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CHAPTER 2: BACKGROUND

In this chapter the background of nonlinear dynamics and electrochemistry that is

necessary to understand the results presented in chapters 4-8 is summarized. First, the basic

concepts from the theory of nonlinear dynamics are introduced (section 2.1). After presenting

the main features of systems displaying temporal symmetry breaking, more precisely

bistability and oscillations, a few remarks on the behavior of a population of individual

oscillators coupled by diffusion are made. Section 2.2 deals with the interface between the

fields of electrochemistry and nonlinear dynamics. Emphasis is put on introducing the jargon

used in the thesis. In section 2.3 the different electrochemical systems studied are presented.
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The chapter ends with a brief description of the method used to analyze and characterize the

spatiotemporal patterns.

2.1 NONLINEAR DYNAMICS

2.1.1 BISTABILITY

Multistability is a widespread phenomenon and corresponds to the situation in which,

under the same conditions, the system can exist in different stable steady states. Bistability

refers to the situation in which two stable steady states coexist. Common to all systems

displaying bistability is the presence of a self-enhancing process. In most cases the self-

enhancement is due to an autocatalysis, i.e., an intermediate catalyses its own production.

Thus, autocatalysis is the prominent mechanism responsible for the occurrence of a positive

feedback loop.

Bistable dynamics can be explained with the help of Figure 2.1. In this figure, the

variable x accounting for one property of the system is plotted as a function of a parameter or

constraint m. In this example, high x values correspond to an active state, whereas in the

passive state the x values are low.

Figure 2.1: Variable x as a function of the control parameter m, illustrating
bistability between an active and a passive state in the range mp < m < ma.

As shown in Figure 2.1, between ma and mp, x can assume values corresponding to the

active or the passive state depending on the direction in which m has been varied. In fact,
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when increasing m from A, the active state is stable up to a critical value of ma. At this value a

sharp transition from the active to the passive state is observed. On the other hand, when m is

decreased from B, the system stays in the passive state up to mp and then jumps back to the

active branch. The dotted line connecting the borders of active and passive states represents

an unstable state. It is not visited when sweeping m, instead, a hysteresis loop is observed

between ma and mp.

The points ma and mp are critical in a sense that at these points the dynamics of the

system undergoes qualitative changes. Whenever the dynamics of a system experiences a

qualitative change, a bifurcation is said to occur. In the case of the creation or annihilation of

fixed points, as exemplified in Figure 2.1, at m = ma in the forward scan or m = mp along the

backward scan, a saddle-node bifurcation is observed.

2.1.2 OSCILLATIONS

It was said in the previous section that bistable systems are characterized by the

presence of a positive feedback loop. Addition of a second, negative, feedback loop that

counteracts the positive loop can lead to oscillations. Positive and negative feedback loops

are also referred to as destabilizing and stabilizing loops, respectively [54]. A system

possessing such a combination of positive and negative feedback loops is called an activator-

inhibitor system and may oscillate in a certain parameter range if the time scale of the

inhibitor is slower than the one of the activator.

Figure 2.2 illustrates the situation in which a limit cycle is born when varying the

parameter m. Shown in this figure are the bifurcation diagram in terms of the variables x1 and

x2 (plate (a)), and the phase space illustrating the stable focus (m < 0) and the limit cycle (m >

0) (plate (b)). Upon changing the parameter m the stable focus becomes unstable when m = 0

and a stable limit cycle is born via a mechanism referred to as a Hopf bifurcation.

The case depicted in Figure 2.2 refers to the supercritical Hopf bifurcation and is

characterized by a smooth or soft onset of stable oscillations whose amplitude grows

proportionally to the square root of m – mc in the vicinity of the bifurcation point mc.
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Figure 2.2: (a) Bifurcation diagram illustrating the Hopf bifurcation, and (b) the
phase space corresponding to the stable focus (for m < 0) and the limit cycle (m >
0).

2.1.3 SPATIALLY EXTENDED SYSTEMS

A point-like system is defined as a system that lacks any spatial extension. In an

extended or distributed oscillatory system, the system can be thought of as being composed

of many individual oscillators1. Understanding the dynamical evolution or the collective

behavior of these individual oscillators in an electrochemical environment as a function of

different constraints is one of the main goals of this thesis. In this section the bridge

connecting the point-like system to the extended system is presented. The starting point in

building this bridge is to understand how these individual oscillators exchange information

among each other, or, in other words, how they are coupled. Systems, in which several

individual ‘reacting’ elements are coupled by diffusion are called reaction-diffusion (RD)

systems and are considered as a paradigm for pattern formation (see, e.g., refs. [9, 30, 55] and

references therein). Spatiotemporal patterns in RD systems result from the interaction of the

1 Spatially extended systems might also behave as point-like systems if the different positions in space are
coupled to each other so strongly that the system’s dynamics is uniform in space. In a general situation,
however, the spatial extension has to be taken into account.
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homogeneous or reaction dynamics with the spatial transport processes. In mathematical

terms, this class of systems is described by coupled partial differential equations. The

evolution of variables, such as the concentration of reacting species, can be decomposed into

the reaction part, which depends only locally on the value of the other variables and the

transport processes that are induced by spatial variations in the variables and constitute a

spatial coupling among different locations. Therefore, simple RD equations can formally be

written as,
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in which ci are the variables, mk accounts for the parameters (or constraints) affecting the

system’s dynamics and can be externally controlled, the fi are the nonlinear functions of the

reaction part, and the Di are the (constant) diffusion coefficients. The last term in equation

(2.1) accounts for the transport process that couples the different locations in space with each

other and provides the system’s ability to exchange information between different parts. The

way in which chemical reactions and diffusion cooperate in a symmetry breaking bifurcation

can be intuitively understood as follows. The chemical kinetics, via its intrinsic feedback

loops such as autocatalysis, may trigger a local ‘runaway’ phenomenon by amplifying the

effect of small fluctuations. Diffusion, in turn, tends to spread the inhomogeneous

distribution caused by the reaction. When its rate is comparable to the reaction rate, this

homogenization might not be effective. Thus, a spatial pattern may form. The characteristic

length of the pattern depends only on specific properties of the system, such as diffusion

coefficients and reaction constants. For small systems, however, the diffusive ‘stirring’ is

effective, the system takes on uniform states only, and behaves thus identically to the

corresponding ‘point-like system’.

