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Experimental demonstration of measurement-device-
independent measure of quantum steering
Yuan-Yuan Zhao1,2,3,9, Huan-Yu Ku 4,5,9, Shin-Liang Chen 5,6✉, Hong-Bin Chen 7, Franco Nori 4,8, Guo-Yong Xiang1,3✉,
Chuan-Feng Li 1,3, Guang-Can Guo1,3 and Yueh-Nan Chen 5✉

Within the framework of quantum refereed steering games, quantum steerability can be certified without any assumption on the
underlying state nor the measurements involved. Such a scheme is termed the measurement-device-independent (MDI) scenario.
Here, we introduce a measure of steerability in an MDI scenario, i.e., the result merely depends on the observed statistics and the
quantum inputs. We prove that such a measure satisfies the convex steering monotone. Moreover, it is robust against not only
measurement biases but also losses. We also experimentally estimate the amount of the measure with an entangled photon source.
As two by-products, our experimental results provide lower bounds on an entanglement measure of the underlying state and an
incompatible measure of the involved measurement. Our research paves a way for exploring one-side device-independent
quantum information processing within an MDI framework.
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INTRODUCTION
Entanglement1, steerability2, and Bell nonlocality3 are three types
of quantum correlations which play essential roles in quantum
cryptography, quantum teleportation, and quantum information
processing4–6. The fact that quantum steering is treated as an
intermediate quantum correlation between entanglement and
nonlocality leads to a hierarchical relation among them. That is, all
nonlocal states are steerable, and all steerable states are
entangled, but not vice versa7–9. During the past decade, there
have been many significant experimental works10–16 and various
theoretical results on quantum steering17–22, including the
correspondence with measurement incompatibility23–27, one-way
steering28,29, temporal steering30–34, continuous-variable steer-
ing35–37, and measures of steering38–43.
Bell nonlocality enables one to perform the so-called device-

independent (DI) quantum information processing5,44–47, i.e., one
makes no assumption on the underlying state nor the measure-
ments performed. From the hierarchical relation7, it naturally leads
to the fact that a Bell inequality can be treated as a DI
entanglement witness. Nevertheless, not all entangled states can
be detected by using a Bell inequality violation48. Recently, based
on Buscemi’s semi-quantum nonlocal games49, Branciard et al.50

proposed a collection of entanglement witnesses in the so-called
measurement-device-independent (MDI) scenario. Compared with
the standard DI scenario, there is one more assumption in an MDI
scenario: the input of each detector has to be a set of
tomographically complete quantum states instead of real
numbers. Such a simple relaxation leads to that all entangled
states can be certified by the proposed MDI entanglement
witnesses49,50. This characterization gives rise to the recent works
providing frameworks for MDI measures of entanglement51–54,

non-classical teleportation55, and non-entanglement-breaking
channel verification56–58.
Recently, Cavalcanti et al.59 introduced another type of nonlocal

game, dubbed as quantum refereed steering games (QRSGs). In
each of such games, one player, denoted as Alice, is questioned
and answers with real numbers, while the other player, saying
Bob, is questioned with (isolated) quantum states but still answers
with real numbers. They showed that there always exists a QRSG
with a higher winning probability when the players are correlated
by a steerable state59. Later, Kocsis et al.60 experimentally
proposed a QRSG and verified the steerability for the family of
two-qubit Werner states in such a scenario, which is also referred
to as an MDI scenario. Moreover, such a QRSG scenario can be
used to generate the private random number by maximal
violation of the higher dimensional steering inequality under the
MDI framework61,62.
Here we consider a variant of QRSGs, by which we propose the

