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Rationale: The aromatase inhibitor formestane (4-hydroxyandrost-4-ene-3,17-dione)
is included in the World Anti-Doping Agency's List of Prohibited Substances in
Sport. However, it also occurs endogenously as do its 2-, 6- and 11-hydroxy
isomers. The aim of this study is to distinguish the different isomers using gas
chromatography/electron ionization mass spectrometry (GC/EI-MS) for enhanced
confidence in detection and selectivity for determination.

Methods: Established derivatization protocols to introduce [?°Ho]TMS were followed
to generate perdeuterotrimethylsilylated and mixed deuterated derivatives for nine
different hydroxy steroids, all with 3-keto-4-ene structure. Formestane was
additionally labelled with H,'®O to obtain derivatives doubly labelled with [?Ho]TMS
and 0. GC/EI-MS spectra of labelled and unlabelled TMS derivatives were
compared. Proposals for the generation of fragment ions were substantiated by high-
resolution MS (GC/QTOFMS) and tandem mass spectrometry (MS/MS) experiments.
Results: Subclass-specific fragment ions include m/z 319 for the 6-hydroxy and m/z
219 for the 11-hydroxy compounds. lons at m/z 415, 356, 341, 313, 269 and 267 were
indicative for the 2- and 4-hydroxy compounds. For their discrimination the transition
m/z 503 — 269 was selective for formestane. In 2-, 4- and 6-hydroxy steroids loss of a
TMSO radical takes place as cleavage of a TMS-derived methyl radical and a neutral loss
of (CH3),SiO. Further common fragments were also elucidated.

Conclusions: With the help of stable isotope labelling, the structures of postulated
diagnostic fragment ions for the different steroidal subclasses were elucidated.
180-labelling of the other compounds will be addressed in future studies to substantiate
the obtained findings. To increase method sensitivity MS® may be suitable in future

bioanalytical applications requiring discrimination of the 2- and 4-hydroxy compounds.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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1 | INTRODUCTION

In mass spectrometry stable isotope labelling is a helpful tool for
fragment structure characterization of steroids and has been
employed since the 1960s.}” In particular, deuterium and 0 were
used to selectively label the steroid backbone and derive important
information from the respective mass shifts of +1 (deuterium) and +2
(oxygen 18) compared with the mass spectra of non-labelled
compounds. *2O-labelling is no longer commonly used for steroid
research, but it is still used in other fields, for example metabolomics
or peptide mass spectrometry.®?

With the use of labelled derivatization agents such as N,O-
bis(trimethyl-[?Ho]-silyl)acetamide  ([?H4g]-BSA)°*2  or  [Hol-
MSTFA®-15 the structure and origin of diagnostically important (TMS)
fragment ions can be further elucidated in gas chromatography/
(tandem) mass spectrometry (GC/MS(/MS)) analysis. Combined with
H,'80 for selective labelling of oxo functions and modern high-
resolution mass spectrometers, a better understanding of fragmentation
behavior can be expected.

The aromatase inhibitor formestane (2) is a 3-keto-4-ene hydroxy
steroid included in the World Anti-Doping Agency's Prohibited List,*®
but trace amounts also occur endogenously in humans.'” It does not
exhibit much fragmentation in electron ionization as a per-TMS
derivative and thus only the [M]** and [M - 15]" ions are used as
precursors for multiple reaction monitoring (MRM) transitions in
GC/MS/MS.*8 Its isomer 2a-hydroxyandrostenedione (1) is a minor
and the respective stereoisomer 2f-hydroxyandrostenedione (10) a
medium abundance metabolite of androstenedione.'® The 3,5-dienol-
TMS derivatives of both analytes, 2a-hydroxyandrostenedione (1) and
formestane (2), show very similar mass spectra with only a few
characteristic peaks, making it difficult to distinguish these steroids in
anti-doping control.Y” Similarly, the 3,5-dienol-TMS derivatives of the
androstenedione metabolite 6-hydroxyandrostenedione (4) and the
third analyzed formestane isomer 11-hydroxyandrostenedione (5) do
not produce prominent diagnostic fragment ions but can be
discriminated from 1, 2 and 10 by the respective retention times
under routinely applied conditions.?°