Besides the diffusion coupling mentioned above, another type of interaction termed

global coupling can exist if a local change of a variable is felt everywhere with the same

strength independently of the distance with respect to the location of the perturbation. In this

thesis situations play a role in which the global coupling shows up as an additive term. The

equation describing RD systems in the presence of global additive coupling is given as,
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Here, the squared brackets indicate the spatial average, the parameter a is the strength of the

global coupling, and it may also enter the reaction part. If a > 0, the global coupling acts

towards synchronization, it is often referred to as positive global coupling (PGC). This

situation can be intuitively explained as follows. Suppose ci increases at some location, for

instance due to a fluctuation, then the average <ci> will also slightly increase accordingly.

Simultaneously to these changes, the PGC comes into play and acts towards an increase of ci

wherever it is smaller than the average <ci>, and equivalently, a decrease of ci in regions in

which it is greater than the average <ci>. Mutatis mutandis, when a < 0, the system

experiences a negative global coupling (NGC) that tends to enhance spatial perturbations and

is often referred to as a desynchronizing coupling.

It is known that sufficiently far from equilibrium highly ordered structures can

degenerate into a spatiotemporal chaotic or turbulent regime, in analogy to fluid dynamics

[56]. The most famous example is probably the state of flowing fluids beyond the laminar

threshold defined by the Reynolds number2 [57, 58]. In the frame of fluid dynamics

turbulence is usually referred to as strong turbulence [49] and characterized by the

coexistence of fluctuations and macroscopic space-time structures [59]. Far from equilibrium

reacting systems can also undergo a transition to a state of spatiotemporal chaos or chemical

turbulence characterized by the presence of a considerable large number of uncorrelated

spatial domains [49, 60].

Near a (supercritical) Hopf bifurcation, spatiotemporal phenomena in RD systems are

usually described by the so-called complex Ginzburg-Landau equation (CGLE) [48-52, 61].

The CGLE describes the emergence of self-organized spatiotemporal phenomena such as

different types of propagating waves and spatiotemporal chaos or turbulence. The instability

underlying the transition from uniform to spatially unstable oscillations is referred to as the

Benjamin-Feir (BF) instability [48, 51, 60, 62]. Beyond the BF boundary, the phase dynamics

equation describing the collective behavior of the diffusively coupled individual oscillators

has a negative diffusion coefficient, and irregular or chaotic dynamics may develop. Such

‘anti-diffusive’ [61] fluxes increase the phase gradient. Hence, small local fluctuations are

amplified instead of damped, as in the case of a positive diffusion coefficient.

2 The Reynolds number, Re, is a dimensionless control parameter expressing the balance between the nonlinear
and dissipative properties of the flow.
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Crossing the BF instability, the development of turbulence usually starts via a

transition form nearly uniform initial conditions to phase turbulence, which is defined as a

state in which the amplitude of the local oscillators is relatively constant while its spatial

phase fluctuates [48]. When the system is further driven from the BF limit, amplitude or

defect
3 turbulence develops. Here, pattern irregularities are concentrated in localized defects

that are nucleated and annihilated at irregular time intervals and locations. Moreover, the

coexistence of laminar (ordered) and chaotic (or disordered) regimes characterizes a state

referred to as spatiotemporal intermittency. Although the initial bifurcations associated to

these different regimes have been theoretically investigated in some model systems [49, 63,

64], the classification of experimental systems in these schemes is not trivial [65].

2.2 NONLINEAR PHENOMENA IN ELECTROCHEMICAL SYSTEMS

2.2.1 THE SOLID/LIQUID INTERFACE

Whenever a metal electrode is brought into contact with an electrolyte solution, a

reorganization of the charge distribution across the solid/liquid interface arising from the

different properties of the two phases takes place. Owing to its high conductivity, the metal

phase does not permit the development of an extended internal space-charge region. As a

consequence, an ionic redistribution at the liquid side of the interface takes place, and a

region with properties different from those of the bulk is set up. This region is known as the

electrical double layer. It plays a crucial role in almost all electrochemical investigations [66-

72]. Figure 2.3 depicts a schematic representation of the microscopic structure of the double

layer, as given by the Bockris-Devanathan-Müller model [73].

3 In the frame of pattern formation, a topological defect or singularity is defined as any departure from the ideal
pattern, but the most useful limit is to consider a localized structure, embedded in an otherwise ideal pattern
[49]. In the phase and amplitude description a defect is usually referred to the case in which the amplitude goes
to zero and the phase is not defined.
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Figure 2.3: Schematic representation of the microscopic structure of the double
layer. IHP: inner Helmholtz plane; OHP: outer Helmoltz plane.

The solution side of the double layer can be viewed as comprising several layers. The

first layer near the metal surface comprises highly oriented water dipoles and possibly some

other species (ions or molecules) that are referred to as being specifically adsorbed. As

illustrated in Figure 2.3, due to, short range, van der Waals type interactions, weakly solvated

anions have the tendency to undergo specific adsorption at the electrode surface even if the

metal is negatively charged [70]. The imaginary plane crossing the center of these specific

adsorbed anions defines the ‘inner Helmholtz plane’ (IHP). This two-dimensional region

confined between the metal surface and the IHP is usually named the inner or compact layer.

