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GRAPHICAL ABSTRACT

The influence of Roundup was investi-
gated at a relevant concentration.
Microbiota effects were investigated in a
colon simulating bioreactor model.

No discernable effect on community
taxonomy and enzymatic repertoire.
No discernable effect on short-chain
fatty acids, amino acids and bile acids.
Subtle effects were observed on the
metabolome.
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Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of
various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the
most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function
can have serious consequences on their health, not to mention the economic effects. Recent studies that ad-
dressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information.
Therefore, we chose an experimental design with a short incubation time in which effects on the community
structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived
from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from
Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles
aworst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal
fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-
metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the
single cell level by microbiota flow cytometry.

Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated micro-
biota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate syn-
thase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino
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acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some

effects on the functional level.

This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the condi-

tions applied.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since 2015, the debate about possible health risks of glyphosate for
humans and livestock has come into the medial focus (Tarazona et al.,
2017). Glyphosate-based herbicides are the most frequently used pesti-
cide group worldwide (Benbrook, 2016) with applications ranging from
agricultural to non-agricultural applications (Hanke et al., 2010). Conse-
quently, it enters the organisms after the consumption of contaminated
food or fodder (Licht and Bahl, 2019; Claus et al., 2016). In humans, but
also in cows and rats, glyphosate is primarily taken up via the diet
(Brewster et al., 1991) and therefore the intestinal microbiota is espe-
cially prone to exposure. Glyphosate targets the enzyme 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS) from the shi-
kimate pathway and thus blocks the synthesis of the aromatic amino
acids tyrosine, phenylalanine and tryptophan (Amrhein et al., 1980).
As only organism group, animals lack the shikimate pathway and thus
the EPSPS. Hence, to date glyphosate is considered safe for humans
and animals (Myers et al., 2016). Similar to plants, most microorgan-
isms use the shikimate pathway to synthesize aromatic amino acids.
Two classes of the EPSPS exist in bacteria: the glyphosate sensitive
class I EPSPS (Funke et al., 2009) and the glyphosate insensitive class
IT EPSPS (Priestman et al., 2005). Glyphosate has antimicrobial proper-
ties (US patent 7771736 B2) and thus could potentially affect growth
of sensitive species e.g. in the intestine. Several studies have investi-
gated the effect of glyphosate acid or glyphosate-based formulations
on the intestinal microbiota (Tsiaoussis et al., 2019) in vivo and
in vitro studies at different concentrations and in different species, not
surprisingly leading to contrary results.

In vivo studies pose four major challenges when assessing
microbiota-modulating effects. First, host effects can distort the conclu-
sions drawn from analyzing the taxonomic or functional parameters of
the microbiota (Payne et al., 2012). Second, cage-effects coming from
animal housing and exposure in separate treatment groups can facili-
tate the misinterpretation of results. Third, the characterization of the
initial microbiota, to discriminate treatment-related community shifts
from normal variation, is often neglected. Fourth, microbiota at differ-
ent facilities from different animal strains might respond differently
(Macpherson and McCoy, 2015). One option to address these chal-
lenges is to use in vitro cultivation systems with defined cultivation pa-
rameters. This allows the long-term cultivation of microbiota and the
investigation of acute or chronic microbiota modulating effects coming
from the exposure itself (Payne et al., 2012).

Healthy intestinal microbiota shows a high inter-individual taxo-
nomic variability between individual hosts, though they share the
same “healthy” functional repertoire (Qin et al., 2010; Turnbaugh
et al,, 2007). Thus, microbial communities can shift in their distribution
of taxa and still exhibit “healthy” functional properties for the host. Con-
sequently, these alterations might be considered neutral, beneficial or
harmful, depending on their contribution to a diseased state (Levy
et al,, 2017; Lozupone et al., 2012). Therefore, concentrating on the
functional repertoire is essential to identify non-healthy states (Levy
et al., 2017; Lozupone et al., 2012). The effect of glyphosate on microor-
ganisms was investigated in vitro on pure bacterial batch cultures from
poultry (Shehata et al., 2013) and continuous cultures of bovine rumen
microbiota (Riede et al.,, 2016). However, the latter study primarily fo-
cused on taxonomic changes upon glyphosate exposure.

Over the past decade, culture-independent methods like metagenomics,
metatranscriptomics, metaproteomics, meta-metabolomics (hereafter

metabolomics) and cytomics have been developed to investigate func-
tional and structural properties in microbiota. Metagenomics captures
the potential physiology of a microbiota but lacks the discrimination be-
tween live and dead cells (Xu, 2006). Even though the metagenome-
based prediction of functionality has improved, there is still a great
need to verify the potential activity by analyzing the functional activity
(Franzosa et al., 2015). Metatranscriptomics allows time-point specific
insights into the transcriptional regulation of the microbiota, but still
lacks the functional proof (Bashiardes et al, 2016), whereas
metaproteomics provides real functional information and furthermore
provides information on the taxonomy by analyzing microbial enzymes
(Heintz-Buschart and Wilmes, 2018; von Bergen et al., 2013). Metabo-
lomics complements metaproteomics by measuring the metabolites
arising from enzymatic activity (Yadav et al., 2018). Cytomics captures
microbial community structure variations on the single-cell level by
measuring optical characteristics, but does not resolve functional pro-
cesses performed in individual bacterial cells (Koch et al., 2013).

With our approach, we circumvent possible challenges from
in vivo exposure and analyze the effects of Roundup® LB plus on con-
tinuously cultivated pig colonic microbiota. We analyzed the taxo-
nomic distribution as a baseline analysis and focused on functional
effects by the application of a comprehensive multi-omics approach.
Therefore, in this study, we acutely exposed pig microbiota to
Roundup® LB plus at a reasonable high concentration of 228 mg/d
glyphosate equivalents. The species composition was assessed by
16 STRNA gene profiling and the enzymatic repertoire and the subse-
quent metabolites by metaproteomics and metabolomics.

2. Materials and methods
2.1. Chemicals and reagents

Acetonitrile, methanol, ammonium acetate and ammonium hydrox-
ide were purchased from Sigma Aldrich (St.Louis, MO, USA). Solvents
for mass spectrometry were of analytical grade purity. Experimental
water (resistivity 18.2 MQcm) was purified using a Milli-Q-System
(Millipore, Milford, MA, USA).

