2.26)
=

∫

U
ψ(z)φ(z)

∫∫

Mz×P
fcan(q, p)G(q) dp dσz dz

= 〈ψ, φ〉µU .
Comparing with (2.15), we thus see that EDMD converges in the infinite-data limit to a
Galerkin projection in L2(U, µU) of the spatial transfer operator for the essential coordi-
nates given by ξ.

2.D Derivation of the EDMD-discretized Koopman operator

Let the finite dictionary D = {ψ1, . . . , ψk} of piecewise continuous functions be given, and
define V to be the linear space spanned by D. We will give a step-by-step derivation of
the matrix representation of the EDMD-discretized Koopman operator K : V → V with
respect to the basis D. Let us denote also with K ∈ Rk×k this matrix representation,
and note that the matrix K acts by multiplication from the left, i.e. if the vector c ∈
Rk represents the function

∑
i ciψi, then K c represents its image under the discrete

Koopman operator. Recall that ψ : X → Rk denotes the column-vector valued function
with [ψ(x)]i = ψi(x).

Now, EDMD is an over-determined Petrov–Galerkin method (2.7),

l∑

`=1

k∑

i=1

〈δx` , Kψi −Kψi〉2 = min! , (2.28)

where x1 . . . , xl are the initial data points and y1, . . . , yl denote their images under the
dynamics. If there was just one single data point x`, we would like to find a matrix K
satisfying the equation

〈
δx` , K

(∑

i

ci ψi

)〉
=

〈
δx` ,

∑

i

(∑

j

Kij cj

)
ψi

〉

for every c ∈ Rk. Rearranging the terms and using Kψi(x`) = ψi(y`) yields
∑

i

ci ψi(y`) =
∑

j

cj
∑

i

Kij ψi(x`) ,

or, in vectorial notation, cT ψ(y`) = cT KTψ(x`). Since this has to hold true for every c ∈
Rk, we have ψ(y`) = KTψ(x`). From this it follows by putting the column vectors ψ(x`)
and ψ(y`) side-by-side for multiple data points x` to form the matrices ΨX and ΨY ,
respectively, that (2.28) is equivalent with

∥∥ΨY −KTΨX

∥∥2

F
= min!,

where ‖·‖F denotes the Frobenius norm. Thus, EDMD can be viewed as a DMD of the
transformed data ΨX and ΨY . The solution of the minimization problem is given by

KT = ΨY Ψ+
X ,

where Ψ+
X is the pseudoinverse of ΨX .
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Abstract

In this review paper, we will present different data-driven dimension reduction tech-
niques for dynamical systems that are based on transfer operator theory as well as
methods to approximate transfer operators and their eigenvalues, eigenfunctions, and
eigenmodes. The goal is to point out similarities and differences between methods
developed independently by the dynamical systems, fluid dynamics, and molecular
dynamics communities such as time-lagged independent component analysis (TICA),
dynamic mode decomposition (DMD), and their respective generalizations. As a re-
sult, extensions and best practices developed for one particular method can be carried
over to other related methods.

3.1 Introduction

The numerical solution of complex systems of differential equations plays an important
role in many areas such as molecular dynamics, fluid dynamics, mechanical as well as
electrical engineering, and physics. These systems often exhibit multi-scale behavior
which can be due to the coupling of subsystems with different time scales – for instance,
fast electrical and slow mechanical components – or due to the intrinsic properties of
the system itself – for instance, the fast vibrations and slow conformational changes of
molecules. Analyzing such problems using transfer operator based methods is often infea-
sible or prohibitively expensive from a computational point of view due to the so-called
curse of dimensionality. One possibility to avoid this is to project the dynamics of the
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3 Data-driven model reduction and transfer operator approximation

high-dimensional system onto a lower-dimensional space and to then analyze the reduced
system representing, for instance, only the relevant slow dynamics, see, e.g., [150, 64].

In this paper, we will introduce different methods such as time-lagged independent
component analysis (TICA) [128, 150, 172] and dynamic mode decomposition (DMD)
[164, 28, 186, 104] to identify the dominant dynamics using only simulation data or ex-
perimental data. It was shown that these methods are related to Koopman operator
approximation techniques [97, 126, 159, 22]. Extensions of the aforementioned methods
called the variational approach of conformation dynamics (VAC) [134, 137, 138] developed
mainly for reversible molecular dynamics problems and extended dynamic mode decom-
position (EDMD) [195, 196, 92] can be used to compute eigenfunctions, eigenvalues, and
eigenmodes of the Koopman operator (and its adjoint, the Perron–Frobenius operator).
Interestingly, although the underlying ideas, derivations, and intended applications of
these methods differ, the resulting algorithms share a lot of similarities. The goal of this
paper is to show the equivalence of different data-driven methods which have been widely
used by the dynamical systems, fluid dynamics, and molecular dynamics communities,
but under different names. Hence, extensions, generalizations, and algorithms developed
for one method can be carried over to its counterparts, resulting in a unified theory and
set of tools. An alternative approach to data-driven model reduction – also related to
transfer operators and their generators – would be to use diffusion maps [132, 32, 59, 74].
Manifold learning methods, however, are beyond the scope of this paper.

The outline of the paper is as follows: Section 3.2 briefly introduces transfer operators
and the concept of reversibility. In Section 3.3, different data-driven methods for the
approximation of the eigenvalues, eigenfunctions, and eigenmodes of transfer operators
will be described. The theoretical background and the derivation of these methods will
be outlined in Section 3.4. Section 3.5 addresses open problems and lists possible future
work.

3.2 Transfer operators and reversibility

In the literature, the term transfer operator is sometimes used in different contexts. In this
section, we will briefly introduce the Perron–Frobenius operator, the Perron–Frobenius
operator with respect to the equilibrium density, and the Koopman operator. All these
three operators are, according to our definition, transfer operators.

3.2.1 Guiding example

Our paper will deal with data-driven methods to analyze both stochastic and deterministic
dynamical systems. To illustrate the concepts of transfer operators and their spectral
components, we first introduce a simple stochastic dynamical system that will be revisited
throughout the paper.

Example 3.2.1. Consider the following one-dimensional Ornstein–Uhlenbeck process,
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3.2 Transfer operators and reversibility

given by an Itô stochastic differential equation1 of the form:

dXt = −αDXt dt+
√

2D dWt.

Here, {Wt}t≥0 is a one-dimensional standard Wiener process (Brownian motion), the
parameter α is the friction coefficient, and D = β−1 is the diffusion coefficient. The
stochastic forcing usually models physical effects, most often thermal fluctuations and it
is customary to call β the inverse temperature.

The transition density of the Ornstein–Uhlenbeck process, i.e., the conditional proba-
bility density to find the process near y a time τ after it had been at x, is given by

pτ (x, y) =
1√

2π σ2(τ)
exp

(
−
(
y − x e−αDτ

)2

2σ2(τ)

)
, (3.1)

where σ2(τ) = α−1
(
1− e−2αDτ

)
. Figure 3.1a shows the transition densities for different

values of τ . More details can be found in [147]. For complex dynamical systems, the
transition density is not known explicitly, but must be estimated from simulation or
measurement data.

In this work we will describe the dynamics of a system in terms of dynamical opera-
tors such as the propagator Pτ , which is defined by the transition density pτ (x, y) and
propagates a probability density of Brownian walkers in time by

pt+τ (x) = Pτ pt(x).

See Figure 3.1b for the time evolution of the Ornstein–Uhlenbeck process initiated from
a localized starting condition. It can be seen that the distribution spreads out and con-
verges towards a Gaussian distribution, which is then invariant in time. For this simple
dynamical system we can give the equation for the invariant density explicitly:

π(x) =
1√

2π α−1
exp

(
− x2

2α−1

)
, (3.2)

which is a Gaussian whose variance is decreasing with increasing friction and decreasing
temperature. 4

3.2.2 Transfer operators

Let {Xt}t≥0 be a time-homogeneous2 stochastic process defined on the bounded state
space X ⊂ Rd. It can be genuinely stochastic or it might as well be deterministic, such

1A general time-homogeneous Itô stochastic differential equation is given by dXt = −α(Xt)Xt dt +
σ(Xt) dWt, where α : Rd → Rd and σ : Rd → Rd×d are coefficient functions, and {Wt}t≥0 is a
d-dimensional standard Wiener process.

2We call a stochastic process {Xt}t≥0 time-homogeneous, or autonomous, if it holds for every t ≥ s ≥ 0
that the distribution of Xt conditional to Xs = x only depends on x and (t − s). It is the stochastic
analogue of the flow of an autonomous (time-independent) ordinary differential equation.
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3 Data-driven model reduction and transfer operator approximation

a)

b)

2 1 0 1 2
0.0

0.5

1.0

1.5

2 1 0 1 2 2 1 0 1 2

pt

π

Figure 3.1: a) Transition density function of the Ornstein–Uhlenbeck process for differ-
ent values of τ . If τ is small, values starting in x will stay close to it. For larger values of
τ , the influence of the starting point x is negligible. Densities converge to the equilibrium
density, denoted by π. Here, α = 4 and D = 0.25. b) Evolution of the probability to find
the dynamical system at any point x over time t, after starting with a peaked distribution
at t = 0. We show the resulting distributions at times t = 0.1, and t = 1, and t = 10.
The system relaxes towards the stationary density π(x).

that there is a flow map Φτ : X → X with Φτ (Xt) = Xt+τ for τ ≥ 0. Let the measure3

P denote the law of the process {Xt}t≥0 that we will study in terms of its statistical
transition properties. To this end, under some mild regularity assumptions4 which are
satisfied by Itô diffusions with smooth coefficients [81, 99], we can give the following
definition.

Definition 3.2.2. The transition density function pτ : X × X → [0, ∞] of a process
{Xt}t≥0 is defined by

P[Xt+τ ∈ A |Xt = x] =

∫

A

pτ (x, y) dy,

for every measurable set A. Here and in what follows, P[ · |E] denotes probabilities condi-
tioned on the event E. That is, pτ (x, y) is the conditional probability density of Xt+τ = y

3For a measure-theoretic discussion of this construction, please refer to [92]. For our purposes, it is
sufficient to equip X with the standard Lebesgue measure. In particular, if not stated otherwise,
measurability of a set A ⊂ X is meant with respect to the Borel σ-algebra.

4These conditions are called interchangeably absolute continuity, µ-compatibility, or null preservingness.
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3.2 Transfer operators and reversibility

given that Xt = x.

For 1 ≤ r ≤ ∞, the spaces Lr(X) denote the usual spaces of r-Lebesgue integrable
functions, which is a Banach space with the corresponding norm ‖ · ‖Lr .

Definition 3.2.3. Let pt ∈ L1(X) be the probability density and ft ∈ L∞(X) an observable
of the system. For a given lag time τ :

a) The Perron–Frobenius operator or propagator Pτ : L1(X)→ L1(X) is defined by

Pτpt(x) =

∫

X

pτ (y, x) pt(y) dy.

b) The Koopman operator Kτ : L∞(X)→ L∞(X) is defined by

Kτft(x) =

∫

X

pτ (x, y) ft(y) dy = E[ft(Xt+τ ) |Xt = x].

Both Pτ and Kτ are linear but infinite-dimensional operators which are adjoint to each
other with respect to the standard duality pairing 〈·, ·〉, given by 〈f, g〉 =

∫
X f(x) g(x) dx.

The homogeneity of the stochastic process {Xt}t≥0 implies the so-called semigroup prop-
erty of the operators, i.e., Pτ+σ = PτPσ and Kτ+σ = KτKσ for τ, σ ≥ 0. In other
words, these operators describe time-stationary Markovian dynamics. While the Per-
ron–Frobenius operator describes the evolution of densities, the Koopman operator de-
scribes the evolution of observables. For the analysis of the long-term behavior of dynam-
ical systems, densities that remain unchanged by the dynamics play an important role
(one can think of the concept of ergodicity).

Definition 3.2.4. A density π is called an invariant density or equilibrium density if
Pτ π = π. That is, the equilibrium density π is an eigenfunction of the Perron–Frobenius
operator Pτ with corresponding eigenvalue 1.

In what follows, Lrπ(X) denotes the weighted Lr-space of functions f such that ‖f‖Lrπ :=∫
X |f(x)|rπ(x) dx <∞. While one can consider the evolution of densities with respect to

any density, we are particularly interested in the evolution with respect to the equilib-
rium density. From this point on, we assume there is a unique invariant density. This
assumption is typically satisfied for molecular dynamics applications, where the invariant
density is given by the Boltzmann distribution.

Definition 3.2.5. Let L1
π(X) 3 ut(x) = π(x)−1 pt(x) be a probability density with respect

to the equilibrium density π. Then the Perron–Frobenius operator (propagator) with
respect to the equilibrium density, denoted by Tτ , is defined by

Tτut(x) =

∫

X

π(y)

π(x)
pτ (y, x)ut(y) dy.
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3 Data-driven model reduction and transfer operator approximation

The operators Pτ and Kτ can be defined on other spaces Lr and Lr
′
, with r 6= 1

and r′ 6=∞, see [3, 92] for more details. By defining the weighted duality pairing 〈f, g〉π =∫
X f(x) g(x)π(x) dx for f ∈ Lrπ(X) and g ∈ Lr′π (X), where 1

r + 1
r′ = 1, Tτ defined on Lr

′
π (X)

is the adjoint of Kτ defined on Lrπ(X) with respect to 〈·, ·〉π:

〈Kτf, g〉π = 〈f, Tτg〉π.

For more details, see [107, 168, 67, 134, 137, 92, 198]. The two operators Pτ and Tτ
are often referred to as forward operators, whereas Kτ is also called backward operator, as
they are the solution operators of the forward (Fokker–Planck) and backward Kolmogorov
equations [107, Section 11], respectively.

3.2.3 Spectral decomposition of transfer operators

In what follows, let Aτ denote one of the transfer operators defined above, i.e., Pτ , Tτ , or
Kτ . We are particularly interested in computing eigenvalues λ`(τ) ∈ C and eigenfunctions
ϕ` : X→ C of transfer operators, i.e.:

Aτϕ` = λ`(τ)ϕ`.

Note that the eigenvalues depend on the lag time τ . For the sake of simplicity, we will often
omit this dependency. The eigenvalues and eigenfunctions of transfer operators contain
important information about the global properties of the system such as metastable sets
or fast and slow processes and can also be used as reduced coordinates, see [40, 168, 126,
171, 67, 64] and references therein.

Example 3.2.6. The eigenvalues λ` and eigenfunctions ϕ` of Kτ associated with the
Ornstein–Uhlenbeck process introduced in Example 3.2.1 are given by

λ`(τ) = e−αD (`−1) τ , ϕ`(x) =
1√

(`− 1)!
H`−1

(√
αx
)
, ` = 1, 2, . . . ,

where H` denotes the `th probabilists’ Hermite polynomial [147]. The eigenfunctions of
Pτ are given by the eigenfunctions of Kτ multiplied by the equilibrium density π, see also
Figure 3.2. 4

In addition to the eigenvalues and eigenfunctions, an essential part of the Koopman op-
erator analysis is the set of Koopman modes for the so-called full-state observable g(x) = x.
The Koopman modes are vectors that, together with the eigenvalues and eigenfunctions,
allow us to reconstruct and to propagate the system’s state [195]. More precisely, assume
that each component gi of the full-state observable, i.e., gi(x) = xi for i = 1, . . . , d, can
be written in terms of the eigenfunctions as gi(x) =

∑
` ϕ`(x) ηi`. Defining the Koopman

modes by η` = [η1`, . . . , ηd`]
T , we obtain g(x) = x =

∑
` ϕ`(x) η` and thus

Kτg(x) = E[g(Xτ ) |X0 = x] = E[Xτ |X0 = x] =
∑

`

λ`(τ)ϕ`(x) η`. (3.3)
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a) b)

Figure 3.2: Dominant eigenfunctions of the Ornstein–Uhlenbeck process computed an-
alytically (dotted lines) and using VAC/EDMD (solid lines). a) Eigenfunctions of the
Perron–Frobenius operator Pτ . b) Eigenfunctions of the Koopman operator Kτ .

For vector-valued functions, the Koopman operator is defined to act componentwise. In
order to be able to compute eigenvalues, eigenfunctions, and eigenmodes numerically, we
project the infinite-dimensional operators onto finite-dimensional spaces spanned by a
given set of basis functions. This will be described in detail in Section 3.4.

3.2.4 Reversibility

We briefly recapitulate the properties of reversible systems. For many applications, in-
cluding commonly used molecular dynamics models, the dynamics in full phase space are
known to be reversible.

Definition 3.2.7. A system is said to be reversible if the so-called detailed balance con-
dition is fulfilled, i.e., it holds for all x, y ∈ X that

π(x) pτ (x, y) = π(y) pτ (y, x). (3.4)

Example 3.2.8. The Ornstein–Uhlenbeck process is reversible. It is straightforward to
verify that (3.4) is fulfilled by the transition density (3.1) and the stationary density (3.2)
for all values of x, y and τ . Also general Smoluchowski equations of a d-dimensional
system of the form

dXt = −D∇V (Xt) dt+
√

2dD dWt

with dimensionless potential V (x) are reversible. The stationary density is then given by
π ∝ exp(−V (x)) [110]. 4

As a result of the detailed balance condition, the Koopman operator Kτ and the Per-
ron–Frobenius operator with respect to the equilibrium density, Tτ , are identical (hence
also self-adjoint):

Kτf =

∫

X

pτ (x, y) f(y) dy =

∫

X

π(y)

π(x)
pτ (y, x) f(y) dy = Tτ f.
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Moreover, both Kτ and Pτ become self-adjoint with respect to the stationary density, i.e.

〈Pτf, g〉π−1 = 〈f, Pτg〉π−1 ,

〈Kτf, g〉π = 〈f, Kτg〉π.

Hence, the eigenvalues λ` are real and the eigenfunctions ϕ` of Kτ form an orthogonal basis
with respect to 〈·, ·〉π. That is, the eigenfunctions can be scaled so that 〈ϕ`, ϕ`′〉π = δ``′ .
Furthermore, the leading eigenvalue λ1 is the only eigenvalue with absolute value 1 and
we obtain

1 = λ1 > λ2 ≥ λ3 ≥ . . . ,
see, e.g., [137]. We can then expand a function f ∈ L2

π(X) in terms of the eigenfunctions
as f =

∑∞
`=1〈f, ϕ`〉π ϕ` such that

Kτf =
∞∑

`=1

λ`(τ) 〈f, ϕ`〉π ϕ`. (3.5)

Furthermore, the eigenvalues decay exponentially with λ`(τ) = exp(−κ`τ) with relaxation
rate κ` and relaxation timescale t−1

` . Thus, for a sufficiently large lag time τ , the fast
relaxation processes have decayed and (3.5) can be approximated by finitely many terms.
The propagator Pτ has the same eigenvalues and the eigenfunctions ϕ̃` are given by
ϕ̃`(x) = π(x)ϕ`(x).

3.3 Data-driven approximation of transfer operators

In this section, we will describe different data-driven methods to identify the dominant
dynamics of dynamical systems and to compute eigenfunctions of transfer operators as-
sociated with the system, namely TICA and DMD as well as VAC and EDMD. A formal
derivation of methods to compute finite-dimensional approximations of transfer operators
– resulting in the aforementioned methods – will be given in Section 3.4. Although TICA
can be regarded as a special case of VAC, and DMD as a special case of EDMD, these
methods are often used in different settings. With the aid of TICA, for instance, it is pos-
sible to identify the main slow coordinates and to project the dynamics onto the resulting
reduced space, which can then be discretized using conventional Markov state models (a
special case of VAC or EDMD, respectively, see Subsection 3.3.5). We will introduce the
original methods – TICA and DMD – first and then extend these methods to the more
general case. Since in many publications a different notation is used, we will first start
with the required basic definitions.

In what follows, let xi, yi ∈ Rd, i = 1, . . . ,m, be a set of pairs of d-dimensional data
vectors, where xi = Xti and yi = Xti+τ . Here, the underlying dynamical system is not
necessarily known, the vectors xi and yi can simply be measurement data or data from a
black-box simulation. In matrix form, this can be written as

X =
[
x1 x2 · · · xm

]
and Y =

[
y1 y2 · · · ym

]
, (3.6)
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3.3 Data-driven approximation of transfer operators

with X, Y ∈ Rd×m. If one long trajectory {z0, z1, z2, . . . } of a dynamical system is given,
i.e., zi = Xt0+h i, where h is the step size and τ = nτ h the lag time, we obtain

X =
[
z0 z1 · · · zm−1

]
and Y =

[
znτ znτ+1 · · · znτ+m−1

]
.

That is, in this case Y is simply X shifted by the lag time τ . Naturally, if more than one
trajectory is given, the data matrices X and Y can be concatenated.

In addition to the data, VAC and EDMD require a set of uniformly bounded basis
functions or observables, given by {ψ1, ψ2, . . . , ψk} ⊂ L∞(X). Since X is assumed to
be bounded, we have ψi ∈ Lr(X) for all i = 1, . . . , k and 1 ≤ r ≤ ∞. The basis
functions could, for instance, be monomials, indicator functions, radial basis functions, or
trigonometric functions. The optimal choice of basis functions remains an open problem
and depends strongly on the system. If the set of basis functions is not sufficient to
represent the eigenfunctions, the results will be inaccurate. A too large set of basis
functions, on the other hand, might lead to ill-conditioned matrices and overfitting. Cross-
validation strategies have been developed to detect overfitting [123].

For a basis ψi, i = 1, . . . , k, define ψ : Rd → Rk to be the vector-valued function given
by

ψ(x) = [ψ1(x), ψ2(x), . . . , ψk(x)]T . (3.7)

The goal then is to find the best approximation of a given transfer operator in the space
spanned by these basis functions. This will be explained in detail in Section 3.4. In
addition to the data matrices X and Y , we will need the transformed data matrices

ΨX =
[
ψ(x1) ψ(x2) . . . ψ(xm)

]
and ΨY =

[
ψ(y1) ψ(y2) . . . ψ(ym)

]
. (3.8)

3.3.1 Time-lagged independent component analysis

Time-lagged independent component analysis (TICA) has been introduced in [128] as a
solution to the blind source separation problem, where the correlation matrix and the
time-delayed correlation matrix are used to separate superimposed signals. The term
TICA has been introduced later [85]. TDSEP [201], an extension of TICA, is popular
in the machine learning community. It was shown only recently that TICA is a special
case of the VAC by computing the optimal linear projection for approximating the slowest
relaxation processes, and as such provides an approximation of the leading eigenvalues and
eigenfunctions of transfer operators [150]. TICA is now a popular dimension reduction
technique in the field of molecular dynamics [150, 172]. That is, TICA is used as a
preprocessing step to reduce the size of the state space by projecting the dynamics onto
the main coordinates. The time-lagged independent components are required (a) to be
uncorrelated and (b) to maximize the autocovariances at lag time τ , see [85, 150] for
more details. Assuming that the system is reversible, the TICA coordinates are the
eigenfunctions of Tτ or Kτ , respectively, projected onto the space spanned by linear basis
functions, i.e., ψ(x) = x.

Let C(τ) be the time-lagged covariance matrix defined by

Cij(τ) = 〈Xt,i Xt+τ,j〉t = Eπ [Xt,i Xt+τ,j ] .
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3 Data-driven model reduction and transfer operator approximation

Given data X and Y as defined above, estimators C0 and Cτ for the covariance matrices
C(0) and C(τ) can be computed as

C0 = 1
m−1

m∑

k=1

xk x
T
k = 1

m−1XX
T ,

Cτ = 1
m−1

m∑

k=1

xk y
T
k = 1

m−1XY
T .

(3.9)

The time-lagged independent components are defined to be solutions of the eigenvalue
problem

Cτ ξ` = λ`C0 ξ` or C+
0 Cτ ξ` = λ` ξ`, (3.10)

respectively. In what follows, let MTICA = C+
0 Cτ , where C+

0 denotes the Moore–Penrose
pseudo-inverse of C0.

In applications, often the symmetrized estimators

C0 = 1
2m−2(XXT + Y Y T ) and Cτ = 1

2m−2(XY T + Y XT )

are used so that the resulting TICA coordinates become real-valued. This corresponds
to averaging over the trajectory and the time-reversed trajectory. Note that this sym-
metrization can introduce a large estimator bias that affects the dominant spectrum of
(3.10), if the process is non-stationary, or the distribution of the data is far from the
equilibrium of the process. In the latter case, a reweighting procedure can be applied to
obtain weighted versions of the estimators (3.9), to reduce that bias [198].

Example 3.3.1. Let us illustrate the idea behind TICA with a simple example. Consider
the data shown in Figure 3.3, which was generated by a stochastic process which will
typically spend a long time in one of the two clusters before it jumps to the other. We
are interested in finding these metastable sets. Standard principal component analysis
(PCA) leads to the coordinate shown in red, whereas TICA – shown in black – takes
time-information into account and is thus able to identify the slow direction of the system
correctly. Projecting the system onto the x-coordinate will preserve the slow process while
eliminating the fast stochastic noise. 4

Algorithm 3.1 AMUSE algorithm to compute TICA.

1. Compute a reduced SVD of X, i.e., X = U ΣV T .

2. Whiten data: X̃ = Σ−1UTX and Ỹ = Σ−1UTY .

3. Compute MTICA = X̃Ỹ T = Σ−1UTXY TUΣ−1.

4. Solve the eigenvalue problem MTICAw` = λ`w`.

5. The TICA coordinates are then given by ξ` = UΣ−1w`.
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3.3 Data-driven approximation of transfer operators

Figure 3.3: The difference between PCA and TICA. The top and bottom plot show the
x- and y-component of the system, respectively, the plot on the right the resulting main
principal component vector and the main TICA coordinate.

The TICA coordinates can be computed using AMUSE5 [182] as shown in Algorithm
3.1. Instead of computing a singular value decomposition of the data matrix X in step
1, an eigenvalue decomposition of the covariance matrix XXT could be computed, which
is more efficient if m � d, but less accurate. The vectors ξ` computed by AMUSE are
solutions of the eigenvalue problem (3.10), since

MTICA ξ` =
(
XXT

)+
XY TUΣ−1w`

= UΣ−1X̃Ỹ Tw`

= λ` UΣ−1w`

= λ` ξ`.

In the second line, we used the fact that (XXT )+ = UΣ−2UT and in the third that w` is
an eigenvector of MTICA = X̃Ỹ T .

3.3.2 Dynamic mode decomposition

Dynamic mode decomposition (DMD) was developed by the fluid dynamics community
as a tool to identify coherent structures in fluid flows [164]. Since its introduction, several

5Algorithm for Multiple Unknown Signals Extraction.
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3 Data-driven model reduction and transfer operator approximation

variants and extensions have been proposed, see [28, 186, 87, 21, 91]. A review of the
applications of Koopman operator theory in fluid mechanics can be found in [127]. DMD
can be viewed as a combination of a PCA in the spatial domain and a Fourier analysis
in the frequency domain [19]. It can be shown that the DMD modes are the Koopman
modes for the set of basis functions defined by ψ(x) = x. Given again data X and Y as
above, the idea behind DMD is to assume that there exists a linear operator MDMD such
that yi = MDMD xi. Since the underlying dynamical system is in general nonlinear, this
equation cannot be fulfilled exactly and we want to compute the matrix MDMD in such a
way that the Frobenius norm of the deviation is minimized, i.e.,

min ‖Y −MDMDX‖F . (3.11)

The solution of this minimization problem is given by

MDMD = Y X+ =
(
Y XT

)(
XXT

)+
= CTτ C

+
0 = MT

TICA. (3.12)

The eigenvalues and eigenvectors of MDMD are called DMD eigenvalues and modes, re-
spectively. That is, we are solving

MDMD ξ` = λ` ξ`.

The above equations already illustrate the close relationship with TICA, cf. (3.10). The
DMD modes are the right eigenvectors ofMDMD, whereas the TICA coordinates are defined
to be the right eigenvectors of the transposed matrix MTICA. Hence, the TICA coordinates
are the left eigenvectors of the DMD matrix and the DMD modes the left eigenvectors of
the TICA matrix. This is consistent with the results that will be presented in the VAC and
EDMD subsections below: The TICA coordinates represent the Koopman eigenfunctions
projected onto the space spanned by linear basis functions, i.e., ψ(x) = x, while the DMD
modes are the corresponding Koopman modes.

Similar to AMUSE, the DMD modes and eigenvalues can be obtained without explicitly
computing MDMD by using a reduced singular value decomposition of X. Standard and
exact DMD are presented in Algorithm 3.2. The standard DMD modes are simply the
exact DMD modes projected onto the range of the matrix X, see [186].

Remark 3.3.2. TICA and standard DMD are closely related. When comparing with the
AMUSE formulation, we obtain

MTICA = X̃Ỹ T = Σ−1UTXY TUΣ−1 = ΣUTMTICA UΣ−1 =: WΛW−1

and
MDMD = UTY V Σ−1 = UTMDMD U = UTMT

TICAU =: W̃ Λ̃W̃−1.

The TICA coordinates are given by Ξ = UΣ−1W and the standard DMD modes by
Ξ̃ = UW̃ so that – except for the scaling Σ−1 – AMUSE and standard DMD use the same
projection, the main difference is that the former computes the eigenvectors of MTICA and
the latter the eigenvectors of the transposed matrix MT

TICA. As a result, AMUSE could be

rewritten to compute the DMD modes if we define M
′
DMD = Ỹ X̃T = Σ−1UTY XTUΣ−1 in

step 3 of the algorithm and ξ` = UΣw` in step 5, where w` now denotes the eigenvectors
of M

′
DMD.
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3.3 Data-driven approximation of transfer operators

Algorithm 3.2 Standard and exact DMD.

1. Compute compact SVD of X, given by X = U ΣV T .

2. Define MDMD = UTY V Σ−1.

3. Compute eigenvalues and eigenvectors of MDMD, i.e., MDMDw` = λ`w`.

4. The DMD mode corresponding to the eigenvalue λ` is defined as

a) ξ` = Uw`. (Standard DMD)

b) ξ` =
1

λ
Y V Σ−1w`. (Exact DMD)

3.3.3 Variational approach of conformation dynamics

The variational approach of conformation dynamics (VAC) [134, 137, 138] is a general-
ization of the frequently used Markov state modeling framework that allows arbitrary
basis functions and is similar to the variational approach in quantum mechanics [137]. As
described above, VAC and EDMD (see below) require – in addition to the data – a set of
basis functions (also called dictionary), given by ψ. The variational approach is defined
only for reversible systems – EDMD does not require this restriction – and computes
eigenfunctions of Tτ or Kτ , respectively. Using the data matrices ΨX and ΨY defined
in (3.8), C0 and Cτ defined in (3.9) for the transformed data can be estimated as

C0 = 1
m−1

m∑

k=1

ψ(xk)ψ(xk)
T = 1

m−1ΨXΨT
X ,

Cτ = 1
m−1

m∑

k=1

ψ(xk)ψ(yk)
T = 1

m−1ΨXΨT
Y .