The next plane towards the bulk electrolyte is defined by the center of the closest solvated

ions (cations in Figure 2.3) and is called ‘outer Helmholtz plane’ (OHP). The three-

dimensional (volumetric) region between the compact layer up to the point where the ionic

distribution is no longer disturbed by the presence of the metal is called diffuse layer.

Owing to the charge redistribution near the solid/liquid interface, an appreciable

potential drop across it is also observed. The potential drop across both the compact and the

diffuse layer is called the double layer potential, fDL. To probe the potential drop across the

interface of interest (at the working electrode, WE) a secondary electrode has to be used. This

also implies a charge redistribution around the second interface, and accordingly a potential
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drop across it. As a consequence, the absolute electrode potential cannot be measured, and

only the difference between the double layer potentials of the WE and RE can be

experimentally accessed. j quantifies this difference and defines the electrode potential. In

most of the electrochemical systems presenting nonlinear phenomena, the electrode potential,

or its equivalent double layer value, fDL, is an essential variable4. Moreover, spatial

instabilities discussed in this thesis are always associated with potential patterns at the

electrode/electrolyte interface. Therefore the interfacial potential, fDL, represents the pivotal

variable for the description of self-organization phenomena in this thesis as well as in most

electrochemical systems exhibiting dynamic instabilities [27].

2.2.2 THE NEGATIVE DIFFERENTIAL RESISTANCE (NDR)

Most instabilities occurring in electrochemical systems are associated with the

existence of a negative slope in the I/fDL curve. The so-called negative differential resistance

(NDR) is observed, for instance, in an N-shaped stationary I/fDL. Such systems possessing an

NDR linked to an N-shaped I/fDL curve are referred to as N-NDR systems. A positive

feedback loop, or autocatalytic step, involving fDL may arise due to the interaction between

the NDR and the (uncompensated) electrolyte resistance (s.b.). As mentioned above, a

positive feedback loop is related to bistability and, at least, one additional loop is necessary

for the occurrence of oscillations.

The observation of a current decrease with increasing fDL in N-shaped I/fDL curves is

relatively common in electrochemistry [24, 25, 74] and may result from [75]: (a) the decrease

of the active electrode area due to an adsorption process that is favored at high values of fDL;

(b) the decrease of the electron transfer rate due to the desorption of a catalytic species at

high values of fDL; and finally (c) the depletion of reactants concentration at the reaction

plane with increasing fDL due to the Frumkin double layer effects [76, 77].

2.2.3 BISTABILITY IN N-NDR SYSTEMS

Figure 2.4 shows a general equivalent circuit of an electrochemical cell. The applied

voltage U is divided into two portions: the potential drop across the electrical double layer,

4 Essential variable means that its time evolution is indispensable for the overall reaction dynamics [54].
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fDL, and the ohmic drop through the electrolyte, IRu, between the RE and the WE. The total

cell resistance between the counter electrode (CE) and the WE, R � , is divided into a

compensated resistance, Rc, and an uncompensated resistance, Ru, and is thus given by R �  =

Ru + Rc.

Figure 2.4: General equivalent circuit of an electrochemical cell. R(u)c:
(un)compensated electrolyte resistance; working (WE), counter (CE) and
reference (RE) electrodes; CDL: double layer capacitance; ZF: general faradaic
impedance; U: voltage supplied by the potentiostat; fDL: potential drop across the
double layer of the WE. The double layers of the CE and the RE have been
omitted for clarity.

The charge balance of the circuit given in Figure 2.4 is obtained by applying

Kirchhoff’s law and yields

u

DL
F

DL
DL R

U
I

dt
d

C
f-

=+
f

, (2.3)

which means that the sum of the double layer charging and of the reactive or faradaic currents

is equal to the current flowing through the electrolyte, which is given by the load line: (U –

fDL)/Ru.

Solutions or steady states of equation (2.3) can be obtained graphically. They are

given by the intersections between the load line (U – fDL)/Ru and the I/fDL curve. Figure 2.5

(a) depicts the occurrence of such intersections between an N-shaped I/fDL curve and three
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different load lines. Autocatalysis, and thus bistability, in N-NDR systems occurs whenever

the uncompensated resistance Ru is larger than the absolute values of the faradaic impedance

of the reaction under consideration. In other words, the condition: Ru > |�fDL/�I| should be

fulfilled in order to give rise to bistable dynamics. This condition corresponds to the

occurrence of a ‘folding’ in the I/U curve in Figure 2.5 (b).

Figure 2.5: (a) N-shaped I/fDL curve and load lines for three different values of
the external voltage U. The two outer load lines mark the border of the bistable
regime at the specific value of the ohmic resistance. sn: saddle-node bifurcation.
(b) Bistable region in an I/U plot referring to the situation shown in (a). (c)
Location of the saddle-node (sn) bifurcation (separating monostable and bistable
regions) in the Ru/U parameter plane After Krischer [25].

The locations at which a saddle-node bifurcation is expected to take place are denoted

by sn. As is seen in Figure 2.5 (a), a saddle-node bifurcation can occur when either the

uncompensated resistance, Ru, or the applied voltage, U is changed.

Bistability, as shown in Figure 2.1 above, is observed when the applied voltage is

varied and it is shown in the I/U curve in Figure 2.5 (b). Varying the applied voltage U, a

saddle-node bifurcation occurs when the number of fixed points changes from one to three.

Two of the three fixed points are stable; the intermediate one is unstable. Figure 2.5 (c) shows
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the bistable region in the U/Ru plane, the borders between the mono- and bistable regions are

determined by a saddle-node bifurcation. The bistable region becomes broader for higher U

and increasing Ru, independent of the details of the electrochemical reaction.