To discriminate between androstenedione and formestane (2)
administration, a number of metabolites such as testosterone,
epitestosterone, androsterone and etiocholanolone in the case of
androstenedione,® and 4a-hydroxyepiandrosterone (4-OH-EA) as the
main metabolite of formestane,! can be used as biomarkers in urine
samples.’® The ratio between 4-OH-EA and formestane as parent
compound can also serve to predict its endogenous or exogenous
origin'® for which generally costly combustion-isotope ratio mass
spectrometry (GC/C-IRMS) methods are required in anti-doping
analysis.'”?22% |n order to avoid overestimation of the formestane
concentration due to co-elution of formestane in the chromatogram
with 2a-hydroxyandrostenedione (1), GC/MS/MS and specific MRM
transitions were used, and the detection improved.18 The distinction
between oral and transdermal formestane intake can be achieved by
use of the ratio of the 4-OH-EA and 4-hydroxyandrosterone (4-OH-A)

concentrations in urine,!” and the occurrence of androst-4-ene-

3,6,17-trione (6-OXO) or 6a-OH-testosterone is suitable to distinguish
between 6-OXO and androstenedione administration.2* The endogenous
androst-4-ene-3,11,17-trione

11-OXO) together with its corresponding conversion product

steroid (11-oxoandrostenedione,
11p-hydroxyandrostenedione (5) plays a role in corticosteroid
metabolism and its misuse can be detected by GC/C-IRMS.?> Because
all the metabolites found in urine retained an oxo or hydroxy group at
C-11, no confounding interferences regarding formestane and/or
androstenedione metabolism have been described.

For unequivocal structural elucidation of steroid metabolites by
means of GC/MS, retention times and mass spectra of reference
standards are required for comparison with the obtained data.?%?” In
(NMR)

spectroscopy data is helpful for e.g. stereochemical characterization

some cases, additional nuclear magnetic resonance
of specific functional groups.2* However, especially in the case of the
structural elucidation of low concentration metabolites with
concomitantly limited availability of specimen, the amount required
for NMR analyses hampers its reasonable utilization. Even when
utilizing a high-resolution microcoil, the limit of detection was
reported as 19 ng for a pure reference material of sucrose.?® The
analysis of mixtures or direct combination of chromatographic
separation with NMR detection generally requires much higher
amounts of analyte.??-3! Similarly, many other potential (physico-)
chemical methods for structural elucidation would require pre-
purification of considerably high amounts of analytes and are
therefore considered inferior for bioanalytical applications.

The retention times of unknown analytes are dependent on the
GC method used. Usually, the method is specifically adapted
according to the respective reference standards in order to prevent
co-elution of analytes. If reference standards are not commercially
available, they must be synthesized, which is often laborious and
time-consuming. The isotopic labelling methods presented herein can
help to narrow down the number of reference standards needed for
metabolite identification or even replace them in uncomplicated
set-ups, because stable isotope labelling provides valuable
information: 'O-labelling predicts the number of oxo groups and
perdeuterotrimethylsilylation the total number of functional groups
(e.g. hydroxy and oxo groups) in the compound. With the help of
mixed deuterated derivatives, TMS-enol ethers can be distinguished
from TMS-ether groups. In summary, the presented isotopic
labelling approach is fast and straightforward and can easily be
integrated as an additional preparational step into standard steroid
GC/MS as well as LC/MS (only applicable for 8O-labelling)
methods as no special equipment is needed, and the obtained mass
spectra with the typical mass shifts are self-explanatory. In fact,
isotopic labelling can be used to distinguish the analyte from
undesired signals, such as fragment ions derived from column bleed
for example, because only the analyte bears the isotopic label. The
two methods presented in this paper were developed for low
amounts of analyte (minimum of 1mg for *¥O-labelling and 10 pg
for derivatization with ([?H4g]-BSA) and are not limited to steroids
but can also be adapted for mass spectral characterization of other

substance classes.?
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The aim of this work is to better characterize and substantiate
GC/MS fragmentation proposals of nine different 3-keto-4-ene
hydroxy steroids with the help of isotopic labelling. Each steroid
contains one hydroxy group in position C-2, C-4, C-6 or C-11 and
either an oxo or a hydroxy group in position C-17 (Tables 1 and 2).