For in vitro exposure of intestinal microbiota, the glyphosate-based
herbicide Roundup® LB plus (Monsanto Agrar Deutschland GmbH,
PZN 250524, approval number 024142-60) was used. Roundup® LB
plus is a mixture of water (42.5%), glyphosate isopropylamine salt
(41.5%), and surface-active-ingredient (16%; safety data sheet,
MONSANTO Europe, 14.10.2015).

For glyphosate quantitation, a standard stock solution of Roundup®
LB plus (10 pg/mL) was prepared in Milli-Q water. Glyphosate (N-
(phosphonomethyl)-glycine) was obtained from Glentham Life Sci-
ences Ltd. (Wiltshire, UK). Standard stock solutions (10 pg/mL) were
prepared in Milli-Q water and stored at —20 °C. Working dilutions
were prepared in Milli-Q-water before use.

2.2. Bioreactor model of pig colonic microbiota

Colon content of two 8 to 9 week old male German Landrace pigs
(Landesamt fiir Gesundheit und Soziales, number H0005/18) was sam-
pled, directly put under anaerobic conditions (AnaeroGen 2.5 L; Thermo
Scientific) and stored at —80 °C.

Four parallel and independent 250 mL bioreactor vessels of a
Multifors 2 bioreactor system (Infors, Bottmingen Switzerland) were
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set-up under anaerobic conditions with sterile complex intestinal me-
dium adjusted to pig (CIM, Supplemental Table 1). Anaerobic conditions
were maintained by constant gassing of bioreactor vessels and reservoir
bottles with sterile nitrogen. Cultivation temperature was set to 37 °C
and pH was adjusted to 6.5 by automatic addition of 1 M sodium hy-
droxide. Constant stirring at 150 rpm prevented settling of bacteria.
The bioreactors were run under experimental conditions for 24 h to
prove sterility (sterile run: S, Fig. 1A).

Colon content was thawed anaerobically (37 °C, 60 min) and slurry
equal to 1 g colon content was mixed with the double amount of pre-
warmed CIM. Coarse material was given 2 min of settling and then the
whole supernatant was used to inoculate two bioreactors with bacteria
suspension from 0.5 g colon content per bioreactor. The community was
given 24 h to establish and then continuous cultivation started at a dilu-
tion rate of D = 0.02 (residence time of 48 h, (Wilfart et al., 2007)). The
communities were cultivated for a total of 25 days. After ten bioreactor
turn-over (day 21 4 1), the bioreactor system were considered to be at
steady state (McNeil and Harvey, 2008) and the days 20-22 resemble
the control phase. After sampling on day 22, the communities were ex-
posed to Roundup® LB plus. Therefore, Roundup® LB plus war spiked
into the bioreactor vessels and supplied with the medium feed to main-
tain the defined concentration during the treatment phase days 23 to 25
(Fig. 1A).

The applied concentration was chosen on the basis of the calcu-
lated maximal dietary burden of 2.85 mg/kg body weight per day re-
corded by EFSA (Authority, 2018). This value was applied to an 80 kg
pig resulting in a daily exposure of 228 mg glyphosate. This study
aims to identify microbiota-modulating properties of the frequently
applied glyphosate-formulation Roundup® LB plus and hence the
amount of 228 mg/d glyphosate-equivalents from Roundup® LB
plus (1.8 mg/mL in feed medium) was fed into the bioreactors.

3

Samples were taken in a multiple of 24 h, starting with an initial
sampling after one day and during the control and treatment phase.
For 16S rRNA gene profiling, short chain fatty acid (SCFA) analysis,
untargeted metabolomics and metaproteomics samples were centri-
fuged (5000g, 5 min, 4 °C). Cell pellets without supernatant were stored
directly at —20 °C for 16S rRNA gene profiling and metaproteomics,
whereas the supernatants for metabolomics were stored at —80 °C.

2.3. Microbiota flow cytometry

Immediately after sampling, bacteria were pelleted (3200 xg,
10 min, and 4 °C) and preserved in 2% formaldehyde (stock: 8% formal-
dehyde at pH 7, diluted with PBS (6 mM Na,HPO,, 1.8 mM NaH,PO,4 and
145 mM NaCl in bi-distilled water, pH 7)) at RT for 30 min. Afterward,
the bacteria were centrifuged (3200g, 10 min, and 4 °C) and fixed in
70% ethanol for long-term storage at —20 °C.

After a minimum of one day at —20 °C, the bacteria were washed
with PBS, treated by ultra-sonication, OD adjusted (ODs700nm (dcuvette =
0.5 cm) = 0.035), treated for 20 min at RT with permeabilization buffer
containing 0.11 M citric acid and 4.1 mM Tween20 and stained with
0.68 UM 4’,6-di-amidino-2-phenyl-indole (DAPI, Sigma-Aldrich, St-
Louis, USA) overnight in the dark. Measurement and data analysis
were performed as in (Krause et al., 2020) except changed neutral den-
sity filter for side scatter (ND 1.9). Raw cytometric data and gate tem-
plates can be found at flow repository ID: FR-FCM-Z2L4 under:
https://flowrepository.org.

24. Targeted glyphosate measurements

The analysis of glyphosate and AMPA by LC-MS/MS was done as pre-
viously described (Fritz-Wallace et al., 2020). In brief, 10 pL of the
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Fig. 1. Experimental setup and analysis of community steady state before Roundup treatment. A: After the sterile run (S) all bioreactors A, B, C and D were inoculated with pig colonic
microbiota and given time for adaptation. B: Whether the communities reached a steady state was determined before treatment by principal component analysis (PCA) of microbiota

flow cytometry data and short chain fatty acid abundances.
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resuspended extract were injected onto a BEH Amide column
(2.1 x 100 mm, 1.7 um) supplied by Waters (Milford, USA). Chromato-
graphic separation was performed with a gradient of solvent A (66%
H,0, 33% acetonitrile, 10 mM ammonium acetate, 0.04% ammonium hy-
droxide; pH 9) and solvent B (10% H,0, 90% acetonitrile, 10 mM ammo-
nium acetate, 0.04% ammonium hydroxide; pH 9). The LC was run at a
constant flow rate of 0.4 mL/min. Initial equilibration for 2 min with 0%
B, within 2.5 min gradient from 0 to 100% solvent B, hold 100% solvent
B for 2 min, back to 0% solvent B for 3.4 min. MRM measurement of glyph-
osate was done on a QTRAP® 5500 (AB Sciex, Framingham, USA) in neg-
ative ionization mode. Data acquisition and analysis were performed in
Analyst® Software (AB Sciex, Framingham, USA, version 1.6.2).