2.2.4 OSCILLATIONS IN HN-NDR SYSTEMS

In line with the general requirements for oscillations to occur as discussed in section

2.1.2, systems possessing an NDR and hence, at sufficiently high Ru, a positive feedback loop

involving fDL, may oscillate in the presence of an additional, negative, feedback loop.

One class of such systems are so-called HN-NDR systems in which a subprocess, at

least partially, hides the NDR (so that, ‘H’ stands for ‘hidden’). In general, HN-NDR systems

can be viewed as being composed of a subsystem with an N-shaped stationary polarization

curve whose NDR is hidden by at least one further slow and potential dependent step of the

interfacial kinetics of the total system. Figure 2.6 (a) illustrates the I/fDL curves for an N-

NDR (dotted line) and an HN-NDR (full line) system. As is seen in this figure, potential

oscillations occur around a region of positive I/fDL slope in the case of an HN-NDR system.

Figure 2.6: (a) Stationary I/fDL curve of H(hidden)N-NDR oscillators (solid line)
and N-shaped I/fDL curve of the ‘fast subsystem’ (dashed line). The oscillations
occur for a fixed value of U (potentiostatic conditions) and fixed current
(galvanostatic conditions) around a branch with positive slope as indicated by the
straight lines for the constant current case. (b) Schematic impedance spectrum for
an applied voltage in the oscillatory region of the HN-NDR curve displayed in
(a), but under conditions in which the stationary state is stable, i.e., at low Ru. (c)
Qualitative locations of bistable and oscillatory regions in the U/Ru parameter
plane for HN-NDR oscillators. Note that the oscillatory regions persist up to the
limit of infinite Ru, which corresponds to the galvanostatic case.
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Figure 2.6 (b) displays the impedance spectrum obtained under conditions in which

the stationary state is stable, i.e., for parameter values that are different from the ones of

Figure 2.6 (a). Figure 2.6 (b) shows that the slow step mentioned above dominates the

faradaic impedance at low perturbation frequencies as in the case of the stationary I/fDL curve

depicted in Figure 2.6 (a) (solid line). At higher frequencies, however, the negative

impedance of the fast process dominates the impedance behavior. Increasing the

uncompensated resistance (or equivalently an external resistance placed in series between the

WE and the CE) the entire impedance spectrum shown in Figure 2.6 (b) is shifted to the right

side of the diagram. The point at which the circle intercepts the origin of the axis (i.e., Im Z =

Re Z = 0) corresponds to the resistance threshold from which on oscillations are observed. In

other words, a Hopf bifurcation occurs at this point.

Similarly as done in the bistable case, in Figure 2.6 (c) the locations of bistable and

oscillatory regions of an HN-NDR system are depicted in the U/Ru parameter plane. Clearly,

HN-NDR oscillators exhibit potential oscillations under galvanostatic conditions and current

oscillations under potentiostatic conditions [24, 25].

2.2.5 SPATIALLY EXTENDED REACTION-MIGRATION SYSTEMS

In an electrochemical environment, the equations describing spatiotemporal pattern

formation are also composed of a reaction term, i.e. the homogeneous dynamic describing the

point-like system, and a part describing the spatial coupling, in a similar way as given in

equation (2.1) for RD systems [27]. The primary difference in the equations describing

pattern formation in electrochemical systems is that the dominant spatial coupling in this case

is through the electric field in the electrolyte. The spatial coupling through the electric field is

termed migration coupling, and consequently, the local evolution of the double layer potential

is said to be described by reaction-migration (RM) rather than reaction-diffusion equations.

Since, as explained below, an additive global coupling comes naturally into play in

electrochemical systems, the equations describing the local evolution of fDL can be written in

general terms as,
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in which the function fi accounts for the homogeneous dynamics, the migration term for the

dominant lateral transport process and the last term refers to the global coupling, respectively.

The fact that the distribution of the electric potential in the electrolyte is governed, to

a good approximation, by Laplace’s equation, implies that the potential distribution in the

electrolyte, and thus also the migration current density at the WE, depends on the potential

distribution at the boundaries of the electrolyte. The individual ‘elements’ composing the

electrode surface are coupled among each other by the electric potential distribution in the

entire electrolyte, and a change of the double layer potential of one of these individual

elements leads to a redistribution of the electric potential in the entire cell. This points to the

importance of the cell geometry and the relative arrangement of the electrodes in RM

systems. When compared to the diffusion coupling, which is local in nature, migration is

considered a non-local coupling (s.b.). Furthermore, theoretical investigations by Mazouz et

al. [39] showed that the smaller the CE/WE separation, the smaller the lateral extent of the

migration coupling. As further discussed below, this opens the perspective of experimentally

changing the non-local character of the migration coupling.

The migration coupling just discussed is always present in electrochemical systems.

However, there are additional ways by which individual oscillators can be coupled. They

arise from the operation mode, i.e., the galvanostatic or the potentiostatic constraint and

constitute a global coupling. The coupling induced by the potentiostatic control can be

intuitively explained as follows. Suppose a change of fDL at some particular position at the

electrode due to some fluctuation, for instance. The electric potential distribution in the entire

electrolyte changes because of the strong tendency of the electrolyte to keep the electrolyte

electroneutral. The changes of the electric potential in the electrolyte will be most

pronounced close to the WE and fades away with increasing distance from it. Hence, if the

RE is close to the WE, a local fluctuation of the electrode potential alters the electric potential

at the position of the RE noticeably. As a consequence, the actual potential difference

between the WE and the RE is different from the set one, and the potentiostat changes the

Galvani potential of the WE (or equivalently the Galvani potential of the CE) until actual and

set values are identical again. A change of the Galvani potential, however, affects the

potential drop across the double layer along the entire electrode/electrolyte interface. Thus, a

local change of the double layer potential causes the double layer potential to change

everywhere. The coupling induced by the electronic feedback in the potentiostatic operation
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mode acts towards desynchronization and tends to enhance the difference in the fDL

distribution, favoring the emergence of spatial symmetry breaking [27, 28, 41]. Similarly to

the situation illustrated above for RD systems, this coupling is termed negative global

coupling (NGC). The galvanostatic case will not be investigated in this thesis, and details

about its mechanism can be found in ref. [26, 27].