In what follows, let MVAC = C+
0 Cτ for the transformed data matrices ΨX and ΨY . The

matrix MVAC can be regarded as a finite-dimensional approximation of Kτ (or Tτ , since the
system is assumed to be reversible; the derivation is shown in Section 3.4), respectively.
Eigenfunctions of the operator can then be approximated by the eigenvectors of the matrix
MVAC. Let ξ` be an eigenvector of MVAC, i.e.,

MVAC ξ` = λ` ξ`,

and ϕ`(x) = ξ∗`ψ(x), where ∗ denotes the conjugate transpose. Since

Kτϕ`(x) ≈ (MVAC ξ`)
∗ ψ(x) = λ` ξ

∗
` ψ(x) = λ` ϕ`(x),

we obtain an approximation of the eigenfunctions of Kτ . The derivation will be described
in detail in Section 3.4.
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3 Data-driven model reduction and transfer operator approximation

3.3.4 Extended dynamic mode decomposition

Extended dynamic mode decomposition (EDMD), a generalization of DMD, can be used
to compute finite-dimensional approximations of the Koopman operator, its eigenvalues,
eigenfunctions, and eigenmodes [195, 196]. It was shown in [92] that EDMD can be
extended to approximate also eigenfunction of the Perron–Frobenius operator with respect
to the density underlying the data points. With the notation introduced above, the
minimization problem (3.11) for the transformed data matrices ΨX and ΨY can be written
as

min ‖ΨY −MEDMDΨX‖F . (3.13)

The solution – see also (3.12) – is given by

MEDMD = ΨY Ψ+
X =

(
ΨY ΨT

X

)(
ΨXΨT

X

)+
= CTτ C

+
0 = MT

VAC.

That is, instead of assuming a linear relationship between the data matrices X and Y ,
EDMD aims at finding a linear relationship between the transformed data matrices ΨX

and ΨY . Eigenfunctions of the Koopman operator are then given by the left eigenvectors
ξ` of MEDMD, i.e.,

ϕ`(x) = ξ∗` ψ(x).

The derivation of EDMD can be found in Section 3.4. Since the left eigenvectors of MEDMD

are the right eigenvectors of MVAC, VAC and EDMD are equivalent as they compute
exactly the same eigenvalue and eigenfunction approximations for a data and basis set.

As shown in [92], EDMD can also be used to approximate the Perron–Frobenius oper-
ator as follows:

M̃EDMD =
(
ΨXΨT

Y

)(
ΨXΨT

X

)+
= Cτ C

+
0 .

It is important to note that the Perron–Frobenius operator is computed with respect to the
density underlying the data matrices. That is, if X is sampled from a uniform distribution,
we obtain the eigenfunctions of the Perron–Frobenius operator Pτ . If we, on the other
hand, use one long trajectory, the underlying density converges to the equilibrium density
π and we obtain the eigenfunctions of the Perron–Frobenius operator with respect to the
equilibrium density, denoted by Tτ . An approach to compute the equilibrium density
from off-equilibrium data is proposed in [198].

Example 3.3.3. Let us consider the Ornstein–Uhlenbeck process introduced in Exam-
ple 3.2.1. Here, α = 4 and D = 0.25. The lag time is defined to be τ = 1. We generated
105 uniformly distributed test points in [−2, 2] and used a basis comprising monomials
of order up to 10. With the aid of EDMD, we computed the dominant eigenfunctions
of the Perron–Frobenius operator Pτ and the Koopman operator Kτ (which is identical
to Tτ here due to reversibility). The results are shown in Figure 3.2. The corresponding
eigenvalues are given by

λ1(τ) = 1.00, λ2(τ) = 0.37, λ3(τ) = 0.13, λ4(τ) = 0.049,

which is a good approximation of the analytically computed eigenvalues (Example 3.2.6).
4
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3.3 Data-driven approximation of transfer operators

In order to approximate the Koopman modes, let ϕ(x) = [ϕ1(x), . . . , ϕk(x)]T be the
vector of eigenfunctions and

Ξ =
[
ξ1 ξ2 . . . ξk

]

the matrix that contains all left eigenvectors of MEDMD. Furthermore, define B ∈ Rd×k
such that g(x) = B ψ(x). That is, the full-state observable is written in terms of the basis
functions6. Since ϕ(x) = Ξ∗ ψ(x), this leads to g(x) = B ψ(x) = B (Ξ∗)−1ϕ(x). Thus, the
`th column vector of the matrix η = B (Ξ∗)−1 represents the Koopman mode η` required
for the reconstruction of the dynamical system, see (3.3).

3.3.5 Relationships with other methods

For particular choices of basis functions, VAC and EDMD are equivalent to other methods
(see also [138, 92]):

1. If we choose ψ(x) = x, we obtain TICA and DMD, respectively. That is, the TICA
coordinates are the eigenfunctions of the Koopman operator projected onto the
space spanned by linear basis functions and the DMD modes are the corresponding
Koopman modes. (Note that in this case B = I and the matrix η = (Ξ∗)−1

contains the right eigenvectors of MEDMD.) In many applications of TICA, the basis
functions are modified to have zero mean. For reversible processes, this eliminates
the stationary eigenvalue λ1 = 1 and its eigenfunction ϕ1 ≡ 1. The largest eigenpair
then approximates the slowest dynamical eigenvalue and eigenfunction, respectively.

2. If the set of basis functions comprises indicator functions 1A1 , . . . , 1Ak for a given
decomposition of the state space into disjoint sets A1, . . . , Ak, VAC and EDMD
result in Ulam’s method [187] and thus a Markov state model (MSM).

These relationships are shown in Figure 3.4. Detailed examples illustrating the use of
VAC and EDMD can be found in [137, 195, 92].

3.3.6 Examples

Double gyre

Let us consider the autonomous double gyre, which was introduced in [174], given by the
SDE

dXt = −π A sin(πXt) cos(πYt) + ε dWt,1,

dYt = π A cos(πXt) sin(πYt) + ε dWt,2

on the domain X = [0, 2]× [0, 1] with reflecting boundary. For ε = 0, there is no transport
between the left half and the right half of the domain and both subdomains are invariant
sets with measure 1

2 , cf. [68, 69]. For ε > 0, there is a small amount of transport due

6The easiest way to accomplish this is by adding the observables xi, i = 1, . . . , d, to the set of basis
functions.
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TICA
approximates eigenvalues

and eigenfunctions

DMD
approximates eigenvalues

and modes

VAC
approximates eigenvalues

and eigenfunctions

EDMD
approximates eigenvalues,
eigenfunctions, and modes

MSM
approximates eigenvalues and

eigenfunctions

Ulam’s method
approximates eigenvalues

and eigenfunctions

equi-

valent

equi-

valent

dual

ψ(x) = x ψ(x) = x

ψ(x) =

1A1
(x)
...

1Ak
(x)

 ψ(x) =

1A1
(x)
...

1Ak
(x)



Figure 3.4: Relationships between data-driven methods. While VAC was derived for
reversible dynamical systems, the derivation of EDMD covers non-reversible dynamics as
well.

to diffusion and the subdomains are almost invariant. For the Koopman operator Kτ ,
this means that for ε = 0 the characteristic functions ϕ̃1 = 1[0,1]×[0,1] and ϕ̃2 = 1[1,2]×[0,1]

are both eigenfunctions with corresponding eigenvalue 1. If, on the other hand, ε >
0, then the two-dimensional eigenspace subdivides into two one-dimensional eigenspaces
with eigenvalues λ1 = 1 and λ2 = 1 − O(ε) and eigenfunctions ϕ1 = 1[0,2]×[0,1] and
ϕ2 ≈ ϕ̃1 − ϕ̃2. Typical trajectories of the system are shown in Figure 3.5a. Using the
parameters A = 0.25 and ε = 0.05, we integrated 105 randomly generated test points
using the Euler–Maruyama scheme with step size h = 10−3.

For the computation of the eigenfunctions, we choose a set of radial basis functions
whose centers were given by the midpoints of an equidistant 50 × 25 box discretization,
and a lag time τ = 3. The resulting nontrivial leading eigenfunctions of the Koopman
operator computed with EDMD are shown in Figure 3.5b. The two almost invariant sets
are clearly visible. The eigenfunctions of the Perron–Frobenius operator exhibit similar
patterns (but “rotating” in the opposite direction).

Deca-alanine

As a second example, we illustrate what has become a typical workflow for the appli-
cation of VAC/EDMD in molecular dynamics, using deca-alanine as a model system.
Deca-alanine is a small peptide comprised of ten alanine residues, it has been used as a
test system many times before. Here, we analyze equilibrium simulations of 3µs total
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3.3 Data-driven approximation of transfer operators

a)

b)

Figure 3.5: a) Typical trajectories (of different lengths) of the double gyre system for
ε = 0.05. The initial states are marked by dots. Due to the diffusion term, particles
can cross the separatrix (dashed line). The gray lines show the trajectories with the
same initial conditions for ε = 0. b) Leading eigenfunctions of the Koopman operator
associated with the double gyre system computed using EDMD.
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3 Data-driven model reduction and transfer operator approximation

simulation time using the Amber03 force field, see [137, 138] for the detailed simulation
setup. A set of important quantities for our analysis are the leading implied timescales

tm = − τ

log |λm|
, (3.14)

for m = 2, 3, . . .. Implied timescales are independent of the lag time [148, Theorem 2.2.4].
However, if they are estimated using (3.14) and an approximation to the eigenvalues λm
obtained from VAC/EDMD, the timescales will be underestimated (see Section 3.4.2)
and the error will decrease as a function of the lag time [47]. Approximate convergence
of implied timescales with increasing lag time has become a standard model validation
criterion in molecular dynamics [153].

In the first step, a set of internal molecular coordinates is extracted from the simulation
data, to which TICA is applied. In our example, we select all 16 backbone dihedral angles
as internal molecular coordinates. Figure 3.6a shows the first five implied timescales
estimated by TICA as a function of the lag time τ .

Next, a first dimension reduction is performed, where the data is projected onto the
leading M TICA eigenvectors. The number M is selected by the criterion of total kinetic
variance, that is, M is the smallest number such that the cumulative sum of the first
M squared eigenvalues exceeds 95 per cent of the total sum of squared eigenvalues [133].
Figure 3.6c shows the resulting dimension M as a function of the lag time.

As a third step, the reduced data set is discretized by application of a clustering method.
In our case, we use k-means clustering to assign the data to 50 discrete states. A Markov
state model (MSM, equivalent to Ulam’s method, see above) is estimated from the dis-
cretized time series. We show the first five implied timescales from the MSM in Fig-
ure 3.6c and observe that estimates improve compared to the TICA approximations.
Also, timescale estimates converge for lag times τ ≥ 4 ns.

Finally, we use the converged model at lag time τ = 4 ns for further analysis. As
the slowest implied timescale t2 dominates all others, and as it is the only one which is
larger than the lag time used for analysis (indicated by the gray line in Figure 3.6c), we
attempt to extract a two-state model that captures the essential dynamics. We employ
the PCCA+ algorithm [42, 157] to coarse grain all MSM states into two macrostates.
Inspection of randomly selected trajectory frames belonging to each macrostate reveals
that the slow dynamical process in the data corresponds to the formation of a helix, see
FigureR 3.6d. It should be noted that this coarse graining works well for visualization
purposes, but some details need to be taken into account. In fact, PCCA performs a
fuzzy assignment of MSM states to macrostates, where each MSM state belongs to each
macrostate with a certain membership in [0, 1]. We simply assign each MSM state to the
macrostate with maximal membership here. Alternatively, we could also use a hidden
Markov model (HMM) to perform the coarse graining [136].
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a) c)

b) d)

Figure 3.6: Illustration of standard EDMD workflow in molecular dynamics using the
deca-alanine model system. a) Leading implied timescales tm (in nanoseconds) as es-
timated by TICA as a function of the lag time.b) Effective dimension M selected by
applying the criterion of total kinetic variance to the TICA eigenvalues. c) Leading im-
plied timescales tm estimated by a Markov state model after projecting the data onto the
first M TICA eigenvectors and discretizing this data set into 50 states using k-means. d)
Simple visualization of effective coarse grained dynamics. All MSM states are assigned to
two macrostates using the PCCA algorithm. An overlay of representative structures from
both macrostates shows that the dynamics between them corresponds to helix formation.
Macrostates are drawn proportionally to their stationary probability.
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3.4 Derivations

In this section, we will show how VAC and EDMD as well as their respective special cases
TICA and DMD can be derived and how these methods are related to eigenfunctions and
eigenmodes of transfer operators.

3.4.1 General dynamical systems

Let us begin with general, not necessarily reversible dynamical systems. In order to be
able to compute eigenfunctions of transfer operators numerically, the infinite-dimensional
operators are projected onto a finite-dimensional space. We will briefly outline how the
EDMD minimization problem (3.13) leads to an approximation of the Koopman operator.

Theorem 3.4.1. Let the process {Xt}t≥0 be Feller-continuous7. Let ψi, i = 1, . . . , k,
be the set of at least piecewise continuous basis functions of the finite-dimensional linear
space V. Let the empirical distribution of the data points x1, x2, . . . converge weakly to the
density ρ. Then the minimization problem

min
K∈Rk×k

1

m

m∑

j=1

∥∥ψ(yj)−KTψ(xj)
∥∥2

2

converges, as m→∞, almost surely to minK̂
∑k

i=1 ‖Kτψi − K̂ψi‖2ρ, where the minimiza-

tion is over all linear mappings K̂ : V→ V.

Proof. Let f =
∑k

i=1 ai ψi = aTψ ∈ V be an arbitrary function, where a = [a1, . . . , ak]
T .

For a single data point xj , we have for a linear mapping K̂ : V → V with matrix repre-
sentation K ∈ Rk×k that

K̂f(xj) =
k∑

i=1

(K a)i ψi(xj) = aTKTψ(xj).

Here, the ith column of the matrix K corresponds to K̂ψi. Thus, we obtain

1

m

m∑

j=1

∥∥ψ(yj)−KTψ(xj)
∥∥2

2
=

k∑

i=1

1

m

m∑

j=1

(ψi(yj)− K̂ψi(xj))2

m→∞−→
k∑

i=1

∫

X
(E[ψi(Xτ ) |X0 = x]− K̂ψi(x))2ρ(x) dx

7A process {Xt}t≥0 is called Feller-continuous if the mapping x 7→ E[g(Xt)|X0 = x] is continuous for
any fixed continuous function g. This implies, that the Koopman operator of a Feller-continuous
process has a well defined restriction from L∞(X) to the set of continuous functions. Any stochastic
process generated by an Itô stochastic differential equation with Lipschitz-continuous coefficients is
Feller-continuous [140, Lemma 8.1.4].
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=
k∑

i=1

‖Kτψi − K̂ψi‖2ρ,

where the convergence for m → ∞ is almost sure. From the first line to the second we
used that the yj are realizations of the random variables Xτ given X0 = xj , that Xτ is
a Feller-continuous process, that the ψi are (piecewise) continuous functions, and that
the sampling process of xj is independent of the noise process that decides over Xτ given
X0 = xj .

With the aid of the data matrices ΨX and ΨY defined in (3.8), this minimization
problem can be written as

min
∥∥ΨY −KTΨX

∥∥2

F
,

which is identical to (3.13), where now KT = MEDMD. Thus, the transposed EDMD
matrix MEDMD is an approximation of the Koopman operator. A similar setup allows
for the approximation of the Perron–Frobenius operator with respect to the data point
density ρ. For details, we refer to [92, Appendix A]. Note, however, that although the
Perron–Frobenius and Koopman operators are adjoint, the matrix representation of the
discrete Perron–Frobenius operator will in general not just be the transposed of the matrix
K, unless the ansatz functions ψi are orthonormal with respect to 〈·, ·〉ρ.

If the dynamical system is deterministic, we can already interpret the minimization
(3.13) for finite values of m. As shown, e.g., in [92, 98], the solution of (3.13) is a
Petrov–Galerkin projection of the Koopman operator on the ansatz space V.

3.4.2 Reversible dynamical systems

Let us now assume that the system is reversible. That is, it holds that π(x) pτ (x, y) =
π(y) pτ (y, x) for all x and y.

Variational principle for the Rayleigh trace

We can also derive a variational formulation for the first M eigenvalues of the Koopman
operator Kτ in the reversible setting. It is a standard result for self-adjoint operators on
a Hilbert space with bounded eigenvalue spectrum, see, e.g., [2]:

Proposition 3.4.2. Assume that 1 = λ1 > λ2 ≥ . . . ≥ λM are the dominant eigenvalues
of the Koopman operator Kτ on L2

π. Then

M∑

`=1

λ` = sup
M∑

`=1

〈Kτv`, v`〉π,

〈v`, v`′ 〉π = δ``′

(3.15)

The sum of the first M eigenvalues maximizes the Rayleigh trace, which is the sum on
the right-hand side of (3.15) over all selections of M orthonormal functions v`. The
maximum is attained for the first M eigenfunctions ϕ1, . . . , ϕM .
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3 Data-driven model reduction and transfer operator approximation

Proof. The M -dimensional space V spanned by the functions v` must contain an element
uM which is orthonormal to the first M − 1 eigenfunctions ϕ`, i.e., 〈uM , ϕ`〉π = 0, ` =
1, . . . ,M−1, and ‖uM‖π = 1. By the standard Rayleigh principle for self-adjoint operators

〈KτuM , uM 〉π ≤ λM .

Next, determine a normalized element uM−1 of the orthogonal complement of uM in V
with 〈uM−1, ϕ`〉π = 0, ` = 1, . . . ,M − 2. Again, we can invoke the Rayleigh principle to
find

〈KτuM−1, uM−1〉π ≤ λM−1.

Repeating this argument another M − 2 times provides an orthonormal basis u1, . . . , uM
of the space V such that

M∑

`=1

〈Kτu`, u`〉π ≤
M∑

`=1

λ`.

As the Rayleigh trace is independent of the choice of orthonormal basis for the subspace
V, and the space itself was arbitrary, this proves (3.15). Clearly, the maximum is attained
for the first M eigenfunctions.

Proposition 3.4.2 motivates the variational approach developed in [134, 137] to maxi-
mize the Rayleigh trace restricted to some fixed space of ansatz functions:

Proposition 3.4.3. Let V be a space of k linearly independent ansatz functions ψi
given by a dictionary as above. The set of M ≤ k mutually orthonormal functions
f ` =

∑k
i=1 a

`
i ψi which maximize the Rayleigh trace of the Koopman operator restricted to

V is given by the first M eigenvectors of the generalized eigenvalue problem

Cτ a
` = λ̂`C0 a

`, (3.16)

where a` =
(
a`i
)k
i=1

, and the matrices Cτ , C0 are given by

(Cτ )ij = 〈Kτψi, ψj〉π,
(C0)ij = 〈ψi, ψj〉π.

Proof. First, note that for any functions f =
∑k

i=1 ai ψi and g =
∑k

i=1 bi ψi, we have that

〈Kτf, g〉π = aTCτ b,

〈f, g〉π = aTC0 b.

Let us assume that the ansatz functions are mutually orthonormal, i.e., C0 = I. Then,
maximization of the Rayleigh trace is equivalent to finding M vectors a`, such that(
a`
)T
a`
′

= δ``′ and
M∑

`=1

(
a`
)T

Cτ a
` =

M∑

`=1

〈Cτ a`, a`〉
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is maximal. By Proposition 3.4.2 applied to the operator Cτ on RN , the vectors a` are
given by the first M eigenvectors of Cτ . In the general case, transform the basis functions

into a set of mutually orthonormal functions ψ̃i via ψ̃i =
∑k

j=1C
−1/2
0 (j, i)ψj . For the

transformed basis, we need to compute the eigenvectors ã` of

C
−1/2
0 CτC

−1/2
0 ã` = λ̂` ã

`.

This is equivalent to the generalized eigenvalue problem (3.16), the relation between the
eigenvectors is given by

a` = C
−1/2
0 ã`.

3.5 Conclusion

In this review paper, we established connections between different data-driven model re-
duction and transfer operator approximation methods developed independently by the
dynamical systems, fluid dynamics, machine learning, and molecular dynamics communi-
ties. Although the derivations of these methods differ, we have shown that the resulting
algorithms share many similarities.

DMD, TICA and MSMs are popular methods to approximate the dynamics of high-
dimensional systems. Due to their simple basis functions, they conduct relatively rough
approximations, but when only a few spectral components are required, the approxima-
tion error can be controlled by choosing sufficiently large lag times τ [160]. The more
general methods VAC and EDMD are better suited to obtain accurate approximations
of eigenfunctions. However, to ensure such an accurate approximation, one would have
to deploy multiple basis functions in all coordinates and their combinations, which is un-
feasible for high-dimensional systems, and would also lead to overfitting when estimating
the eigenfunctions of the Koopman operator from a finite data set [123].

A natural approach to mitigate these problems is to construct an iterative or “deep”
approach in which the dynamical systems subspace in which a high resolution of basis
functions is required is found by multiple successive analysis steps. A common approach
is to first reduce the dimension by an inexpensive method such as TICA, in order to have
a relatively low-dimensional space in which the eigenfunctions are approximated with a
higher-resolution method. Another possibility is to exploit low-rank tensor approxima-
tions of transfer operators and their eigenfunctions. Tensor- and sparse-grid based refor-
mulations of some of the methods described in this paper can be found in [138, 95, 91],
and in [88], respectively. The efficiency of these tensor decomposition approaches depends
strongly on the coupling structure; strong coupling between different variables typically
leads to high ranks. Furthermore, some tensor formats also depend on the ordering of
variables and a permutation of the variable’s indices would lead to different tensor de-
compositions. Yet another approach might be to exploit sparsity-promoting methods
using L1-regularization techniques. Basis functions that are not required to represent the
eigenfunctions of an operator can thus be eliminated and refined adaptively. Moreover,
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3 Data-driven model reduction and transfer operator approximation

dictionary-learning methods could be applied to learn a basis set and to adapt the dic-
tionary to specific data [116]. Future work includes evaluating and combining different
dimensionality reduction, tensor decomposition, and sparsification methods to mitigate
the curse of dimensionality.
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Abstract

The global behavior of dynamical systems can be studied by analyzing the eigenval-
ues and corresponding eigenfunctions of linear operators associated with the system.
Two important operators which are frequently used to gain insight into the system’s
behavior are the Perron–Frobenius operator and the Koopman operator. Due to the
curse of dimensionality, computing the eigenfunctions of high-dimensional systems is
in general infeasible. We will propose a tensor-based reformulation of two numeri-
cal methods for computing finite-dimensional approximations of the aforementioned
infinite-dimensional operators, namely Ulam’s method and Extended Dynamic Mode
Decomposition (EDMD). The aim of the tensor formulation is to approximate the
eigenfunctions by low-rank tensors, potentially resulting in a significant reduction
of the time and memory required to solve the resulting eigenvalue problems, pro-
vided that such a low-rank tensor decomposition exists. Typically, not all variables
of a high-dimensional dynamical system contribute equally to the system’s behavior,
often the dynamics can be decomposed into slow and fast processes, which is also
reflected in the eigenfunctions. Thus, the weak coupling between different variables
might be approximated by low-rank tensor cores. We will illustrate the efficiency of
the tensor-based formulation of Ulam’s method and EDMD using simple stochastic
differential equations.

4.1 Introduction

The Perron–Frobenius operator and the Koopman operator enable the analysis of the
global behavior of dynamical systems. Eigenfunctions of these operators can be used
to extract the dominant dynamics, to detect almost invariant sets, or to decompose the
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4 Towards tensor-based methods for the approximation of transfer operators

system into fast and slow processes [40, 38, 152, 22, 195, 64, 65]. Assume the state space
of your system is Rd and you want to discretize each direction using n grid points (or
boxes if Ulam’s method is used), then overall nd values need to be stored. Even for d = 10
and n = 10, more than 70 gigabyte of storage space would be required, whereas typical
systems might have hundreds or thousands of dimensions and naturally also require a
more fine-grained discretization. This so-called curse of dimensionality can be overcome
by using tensor formats which compress the data and store only the information that is
relevant for the reconstruction. In general, only an approximation of the original data can
be retrieved. Approximating the objects under consideration by sums of low-rank tensor
products has become a powerful approach for tackling high-dimensional problems [80] and
in many physically significant problems near-linear complexity can be achieved since the
separation rank depends only weakly on the dimension [8]. For high-dimensional systems
exhibiting multiscale behavior, it might be possible to represent the weak coupling between
different variables by low-rank tensor cores. The leading eigenfunctions of the Koopman
operator, for instance, are typically almost constant for the fast variables of the system
and depend mainly on the slowly changing variables (see [64]). Thus, using tensor-based
algorithms could reduce the amount of time and memory required to compute and store
eigenfunctions significantly. In this way, analyzing high-dimensional systems that could
not be tackled using standard methods might become feasible.

Tensors, in our sense, are just multidimensional arrays as shown in Figure 4.1. Here and
in what follows, standard vectors will be denoted by lower-case letters, e.g. v, matrices
by upper-case letters, e.g. A, and tensors by the corresponding bold symbols, e.g. x.
It is important to note that tensors are typically not explicitly given – for example by
observed data –, but only implicitly as solutions of systems of linear or nonlinear equations
or eigenvalue problems [76]. Thus, numerical methods that operate directly on tensor
approximations need to be developed since the full tensors cannot be stored or handled
anymore in practice.

x113
x213
x313
x413

x123
x223
x323
x423

x133
x233
x333
x433

x112
x212
x312
x412

x122
x222
x322
x422

x132
x232
x332
x432

v1
v2
v3
v4

a11
a21
a31
a41

a12
a22
a32
a42

a13
a23
a33
a43

x111
x211
x311
x411

x121
x221
x321
x421

x131
x231
x331
x431

Figure 4.1: Tensors as multidimensional arrays. Here, v = (vi) ∈ R4, A = (aij) ∈ R4×3,
and x = (xijk) ∈ R4×3×3.

Over the last years, low-rank tensor approximation approaches have become increas-
ingly popular in the scientific computing community and are now becoming a standard
tool to cope with large-scale problems that could not be handled before by standard nu-
merical methods. An overview of different low-rank tensor approximation approaches can
be found in [76].

In this paper, we will show that the use of low-rank tensor approximation schemes po-
tentially enables the computation of eigenfunctions of high-dimensional systems. The aim
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4.2 Perron–Frobenius and Koopman operator approximation

of this paper, however, is not to show that our approach is more efficient – the tensor algo-
rithms are mainly implemented in Matlab, a comparison with highly optimized numerical
libraries implemented in C or C++ would not lead to meaningful results, developing high
performance libraries for large-scale tensor problems is a separate task –, but to derive
a tensor-based reformulation of existing methods and to show equivalency so that the
theory available for the conventional matrix-vector based formulation can be carried over
to multi-dimensional arrays. Furthermore, tensors could enable low-rank approximations
of the Perron–Frobenius and Koopman operator as well as their eigenfunctions. One of
the main future goals is to combine low-rank tensor decomposition techniques and the
splitting of the dynamics into fast and slow processes. In [64], it has been shown that
such a splitting of a multi-scale system exists and can be exploited to extract the slow
dynamics. Another open problem is the generation of the low-rank approximations of the
operators. Currently, the canonical tensor format representations are converted to the
tensor-train format, which is time-consuming and in general leads to high ranks. Ideally,
low-rank TT approximations should be directly generated from the given data.

We will start by introducing standard methods such as Ulam’s method and the recently
developed Extended Dynamic Mode Decomposition (EDMD) to approximate the eigen-
functions of the Perron–Frobenius operator and the Koopman operator in Section 4.2.
Then, in Section 4.3, different tensor formats will be described. In Section 4.4, we will
reformulate Ulam’s method and EDMD as tensor-based methods. Section 4.5 contains a
brief summary of simple power iteration schemes for the resulting tensor-based (general-
ized) eigenvalue problems. Simple examples which illustrate the proposed approaches are
shown in Section 4.6. In Section 4.7, we will conclude with a short summary and possible
future work.

4.2 Perron–Frobenius and Koopman operator approximation

In this section, we will briefly introduce the Perron–Frobenius operator P and the Koop-
man operator K as well as numerical methods to compute finite-dimensional approxima-
tions, namely Ulam’s method and EDMD. The main difference between Ulam’s method
and EDMD is that the former uses indicator functions1 for a given box discretization of
the domain while the latter allows arbitrary ansatz functions such as monomials, Her-
mite polynomials, trigonometric functions, or radial basis functions. Although EDMD
was primarily developed for the approximation of the Koopman operator, it can be used
to compute eigenfunctions of the Perron–Frobenius operator as well [92]. Analogously,
Ulam’s method can also be used to compute eigenfunctions of the Koopman operator.

1Higher-order methods for the approximation of the Perron–Frobenius operator have been proposed in
[44].
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4 Towards tensor-based methods for the approximation of transfer operators

4.2.1 Perron–Frobenius and Koopman operator

Let S : X → X be a dynamical system defined on a domain X , for example X ⊆ Rd.
Then the Perron–Frobenius operator or transfer operator P is defined by

∫
g · Pf dm =

∫
(g ◦ S) · f dm, (4.1)

for all f, g ∈ F , where F is an appropriately defined function space and ◦ denotes function
composition. We assume in what follows that F = L2(X ). The aim is to compute
eigenfunctions of the Perron–Frobenius operator, given by

Pϕi = λiϕi.

The eigenfunction ϕ1 corresponding to λ1 = 1 is the invariant density of the system,
i.e. Pϕ1 = ϕ1. The magnitude of the second largest eigenvalue λ2 can be interpreted
as the rate at which initial densities converge to the invariant density (for more details
and assumptions about the dynamical system, see e.g. [64] and references therein). More
generally, the leading eigenvalues of the Perron–Frobenius operator close to one correspond
to the slowly converging transients of the system. The Koopman operator K, on the other
hand, is defined by

Kf = f ◦ S

and acts on functions f : X → C, f ∈ F . Correspondingly, the stochastic Koopman
operator is defined by Kf = E[ f ◦S ], where E[ · ] denotes the expected value with respect
to the probability measure underlying S(x). We will only introduce the required notation
and focus mainly on discrete-time dynamical systems, for more details on the Koopman
operator and its properties, we refer to [22, 195, 196]. While the Perron–Frobenius oper-
ator describes the evolution of densities, the Koopman operator describes the evolution
of observables, which could be measurements or sensor probes [22]. Instead of analyzing
orbits {x, S(x), S2(x), . . . } of the dynamical system, we now analyze the measurements
{f(x), f(S(x)), f(S2(x)), . . . } at these points.

The Koopman operator K is the adjoint of the Perron–Frobenius operator P and thus an
infinite-dimensional but linear operator. A finite-dimensional approximation (computed
using generalized Galerkin methods) of this operator captures the dynamics of a nonlinear
dynamical system without necessitating a linearization around a fixed point [22, 195]. We
are again interested in eigenfunctions of the operator, given by

Kϕi = λiϕi.

Let f : X → R be an observable of the system that can be written as a linear combination
of the linearly independent eigenfunctions ϕi, i.e.

f(x) =
∑

i

ciϕi(x),
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4.2 Perron–Frobenius and Koopman operator approximation

with ci ∈ C. Then
(Kf)(x) =

∑

i

λiciϕi(x).

Analogously, for vector-valued functions F = [f1, . . . , fn]T , we obtain

KF =




∑
i λici,1ϕi

...∑
i λici,nϕi


 =

∑

i

λiϕi



ci,1
...
ci,n


 =

∑

i

λiϕivi,

where vi = [ci,1, . . . , ci,n]T . These vectors vi corresponding to the eigenfunctions ϕi are
called Koopman modes.

4.2.2 Ulam’s method

A frequently used method to compute an approximation of the Perron–Frobenius operator
is Ulam’s method, see e.g. [38, 27, 10, 64]. First, the state space X is covered by a finite
number of disjoint boxes {B1, . . . , Bk}. Let 1Bi be the indicator function for box Bi, i.e.