MDI steering measure (MDI-SM) of the underlying unknown
steerable resource without accessing any knowledge of the
involved measurements. We show that the MDI-SM is a standard
measure of steerability, i.e., a convex steering monotone41, by
proving that it is equivalent to the previously proposed measures:
the steering robustness38 and the steering fraction40. Therefore,
our proposed measure not only coincides with the degree of
steerability of the underlying steerable resource, but also
quantifies the degree of entanglement of the shared quantum
state38 and incompatibility of the measurements involved23,26,63.
Furthermore, MDI-SM can be computed via a semidefinite
program. We also show the MDI-SM is robust, in the sense that
it can detect steerability in the presence of detection losses and
biases50–53.
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Finally, we experimentally estimate the degree of steerability of
the family of two-qubit Werner states in an MDI scenario. We
consider that Alice performs three qubit-measurements in the
mutually unbiased bases (MUBs) since they can be used to
demonstrate the strongest steerability to Bob when Alice has
three measurement settings39. On the other hand, Bob performs
the Bell-state measurement (BSM) on his part of the state and the
quantum inputs. Based on the observed correlations, the
steerability of the family of two-qubit Werner states are quantified
by solving a semidefinite program. As mentioned before, the
experimental data naturally bounds the degree of entanglement
of the underlying state, and the amount of measurement
incompatibility of Alice’s measurements. Compared with the
previous experimental works53,60,64–66 in the MDI scenarios, our
method not only certifies the existence of entanglement and
measurement incompatibility, but also bounds these quantities.
Moreover, our experimental result roughly relates with the
probabilities of successful subchannel discrimination in the MDI
scenario38,67.

RESULTS
MDI measure of steerability
Through this work, we assume that all quantum states act on a
finite dimensional Hilbert space H. The sets of density matrices
and operators acting on H are denoted by DðHÞ and LðHÞ,
respectively. We denote the index sets of a finite number of
elements by A, B, X , and Y. The probability of a specific index, say
a 2 A, is denoted by p(a).
In the MDI steering scenario, we consider two spatially

separated parties, Alice and Bob, sharing a quantum state ρAB 2
DðHA �HBÞ (see Fig. 1). During each round of the experiment,
Alice receives a classical input x 2 X and performs the corre-
sponding measurement on her system with an outcome a 2 A.
On the other hand, Bob performs a joint measurement on his
system and a trusted input quantum state τy 2 DðHB0Þ, with
y 2 Y. We note that the trustiness represents the state is well
prepared and there is no side channel to transmit the state
information. Their joint probability distributions can be expressed
as: pða; bjx; τyÞ ¼ Tr Eajx � Eb

� �
ρAB � τy
� �� � 8a;b; x; y; where

fEajxga 2 LðHAÞ and fEbgb 2 LðHB �HB0Þ are the positive-
operator valued measurements (POVM) (i.e., the general quantum
measurements) describing Alice’s and Bob’s measurement with
the corresponding outcomes {a} and {b}, respectively.
Within the framework of the resource theory of quantum

steering41, we concern more about the underlying assemblage18

Bob receives rather than the shared quantum state. That is, we
describe the obtained correlation by Bob’s joint measurement {Eb}
on the quantum inputs {τy} and the assemblage {σa∣x}:

pða; bjx; τyÞ ¼ Tr Ebðσajx � τyÞ
� �

: (1)

An assemblage {σa∣x} is a set of subnormalized quantum states
defined by σa∣x= TrA(ρABEa∣x⊗ id)18, which includes both the
information of Alice’s marginal statistics p(a∣x)= tr(σa∣x) and the
normalized states σ̂ajx ¼ σajx=pðajxÞ 2 DðHBÞ Bob receives. Here,
id is the identity operator. The free state of the quantum steering
(denoted as unsteerable assemblage) is the assemblage admit-
ting a local-hidden-state (LHS) model7, described by a determi-
nistic strategy D(a∣x, λ) and pre-existing (subnormalized)
quantum states {σλ}, such that σajx ¼ σ US

ajx ¼ P
λDðajx; λÞσλ 8 a; x.

In particular, the set of all unsteerable assemblages LHS forms a
convex set; consequently, for a given steerable assemblage
fσSajxg, there always exists a set of positive semidefinite operators

{Fa∣x ≽ 0}, called a steering witness, such that Tr
P

a;xFajxσ
S
ajx>α,

while Tr
P

a;xFajxσ
US
ajx � α 8fσUSajxg 2 LHS16,18,38,39,42, where α :¼

maxfσUS
ajxg2LHS Tr

P
a;xFajxσ

US
ajx is the local bound of the steering

witness.
In what follows, we will construct the MDI-SM by using the

aforementioned existence of a steering witness for any steerable
assemblage. We start by considering a variant of QRSGs. Indeed,
Eq. (1) can be treated as correlations obtained in a variant of
QRSGs with steerable assemblages being a resource. We stress
that, in the standard QRSGs, one instead treats a set of steerable
states as a resource in such a game. These two resources are
inequivalent because one can obtain the same assemblage from
different states and measurements. With this, we define a payoff
associated exclusively to a single Bob’s outcome (b= 1) as