Christoph et al. [45, 46, 78] have recently discussed the coupling in electrochemical

systems via a coupling function H, which depends only on the system’s geometry. The

potential distribution in the electrolyte is expressed in terms of the boundary conditions at the

electrode with the help of a Green function. The spatial coupling is given in terms of the

integral of the coupling function H over the electrode. For an inhomogeneous situation, the

coupling function H (x-x’) expresses the effect that any location x’ has on the dynamics at the

position x.

This approach indeed provides a quite intuitive representation of the long-range

effects present in electrochemical systems. Figure 2.7 shows the coupling function H for a

thin ring electrode of unitary circumference for two different geometries together with the

coupling function for the diffusional coupling for comparison (dotted line). The

synchronizing nature of the migration coupling mentioned above becomes apparent when

considering the positive offset in curve i, in other words, as H is positive everywhere, the

spatial coupling is synchronizing. The non-local feature of the migration coupling is also

easily seen when comparing curve i with the diffusive coupling (dotted line); in contrast to

diffusion, migration couples all ‘elements’ of the electrode with each other, though with

different strength.

The next case, curve ii, denotes a situation in which the RE is placed between the CE

and the WE. Here the nature of the desynchronizing negative global coupling is

straightforward. There is a negative offset of the coupling function; adjacent points along the

ring remain positively coupled, whereas opposite points are negatively coupled. As stressed

earlier, this desynchronizing coupling is termed global since it acts along the entire WE, and

the negative shift in the coupling function does not depend on the position.
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Figure 2.7: Coupling function H as a function of angular coordinate x’ for a one-
dimensional ring-shaped electrode configuration. Curve i corresponds to the
situation in which the system is subjected only to migration coupling. In curve ii a
negative global coupling is superimposed to the system. The dotted line
represents the coupling function corresponding to diffusion coupling. After
Christoph [46].

Quite recently Krischer and coworkers [79] have reformulated the coefficient entering

the evolution equation of the double layer potential in front of the global coupling term.

Specifically the coefficient a given in equation (2.4) has been expressed as a function of the

compensated and the total cell resistances. The full evolution equation reads,
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In this equation Csp is the specific (or per electrode area) double layer capacitance; A

is the electrode area; s the electrolyte conductivity; f the electric potential in the electrolyte;

z the coordinate normal to the electrode (pointing into the electrolyte), and z = WE is the
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position at the electrolyte end of the double layer of the working electrode; the remaining

symbols have already been defined.

The first two terms on the rhs in equation (2.5) represent the homogeneous dynamics,

the third term describes the migration coupling [80], and the last term accounts for the global

coupling imposed to the system.

From equation (2.5) it becomes apparent that whenever some portion of the

electrolyte resistance is compensated, i.e., Rc � 0, some NGC is induced in the system. The

strength of the NGC can then be calculated in terms of Rc and R � , which can easily be

measured. As experimentally verified in chapter 6, this reformulation also implies that the

way by which the compensation is achieved is irrelevant for the NGC induced. It means that

the compensation can be carried out either by using a RE mounted into a Haber-Luggin

capillary or by electronic means as in the case of an external resistor with a negative

impedance characteristics.

2.3 THE HYDROGEN (ELECTRO)OXIDATION REACTION (HOR)

In this section the Hydrogen (electro) Oxidation Reaction (HOR) is reviewed. First

the bistable Pt|H2SO4|H2, system, which possess an N-shaped polarization curve is discussed.

Nonlinear phenomena occurring in this system are discussed in chapter 4. After addition of

some electrosorbing ions, such as Cl– and Cu2+, the N-NDR system is turned into an HN-

NDR one. This system exhibits oscillations in wide parameter ranges. It serves as a prototype

system in the studies on spatial pattern formation in oscillatory electrochemical systems

discussed in chapters 5-8. The mechanism causing oscillations in the Pt|H2SO4, Cl–,Cu2+|H2

system is discussed in section 2.3.2.

2.3.1 THE BISTABLE Pt|H2SO4|H2 SYSTEM

The well known (see, for instance, ref. [81]), cyclic voltammogram of a platinum

electrode in aqueous sulfuric acid electrolyte solution is reproduced in Figure 2.8 (a).

According to the applied voltage, the following regions can be identified: (a) the hydrogen

adsorption/desorption region between 0 and 0.3 V; the size and shape of the peaks in this

region strongly depends on the electrolyte and on the pretreatment of the electrode; (b) the
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double layer region between 0.4 and 0.75 V; (c) the oxide formation region which starts in

the positive scan at ca. 0.75 V. The oxide reduction takes place at less positive values (ca.

0.71 V in Figure 2.8 (a)) in the backward scan; and (d) the oxygen evolution reaction starting

at about 1.45 V. As clearly seen in Figure 2.8 (a), the oxidation process occurs in a very

broad potential range, whereas the oxide reduction gives rise to a one much sharper peak. The

position of the current peak during the reduction process depends on the extent of the

oxidation of the surface. It is shifted towards less positive potentials proportionally to the

amount of the oxide formed. The hysteresis observed in the platinum oxidation/reduction

reactions [82] is seen even when only a very low amount of oxide is formed, and it is caused

by the place exchange processes as will be discussed below.