2 | EXPERIMENTAL
2.1 | Steroid standards

The reference standards 2a-hydroxyandrost-4-ene-3,17-dione (2a-
hydroxyandrostenedione, 1), 2-hydroxyandrost-4-ene-3,17-dione (2f-
hydroxyandrostenedione, 10), 6B-hydroxyandrost-4-ene-3,17-dione
(6B-hydroxyandrostenedione, 4), 2a,17p-dihydroxyandrost-4-en-3-one
(2a-hydroxytestosterone, 6), 6f,17p-dihydroxyandrost-4-en-3-one (6-
hydroxytestosterone, 8) and 11p,17B-dihydroxyandrost-4-en-3-one
(11p-hydroxytestosterone, 9) were from Steraloids (Newport, Rl, USA)
and 4-hydroxyandrost-4-ene-3,17-dione (formestane, 2) was from
Sigma-Aldrich  (Milan, Italy). 11p-Hydroxyandrost-4-ene-3,17-dione
(11p-hydroxyandrostenedione, 5) was purchased from Sigma-Aldrich
GmbH (Steinheim, Germany) and 4,17p-dihydroxyandrost-4-en-3-one
NMIA  (Pymble,
4-Hydroxyandrost-4-ene-3,17-[10,]-dione, ([*%0,]-formestane, 3) was

(4-hydroxytestosterone, 7) from Australia).

synthesized from 2 as described below.

2.2 | Reagents and chemicals

Water-*20 (97 atom % 20), acetonitrile (ACN, anhydrous, 99.8%),
ethanethiol (97%), 2-mercaptoethanol (99.0%) and ammonium iodide
(NH4l, 99.9%) were obtained from Sigma-Aldrich GmbH (Taufkirchen,
Germany). Toluene, isopropylamine (99+%) and titanium tetrachloride
(TiCly, 99.9%) were from Thermo Fisher Scientific (Dreieich,
Germany). N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was
purchased from Chemische Fabrik Karl Bucher GmbH (Waldstetten,
Germany) and N,O-bis(trimethyl-[?Ho]-silyl)acetamide ([?H1g]-BSA)

from abcr GmbH (Karlsruhe, Germany).

2.3 | 80-labelling of formestane

4-hydroxyandrost-4-ene-3,17-[180,]-dione  ([*¥0,]-

formestane, 3), the two oxo functions of formestane (2) were isotopically

To obtain

labelled utilizing H,*®O via an imine intermediate as previously
described.***? Formestane (1.5 mg) was dissolved in toluene (900 pL). At
a temperature of 0°C, TiCl/toluene (1:2, v:v; 18 pL) and isopropylamine
(45 pL) were added while stirring. The mixture was incubated at 100°C
for 15min. After cooling, water (900 L) was added to obtain two
phases. After centrifugation for 5 min the upper organic phase was used
for further experiments. Aliquots of 30 uL (toluene phase) and 60 pL of
either H,O (control) or H,'0 were evaporated at 100°C in a heating

block. The residue was derivatized as described below.

¥ __
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2.4 | Derivatization

Individual stock solutions (1 mg/mL) of compounds 1, 2 and 4-10
were prepared in ACN and stored at —18°C prior to GC/MS analysis.
Aliquots of 10 pL of each stock solution were evaporated at 100°C
and the respective residues derivatized with either MSTFA or