W P; βð Þ ¼
X
a;x;y

βx;ya;1pða; 1jx; τyÞ; (2)

where P:= {p(a, 1∣x, τy)} is the experimentally observed statistics
from an assemblage {σa∣x} based on Eq. (1) and β :¼ fβx;ya;1g is a set
of real coefficients.
With the above definition, we prove that, given any steerable

assemblage, there always exists a set of real coefficients β, such
that the payoff W P; βð Þ is strictly higher than those obtained from
unsteerable assemblages. Details of the proof are given in
Supplementary Note 1. In other words, the payoff W P; βð Þ is
effectively the same as the standard steering witness, in the sense
that all steerable assemblages can be faithfully verified by a
properly chosen W P; βð Þ. We note that the witness W P; βð Þ can
be seen as a generalization of a standard Bell inequality (see ref. 50

(c) Bell nonlocality
a

(b) Quantum steering

ρAB

(a) Entanglement

b

ρAB

ρAB

(d) MDI Steering

ρAB

a

a b

Fig. 1 Schematic illustration of the entanglement, quantum
steering, Bell nonlocality, and MDI steering scenarios. A pair of
entangled photons ρAB (pink balls) are shared between two spatially
separated parties: Alice and Bob. They verify whether they share the
entanglement, steering, and nonlocal resource by violating the
entanglement witness, steering inequality, and Bell inequality,
respectively. a In the entanglement certification task, Alice and
Bob both perform characterized measurements (transparent box).
b In the quantum steering scenario, one party performs unchar-
acterized measurements (black box) according to the classical input
{x}, while the other party performs a set of characterized measure-
ments. c In Bell nonlocality, Alice (Bob) receives the classical input {x}
({y}) and returns the outcomes {a} ({b}) with uncharacterized
measurements. d In the MDI steering scenario, Bob’s classical input
{y} of the steering scenario is replaced with quantum inputs {τy},
removing the necessity of trustiness of the measurement device.
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for a similar formulation in the entanglement scenario), and is
used to generalize the result of ref. 60, wherein the family of two-
qubit Werner states is explicitly considered.
Now we stand in the position to introduce the MDI-SM for an

unknown assemblage {σa∣x}, denoted by

S1 :¼ max W1 � 1; 0f g; (3)

with

W1 :¼ sup
β;P

WðP; βÞ
WLHSðβÞ ; (4)

where WLHSðβÞ ¼ supP2LHSWðP; βÞ is the local bound for a given
β. The physical meaning of the proposed measure is simple and
the idea is very similar to that of the nonlocality fraction68: if
the given correlation is unsteerable (i.e., it admits an LHS model),
then WðP; βÞ � WLHSðβÞ, and therefore S1 ¼ 0. On the other
hand, if the correlation is steerable, WðP; βÞ>WLHSðβÞ, then
S1 > 0. In Supplementary Notes 2 and 3, we further prove that:

● S1 is a steering monotone since it is equivalent to the steering
fraction and the steering robustness.

● The optimal P :¼ fpða; 1jx; τyÞ ¼ Tr½E1ðσajx � τyÞ�g in Eq. (4) is
obtained when Bob’s measurement is the projection onto the
maximally entangled state. That is, E1 ¼ ΦBB0þ

�� �
ΦBB0þ
� ��, with

ΦBB0þ
�� � ¼ 1=

ffiffiffiffiffi
dB

p PdB
i¼1 ij i � ij i.

After introducing our measure of the steerability in an MDI
scenario, we proceed by considering the following two practical
circumstances. First, one would like to estimate the degree of
steerability of a given data table without any a priori knowledge
about the experimental setup. Second, as the experimental
apparatuses are inevitably erroneous in practical situations, how
can one estimate the degree of steerability in the absence of the
optimization of Bob’s measurement? These two circumstances
give rise to the attempt to estimate the degree of steerability of an
experimentally observed correlation P when lacking the knowl-
edge about the underlying assemblage.
In the case of an inaccessible assemblage, the optimization over