2.5. 16 S rRNA gene profiling

Bacteria pellets were thawed and one volume of bacteria slurry was
mix with 30 volumes of sterile 10% Chelex (w/v) solution. After incuba-
tion in a ThermoMixer® (Eppendorf, Hamburg, Germany) at 95 °C for
45 min and 1000 rpm shaking samples were centrifuged for 3 min at
11,000g. The DNA containing supernatant was transferred into a fresh,
sterile tube and stored at —20 °C.

The 16S gene region V3 to V4 was amplified with the primers 341F
and 806bR, sequencing was performed on an Illumina MiSeq DNA se-
quencer (Illumina, San Diego, USA). 16S amplicon generation, sequenc-
ing and analysis were done by StarSeq GmbH (Mainz, Germany). Raw
data analysis was done by StarSeq GmbH (Mainz, Germany) following
their standard data analysis pipeline. Briefly, raw data were de-
multiplexed, quality checked by FastQC, primers trimmed. Paired-end
reads were joined, low-quality reads were removed reads were
corrected, chimeras removed and Amplicon Sequence Variants (ASVs)
were obtained by the deblur workflow. Taxonomy was annotated to
the ASVs using the SILVA 138 database (Quast et al., 2013). The reads
counts per ASV with taxonomic annotation were normalized, by divid-
ing the read counts by sum of sequence in the given sample and multi-
plying by the minimum sum across all samples using the R scripts
from Rhea (Lagkouvardos et al., 2017). In addition, relative abundances
of each ASV and taxa were calculated using Rhea (Lagkouvardos
etal, 2017)

2.6. Metaproteomics

As described previously (Schape et al., 2019), thawed bacteria pel-
lets were dissolved in the 1000 pL lysis buffer (10 mM Tris-HCl, NaCl
2 mg/mL, 1 mM PMSF, 4 mg/mL SDS). For cell disruption following
steps were applied: 1. Bead beating (FastPrep-24, MP Biomedicals,
Santa Ana, USA: 5.5 ms, 1 min, 3 cycles), 2. 15 min incubation at 60 °C
(Thermomixer comfort 5355, Eppendorf, Germany) and 3. Ultra-
sonication (UP50H, Hielscher, Teltow, Germany; cycle 0.5, amplitude
60%). The protein concentrationwas determined with bicinchoninic
acid assay according to the manufacturer's instructions (Pierce™ BCA
Protein Assay Kit, Thermo Fisher Scientific, Waltham, USA). 100 pg pro-
tein was precipitated in acetone 1:5 (v/v) at —20 °C overnight and then
centrifuged (10 min, 14,000xg). The precipitate was dissolved in
Laemmli buffer and used for SDS-PAGE analysis, in-gel digestion and
protein purification with ZipTip® treatment (Haange et al., 2019).

Five g peptide lysate were injected into nanoHPLC (UltiMate 3000
RSLCnano, Dionex, Thermo Fisher Scientific, Waltham, USA). Peptides
were separated on a C18 reverse-phase trapping column (C18
PepMap100, 300 pm x 5 mm, particle size 5 pm, nano viper, Thermo Fi-
scher Scientific, Waltham, USA), followed by a C18 reverse-phase ana-
lytical column (Acclaim PepMap® 100, 75 pm x 25 cm, particle size
3 um, nanoViper, Thermo Fisher Scientific, Waltham, USA). Mass spec-
trometric analysis of peptides was performed on a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific, Waltham, USA) coupled to a
TriVersa NanoMate (Advion, Ltd., Harlow, UK) source in LC chip cou-
pling mode. LC gradient, ionization mode, and mass spectrometry

mode are described elsewhere (Haange et al., 2019). Raw data were
processed with Proteome Discoverer (vr2.2, Thermo Fischer Scientific,
Waltham, USA). Search settings for the Sequest HT search engine were
set to: trypsin (full), max. Missed cleavage: 2, precursor mass tolerance:
10 ppm, fragment mass tolerance: 0.02 Da. Protein grouping was en-
abled, with protein group requiring at least one unique peptide. For
complex microbiota, protein-coding sequences of all bacteria were
downloaded from UniProt (13.05.2017; http://www.uniprot.org/)
resulting in 15,214,675 protein-coding sequences. Protein identification
was performed as descried in (Schape et al.,, 2019).

2.7. Untargeted metabolomics

Supernatants were thawed at 37 °C for 5-10 min. For metabolites
extraction, five volumes of methanol:acetonitrile:water (2:3:1) were
added to the supernatant and samples were vortexed for 5 min. After-
wards, the samples were sonicated for 5 min and centrifuged at
18000 xg for 5 min. Supernatants were transferred into fresh tubes
and dried under vacuum (SpeedVac™, Eppendorf, Hamburg,
Germany). Dried pellets were resuspended in 100 pL of a 1:1 mix of run-
ning solvent A (0.1% formic acid in water) and B (2% isopropanol, 0.1%
formic acid in acetonitrile).

10 pL extract was injected into an HPLC-QToF instrument from
Agilent Technologies (6540 UHD Accurate-Mass Q-TOF LC/MS instru-
ment) for LC-MS/MS measurement. Metabolites were separated on a
C18 column (flow rate: 0.3 mL/min) with the following gradient of run-
ning solvent A, and running solvent B: 0-5.5 min 1% B, 5.5-20 min 1%-
100% B, 20-22 min 100% B, 22.-22.5 min 100%-1% B and 22.5-25 min 1%
B. The QToF was set up in centroid mode and in screening mode
allowing the detection of ions with a mass to charge ratio between 60
and 1000. After a full scan, the most intense ion (threshold 200 counts)
was fragmented.