[?H5]-BSA, or both, using four different derivatization protocols*?:

e pertrimethylsilylation: 90 pL MSTFA/TMIS reagent
(MSTFA/NH_,l/ethanethiol, 1,000:2:3, v/w/v) at 60°C for 15 min
(to obtain derivatives #.1, Tables 3 and 4)

o perdeuterotrimethylsilylation: 80 pL [H4g]-BSA/TMIS reagent
(5L of a saturated NHyl solution in 2-mercaptoethanol added to
100 pL [?H4g]-BSA) at 90°C for 30 min (to obtain derivatives #.2,
Tables 3 and 4)

e mixed deuterated derivatives:
15uL of [?H4g]-BSA at 90°C for 30 min, evaporation in a gentle
stream of nitrogen, 65 pL MSTFA/TMIS reagent at 60°C for 15 min
(to obtain derivatives #.3, Tables 3 and 4)

15 uL MSTFA at 60°C for 15 min, evaporation in a gentle stream of
nitrogen, 65pL [2H4g]-BSA/TMIS reagent at 90°C for 30min
(to obtain derivatives #.4, Tables 3 and 4)

2.5 | Instrumentation

2.5.1 | GC/EI-MS experiments

Unit mass resolution GC/EI-MS analyses were performed on a model
7890 gas chromatograph (Agilent Technologies Inc., Santa Clara, CA,
USA) coupled to a 5975C single quadrupole mass-selective detector
(Agilent Technologies) applying the following parameters: column:
Agilent HP-Ultra 1 (17 m x 200 pm x 0.11 um); carrier gas: helium,
constant pressure: 1.14 bar; oven temperature program: 2.5 min
188°C, +3°C/min, 2 min 211°C, +10°C/min, O min 238°C, +40°C/min,
3.2min  320°C;
temperature: 280°C; and ionization: 70 eV, EI.

injection volume: 1pl; split 1:15 injection

2.5.2 | High-resolution accurate mass analyses

High-resolution accurate mass spectrometry was used for structural
confirmation of fragment ions and fragment ion pathway elucidation.
Electron ionization quadrupole time-of-flight mass spectrometry
(EI-QTOFMS) analyses were performed on a model 7890 gas
chromatograph hyphenated to a model 7200 QTOF mass
(Agilent
R = 14,522). Chromatography was performed using the same column

spectrometer Technologies, mass resolving power
and the same conditions as described for GC/EI-MS. The analyses
were carried out in full scan MS as well as product ion scan (targeted
MS/MS) mode (mass range m/z 50-450). Different precursor ions

were selected for the differently labelled derivatives (Table S3,
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TABLE 4  Structures of unlabelled (#.1) and isotopically labelled TMS derivatives of steroid standards 6-9 with suitable hydrogen atoms (6.1 and 9.1
as examples) within bonding distance (< 3.2 A) of TMSO groups. Distances calculated by ChemDraw (version 15.0) displayed as mean values (0.5 A)

. o 12
NO. #.1: Tris-TMS #.2: Tris-[*Ho]-TMS
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supporting information) with a precursor ion width of 1 m/z unit. For
data acquisition and analyses MassHunter B.07.00 software (Agilent
Technologies) was used. The elemental composition of fragment ions
was calculated based on the high-resolution accurate mass data
and the mass error (Am/z) was calculated automatically. A mass error

<5 ppm was considered as acceptable in this work.

3 | RESULTS AND DISCUSSION
The observed retention times of all tris-TMS-derivatized analytes
ranged between 15.022 min for 28-hydroxyandrostenedione (10) and
15.482 min for 4-hydroxytestosterone (7), and are summarized in
Table S2 (supporting information). Co-elution occurred in the case of
2B-hydroxyandrostenedione (10) and 6p-hydroxyandrostenedione (4),
formestane (2) and 2«-hydroxyandrostenedione (1), and 2a-
hydroxytestosterone (6) and 4-hydroxytestosterone (7), which can be
explained by the similarities in their structures and chromatographic
behavior, and was also described for these analytes in earlier studies
with the suggestion of using MS/MS to improve selectivity.281?