1Bi(x) =

{
1, if x ∈ Bi,
0, otherwise.

Then a finite-dimensional approximation of the operator can be obtained as follows: Using
definition (4.1) leads to
∫
1Bj · P1Bi dm =

∫
(1Bj ◦ S) · 1Bi dm =

∫
1S−1(Bj) · 1Bi dm = m(S−1(Bj) ∩ Bi).

This relationship can be represented by a matrix P̂ = (p̂ij) ∈ Rk×k with

p̂ij =
m
(
S−1(Bj) ∩ Bi

)

m(Bi)
.

Here, in order to avoid confusion with the approximation P on a tensor space introduced
below, we denote the matrix representation P̂ instead of P . The denominator m(Bi)
normalizes the entries p̂ij so that P̂ becomes a row-stochastic matrix and defines a finite
Markov chain. The left eigenvector corresponding to the eigenvalue λ1 = 1 approximates
the invariant measure of the Perron–Frobenius operator P.

The entries p̂ij of the matrix P̂ represent the probabilities of points being mapped from
box Bi to box Bj by the dynamical system S. These entries can be estimated by randomly

choosing a large number of test points x
(l)
i , l = 1, . . . , n, in each box Bi and by counting

how many times test points were mapped from box Bi to box Bj by S, i.e.

p̂ij ≈
1

n

n∑

l=1

1Bj
(
S
(
x

(l)
i

))
. (4.2)

The eigenfunctions of the Perron–Frobenius operator are then approximated by the left
eigenvectors of the matrix P̂ , the eigenfunctions of the Koopman operator by the right
eigenvectors.
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4.2.3 Extended dynamic mode decomposition

An approximation of the Koopman operator, the Koopman eigenvalues, eigenfunctions,
and eigenmodes can be computed using EDMD. The method requires data, i.e. a set of
values xi and the corresponding yi = S(xi) values, i = 1, . . . ,m, written in matrix form
as

X =
[
x1 x2 · · · xm

]
and Y =

[
y1 y2 · · · ym

]
,

and additionally a set of ansatz functions or observables

D = {ψ1, ψ2, . . . , ψk} ,

with ψi : X → R. Thus, X,Y ∈ Rd×m. The vectors xi are used as collocation points to
approximate the integrals required for the approximation of the Koopman operator. Let

Ψ =
[
ψ1 ψ2 · · · ψk

]T
, (4.3)

Ψ : X → Rk, be the vector of all ansatz functions, then K can be approximated by a
matrix K̂ ∈ Rk×k, with

K̂T = ÂĜ+,

where + denotes the pseudoinverse. The matrices Â, Ĝ ∈ Rk×k are defined as

Â =
1

m

m∑

l=1

Ψ(yl)Ψ(xl)
T ,

Ĝ =
1

m

m∑

l=1

Ψ(xl)Ψ(xl)
T .

(4.4)

As before, we use the ˆ symbol to distinguish the matrices from the tensor approximations
that will be introduced in Section 4.4. An approximation of the eigenfunction ϕi of the
Koopman operator K is then given by

ϕi = ξiΨ,

where ξi is the i-th left eigenvector of the matrix K̂T . Alternatively, the generalized
eigenvalue problem

ξiÂ = λiξiĜ (4.5)

can be solved, provided that Ĝ is regular. To compute eigenfunctions of the Perron–
Frobenius operator, the corresponding eigenvalue problem

ξiÂ
T = λiξiĜ

needs to be solved. Note that this formulation is similar to the variational approach to
compute eigenfunctions of transfer operators of reversible processes presented in [137, 138].
For more details, we refer the reader to [92].
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4.3 Tensor formats

Several different tensor formats have been developed in the past, e.g. the canonical format,
the Tucker format, and the tensor-train format. In this section, we will briefly introduce
tensors and the required notation. The overall goal is to rewrite the methods presented
in the previous section as tensor-based methods and to take advantage of low-rank tensor
approximations and the fact that the dynamics of high-dimensional systems can often be
decomposed.

4.3.1 Full format

A tensor in full format is simply a multidimensional array v ∈ Rk1×···×kd . (A variation
of this format is the sparse format which stores only the nonzero entries and is used,
for example, in the sparse grid approach [78].) The entries of a tensor v are indexed
by vi = vi1,...,id = v[i] = v[i1, . . . , id], where i = (i1, . . . , id) is a multi-index. Addition
and subtraction are trivially defined element-wise. Multiplication of a tensor v by a
scalar c ∈ R is naturally generalized as (cv)[i1, . . . , id] = cv[i1, . . . , id]. Matrix-vector
multiplication is defined as follows: Given a linear operator A defined on a tensor space
Rk1×···×kd , with

A = A[i1, . . . , id, j1, . . . , jd] ∈ Rk1×···×kd×k1×···×kd ,

the product of A and v is

(Av)[i1, . . . , id] =

k1∑

j1=1

· · ·
kd∑

jd=1

A[i1, . . . , id, j1, . . . , jd]v[j1, . . . , jd]

or in shorthand notation, using multi-indices,

(Av)i =
∑

j

Aijvj.

Furthermore, the inner product of two tensors v,w ∈ Rk1×···×kd is defined as

〈v, w〉 =

k1∑

i1=1

· · ·
kd∑

id=1

v[i1, . . . , id]w[i1, . . . , id]

and the outer product v ⊗w ∈ Rk1×···×kd×k1×···×kd as a tensor with entries

(v ⊗w)[i1, . . . , id, j1, . . . , jd] = v[i1, . . . , id]w[j1, . . . , jd].

The outer product v⊗w can be regarded as a linear map that acts on tensors Rk1×···×kd .
Often it is required or convenient to rewrite a tensor as a vector. The vectorization of

67



4 Towards tensor-based methods for the approximation of transfer operators

a tensor, denoted vec(v), where vec : Rk1×···×kd → Rk1···kd , reorders the entries of v into
one column vector. For v ∈ R2×3×2, for example,

vec(v) =
[
v111 v211 v121 v221 . . . v122 v222 v132 v232

]T
.

For our purposes, we will mainly be interested in eigenvalue problems of the form

Av = λv or Av = λBv.

The treatment of tensors in the full format often leads to storage problems. Thus, different
formats have been developed to overcome this problem. Instead of working with the full
format, we will use compressed formats such as the r-term or TT format for numerical
computations in order to minimize computational costs as well as storage requirements.
Except for very particular examples, it is impossible to compress the data without any
compression error [78]. Typically, the tensor representation is just an approximation
of the original data. Below, we will describe different compressed tensor formats, the
introduction is based on [78].

4.3.2 Canonical format

A tensor space is given by V =
⊗d

µ=1 Vµ, where V1, . . . , Vd are vector spaces defined over
the same field K, typically R or C. An elementary tensor is defined to be a product of
the form

v = v1 ⊗ · · · ⊗ vd,
with vµ ∈ Vµ, µ = 1, . . . , d. An algebraic tensor is then a linear combination of elementary
tensors, i.e.

v =
r∑

l=1

v
(l)
1 ⊗ · · · ⊗ v

(l)
d .

This format is also called r-term format or CP format. That is, instead of trying to
store the tensor in the dense format, one only considers tensors that can be written
as products of the form v[i1, . . . , id] = v1[i1] · · · vd[id]. If the best approximation of
this form is not good enough, then the natural extension is to consider v[i1, . . . , id] =∑r

l=1 v
(l)
1 [i1] · · · v(l)

d [id], cf. [7, 8]. Defining

Rr =

{
r∑

l=1

v
(l)
1 ⊗ · · · ⊗ v

(l)
d : v(l)

µ ∈ Vµ
}

for r ∈ N0, which implies that {0} = R0 ⊂ R1 ⊂ · · · ⊂ V, we call

rank(v) = min{r : v ∈ Rr}

the tensor rank of v.
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Example 4.3.1. Let us consider a system of the form dxt = −∇xV (xt) dt + σ dWt,
where V is the energy landscape associated with the system. The invariant density of
this process is given by µ(x) = 1

Z e
−βV (x), where β and Z are constants [171]. Assume

that the state space is three-dimensional and that the potential function can be written
as V (x) = V1(x1) + V2(x2) + V3(x3), then

µ(x) =
1

Z
e−βV1(x1)e−βV2(x2)e−βV3(x3).

Thus, storing the invariant density for a grid with k grid points in each direction in the
full format would require an array of size k3 while storing it in the canonical tensor format
would require only a tensor of rank 1 and thus an array of size 3k. 4

Given tensors in the r-term format, basic operations are defined as follows [78]:

• Addition:

v =

rv∑

l=1

d⊗

µ=1

v(l)
µ , w =

rw∑

l=1

d⊗

µ=1

w(l)
µ ⇒ x = v + w =

rv+rw∑

l=1

d⊗

µ=1

x(l)
µ ,

where

x(l)
µ =

{
v

(l)
µ , 1 ≤ l ≤ rv,
w

(l−rv)
µ , rv + 1 ≤ l ≤ rv + rw.

• Matrix-vector multiplication:

A =

rA∑

lA=1

d⊗

µ=1

A(lA)
µ , v =

rv∑

lv=1

d⊗

µ=1

v(lv)
µ ⇒ Av =

rA∑

lA=1

rv∑

lv=1

d⊗

µ=1

A(lA)
µ v(lv)

µ .

Since these operations increase the rank, truncation is typically required to approximate
the resulting tensor v with rank rv by a tensor ṽ with a lower rank rṽ by either fixing the
rank rṽ or by fixing ε such that ‖v − ṽ‖ < ε.

4.3.3 TT format

Another frequently used tensor format is the TT format – TT now stands for tensor train
instead of the former tree tensor –, which can be obtained by successive singular value
decompositions. This is a special case of a more general hierarchical format and has been
introduced in quantum physics under the name Matrix Product States (MPS), see [78] for
details. A tensor v ∈ Rk1×···×kd is decomposed into d component tensors vi of at most
order three (the first and last are of order two and are often, for the sake of simplicity,
considered as tensors of order three with “boundary condition” ρ0 = ρd = 1). That is,
the entries of v are given by

v[i1, . . . , id] =

ρ1∑

k1=1

· · ·
ρd−1∑

kd−1=1

v1[1, i1, k1] v2[k1, i2, k2] . . . vd[kd−1, id, 1].
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4 Towards tensor-based methods for the approximation of transfer operators

For fixed indices, the component tensors of rank three can be regarded as matrices, which
leads to a more compact representation

v[i1, . . . , id] = V1[i1]V2[i2] · · · Vd[id]

and justifies the original name MPS. Here, the numbers ρi are the ranks of the TT
tensor, resulting in a rank vector ρ = [ρ0, ρ1, . . . , ρd] which determines the complexity
of the representation. The main advantages of the TT format are its stability from an
algorithmic point of view and reasonable computational costs, provided that the ranks
of the tensors are small [80]. The basic operations such as addition and matrix-vector
multiplication are more complex than in the canonical format and can be found, for
example, in [142]. Converting a tensor from the canonical format to the TT format is
trivial, but the TT representation requires more memory. Numerical toolboxes for the TT
decomposition of tensors and several algorithms for solving linear systems of equations
are available online, see e.g. [143].

4.3.4 Comparison

Complexity-wise, the canonical format would be the ideal candidate for representing ten-
sors since the number of required parameters depends only linearly on the dimension d, the
rank r, and the sizes of the individual vector spaces. It turned out, however, that solving
even simple problems using the canonical format is hard in practice due to redundancies
and instabilities which can lead to numerical problems [80]. The main advantage of the
TT format is its structural simplicity, higher-order tensors are reduced to d products of
tensors of at most order three. Similar approaches have been known in quantum physics
for a long time, the rigorous mathematical analysis, however, is still work in progress (see
[80] and references therein). For our purposes, we will rely on the TT format and the TT
toolbox developed by Oseledets et al. [143] and implement simple power iteration schemes
to solve the resulting eigenvalue problems as we will show in Section 4.5. Other tensor
formats, however, might be advantageous as well for the analysis of the Perron–Frobenius
and Koopman operator. This should be investigated further in the future. One drawback
of the TT format is that the decomposition depends on the ordering of the dimensions
and thus results in different tensor ranks for different orderings.

4.4 Tensor-based approximation

In this section, we will present a tensor-based reformulation of Ulam’s method and EDMD
and show that these methods are equivalent to the corresponding vector-based counter-
parts. The new formulation enables the use of the low-rank tensor approximation ap-
proaches described in the previous section. That is, variables can be approximated with
different degrees of accuracy.
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4.4 Tensor-based approximation

4.4.1 Reformulation of Ulam’s method

Given a dynamical system S : X → X , X ⊂ Rd, define a box B that contains X , i.e.

B = I1 × · · · × Id ⊃ X ,

where each Iµ = [aµ, bµ] ⊂ R is an interval. Furthermore, let each Iµ be partitioned into

kµ subintervals Iiµµ , iµ = 1, . . . , kµ, such that Iiµµ ∩ Ijµµ = ∅ for iµ 6= jµ. This results in

a partitioning of B into k̂ =
∏d
µ=1 kµ boxes. Using again standard multi-index notation,

we will denote i = (i1, . . . , id). Equipped with the mapping

i = (i1, . . . , id) 7→ î = 1 +
d∑

µ=1

(
µ−1∏

ν=1

kν

)
(iµ − 1), (4.6)

each multi-index i corresponds to a number î ∈ {1, . . . , k̂}. This induces a canonical
numbering of the boxes

Bi = Ii11 × · · · × Iidd = Bî
and the entries of tensors x ∈ Rk1×···×kd such that xi = xî, where x = vec(x). Thus, with
the aid of Ulam’s method we could now generate the finite-dimensional representation of

the Perron–Frobenius operator P̂ ∈ Rk̂×k̂ as described in Section 4.2. Our goal, however, is
to approximate the operator by a tensor P ∈ Rk1×···×kd×k1×···×kd . Note that the indicator
function for the box Bi can be written as

1Bi(x) =

d∏

µ=1

1Iiµµ
(xµ) = 1Bî(x). (4.7)

That is, each d-dimensional indicator function 1Bi(x) is now written as a product of d
one-dimensional indicator functions 1Iiµµ

(xµ).

Example 4.4.1. Let us start with a simple example which illustrates the idea behind
the tensor-based formulation. Consider the box discretization {B1, . . . ,B9} of B = [0, 3]2

shown in Figure 4.2(a). Thus, using Ulam’s method, we would obtain 9 indicator functions
{1B1 , . . . ,1B9} and the matrix P̂ that approximates the Perron–Frobenius operator P
would be a row-stochastic (9 × 9)-matrix. An example of such a matrix is shown in
Figure 4.2(b), the underlying dynamical system is not relevant here. The goal now is to
rewrite this matrix using tensors (cf. Example 4.4.3).

Defining intervals I1
µ = [0, 1], I2

µ = [1, 2], and I3
µ = [2, 3] as well as indicator functions

1Iiµµ
(xµ) =

{
1, xµ ∈ Iiµµ ,
0, otherwise,

for µ = 1, 2 and iµ = 1, 2, 3, the ansatz functions for the box discretization can be written
as

1B1,1(x) = 1I11 (x1)1I12 (x2) = 1B1(x),
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4 Towards tensor-based methods for the approximation of transfer operators

(a)

B7

B4

B1 B2

B5

B8 B9

B6

B3

0
0

1 2 3

1

2

3

(b)

P̂ =



0.68 0.09 0.07 0.04 0.02 0 0.09 0.01 0
0.36 0.06 0.40 0.03 0 0.02 0.05 0.03 0.05
0.07 0.12 0.64 0.02 0 0.07 0.03 0 0.05
0.31 0.07 0.02 0.09 0.01 0.02 0.39 0.05 0.04
0.25 0.05 0.18 0.06 0.01 0.02 0.17 0.05 0.21
0.06 0.06 0.37 0.01 0 0.04 0.07 0.03 0.36
0.17 0.01 0.01 0.09 0.01 0.01 0.60 0.05 0.05
0.05 0 0.06 0.08 0 0.05 0.29 0.13 0.34
0.01 0 0.03 0.02 0.02 0.11 0.05 0.09 0.67



Figure 4.2: (a) Box discretization of B = [0, 3]2. (b) Example of a resulting approxima-
tion P̂ of the Perron–Frobenius operator P, obtained by applying Ulam’s method.

1B2,1(x) = 1I21 (x1)1I12 (x2) = 1B2(x),

...
...

1B2,3(x) = 1I21 (x1)1I32 (x2) = 1B8(x),

1B3,3(x) = 1I31 (x1)1I32 (x2) = 1B9(x). 4

The product formulation of the indicator functions naturally leads to a tensor approx-
imation P of the Perron–Frobenius operator P. Let Qµ : Rd → R be the projection onto
the µ-th component of a vector, i.e. Qµ(x) = xµ. Then we define

P[i1, . . . , id, j1, . . . , jd] =
1

n

n∑

l=1

d∏

µ=1

1Ijµµ

(
Qµ

(
S
(
x

(l)
i1,...,id

)))
, (4.8)

where x
(l)
i1,...,id

, l = 1, . . . , n, are the test points generated for box Bi. Instead of checking
to which d-dimensional box the test points are mapped, the d dimensions are now treated
separately.

Proposition 4.4.2. It holds that

Pv = λv ⇔ P̂ v = λv.

Proof. It suffices to show that P[i1, . . . , id, j1, . . . , jd] = P̂îĵ and that (Pv)[i1, . . . , id] =

(P̂ v)̂i. The entries of P and P̂ are identical since with (4.2) and (4.7)

P̂îĵ =
1

n

n∑

l=1

1Bĵ

(
S
(
x

(l)

î

))

=
1

n

n∑

l=1

d∏

µ=1

1Ijµµ

(
Qµ

(
S
(
x

(l)
id,...,id

)))
= P[i1, . . . , id, j1, . . . , jd].
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4.4 Tensor-based approximation

For d = 1, the multi-index i is mapped to î = i1 and j to ĵ = j1 by (4.6). Furthermore,
k̂ = k1 and

(Pv)[i1] =

k1∑

j1=1

P[i1, j1]v[j1] =
k̂∑

ĵ=1

P̂îĵvĵ = (P̂ v)̂i.

Then, we obtain by induction

(Pv)[i1, . . . , id+1]

=

k1∑

j1=1

· · ·
kd+1∑

jd+1=1

P[i1, . . . , id+1, j1, . . . , jd+1]v[j1, . . . , jd+1]

=

kd+1∑

jd+1=1




k1∑

j1=1

· · ·
kd∑

jd=1

P[i1, . . . , id, id+1, j1, . . . , jd, jd+1]v[j1, . . . , jd, jd+1]




=

kd+1∑

jd+1=1




k1∑

j1=1

· · ·
kd∑

jd=1

P(id+1,jd+1)[i1, . . . , id, j1, . . . , jd]v
(jd+1)[j1, . . . , jd]




=
[
P̂ (id+1,1) . . . P̂ (id+1,kd+1)

]



v(1)

...

v(kd+1)




} ∈ Rk1···kd
...

} ∈ Rk1···kd

= (P̂ v)̂i.

Here, the matrices and vectors with the superscripts (id+1, jd+1) and (jd+1), respectively,
are obtained by fixing the corresponding indices, that is, these matrices and vectors are
lower-dimensional slices of the corresponding higher-dimensional objects. Since the entries

of v(jd+1) are indexed by (j1, . . . , jd) 7→ ĵ = 1 +
∑d

µ=1

(∏µ−1
ν=1 kν

)
(jµ − 1), the entries of

the larger vector v – obtained by stacking the vectors v(jd+1) ∈ Rk1···kd – are indexed by

(j1, . . . , jd+1) 7→ ĵ = 1 +

d∑

µ=1

(
µ−1∏

ν=1

kν

)
(jµ − 1) + (k1 · · · kd)(jd+1 − 1)

= 1 +

d+1∑

µ=1

(
µ−1∏

ν=1

kν

)
(jµ − 1).

Analogously, left eigenvectors of P correspond to left eigenvectors of P̂ . The implemen-
tation of the tensor-based formulation is straightforward since only index computations
for intervals are required, a numbering of the d-dimensional boxes is not needed anymore.
Let T be the set of all test points and ind : Rd → Nd the functions that returns the
corresponding multi-index i for a point x ∈ Rd so that xµ ∈ I

iµ
µ , µ = 1, . . . , d. Then,

Ulam’s method can simply be expressed as:
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4 Towards tensor-based methods for the approximation of transfer operators

for each test point x ∈ T do
y = S(x)
i = ind(x)
j = ind(y)
P[i1, . . . , id, j1, . . . , jd]← P[i1, . . . , id, j1, . . . , jd] + 1

n
end for

In the standard formulation, the rows of the matrix P̂ sum up to one. Correspondingly,
the sum of all entries of each subtensor of P with fixed multi-index i is one, i.e.

k1∑

j1=1

· · ·
kd∑

jd=1

P[i1, . . . , id, j1, . . . , jd] = 1.

Example 4.4.3. Let us consider Example 4.4.1 again. We select n random test points

x
(l)
i1,i2

for each box Bi1,i2 , i1, i2 = 1, . . . , 3 and l = 1, . . . , n. This leads to a new approxi-

mation P ∈ R3×3×3×3. Written in Matlab notation, we would obtain

P[:, :, 1, 1] =

0.68 0.31 0.17
0.36 0.25 0.05
0.07 0.06 0.01

 , P[:, :, 1, 2] =

0.04 0.09 0.09
0.03 0.06 0.08
0.02 0.01 0.02

 , P[:, :, 1, 3] =

0.09 0.39 0.60
0.05 0.17 0.29
0.03 0.07 0.05

 ,
P[:, :, 2, 1] =

0.09 0.07 0.01
0.06 0.05 0
0.12 0.06 0

 , P[:, :, 2, 2] =

0.02 0.01 0.01
0 0.01 0
0 0 0.02

 , P[:, :, 2, 3] =

0.01 0.05 0.05
0.03 0.05 0.13

0 0.03 0.09

 ,
P[:, :, 3, 1] =

0.07 0.02 0.01
0.40 0.18 0.06
0.64 0.37 0.03

 , P[:, :, 3, 2] =

 0 0.02 0.01
0.02 0.02 0.05
0.07 0.04 0.11

 , P[:, :, 3, 3] =

 0 0.04 0.05
0.05 0.21 0.34
0.05 0.36 0.67

 .
Note that each matrix P[:, :, j1, j2] corresponds to a column of matrix P̂ in Figure 4.2.

For the resulting eigenvalue problem, we obtain – using a simple power iteration, see
Section 4.5 – the left eigenvector v1 corresponding to the largest eigenvalue λ1 = 1

v1 =




0.6503 0.1393 0.4501
0.1046 0.0261 0.0901
0.4355 0.0864 0.3719


 ,

which is a good approximation of the largest left eigenvector v1 of the matrix P̂ given by

v1 =
[
0.6503 0.1393 0.4501 0.1046 0.0261 0.0901 0.4355 0.0864 0.3719

]
. 4

Instead of working with the full format, the matrix P can also be expressed directly
using the canonical tensor format. Assume that a test point x is mapped from box Bi

to box Bj, where i = (i1, . . . , id) and j = (j1, . . . , jd) are again multi-indices. Now let

e
iµ
µ ∈ Rkµ be the iµ-th unit vector of size kµ and let

ei =
d⊗

µ=1

e
iµ
µ .
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4.4 Tensor-based approximation

Then the elementary tensor ei ⊗ ej ∈ Rk1×···×kd×k1×···×kd describes the mapping of this
point. Furthermore, let ind be again the function that returns the multi-index of the
box that contains the point x and T the set of all test points, then the matrix P can be
represented as a sum of elementary tensors of this form, i.e.

P =
1

n

∑

x∈T
eind(x) ⊗ eind(S(x)).

That is, the number of elementary tensors is k̂n, i.e. the number of boxes multiplied by
the number of test points per box, and thus potentially too large to store (unless sparse
tensor formats are used). However, we will store only a low-rank approximation to reduce
the required storage space. Note that this elementary tensor representation can also be
easily converted into the TT format for numerical computations using the TT toolbox.

The question now is whether the tensor representation offers advantages over the stan-
dard formulation of Ulam’s method. The goal is to approximate the eigenfunctions of
the Perron–Frobenius operator or Koopman operator using low-rank tensors, reducing
the computational cost as well as the memory consumption. Before we present numerical
results, let us also rewrite EDMD in tensor form.

4.4.2 Reformulation of EDMD

Instead of writing Ψ as a vector of functions Ψ = [ψ1, ψ2, . . . , ψk̂]
T , we now write Ψ as a

tensor of functions. We start by selecting basis functions for each dimension separately.
Let

Dµ = {ψ1
µ, . . . , ψ

kµ
µ }

be the set of basis functions for dimension µ, µ = 1, . . . , d. Here, each ψ
iµ
µ : R → R

depends only on xµ. Then our tensor basis for EDMD contains all functions of the form

ψi(x) =
d∏

µ=1

ψ
iµ
µ (xµ), (4.9)

where i = (i1, . . . , id) is a multi-index. Thus,

D =





d∏

µ=1

ψ
iµ
µ , ψ

iµ
µ ∈ Dµ



 .

That is, we have again k̂ =
∏d
µ=1 kµ basis functions and Ψ : Rd → Rk1×···×kd , with

Ψ[i1, . . . , id](x) = ψi(x).

Example 4.4.4. Let us begin with a simple example: Assume we have a two-dimensional
domain X ⊂ R2 and we want to use monomials of order up to three {1, xµ, x2

µ, x
3
µ} in x1
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4 Towards tensor-based methods for the approximation of transfer operators

and x2 direction to approximate the eigenfunctions of the Koopman operator. Written in
tensor form, we obtain

Ψ(x) =




1 x2 x2
2 x3

2

x1 x1x2 x1x
2
2 x1x

3
2

x2
1 x2

1x2 x2
1x

2
2 x2

1x
3
2

x3
1 x3

1x2 x3
1x

2
2 x3

1x
3
2


 .

That is, Ψ[i1, i2](x) = xi1−1
1 xi2−1

2 . Analogously, for a d-dimensional domain, we would
obtain Ψ(x) ∈ Rk1×···×kd with

Ψ[i1, . . . , id](x) = xi1−1
1 · · · xid−1

d . 4

Such a tensor basis is often used for high-dimensional problems, see also [61]. Typical
basis functions are monomials, Hermite polynomials, or trigonometric functions. In the
standard formulation, all basis functions are enumerated and rewritten in vector form
(4.3). The difference here is that the tensor form will be preserved. We will use again
(4.6) as a mapping from multi-index to single index when required.

Now A,G ∈ Rk1×···×kd×k1×···×kd can be constructed as follows:

A[i1, . . . , id, j1, . . . , jd] = 〈KΨ[i1, . . . , id], Ψ[j1, . . . , jd]〉 ,
G[i1, . . . , id, j1, . . . , jd] = 〈Ψ[i1, . . . , id], Ψ[j1, . . . , jd]〉 .

The entries are again – as in the standard EDMD formulation – approximated using a
collocation approach. EDMD computes the entries as shown in (4.4), for the new tensor-
based formulation this results in

A[i1, . . . , id, j1, . . . , jd] =
1

m

m∑

l=1

Ψ[i1, . . . , id](yl)Ψ[j1, . . . , jd](xl),

G[i1, . . . , id, j1, . . . , jd] =
1

m

m∑

l=1

Ψ[i1, . . . , id](xl)Ψ[j1, . . . , jd](xl),

or in short form, using the outer product,

A =
1

m

m∑

l=1

Ψ(yl)⊗Ψ(xl),

G =
1

m

m∑

l=1

Ψ(xl)⊗Ψ(xl),

(4.10)

which in turn results in a generalized eigenvalue problem of the form

ξA = λξG.

Note that the eigenvalue problem is the same as (4.5) in the standard case. For the sake
of simplicity, we are omitting the index i here.
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4.4 Tensor-based approximation

Proposition 4.4.5. Provided that the basis functions can be written in tensor product
form (4.9),

ξA = λξG ⇔ ξÂ = λξĜ.

Proof. We just show that the entries of A and Â as well as the entries of G and Ĝ are
identical, the rest – the equivalency of the matrix-vector and tensor products – follows
from Proposition 4.4.2. Assuming that the basis can be written in the product form, we
obtain from (4.4)

âîĵ =
1

m

m∑

l=1

ψî(yl)ψĵ(xl)

=
1

m

m∑

l=1

d∏

µ=1

ψ
iµ
µ (Qµ(yl))

d∏

µ=1

ψ
jµ
µ (Qµ(xl))

=
1

m

m∑

l=1

Ψ[i1, . . . , id](yl)Ψ[j1, . . . , jd](xl)

= A[i1, . . . , id, j1, . . . , jd]

and analogously ĝîĵ = G[i1, . . . , id, j1, . . . , jd]. Here, Qµ is again the projection onto the
µ-th component of a vector, cf. (4.8).

Instead of storing the dense matrices A and G, we can again directly represent these
matrices using the canonical tensor format. The basis was chosen in such a way that
Ψ(x) can be written as

Ψ(x) =
d⊗

µ=1

ψ̃µ(xµ),

where ψ̃µ = [ψ1
µ, . . . , ψ

kµ
µ ]T ∈ Rkµ . With (4.10) it follows that A and G can be written

as sums of m elementary tensors. As before, we are not storing the full-rank tensor, but
only low-rank approximations.

The eigentensors ξ ∈ Rk1×···×kd of the generalized eigenvalue problem can then be
used to approximate the eigenfunctions of the Perron–Frobenius operator or Koopman
operator: Let ξ be a left eigentensor, then

ϕ(x) = 〈ξ, Ψ(x)〉
approximates an eigenfunction of the Koopman operator. Analogously, if ξ is a right
eigentensor of the generalized eigenvalue problem – observe that G[i1, . . . , id, j1, . . . , jd] =
G[j1, . . . , jd, i1, . . . , id] –, then ϕ(x) is an approximation of the corresponding eigenfunc-
tion of the Perron–Frobenius operator, see also [92].

To compute the dominant eigenfunctions of the Koopman operator or Perron–Frobenius
operator, we will use simple power iteration schemes outlined in the next section. General
purpose eigenvalue solvers for nonsymmetric generalized eigenvalue problems are, to our
knowledge, not part of the tensor libraries yet. Solvers for symmetric (non-generalized)
eigenvalue problems already exist and are part of the TT toolbox [143].
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4 Towards tensor-based methods for the approximation of transfer operators

4.5 Eigenvalue problems

In Section 4.2 and Section 4.4, we have shown that in order to compute the eigenfunc-
tions of the Perron–Frobenius operator and Koopman operator, respectively, using either
Ulam’s method or EDMD, we need to solve standard eigenvalue problems or generalized
eigenvalue problems. For the reformulated version of these methods, we have to develop
the required numerical algorithms to solve the resulting tensor-based eigenvalue prob-
lems. At the time of writing, we are not aware of any tensor toolbox containing numerical
methods for nonsymmetric generalized eigenvalue problems. Methods for the computa-
tion of eigenvectors of symmetric positive definite matrices in the TT format have been
proposed in [80], where the eigenvalue problem is rewritten as a (Rayleigh quotient based)
minimization problem which is then solved using the Alternating Linear Scheme (ALS).
In practice, these methods have recently also been successfully used for nonsymmetric
problems, although convergence has not been shown yet [73].