Raw files (.d) were imported into Progenesis QI 2.1 software (Wa-
ters, Milford, USA). Different ionization modes were processed
separately. Isotope and adduct fusion were applied and covered
[M + H]*, [M + ACN + H]*, [M + H-H20]" in positive mode and
[M-H]~, [M-H20-H]~ for negative mode, respectively. The next steps
included alignment of ion chromatograms in ty direction based on a
reference chromatogram chosen automatically from the data set. The
following peak picking was done using default sensitivity settings. Data-
base search was performed using ChemSpider as identification method
with E. coli metabolome database, fecal metabolome database and KEGG
as input selection. Precursor and fragment mass tolerance were set to
20 ppm and 10 ppm, respectively. Only precursor peaks with
corresponding fragment spectra were kept. Normalized peak areas
and possible identifications were exported. For quality control pur-
poses, peaks detected in medium and medium with added Roundup®
LB plus were excluded from the corresponding samples (D1-D22: me-
dium; D23-D25: medium with added Roundup® LB plus). Samples
were grouped according to their treatment with Roundup® LB plus.
Only peaks with valid values in at least 50% of replicates in both groups
were considered for further analysis.

2.8. Targeted bile acid analysis

Bile acids were quantified as previously described (Haange et al.,
2020). Briefly, for bile acid measurements the bile acids kit (Biocrates
Life Sciences AG, Innsbruck, Austria) was used as outlined in the manu-
facturer's instructions. In short, 10 pL samples were used for the assay
on a 96-well plate format. All isobaric bile acids were separated by
HPLC, with a flow rate of 0.4 mL/min and at a column pressure of
400 bar. The HPLC runtime was 11 min. Eluting bile acids were mea-
sured online with a triple quadrupole mass spectrometer (MS/MS)
using an electrospray source in negative mode. For the quantitation, a
calibration set with seven concentration levels and a mixture of 10 in-
ternal standards was used (Siskos et al., 2017).
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2.9. Targeted short-chain fatty acids (SCFA) analysis

As described previously (Schape et al., 2019), supernatants
were thawed at 37 °C for 5-10 min. The samples were mixed
with acetonitrile to a final concentration of 50% acetonitrile.
SCFAs were derivatized for 30 min at 40 °C with 0.5 volumes of
200 mM 3-nitrophenylhydrazine and 0.5 volumes 120 mM N-(3-
dimethylaminopropyl)-N‘-ethylcarbodiimide hydrochloride in
pyridine. For LC-MS/MS measurement, the mix was diluted 1:50
in 10% acetonitrile.

50 pL diluted SCFA derivatives were injected into the LC-MS system.
SCFAs were separated on an Acquity UPLC BEH C18 column (1.7 um)
(Waters, Milford, USA) with solvent A: 0.01% formic acid in water and
solvent B: 0.01% formic acid in acetonitrile as mobile phases. The col-
umn flow rate was set to 0.35 mL/min, the column temperature to
40 °C. The gradient elution was done as follows: 2 min at 15% solvent
B, 15-50% B in 15 min, then held at 100% solvent B for 1 min. Subse-
quently, the column was equilibrated for 3 min at 15% solvent B. For
identification and quantitation, a scheduled Multiple Reaction Monitor-
ing method was used, with specific transitions for every SCFA. Peak
areas were determined in Analyst software and areas for single SCFAs
were exported. Normalization and statistics were done in R.

2.10. Targeted analysis of amino acids

Free physiological amino acids were quantified on day 1 and day 22
before Roundup® LB plus treatment and on day 23 to 25 during expo-
sure of the bacteria in all bioreactors. Therefore, 100 pL of culture super-
natant and blank medium were used for metabolite extraction.

The extraction of amino acids was carried out according to the user
guide of EZ:faast kit (KHO-7337, Phenomenex, US). Briefly, seven con-
centration points (0, 10, 20, 50, 100, 150, 200 nmol/mL) of standard
amino acids from SD1 and SD2 were used for calibration. Both of the
standards and samples were mixed with 100 pL internal standards,
followed by solid-phase extraction, derivatization, and liquid/liquid ex-
traction. The samples were re-dissolved in 100 pL of a 1:1 mix of solvent
A/solvent B (solvent A: 10 mM ammonium formate in water, solvent B:
is 10 mM ammonium formate in methanol). The derivatized amino
acids were analyzed by MRM method on a QTRAP 5500® instrument
(AB Sciex, Framingham. USA) after separation on an EZ:faast AAA-MS
column (250 x 2.0 mm) with a 17 min gradient at a flow rate of
0.25 mL/min as suggested in the manual.

The data analysis was carried out in the Analyst software (AB Sciex,
Framingham, USA, version: 1.6.2). Briefly, the intensity of amino acids
from both the standards and samples were normalized by the internal
standard intensity. Linear regression curves were calculated on each
standard amino acid. To improve the reliability, four replicates of each
standard amino acid were used to generate the regression curve to cal-
culate the concentration of amino acids in the samples.

2.11. Statistical analysis of omics data

Alpha-diversity, principal component analysis (PCA) and non-
metric multi-dimensional scaling (NMDS) dissimilarity analysis were
done in R (Ihaka and Gentleman, 1996) using the basic functions and
the vegan package (Dixon, 2003). Statistics were done in R using in-
house written scripts as previously described (Haange et al., 2020).
Briefly, the statistical tests used were for complete sample data analysis
PERMANOVA using the adonis function in the vegan R package (Dixon,
2003), and for single variables Kruskal-Wallis group test followed by a
posthoc pairwise Dunn test. Where appropriate (number of tests >20),
P-values were corrected for multi-testing by the Benjamini-Hochberg
method (Benjamini and Hochberg, 1995). K-means were calculated in
R using the kmeans function. Heatmaps were constructed with
pheatmap R package and all other figures were constructed using the
R package ggplots2 (Wickham, 2011).

3. Results

3.1. Microbial communities reached steady state before exposure to
Roundup® LB plus

Four pig colonic microbiota (A to D) were cultivated under anaerobic
conditions in continuous bioreactors (Fig. 1A). Since it was shown be-
fore that the functional and the taxonomic level of microbial communi-
ties can develop independently during adaptation or upon perturbation
(Krause et al., 2020; Liu et al., 2018), we assessed community develop-
ment during the control phase per bioreactor on the structural and func-
tional level, respectively. Structural development was determined by
microbial flow cytometry (Fig. 1B), depicting bacterial cell division
and growth states. Functional development was examined by SCFA
analysis (Fig. 1C), which are the main fermentation products of the in-
testinal microbiota. After ten full medium exchanges (day 21 4 1), the
communities did not change considerably with regard to both commu-
nity structure and function. However, flow cytometric analysis of the
microbial community indicated differences in the community on the
taxonomic level.