The mass spectra of the three derivatives (#.2, #.3, #.4) of each
compound 1-10, differently labelled with [?Hs]-TMS groups, were

compared with the respective unlabelled derivatives (#.1). Proposals

#.4: 3-[?Ho)-TMS,
20/4/6/118,17p-bis-TMS

#.3: 3-TMS,
20/4/6/11p,17p-bis-[>Hg]-TMS

CHs £Ds CHy

/
o 830\ Dy CHs O-si-cD, s CHs O-Si—
C~si iy DG S \
~_ o 3 S TN
i DyC—Si_
SN D,c” O

o

CD: CH /
CHs e 3 0-si—
CHy 0-Si~CD, B CHg O-si
\ Dsc, §P3
N/ CDs si
/SI‘o DsC” o
DG I \s./O
i
*si” “J
DsC”
CDs
CD. /
Ci SfDs CH3
CHs N 0-s{-cp, 5 CHy 0‘3'\‘
N D, pyc, P
=S, Dic N
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°>si-0 i
DsC” 1 |
CDs
DG cp. \ s
DJC\\S{\ ) CH. \Si‘o CH. /
° CHy N osi—

o £Ds
CHy O—Ssi—CD,
‘o, CD3
de ’ J-Coy
~o DsC™ g

for generation of fragment ions were substantiated with accurate
mass data and MS/MS experiments, summarized in Tables 1 and 2

and discussed below.

3.1 | Fragmention [M - CH5]"

Cleavage of a methyl radical from a TMS-derivatized steroid can
either take place from the steroid backbone at position C-18 or C-19
(angular methyl groups) or from one of the TMS groups. In the mass
spectra of all perdeuterotrimethylsilylated and mixed deuterated
standards (#.2B, #.3B, #.4B, Tables 1 and 2) mainly [M - CHj]" =
[M - 15]* fragment ions were observed and only a very low
abundance of [M - CDz]*=[M - 18]" ions. This finding was
confirmed with MS/MS experiments ([M]** as precursor) and
complies with the assumption that in enol-TMS and A4 steroids
methyl radical loss originates predominantly from the steroid nucleus
as reported in the literature.*2%2

In the case of tris-TMS-formestane (2) and
2-hydroxyandrostenedione (1), the [M]** ion (m/z 518, 1.1A, 2.1A,
Table 1) and the [M - CH]* fragment ion (m/z 503, 2.1B, 1.2B,
Table 1 and Figure 1) both generated m/z 169 in MS/MS experiments
(1.1, Figures 2 and 3), which is described as characteristic for oxo
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FIGURE 1

Proposed MS/MS fragmentation pathway of formestane-tris-TMS (2.1A). Pathway (a): Methyl cleavage from C-19 resulting in

2.1B and 2.1B". Pathway (b): Methyl cleavage from the TMS group resulting in 2.1B* and 2.1E*. 2.1G" predominantly formed compared with 2.1G,

structure shown for 2.1H" most likely but the TMS group can also be |

ocated at C-3 or C-4. Box: Proposed stereochemical structures of fragment

jon m/z 503 (2.1B", 1.1B" and 4.1B") with hydrogen atoms within bonding distance (< 3.2 A) of the C-2/3/4/6 TMSO group for the formation and
loss of TMSOH. Distances calculated by ChemDraw (version 15.0) displayed as mean values (+ 0.5 A)

groups in the steroidal D-ring3®*3* This was also found for
the MS/MS experiments of the other 17-oxo steroids 4 and 5. As the
presence of the angular C-18 methyl group is a prerequisite for the
methyl loss from m/z 518 ([M]**) to
form m/z 503 probably takes place from the only other methyl group

formation of the m/z 169 ion,3*

of the steroid backbone (position C-19). Further confirmation is
planned in future studies.