Suitable methods for eigenvalue problems can be subdivided into two main categories
as explained in [76] (see also references therein, e.g. [8]): The first category of methods
is based on combining classical iterative algorithms with low-rank truncation after each
step, the second is based on a reformulation as an optimization problem, where admissible
solutions are constrained to the set of low-rank tensors. In this section, we will describe
a generalization of simple power iteration methods – belonging to the first category – to
tensor-based eigenvalue problems. For a detailed description of general power iteration
methods, we refer to [75]. Power iteration and inverse power iteration for tensors have
also been proposed in [8]. The main difference between the standard algorithms and the
tensor-based counterpart is that for the latter truncation is used to keep the ranks of the
tensors low. It is important that the iteration moves from the initial state to the final
state without creating intermediate solutions with an excessive rank [8].

4.5.1 Power iteration methods for standard eigenvalue problems

In what follows, let T denote the truncation of a tensor. Then instead of a classical
iteration scheme of the form xk+1 = F (xk), we simply obtain xk+1 = T (F (xk)). For
an eigenvalue problem of the form Av = λv, given an initial guess v0 for the dominant
eigenvector, the power iteration algorithm computes:

for k = 1, 2, . . . do
w(k) = T

(
Av(k−1)

)

v(k) = w(k)/
∥∥w(k)

∥∥
λ(k) =

〈
v(k), T (Av(k))

〉

end for

The iteration converges to an eigenvector associated with the largest eigenvalue λ1 of the
truncated operator A if the eigenvalue is simple and the initial guess v(0) has a component
in the direction of the corresponding dominant eigenvector v1 [75]. Even if the initial guess
does not have a component in the direction of v1, rounding errors typically ensure that
this direction will be picked up during the iteration. The rate of convergence depends on
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the ratio between the second-largest and largest eigenvalue λ2/λ1. The main advantage
of this method is that it requires only matrix-vector multiplications and can thus easily
be used for tensor eigenvalue problems.

A modification of this algorithm to compute eigenvectors corresponding to any eigen-
value is the inverse power iteration with shift, which – assuming that A−θI is nonsingular
– can be written in the form:

for k = 1, 2, . . . do
Solve (A− θI)w(k) = v(k−1)

v(k) = w(k)/
∥∥w(k)

∥∥
λ(k) =

〈
v(k), Av(k)

〉

end for

The parameter θ is called shift and the iteration converges to the eigenvalue closest to θ.
This method is just the standard power iteration applied to the matrix (A− θI)−1. Here,
the linear solver computes a low-rank approximation of the solution so that truncation is
not required.

4.5.2 Power iteration methods for generalized eigenvalue problems

Given matrices A and B, the generalized eigenvalue problem is given by Av = λBv.
In this case, the power iteration method also requires the solution of a linear system
of equations. Thus, we can also directly apply the inverse power iteration, where the
resulting systems of linear equations are again solved with ALS:

for k = 1, 2, . . . do
Solve (A− θB)w(k) = Bv(k−1)

v(k) = w(k)/
∥∥w(k)

∥∥
λ(k) =

〈
v(k), Av(k)

〉
/
〈
v(k), Bv(k)

〉

end for

In order to keep the ranks of the intermediate solutions low, we also approximate the
matrices P (Ulam’s method) or A and G (EDMD) by low-rank tensors. That is, the initial
matrices are converted to P̃, Ã, and G̃ with a lower rank since the rank of these matrices
can initially be very high. We are typically only interested in the general behavior of the
eigenfunctions, a highly accurate representation of the eigenfunctions is often not needed.

4.6 Examples

All examples presented within this section have been implemented in Matlab using – for
the sake of efficiency – mex-functions to integrate the SDEs. All tensor computations were
carried out with the TT toolbox [143]. For the eigenvector computations, we used our
implementation of the simple power iteration methods described in Section 4.5.
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4 Towards tensor-based methods for the approximation of transfer operators

4.6.1 2-dimensional double-well problem

Let us start with a simple 2-dimensional example, a stochastic differential equation of the
form

dx1 = −∇x1V (x1, x2) dt+ σ dW1,

dx2 = −∇x2V (x1, x2) dt+ σ dW2,

where W1 and W2 are two independent standard Wiener processes. Here, the potential is
given by

V (x1, x2) = (x2
1 − 1)2 + x2

2,

see Figure 4.3 (cf. [92]). Furthermore, we set σ = 0.7. Note that in this case the potential
can be written as V (x1, x2) = V1(x1) + V2(x2). In order to analyze the tensor-based

Figure 4.3: Double-well potential V (x1, x2) = (x2
1 − 1)2 + x2

2.

methods, we rotate the potential by an angle α and obtain

Ṽ (x1, x2) =
(
(cos(α)x1 − sin(α)x2)2 − 1

)2
+ (sin(α)x1 + cos(α)x2)2 .

The two independent Wiener processes W1 and W2 are rotated accordingly. We would
expect that the eigenfunctions of systems with small α can be accurately approximated
by low-rank tensors, whereas systems with a larger value of α require higher ranks since
the dynamics are not aligned with the axes anymore.

The second eigenfunctions of the Perron–Frobenius operator for the systems with po-
tential Ṽ and different values of α computed using the tensor-based version of Ulam’s
method are shown in Figure 4.4. We chose α = 0, α = π/12, α = π/6, and α = π/4.
The domain X = [−2, 2]2 was subdivided into 50 × 50 equally sized boxes. That is,
P ∈ R50×50×50×50. For each box, 100 randomly chosen test points were generated. The
Euler–Maruyama method with a step size h = 10−3 was used for the numerical inte-
gration, where one evaluation of S corresponds to 10, 000 integration steps, that is, the
integration interval is [0, 10]. The shift parameter θ of the power iteration method was
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Figure 4.4: Second eigenfunction of the Perron–Frobenius operator for different values
of α.

set to a value slightly smaller than 1. Figure 4.5 illustrates how the tensor approxima-
tion, depending on the rank, successively picks up the information about the shape of
the eigenfunction and generates more and more accurate representations. For α = π/4, a
tensor of rank 1 cannot represent the minimum and maximum simultaneously since this
would lead to two additional peaks in the lower left and upper right corner. Here, the
first pair of singular vectors represents the maximum, the second pair of singular vectors
the minimum.

Figure 4.5: Tensor approximations of the second eigenfunction of the Perron–Frobenius
operator for α = π/4 with increasing rank r.

Additionally, we computed the eigenfunctions with the standard version of Ulam’s
method to evaluate the accuracy of the approximation and compared it with the results
obtained by using the new tensor-based formulation. Figure 4.6 shows the influence of the
truncation of the operator as well as the influence of the truncation of the resulting eigen-
functions. Here, in order to analyze the accuracy, we also compare the first eigenfunction
with the analytically computed invariant density. Since we are computing eigenfunctions
of the Perron–Frobenius operator associated with a stochastic differential equation, the
results depend strongly on the number of test points chosen for each box. The higher
the number of test points per box, the smoother the eigenfunction approximation. Thus,
in this case, the smoother low-rank solutions can counterintuitively lead to better ap-
proximations of the true eigenfunctions. The high ranks are mainly required to resolve
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4 Towards tensor-based methods for the approximation of transfer operators

the numerical noise introduced by the coarse approximation of the operator. This can
be seen, for example, in Figure 4.6b. Decreasing the rank initially reduces the error –
the truncation of the operator results in smoother eigenfunctions – until the shape of the
eigenfunction cannot be described by a low-rank approximation anymore and the error
increases. For α = 0, the x1 and x2 dynamics are independent and a low-rank approxima-
tion is sufficient. Furthermore, the results illustrate that for a fixed-rank approximation,
the error is smaller when the system’s dynamics are aligned with the axes.

a) b)

c) d)

Figure 4.6: (Top) Let v̂1 denote the first eigenvector of P̂ , v1 the (vectorized) eigentensor
of the truncated tensor representation P, and µinv the analytically computed invariant
density. The error here is defined by e = 1

k ‖v1 − v̂1‖2 and e = 1
k ‖v1 − µinv‖2, respectively,

where k is the number of boxes. a) Difference between v1 and v̂1 depending on the rank
of P. b) Difference between v1 and µinv. (Bottom) Influence of the truncation of the first
eigentensor v1 of the full tensor representation P on the accuracy. c) Difference between
the truncated eigentensor v1 and v̂1. d) Difference between the truncated eigentensor v1

and µinv. The dashed lines show the error for the full-rank approximation which is almost
identical for the different values of α.

This example shows that in order to be able to approximate eigenfunctions by low-rank
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tensors, the dynamics of the system should be aligned with the axes chosen, although even
if the dynamics are not aligned, the tensor format might be advantageous. In general,
the dynamics are unknown a priori and not necessarily aligned with the axes, but for
higher-dimensional systems it is often possible to decompose a system into slow and fast
subsystems. Not all variables of a system might be equally important to describe the sys-
tem’s behavior. The intuition would be that certain subsystems require less information
and that the tensor approximation automatically captures the relevant dynamics, using
high ranks only when necessary.

4.6.2 3-dimensional triple-well problem

Let us consider a more complex 3-dimensional example with the potential function

V (x1, x2, x3) = 3e−x
2
1−(x2− 1

3
)2 − 3e−x

2
1−(x2− 5

3
)2 − 5e−(x1−1)2−x22 − 5e−(x1+1)2−x22

+ 2
10x

4
1 + 2

10

(
x2 − 1

3

)4
+ x2

3.

This is a potential taken from [171], augmented by a third dimension. We subdivided the
domain X = [−2, 2]×[−1, 2]×[−2, 2] into 20×20×20 boxes of the same size. For each box,
we randomly generated 1000 test points. The resulting finite-dimensional approximation
is then a tensor P ∈ R20×20×20×20×20×20. Figure 4.7 shows a scatter plot of the first
three eigenfunctions, which were computed using the inverse power iteration described in
Section 4.5. The first eigenfunction clearly shows the three expected regions with high
probabilities corresponding to the minima of the potential V . The second eigenfunction
separates the two deeper wells at (−1, 0, 0) and (1, 0, 0), the third eigenfunction separates
these wells from the third shallower well at (0, 1.5, 0). The differences between the eigen-
functions computed using the conventional and the tensor-based version of Ulam’s method
are negligible, the average difference between the first eigenvector v1 and the tensor v1

is of the order of 10−6, which is mainly due to the less accurate power iteration method
applied to the tensor eigenvalue problem.

Figure 4.7: Scatter plot of the first three eigenfunctions of the Perron–Frobenius oper-
ator for the triple-well system. Only entries whose absolute value is larger than a given
threshold are plotted, entries close to zero are omitted.
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For the sake of comparison, we computed the eigenfunctions of the Koopman op-
erator using EDMD. We chose basis functions D = {xi11 xi22 xi33 , i1, i2, i3 = 0, . . . , 5}.
Hence, A,G ∈ R6×6×6×6×6×6. For higher-order monomials, the resulting matrices are
ill-conditioned and the eigenfunctions cannot be computed accurately anymore. The re-
sults are shown in Figure 4.8. As before, the second eigenfunction separates the two
deeper wells. The third eigenfunction separates these wells from the third shallower well
and is close to zero for the regions around the deep wells. The trivial eigenfunction of the
Koopman operator corresponding to λ1 = 1 is not plotted here since it is constant and
does not contain relevant information about the system. Note that the eigenvalues are
slightly different due to the different set of basis functions used for EDMD.

Figure 4.8: Scatter plot of the second and third eigenfunction of the Koopman operator
for the triple-well system. Note that compared to the other plots the second eigenfunc-
tion of the Koopman operator is rotated by 180 degrees around the x3 axis for a better
visualization.

4.7 Conclusion

We have reformulated the problems of computing finite-dimensional approximations of
the Perron–Frobenius and Koopman operator in a different format using tensors instead
of vectors. The matrices P (if Ulam’s method is used) or A and G (if EDMD is used)
can now either be assembled in the dense tensor format or directly in the canonical tensor
format – which can then easily be converted into the TT format –, enabling low-rank ap-
proximations of the aforementioned operators. The next step is to systematically develop
the numerical methods required to efficiently solve the resulting nonsymmetric generalized
tensor eigenvalue problems and also to store and handle these tensors minimizing memory
requirements so that even high-dimensional problems can be solved. First results obtained
by applying simple algorithms such as power iteration methods are promising and show
that the approaches presented within this paper might be able to tackle high-dimensional
problems. Currently, several toolboxes for tensor-based problems are under development.
Once these toolboxes contain methods for solving nonsymmetric generalized eigenvalue
problems, the proposed approaches can be implemented easily, potentially facilitating the
computation of meta-stable sets or almost invariant sets of dynamical systems that could
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not be handled before due to the curse of dimensionality. We demonstrated the tensor-
based version of Ulam’s method and EDMD using two- and three-dimensional problems
mainly because the results can be easily validated and visualized.

Future work also includes determining which tensor format is suited best for our pur-
poses. Currently, one of the main bottlenecks is the simulation required to obtain the
data. Even simple molecular dynamics simulations, for instance, might easily take several
days, but in order to capture the behavior of the system, long trajectories or a large num-
ber of short simulations with different initial conditions are required. This huge amount
of data must then be processed. Thus, also the construction of the matrices P or A and
G is time-consuming. The number of boxes or basis functions required to represent each
variable of the system accurately is in general unknown a priori. If we are, for instance,
only interested in the leading eigenfunctions of the Koopman operator, the fast variables
of the system are typically almost constant and require less information to be captured.
Starting with a set of only a few basis functions for each unknown, which is then, if
needed, augmented adaptively based on the system’s behavior would greatly improve the
efficiency. Adaptive methods combined with (sparse) tensor approaches might be able to
tackle high-dimensional systems and diminish the curse of dimensionality. Furthermore,
a detailed numerical analysis of the efficiency and accuracy of the proposed algorithms
would help understand the limitations and find opportunities for improvement.

Another open problem is the – depending on the number of dimensions d – typically
extremely large condition number of the matrices A or G if EDMD with, for instance,
monomials are used to compute the eigenfunctions of the Perron–Frobenius or Koopman
operator. Hence, the resulting eigenvalue problems cannot be solved accurately anymore
for high-dimensional systems. A detailed understanding and numerical analysis of dif-
ferent basis functions might help mitigate this problem. Radial-basis functions or other
more locally defined functions could lead to better results.
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Abstract

Dynamic mode decomposition (DMD) is a recently developed tool for the analysis
of the behavior of complex dynamical systems. In this paper, we will propose an
extension of DMD that exploits low-rank tensor decompositions of potentially high-
dimensional data sets to compute the corresponding DMD modes and eigenvalues.
The goal is to reduce the computational complexity and also the amount of memory
required to store the data in order to mitigate the curse of dimensionality. The
efficiency of these tensor-based methods will be illustrated with the aid of several
different fluid dynamics problems such as the von Kármán vortex street and the
simulation of two merging vortices.

5.1 Introduction

Dynamic mode decomposition, which was first introduced in [163], is a powerful tool for
analyzing the behavior of complex dynamical systems and can, for instance, be used to
identify low-order dynamics [186]. Over the last years, several variants such as exact,
optimized, or sparsity-promoting DMD have been proposed [163, 186, 28, 87]. It was also
shown that DMD is closely related to the Koopman operator analysis. A generalization
of DMD called extended dynamic mode decomposition (EDMD) is presented in [195] and
has been developed for the approximation of the Koopman operator and its eigenvalues,
eigenfunctions, and eigenmodes. In the same way, DMD and EDMD can be used to
approximate the Perron–Frobenius operator – the adjoint of the Koopman operator – as
shown in [92].

The amount of data that can be analyzed using methods like DMD or EDMD is lim-
ited. Due to the so-called curse of dimensionality, analyzing high-dimensional problems
becomes infeasible. This can be mitigated by exploiting low-rank tensor approximation
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5 Tensor-based dynamic mode decomposition

approaches. Several tensor formats such as the canonical tensor format, the Tucker for-
mat, or the tensor-train format (TT-format) have been proposed. While the canonical
format would be optimal from a simplicity and efficiency point of view, it was shown
to be numerically unstable. This is due to the fact that the rank of canonical tensors
is not lower semi-continuous and approximation problems using canonical tensors might
become ill-posed [100]. The Tucker format, on the other hand, is numerically stable, the
size of the core tensor, however, grows exponentially in the number of dimensions [80].
Our method relies on the tensor-train decomposition [142], which can be regarded as a
multi-dimensional generalization of the conventional singular value decomposition (SVD)
and combines the advantages of the canonical and Tucker format.

The goal of this paper is to extend DMD to use tensors instead of vectors so that
low-rank approximations of the data can be utilized in order to reduce the computational
complexity and also the amount of memory required to store the data and the resulting
linear operators and their eigenfunctions, eigenvalues, and corresponding modes. To this
end, we will have to compute singular value decompositions and pseudoinverses of tensor
unfoldings. Recently, a method to compute an approximation of the pseudoinverse of
operators in tensor-train format, which relies on the solution of an optimization problem,
was proposed in [108]. The optimization problem is solved with the Modified Alternating
Linear Scheme (MALS) [80], breaking the problem into smaller subproblems which can
be solved with conventional methods. We will use a different approach here. Since the
pseudoinverse of a matrix can be computed based on a singular value decomposition, the
question now is whether the TT-representation of a tensor itself already contains infor-
mation about the pseudoinverse that can be exploited without necessitating the solution
of an optimization problem.

The outline of this paper is as follows: Chapter 5.2 briefly recapitulates the properties
of the pseudoinverse of a matrix and describes standard and exact DMD. Chapter 5.3
introduces tensors and different tensor representations, in particular the TT-format. Fur-
thermore, we will show how the pseudoinverse required for DMD can be obtained from a
given tensor decomposition of the data. Then we will present a reformulation of DMD us-
ing tensors instead of matrices and vectors. In Chapter 5.4, numerical results for different
fluid dynamics problems will be presented. Chapter 5.5 concludes with a brief summary,
open problems, and future work.

5.2 Dynamic mode decomposition

In this section, we will introduce DMD and show how the DMD modes and eigenvalues
can be computed efficiently using a reduced singular value decomposition of the data.
The goal is then to rewrite these methods in terms of tensors, exploiting low-rank decom-
positions of potentially high-dimensional data. These tensor decomposition techniques
will be introduced in Section 5.3.

DMD decomposes high-dimensional data into coupled spatial-temporal modes and can
be regarded as a combination of a principal component analysis (PCA) in the spatial
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domain and a Fourier analysis in the frequency domain [19]. The DMD modes often
correspond to coherent structures in the flow, the DMD eigenvalues can be interpreted
as growth rates and frequencies of the corresponding modes. Thus, it is often used to
analyze oscillatory behavior [186]. Originally applied to time series data, DMD has been
generalized to analyze pairs of n-dimensional data vectors xi and yi = F (xi), i = 1, . . . ,m,
written in matrix form as

X =
[
x1 x2 · · · xm

]
and Y =

[
y1 y2 · · · ym

]
. (5.1)

Here, F : Rn → Rn can be any (non-)linear dynamical system. Thus, for a given time
series {z0, z1, . . . , zm}, that is zi = F i(z0), we obtain

X =
[
z0 z1 · · · zm−1

]
and Y =

[
z1 z2 · · · zm

]
. (5.2)

Assuming there exists a linear operator A that describes the dynamics of the system such
that yi = Axi, define

A = Y X+, (5.3)

where + denotes the pseudoinverse. The matrix A then minimizes the cost function
‖AX − Y ‖F , where ‖·‖F denotes the Frobenius norm. The DMD modes and eigenvalues
are then defined to be the eigenvectors and eigenvalues of A. Using X+ = XT (XXT )+,
we obtain

A = (Y XT )(XXT )+. (5.4)

The difference is that now the pseudoinverse of an (n× n)-matrix needs to be computed
and not the pseudoinverse of an (n × m)-matrix, which is advantageous if n � m. In
our fluid dynamics examples, however, the dimension n of the problem is typically much
larger than the number of snapshots m.

5.2.1 Singular value decomposition and the pseudoinverse

Before we begin with the conventional formulation of the DMD algorithm, let us briefly
recapitulate the properties of the standard singular value decomposition and the standard
pseudoinverse of a matrix. These properties and definitions will be used and generalized
in Section 5.3 for the computation of singular value decompositions and pseudoinverses
of tensor unfoldings.

Let M ∈ Rn1×n2 be a matrix. It is well known that the pseudoinverse M+ ∈ Rn2×n1

can be computed by a (compact/reduced) singular value decomposition of M . Assume
that M = U ΣV T , where U ∈ Rn1×s, V ∈ Rn2×s, and Σ = diag(σ1, . . . , σs) ∈ Rs×s is a
diagonal matrix containing only the nonzero singular values. Then the pseudoinverse is
given by

M+ = V Σ−1 UT ,

where Σ−1 = diag(σ−1
1 , . . . , σ−1

s ). In what follows, we will assume that the singular
values are sorted in decreasing order, i.e. σ1 ≥ σ2 ≥ · · · ≥ σs > 0. Let us now recall
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the definition of the tensor product. For two vectors v ∈ Rn1 and w ∈ Rn2 , the tensor
product v ⊗ w ∈ Rn1×n2 is given by

(v ⊗ w)i,j = (v · wT )i,j = vi · wj . (5.5)

Example 5.2.1. For a rank-s matrix

M = U ΣV T =
s∑

i=1

σiuiv
T
i =

s∑

i=1

σiui ⊗ vi,

we would obtain

M+ = V Σ−1 UT =
s∑

i=1

1

σi
viu

T
i =

s∑

i=1

1

σi
vi ⊗ ui. 4

The example shows that in order to obtain the pseudoinverse we simply exchange the
roles of the left and right singular vectors and divide each tensor product vi ⊗ ui by the
corresponding singular value σi. These properties will be used later on to construct the
pseudoinverse of a tensor given in TT-format, which is based on successive singular value
decompositions.

5.2.2 Computation of DMD modes and eigenvalues

There are different algorithms to compute the DMD modes and eigenvalues without ex-
plicitly computing A which rely on a compact singular value decomposition of X. The
standard DMD version is shown in Algorithm 5.1.

Algorithm 5.1 Standard DMD algorithm.

1: Compute the compact SVD of X, given by X = U ΣV T with U ∈ Rn×s, V ∈ Rm×s,
and Σ ∈ Rs×s.

2: Define Ã = UTY V Σ−1.
3: Compute eigenvalues and eigenvectors of Ã, i.e. Ãw = λw.
4: The DMD mode corresponding to the eigenvalue λ is then defined as ϕ = Uw.

Algorithm 5.2 shows a variant called exact DMD. The modes computed by the standard
DMD algorithm are simply the modes computed by the exact DMD algorithm projected
onto the range of X. For a more detailed description, we refer to [186].

Algorithm 5.2 Exact DMD algorithm.

1: Execute steps 1 to 3 of Algorithm 5.1.
2: The DMD mode corresponding to the eigenvalue λ is then defined as ϕ = 1

λY V Σ−1w.

The matrix A defined in (5.3) and the matrix Ã given in Algorithm 5.1 share the
same eigenvalue spectrum. However, the DMD algorithm computes only the nonzero
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eigenvalues. If λ is an eigenvalue of A corresponding to the eigenvector ϕ, i.e. Aϕ = λϕ,
then it follows that Ãw = λw with w = UTϕ. Conversely, if we have Ãw = λw and
define ϕ = 1

λY V Σ−1w as in Algorithm 5.2, then Av = λv. A proof of this result can also
be found in [186]. In order to illustrate the idea behind DMD, let us analyze a simple
example.

Example 5.2.2. Consider the von Kármán vortex street. The system describes the
flow past a two-dimensional cylinder which – for a certain range of Reynolds numbers –
results in a repeating pattern of vortices. A similar example and more details about the
characteristic properties of the system can be found in [186]. Snapshots of the solution of
this partial differential equation at intermediate time steps are shown in Figure 5.1a. We
discretized the domain using a 60× 120 grid and generated 101 snapshots of the solution
at equidistant time points. The corresponding DMD modes are shown in Figure 5.1b. 4

a)

b)

Figure 5.1: a) Simulation of the von Kármán vortex street. b) DMD modes correspond-
ing to eigenvalues close to 1.

Note that for this example we reshaped each 60 × 120 snapshot matrix as a vector,
resulting in data matrices X,Y ∈ R7200×100. Our reformulation of DMD, on the other
hand, will directly operate on tensors X,Y ∈ R60×120×100.

5.3 Tensor-based dynamic mode decomposition

In this section, we will first introduce different tensor formats and then show how the
pseudoinverse of a tensor unfolding can be computed efficiently exploiting properties of
the TT-decomposition. Furthermore, we will rewrite DMD in terms of tensors. The aim is
to exploit low-rank tensor approximation methods to analyze high-dimensional dynamical
systems that could not be handled before due to the curse of dimensionality.
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5.3.1 The TT-format

Over the last years, different tensor formats such as the canonical format, the Tucker for-
mat, and the tensor-train format have been developed, see e.g. [7, 76, 77, 78]. A frequently
used format is the TT-format [142], also known as Matrix Product States (MPS) in the
physics literature [149, 165]. A tensor x ∈ Rn1×···×nd is decomposed into d component
tensors x(i) of at most order three, where the first and last component tensors of order
two are, for simplicity, often interpreted as tensors of order three with the additional
requirement that r0 = rd = 1. The entries of x are given by

xi1,...,id =

r0∑

k0=1

· · ·
rd∑

kd=1

x
(1)
k0,i1,k1

· x(2)
k1,i2,k2

· . . . · x(d−1)
kd−2,id−1,kd−1

· x(d)
kd−1,id,kd

= x
(1)
:,i1,:
· x(2)

:,i2,:
· . . . · x(d−1)

:,id−1,:
· x(d)

:,id,:
,

(5.6)

where the more compact second formulation uses Matlab’s colon notation. With the aid
of the tensor product (5.5), the whole tensor can then be represented as

x =

r0∑

k0=1

· · ·
rd∑

kd=1

x
(1)
k0,:,k1

⊗ x
(2)
k1,:,k2

⊗ · · · ⊗ x
(d−1)
kd−2,:,kd−1

⊗ x
(d)
kd−1,:,kd

. (5.7)

The vector r = [r0, . . . , rd] contains the ranks of the TT-tensor and determines the com-
plexity of the representation. The lower the ranks, the lower the memory consumption
and the computational costs. One of the main advantages of the TT-format, compared
to the canonical format, is its stability from an algorithmic point of view [36, 80].

For computational aspects, it is helpful to reshape tensors into matrices and vectors.
In order to describe matricizations and vectorizations – also called tensor unfoldings –,
we first define a bijection φN for the ordered set N = (n1, . . . , nd) by

φN : {1, . . . , n1} × . . .× {1, . . . , nd} → {1, . . . ,
d∏

µ=1

nµ},

(i1, . . . , id) 7→ φN (i1, . . . , id).

(5.8)

Using the little-endian convention, this bijection is defined as

φN (i1, . . . , id) = 1 + (i1− 1) + . . .+ (id− 1) ·n1 · . . . ·nd−1 = 1 +

d∑

µ=1

(iµ− 1)

µ−1∏

ν=1

nν . (5.9)

If the definition of N is clear from the context, we write φN (i1, . . . , id) = i1, . . . , id.

Definition 5.3.1. Let x ∈ Rn1×···×nd be a tensor. For the two ordered subsets N ′ =

(n1, . . . , nl) and N ′′ = (nl+1, . . . , nd) of N , 1 ≤ l ≤ d − 1, the matricization x

∣∣∣∣
N ′′

N ′
∈

R(n1·...·nl)×(nl+1·...·nd) of x with respect to N ′ and N ′′ is given by
(

x

∣∣∣∣
N ′′

N ′

)

φN′ (i1,...,il),φN′′ (il+1,...,id)

=

(
x

∣∣∣∣
N ′′

N ′

)

i1,...,il,il+1,...,id

= xi1,...,id . (5.10)
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Accordingly, the vectorization x

∣∣∣∣N ∈ Rn1·...·nd of a tensor x ∈ Rn1×...×nd is given by a

matricization of x with N ′ = N and N ′′ = ∅, i.e.
(

x

∣∣∣∣N

)

φN (i1,...,id)

=

(
x

∣∣∣∣N

)

i1,...,id

= xi1,...,id . (5.11)

Remark 5.3.2. Note that here and in what follows vectors x
(µ)
kµ−1,:,kµ

as well as vector-

izations x

∣∣∣∣N of tensors are regarded as column vectors.

If a tensor x is given in full format, i.e. x is indeed a d-dimensional array, Algorithm 5.3
can be used to compute an exact (ε = 0) or an approximated (ε > 0) TT-decomposition
of x, respectively. For more details, see [142]. Here, Uµ and Vµ denote the matrices
containing the first rµ singular vectors and Σµ denotes the diagonal matrix comprising
the first rµ singular values.

Algorithm 5.3 Convert a tensor given in full format into the TT-format.

1: Given a tensor x ∈ Rn1×···×nd in full format and a threshold ε.
2: for µ = 1, ..., d− 1 do

3: M = x

∣∣∣∣
nµ+1,...,nd

rµ−1,nµ
.

4: Compute SVD of M , i.e. M = UµΣµV
T
µ with Σµ ∈ Rs×s.

5: Set rµ ≤ s to the largest index such that (Σµ)i,i > ε for i ≤ rµ.
6: Discard rows and columns of Uµ, Σµ, and Vµ corresponding to singular values

smaller than or equal to ε.

7: Set y(µ) ∈ Rrµ−1×nµ×rµ to a reshaped version of Uµ with y
(µ)
kµ−1,iµ,kµ

=

(Uµ)kµ−1,iµ,kµ
.

8: Define remainder x = Σµ V
T
µ ∈ Rrµ×nµ+1·...·nd .

9: end for
10: Set d-th core to y

(d)
:,:,1 = x.

11: The tensor y with cores y(1), . . . ,y(d) and ranks r0, . . . , rd is then an approximation
of the initial tensor x.

Orthonormality of tensor trains plays an important role, in particular when we want
to compute pseudoinverses of a tensor given in TT-format.

Definition 5.3.3. A TT-core x(µ) ∈ Rrµ−1×nµ×rµ is called left-orthonormal if
(

x(µ)

∣∣∣∣
rµ

rµ−1,nµ

)T
·
(

x(µ)

∣∣∣∣
rµ

rµ−1,nµ

)
= I ∈ Rrµ×rµ . (5.12)

Correspondingly, x(µ) is called right-orthonormal if
(

x(µ)

∣∣∣∣
nµ,rµ

rµ−1

)
·
(

x(µ)

∣∣∣∣
nµ,rµ

rµ−1

)T
= I ∈ Rrµ−1×rµ−1 . (5.13)
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Naturally, the first d − 1 TT-cores of y as constructed in Algorithm 5.3 are left-
orthonormal while the last core is right-orthogonal, but not right-orthonormal, see the
following Lemma.

Lemma 5.3.4. Due to the construction of the TT-representation of a tensor as described
in Algorithm 5.3, it holds that:

1. y(µ)

∣∣∣∣
rµ

rµ−1,nµ
is left-orthonormal for µ = 1, . . . , d− 1.

2.

(
y(d)

∣∣∣∣
nd,rd

rd−1

)
·
(

y(d)

∣∣∣∣
nd,rd

rd−1

)T
= Σ2

d−1, where Σd−1 is part of the last SVD in Algo-

rithm 5.3.

Proof. The properties are a result of the fact that the cores y(µ), µ = 1, . . . , d − 1, are
reshaped versions of matrices Uµ with UTµ ·Uµ = I and y(d) = Σd−1 V

T
d−1 with V T

d−1 ·Vd−1 =
I.