We defined a three-day control phase (day 20 to day 22) before
Roundup® LB plus treatment and thereafter exposed the microbial
communities to 228 mg/d glyphosate acids equivalent during the treat-
ment phase from day 23 to day 25 (Fig. 1A).

3.2. Exposure to Roundup® LB plus did not affect taxonomic community
composition

To assess influences of Roundup® LB plus treatment on the commu-
nity structure of the microbiota, we conducted 16S rRNA gene profiling.
Previously, it has been shown that in vitro model systems can reveal ef-
fects of toxins on the microbiota in short time frames, which would only
be observed after weeks in animal models (Li et al., 2019).Compared to
the initial communities (day 1) the alpha diversity (Fig. 2A, Shannon ef-
fective) increased (P = 0.0124). Roundup® LB plus exposure (days 23,
24 and 25) did not alter the microbial alpha diversity compared to the
steady-state microbiota in the control phase (days 20, 21 and 22). This
was also true for the species richness based on ASV numbers (Supple-
mental Fig. 1A) and the evenness (Supplemental Fig. 1B).

NMDS dissimilarity analysis was performed on the ASV level to
determine global taxonomic differences between samples. As al-
ready indicated by microbial flow cytometry, the microbial commu-
nities clustered according to the bioreactors from which they
originated (Fig. 2B, PERMANOVA P = 0.001). However, the commu-
nities did not cluster according to whether they were exposed to
Roundup® LB plus or not and showing no or little effect on the taxo-
nomic community composition. For a more in-depth look, we ana-
lyzed the microbial family distribution. The communities on day 1
from the same inoculum (communities A + B vs. communities
C + D) were very similar (Fig. 2C). In the initial communities A and
B, Enterobacteriaceae were the most relative abundant family on
day 1, followed by Lactobacillaceae, Bifidobacteriaceae and
Coriobacteriaceae, with other families only making up a minor part
of the communities. In the initial communities C and D, the most
abundant families were Enterobacteriaceae, Lactobacillaceae,
Lachnospiraceae and Bifidobacteriaceae. During the adaptation
phase, the family distribution changed considerably, resulting in
the development of four different microbial communities A, B, C
and D. On day 20 to 22, the most relative abundant families in all
communities were in the order of abundance Ruminococcaceae,
Lachnospiraceae, Enterobacteraceae and Prevotellaceae (Fig. 2C)
though in community B and D Prevotellaceae were scarce. In the com-
munities C and D Bacteroidaceae were one of the most prominent
families. The mean relative distribution of bacterial families of all
four communities showed no significant Roundup® LB plus associ-
ated shifts on day 23 to day 25. In order to identify smaller effects
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of Roundup® LB plus on individual families of intestinal microbiota
independent of the bioreactor, we calculated the fold change of fam-
ily abundances compared to the last day of the control phase (day
22) for each of the respective bioreactor. No significant increase or
decrease in fold change of the six most abundant microbial families
could be detected due to Roundup® LB plus (Fig. 2D). A shift in the
ratio of Bactoidetes to Firmicutes has previously been decribed as
an indicator for dysbiosis. (Yan et al., 2011; Joly et al., 2013). There-
fore similar to above, we calculated the fold-change of the
Bacteroidetes to Firmicutes ratio between each day to day 22, and
no significant shift was observed for this fold change before and
after Roundup-exposure (Supplemental Fig. 1C).

3.3. Roundup® LB plus did not influence the active enzymatic repertoire

Metaproteomics analysis is based on protein content, which quickly
responds to changes within one hour (Shamir et al., 2016). Thus, this
method analyzes the active enzymatic repertoire of microbial commu-
nities and determines taxa distribution, highlighting the metabolic
more active taxa (Kleiner et al., 2017).

On the functional active taxonomic level, 50% of the relative inten-
sity was due to protein groups annotated as heterogeneous (Fig. 3A).
Heterogeneous protein groups are classified as bacterial proteins but
cannot be annotated to a single bacterial family. Mostly this happens be-
cause of conserved protein sequence regions between taxa. The relative
intensity of protein groups, which could be attributed to specific bacte-
rial families (Fig. 3A), followed the profile of 16S rRNA gene sequencing
data (Fig. 2C) to a close degree. Following our expectations and the re-
sults from 16S rRNA gene profiling, metaproteomics revealed no influ-
ence of Roundup® LB plus on the taxonomic distribution in the
microbial communities.

Following this, metaproteomics data were used to reveal the func-
tional repertoire of the microbial communities. The NMDS dissimilarity
analysis revealed no global influence of Roundup® LB plus on the met-
abolic pathways of the communities (Fig. 3B). A more detailed view re-
vealed that the communities A to D possessed a very similar enzymatic
repertoire, based on observed KEGG subroles (Fig. 3C). The most preva-
lent KEGG subroles were carbohydrate metabolism followed by transla-
tion, energy metabolism, transport and catabolism as well as amino acid
metabolism. These subroles showed no discernable effect due to the ex-
posure. To ascertain that the general KEGG subrole did not overlook ef-
fects, we analyzed in more detail individual KEGG metabolic pathways.
Here we concentrated on the amino acid pathways, since glyphosate in-
hibits aromatic amino acid synthesis via the shikimate pathway
(Fig. 3D). As above, for each community we looked at the fold changes
compared to day 22, just before Roundup-exposure, to remove the var-
iation from the individual bioreactor communities. We neither observed
significant effects of Roundup-exposure on the fold changes of amino
acid-related enzymes in general nor on enzymes involved in the
synthesis of aromatic amino acids, arginine or lysine synthesis
(Fig. 3D). Furthermore, the 5-enolpyruvylshikimate-3-phosphate syn-
thase (EPSPS), the enzyme specifically inhibited by glyphosate, did not
alter in fold change after Roundup-exposure (Fig. 3D).