3.2 | Fragmention [M - TMS]*

In all the studied mass spectra a [M - 73]" ion was detected with low

abundance. It is proposed to result from TMS radical cleavage, and this

is further substantiated by labelling experiments (#.1-4C, Tables 1 and
2). However, in MS/MS experiments of the respective [M]** precursor
jons, the [M - 73]" ion was undetectable, probably due to its very low
abundance. The mass spectra of the mixed deuterated derivatives of the
17-hydroxy steroids 6, 8 and 9 suggest that the TMS group in position
C-3 is the least likely to be cleaved off as a TMS radical because only
the m/z 456 fragment ion is observed in the case of the #.3 (#.3C,
[M - 82]*=[M - [Ho]-TMS]*) and #4 (#.4C, Table 2, [M - 73]*=
[M - TMS]") derivatives. In the case of 7 (7.3C, 7.4C, Table 2) and the
17-oxo steroids 1-5 and 10, however, mass spectra of the mixed
deuterated derivatives contain both fragment ions, [M - 73]* (#.3C m/z
454, #4C m/z 463) and [M - 821" (#3C m/z 445, #4C m/z

454, Table 1), which implies cleavage from any TMS group.
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3.3 | Fragmentions [M - TMSO]* and
[M - TMSOH]**

Loss of trimethylsilanol (TMSOH) is a typical feature observed in
many GC/MS spectra of different hydroxy steroids. This loss is
dependent on the steric characteristics of the steroid backbone as
well as hydrogen availability.*2 Suitable hydrogen atoms are located
in the 1,3-diaxial position from the TMS oxygen and the bonding
distance needs to be less than 3.2 A% (#.1, Tables 3 and 4). The
dependence of TMSOH loss on hydrogen availability and bonding
distance was recently demonstrated via ®O-labelling for different
hydroxy steroids, for example 5a- and S[S-androstanediols.12

For 4-hydroxy-3-keto-4-ene-steroids such as formestane (2.1,
3.1, Table 3) and its 2a- and 6-hydroxy isomers (1.1, 4.1, Table 3) no
1,3-diaxial hydrogen is available within bonding distance to the TMS
oxygen in steroidal ring A or B. This is due to the conjugated double
bonds after enolization and sp? hybridization of C-3-6 or quaternary
C-10. When no steroidal ring opening occurs upon electron
jonization, TMS groups can thus only be cleaved off as T™MSO®
radicals®? which is observed in the mass spectra as formation of the
m/z 429 fragment ion (M - TMSO]*, 1.1E, 2.1E, 4.1E, Table 1 and
Figure 1). The positive charge of the resulting cation can be stabilized
throughout the conjugated double-bond system in rings A and
B. Loss of a TMSO® radical from position C-17 is not postulated
because it cannot be observed for other 3-keto-4-ene steroids,
e.g. androstenedione, and the resulting cation would be less stable.
For the 17p-hydroxy steroids 6-9, however, the 158 hydrogen is
close enough for binding with the C-17 TMS group and elimination of
TMSOH from this position is possible (6.1, 9.1, Table 4; #.1F, Table 2)
in parallel to the additional loss of a TMSO® radical from the A- or
B-ring (6.1E, 7.1E, 8.1E, Table 2).

In order to elucidate which of the two TMSO groups in ring A, at
position C-3 or position C-4 from formestane (2), is cleaved off, mixed
deuterated derivatives have been prepared and analyzed. In the mass
spectrum of the 3,17-bis-TMS, 4-[2Ho]-TMS (IM]** =m/z 527, 2.3A,
Tables 1 and 3) derivative, fragment ions m/z 438 (M - TMSOJ")
and 429 (IM - [*Hg]-TMSO]*, 2.3E, Table 1) were observed.
Corresponding fragment ions m/z 447 (M - TMSOJ") and
438 (M - [2Ho]-TMSQ]", 2.4E, Table 1) occurred in the case of the
3,17-bis-[?Hs]-TMS, 4-TMS ([M]** =m/z 536, 2.4A, Tables 1 and 3)
derivative. As a result, two different losses of 89 Da (OTMS®) and
98 Da ([°H

position C-4, indicating that there is no steric preference.