P in Eq. (4) becomes not feasible. Consequently, the alternative
quantity W LB

1 ðPÞ :¼ supβ
WðP;βÞ
WLHSðβÞ is a lower bound on W1, and

S LB
1 ðPÞ :¼ max WLB

1 ðPÞ � 1; 0

 �

(5)

provides a lower bound on S1. Trivially, the bound becomes tight
when Bob’s measurement is the projection onto the maximally
entangled state E1 ¼ ΦBB0þ

�� �
ΦBB0þ
� ��. Note that even if Bob’s inputs

do not form a complete set, Eq. (5) still provides a valid lower
bound51. This can be understood from the fact that the set of
tomographically complete inputs is a resource for Bob to
demonstrate steerability in an MDI scenario. The lack of a
completeness of quantum inputs can only decrease the degree
of steerability.
Furthermore, to underpin the practical viability of our measure,

we stress that the maximal value of Eq. (5) is computable via a
semidefinite program (see Supplementary Note 4 for details):

given fpða; 1jx; τyÞg and fτyg
max

~β

P
a;x;y

~β
x;y
a;1pða; 1jx; τyÞ � 1

s:t : d ´ id � P
a;x;y

Dðajx; λÞ~βx;ya;1τyk0 8λ
P
y

~β
x;y
a;1τyk0 8a; x:

(6)

In the above equation, d= dB is the dimension of Bob’s system.
This program can be performed for a given experimentally
observed correlation P. Therefore, it works well particularly when
Bob’s measurement is the optimal one, i.e., the projection onto the

maximally entangled state. In this case, the solution of Eq. (6) gives
the exact value of the MDI-SM defined in Eq. (3).
Finally, we would like to show that the MDI-SM is robust against

detection losses. To see this, we consider the average loss rate of
Bob’s measurement η∈ [0, 1]. The observed correlation in this
case is pη(a, 1∣x, τy)= η ⋅ p(a, 1∣x, τy), shrinking the MDI-SM by η, i.e.,
η � S1. As can be seen above, the shrinking quantity η � S1 is still
able to detect steerability in an MDI scenario with arbitrary
detection losses and provide a lower bound on the steerability of
the underlying assemblage (see refs. 50,53 for similar discussions in
the MDI entanglement scenario).

Experimental results
In the following, we will experimentally demonstrate how to
estimate, in an MDI manner, the degree of steerability of the
underlying steerable resource given by Alice’s three measurement
settings with the two dimensional MUBs acting on the two-qubit
Werner states, namely ρAB ¼ v ψ�j i ψ�h j þ 1�v

4

� �
id , with visibility

0 ≤ v ≤ 1, singlet state ψ�j i ¼ 1ffiffi
2

p ð HVj i � VHj iÞ, and id being the

identity operator.
The experimental setup is schematically shown in Fig. 2. Further

details are given in “Methods”. Specifically, after sending the two-
qubit Werner state ρAB to Alice and Bob, we obtain the set of
probability distributions {p(a, b∣x, τy)} [described in Eq. (1)] by
which Alice performs measurements in the Pauli bases X, Y, and Z,
on her part of the system, while Bob performs the joint
measurement on his part of the system and his quantum inputs
τy. Bob’s tomographically complete set of quantum inputs is
composed of eigenstates of the three Pauli matrices. The joint
measurement performed by Bob is the BSM, i.e., the optimal
measurement, so that the value of the measure S1 can be
achieved.
Due to our experimental setup, we further show that for the

underlying assemblage {σa∣x} being a qubit, all of the four
measurement operators fEbgb¼1;2;3;4 of the BSM are optimal for
Bob, i.e., the produced correlation for each b leads to the
maximum value of Eq. (4). Further discussions on the two-qubit
case are given in Supplementary Note 5. Therefore, Eq. (5) can be
modified into the following form:

SLBðPÞ :¼ max
1
4

X4
b¼1

WLB
b ðPÞ � 1; 0

( )
; (7)

where W LB
b ðPÞ :¼ supβ0

WðP;β0Þ
WLHSðβ0Þ with β0 :¼ fβx;ya;bga;x;y for each b.