3.4. Roundup® LB plus had a slight influence on the metabolome of the
microbiota

Since neither the taxonomic community structure nor the enzymatic
repertoire of the microbial communities revealed any significant

influence of Roundup-exposure, we analyzed the metabolome of the
microbiota. Metabolomics is very sensitive and able to detect small
functional changes upon stress, though is not able to pinpoint these to
specific taxa (Mumtaz et al,, 2017).

Since short chain fatty acids (SCFAs) are the major metabolite group
produced by the intestinal microbiota and are essential for the host, we
decided to perform a targeted analysis of nine SCFAs. The SCFA profile of
each community changed between day 1 and the later days (day 20-25)
but was not altered by Roundup-exposure (days 20-22 vs. days 23-25,
Fig. 4A). We additionally analyzed the fold changes of absolute SCFA
concentrations per bioreactor individually and plotted the mean and
standard deviation. Our analysis revealed no significant effect of
Roundup-exposure on SCFA abundances (Fig. 4B).

Following SCFA analysis, we performed untargeted metabolomics on
the microbial communities' culture supernatant to capture global
effects on the metabolome. We filtered for peaks, which were observed
before and after Roundup exposure, to remove peaks attributed to the
different Roundup® LB plus constituents. After this filtering, we in-
cluded 104 peaks for NMDS analysis. NMDS dissimilarity analysis
showed a significant shift in the metabolite profile between before
(day 20-22) and after (day 23-25) Roundup-exposure, though the me-
tabolite profiles seemed to also cluster by bioreactor (Fig. 4C). A more
detailed look at the untargeted metabolome before and after
Roundup-exposure revealed a clustering of community peak intensities
by bioreactor and, interestingly, by exposure (Fig. 4D). To pinpoint these
specific changes in the untargeted metabolic measurements, we did a k-
means clustering analysis on the filtered peaks (Fig. 5A). We were able
to identify two clusters with responding metabolite profiles (Fig. 5B,
clusters 1 and 2). The 16 peaks from the first cluster (Fig. 5B, purple) ex-
hibited an increase in peak intensity after Roundup-exposure, thereby
encompassing compounds with higher abundance after Roundup-
exposure. The second cluster (Fig. 5B, turquoise), including 16 peaks,
showed a decrease in peak intensity and therefore a lower abundance
of the corresponding compounds after Roundup-exposure. We were
able to annotate several peaks from the two clusters. In cluster 1, one
peak was putatively identified as pyridoxamine, a form of vitamin B6,
and a second as imidazolepropionic acid, a histidine intermediate. In
cluster 2, we were able to putatively annotate one peak to cholic acid
(CA), a bile acid. This finding led us to conduct an in-depth targeted
analysis of bile acids. We were able to identify and quantify 12 bile
acids (Supplemental Table 8). Interestingly, based on fold change anal-
ysis to day 22, we found a hint (P = .0885) that CA increased after the
first day (day 23) of Roundup-exposure and then decreased on the
third day (day 25) (Fig. 5C).

3.5. The microbial communities did not metabolize glyphosate in
Roundup® LB plus

To check whether glyphosate is metabolized by the microbiota and
therefore potentially loses its inhibitory properties on the biosynthesis
of aromatic amino acid pathways we determined the concentration of
glyphosate in the media. Our targeted measurements revealed no
glyphosate in the samples before Roundup-exposure, which was ex-
pected, and no change in the concentration of glyphosate in the com-
munities during Roundup-exposure compared to the media provided.
This indicates that glyphosate was not metabolized by the microbiota
(Fig. 6A).

Fig. 2. 16S rRNA gene profiling data. A: Alpha-diversity of the microbiota on ASV level by bioreactor and treatment phase. When Krustal-Wallis test is significant then bars labelled with
different letters are significantly to each other (P < 0.05). B: Beta diversity based on non-metric multidimensional scaling (NMDS) of samples before and after Roundup exposure. Sample
names: Letter represents the bioreactor and the number the sampling day. P calculated by PERMANOVA. C: Relative distribution of microbial families at each sampling day. D: Mean log,
fold changes of relative abundance of selected bacterial families from each sampling day to day 22 (directly before Roundup exposure). Error is SEM, P calculated by Kruskal-Wallis with

pairwise posthoc test done by Dunn test, n.s. non-significant.
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3.6. The concentration of aromatic amino acids in the microbial communi-
ties did not change after Roundup® LB plus exposure

A reason for the lack of influence of Roundup® LB plus on the micro-
bial communities could be that there is a sufficiently high concentration
of aromatic amino acids present in the culture medium. This would
negate the need for their synthesis by the microbes. A targeted mea-
surement of amino acids in the medium and in the microbial commu-
nity samples revealed that aromatic amino acid concentrations were
high in pure medium and were being utilized from the medium during
cultivation (Supplemental Fig. 2). An NMDS analysis of amino acid
concentrations at days 20-25 did not reveal any clustering by
Roundup-exposure (Fig. 6B). Furthermore, no significant change in the
concentration of tryptophan (Fig. 6C), phenylalanine (Fig. 6D) and tyro-
sine (Fig. 6E) after Roundup-exposure was observed. This was also true
for all other measured amino acids (Supplemental Table 5).

Between days 20 and 25, average aromatic amino acid concentration
for each bioreactor was lowest for tryptophan followed by tyrosine,
while the concentration of phenylalanine was at least a factor of ten
higher (Table 1.)

4. Discussion

Several studies have investigated the effect of glyphosate exposure
on the intestinal microbiota in vitro and in vivo using different organ-
isms. Likewise, from the in vivo studies, preferentially using rats, and
from the in vitro studies the results are contrasting (Riede et al., 2016;
Nielsen et al., 2018; Lozano et al., 2018). Furthermore, most of these
studies focused on glyphosate-related taxonomic changes, with only
two studies analyzing community function at all. Riede et al. (2016)
did not identify adverse effects on the ruminal metabolism (Riede
et al., 2016). Mesnage et al. (2019, non-reviewed preprint), on the con-
trary, observed taxonomic changes in the rat caecal microbiota com-
bined with an increase in intermediate metabolites from the
shikimate pathway (Mesnage et al., 2019). Because contrasting results
shape the debate of potential risks coming from glyphosate exposure,
we sought to investigate the microbiota-modulating effects of the
most frequently used glyphosate formulation Roundup® LB plus on
the function of intestinal microbiota in more detail, using a high concen-
tration. The pig microbiota is an interesting model system because on
the one hand, pigs are a livestock species with economic relevance
and on the other hand, the pig microbiota is more similar to humans
than the intestinal microbiota of other model organisms, such as
rodents (Roura et al., 2016). Consequently, analyzing the microbiota-
modulating effects of glyphosate on the pig microbiota allows the
extrapolation to the human microbiota.