5]-OTMS®) were observed from either position C-3 or

Because TMS groups are prone to migrate within the molecule,*®
and to further confirm the hypothesis, additional mixed deuterated
derivatives of oxygen-labelled 3,17-['80,]-formestane (3) were
prepared and analyzed. In the mass spectrum of the 3,17-[*%0,]-
3,17-bis-TMS, 4-[?Ho]-TMS (IM]** =m/z 531, 3.3A, Tables 1 and 3)
fragment ions m/z 440 (M TMS®80]*)  and
433 ([M - [?Ho]-TMSO]*, 3.3E, Table 1) were observed. In the case of
the 3,17-[*80,]-3,17-bis-[2Hs]-TMS, 4-TMS ([M]** =m/z 540, 3.4A,
Tables 1 and 3) derivative, ions m/z 451 (M - TMSO]*) and
440 (IM - [2Ho]-TMS®0]*, 3.4E, Table 1) were generated. Losses of

derivative,

89 Da (TMSO®), 91 Da (TMS*®0®), 98 Da ([?H,]-TMSO®) and 100 Da
([2Ho]-TMS®0®) observed for the doubly labelled derivatives
confirmed that TMSO® radical loss in formestane takes place from
both the C-3 and the C-4 positions.

Interestingly, the MS/MS spectra of [M - CH3]* (m/z 503) also
exhibit the [M - TMSO]* (m/z 429) ion. This finding implies methyl
radical cleavage from a TMS group followed by a neutral loss of the
remaining dimethylsilyloxy group and can be described as
[M - CHj - (CH3),Si0]* = [M - 15 - 74]* (2.1E*, Figure 1, pathway
(b)). In MS/MS experiments of the perdeuterotrimethylsilylated
derivatives of compounds 1, 2, 4 and 6-8 this ion was generated as
[M - CD3 - (CD3),SiO]* = [M - 18 - 80]" (m/z 447, #.1E, Table 1; m/z
449, #.1E, Table 2). The ®0O-labelled derivatives of formestane
substantiated the proposed route of formation via loss of the entire
C-3 TMS group: ion [M - CH; - (CH5),Sit®0]* = [M - 15 - 76]" was
found for 3.1 (m/z 431, 3.1E) and 3.3 (m/z 440, 3.3E),
[M - CD3 - (CD3),Si*®0]" =[M - 18 - 82]" for 3.2 (m/z 449, 3.2E)
and 3.4 (m/z 440, 3.4E, Table 1).

An ion of very low abundance at m/z 428 (1.1F, 4.1F, Table 1) is
observed in the mass spectra of 1 (2-hydroxy-) and 4 (6-hydroxy-),
indicating that there is also a loss of TMSOH from [M]**. This
fragment ion is proposed to originate from the A- or B-ring. A
comparison of the MS/MS spectra of the isomers 2a- (1.1) and 2p-
hydroxyandrostenedione (10.1, Table 1, and Figure S1, supporting
information) with [M]** = m/z 518 as precursor revealed approximately
the same abundance of the m/z 428 (M - TMSOH]**) and
429 (IM - TMSOJ") ions in the case of the 2p isomer; however, in the
mass spectrum of the 2a isomer, the abundance of the ion at m/z
428 was only one-third of that of m/z 429. If the TMSO group is in the
2p position it is within bonding distance to the C-19 methyl hydrogen
atoms and loss of TMSOH is more likely than for the 2« isomer. The
cleavage of a TMSO?® radical is not observed in the mass spectra of
the 11-hydroxy steroids (5 and 9) because the requirements for the
favored formation and neutral loss of TMSOH are met: the TMS group
in position C-11 is within bonding distance to the hydrogens of the
angular methyl groups in positions C-18 and C-19 and to the
B-hydrogen in position C-8 (5.1, Table 3 and 9.1, Table 4).