In general, we do, however, not want to compute the tensor in full format and then
convert it to the TT-format. All the numerical computations should ideally be directly
carried out in the TT-format. This could, for instance, mean solving systems of equations,
eigenvalue problems, ordinary or partial differential equations, or completion problems
using the TT-format, see e.g. [1, 49, 73, 48, 154]. In this way, we automatically compute
a low-rank approximation of the solution without necessitating the conversion to the
TT-format. The aim is now to exploit properties of the TT-decomposition in order to
efficiently compute DMD modes and eigenvalues. For this purpose, we will need the
following auxiliary results:

Lemma 5.3.5. The tensor product satisfies

((
x(1) ⊗ . . .⊗ x(d)

) ∣∣∣∣n1,...,nd

)T
·
((

y(1) ⊗ . . .⊗ y(d)
) ∣∣∣∣n1,...,nd

)
=

d∏

µ=1

(
x(µ)

)T
· y(µ)

and

∥∥∥∥
(
x(1) ⊗ . . .⊗ x(d)

) ∣∣∣∣n1,...,nd

∥∥∥∥
2

=

d∏

µ=1

∥∥∥x(µ)
∥∥∥

2
.

Proof. The first equation follows from

((
x(1) ⊗ . . .⊗ x(d)

) ∣∣∣∣n1,...,nd

)T
·
((

y(1) ⊗ . . .⊗ y(d)
) ∣∣∣∣n1,...,nd

)

=

n1∑

i1=1

· · ·
nd∑

id=1

x
(1)
i1
· . . . · x(d)

id
· y(1)

i1
· . . . · y(d)

id
=

d∏

µ=1

(
x(µ)

)T
· y(µ),

the second is simply a special case of the first.
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5.3 Tensor-based dynamic mode decomposition

5.3.2 Singular value decomposition and the pseudoinverse in TT-format

Before we consider TT-tensors with arbitrary ranks, let us illustrate the basic idea with
a simple example.

Example 5.3.6. Assume that we have a rank-one tensor of the form x = x(1) ⊗ x(2) ⊗
x(3) ⊗ x(4) ∈ Rn1×n2×n3×n4 , with x(i) ∈ Rni , and we want to compute the pseudoinverse
of the matricization with respect to the dimensions (1, 2) and (3, 4), given by

M =
(
x(1) ⊗ x(2)

) ∣∣∣∣n1,n2

⊗
(
x(3) ⊗ x(4)

) ∣∣∣∣n3,n4

∈ R(n1·n2)×(n3·n4).

Then

M+ =
1

σ2

(
x(3) ⊗ x(4)

) ∣∣∣∣n3,n4

⊗
(
x(1) ⊗ x(2)

) ∣∣∣∣n1,n2

∈ R(n3·n4)×(n1·n2),

with σ =
∏4
i=1

∥∥x(i)
∥∥

2
. This can be seen by writing

M =
(
x(1) ⊗ x(2)

) ∣∣∣∣n1,n2︸ ︷︷ ︸
ũ

⊗
(
x(3) ⊗ x(4)

) ∣∣∣∣n3,n4︸ ︷︷ ︸
ṽ

= ũ⊗ ṽ = σ

(
1

‖ũ‖ ũ
)

︸ ︷︷ ︸
u

⊗
(

1

‖ṽ‖ ṽ
)

︸ ︷︷ ︸
v

and thus

M+ =
1

σ
v ⊗ u =

1

σ2
ṽ ⊗ ũ.

The formula for σ follows from Lemma 5.3.5. With a slight abuse of notation, we will
write

x+ =
1

σ2
x(3) ⊗ x(4) ⊗ x(1) ⊗ x(2).

That is, the pseudoinverse can in this case simply be obtained by reordering the cores
of the rank-1 tensor and by normalizing the tensor product. Note that if the tensor
was obtained by the TT-decomposition, then the vectors x(1), x(2), and x(3) are already

normalized and we have to divide only by
∥∥x(4)

∥∥2
. A graphical representation of this

process is shown in Figure 5.2, where we use a similar diagrammatic notation as in [80].
4

n2 n3

1

x

n1

1 1 1

n4 n2n3

1 1

x+

n1

1

n4

σ σ−1

︸ ︷︷ ︸
u

1

︸ ︷︷ ︸
v

1
1

︸ ︷︷ ︸
v

︸ ︷︷ ︸
u

Figure 5.2: Pseudoinverse of a rank-1 tensor with respect to the dimensions (1, 2) and
(3, 4). The first two and the last two cores are swapped and the tensor is divided by σ.
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Note that the pseudoinverse depends on the matricization of the tensor x. For a different
matricization, for instance with respect to the dimensions (1, 2, 3) and (4), we would also
obtain a different pseudoinverse x+. We now want to generalize this approach to compute
pseudoinverses of arbitrary tensors x in TT-format for a given matricization. It turns out
that also for tensors with a higher-rank coupling the pseudoinverse can be obtained by
reordering the cores after some preprocessing steps. These include the left- and right-
orthonormalization, respectively, of the given TT-cores.

Algorithm 5.4 Left-orthonormalize TT-cores x(1), . . . ,x(l).

1: Given tensor x and core number l, 1 ≤ l ≤ d− 1.
2: for µ = 1, . . . , l do

3: Compute QR factorization of x(µ)

∣∣∣∣
rµ

rµ−1,nµ
, i.e. x(µ)

∣∣∣∣
rµ

rµ−1,nµ
= Q · R with Q ∈

Rrµ−1·nµ×s and QT ·Q = I.
4: Define y ∈ Rrµ−1×nµ×s as a reshaped version of Q with yi,j,k = Qi,j,k.

5: Define z ∈ Rs×nµ+1×rµ+1 by z

∣∣∣∣
nµ+1,rµ+1

s
= R · x(µ+1)

∣∣∣∣
nµ+1,rµ+1

rµ
.

6: Set x(µ) to y, x(µ+1) to z and rµ to s.
7: end for

Algorithm 5.5 Right-orthonormalize TT-cores x(l), . . . ,x(d).

1: Given tensor x and core number l, 2 ≤ l ≤ d.
2: for µ = d, . . . , l do

3: Compute QR factorization of

(
x(µ)

∣∣∣∣
nµ,rµ

rµ−1

)T
, i.e. x(µ)

∣∣∣∣
nµ,rµ

rµ−1

= RT ·QT with QT ∈

Rs×nµ·rµ and QT ·Q = I.
4: Define y ∈ Rs×nµ×rµ as a reshaped version of QT with yi,j,k = QT

i,j,k
.

5: Define z ∈ Rrµ−2×nµ−1×s by z

∣∣∣∣
s

rµ−2,nµ−1

= x(µ−1)

∣∣∣∣
rµ−1

rµ−2,nµ−1

·RT .

6: Set x(µ) to y, x(µ−1) to z and rµ−1 to s.
7: end for

Algorithm 5.4 shows the left-orthonormalization process. Similarly, the procedure for
the right-orthonormalization is shown in Algorithm 5.5. If we apply the Algorithms 5.4
or 5.5 to a tensor x, then the tensor itself remains the same, the algorithms simply
compute a different but equivalent representation. It would also be possible to adapt both
algorithms to use SVDs instead of QR factorizations. In this way, similar to Algorithm 5.3,
it is possible to truncate the TT-cores during the orthonormalizations.

With the aid of the orthonormalization algorithms, we are now able to compute pseu-
doinverses of arbitrary tensor unfoldings. The idea is to left-orthonormalize all cores
x(1), . . . ,x(l) and right-orthonormalize all cores x(l+1), . . . ,x(d) in order to determine
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the pseudoinverse of a matricization of a tensor train x with respect to the dimensions
(1, . . . , l) and (l+ 1, . . . , d). At the same time, we keep the matrix containing the singular
values corresponding to an SVD applied to the core x(l) intact and regard it as a diag-
onal matrix between two vectorizations. In this way, we can construct a singular value
decomposition of the whole tensor.

The procedure for computing the pseudoinverse is described in Algorithm 5.6 and the
steps of the algorithm are also illustrated in Figure 5.3. Again, we make use of the
same diagrammatic notation as in [80]. Each TT-core is depicted by a circle with 3
arms indicating the set of free indices and tensor coupling, i.e. index contractions, are
represented by joining corresponding arms. In order to visualize orthonormal tensor cores
we draw half filled circles.

Algorithm 5.6 Compute the pseudoinverse of a matricization of a TT-tensor x.

1: Given a tensor x in TT-format and core number 1 ≤ l ≤ d−1, compute pseudoinverse

of x

∣∣∣∣
nl+1,...,nd

n1,...,nl
.

2: Left-orthonormalize x(1), . . . ,x(l−1) and right-orthonormalize x(d), . . . ,x(l+1) using Al-
gorithms 5.4 and 5.5.

3: Compute SVD of x(l)

∣∣∣∣
rl

rl−1,nl
, i.e. x(l)

∣∣∣∣
rl

rl−1,nl
= UΣV T with Σ ∈ Rs×s.

4: Define y ∈ Rrl−1×nl×s as a reshaped version of U with yi,j,k = Ui,j,k.

5: Define z ∈ Rs×nl+1×rl+1 by z

∣∣∣∣
nl+1,rl+1

s
= V T · x(l+1)

∣∣∣∣
nl+1,rl+1

rl
.

6: Set x(l) to y, x(l+1) to z and rl to s.

7: Define M =
(∑r0

k0=1 · · ·
∑rl−1

kl−1=1 x
(1)
k0,:,k1

⊗ . . .⊗ x
(l)
kl−1,:,:

) ∣∣∣∣
rl

n1,...,nl
.

8: Define N =
(∑rl+1

kl+1=1 · · ·
∑rd

kd=1 x
(l+1)
:,:,kl+1

⊗ . . .⊗ x
(d)
kd−1,:,kd

) ∣∣∣∣
nl+1,...,nd

rl
.

9: Then x

∣∣∣∣
nl+1,...,nd

n1,...,nl
= M ΣN and

(
x

∣∣∣∣
nl+1,...,nd

n1,...,nl

)+

= NT Σ−1MT .

Proposition 5.3.7. Given a tensor x and core number 1 ≤ l ≤ d − 1, Algorithm 5.6
computes the pseudoinverse with respect to the dimensions (1, . . . , l) and (l + 1, . . . , d).

Proof. Since the left- and right-orthonormalization as well as the application of the SVD
in line three of Algorithm 5.6 do not change the tensor x itself, we can express the
matricization of x with respect to the dimensions (1, . . . , l) and (l + 1, . . . , d) as

x

∣∣∣∣
nl+1,...,nd

n1,...,nl
= M ΣN,

with M , Σ, and N as given in Algorithm 5.6. Now, we only have to show that MT ·M =
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n2 ns ns+1 nd−1

r1 r2 rs rs+1

x

n1

1
. . .

rs−1 rd−1 1

nd

. . .

n2 ns ns+1 nd−1

r1 r2
rs rs+1

x

n1

1
. . .

rs−1 rd−1 1

nd

. . .

n2 nsns+1 nd−1

r1 r2rs+1

x+

n1

rs
. . .

rs−1rd−1rs

nd

. . .

Σ

Σ−1

a)

b)

c)

︸ ︷︷ ︸
M

︸ ︷︷ ︸
N

︸ ︷︷ ︸
NT

︸ ︷︷ ︸
MT

1

Figure 5.3: Illustration of the procedure to compute the pseudoinverse of a tensor in
TT-format. a) Initial tensor x. b) Left- and right-orthonormalization of the tensor cores.
c) Representation of the pseudoinverse x+.

N ·NT = I ∈ Rrl×rl . We obtain

MT ·M =






r0∑

k0=1

· · ·
rl−1∑

kl−1=1

x
(1)
k0,:,k1

⊗ . . .⊗ x
(l)
kl−1,:,:



∣∣∣∣
rl

n1,...,nl



T

·




r0∑

k′0=1

· · ·
rl−1∑

k′l−1=1

x
(1)
k′0,:,k

′
1
⊗ . . .⊗ x

(l)
k′l−1,:,:



∣∣∣∣
rl

n1,...,nl
.

Considering an entry of MT ·M and using Lemma 5.3.5, we then get

(
MT ·M

)
i,j

=






r0∑

k0=1

· · ·
rl−1∑

kl−1=1

x
(1)
k0,:,k1

⊗ . . .⊗ x
(l)
kl−1,:,i



∣∣∣∣n1,...,nl



T

·




r0∑

k′0=1

· · ·
rl−1∑

k′l−1=1

x
(1)
k′0,:,k

′
1
⊗ . . .⊗ x

(l)
k′l−1,:,j



∣∣∣∣n1,...,nl

=

r0∑

k0=1

· · ·
rl−1∑

kl−1=1

r0∑

k′0=1

· · ·
rl−1∑

k′l−1=1

l∏

µ=1

(
x

(µ)
kµ−1,:,kµ

)T
· x(µ)

k′µ−1,:,k
′
µ
,

with kl = i and k′l = j. Since x(1) is left-orthonormal and r0 = 1, we obtain
(
x

(1)
1,:,k1

)T
·

x
(1)
1,:,k′1

= δk1,k′1 . This implies that
(
MT ·M

)
i,j

is only nonzero if k1 = k′1. Now, we include
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the next core. This yields
r1∑

k1=1

r1∑

k′1=1

δk1,k′1 ·
(
x

(2)
k1,:,k2

)T
· x(2)

k′1,:,k
′
2

=

r1∑

k1=1

(
x

(2)
k1,:,k2

)T
· x(2)

k1,:,k′2
=

(
x

(2)
:,:,k2

∣∣∣∣r1,n1

)T
· x(2)

:,:,k′2

∣∣∣∣r1,n1

= δk2,k′2

since x(2) is also left-orthonormal. Successively, it follows that, in order for
(
MT ·M

)
i,j

to be nonzero, it must hold that kµ = k′µ for µ = 2, . . . , l − 1. Thus, we obtain

(
MT ·M

)
i,j

=

rl−1∑

kl−1=1

(
x

(l)
kl−1,:,i

)T
· x(l)

kl−1,:,j
=

(
x

(l)
:,:,i

∣∣∣∣rl−1,nl

)T
· x(l)

:,:,j

∣∣∣∣rl−1,nl
.

Note that due to the construction (see lines 3 & 4 of Algorithm 5.6) x(l) is also left-
orthonormal and therefore

MT ·M = I ∈ Rrl×rl .
Analogously, using the right-orthonormality of x(l+1), . . . ,x(d), it can then be shown that
N · NT = I. It follows that the pseudoinverse calculated by Algorithm 5.6 satisfies the
necessary conditions, e.g.

x

∣∣∣∣
nl+1,...,nd

n1,...,nl
·
(

x

∣∣∣∣
nl+1,...,nd

n1,...,nl

)+

· x
∣∣∣∣
nl+1,...,nd

n1,...,nl

= M ΣN ·NT Σ−1MT ·M ΣN = M ΣN = x

∣∣∣∣
nl+1,...,nd

n1,...,nl
.

Remark 5.3.8. Algorithm 5.6 depicts just one possible way to compute the pseudoin-
verse of a given tensor. If the cores of the tensor train x are already left- or right-
orthonormal, respectively, e.g. the decomposition of x was computed by Algorithm 5.3,
we can adapt Algorithm 5.6. For instance, if all TT-cores (except the last one) are already
left-orthonormal, we skip the application of Algorithm 5.4 and only right-orthonormalize
the cores x(d), . . . ,x(l+2). Then the SVD can be applied to a matricization of x(l+1) such
that the matrix V T represents the updated version of x(l+1) and U is multiplied to the
core x(l) from the right.

Note that we do not need to compute M and N explicitly. Instead, we only execute
the lines 1 to 6 of Algorithm 5.6 and then store the modified cores and the matrix Σ
containing the singular values. Thus, again with a slight abuse of the notation, we only
store

x+ =

rl∑

kl=1

σ−1
kl
·




rl+1∑

kl+1=1

· · ·
rd−1∑

kd−1=1

x
(l+1)
kl,:,kl+1

⊗ . . .⊗ x
(d)
kd−1,:,1




·




r1∑

k1=1

· · ·
rl−1∑

kl−1=1

x
(1)
1,:,k1

⊗ . . .⊗ x
(l)
kl−1,:,kl


 ,
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which can be either regarded as the sum of rl tensor trains scaled by σ−1
1 , . . . , σ−1

rl
or as

a cyclic tensor train as depicted in Figure 5.3. For a detailed description of the cyclic
TT-format – also called cyclic matrix product states – we refer to [77]. Note that here
again the cores 1, . . . , l and l + 1, . . . , d are simply swapped as in Example 5.3.6.

5.3.3 Computation of DMD modes and eigenvalues in TT-format

Let us now assume that the m snapshots are d-dimensional arrays – given for example by
low-rank tensor representations – of the form

xi,yi ∈ Rn1×···×nd , (5.14)

where yi = F (xi). These snapshots can be stored in the (d+ 1)-dimensional tensor trains
X,Y ∈ Rn1×···×nd×m, such that

X:,...,:,i = xi and Y:,...,:,i = yi, (5.15)

for i = 1, . . . ,m. Let r0, . . . , rd+1 be the TT-ranks of X and s0, . . . , sd+1 the TT-ranks
of Y. Now, let X,Y ∈ Rn1·...·nd×m be the specific matricizations of X and Y, where we
contract the dimensions n1, . . . , nd such that every column of X and Y , respectively, is
the vectorization of the corresponding snapshot. We assume again that there is a linear
relationship between the pairs of data vectors, i.e.

Y = AX, (5.16)

with A ∈ Rn1·...·nd×n1·...·nd . We already stated in (5.3) that the linear operator A can be
computed by Y · X+. The pseudoinverse X+ can be expressed – after applying Algo-
rithm 5.6 – as

X+ =

(
X

∣∣∣∣
m

n1,...,nd

)+

= NT Σ−1MT . (5.17)

Using similar matricizations, we can also represent the tensor unfolding Y as a matrix
product, i.e.

Y = Y

∣∣∣∣
m

n1,...,nd

=




s0∑

l0=1

· · ·
sd−1∑

ld−1=1

Y
(1)
l0,:,l1

⊗ . . .⊗Y
(d)
ld−1,:,:



∣∣∣∣
sd

n1,...,nd
·Y(d+1)

∣∣∣∣
m

sd
= P Q.

(5.18)

Note that we do not require any special properties of the tensor cores of Y. Left- and right-
orthonormality must only hold for the TT-cores of X. Combining the representations of
X+ and Y , we can express the matrix A as

A = Y ·X+ = P Q ·NT Σ−1MT . (5.19)
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5.3 Tensor-based dynamic mode decomposition

As explained in Section 5.2, there are different algorithms to compute the eigenvalues and
eigenvectors of A. Instead of computing A explicitly, we are interested in the reduced
matrix Ã ∈ Rrd×rd as mentioned in Algorithm 5.1. Rewriting the expression for Ã using
the decompositions given in (5.17) and (5.18), this results in

Ã = MT · P Q ·NT Σ−1. (5.20)

In order to compute Ã, we do not have to compute the matrices MT and P explicitly.
We bypass this computational cost by splitting (5.20) into different parts. First, consider
MT · P , any entry is given by

(
MT · P

)
i,j

=






r0∑

k0=1

· · ·
rd−1∑

kd−1=1

X
(1)
k0,:,k1

⊗ . . .⊗X
(d)
kd−1,:,i



∣∣∣∣n1,...,nd



T

·




s0∑

l0=1

· · ·
sd−1∑

ld−1=1

Y
(1)
l0,:,l1

⊗ . . .⊗Y
(d)
ld−1,:,j



∣∣∣∣n1,...,nd

.

It follows from the linearity of matricizations and Lemma 5.3.5 that

(
MT · P

)
i,j

=

r0∑

k0=1

· · ·
rd−1∑

kd−1=1

s0∑

l0=1

· · ·
sd−1∑

ld−1=1

(
X

(1)
k0,:,k1

)T
Y

(1)
l0,:,l1

· . . . ·
(
X

(d)
kd−1,:,i

)T
Y

(d)
ld−1,:,j

.

Thus, by defining the matrices Θµ ∈ Rrµ−1·sµ−1×rµ·sµ as

(Θµ)kµ−1,lµ−1,kµ,lµ
=
(
X

(µ)
kµ−1,:,kµ

)T
·Y(µ)

lµ−1,:,lµ
, (5.21)

for µ = 1, . . . , d, we can write any entry of MT · P as

(
MT · P

)T
i,j

= Θ1 ·Θ2 · . . . ·Θd−1 · (Θd):,i,j . (5.22)

In this way, we can compute MT · P without leaving the TT-format, we only have to
reshape certain contractions of the TT-cores as depicted in (5.21) and (5.22). This com-
putation can be implemented efficiently using Algorithm 4 from [142]. The result is then
a low-dimensional matrix with rd rows and sd columns, assuming that the TT-ranks of
X and Y are small compared to the whole state space of these tensors. Indeed, the
tensor ranks rd and sd are both bounded by the number of snapshots m due to the right-
orthonormalization of the last TT-cores. For the second term of (5.20), Q ·NT , we simply
obtain

Q ·NT = Y(d+1)

∣∣∣∣
m

sd
·
(

X(d+1)

∣∣∣∣
m

rd

)T
.

Subsequently, we only have to multiply the three low-dimensional matrices
(
MT · P

)
,(

Q ·NT
)

and Σ−1. The latter is just a diagonal matrix containing the reciprocals of the
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5 Tensor-based dynamic mode decomposition

singular values occurring in Σ. Overall, we do not need to convert any tensor products
of cores of X or Y, respectively, into full tensors during our calculations. The results
are naturally low-dimensional matrices and the reduced matrix Ã can finally be used
to compute the eigenvalues of the high-dimensional matrix A since both have the same
spectrum.

In order to compute the corresponding DMD modes of A, consider again Algorithm 5.1
and Algorithm 5.2. If λ1, . . . , λν are the eigenvalues of Ã corresponding to the eigenvectors
w1, . . . , wν ∈ Rrd , then the DMD modes ϕ1, . . . , ϕν ∈ Rn1·...·nd of A according to the
standard algorithm are given by

ϕµ = M · wµ, (5.23)

for µ = 1, . . . , ν. At this point, we again benefit from using the TT-representations of
M . What (5.23) tells us is actually just the replacement of the last TT-core. This can be
seen by defining W ∈ Rrd×ν as

W =
[
w1 w2 · · · wν

]
(5.24)

and writing

M ·W =




r0∑

k0=1

· · ·
rd−1∑

kd−1=1

X
(1)
k0,:,k1

⊗ . . .⊗X
(d)
kd−1,:,:



∣∣∣∣
rd

n1,...,nd
·W. (5.25)

As a result, we can also express the DMD modes in a TT-representation, i.e.

Φ =

r0∑

k0=1

· · ·
rd∑

kd=1

X
(1)
k0,:,k1

⊗ . . .⊗X
(d)
kd−1,:,kd

⊗Wkd,:, (5.26)

with Φ:,...,:,µ

∣∣∣∣n1,...,nd
= ϕµ for µ = 1, . . . , ν. Considering the exact DMD algorithm, the

DMD modes are given by

ϕµ =
1

λ
· P Q ·NT Σ−1 · wµ, (5.27)

for µ = 1, . . . , ν. The tensor train Φ representing all DMD modes is then given by

Φ =

s0∑

k0=1

· · ·
sd∑

kd=1

Y
(1)
k0,:,k1

⊗ . . .⊗Y
(d)
kd−1,:,kd

⊗
(
Q ·NT Σ−1 ·W · Λ−1

)
︸ ︷︷ ︸

∈Rsd×ν
kd,:
, (5.28)

again with Φ:,...,:,µ

∣∣∣∣n1,...,nd
= ϕµ for µ = 1, . . . , ν and

Λ =



λ1 0

. . .

0 λν


 . (5.29)
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Summing up, we can express the DMD modes using a previously given tensor train,
modifying just the last core. For the standard DMD algorithm, we can express Φ using
the first d cores of X and replacing the core X(d+1) byW . As for the exact DMD algorithm,
Φ is represented by the first d cores of Y, replacing Y(d+1) by QNT Σ−1W Λ−1. In both
cases, we benefit from not leaving the TT-representations of X and Y, respectively.

5.4 Numerical results

The following examples are mainly for illustration purposes, we will not describe the un-
derlying mathematical models in full detail since the governing equations are not relevant
here. Instead of analyzing simulation data, we could also process experimental measure-
ment data. The goal is to detect the dominant dynamics of a dynamical system given
only data. The first example, a simulation of two merging vortices, is two-dimensional
and has been created with the Multimod toolbox [158]. The second example is a three-
dimensional simulation of the flow around a blunt body governed by the incompressible
Navier–Stokes equations and has a significantly higher number of degrees of freedom.

The DMD experiments using the TT-format were performed on a Linux machine with
128 GB RAM and an Intel Xeon processor with a clock speed of 3 GHz and 8 cores. The
algorithms were implemented in MATLAB R2015a using a compound of cell arrays and
multidimensional matrices for tensors in the TT-format.

Two merging vortices. The first example shows two merging vortices. Here, the do-
main is discretized using an n × n grid with n = 200, 400, . . . , 1400. We generated data
for 447 equidistant time steps, thus X,Y ∈ Rn×n×446. Intermediate solutions are shown
in Figure 5.4a, the corresponding DMD modes in Figure 5.4b. We computed tensor rep-
resentations of X and Y using Algorithm 5.3 in order to compare the results for different
thresholds ε ≥ 0. Nevertheless, we assume that the data matrices X,Y are already given
in the TT-format for the tensor-based formulation (the runtimes of Algorithm 5.3 are
thus not included in the overall runtimes), i.e. the partial differential equation is directly
solved using tensor representations. For example, that could mean that the numerical
solution of the partial differential equation is obtained by applying an appropriate time-
stepping scheme combined with the Alternating Linear Scheme (ALS) [80]. In this case,
we can execute the half-sweeps of the ALS in a way that the resulting tensor is already
left-orthonormal. Thus, all relevant calculations to compute the DMD modes are included
in the runtimes presented in Figure 5.5. We compare the exact DMD implementations,
i.e. Algorithm 5.2 and its tensor-based counterpart.

The DMD modes shown in Figure 5.4b are visually indistinguishable for the different
thresholds ε and the resulting tensor ranks. The influence of the low-rank approximation
on the numerical errors is shown in Table 5.1, which contains the relative errors defined
by eλ = |λ − λ̃|/ |λ| and eϕ = ‖ϕ− ϕ̃‖F / ‖ϕ‖F , where λ and ϕ are the DMD eigenvalue
and mode for ε = 0 and λ̃ and ϕ̃ the corresponding approximations for a given ε > 0.
Here, we normalized each mode in such a way that the largest absolute value is 1. For
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5 Tensor-based dynamic mode decomposition

a)

b)

Figure 5.4: a) Simulation of two merging vortices. b) DMD modes corresponding to
eigenvalues close to 1.

n = 1400, the speedup is approximately 7 for ε = 0 and 16 for ε = 1e−10. The ranks of the
corresponding tensor trains X are r = [1, 1400, 446, 1] and r = [1, 732, 446, 1], respectively.
That is, approximately half of the singular values between the first and second core are
less than ε = 1e−10. This illustrates that a given tensor representation of the data can
be exploited to efficiently compute the DMD modes and eigenvalues without converting
the data set to the full format since the tensor-train format already contains information
about the required pseudoinverse. Furthermore, the results show that the lower the rank
of the tensor approximation – which depends on the parameter ε – the higher the speedup.

Flow around blunt body. As a second example, we consider the flow around a blunt
body governed by the three-dimensional incompressible Navier-Stokes equations. Simi-
lar experiments have been described in [159]. Here, the domain Ω ⊂ R3 has a size of
L = (25, 15, 10). A conical object is placed inside the domain with the center axis at
(x1, x2) = (5, 7.5) and a diameter of D1 = 0.8 at the boundaries and D2 = 1.6 in the
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5.4 Numerical results

Figure 5.5: Comparison of the runtimes of DMD and tensor-based DMD applied to the
vortex merging example for different values of ε and different problem sizes.

Table 5.1: Influence of the truncation on the accuracy of the leading DMD modes for
the 1400× 1400 grid discretization of the vortex merging example. The entries show the
relative errors eλ and eϕ for different values of ε.

Mode 1 Mode 2 Mode 3 Mode 4
eλ eϕ eλ eϕ eλ eϕ eλ eϕ

ε = 1e−10 5.55e−15 5.92e−14 5.31e−15 3.32e−13 9.75e−15 3.50e−13 1.37e−14 3.28e−13
ε = 1e−05 1.47e−14 2.23e−10 5.09e−15 4.27e−10 4.93e−15 9.73e−10 1.39e−14 7.77e−10
ε = 1 6.10e−08 5.22e−04 2.90e−06 3.16e−03 3.02e−06 2.62e−03 4.00e−06 7.86e−04

middle of the channel (cf. Figure 5.6). We set the Reynolds number Re = UD/ν = 240,
based on the inflow velocity U = (1, 0, 0), the kinematic viscosity ν = 5 ·10−3, and the av-
erage cone diameter D = 1.2. Moreover, we apply periodic boundary conditions in the x2

as well as the x3 direction. The domain is discretized by a rectangular grid with approx-
imately 106 degrees of freedom and the computations are performed using OpenFOAM
[86]. Before applying the tensor-based DMD algorithm, 1001 snapshots are interpolated
on an equidistant, rectangular grid of dimension 150 × 85 × 80, where the values for all
grid points inside the object are set to zero.

For the DMD analysis, we consider the velocity magnitude U =
√
U2

1 + U2
2 + U2

3 ,
thus X,Y ∈ R150×85×80×1000. The resulting ranks, runtimes, and relative errors for
different values of ε are shown in Table 5.2. By increasing ε, the initially high ranks can be
reduced without a huge loss of accuracy. Here, we compared only the first two eigenmodes
shown in Figure 5.7 with the DMD modes for ε = 0. The runtime of conventional DMD
for this problem is approximately 125 s. The results show that the efficiency of DMD
can be improved significantly using tensor decompositions, provided that the ranks are
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5 Tensor-based dynamic mode decomposition

Table 5.2: Influence of the truncation on the ranks, runtimes, and accuracy of the leading
DMD modes for the blunt body problem.

Ranks Runtime Mode 1 Mode 2
eλ eϕ eλ eϕ

ε = 0 [1, 150, 6083, 1000, 1] 134 s 0 0 0 0
ε = 0.01 [1, 150, 4708, 1000, 1] 102 s 6.29e−07 6.33e−04 1.53e−07 2.88e−04
ε = 0.05 [1, 150, 3649, 641, 1] 52 s 1.11e−04 3.64e−02 3.05e−05 2.37e−02
ε = 0.1 [1, 148, 3003, 527, 1] 35 s 1.38e−04 6.92e−02 1.26e−04 3.65e−02
ε = 0.5 [1, 135, 1624, 343, 1] 14 s 2.62e−04 8.69e−02 9.61e−05 5.55e−02
ε = 1 [1, 130, 1199, 278, 1] 8 s 4.34e−04 1.72e−01 1.80e−04 1.06e−01

reasonably low. The aim is thus to directly compute low-rank solutions for such problems.

Figure 5.6: Simulation of the flow around a blunt body. The flow is visualized by stream-
lines which are inserted at the inflow and slightly above and below the cone axis, respec-
tively. The streamlines are colored according to the velocity magnitude.