The complex intestinal culture medium in our study was adapted to
the pig colon environment (Krause et al., 2020; Tanner et al., 2014). It is
well known that microbiota quickly respond to a perturbation on the
functional level (Medicine lo, 2003) and, if pressure is high enough,
also by shifting towards another stable taxonomic community state
(Levy et al., 2017). Therefore, we acutely exposed the microbiota to a
high glyphosate concentration by the addition of Roundup® LB plus.
However, adult pigs weight over 100 kg, which is associated with a
higher fodder uptake and consequently a higher exposure to
glyphosate.

The effect of Roundup-exposure in the concentration applied in this
study was only slight. Though, these effects cannot singularly be attrib-
uted to glyphosate, since Roundup® LB plus contains 16% unknown sur-
face active ingredients. In addition, our data indicate that the colonic

microbiota did not metabolize glyphosate. Roundup-exposure neither
changed the community taxonomic structure nor the enzymatic reper-
toire of the microbiota within the three days of exposure. Furthermore,
neither the concentration of SCFAs, main products of microbial metabo-
lism, nor the concentration of any of the 29 analyzed amino acids was
altered. However, a few metabolite peaks were detected at altered
abundance by untargeted metabolomics after Roundup-exposure. Of
these, only a minority could be annotated to putative compounds,
with one peak annotated to cholic acid. The targeted bile acid measure-
ment did show a trend in the decrease in cholic acid after Roundup-
exposure. Certain members of the intestinal microbiota are known to
deconjugate or dehydroxylate bile acids, and thereby enhancing their
toxicity toward other bacteria (Islam et al., 2011; Yokota et al.,, 2012).
Moreover, converted bile acids are involved in signaling between micro-
biota and host. Alterations to the bile acid profile were reported to affect
the metabolism of the host via the farnesoid X receptor (Ryan et al.,
2014), which controls bile acid synthesis but also glucose and lipid me-
tabolism in the liver. The liver was observed to be one of the major tar-
gets affected by ultra-low dose of glyphosate in a two-year study on
rats, exhibiting lipotoxic stress and further biochemical and anatomical
damage (Mesnage et al,, 2015).

The observed metabolic alterations, which did not correspond to sig-
nificant changes on the proteome level, can be explained by two argu-
ments. First, the metaproteome coverage might not be sufficient for
detecting the changes, which might result from rather high community
complexity. We have recently shown that community complexity is the
most crucial factor determining proteome coverage in metaproteomics
(Lohmann et al., 2020). Second, glyphosate or other compounds in
Roundup® LB plus, including surfactants, which could possibly harm
the intestinal bacteria (Mesnage and Antoniou, 2017) might interfere
with other enzymes than the primary target EPSPS. The mode of action
of glyphosate is based on its structural similarity to phosphoenolpyr-
uvate (PEP), the physiological substrate of EPSPS. Both compounds
compete for EPSPS binding. However, PEP is involved in many other im-
portant metabolic processes, such as glycolysis, gluconeogenesis, the
synthesis of secondary metabolites or the phosphotransferase sugar up-
take system (Kanehisa and Goto, 2000). Thus, the interference by glyph-
osate could be even broader, as already suggested by a recent study of
Ford et al. (2017).

Thermal proteome profiling (TPP) would be a powerful tool to
screen the proteome more specifically for proteins interacting with
glyphosate (and its metabolites), degrading it or being adversely af-
fected. In the past, this method identified off-targets of active ingredient
of drugs (Savitski et al., 2014), but also pollutant degrading enzymes
and regulators thereof in bacteria (Tiirkowsky et al., 2019). TPP might
open up a new, interesting perspective for testing of pesticides for
health and environmental safety in general.

The contradictory findings of in vivo studies might result from a low
lab-to-lab reproducibility that derives from the existence of different
microbiota in the housing facilities (Hugenholtz and de Vos, 2018)
and the different experimental procedures and glyphosate formula-
tions. E.g., Dechartres et al. (2019) daily fed rat dams 5 mg/kg body
weight per day glyphosate isopropylamine salt or glyphosate equiva-
lents from Roundup® 3Plus for 30 days and investigated the maternal
behavior and neuroplasticity in the hippocampus. However, they barely
observed significant effects on maternal behavior or the neurological
end-points investigated in their study. In contrast to glyphosate
isopropylamine salt, Roundup® 3Plus significantly altered the taxon-
omy of the intestinal microbiota in their study, indicating that sub-
stances from the formulation applied in their study might be causative

Fig. 3. Metaproteomics data. A: Distribution of microbial families based on summed measured relative intensities of protein groups assigned to the family. Heterogeneous: protein groups
assigned to multiple microbial families. B: Beta-diversity of samples by NMDS dissimilarity analysis based on relative abundance of KEGG metabolic pathways. C: Distribution of KEGG
metabolic subroles based on summed measured relative intensities of protein groups assigned to the family. D: Mean log, fold changes of summed relative protein group intensities
assigned to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and selected amino acid metabolic pathways from each sampling day to day 22 (directly before Roundup
exposure). Error is SEM, P calculated by Kruskal-Wallis with pairwise posthoc test done by Dunn test, n.s. non-significant.
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Fig. 5. Metabolomics data. A: K-means of peaks identified by untargeted metabolomics. B: Clustering profile of the k-means, only using those peaks identified in samples before and after
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Fig. 4. Metabolomics data. A: Relative abundance of short chain fatty acids (SCFAs) B: Mean Log, fold changes of SCFA absolute abundance from each sampling day to day 22 (just before
Roundup exposure). Error is SEM; P calculated by Kruskal-Wallis with pairwise posthoc test done by Dunn test, n.s. non-significant. C: NMDS plot of bioreactor samples based on
untargeted metabolomics with P calculated by PERMANOVA. D: Heat map of the corresponding peak intensities.
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for the taxonomic alterations detected (Dechartres et al.,, 2019). Lozano
et al. (2018) identified sex-dependent shifts in taxonomy after long-
term high doses of glyphosate (2.5 g/L) from R Grand Travaux Plus ex-
posure via drinking water. In this study, the chronic and high exposure
to R Grand Travaux Plus might be responsible for the contrasting find-
ings (Lozano et al.,, 2018). Although the exact composition of both, R
Grand Travaux Plus and Roundup LB plus, are unknown, for R Grand
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(Defarge et al., 2018). This, as well as potential differences in the formu-
lation might add on to the different observations. A more recent study
by Mesnage et al. (2019) investigated the effects of three different con-
centrations of pure glyphosate and MON 52276 on the rat microbiome
for 90 days (maximal concentration of 175 mg/kg body weight). They
included taxonomic and functional analysis using a multi-omics
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Table 1
Mean concentrations (uUM) of aromatic amino acids before (days 20-22) and after
Roundup exposure (days 23-25). Error is SEM.