When there is a detection bias between the four detectors of the
BSM, Eq. (7) also provide a valid lower bound on the proposed
measure. More specifically, consider that we have four detectors
with the biased detection rates of ξ1, ξ2, ξ3, and ξ4, respectively,
with ∑bξb= 4 and ξb ≥ 0 ∀b. For the ideal case, ξb= 1 for all b.
When there exists some bias, the observed correlation will be ξb ⋅
p(a, b∣x, τy). Obviously, this correlation also reveals the steerability
of the underlying resource, i.e.,

SLB
ξ ðP; fξbgÞ :¼ max 1

4

P4
b¼1

WLB
b;ξðP; fξbgÞ � 1; 0

� 


:¼ max 1
4

P4
b¼1

ξb �
P
axy

β�;x;ya;b pða; bjx; τyÞ � ξb; 0

( )

� max 1
4

P4
b¼1

ξb WLB
b ðPÞ � 1; 0

� 

¼ SLBðPÞ;

(8)

where β�;x;ya;b is the optimal set of coefficients for the biased
correlation ξb ⋅ p(a, b∣x, τy).
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Our experimental estimation on S1 is plotted in Fig. 3a. As can
be seen, although SLBðPÞ in Eq. (7) may not perform the best
among the other fine-grained terms S LB

b ðPÞ :¼ W LB
b ðPÞ � 1, it is

the most suitable one in the sense that the variance from the
theoretical prediction is the smallest. Besides, some fine-grained
terms wrongly detect the existence of steerability due to the
overestimation caused by the detection bias (i.e., the estimation of

steerability in Fig. 3a when the visibility is lower than 1=
ffiffiffi
3

p
). With

Eq. (8), such overestimation will not occur when we use the
quantity SLBðPÞ. Therefore, our estimation on the MDI-SM is robust
against not only detection biases but also losses.
Except for estimating the degree of steerability of the under-

lying assemblage in an MDI scenario, here we show that our
experimental results directly bound the degree of entanglement

a

b

Alice Bob

ρAB(a)

Fig. 2 Schematic drawing of the experimental setup. a The singlet state of a pair of photons 1ffiffi
2

p ðjHVi � jVHiÞ is generated by a spontaneous
parametric down-conversion process, where H (V) represents the horizontally (vertically) polarized direction. The Werner state is prepared by
adding white noise (denoted by Ω) to the system. Then one of the photons is sent to Alice, who uses Q1, H1, and PBS to perform the
measurement x. The other photon is sent to Bob with an additional qubit system τy encoded on the photon’s path degree of freedom ‘0’ and
‘1’. We emphasize the preparation of the trusted quantum system in panel b. Now Bob performs a complete Bell-state measurement on the
equivalent two-qubit systems, i.e., measuring the polarization directions and the spatial paths of the single particle, and returns an outcome b.
At the end, a set of probability distributions {p(a, b∣x, τy)} is obtained to quantify the degree of steerability of the steerable resource. BBO
barium borate crystal, HWP(H) half-wave plate, IF interference filter, Att attenuator, Mir mirror, QP quartz plate, QWP(Q) quarter-wave plate,
PBS polarizing beam splitter, BS beam splitter, BD beam displacer. The star represents that the HWP’s axis is oriented at 45∘.
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Fig. 3 Results of the MDI-SM and the estimation of entanglement and measurement incompatibility. a The MDI experimental
demonstration of estimating steerability of the family of two-qubit Werner states when considering Alice has three measurement settings. The
theoretical prediction of the MDI-SM is plotted in the black line. The tailored estimator SLBðPÞ described in Eq. (7) for this experiment is
marked as diamonds. The MDI-SM in Eq. (3) are marked using circles, crosses, stars, and open triangles. b MDI lower bounds on the degree of
entanglement and incompatibility. The diamond symbols in a and b represent the same quantity. We use the tailored estimator SLBðPÞ as
lower bounds on the entanglement robustness (ER) of the underlying state and the incompatibility robustness (IR) of Alice’s measurements.
The actual values of these two quantities are represented by closed triangles and squares, respectively. By using the Monte Carlo algorithm,
we obtain the standard deviations of S LB

b ðPÞ in the value around 0.007 and the standard deviations of SLBðPÞ in the value around 0.004 for
three measurement settings by error propagation.
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ER(ρAB) of the underlying state and the degree of measurement
incompatibility IR({Ea∣x}) of Alice’s measurements. We briefly recall
these two quantities in Supplementary Note 6. The result is shown
in Fig. 3b. The detail of the quantum state tomography to access
these two quantities are also shown in Supplementary Note 7.
Our results are based on the fact that the steering robustness of
the assemblage SR({σa∣x}) is a lower bound on the entanglement
robustness ER(ρAB)

38 and incompatibility robustness IR
({Ea∣x})

23,26,63. Therefore, as SLBðPÞ is a lower bound on the
steering robustness, SLBðPÞ is also used to provide a lower bound
on ER(ρAB) and IR({Ea∣x}).