Figure 5.6 shows streamlines of the velocity field at different time steps. Similar to the
two-dimensional von Kármán vortex street (Figure 5.1), vortices separate alternatingly
from the lower and the upper side of the blunt body. However, due to the conical shape of
the object, the flow pattern is much more complex than in the two-dimensional case. In
this case, storing the full matrix A would require more than 7.5 TB. The corresponding
DMD modes, sorted by their respective frequency, are depicted in Figure 5.7, where
we visualize the flow patterns by iso-surfaces of the velocity magnitude. In accordance
with [159], we calculate the frequency of the modes by ω = =(log(λ))/∆t, where ∆t is
the time step between the snapshots. We observe that larger structures correspond to
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5.4 Numerical results

a) λ = 0.998 + 0.049i; ω = 0.4906 b) λ = 0.997 + 0.075i; ω = 0.7508

c) λ = 0.992 + 0.117i; ω = 1.1740 d) λ = 0.992 + 0.123i; ω = 1.2336

e) λ = 0.991 + 0.131i; ω = 1.3143 f) λ = 0.979 + 0.197i; ω = 1.9857

g) λ = 0.969 + 0.244i; ω = 2.4668 h) λ = 0.929 + 0.369i; ω = 3.7809

Figure 5.7: DMD modes for the flow around a cone corresponding to eigenvalues close
to 1. The modes are visualized by iso-surfaces of the velocity magnitude.
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5 Tensor-based dynamic mode decomposition

lower frequencies, i.e. they indicate large but slowly rotating vortices, whereas the smaller
structures possess higher frequencies. Moreover, we can see that large structures originate
from the outward pointing kink in the middle of the domain and the smaller structures
from the inward pointing kink at the periodic boundary in x2-direction.

5.5 Conclusion

We showed that the TT-format – which is based on successive SVDs – implicitly already
contains information about the pseudoinverse of certain tensor unfoldings. The goal is to
gain insight into the characteristic properties of tensors and to develop tensor-based algo-
rithms for solving, for instance, systems of linear equations or eigenvalue problems that
directly exploit the inherent properties of the TT-decomposition instead of reformulating
the problem as an equivalent optimization problem. One application which requires the
computation of a pseudoinverse of such a tensor unfolding is DMD. If the data to be ana-
lyzed is already given in TT-format, our algorithm efficiently computes the DMD modes
and eigenvalues directly on the low-rank representations of the data matrices X and Y.

Analogously, variants of DMD such as sparsity-promoting DMD or kernel-based DMD
could be reformulated as well. In the same way, the algorithms presented within this
paper could be used to extend EDMD to compute the Koopman modes directly in the
TT-format, provided that the simulation data is generated using low-rank tensor approx-
imations. The only difference is that we then have to compute the matrix A = ΨY Ψ+

X ,
where ΨX and ΨY are nonlinear transformations of the original data matrices X and Y .
A tensor-based method to compute the eigenfunctions of the Koopman operator has been
proposed in [95]. The computations rely on the construction of a generalized eigenvalue
problem of the form ξA = λξG, which is solved using simple power iteration schemes.
Furthermore, our approach to compute pseudoinverses of tensors may be extended to the
hierarchical Tucker format.

So far, we considered several two-dimensional problems and one three-dimensional prob-
lem to illustrate how tensor-based data-driven methods might help mitigate the curse of
dimensionality and enable the analysis of more complex dynamical systems. Future work
includes applying tensor-based DMD to higher-dimensional problems to analyze scalabil-
ity and efficiency of the proposed methods as well as studying fluid flow applications with
a larger number of degrees of freedom.
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6
Conclusion and open problems

In this thesis, we presented different data-driven methods for the global analysis of com-
plex dynamical systems. The methods were mainly illustrated with the aid of simple
drift-diffusion processes, molecular dynamics applications, and fluid dynamics problems.
However, the presented methods can be applied to any dynamical system, given simula-
tion or measurement data. The main contributions of the respective publications are as
follows:

On the numerical approximation of the Perron–Frobenius and Koopman operator:

• First, we gave an overview of different numerical methods developed for the approxi-
mation of transfer operators.

• We then showed that recently proposed data-driven methods for the approximation of
the Koopman operator such as EDMD can be rewritten to approximate the Perron–
Frobenius operator and its eigenfunctions.

• We applied the derived approach to different stochastic differential equations and a
well-known molecular dynamics problem to illustrate the efficiency of the proposed
methods.

Data-driven model reduction and transfer operator approximation:

• Several different data-driven methods for model reduction and the approximation of
transfer operators were developed independently by the dynamical systems, fluid dy-
namics, and molecular dynamics communities. While the methods developed by the
molecular dynamics community such as TICA and VAC were mainly developed for re-
versible dynamical systems, whereas DMD and EDMD proposed by the fluid dynamics
and dynamical systems communities can be applied to more general dynamical systems,
we showed that the resulting numerical methods share many similarities, although the
derivations and intended applications are rather different.

• We unified the theory and thereby enabled the generalization of extensions and im-
provements developed for one particular method to other methods.

• We demonstrated how data-driven methods can be combined by first reducing the
state space to the essential coordinates and then approximating the eigenfunctions of
the reduced dynamical system.
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6 Conclusion and open problems

Towards tensor-based methods for the numerical approximation of the Perron–Frobe-
nius and Koopman operator:

• One drawback of most of the methods for the approximation of transfer operators is
that the number of basis functions grows exponentially with the dimension of the state
space. This is often referred to as the curse of dimensionality. Different tensor formats
have been developed over the last years aiming at mitigating the curse of dimensionality
by computing low-rank approximations of high-dimensional data arrays. We showed
how Ulam’s method and also EDMD can be rewritten in terms of tensors.

• We applied simple power iteration methods to the resulting (generalized) eigenvalue
problems. It was shown in [71] that also the alternating linear scheme (ALS) can be
applied to compute the dominant eigenvalues and eigenvectors.

• We demonstrated that the applicability of tensor approaches depends both on the
ordering of variables and the alignment of the dynamics with the chosen coordinate
system.

Tensor-based dynamic mode decomposition:

• We showed that the pseudoinverse of certain tensor unfoldings – required, for instance,
when we want to apply DMD to compressed data represented in the TT format – can
be computed efficiently directly in the TT format by exploiting characteristic properties
of the TT decomposition of multi-dimensional arrays.

• We reformulated standard DMD and exact DMD for low-rank approximations of high-
dimensional data matrices.

• The efficiency of the approach was illustrated with the aid of two-dimensional and
three-dimensional fluid dynamics problems.

There are several open questions pertaining to the proposed methods. We approximate
an infinite-dimensional operator by projecting it onto a space spanned by a finite set of
basis functions. The approximation error depends strongly on the chosen basis. Prese-
lecting a suitable set of basis functions that is able to represent the dynamics accurately
is still an open problem. Future work could be to apply dictionary-learning methods in
order to adaptively learn suitable basis functions. Recently, machine learning techniques
using deep neural networks were proposed to learn basis functions and transfer operators
from data [111, 144, 118].

Another approach would be to use kernel-based methods [196, 173, 94]. A Gaussian
kernel, for instance, corresponds to an implicitly infinite-dimensional set of basis functions.
The drawback then, however, is that the size of the resulting matrices is given by the
number of snapshots, which must thus be small enough to be able to store the matrices and
to solve the eigenvalue problems numerically. Furthermore, the convergence properties of
these methods, in particular for kernels with infinite-dimensional feature spaces, is – to our
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knowledge – not well understood yet. Kernel-based methods could again be augmented
by using low-rank tensor representations.

The tensor-based methods described in Chapter 4 and Chapter 5 and the reduction to
the essential dynamics based on transition manifolds presented in Appendix A can be seen
as two different ways to mitigate the curse of dimensionality. The former compresses the
multidimensional generalizations of the vectors and matrices representing eigenfunctions
or finite-dimensional approximations of transfer operators using low-rank decompositions,
the latter aims at finding a reduced transfer operator that retains the dominant spectrum
of the full transfer operator by averaging along level-sets of reaction coordinates. In or-
der to be able to find a low-rank representation of a transfer operator, the dynamics of
the system should be aligned with the chosen coordinate system. Rotations or nonlinear
transformations of the dynamics, for instance, lead to a strong coupling between variables
and thus higher ranks. One possibility to overcome this would be to first project the dy-
namics onto the TICA coordinates, which represent the slowest relaxation processes of the
system. Another drawback of the TT format is that it depends strongly on the ordering
of variables. It was shown in [72] that the TT format is suited in particular for systems
with a nearest neighbor coupling structure. A molecular dynamics problem with such a
structure is deca-alanine, which was analyzed in [138] (see also Chapter 1 and Chapter 3).
Ordering the unknowns in such a way that variables are connected mainly to adjacent
variables and only weakly to other variables will typically result in lower ranks. Such an
ordering, however, is in general unknown. For systems with arbitrary interconnectivity,
tensor formats that are able to represent more complex coupling structures might be re-
quired. This is still an open problem. Also the extension of ALS to generalized eigenvalue
problems, which is required for tensor-based EDMD, could be potential future work.

Furthermore, as briefly mentioned in the introduction, data-driven methods can be used
to directly compute the governing equations of a dynamical system, see, e.g., [20, 121].
These methods are closely related to the methods presented above. So far, the proposed
approaches have been applied mainly to ordinary differential equations and partial dif-
ferential equations with a certain structure. Future work would be to extend and apply
these methods to stochastic differential equations and, in particular, molecular dynamics
problems. Moreover, it would be beneficial to derive error bounds and convergence re-
sults. Another application of methods for identifying governing equations is to detect the
connectivity structure of a system from data, i.e., whether variables are strongly coupled
or not, see [90]. This could be of particular interest for many biological systems.
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[83] W. Huisinga, S. Meyn, and C. Schütte. Phase transitions & metastability in Marko-
vian and molecular systems. The Annals of Applied Probability, 14 (1):419–458,
2004.

[84] B. Hunt and V. Kaloshin. Regularity of embeddings of infinite-dimensional fractal
sets into finite-dimensional spaces. Nonlinearity, 12(5):1263–1275, 1999.

[85] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John
Wiley & Sons, 2001.

[86] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ library for complex
physics simulations. In International workshop on coupled methods in numerical
dynamics, volume 1000, pages 1–20, 2007.
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[159] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral
analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.
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Abstract

We consider complex dynamical systems showing metastable behavior but no local
separation of fast and slow time scales. The article raises the question of whether
such systems exhibit a low-dimensional manifold supporting its effective dynamics.
For answering this question, we aim at finding nonlinear coordinates, called reac-
tion coordinates, such that the projection of the dynamics onto these coordinates
preserves the dominant time scales of the dynamics. We show that, based on a spe-
cific reducibility property, the existence of good low-dimensional reaction coordinates
preserving the dominant time scales is guaranteed. Based on this theoretical frame-
work, we develop and test a novel numerical approach for computing good reaction
coordinates. The proposed algorithmic approach is fully local and thus not prone to
the curse of dimension with respect to the state space of the dynamics. Hence, it is
a promising method for data-based model reduction of complex dynamical systems
such as molecular dynamics.

A.1 Introduction

With the advancement of computing power, we are able to simulate and analyze more
and more complicated and high-dimensional models of dynamical systems, ranging from
astronomical scales for the simulation of galaxies, over planetary and continental scales
for climate and weather prediction, down to molecular and sub-atomistic scales via, e.g.,
Molecular Dynamics (MD) simulations aimed at gaining insight into complex biological
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processes. Particular aspects of such processes, however, can often be described by much
simpler means than the full process, thus reducing the full dynamics to some essential
behavior or effective dynamics in terms of some essential observables of the system. Ex-
tracting these observables and the related effective dynamics from a dynamical system,
though, is one of the most challenging problems in computational modeling [64].

One prominent example of dynamical reduction is arguably given by a variety of mul-
tiscale systems with explicit fast-slow time scale separation, mostly singularly perturbed
systems, where either the fast component is considered in a quasi-stationary regime (i.e.
the slow components are fixed and assumed not to change for the observation period), or
the effective behavior of the fast components is injected into the slow processes, e.g. by
averaging or homogenization [146]. Much of the recent attention has been directed to the
case where the deduction of the slow (or fast) effective dynamics is not possible by purely
analytic means, due to the lack of an analytic description of the system, or because the
complexity of the system renders this task unfeasible [64, 65, 32, 50, 132, 176, 34, 190, 89].
However, all of these approaches still depend on some local form of time scale separation
between the “fast” and the “slow” components of the dynamics.

The focus of this work is on specific multiscale systems without local dynamical slow-
fast time scale separation, but for which a reduction to an effective dynamical behavior
supported on some low-dimensional manifold is still possible. The dynamical property
lying at the heart of our approach is that there is a time scale separation in the global
kinetic behavior of the process, as opposed to the aforementioned slow-fast behavior
encoded in the local dynamics. Here, global kinetic behavior means that the multiple
scales show up if we consider the Fokker–Planck equation associated with the dynamics,
say u̇ = Lu, where the Fokker–Planck operator L will have several small eigenvalues, while
the rest of its spectrum is significantly larger. Such dynamical systems exhibit metastable
behavior and the slow time scales are the time scales of statistical relaxation between the
main metastable sets, while there is no time scale gap for the local dynamics within each
of the metastable regions [15, 171].

Global time scale separation induced by metastability has been analyzed for determin-
istic [40] and stochastic dynamical systems [169, 83] for more than a decade. A typical
trajectory of a metastable dynamical system will spend most time within the metastable
sets, while rare transitions between these sets happen as sudden “jumps” roughly along
low-dimensional transition pathways that connect the metastable sets [37, 135, 55]. For
an example, see Figure A.1.

The tool to describe the global kinetic behavior of a metastable system is the so-called
transfer operator (the evolution operator of the Fokker–Planck equation), which acts on
functions on the state space. The time scale separation we rely on here implies a spectral
gap for this operator. This fact has been exploited to find low-dimensional representa-
tions of the global kinetics in form of Markov chains whose (discrete) states represent the
metastable sets while the transition probabilities between the states approximate the jump
statistics between the sets on long time scales. Under the name “Markov State Models”
(MSM), this approach has led to a variety of methods [16, 171] with broad application,
e.g., in molecular dynamics, cf. [169, 145, 170, 30]. This reduction comes with a price:
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a) b)

Figure A.1: a) Curved double-well potential with two metastable sets (areas encircled
by light grey lines) around the global minima (−1, 0) and (1, 0). In a typical trajectory
(red line), transitions between the metastable sets are rare events and generally happen
along the transition path (white dashed line). b) The x1-component of a longer trajectory
that shows multiple rare transitions (or events).

Since the relaxation kinetics is described just by jumps between the metastable sets in a
(finite) discrete state space, any information about the transition process and its dynam-
ical features is lost. A variety of approaches have been developed for complementing the
MSM approach appropriately [124], but a continuous (in time and space) low-dimensional
effective description based on MSMs allowing to understand the transition mechanism is
infeasible.

In another branch of the literature, again heavily influenced by molecular dynamics
applications, model reduction techniques have been developed that assume the existence of
a low-dimensional reaction coordinate or order parameter in order to construct an effective
dynamics or kinetics: Examples are free energy based techniques [183, 105], trajectory-
based sampling techniques [56, 4, 129, 150], methods based on diffusive processes [6,
199, 146], and many more that rely on the assumption that the reaction coordinates are
known. The problem of actually constructing good reaction coordinates remains an area
of ongoing research [113], to which this paper contributes. Typically, reaction coordinates
are either postulated using system specific expert knowledge [24, 177], an approximation
to the dominant eigenfunctions of the transfer operator is sought [171, 30, 150], or machine
learning techniques are proposed [115]. Froyland et al. [64] show that these eigenfunctions
are indeed optimal — in the sense of optimally representing the slow dynamics — but for
high dimensional systems computational reaction coordinate identification still is often
infeasible. In the context of transition path theory [189], the committor function is known
to be an ideal [114] reaction coordinate. In [151], the authors construct a level set of the
committor using support vector machines, but the computation of reaction coordinates
is infeasible for high-dimensional systems. The main problem in computing reaction
coordinates for high-dimensional metastable systems results from the fact that all of
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these algorithms try to solve a global problem in the entire state space that cannot be
decomposed easily into purely local computations.

In this article, we elaborate on the definition, existence and algorithmic identification
of reaction coordinates for metastable systems: We define reaction coordinates as a small
set of nonlinear coordinates on which a reduced system [109, 199] can be defined having
the same dominant time scales (in terms of transfer operator eigenvalues) as the original
system. We then consider a low-dimensional state space on which the reduced dynamics
is a Markov process. Thus, our approach utilizes concepts and transfer operator theory
developed previously, but in our case the projected transfer operator is still infinite-
dimensional, in stark contrast to its reduction to a stochastic matrix in the MSM approach.

The contribution of this paper is twofold. First, we develop a conceptual framework
that identifies good reaction coordinates as the ones that parameterize a low-dimensional
transition manifold M in the function space L1, which is the natural state space of the
Fokker–Planck equation u̇ = Lu associated with the dynamics. The property which
defines M is that, on moderate time scales tfast < t� tslow, the transition density functions
of the dynamics concentrate around M. We provide evidence that such an M indeed exists
due to metastability and the existence of transition pathways. Crucially, the dimension
of M is often lower then the number of dominant eigenfunctions.

Second, we present an algorithm to construct approximate reaction coordinates. Our
algorithm is data-driven and fully local, thus circumventing the main problem of previously
proposed algorithms: In order to compute the value of the desired reaction coordinate ξ at
a location x in the state space X, only the ability to simulate short trajectories initialized
at x is needed. In particular, we assume no a priori knowledge of metastable sets, no
global equilibration, and we do not need to resolve the slow time scales numerically. The
algorithm is built on two pillars:

1. The simulation time scale t can be chosen a lot smaller than the dominant time
scales tslow of the system, such that it is feasible to simulate many short trajectories
of length t.

2. We utilize embedding techniques inspired by the seminal work of Whitney [194] and
the recent work [41] that allows one to take almost any mapping into a Euclidean
space of more than twice the dimension of the manifold M and to obtain a one-to-one
image of it.

These two pillars together with the low-dimensionality of M imply that we can represent
the image of the reaction coordinate in a space with moderate (finite) dimension. Then, we
can use established manifold learning techniques [132, 32, 176] to obtain a parametrization
of the manifold in the embedding space and pull this parametrization back to the original
state space, hence obtaining a reaction coordinate.

The locality of the algorithm also implies that reaction coordinates are only computed
in the region of state space where sampled points are available. This is a common issue
with manifold learning algorithms; here it manifests as the transition manifold being reli-
ably learned only in regions we have good sampling coverage of. However, recently several
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methods have appeared in the literature that allow a fast exploration of the state space.
These methods do not provide equilibrium sampling, but instead try to rapidly cover the
essential part of the state space with sampling points. This can be achieved with enhanced
sampling methods such as Umbrella Sampling [103, 184], Metadynamics [105, 106], Blue-
Moon sampling [31], Adaptive Biasing Force method [35], or Temperature-Accelerated
Molecular Dynamics [117], as well as trajectory-based techniques like Milestoning [57],
Transition Interface Sampling [129], or Forward Flux Sampling [5]. Alternatively, sev-
eral techniques like the equation-free approach [89], the heterogeneous multiscale method
(HMM) [52] and methods based on diffusion maps [29] have been developed to utilize short
unbiased MD trajectories for extracting information that allows much larger timesteps.
This can be combined with reaction coordinate based effective dynamics [199, 200].

In principle, the method we present in this article may be combined with any enhanced
sampling technique in order to generate sampling points that cover a large part of the
state space. For simplicity, we will use long MD trajectories to generate our sampling
points, but we do not require that the points are distributed according to an equilibrium
distribution.

The paper is organized as follows: Section A.2 introduces transfer operators, which
describe the global kinetics of the stochastic process. Based on these transfer operators, we
define metastability, i.e. the existence of dominant time scales. In Section A.3, we describe
the model reduction techniques Markov state modeling and coordinate projection that are
designed to capture the dominant time scales of metastable systems. Furthermore, we
characterize good reaction coordinates. In the first part of Section A.4, we show that
our dynamical assumption ensures the existence of good reaction coordinates, then in the
second part we describe our approach to compute them. Several numerical examples are
given in Section A.5. Concluding remarks and an outlook are provided in Section A.6.

A.2 Transfer operators and their properties

As mentioned in the introduction, global properties of dynamical systems such as meta-
stable sets or a partitioning into fast and slow subprocesses can be obtained using transfer
operators associated with the system and their eigenfunctions. In this section, we will
introduce different transfer operators needed for our considerations.

A.2.1 Transfer operators

In what follows, P[ · | E] denotes probabilities conditioned on the event E and E[· | E] the
expectation value. Furthermore, {Xt}t≥0 is a stochastic process defined on a state space
X ⊂ Rn.

Definition A.2.1 (Transition density function). Let A be any measurable set, then the
transition density function pt : X × X → R≥0 of a time-homogeneous stochastic process
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{Xt}t≥0 is defined by

P[Xt ∈ A | X0 = x] =

∫

A

pt(x, y) dy.

That is, pt(x, y) is the conditional probability density of Xt = y given that X0 = x.

With the aid of the transition density function, we can now define transfer operators.
Note, however, that the transition density is in general not known explicitly and needs
to be estimated from simulation data. In what follows, we assume that there is a unique
equilibrium density % that is invariant under {Xt}t≥0, that is, it satisfies

%(x) =

∫

X

pt(y, x)%(y) dy,

a.e. on X. Let µ denote the associated invariant measure dµ = % dx.

Definition A.2.2 (Transfer operators). Let p ∈ L1(X) be a probability density1, u =
p/% ∈ L1

µ(X) be a probability density with respect to the equilibrium density %, and f ∈
L∞(X) an observable of the system. For a given lag time t:

(a) The Perron–Frobenius operator Pt : L1(X)→ L1(X) is defined by the unique linear
extension of

Ptp(x) =

∫

X

pt(y, x) p(y) dy

to L1(X).

(b) The Perron–Frobenius operator T t : L1
µ(X)→ L1

µ(X) with respect to the equilibrium
density is defined by the unique linear extension of

T tu(x) =

∫

X

%(y)

%(x)
pt(y, x)u(y) dy

to L1
µ(X).

(c) The Koopman operator Kt : L∞(X)→ L∞(X) is defined by

Ktf(x) =

∫

X

pt(x, y) f(y) dy = E[f(Xt) | X0 = x]. (A.1)

All these are well-defined non-expanding operators on the respective spaces.

1We denote by Lq the space (equivalence class) of q-integrable functions with respect to the Lebesgue
measure. Lqν denotes the same space of function, now integrable with respect to the measure ν.
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The equilibrium density % satisfies Pt% = %, that is, % is an eigenfunction of Pt with
associated eigenvalue λ0 = 1. The definition of T t relies on %, we have % T tu = Pt(u%).

Instead of their natural domains from Definition A.2.2, all our transfer operators are
considered on the following Hilbert spaces: Pt : L2

1/µ(X)→ L2
1/µ(X), T t : L2

µ(X)→ L2
µ(X),

and Kt : L2
µ(X) → L2

µ(X). They are still well-defined non-expansive operators on these
spaces [3, 162, 93].

Furthermore, we will need the notion of reversibility for our considerations. Reversibil-
ity means that the process is statistically indistinguishable from its time-reversed coun-
terpart.

Definition A.2.3 (Reversibility). A system is said to be reversible if the detailed balance
condition

%(x) pt(x, y) = %(y) pt(y, x)

is satisfied for all x, y ∈ X.

In what follows, we will assume that the system is reversible.
One prominent example for a class of SDEs satisfying uniqueness of the equilibrium

density and reversibility is given by

dXt = −∇V (Xt) dt+
√

2β−1 dWt . (A.2)

Here, V is called the potential, β is the non-dimensionalized inverse temperature, and Wt

is a standard Wiener process. The process generated by (A.2) is ergodic and thus admits a
unique positive equilibrium density, given by %(x) = exp(−βV (x))/Z, under mild growth
conditions on the potential V [119, 120]. Note that the subsequent considerations hold for
all stochastic processes that satisfy reversibility and ergodicity with respect to a unique
positive invariant measure and are not limited to the class of dynamical systems given by
(A.2). See [171] for a discussion of a variety of stochastic dynamical systems that have
been considered in this context.

As a result of the detailed balance condition, the Koopman operator Kt and the Perron–
Frobenius operator with respect to the equilibrium density T t become identical and we
obtain 〈

Ptf, g
〉

1/µ
=
〈
f, Ptg

〉
1/µ

and
〈
T tf, g

〉
µ

=
〈
f, T tg

〉
µ
,

i.e. all the transfer operators become self-adjoint on the respective Hilbert spaces from
above. Here 〈·, ·〉µ and 〈·, ·〉1/µ denote the natural scalar products on the weighted
spaces L2

µ and L2
1/µ, respectively.

A.2.2 Spectral decomposition

Due to the self-adjointness, the eigenvalues λti of Pt and T t are real-valued and the
eigenfunctions form an orthogonal basis with respect to 〈·, ·〉1/µ and 〈·, ·〉µ, respectively.

In what follows, we assume that the spectrum of T t is purely discrete given by (infinitely
many) isolated eigenvalues. This assumption is made for the sake of simplicity. It is
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actually not required for the rest of our considerations; it would be sufficient to assume
that the spectral radius R of the essential spectrum of T t is strictly smaller than 1, and
some isolated eigenvalues of modulus larger than R exist. It has been shown that this
condition is satisfied for a large class of metastable dynamical systems, see [171, Sec. 5.3]
for details. For example, the process generated by (A.2) has purely discrete spectrum
under mild growth and regularity assumptions on the potential V .

Under this condition, ergodicity implies that the dominant eigenvalue λ0 is the only
eigenvalue with absolute value 1 and we can thus order the eigenvalues so that

1 = λt0 > λt1 ≥ λt2 ≥ . . . .

The eigenfunction of T t corresponding to λ0 = 1 is the constant function ϕ0 = 1X. Let ϕi
be the normalized eigenfunctions of T t, i.e. 〈ϕi, ϕj〉µ = δij , then any function f ∈ L2

µ(X)

can be written in terms of the eigenfunctions as f =
∑∞

i=0 〈f, ϕi〉µ ϕi. Applying T t thus
results in

T tf =
∞∑

i=0

λti 〈f, ϕi〉µ ϕi.

For more details, we refer to [93] and references therein.

A.2.3 Implied time scales

For some d ∈ N, we call the d + 1 dominant eigenvalues λt0, . . . , λ
t
d of T t the dominant

spectrum of T t, i.e.
σdom(T t) := {λt0, . . . , λtd}.

Usually, d is chosen in such a way that there is a spectral gap after λtd, i.e. 1 − λtd �
λtd − λtd+1. The (implied) time scales on which the associated dominant eigenfunctions
decay are given by

ti = −t/ log(λti). (A.3)

If T t is a semigroup of operators, then there are κi ≤ 0 with λti = exp(κit) such that
ti = −κ−1

i holds. Assuming there is a spectral gap, the dominant time scales satisfy
t1 ≥ . . . ≥ td � td+1. These are the time scales of the slow dynamical processes, also
called rare events, which are of primary interest in applications. The other, fast processes
are regarded as fluctuations around the relative equilibria (or metastable states) between
which the relevant slow processes travel.

A.3 Projected transfer operators and reaction coordinates

The purpose of dimension reduction in molecular dynamics is to find a reduced dynamical
model that captures the dominant time scales of the system correctly while keeping the
model as simple as possible. In this section, we will introduce two different projections and
the corresponding projected transfer operators. The goal is to find suitable projections
onto the slow processes.
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A.3.1 Galerkin projections and Markov state models

One frequently used approach to obtain a reduced model is Markov state modeling. The
goal is to find a model that is as simple as possible and yet correctly reproduces the
dominant time scales. Given a fixed t > 0, most authors [135, 145] refer to a Markov
state model (MSM) as a matrix T t ∈ R(d+1)×(d+1) such that

σdom(T t) ≈ σdom(T t), (A.4)

and it has been studied in detail under which condition this can be achieved [47, 160].
There are different ways of constructing an MSM, maybe the most intuitive one is also

the simplest: Let the entries of T t be the transition rates between metastable sets. A
typical molecular system with d dominant time scales will have d + 1 metastable sets
C1, . . . ,Cd+1 (also called cores) and its dynamics is characterized by transitions between
these sets and fluctuations inside the sets (see Figure A.1 for an illustration). Since the
fluctuations are on faster time scales, we neglect them by setting [169]

T tcore,ij = Pµ[Xt ∈ Cj
∣∣X0 ∈ Ci] , (A.5)

where Pµ denotes the probability measure conditioned to the initial condition X0 being
distributed according to µ. Thus, T tcore,ij is the probability that the process in equilibrium
jumps to the metastable set Cj in time t, given that it started in the metastable set Ci.
Note that (A.5) can be equivalently rewritten as

T tcore,ij =

〈
T t1Ci , 1Cj

〉
µ

〈1Ci , 1Ci〉µ
, (A.6)

where 1Ci is the characteristic function of the set Ci.
Equation (A.6) readily suggests that T tcore is a projection of the transfer operator T t,

namely its Galerkin projection onto the space spanned by the characteristic functions
1C1 , . . . ,1Cd+1

[169].

Definition A.3.1 (Galerkin projection). Given a set of basis functions ψ1, . . . , ψm ∈
L2
µ(X), let V := span{ψ1, . . . , ψm} and ψ := (ψ1, . . . , ψm)ᵀ. The projection to V or,

equivalently, to ψ, ΠV = Πψ : L2
µ(X)→ V is defined as

〈Πψf − f, g〉µ = 0 ∀ f ∈ L2
µ(X), ∀ g ∈ V .

The residual projection is given by Π⊥ψ = Id−Πψ, where Id is the identity. The Galerkin

projection of T t to V is given by the linear operator T t : V→ V satisfying

〈
T tf − T tf, g

〉
µ

= 0 ∀ f, g ∈ V .

Equivalently, T t = ΠψT t. We also denote the extension of T t to the whole L2
µ(X), given

by ΠψT tΠψ, by T t. Furthermore, we denote the matrix representation of T t with respect

137



A Transition manifolds of complex metastable systems

to the basis (ψ0, . . . , ψd) by T t as well. Either it will be clear from the context which of
the objects T t is meant or it will not matter; e.g., the dominant spectrum is the same for
all of them.

We see that Tcore is the matrix representation of the Galerkin projection with respect to
the basis functions 〈1Ci , 1Ci〉−1

µ 1Ci , i = 1, . . . , d+ 1. More general MSMs can be built by
Galerkin projections of the transfer operator to spaces spanned by other — not necessarily
piecewise constant — basis functions [191, 170, 193, 92, 93, 150, 134]. However, in some
of these methods, one also often loses the interpretation of the entries of the matrix T t

as probabilities.

Ultimately, the best MSM in terms of approximation quality in (A.4) is given by the
Galerkin projection of T t onto the space spanned by its dominant eigenfunctions ϕ0, . . . ,
ϕd. This space is invariant under T t since T tϕi = λtiϕi and the dominant eigenvalues
(and hence the time scales) are the same for the MSM and for T t. Due to the curse of
dimensionality, however, the computation of the eigenfunctions ϕi is in general infeasible
for high-dimensional problems.

Remark A.3.2. There are quantitative results assessing the error in (A.4) of the MSM
in terms of the projection errors ‖Π⊥ψϕi‖L2

µ
, i = 0, . . . , d, cf. [171, Section 5.3]. One can

obtain a weaker, but similar result from our Lemma A.3.5 in the next section.