Figure 2.8 (b) shows the voltammetric signature of the HOR in the Pt|H2SO4|H2

system under identical conditions as given in plate (a) but now in the presence of H2, which is

continuously bubbled through the electrochemical cell. In the potential region up to about

0.70 V the main difference between the two CVs is the positive offset current of about 380

mA due to the HOR. From ca. 0.75 V on, the current decreases as the potential increases.

Thus an NDR region forms as clearly seen in Figure 2.8 (b). This NDR mediates the

transition between an active (high current) and a passive (low current) state. The NDR is

caused by the platinum oxide formation which blocks the platinum surface sites leading to a

current decrease. The NDR in this N-NDR system can lead to bistability and complex

voltammetric responses in low conductivity electrolyte as further discussed in chapter 4.
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Figure 2.8: Cyclic voltammogram (0.10 Vs–1) of a rotating platinum disk
electrode (rotation rate = 20 Hz) in 0.5 M H2SO4, (a) saturated with N2, and (b)
saturated with H2.

The steps underlying the voltammetric response displayed in Figure 2.8 (b) are as

follows [83-85]: (i) diffusion of H2 from the bulk electrolyte to the electrode surface, (ii)

dissociative adsorption of surface H2 onto bare Pt sites, and (iii) electrochemical oxidation of

adsorbed hydrogen atoms accompanied by hydration,

surface
2

bulk
2 HH � , (i)

HPt2HPt2 surface
2 -�+ , (ii)

PteOHOHHPt 32 ++�+-
��

. (iii)

Steps (ii) and (iii) are denoted as Tafel and Volmer steps, respectively, and this mechanism is

usually referred to as Volmer-Tafel mechanism [85, 86]. In an electrolyte with high

conductivity the electron transfer step (iii) dominates the current only up to about 0.05 V and

manifests itself in a steep current increase. As apparent in Figure 2.8 (b), the mass transport
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step (i) is rate determining over a wide potential region and, due to the negligible hydrogen

dissociation rate (step (ii)) on an oxide covered platinum surface, a current decrease starting

at ca. 0.75 V is observed as mentioned above.

The mechanism of platinum oxidation has been recently revised based on

electrogravimmetry measurements with an Electrochemical Quartz Crystal Nanobalance,

EQCN [87, 88]. In contrary to earlier beliefs (see [89] and references therein), these studies

revealed that there is a continuous increase of mass accompanying the oxidation of the

platinum surface in the potential range between 0.85 and 1.4 V (vs. RHE) [87, 88]. The main

implication of this work is that the two steps scheme,

-+++-�+ eHOHPtO2HPt

followed by,

-+++-�- eHOPtOHPt

is not applicable. Instead, when the oxidation level reaches the value corresponding to one

electron per platinum atom (i.e., a charge of 210 mC cm–2) the surface is half covered by O

species, rather than by a full monolayer of OH [90]. A similar argument invoking the initial

participation of two electrons during the platinum surface oxidation has also been used by

Harrington [91].

Thus, the platinum oxide formation proceeds through the discharge of water

molecules thereby directly forming PtO [87, 88],

-+++-�+ e2H2OPtO2HPt , (iv)

the oxide formation may subsequently undergo a place exchange step,

PtOOPt -�- . (v)

As recently pointed out by Conway [92], this result has an important implication on

electrocatalytic oxidation mechanisms [93, 94] since at potentials as high as 1.1 V, there are

still oxygen free platinum surface sites available which may allow adsorption of reacting

species and of anions such as HSO4
– and Cl–.
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An important point concerning the platinum electrochemistry is the roughening

process accompanying the oxide reduction. Phenomenologically, the roughening results from

the stripping of subsurface ‘O’ species which form in the place exchange step [82, 89, 90, 92,

95-100]. The initially deposited oxide is metastable state and undergoes an irreversible

transformation to a thin, almost two-dimensional surface oxide phase which is then reduced

at less positive potentials than it is formed. The place exchange process leading to the

formation of the oxide film is also responsible for the hysteretic effect observed during the

oxidation and reduction processes of thin surface oxides on metals [101].

The fact that the processes of oxidation and reduction of platinum can modify the

structure of the surface has been recognized a long time ago [102-106]. Although the detailed

evolution of the surface structure with, for example, repeated voltammetric cycling, is a very

complicated phenomenon and depends on several accompanying processes, it is well known

that the platinum oxide reduction enhances the electrode activity by increasing its roughness.

In this aspect, it is worth to point out that issues related to this enhancement of the platinum

electrode activity, or electrode activation, caused by the oxide reduction have been

extensively investigated by Burke and coworkers [107-111]. The reason of this surface

roughening after the oxide reduction is related to the ‘post electrochemical’ place exchange

process discussed above. Since during the place exchange the platinum atoms move out of

their metallic lattice positions driven by the electrochemical potential gradient across the

metal/electrolyte interface (which is changed by an imposed bias), it is intuitive to expect that

just after oxide reduction the surface possesses a high disorder. In this aspect, morphological

changes promoted by the place exchange process have been extensively studied by several

groups using many different techniques [89, 112-118].

The scheme in Figure 2.9 summarizes the present discussion. As stressed before, the

platinum surface oxidation occurs directly to Pt–O (step (1) in Figure 2.9), and the extent of

this oxidation is denoted by x. In other words, x is the ratio between oxygen and platinum

atoms. After the oxidation process Pt–Ox species can be reversibly reduced back to Pt (step

(1’)) if the oxidation proceeds up to ca. 15 % of the charge of one electron per platinum atom

(i.e., 210 mCcm–2), or equivalently x = 0.07. For higher charges, however, step (2) comes into

play, and concomitantly to the platinum oxidation place exchange takes place.