DISCUSSION
In this work, we consider a variant of QRSGs, by which we
introduce a measure of steerability in a MDI scenario, i.e., without
making assumptions on the involved measurements nor the
underlying assemblage. The only characterized quantities are the
observed statistics and a tomographically complete set of
quantum states for Bob. Through this, all steerable assemblages
can be witnessed, in contrast to the fact that only a subset of
steerable assemblages can be detected in the standard DI
scenario. We further show that it is a convex steering monotone
by proving the equivalence to the steering fraction as well as the
steering robustness. Therefore, the MDI-SM provides a lower
bound on the degree of entanglement of the unknown quantum
state and measurement incompatibility of the involved measure-
ments. Besides, our approach is able to detect steerability in an
MDI scenario with arbitrary detection losses and provide a lower
bound on the steerability of the underlying assemblage.
Moreover, we tackle two optimization problems in Eq. (4). That

is, the optimal measurement and MDI steering witness used for
MDI-SM are obtained, or equivalently, we obtain the optimal
strategies for the variant of QRSGs. At first glance, it seems to be a
difficult problem to obtain the optimal measurement, since Bob
has to optimize over all possible measurements. However, we
show that the projection onto the maximally entangled state is
always an optimal one for any steerable resource. The optimal MDI
steering witness (the variant QRSGs), on the other hand, can be
efficiently computed by semidefinite programming. Finally, we
provide an experimental demonstration of estimating the degree
of steerability. The result also bounds the degree of entanglement,
and incompatibility in an MDI scenario. We have also proposed an
improved MDI-SM which decreased the effect of some detection
biases between Bob’s detectors.
This work also reveals some open questions: It is interesting to

investigate whether our method can be modified to all steerable
assemblages in a standard DI scenario with the approach recently
proposed in refs. 69,70. More recently, the DI certification of all
steerable states has experimentally been implemented by self-
testing an ancilla entangled pair71. It is also interesting to propose
practical applications with the MDI scenario (or even a fully DI
scheme following the work of refs. 69–71). Since the formulation of
the standard steering scenario can be applied to certify the
security of quantum keys72, one can ask if this is also the case in
the MDI scenario.

METHODS
Experimental estimation of MDI-SM
The system state is encoded on the polarization (H, V) where H(V)
represents the horizontally (vertically) polarized direction of the photon.
Through a spontaneous parametric down-conversion process, we generate
pairs of maximally entangled photons’ state 1ffiffi

2
p ð HVj i � VHj iÞ. The Werner

state is prepared by dephasing the photons to a completely mixed state
with probability (1− v)73–75. On Bob’s side, a trusted device shown in
Fig. 2b prepares the auxiliary qubit τy on the path degree of freedom of his
owned photon. Note that, although we encode Bob’s shared state (that

with Allice) and his quantum input in the same photon, these two states
are indeed in different degrees of freedom. More specifically, these two
states are prepared by different preparation devices, one for creating the
bipartite quantum state ρAB while the other for generating τy. That is to say,
in our MDI scenario under consideration, the former preparation device is
not trusted while the latter is trusted.
On Alice’s side, she uses the quarter-wave plate Q1, the half-wave plate

H1 combined with a polarization beam splitter to perform a measurement
according to the value of x, and returns the outcome a to the referee.
While Bob needs to implement the optimal joint measurement, i.e., BSM on
two degrees of freedom of the same particle (the polarization and the path
degree of freedom), similar to the former works53,76,77. This method avoids
the entangled measurement on two particles, which is a tough task with
50% efficiency in linear optics78,79. All the experimental details can be
found in Supplementary Note 7. Moreover, a joint-measurement apparatus
does not receive any information of the input quantum state before
performing the measurement. More specifically, there is no side channel
which transmits any information of the state to the measurement
apparatus. Such protocol is physically and realistically more reliable than
a situation where a referee prepares a trust quantum input to Bob. See
Supplementary Note 7 for more experimental details.
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