A.3.2 Coordinate projections and effective transfer operators

While the MSMs from above successfully reproduce the dominant time scales of the origi-
nal system, they often discard all other information about the system, such as the transi-
tion paths between metastable sets. Minimal coordinates that describe these transitions
are called reaction coordinates and reducing the dynamics onto these coordinates yields
effective dynamics [109, 199]. The goal of the previous section — namely to retain the
dominant time scales of the original dynamics in a reduced model — can now be refor-
mulated for this lower-dimensional effective dynamics or, equivalently, for its (effective)
transfer operator.

Let ξ : X → Rk be a C1 function, where k ≤ n. Let Lz = {x ∈ X | ξ(x) = z} be the
z-level set of ξ. The so-called coarea formula [58, Section 3.2], which can be considered as
a nonlinear variant of Fubini’s theorem, splits integrals over X into consecutive integrals
over level sets of ξ and then over the range of ξ. For f ∈ L2

µ(X), we have2

∫

X
f(x) dµ(x) =

∫

ξ(X)

∫

Lz
f(x′)%(x′) det

(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσz(x

′) dz , (A.7)

where z = ξ(x) and σz is the surface measure on Lz. The coordinate projection, defined
next, averages a given function along the level sets of a coordinate function ξ.

2The coarea formula holds for L1 functions, but L2
µ ⊂ L1

µ, since µ is a probability measure (i.e., it is
finite).
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A.3 Projected transfer operators and reaction coordinates

Definition A.3.3 (Coordinate projection). For f ∈ L2
µ(X), we define

Pξf(x) =

∫

Lz
f(x′) dµz(x′) (A.8)

=
1

Γ(z)

∫

Lz
f(x′)%(x′) det(∇ξ(x′)ᵀ∇ξ(x′))−1/2 dσz(x

′), (A.9)

where µz is a probability measure on Lz with density %
Γ(z) det(∇ξᵀ∇ξ)−1/2 with respect to

σz. Here, Γ(z) is just the normalization constant so that µz becomes a probability measure.
The residual projection is given by P⊥ξ = Id− Pξ.

To get a better feeling for the action of Pξ, note that Pξf(x) is the expectation of f(x′)
with respect to µ conditional to ξ(x′) = ξ(x), i.e.

Pξf(x) = Eµ
[
f(x′)

∣∣ ξ(x′) = ξ(x)
]
.

Or, in other words, µz is the marginal of µ conditional to ξ(x) = z. Note, in particular,
that Pξf is itself a function on X, but it is constant on the level sets of ξ, and thus let us

set P̂ξf(ξ(x)) = Pξf(x) for x ∈ Lξ(x). It follows from the coarea formula (A.7) and (A.9)
that ∫

X
f(x) dµ(x) =

∫

ξ(X)
Γ(z)P̂ξf(z) dz . (A.10)

Next, we state some properties of the coordinate projection.

Proposition A.3.4. The coordinate projection has the following properties.

(a) Pξ is a linear projection, i.e. P 2
ξ = Pξ.

(b) Pξ is self-adjoint with respect to 〈·, ·〉µ.

(c) Pξ : L2
µ(X)→ L2

µ(X) is orthogonal, hence non-expansive, i.e. ‖Pξf‖L2
µ
≤ ‖f‖L2

µ
.

Proof. See Appendix A.A.

We use the coordinate projection to describe the dynamics-induced propagation of
reduced distributions with respect to the variable ξ. To this end, we define the effective
transfer operator T tξ : L2

µ(X)→ L2
µ(X) by

T tξ = PξT tPξ. (A.11)

We immediately obtain from the self-adjointness of T t (see Section A.2) and Proposi-
tion A.3.4 (b) that T tξ is a self-adjoint operator on L2

µ(X). Moreover, ‖T t‖L2
µ
≤ 1 and

Proposition A.3.4 (c) imply that ‖T tξ ‖L2
µ
≤ 1. Thus, the spectrum of the effective transfer

operator lies in the interval [−1, 1], too.
Returning to the purpose of these constructions, we call ξ a good reaction coordinate if

σdom(T t) ≈ σdom(T tξ ). (A.12)
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While the previously introduced Markov state model T t obtained by the Galerkin pro-
jection was approximating the dominant spectrum of the original transfer operator by a
finite-dimensional operator (i.e. a matrix), the effective transfer operator still acts on an
infinite-dimensional space. The reduction lies in the fact that T t operates on functions
over X ⊆ Rn, but the effective transfer operator T tξ operates essentially on functions over

ξ(X) ⊂ Rk, although we embed those into X through the level sets of ξ.
As mentioned above, a Galerkin projection of the transfer operator onto its dominant

eigenfunctions is a perfect MSM. In the same vein, we ask here how we can characterize
a good reaction coordinate. We can make use of the following general result.

Lemma A.3.5. Let H be a Hilbert space with scalar product 〈·, ·〉 and induced norm ‖ · ‖,
let Q : H→ H be some orthogonal projection on a linear subspace of H, with Q⊥ = Id−Q.
Let T : H → H be a self-adjoint non-expansive linear operator, and u with ‖u‖ = 1 its
eigenvector, i.e., Tu = λu for some λ ∈ R. If ‖Q⊥u‖ < ε, then TQ := QTQ has an
eigenvalue λQ ∈ R with |λ− λQ| < ε/

√
1− ε2.

Proof. Using Q = Id−Q⊥, we have

TQQu = QT QQ︸︷︷︸
=Q

u = QTu−QTQ⊥u︸ ︷︷ ︸
=:−ζ

= λQu+ ζ,

where ‖ζ‖ ≤ ‖Q⊥u‖ < ε since Q and T are non-expanding. Thus, u′ := Qu/‖Qu‖
satisfies TQu

′ = λu′ + ζ/‖Qu‖, and the orthogonality of Q gives ‖Qu‖ >
√

1− ε2.
Now, any orthogonal projection is self-adjoint, as is shown in the proof of Proposi-
tion A.3.4, hence the operator QTQ is self-adjoint, too, and thus normal. From the
theory of pseudospectra for normal operators [185, Theorems 2.1, 2.2, and §4], we know
that if ‖TQu′ − λu′‖ < ε/

√
1− ε2, then TQ has an eigenvalue λQ ∈ R in the ε/

√
1− ε2-

neighborhood of λ.

With H = L2
µ, Q = Pξ, and T = T t we immediately obtain the following result.

Corollary A.3.6. As before, let λti and ϕi, i = 0, . . . , d, denote the dominant eigenvalues
and eigenfunctions of T t, respectively. For any given i, if ‖P⊥ξ ϕi‖L2

µ
< ε, then there is

an eigenvalue λ̃ti of T tξ with |λti − λ̃ti| < ε/
√

1− ε2.

Corollary A.3.6 implies that if the projection error of all dominant eigenfunctions is
small, then ξ is a good reaction coordinate in the sense of (A.12). Very similar results
are available for approximation of the eigenvalues of the infinitesimal generator of the
Fokker–Planck equation associated with the transfer operator if the dynamical system
under consideration is continuous in time [200].

Under which conditions is the projection error small? Let us consider the case where
there are ϕ̃i : Rk → R, i = 1, . . . , d, such that ϕi(x) = ϕ̃i(ξ(x)). We then say that ϕi is a
function of ξ or that ξ parametrizes ϕi. If ξ parametrizes ϕi perfectly, the projection error
obviously vanishes. Thus, trivially, by choosing ξ = ϕ = (ϕ1, . . . , ϕd)

ᵀ, we obtain a perfect
reaction coordinate since with ϕ̃i(z) := zi with ϕi = ϕ̃i ◦ ξ. However, the eigenfunctions
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A.4 Identifying good reaction coordinates

are global objects, i.e., their computation is prohibitive in high dimensions. Since we are
aiming at computing a reaction coordinate, we have to answer the question of whether
there is a reaction coordinate ξ that can be evaluated based on local computations only
while it parametrizes the dominant eigenfunctions of T t well enough such that it leads to
a small projection error. We will see next that this question can be answered by utilizing
a common property of most metastable systems: The transitions between the metastable
sets happen along so-called reaction pathways, which imply the existence of transition
manifolds in the space of transition densities. A suitable parametrization of this manifold
results in a parametrization of the dominant eigenfunctions with a small error.

A.4 Identifying good reaction coordinates

The goal is now to find a reaction coordinate ξ that is as low-dimensional as possible and
results in a good projected transfer operator in the sense of (A.12). As we saw in the
previous section, the condition ‖P⊥ξ ϕi‖L2

µ
≈ 0 is sufficient. Thus, the idea to numerically

seek ξ that parametrizes the dominant eigenfunctions of T t in the ‖ · ‖L2
µ
-norm seems

natural since this would lead to small projection error ‖P⊥ξ ϕi‖L2
µ
.

In fact, eigenfunctions of transfer operators have been used before to compute reduced
dynamics and reaction coordinates: In [64], methods to decompose multiscale systems
into fast and slow processes and to project the dynamics onto these subprocesses based
on eigenfunctions of the Koopman operator Kt are proposed. In [122], the dominant eigen-
functions of the transfer operator T t, which due to the assumed reversibility of the system
is identical to Kt, are shown to be good reaction coordinates. Also, commitor functions
(introduced in Appendix A.B), which are closely related to the dominant eigenfunctions,
have been used as reaction coordinates in [51, 114].

However, we propose a fundamentally different path in defining and finding reaction
coordinates, as working with dominant eigenfunctions has two major disadvantages:

1. The eigenproblem is global. Thus if we wish to learn the value of an eigenfunction
ϕi at only one location x ∈ X, we need an approximation of the transfer operator Tt
that has to be accurate on all of X. The computational effort to construct such an
approximation grows exponential with dim(X), this is the curse of dimensionality.
There have been attempts to mitigate this [191, 88, 192], but we aim to circumvent
this problem entirely. Given two points x, y ∈ X, we will decide whether ξ(x) is
close to ξ(y) or not by using only local computations around x and y (i.e. samples
from the transition densities pt(x, ·) and pt(y, ·) for moderate t).

2. The number of dominant eigenfunctions (d + 1) equals the number of metastable
states, and this number can be much larger than the dimension of the transition
manifold. This fact is illustrated in Example A.4.1 below.

Example A.4.1. Let us consider a diffusion process of the form (A.2) with the circu-
lar multi-well potential shown in Figure A.2. Choosing a temperature that is not high
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A Transition manifolds of complex metastable systems

enough for the central potential barrier to be overcome easily, transitions between the
wells typically happen in the vicinity of a one-dimensional reaction pathway, the unit
circle. The number of dominant eigenfunctions, however, corresponds to the number of
wells. Nevertheless, projecting the system onto the unit circle would retain the dominant
time scales of the system, cf. Section A.5. 4

a) b)

Figure A.2: a) Potential with seven wells and thus seven dominant eigenvalues, but only
a one-dimensional reaction coordinate. The reaction pathway is marked by a dashed white
line. b) Dominant eigenvalues of T t for t = 0.1 and β = 0.5. The spectral gap is clearly
visible.

A.4.1 Parametrization of dominant eigenfunctions

If the (d + 1) dominant eigenfunctions do not depend fully on the phase space X, a
lower-dimensional and ultimately easier to find reaction coordinate suffices for keeping
the eigenvalue approximation error (A.12) small. It is easy to see that if there exists a
function ξ : X→ Rk for some k so that the eigenfunctions ϕ are constant on the level sets
of ξ, i.e., there exist functions ϕ̃i : Rk → R, i = 1, . . . , d such that ϕi = ϕ̃i ◦ ξ, then the
projection error ‖P⊥ξ ϕi‖L2

µ
is zero. A quantitative generalization of this is the statement

that if the eigenfunctions ϕi are almost constant on level sets of a ξ, then the projection
error is small.

Lemma A.4.2. Assume that there exists a function ξ : X→ Rk for some k and functions
ϕ̃i : Rk → R, i = 1, . . . , d, with

|ϕi(x)− ϕ̃i(ξ(x))| ≤ ε ∀ x ∈ X. (A.13)

Then ‖P⊥ξ ϕi‖L2
µ
≤ 2ε.
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Proof. Assuming (A.13) holds, there exists a function ci : R → R with ci(x) ≤ 1 ∀x ∈ X
so that

ϕi(x) = ϕ̃i(ξ(x)) + ci(x)ε .

Thus, we have

Pξϕi(x) =

∫

Lξ(x)

(
ϕ̃i
(
ξ(x′)

)
+ ci(x

′)ε
)
dµξ(x)(x

′)

= ϕ̃i
(
ξ(x)

)
+ ε

∫

Lξ(x)
ci(x

′)dµξ(x)(x
′).

For the projection error, we then obtain

‖Pξϕi − ϕi‖L2
µ
≤ ‖Pξϕi − ϕ̃i ◦ ξ‖L2

µ
+ ‖ϕ̃i ◦ ξ − ϕi‖L2

µ

≤ 2ε.

Remark A.4.3. From the proof we see that the pointwise condition (A.13) can be re-
placed by the much weaker condition

∫

Lz

∣∣ϕi(x′)− ϕ̃i(ξ(x′))
∣∣ dµz(x′) ≤ ε,

for all level sets Lz of ξ.

From here on, we address the following two central questions:

(Q1) In which dynamical situations can we expect to find low-dimensional reaction coor-
dinates?

(Q2) How can we computationally exploit the properties of the dynamics to obtain reaction
coordinates?

Let us start with the first question. We will address the second question in Section A.4.2
and Section A.4.3. Experience shows [53, 155, 54, 171] that transitions between metastable
states tend to happen along so-called reaction pathways, which is the low-dimensional
dynamical backbone in the high-dimensional state space, connecting the metastable states
via saddle points of the potential V [60].

From now on, we observe the system at an intermediate time scale tslow � t � tfast

(where tslow and tfast are the implied time scales td, td+1 from Section A.2.3) and thus
assume that the process Xt has already left the transition region (if it started there),
equilibrated to a quasi-stationary distribution inside some metastable wells, but has not
had enough time to equilibrate globally. At this time scale, starting in some x ∈ X, the
transition density pt(x, ·) is observed to approximately depend only on progress along
these reaction paths; see Figure A.3 for an illustration. This means that the density
pt(x, ·) on the fiber perpendicular to the transition pathway is approximately the same as
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pt(x∗, ·) for some x∗ on the transition pathway. As this pathway is low-dimensional, this
means that the image Q(X) of the map

Q(x) := pt(x, ·)

is almost a low-dimensional manifold in L1(X).
The existence of this low-dimensional structure in the space of probability densities

is exactly the assumption we need to ensure that the dominant eigenfunctions are low-
dimensionally parametrizable, and thus that a low-dimensional reaction coordinate ξ ex-
ists. This assumption is made precise in Definition A.4.4. To summarize, we will see
that ξ is a good reaction coordinate if pt(x, ·) ≈ pt(y, ·) for ξ(x) = ξ(y).

Figure A.3: a) and b) The transition densities Q(x1) and Q(x2) are “similar” to Q(x∗)
for some x∗ on the transition path (dashed line) that connects the metastable sets A
and B. c) The mapping Q can be thought of as mapping all points that are “similar”
under Q to the same point in L1(X). The image of Q thus forms a r-dimensional manifold
in L1(X).

Definition A.4.4 ((ε, r)-reducibility and transition manifold). We call the process Xt

(ε, r)-reducible, if there exists a smooth closed r-dimensional manifold M ⊂ L2
1/µ ⊂ L1(X)

such that for tfast � t� tslow and all x ∈ X

min
f∈M
‖f − pt(x, ·)‖L2

1/µ
≤ ε (A.14)

holds. We call M the transition manifold and the map Q : X→M,

Q(x) := arg min
f∈M
‖pt(x, ·)− f‖L2

1/µ
(A.15)

the mapping onto the transition manifold. We can set M = cl(Q(X)), where cl(Y) denotes
the closure of the set Y.3

3If it is necessary to break ties in (A.15), we can do so by taking any of the minimizers. The mapping x 7→
pt(x, ·) can be shown to be smooth [9, Theorem C.1], henceQ(X) is a smooth manifold satisfying (A.14).
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Remark A.4.5. While it is natural to motivate (ε, r)-reducibility by the existence of
reaction pathways in phase space, it is not strictly necessary. There exist stochastic
systems without low-dimensional reaction pathways whose densities still quickly converge
to a transition manifold in L1. Future work includes the identification of necessary and
sufficient conditions for the existence of transition manifolds (see the first point in the
conclusions). We also further elaborate on the connection between reaction pathways and
transition manifolds in Appendix A.B.

Remark A.4.6. We recall from Section A.2 that the Perron–Frobenius operator Pt is also
naturally defined on the space L2

1/µ [162]. Further, with the Dirac distribution centered

in x ∈ X, denoted by δx, we formally have pt(x, ·) = Ptδx. Hence, the choice of norm in
Definition A.4.4 is natural. It should also be noted that since µ is a probability measure,
the Hölder inequality yields ‖f‖L1

µ
≤ ‖f‖L2

µ
. Using this we have

‖f‖L1 = ‖f/%‖L1
µ
≤ ‖f/%‖L2

µ
= ‖f‖L2

1/µ
,

which shows that if pt(x, ·) and pt(y, ·) are close in the L2
1/µ norm, they are also close in

the L1 norm. We require the closeness of the respective pt(x, ·) in the L2
1/µ norm for our

theoretical considerations below, but otherwise we will think of them as functions in L1.

Note that we only need to evolve the system at hand for a moderate time t �
tslow, which has to be merely sufficiently large to damp out the fast fluctuations in the
metastable states. This will be an important point later, allowing for numerical tractabil-
ity.

Next, we show that (ε, r)-reducibility implies that dominant eigenfunctions are almost
constant on the level sets of Q.

Lemma A.4.7. If Xt is (ε, r)-reducible, then for an eigenfunction ϕi of T t with ‖ϕi‖L2
µ

=

1 and points x, y ∈ X with Q(x) = Q(y) we have

|ϕi(x)− ϕi(y)| ≤ 2ε

|λi|
.

Proof. First note that for the transition densities pt(x, ·), pt(y, ·) it holds that

‖pt(x, ·)− pt(y, ·)‖L2
1/µ
≤ ‖pt(x, ·)−Q(x)‖L2

1/µ
+ ‖Q(x)− pt(y, ·)‖L2

1/µ

= ‖pt(x, ·)−Q(x)‖L2
1/µ

+ ‖Q(y)− pt(y, ·)‖L2
1/µ
≤ 2ε .

(A.16)

With this we can show the assertion:

λiϕi(x) = T tϕi(x) = Ktϕi(x) =

∫

X
ϕi(x

′)pt(x, x′) dx′.

Applying (A.16), for some function e ∈ L2
1/µ(X) with ‖e‖L2

1/µ
≤ 2ε, we get

λiϕi(x) =

∫

X
ϕi(x

′)
(
pt(y, x′) + e(x′)

)
dx′
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=

∫

X
ϕi(x

′)pt(y, x′)dx′ +
∫

X
ϕi(x

′)
e(x′)
%(x′)

dµ(x′)

= λiϕi(y) +

∫

X
ϕi(x

′)
e(x′)
%(x′)

dµ(x′),

where in the last equation, we again used that due to reversibility Kt = T t and that ϕi is
an eigenfunction. Thus for the difference, we have

|ϕ(x)− ϕ(y)| = 1

|λi|
∣∣∣
∫

X
ϕi(x

′)
e(x′)
%(x′)

dµ(x′)
∣∣∣

≤ 1

|λi|
‖ϕi‖L2

µ︸ ︷︷ ︸
=1

‖e/%‖L2
µ︸ ︷︷ ︸

=‖e‖
L2
1/µ

≤ 2ε

|λi|
.

Assuming that the eigenfunctions are normalized (which we do from now on), i.e.,
‖ϕi‖L2

µ
= 1, and that ε is sufficiently small, Lemma A.4.7 implies that the dominant

eigenfunctions (i.e., |λi| ≈ 1) are almost constant on the level sets of Q. This can now be
used to show that the ϕi are not fully dependent on X, but only on the level sets of Q
(up to a small error), in a sense similar to Lemma A.4.2.

Corollary A.4.8. Let Xt be (ε, r)-reducible. Then there exists a function ϕ̃i : M → R
such that ∣∣ϕi(x)− ϕ̃i

(
Q(x)

)∣∣ ≤ ε

|λi|
.

Proof. Fix x ∈ X, and let z = Q(x). Define the function ϕ̃i by

ϕ̃i(Q(x)) :=
1

2

(
inf
Q(y)=z

ϕi(y) + sup
Q(y)=z

ϕi(y)

)
.

Since by Lemma A.4.7 it holds that |ϕi(x)− ϕi(y)| ≤ 2ε
|λi| if Q(x) = Q(y), we have that

∣∣∣∣∣ sup
Q(y)=z

ϕi(y)− inf
Q(y)=z

ϕi(y)

∣∣∣∣∣ ≤
2ε

|λi|
,

thus our choice of ϕ̃i gives

|ϕi(x)− ϕ̃i(Q(x))| ≤ ε

|λi|
.

A.4.2 Embedding the transition manifold

In light of Corollary A.4.8, one could say that Q is an “M-valued reaction coordinate”.
However, as we have no access to M so far, and a Rk-valued reaction coordinate is
more intuitive, we aim to obtain a more useful representation of the transition mani-
fold through embedding it into a finite, possibly low-dimensional Euclidean space.
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We will see that we are very free in the choice of the embedding mapping, even though
the manifold M is not known explicitly (we only assumed that it exists). To achieve this,
we will use an infinite-dimensional variant of the weak Whitney embedding theorem [161,
194], which, roughly speaking, states that “almost every bounded linear map from L1(X)
to R2r+1 will be one-to-one on M and its image”. We first specify what we mean by
“almost every” in the context of bounded linear maps, following the notions of Sauer et
al. [161].

Definition A.4.9 (Prevalence). A Borel subset S of a normed linear space V is called
prevalent if there is a finite-dimensional subspace E of V such that for each v ∈ V, v + e
belongs to S for (Lebesgue) almost every e in E.

As the infinite-dimensional embedding theorem from Hunt et al. [84] is applicable not
only to smooth manifolds, but to arbitrary subsets A ⊂ V of fractal dimension, it uses the
concepts of box covering dimension dimB(A) and thickness exponent τ(A) from fractal
geometry. Intuitively, dimB(A) describes the exponent of the growth rate in the number
of boxes of decreasing side length that are needed to cover A, and τ(A) describes how
well A can be approximated using only finite-dimensional linear subspaces of V. As these
concepts coincide with the traditional measure of dimensionality in our setting, we will
not go into detail here and point to [84] for a precise definition.

The general infinite-dimensional embedding theorem reads:

Theorem A.4.10 ([84, Theorem 3.9]). Let V be a Banach space and A ⊂ V be a compact
set with box-counting dimension d and thickness exponent τ . Let k > 2d be an integer,
and let α be a real number with

0 < α <
k − 2d

k(1 + τ)
.

Then for almost every (in the sense of prevalence) bounded linear function E : V → Rk
there exists C > 0 such that for all x, y ∈ A,

C‖E(x)− E(y)‖α2 ≥ ‖x− y‖2 , (A.17)

where ‖ · ‖2 denotes the Euclidean 2-norm.

Note that (A.17) implies Hölder continuity of E−1 on E(A) and in particular that E
is one-to-one on A and its image. Using that the box counting dimension of a smooth
r-dimensional manifold K is simply r and that the thickness exponent is bounded from
above by the box-counting dimension, thus 0 ≤ τ(K) ≤ r, see [84], we get the following
infinite-dimensional embedding theorem for smooth manifolds.

Corollary A.4.11. Let V be a Banach space, let K ⊂ V be a smooth manifold of di-
mension r and let k > 2r. Then almost every (in the sense of prevalence) bounded linear
function E : V→ Rk is one-to-one on K and its image in Rk.
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Thus, since the transition manifold M is assumed to be a smooth r-dimensional manifold
in L1(X), an arbitrarily chosen bounded linear map E : L1(X)→ R2r+1 can be assumed to
be one-to-one on M and its image. In particular, E(M) is again an r-dimensional manifold
(although not necessarily smooth). With this insight, we can now construct a reaction
coordinate in Euclidean space:

Corollary A.4.12. Let Xt be (ε, r)-reducible and let E : L1(X) → R2r+1 be one-to-one
on M and its image. Define ξ : Rn → R2r+1 by

ξ(x) := E
(
Q(x)

)
. (A.18)

Then there exists a function ϕ̂i : R2r+1 → R so that

|ϕi(x)− ϕ̂i(ξ(x))| ≤ ε

|λi|
. (A.19)

Proof. As E is one-to-one on M and its image, it is invertible on E(M). With ϕ̃i chosen
as in the proof of Corollary A.4.8, define ϕ̂i : E(M)→ R by

ϕ̂i(ẑ) := ϕ̃i
(
E−1(ẑ)

)
. (A.20)

Then

|ϕi(x)− ϕ̂i(ξ(x))| = |ϕi(x)− ϕ̃i(Q(x))|
Cor. A.4.8
≤ ε

|λi|
.

Since M̂ := E(M) is an r-dimensional manifold, ξ is effectively an r-dimensional reaction
coordinate. Thus, if the right-hand side of (A.19) is small, the ϕi are “almost parametriz-
able” by the r-dimensional reaction coordinate ξ. Using Lemma A.4.2, we immediately
see that this results in a small projection error ‖P⊥ξ ϕi‖, and due to Corollary A.3.6 in a
good transfer operator approximation; hence ξ is a good reaction coordinate.

The reaction coordinate ξ remains an “ideal” case, because we have no access to the
map Q and hence to M, only to Q(x) = pt(x, ·) ≈ Q(x). We summarize the construction
of the ideal reaction coordinate ξ in Figure A.4.

Remark A.4.13. The recent work of Dellnitz et al. [41] uses similar embedding tech-
niques to identify finite-dimensional objects in the state space of infinite-dimensional
dynamical systems. They utilize the infinite-dimensional delay-embedding theorem of
Robinson [156], a generalization of the well-known Takens embedding theorem [178], to
compute finite-dimensional attractors of delay differential equations by established sub-
division techniques [39].

A.4.3 Numerical approximation of the reaction coordinate

Approximate embedding of the transition manifold. We now elaborate how to con-
struct a good reaction coordinate ξ numerically. To use the central definition (A.18) in
practice, two points have to be addressed:
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X ⊂ Rn
L1 R2r+1

b x

Lz = Q−1(z)

dim(Lz) = n− r dim(M) = r

b Q(x) = z
b ẑ = E(z)

M = Q(X) M̂ = E(M)

dim(M̂) = r

ϕ̃i : M → R
ϕi

∣∣
Lz

≈ const.

ϕi : X → R ϕ̂i : M̂ → R
ϕi ≈ ϕ̃i ◦ Q ϕ̂i = ϕ̃i ◦ E−1

Q E

ξ = E ◦ Q

Figure A.4: Summary of the construction of the ideal reaction coordinate ξ.

1. How to choose the embedding E?

2. How to deal with the fact that we do not know Q?

For the choice of E , we restrict ourselves to linear maps of the form

E(f) :=



〈f, η1〉

...
〈f, η2r+1〉


 , (A.21)

with arbitrarily chosen linearly independent functions ηi ∈ L∞(X), where 〈f, ηi〉 =
∫
fηi.

In practice, we will choose the ηi : X→ R as linear functions themselves, i.e. ηi(x) = aᵀi x
for some, usually randomly drawn, ai ∈ Rn. Note that then ηi /∈ L∞, but this is not
a problem because we will embed the functions f = pt(x, ·), and pt(x, y) can be shown
to decay exponentially as ‖y‖2 → ∞, cf. [9, Theorem C.1]. Thus, 〈f, ηi〉 will exist. For
linearly independent ηi, these maps are still generic in the sense of the Whitney embedding
theorem, and thus still embed the transition manifold M.

A natural choice for the approximation of the unknown map Q is the mapping to the
transition probability density,

Q : x 7→ pt(x, ·) , (A.22)

as ‖Q(x)− pt(x, ·)‖L2
1/µ
≤ ε. With this, we consider

E
(
Q(x)

)
= E

(
pt(x, ·)

)
=




〈
pt(x, ·), η1

〉
...〈

pt(x, ·), η2r+1

〉


 (A.1)

=



Ktη1(x)

...
Ktη2r+1(x)


 . (A.23)
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The values on the right-hand side can in turn be approximated by a Monte Carlo quadra-
ture, using only short-time trajectories of the original dynamics:

Ktηi(x) = E
[
ηi(Xt) | X0 = x

]
≈ 1

M

M∑

m=1

ηi
(
Φ

(m)
t (x)

)
, (A.24)

where the Φ
(m)
t (x) are independent realizations of Xt with starting point X0 = x, in

practice realized by a stochastic integrator (e.g. Euler–Maruyama).

The computationally infeasible reaction coordinate ξ. Note that E ◦ Q is not yet
an r-dimensional reaction coordinate, since Q(X) is only approximately an r-dimensional
manifold; more precisely, it lies in the ε-neighborhood of an r-dimensional submanifold M
of L1. Hence, also E(Q(X)) is only approximately an r-dimensional manifold; see the
magenta regions in Figure A.5.

X ⊂ Rn L1 R2r+1

b x

Lz = Q−1(z)

Q(x) = z
ẑ = ξ(x)

M M̂

Q E

Q(X)

b
Q(Lz) b

E(Q(X))

E(Q(Lz))

Figure A.5: How to make a good r-dimensional reaction coordinate out of E ◦Q? Given
the analysis from the previous section, we would like to make the level sets Lz of Q also
the level sets of ξ (red line segment). Unfortunately, we have no access to these.

The question now is how we can reduce E ◦ Q to an r-dimensional good reaction coor-
dinate. Since we know from above that ξ = E ◦ Q is a good reaction coordinate, let us
see what would be needed to construct it.

The property of ξ that we want is that it is constant along level sets Lz of Q, i.e.,
ξ|Lz = const (because this implies that it is a good reaction coordinate, cf. Corol-
lary A.4.12). Hence, if we could identify M̂ as an r-dimensional manifold in R2r+1, we
would project E(Q(x)) along E(Q(Lz)) onto M̂ — assuming that M̂ and E(Q(Lz)) inter-
sect in R2r+1 — to obtain ξ(x) as the resulting point (see Figure A.5, where we would
project along the red line on the right). Unfortunately, we have no access to Q (not to
mention that M̂ and E(Q(Lz)) need not intersect in R2r+1) and hence to its level sets Lz.
Thus, this strategy seems infeasible.

A computationally feasible reaction coordinate. What helps us at this point is that
there is a certain amount of arbitrariness in the definition of Q. Recalling Definition A.4.4,
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what we are given is Q, and we construct Q(x) as a projection of Q(x) onto the r-
dimensional manifold M by the closest-point projection Q′; i.e., Q = Q′ ◦ Q. This choice
of Q′ is convenient, because we can show

‖Q(x)−Q(y)‖L2
1/µ
≤ 2ε for every Q(x) = Q(y) (i.e., on level sets of Q′), (A.25)

which is used in Lemma A.4.7. Other choices of Q′ could, however, yield a similarly
practicable O(ε)-bound in (A.25). Our strategy will be to choose a specific r-dimensional
reaction coordinate ξ and to show that in general it can be expected to be a good reaction
coordinate.