CHAPTER 2: BACKGROUND28

Figure 2.9: Schematic overview of the platinum oxidation/reduction
electrochemistry.

The relaxation of a rough to a smooth surface (Pt* to Pt, step (4) in Figure 2.9) has

also been reported in the literature. Using a somewhat different interpretation at that time,

Hoare in his 1982 paper entitled “On the Interaction of Oxygen with Platinum” [119]

provides a clear example of the relaxation of a rough platinum surface. In particular, (see

Figure 12 in ref. [119]), the platinum electrode was cycled a few times between 0 and 1.5 V

(vs. RHE), and then the potential window was restricted to values between 0 and 0.5 V (vs.

RHE). Subsequent cycles in this potential region exhibit a continuous decrease of the current

in the upd hydrogen peaks and therefore in the real electrode area. After complete surface

relaxation into its flattest state, a stationary voltammetric response was reestablished. Very

interestingly, after reopening the potential window, i.e., cycling again between 0 and 1.5 V

(vs. RHE), only about three cycles were sufficient to recover the previous voltammetric

response with the original higher charge in the hydrogen region, and obviously also with the

same electrode area as the one observed before cycling in the restricted potential region.

Tremiliosi-Filho et al. [118] have discussed several changes in the surface roughness as a

function of the oxidative treatment of the platinum electrode. For example, they observed an

increase of more than three times in surface roughness compared to that of the

electrochemically annealed surface when keeping the electrode at 2 V for 48 hours.

Furthermore, it was found that the total charge passed, rather than the upper potential limit or

number of cycles in voltammetric treatment determines the extent of roughening. The key

point concerning the relaxation of the rough surface is that, independent of the oxidizing

conditions, the platinum surface always relaxes back to within 5 % of its original real surface

area after standard treatment, i.e. electrochemical annealing.
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2.3.2 THE OSCILLATORY Pt|H2SO4,Cl–,Cu2+|H2 SYSTEM

In this section it is shown how the bistable Pt|H2SO4|H2 system may display

oscillations after addition of some electrosorbing species.

Oscillatory dynamics in the HOR in the presence of poisons is a known phenomenon

for a long time [120-123] and has been extensively studied both experimentally and

theoretically in Krischer’s group [53, 124-128]. After these studies it became clear that the

mechanism underlying oscillations results from an overlap between the adsorption isotherms

of cations and anions which compete for free sites on the metal surface and reduce the rate of

H2 oxidation [126-128]. The electrosorbing species used throughout this work were Cl–and

Cu2+, and the whole system is referred to as the oscillatory Pt|H2SO4,Cl–,Cu2+|H2 system.

The effect of successive addition of Cl– and Cu2+ on the HOR is illustrated in Figure

2.10. The solid curve in Figure 2.10 (a) depicts the HOR in the absence of Cl– and Cu2+. The

very steep current increase between 0 and 0.05 V, in which the electron transfer step is rate

determining as discussed above, and the subsequent mass transport region characterized by a

current plateau in a wide voltage window can be clearly seen. The dashed line in Figure 2.10

(a) illustrates the effect of addition of Cl–. In this case the I/U curve remains nearly identical

to the one obtained in the absence of halide ions (solid line) except from the fact that the

adsorption of Cl– causes a slight current decrease in the mass transport limited region. Hence,

Cl– adsorption causes an NDR, though its slope is small. Addition of Cu2+ ions (dotted curve

in Figure 2.10 (a)) has an inhibitory effect on the HOR in a potential window corresponding

to copper deposition. This inhibitory effect is reflected in the negligible HOR current

observed for U < 0.55 V (dotted line in Figure 2.10 (a)). At this potential, copper desorption

sets in and the current increases. Important in the present context is the fact that the NDR

caused by Cl– is partially hidden by deposited copper, and a positive I/U slope is observed

during the copper stripping. Finally, after the copper has been completely stripped from the

electrode surface, the current attains again the values corresponding to the ones observed in

the Pt|H2SO4,Cl–|H2 subsystem (dashed line in Figure 2.10 (a)).
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Figure 2.10: (a) i/fDL characteristics of the HOR in 0.1 M H2SO4 (solid line), 0.1
M H2SO4 and 1 mM HCl (dashed line), and 1 mM H2SO4, 1 mM HCl and 0.025
mM CuSO4 (dotted line). (b) i/fDL curve for the same solution as in (a) (dotted
line) but with an external resistor in series to the WE such that Rt (= Rext + R � ),
was 11 kW. The data in both plots were obtained after subtracting IRt from the
applied voltage U (fDL = U – iARt = U – IRt). In these experiments a rotating (w
= 20 Hz) platinum disk was used as WE and the scan rate was 0.002 Vs–1. In all
experiments H2 was continuously bubbled through the solution. For details see
ref. [53].

It was discussed in section 2.2.4 that in an HN-NDR system oscillations are expected

from a certain critical value of the uncompensated resistance on. The i/fDL curve shown in

Figure 2.10 (b) was obtained when an external resistance was inserted in series between the

WE and the potentiostat, whereby the sum of this resistance and the uncompensated one

amount to 11 kW. As clearly seen, potential oscillations are observed in a region of the i/fDL

curve which has a positive slope (cf. dotted curve in Figure 2.10 (a)). Moreover, the potential

oscillates between the i/fDL curves obtained with and without copper.

The two feedback loops underlying the oscillatory dynamics in the Pt|H2SO4,Cl–

,Cu2+|H2 system are shown in Figure 2.11 and can be rationalized as follows. The positive
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feedback loop assures that an initial increase in fDL leads to its further increase owing to fast

Cl– adsorption that inhibits the hydrogen current and thus promotes a further increase in fDL

(since under potential control U = fDL + IRu). In the negative feedback loop, in contrast, an

increase in fDL is suppressed because at more positive potentials Cu desorbs, increasing the

current and, owing to the potentiostatic constraint, the potential is shifted towards more

negative values.