Bioreactor Sampling days Phenylalanine Tryphtophane Tyrosine

A 20-22 (no RU) 101.8 & 4.2 99 + 0.1 122 £ 0.2
23-25 (RU) 198.7 + 10.3 9.8 + 0.6 121 £ 1.2

B 20-22 (no RU) 1983 + 1 56 4+ 0.2 9.7+ 03
23-25 (RU) 205.7 + 47.5 6.8 + 0.2 94 + 0.6

c 20-22 (no RU) 143 £+ 33 7.9 4+ 0.2 121 £ 0.2
23-25 (RU) 111.8 + 349 74 + 05 111 £ 15

D 20-22 (no RU) 631.3 + 41.8 6.6 + 0.5 169 + 1.3
23-25 (RU) 435.0 & 45.6 6.4 4+ 0.3 10.6 + 04

approach. Contrary to our results, they observed slight effects on the mi-
crobial taxonomic distribution together with large inter-individual var-
iation, which limits the reliability of the data. Alike to our study, they
reported only slight effects on the metabolome in rats, with 12 of 744
metabolites being significantly altered. This corresponds to 1.6% of all
metabolites. Among these metabolites, they observed an increase in shi-
kimate and 3-dehydroshikimate, which they assigned to the inhibition
of the EPSPS, the target enzyme of glyphosate from the shikimate path-
way (Mesnage et al., 2019). In a further study, Nielsen et al. orally
treated rats with 25 mg/kg bodyweight glyphosate or from the glypho-
sate formulations Glyfonova® 450 Plus for 14 days. They observed very
little influence on the intestinal microbiota. The authors suggest that the
availability of high concentrations of aromatic amino acids in the rat gut
inhibit the synthesis of aromatic amino acids via the shikimate pathway.
This might subsequently nullify an inhibition of the EPSPS by glyphosate
(Nielsen et al., 2018), similar to our study, in which high amino acid
concentrations of free amino acids were measured in pure medium.
However, as Mesnage et al. (2019) indicated in their study, there may
be effects on the intermediate metabolites upstream the EPSPS caused
by glyphosate.

The shikimate pathway is regulated on various levels. One way of
regulation is transcriptional attenuation (Pittard and Yang, 2008). A
second way of regulation is negative feedback gene regulation, where
the gene expression of the shikimate operon is controlled by a trypto-
phan sensitive (TrpR) and a tyrosine sensitive (TyrR) repressor
(Pittard and Yang, 2008; Schoner and Herrmann, 1976). These repres-
sors bind to their respective amino acid and mask the operator, thereby
inhibiting transcription (Tabaka et al., 2008). Transcription inhibition
commences at 10 pM of tyrosine or tryptophan, respectively (Baasov
and Knowles, 1989). Another mechanism for controlling aromatic
amino acid synthesis is allosteric feedback inhibition of the 3-Deoxy-
D-arabinoheptulosonate 7-phosphate (DHAP) synthase. The DHAP syn-
thase catalyzes the first enzymatic conversion in the shikimate path-
way. Allosteric inhibition reaches its maximum in the presence of
100 pM of any of the aromatic amino acids (Rodriguez et al,, 2014). Ty-
rosine and tryptophan in our study were present at concentrations,
which would inhibit the DHAP synthase synthesis by transcriptional at-
tenuation while the concentration of phenylalanine reached the con-
centrations where allosteric inhibition would be at maximum (see
Table 1). This is in line with our finding that Roundup-exposure did
not affect the abundance of protein groups of the shikimate pathway,
including the EPSPS, since the medium was a model for the contents
of the pig gut and therefore rich in amino acids. An inhibited shikimate
pathway would result in a reduced production of aromatic amino acids,
thus weakening or negating transcriptional inhibitory control. This
would lead to an increase in the translation of the proteins of this path-
way, which was not observed in this study. Taken together, these find-
ings suggest that the concentrations of aromatic amino acids in the
microbiota cultures were high enough to suppress the synthesis of the
aromatic amino acids. The microbes were sourcing the aromatic
amino acids from the media in sufficient quantities already before but
also during Roundup- exposure. However, other animals, e.g. non-
vertebrates with a less diverse microbiota or with lower aromatic

amino acid levels in the gut might be susceptible to glyphosate expo-
sure, as was proven for honey bees (Motta et al., 2018).

Since the microbial culture medium was closely modelled on the in-
testinal lumen content of the pig colon (Tanner et al., 2014), we would
expect a similar in vivo response of the intestinal microbiota to
Roundup-exposure as observed in our study.

5. Conclusions

An impact of the glyphosate-based herbicide Roundup® LB plus on
the intestinal microbiota of pig was not confirmed at the applied glyph-
osate concentration. We did not observe changes on the taxonomic
level and only showed minor alterations on the functional level. Never-
theless, we cannot exclude the susceptibility of microbiota in suscepti-
ble timeframes or combination with other destabilizing factors, such
as medication, a shift in diet or disease. Moreover, glyphosate itself, pro-
duced glyphosate metabolites or components from the formulation
after resorption from the intestine might react with other target pro-
teins and should be included in future investigations.
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