Let us recall that, by assumption, the set Q(X) is contained in the ε-neighborhood
of an unknown smooth r-dimensional manifold M ⊂ L1(X). Thus, a generic smooth
map E : L1(X) → R2r+1 will embed M into R2r+1, forming a diffeomorphism from M
to M̂. Thus, E is going to map Q(X) to an O(ε)-neighborhood of M̂. This means, the r-
dimensional manifold structure of M̂ should still be detectable and can be identified with
standard manifold learning tools. We use the diffusion maps algorithm (see Section A.4.4
below), which gives us a map Ψ : R2r+1 → Rr (the diffusion map). Then we define ξ as

ξ := Ψ ◦ E ◦ Q. (A.26)

This is depicted on the right-hand side of Figure A.6, where the red dashed line shows
the level set L̂ẑ = {z ∈ R2r+1 : Ψ(z) = Ψ(ẑ)}.

X ⊂ Rn L1 R2r+1

b x

Q(x) = const.

Q(x)

ẑ = E(Q(x))M M̂

Q E

Q(X)

b

L̃ẑ

b

E(Q(X))
L̂ẑ = Ψ−1(ξ(x))

Figure A.6: The realized reaction coordinate ξ.

Next, we consider L̃ẑ := E−1(L̂ẑ) ∩ Q(X). It holds that L̃ẑ =
{
Q(x)

∣∣ ξ(x) = Ψ(ẑ)
}

.

Recall that E : M→ M̂ is one-to-one, thus L̃ẑ intersects M in exactly one point. We define
this one point as Q(x), and thus Q′ is the projection onto M along L̃ẑ. We see that Q is
well-defined and that Q(x) = Q(y)⇔ ξ(x) = ξ(y).

At this point we assume that E−1 is sufficiently well-behaved in a neighborhood of M̂,
it does not “distort transversality” of intersections, such that the diameter of L̃ẑ is O(ε)
with a moderate constant in O(·). We will investigate a formal justification of this fact in
a future work, here we assume it holds true, and we will see in the numerical experiments
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that the assumption is justified. This assumption implies that ‖Q(x)−Q(y)‖L2
1/µ

= O(ε)

for Q(x) = Q(y), i.e. for ξ(x) = ξ(y). Now, however, Lemma A.4.7 implies that ϕi is
almost constant (up to an error O(ε)) on level sets of ξ, which, in turn, by Lemma A.4.2
and Corollary A.3.6 shows that ξ is a good reaction coordinate.

A.4.4 Identification of M̂ through Manifold Learning

In this section, we describe how to identify M̂ numerically. The task is as follows: Given
that we have computed E(Q(xi)) = ẑi ∈ R2r+1 for a number of sample points {xi}`i=1 ⊂ X,
we would like to identify the r-dimensional manifold M̂, noting the points E(Q(xi)) are
in a O(ε)-neighborhood of M̂ (see Section A.4.3). Additionally, we would like an r-
dimensional coordinate function Ψ : R2r+1 → Rr that parameterizes M̂ (so that the level
sets of Ψ are transversal to M̂).

This is a default setting for which manifold learning algorithms can be applied. Many
standard methods exist; we name multidimensional scaling [102, 101], Isomap [181], and
diffusion maps [33] as a few of the most prominent examples. Because of its favorable
properties, we choose the diffusion maps algorithm here and summarize it briefly for our
setting in what follows. For details, the reader is referred to [33, 132, 32, 176].

Given sample points {ẑi}`i=1 ⊂ R2r+1, diffusion maps proceeds by constructing a simi-
larity matrix W ∈ R`×` with

Wij = h

(‖ẑi − ẑj‖22
σ

)
,

where ‖ · ‖2 is the Euclidean norm in R2r+1, σ > 0 is a scale factor, and h : R → R+

is a kernel function which is most commonly chosen as h(x) = exp(−x)1x≤R with a
suitably chosen cutoff R that sparsifies W and ensures that only local distances enter
the construction. With D being the diagonal matrix containing the row sums of W ,
the similarity matrix is then normalized to give W̃ = D−1WD−1. Finally, the stochastic
matrix P = D̃−1W̃ is constructed, where D̃ is the diagonal matrix containing the row sums
of W̃ . P is similar to the symmetric matrix D̃−1/2W̃ D̃−1/2, thus it has an orthonormal
basis of eigenvectors {ψi}`−1

i=0 with real eigenvalues γi. Since P is also stochastic, |γi| ≤ 1.
The diffusion map is then given by

Ψ : R2r+1 → Rr, Ψ(ẑ) = (γ1ψ1(ẑ), . . . , γrψr(ẑ))
ᵀ . (A.27)

Using properties of the Laplacian eigenproblem on M̂, one can show that Ψ indeed pa-
rameterizes the r-dimensional manifold M̂ for suitably chosen σ [33].

Remark A.4.14. The diffusion maps algorithm will only reliably identify M̂ based on
the neighborhood relations between the embedded sample points zi, if the points cover
all parts of M̂ sufficiently well. In particular, as pt(x, ·) and thus

(
E ◦Q

)
(x) vary strongly

with x traversing the transition regions, a good coverage of those regions is required.
For the various low-dimensional academical examples Section A.5, this is ensured by

choosing the xi to be a dense grid of points in X. For the high-dimensional example in
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Section A.5.2, the evaluation points are generated as a subsample from a long equilibrated
trajectory, essentially sampling µ. Both of these ad-hoc methods are likely to be unappli-
cable in realistic high-dimensional systems with very long equilibration times. However,
as we mentioned in the introduction, there exist multiple statistical and dynamical ap-
proaches to this common problem of quickly sampling the relevant parts of phase space,
including the transition regions. Each of these sampling methods can be easily integrated
into our proposed algorithm as a pre-processing step.

Fundamentally though, the central idea of our method does not depend crucially on
the applicability of diffusion maps. Rather, the latter can be considered an optional
post-processing step. Using the 2r + 1-dimensional reaction coordinate

ξ := E ◦ Q ,

i.e. (A.26) without the manifold learning step, may in practice already represent a suffi-
cient dimensionality reduction.

In addition, situations may occur where the a priori generation of evaluation points
is not possible or desired. One of the final goals and currently work in progress is the
construction of an accelerated integration scheme that generates significant evaluation
points and their reaction coordinate value “on the fly”. This is related to the effective
dynamics mentioned in fifth point of the conclusion. However, this also requires us to
be able to evaluate the reaction coordinate at isolated points, independent of each other,

and thus also necessitates the use of the above ξ instead of ξ.

A.5 Numerical Examples

Based on the results from the previous sections, we propose the following algorithm to
compute reaction coordinates numerically:

1. Let xi, i = 1, . . . , `, be the points for which we would like to evaluate ξ. Here, we
assume the points satisfy the requirements addressed in Remark A.4.14.

2. Choose linearly independent functions ηj ∈ L∞(X), j = 1, . . . , 2r+ 1. The essential
boundedness of the ηj is not necessary, but |ηj(x)| should not grow faster than a
polynomial as ‖x‖2 →∞.

3. In each point xi, start M simulations of length t and estimate Ej
(
Q(xi)

)
using (A.23)

and (A.24), to obtain the point ẑi ∈ R2r+1. We discuss the appropriate choice of M
and t in Section A.5.1.

4. Apply the diffusion maps technique from Section A.4.4 for the point cloud {ẑi}`i=1,
and obtain Ψ : R2r+1 → Rr, a parametrization of the point in its r essential direc-
tions of variation.

5. By (A.27), we define the reaction coordinate as

ξ : xi 7→ Ψ(ẑi) . (A.28)
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The numerical effort of this algorithm depends strongly on the third step. Given `
evaluation points, and a choice of M trajectories per point, the cost is mainly given by
M · ` · c(t), where c(t) is the effort of a single numerical realization of the dynamics up
to time t. The high-dimensional phase space only enters the algorithm as the domain of
the observables ηj . The cost of evaluating those typically very simple functions4 at the
M · ` end points of the trajectory is negligible. The cost of the method is thus essentially
independent of n.

In order to demonstrate the efficacy of our method, we compute the reaction coordinates
for three representative problems, namely a simple curved double-well potential, a multi-
well potential defined on a circle, both in low and high dimensions, and two slightly
different quadruple-well potentials stressing the difference between a one- and a two-
dimensional reaction coordinate.

A.5.1 Curved double-well potential

As a first verification, we consider a system with an analytically known reaction coordinate
that is then used for comparison. Consider the two-dimensional drift-diffusion process
(A.2) with potential

V (x1, x2) = (x2
1 − 1)2 + 2(x2

1 + x2 − 1)2

and inverse temperature β = 0.5. This potential already served as a motivational example
for the nature of reaction coordinates in the introduction and is shown in Figure A.1. The
system possesses two metastable sets around the minima (−1, 0)ᵀ and (1, 0)ᵀ, which are
connected by the transition path {x ∈ R2 | x2 = 1−x2

1}. The implied time scales, defined
in (A.3), can be computed from the eigenvalues using a standard Ulam-type Galerkin
discretization [92, 93] of the transfer operator T t and are shown in Figure A.7a5. We
observe a significant gap between t1 and t2 and thus identify t1 as the last slow and t2 as
the first fast time scale. Choosing the lag time t = 2 then satisfies tslow > t > tfast. A
visual inspection of a typical trajectory of length t starting in one of the two metastable
sets as shown in Figure A.7b confirms that the respective set is sampled, yet a transition
to the other set is a rare event.

The low dimension of the system allows us to compute the reaction coordinate on a
full regular grid over the phase space. We choose a 40× 30 grid in the rectangular region
[−2, 2] × [−1, 2] and denote the set of grid points by X. For this system, we expect a
one-dimensional transition path and thus a one-dimensional reaction coordinate ξ. That
is, r = 1 and 2r + 1 = 3. Thus, we choose three linear observables in our embedding

4In our examples, we used linear functions with great success.
5In realistic, high-dimensional systems, the computation of the dominant eigenvalues using grid-based

methods is likely infeasible. In these situations, the implied time scales have to be estimated, for
example using standard Markov State Model techniques [16].
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a)

t0 ∞
t1 6.1823
t2 0.9066
t3 0.6098
t4 0.3976

b)

Figure A.7: a) Implied time scales of the double-well system. b) Trajectory of length t =
1.

function (A.21), e.g.,

η1(x1, x2) = −0.2630x1 − 0.3186x2,

η2(x1, x2) = −0.2246x1 + 0.0969x2,

η3(x1, x2) = 0.1564x1 + 0.0783x2,

(A.29)

whose coefficients were drawn uniformly from [−1, 1]. The expectation value in (A.23) is
approximated by a Monte Carlo quadrature using M = 105 sample trajectories for each
grid point, cf. (A.24). The parameter M was chosen such that the error in (A.24), com-
monly defined as the variance of the Monte Carlo sum, is sufficiently low. The resulting
embedding of the grid points x into R3 is shown in Figure A.8. The transition path seems
to be already parametrized well by the individual components of E ◦Q.

(
E1 ◦ Q

)
(x)

(
E2 ◦ Q

)
(x)

(
E3 ◦ Q

)
(x)

Figure A.8: The individual components of the embedding E◦Q on the grid points x ∈ X.

For this example, the image of X under E ◦ Q should form a compact neighborhood of
the one-dimensional manifold E(M), as described in Section A.4.3. The one-dimensional
structure in E

(
Q(X)

)
is clearly visible, see Figure A.9a. To identify the one-dimensional

coordinate along this set the diffusion map algorithm is used. Let Ψ1 :
(
E ◦ Q)(X) → R

denote the first diffusion map coordinate on the embedded grid points, also visualized in
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Figure A.9a. The final reaction coordinate, shown in Figure A.9b, is then given by

ξ(x) := Ψ1

((
E ◦ Q

)
(x)
)
, x ∈ X.

a)

b)

Figure A.9: a) The embedded grid points colored according to the first diffusion map
coordinate. b) The final reaction coordinate ξ.

Legoll and Lelièvre [109] show that the effective dynamics based on the reaction coor-
dinate

ξ∗(x) = x1 exp(−2x2)

accurately reproduces the long-time dynamics of the full process — although they do
not use dominant eigenvalues of the transfer operator in their argumentation. It is easy
to verify that the level sets of ξ∗ traverse the transition path orthogonally. Figure A.10
compares the level sets of ξ and ξ∗. While the two reaction coordinates have different
absolute values, their contour lines coincide well. As the projection operator Pξ only
depends on the level sets of ξ, the projected transfer operators T t

ξ
and T tξ∗ should be

similar as well.

Projected eigenvalue error. To conclude this example, we compute the dominant spec-
trum of the projected transfer operator and compare it to the spectrum of the full transfer
operator. To discretize T t

ξ
, we use a simple Ulam-type discretization scheme based on

a long equilibrated trajectory of the full dynamics. Recall from Section A.3.2 that, al-
though T tξ formally acts as an operator on functions over X, it is constant along level sets

of ξ, and thus can be treated as an operator on functions over Rr. For completeness, we
state the rough outline of an algorithm that we used to approximate T t

ξ
. An introduction
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ξ ξ∗

Figure A.10: Selected contour lines (black) of the newly identified reaction coordinate
ξ and the reference reaction coordinate ξ∗.

to Ulam- and other Galerkin-type discretization schemes for transfer operators can be
found, e.g., in [92].

1. Compute points X := {Φ(kτ)x0 | k = 1, . . . , N}, a discrete trajectory with step size
τ of the full phase space dynamics that adequately samples the invariant density %.

2. Compute the reaction coordinate ξ on the points X.

3. Divide the neighborhood of ξ(X) into boxes or other suitable discretization elements
{A1, . . . ,AN} and sample the boxes from the trajectory, i.e. compute

Xi := {x ∈ X | ξ̄(x) ∈ Ai} .

4. Count the time-t-transitions within X between the boxes (where t is a multiple of
τ), i.e. compute the matrix

(
T t
ξ

)
ij

:= #
{
x ∈ Xi | Φtx ∈ Xj

}
.

5. After row-normalization, the eigenvalues of T t
ξ

approximate the point spectrum

of T t
ξ

.

Remark A.5.1. Note that the equilibrated trajectory X is typically unavailable for more
complex systems. In practice, one would replace steps 1 and 2 by directly computing a
reduced trajectory Z = {z1, . . . , zN} ⊂ Rr whose statistics approximate that of ξ

(
X
)
. The

formulation of a reduced numerical integration scheme to realize this is currently work in
progress (see the fifth point in the conclusions).
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For our example system, we compute X as a N = 106 step trajectory with step size
τ = 10−2 using the Euler-Maruyama scheme. However, to reduce the numerical effort, ξ
is computed only on a subsample of X (104 points) and extended to X by nearest-neighbor
interpolation. On X, the image of the ξ is contained in the interval [−0.04, 0.04], which
we discretize into M = 40 subintervals of equal length. The spectrum of the full transfer
operator T t was computed using the standard Ulam method over a 40× 30 uniform box
discretization of the domain [−2, 2]× [−1, 2]. With the choice t = 1 for the lag time, the
spectral gap is clearly visible.

We observe in Figure A.11 that the eigenvalues of T t
ξ

and T t are in excellent agreement.

Not only the dominant eigenvalues λ0, λ1 are approximated well (as predicted by Lemma
A.3.5), but also the further subdominant eigenvalues that are not covered by our theory.
In particular, the reaction coordinate ξ provides a better approximation to the spectrum
of T t than other, manually chosen reaction coordinates: Figure A.11 also shows the
eigenvalues of the projected transfer operator associated with the reaction coordinates

ζ1(x) := x1 and ζ2(x) := x1 + x2.

We see that these are consistently outperformed by the computed reaction coordinate ξ
(although it appears that ζ1 already is quite a good reaction coordinate).

a)

b)

λ1

T t 0.8503

T t
ξ

0.8461

T tζ1 0.8377

T tζ2 0.7252

Figure A.11: a) Comparison of the two dominant and first four non-dominant eigenval-
ues of the full transfer operator T t and the projected transfer operators T t

ξ
, T tζ1 , T tζ2 . b)

Detailed comparison of the second eigenvalue of the various transfer operators.
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a) b)

Figure A.12: a) Longtime trajectory of the diffusion process with the circular seven-well
potential. b) The contour lines of ξ1 (black) and ξ2 (red) show that ξ is almost constant
on the metastable sets, but resolves the transition regions well.

A.5.2 Circular potential

Let us now compute the reaction coordinates for the multi-well diffusion process described
in Example A.4.1. The corresponding k-well potential is defined as

V (x) = cos (k arctan(x2, x1)) + 10

(√
x2

1 + x2
2 − 1

)2

.

We use k = 7, for which the potential is shown in Figure A.2a. The potential as well as the
dominant eigenvalues of the corresponding transfer operator clearly indicate the existence
of seven metastable sets, yet a typical longtime trajectory, shown in Figure A.12a, suggests
a one-dimensional transition path, the unit circle B1. We demonstrate that with our
method, a reaction coordinate of minimal dimension can be computed.

We again choose the inverse temperature β = 0.5 and perform the same analysis as
in the previous subsection. For this system, a time scale gap between t6 ≈ 1.53 and
t7 ≈ 0.05 can be found. We thus choose the intermediate time scale t = 0.1. Since we
again expect a one-dimensional transition path, the three observables (A.29) are used for
the embedding of M. We use the grid points of a 40× 40 grid, denoted again by X, over
the region [−2, 2]× [−2, 2] as our test points.

The individual components of the embedding E ◦ Q are shown in Figure A.13. The
embedded grid points, seen as the individual points in Figure A.14a, seem to concentrate
around a one-dimensional circular manifold and thus reveal the one-dimensional nature
of the reaction coordinate. Although slightly unintuitive, the diffusion maps algorithm
now identifies two significant diffusion map components, as shown in Figure A.14a. The
reason is that the circular manifold cannot be embedded into R1, so that a two-component
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A Transition manifolds of complex metastable systems

coordinate is necessary to parametrize it. Figure A.12b shows some contour lines (of
equidistant values) of the two components of ξ. We see that ξ is almost constant on the
seven metastable sets, but resolves the transition regions well.

(
E1 ◦ Q

)
(x)

(
E2 ◦ Q

)
(x)

(
E3 ◦ Q

)
(x)

Figure A.13: The individual components of the embedding E ◦ Q on the grid points
x ∈ X.

Parametrization of the dominant eigenfunctions. Next, we experimentally investigate
how well the dominant eigenfunctions ϕi of T t can be parametrized by the numerically
computed reaction coordinate ξ. If the eigenfunctions are almost functions of ξ, then
by Lemma A.4.2 and Corollary A.3.6 the reaction coordinate is suitable to reproduce all
the dominant time scales. To this end, we compute the dominant eigenfunctions ϕj , j =
0, . . . , d by the Ulam-type Galerkin method (as in the previous example), and plot ϕj(xi)
against ξ(xi). Note that due to the reasons discussed above, the range of ξ is a one-
dimensional manifold in R2. If ϕj can be parametrized by ξ̄, we expect that ϕj(xi1) ≈
ϕj(xi2), whenever ξ̄(xi1) ≈ ξ̄(xi2). The result is shown in Figure A.15. We clearly see
the functional dependency of the first seven (i.e., the dominant) eigenfunctions on the
reaction coordinate.

Circular potential in higher dimensions. The identification of reaction coordinates is
not limited to two dimensions. To show that our method can effectively find the reaction
coordinates in high-dimensional systems, we extend the 7-well potential to ten dimensions
by adding a quadratic term in x3, . . . , x10:

V (x) = cos (7 arctan(x2, x1)) + 10

(√
x2

1 + x2
2 − 1

)2

+ 10
10∑

j=3

x2
j .

We expect the one-dimensional circle {x ∈ R10 | x2
1 + x2

2 = 1, xj = 0, j = 3, . . . , 10}
to be the transition path and accordingly choose a three-dimensional linear observable
η(x) = A · x, A ∈ R3×10, where the coefficients Aij were again drawn uniformly from
[−1, 1].
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A.5 Numerical Examples

a)
b)

c)
d)

Figure A.14: Left column: The embedded grid points E(Q(X)). The coloring shows the
a) first and c) second significant diffusion map on the points. Right column: The b) first
and d) second components of the final reaction coordinate ξ.

In ten dimensions, the computation of the reaction coordinate on all points of a regular
grid is no longer possible due to the curse of dimensionality, and neither is the visualization
of this grid. Instead, we compute ξ on 105 points sampled from the invariant measure
and plot only the first three coordinates. Let this point cloud be called X.

Performing the standard procedure, i.e. embedding X into R3 and identifying the one-
dimensional core using diffusion maps, a two-component reaction coordinate is identified.
Coloring the first three dimensions of X by ξ (Figure A.16a,b), we see that the expected
reaction pathway is indeed parametrized. This pathway as well as the seven metastable
states can also be recognized in a plot of the components of ξ(X) plotted against each
other, indicating that the information about the dominant eigenfunctions, thus the long-
time jump process, is indeed retained by ξ.
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ϕ0 vs. ξ̄ ϕ1 vs. ξ̄ ϕ2 vs. ξ̄

ϕ3 vs. ξ̄ ϕ4 vs. ξ̄ ϕ5 vs. ξ̄

ϕ6 vs. ξ̄ ϕ7 vs. ξ̄ ϕ8 vs. ξ̄

Figure A.15: Black dots: The values of the first nine eigenfunctions of T t plotted
against ξ(xi), xi ∈ X. The blue markers indicate the ξ(xi) in the bottom plane. The
seven dominant eigenfunctions (ϕ0 to ϕ6) seem to have a smooth dependency on ξ. In
contrast, the values of the non-dominant ϕ7 and ϕ8 vary substantially over individual
level sets of ξ.
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A.5 Numerical Examples

a) b) c)

Figure A.16: a) & b) The two components ξ1 and ξ2 on the sampling points X. The
picture shows the first three dimensions of x, but is qualitatively the same when replacing
x3 by xj , j = 4, . . . , 10. c) The values of ξ1 and ξ2 on X plotted against each other.

A.5.3 Two quadruple well potentials

Our theory is based on the existence of an r-dimensional transition manifold M in L1(X)
around which the transition probability functions concentrate. In Appendix A.B, we
argued that the existence of an r-dimensional transition path suffices to ensure the exis-
tence of M. Here we illustrate how the existence of the transition path is reflected in the
embedding procedure.

For this we consider the “hilly” and “flat” quadruple well potentials

V1(x) = (x2
1 − 1)2 + (x2

2 − 1)2 + 5 exp(−5
(
x2

1 + x2
2)
)

and

V2(x) = 1− exp
(
− 10

(
(x1 − 1)2 + (x2 − 1)2

)2)− exp
(
− 10

(
(x1 − 1)2 + (x2 + 1)2

)2)

− exp
(
− 10

(
(x1 + 1)2 + (x2 + 1)2

)2)− exp
(
− 10

(
(x1 + 1)2 + (x2 − 1)2

)2)
.

Both systems possess metastable sets around the four minima (±1,±1), but V1 con-
fines its dynamics outside of the metastable sets onto a one-dimensional transition path,
whereas V2 does not impose such restrictions on the dynamics (see Figure A.17). For
both potentials the time t = 1 lies inside the slow-fast time scale gap. Assuming a
one-dimensional transition manifold (wrongfully for V2), we use the three linear observ-
ables (A.29). A 40 × 40 grid on [−2, 2] × [−2, 2] is used as evaluation points for ξ. The
embedding of these points by E ◦ Q can be seen in Figure A.18. We observe a one-
dimensional structure in the case of the “hilly” potential V1, whereas the embedding
points of the “flat” potential V2 lie on a seemingly two-dimensional manifold. As these
embeddings are approximately one-to-one with the respective transition manifolds M, we
conclude that in the case of V1 the manifold M must be one-dimensional, whereas for V2

it is two-dimensional.
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V1 V2

Figure A.17: The two quad-well potentials V1 and V2 possess qualitatively different tran-
sition regions.

A.6 Conclusion

Our main contributions in this paper are:

(a) We developed a mathematical framework to characterize good reaction coordinates
for stochastic dynamical systems showing metastable behavior but no local separa-

a) b)

Figure A.18: Embedding of the grid points for the a) “hilly” and b) “flat” four well
potential. A one-dimensional structure is only visible in a), i.e. in the presence of a
one-dimensional transition path.
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A.6 Conclusion

tion of fast and slow time scales.

(b) We showed the existence of good low-dimensional reaction coordinates under certain
dynamical assumptions on the system.

(c) We proposed an algorithmic approach to numerically identify good reaction coordi-
nates and the associated low-dimension transition manifold based on local evaluation
of short trajectories of the system only.

Our numerical examples show how the procedure works, that it can be used in higher
dimensions, and the examples give further evidence that the dynamical assumptions
from (b) are valid in many realistic cases. The application of our approach to relevant
biomolecular problems, e.g. in protein folding, is ongoing work.

Apart from the application to actual molecular systems, there are several open questions
and challenges, which we will address in the future:

• A rigorous mathematical justification for the dynamical assumption in Definition A.4.4
in terms of the potential V and the noise intensity β−1 in (A.2) would be desirable.
This seems to be a demanding task, as the interplay between potential landscape and
the thermal forcing is nontrivial. For β−1 → 0 the problem can be handled by large de-
viation approaches; however, understanding increasing β−1 is challenging: the strength
of noise increases, and additional transitions between metastable sets become more
probable, as the barriers in the potential landscape become less significant, and thus
the reaction coordinate may increase in dimension.

• Also related to the previous point, the choice of the correct lag time t is crucial.
Choosing the time too small, the concentration of the transition densities near a low-
dimensional manifold in L1 may not have happened yet, but a too large lag time has
severe consequences for the numerical expenses. If no expert knowledge of a proper lag
time t is available, it has to be identified in a pre-processing step, for example using
Markov State Model techniques [16].

• As discussed in the last part of Section A.4.3 and in Figure A.6, we need the embed-
ding E not to distort transversality close to the transition manifold M too much, such
that the realized reaction coordinate ξ is indeed a good one. Theoretical bounds shall
be developed. This problem seems to be coupled with the problem of how to control
the condition number of the embedding and its numerical realization.

• The dimension r of the reaction coordinate may not be known in advance, hence we
need an algorithmic strategy to identify this on the fly. Fortunately, once the sampling
has been made, the evaluation of the embedding mapping E , and finding intrinsic
coordinates on the set of data points embedded in Rk has a negligible numerical effort,
hence different embedding dimensions k can be probed via (A.21). Theorem A.4.10
suggests that if the identified dimension of the reaction coordinate is smaller than k/2,
then a reaction coordinate of sufficient dimension has been found.
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• To benefit from the dimensionality reduction of the reaction coordinate ξ, the dynamics
that generates the reduced transfer operator T tξ has to be described in closed form. We
are planing to employ techniques based on the Kramers–Moyal extension [199] to again
receive an SDE for a stochastic process on Rr.

• The embedding mapping E is evaluated by Monte Carlo quadrature (A.24). Although
Monte Carlo quadrature is known to have a convergence rate independent of the un-
derlying dimension n of X, there is still an impact of the dimension on the practical
accuracy. This we shall investigate as well.
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A.A Properties of Pξ

Proof of Proposition A.3.4. (a) This property has been shown by Zhang [199] as well,
we include the short reasoning for completeness. The linearity of Pξ is obvious. The
property P 2

ξ = Pξ follows from (A.8) by noting that Pξf is constant on Lz and that µz is
a probability measure for every z.

(b) From (A.10) we have for f, g ∈ L2
µ(X) that

〈Pξf, g〉µ =

∫

X
Pξf(x)g(x) dµ(x)

(A.10)
=

∫

ξ(X)
Γ(z) ̂Pξ(gPξf)(z) dz

(∗)
=

∫

ξ(X)
Γ(z)P̂ξf(z)P̂ξg(z) dz , (A.30)

where (∗) follows from the linearity of Pξ, and the fact that Pξf |Lξ(x) = const, thus

̂Pξ(gPξf)(z) = P̂ξf(z)P̂ξg(z). Expression (A.30) is symmetric in f and g, hence it follows
that 〈Pξf, g〉µ = 〈f, Pξg〉µ.

(c) We first prove that Pξ is an orthogonal projection:

〈Pξf, f − Pξf〉µ
(b)
= 〈f, Pξf − P 2

ξ f〉µ
(a)
= 〈f, Pξf − Pξf〉µ = 0 .

Thus,
‖f‖2L2

µ
= ‖f − Pξf‖2L2

µ
+ ‖Pξf‖2L2

µ
≥ ‖Pξf‖2L2

µ
,

and the claim follows.
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A.B On the existence of reaction coordinates

A.B On the existence of reaction coordinates

To motivate the existence of low-dimensional reaction coordinates, let us assume that the
dynamics of consideration has d + 1 metastable regions C0, . . . ,Cd ⊂ X. Let C =

⋃
iCi.

For a selected lag time t > 0 we make the following two assumptions:

1. Fast local equilibration: If x is in (or close to) Ci then we have

Ptδx ≈ %qsi

where %qsi is the quasi-stationary density of the metastable core Ci:

lim
s→∞

P
[
Xs = y

∣∣ τCi > s
]

= %qsi (y)dy

with τCi being the (random) exit time from the set Ci.

2. Slow transitions: The typical transition time to reach C \Ci when starting in Ci is
larger than t. In other words, t is such, that if the process Xs transitions from x to
some Ci, it did not transition through some other Cj with high probability.

These two assumptions essentially say that t is much larger than the fast time scales of
the system, but smaller than the dominant time scales. It follows that, for any x ∈ X,

Ptδx ≈
d∑

i=0

qi(x)%qsi ,

d∑

i=0

qi(x) = 1 ,

where by assumption 2) the coefficients qi(x) are given by the committor functions

qi(x) = P
[
Xt reaches Ci before C \ Ci

∣∣X0 = x
]
.

We say that Ptδx is an r-dimensional structure in L1(X) if there is a function ξ : X→ Rr
that jointly parametrizes all the committor functions, i.e., qi = q̃i ◦ ξ with q̃i : Rr → R. If
this is the case, then

Q(x) = Ptδx ≈
d∑

i=0

q̃i(ξ(x))%qsi =: Q(x)

and clearly dim(Q(X)) ≤ r since dim(ξ(X)) = r. Moreover, r ≤ d since we can explicitly
construct ξ : X → Rd as ξ = (q1, . . . , qd). This obviously parameterizes q1, . . . , qd, and it
also parameterizes q0 since q0 = 1−∑d

i=1 qi.
However, r may also be smaller than d. As an example, consider the potential with

4 minima shown in Figure A.19 on the left. At low temperatures, the “hilly” potential
energy landscape confines all transitions between the minima C0, . . . ,C3 to a narrow
region close to the red square connecting the four minima. Figure A.19 shows the level
sets of q0, the level sets of the other committors are given by the rotational symmetry
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of the problem. All four committors can be jointly parameterized by a single coordinate
ξ which describes clockwise movement along the red square and is constant orthogonal
to it. Therefore, r = 1. Figure A.19 on the right shows the situation with a “flat”
energy landscape. Transition paths between the minima are no longer confined to a one-
dimensional structure, and the committor level sets are more complicated. We can no
longer parameterize all four committors with a single coordinate ξ, so r > 1. On the other
hand, dim(X) = 2 so r = 2.
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Figure A.19: A potential energy landscape with four minima (black contours) and level
sets of q1 (colored contours). Left: The “hilly” landscape structure confines transition
pathways to a narrow region close to the red square connecting the four minima. As a
result, all committor level sets are orthogonal to this main transition path. Right: “Flat”
landscape structure with more complicated level sets of the committors.

This structural difference of the potentials can also be seen when applying our algorithm
to construct the reaction coordinate ξ, see Figure A.18 and Section A.5.3.
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