Figure 2.11: Schematics of the two feedback loops present in the HN-NDR
Pt|H2SO4,Cl–,Cu2+|H2 system.

Plenge et al. [53, 129] have developed a homogeneous model consisting of a set of

four ordinary differential equations which was found to capture the main dynamical features

of the Pt|H2SO4,Cl–,Cu2+|H2 system. It overcame the key discrepancies between previous

models and experiments [126-128]. A very important point included in the model was the

interaction between adsorbed Cl– and Cu2+, such that the anion adsorption is enhanced in the

presence of copper at the electrode. Indeed, the inclusion of a term accounting for this

interaction was found to be a necessary condition for the agreement between experimental

and simulated data [53, 129].

An example of the superior agreement between simulations and experiments is given

in Figure 2.12. In plate (a) the calculated (solid line) and experimentally (dots) obtained

locations of the Hopf bifurcations are shown. Figure 2.12 (b) shows an experimental i/U
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curve obtained with a slow scan rate. From such curves the bifurcation points depicted in

plate (a) were obtained.

Figure 2.12: (a) Oscillatory region in the IdiffRt/U plane. Solid line: calculated
onset of Hopf bifurcation; points: the experimentally observed locations of Hopf
bifurcations for ten different values of the external series resistance. The point
size in (a) indicates also the error bars. (b) Example of an anodic scan at 0.002
Vs–1 displaying the oscillatory region indicated in the dashed line in (a) for Rt = 7
kW. Experimental details as in Figure 2.10 (b).

The Pt|H2SO4,Cl–,Cu2+|H2 system serves as a prototypical HN-NDR system. In fact,

results obtained for this system can be used to further understand other mechanistically

equivalent systems. One interesting example of such a similar system would be the hydrogen

oxidation in the presence of small amounts of CO [130, 131]. This system can be compared

to the Pt|H2SO4,Cl–,Cu2+|H2 system whereby CO takes the role of Cu adsorbing at less

positive potential values and halide becomes unnecessary, since the adsorption of oxygenated

species can play the role of competitively adsorbing with CO in a specific potential range.

Thus, it should be possible to deduce a lot about the dynamic behavior in the (from the

dynamic point of view much less studied) Pt|H2SO4|H2,CO system from the knowledge about

instabilities in the Pt|H2SO4,Cl–,Cu2+ |H2 model system [132].
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2.4 PATTERN CHARACTERIZATION: THE KARHUNEN-LOÈVE DECOMPOSITION

The observed one-dimensional (1-D) spatiotemporal patterns were characterized by

the Proper Orthogonal Decomposition (POD) or Karhunen-Loève Decomposition (KLD). In

this method the spatiotemporal data set is decomposed into a set of time-independent spatial

structures and their corresponding time-dependent scalar amplitudes. The KLD method is

often used to analyze experimental data (typically patterns in space and time) aiming at

extracting dominant features (‘coherent structures’). In the context of spatiotemporal pattern-

forming chemical experiments, it has been successfully used in several systems such as

catalytic oxidation of hydrogen on nickel [133], CO oxidation on Rh black/SiO2 [134] and Pt

[135], and iron electrodissolution [136], for example.

In chapters 5 and 7 the measured interfacial potential along the ring-shaped WE,

UPP(x,t) was normalized in two different ways before employing the KLD. First, in order to

identify spatial structures in the presence of homogeneous oscillations, the spatial average at

each instant in time is subtracted from the data UPP(x,t),

( ) ( ) ( ) ( ) ( )
xPPPP
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where L is circumference of the WE.

In the second case, the average of the homogeneous offset was subtracted, i.e.,
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where T is total time of the time series. Either the data obtained as in (2.6) or as in (2.7) were

used in the KLD. The data normalized in according to (2.6) are referred to as the

inhomogeneous part of the interfacial potential in the following chapters. The ‘full’ data

normalized with the procedure given in (2.7) will be simply referred to as the interfacial

potential.

Taking the spatiotemporal set of data uPP(x,t) given in (2.6), the elements rij of the

correlation matrix R can be defined as,
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( ) ( )[ ]Ê
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r i, j = 1,…, N. (2.8)

Where N stands for the number of discrete points in space and M for the instants in time.

The eigenvectors ci of the matrix R are linearly independent and form a complete

orthonormal set. They represent the dominant spatial structures (s.b.). The corresponding

eigenvalue li represents the significance with which the eigenvector (or mode) ci contributes

to the overall spatiotemporal pattern and is maximized in the way that:

( )2
iPPi ,u c=l , (2.9)

in which the parentheses account for the inner product, whereas the angle brackets stand for

the average.

The set uPP(x,t) can be conveniently represented in terms of the eigenvectors ci:

( ) ( ) ( )Ê


c=
M

1j
jjPP xtCt,xu , (2.10)

in which the temporal uncorrelated coefficients Ci are obtained by projecting the data onto

the eigenvectors:

( ) ( ) ( )( )t,xu,xtC PPji c= . (2.11)

This procedure provides an objective method for determining the spatial structures

with the highest ‘energy’. In quantitative terms, one seeks the functions ci(x) with the largest

amplitude Ci(t) = (uPP(x,t), ci(x)) in a mean square sense. Among all linear decompositions,

the KLD can be considered the most efficient for modeling or reconstructing the signal

uPP(x,t), in the sense of capturing the dominant components of an infinite-dimensional

process with a finite number of ‘modes’ (i.e. the functions ci(x)) [137].

Finally, it should be mentioned that the KLD analysis reported in this thesis was

carried out in cooperation with Dr. Antoine Bonnefont whose help is strongly acknowledged.