3.4 | Fragmention [M - CH; - TMSOH]*

Interestingly, standards 1-4 produce the fragment ion [M - 15 - 90]*
(m/z 413, #.1G, Table 1, 2.1G, Figure 1, pathway (a)) although no
separate loss of TMSOH is observed in the mass spectra. If the
cleavage of a methyl radical to form the fragment ion [M - 15]" takes
place from position C-19 (as described above) and bond cleavage
between C-10 and C-1 occurs, the resulting conformational changes
in the steroid backbone obviously lead to better hydrogen availability
and allow the TMS groups in rings A and B to be eliminated as
TMSOH rather than as TMSQO®: rotation of the C-4-C-5 bond enables
the TMS groups on positions C-2 and C-3 to interact with the
C-6 hydrogen (2.1B", 1.1B"), the C-4 TMS group with the C-1
hydrogen (2.1B") and the C-6 TMS group with the C-2 hydrogens
(4.1B’, Figure 1).
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The spectra of the mixed deuterated standards (#.3, #.4, Table 3)
revealed the two analogous fragment ions, [M - 105]" and [M - 114]"
(#.3G, #.4G Table 1), showing that the TMS group in either ring A or B
can be eliminated as TMSOH or [?Ho]-TMSOH following or
simultaneously with cleavage of the C-19 methyl group. The
derivatives of formestane doubly labelled with 2O and [2He]-TMS
form fragment ions [M - 105]*, [M - 107]", [M - 114]" and
[M - 116]" (3.3G, 3.4G, Table 1).

Formation of [M - 105]* resulting from cleavage of the C-18
methyl and loss of TMSOH from C-17 is considered less favorable
because the occurrence of the m/z 169 ion in the MS/MS spectrum
of the formestane [M - 15]" ion indicates an intact D-ring. Cleavage
of the C-18 methyl and TMSOH elimination from ring A or B are also
unlikely, as only TMSO® as a radical can be cleaved off without
the required conformational changes. The resulting [M - 104]**
(= [M - 15 - 89]") ion was not detected in the respective mass spectra.

In case of the hydroxy steroids 6-9 formation of the [M - 105]*
fragment ion can take place from either the A- or the D-ring. The TMS
oxygen at C-17 is within bonding distance to the three C-18 methyl
hydrogens and the 158 hydrogen (#.1, Table 4). Thus, formation of
[M - 105]" by elimination of TMSOH from the D-ring is possible. 11p-
Hydroxyandrostenedione (5) can additionally form the [M - 105]*
fragment ion by elimination of TMSOH from position C-11 and
subsequent or concomitant cleavage of a methyl radical (probably the
C-19 angular methyl group).

3.5 | Fragmention[M - CHj; - 2 x TMSOH]*

Neutral loss of two TMSOH molecules from the [M - 15]* fragment
jon results in the [M - 195]*=[M - CH3 - 2x TMSOH]" ion (#.1H,
Tables 1 and 2, 2.1H", Figure 1), which can be described as different
chemical structures depending on the position of the remaining TMS
group and which was observed for all nine compounds in their
respective MS/MS spectra of [M]** (#.1A), [M - 15]" (#.1B) and
[M - CHz - TMSOH]* (#.1G) as precursors, in the case of the
11-hydroxy steroids 5 and 9 also with precursor [M - TMSOH]**
(5.1F, 9.1F, Tables 1 and 2). Isotopic labelling with 2O revealed two
ions for formestane (3), which implies that the [M - CH; - 2x
TMSOH]* ion contains either the TMS group from position C-4 (m/z
323, 3.1H and 3.4H, m/z 332, 3.2H and 3.3H) or one of the TMS
groups from position C-3 or C-17 (m/z 325, 3.1H and 3.3H, m/z
334, 3.2H and 3.4H, Table 1). The latter explanation is considered
more likely regarding the proposed
[M - CH3 - TMSOH]" ion (2.1G", 2.1H™, Figure 1). Due to the double
bond between C-16 and C-17 and sp? hybridization, the TMS oxygen
is far away from any hydrogen for bonding and subsequent loss of
TMSOH. The [M - 195]" fragment ion of the C-17 TMS enol ether of
the 17-oxo series (1-5) is therefore proposed to predominantly

formation of the

contain the C-17 TMS group. In the case of the 17-hydroxy analogs
(6-9), isotopic labelling with [2Hs]-TMS did not convey a clear trend
as to which TMS group remains in the fragment ion [M - 195]".
MS/MS  data of the

In  general, mixed deuterated and
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perdeuterotrimethylsilylated derivatives comply with the proposed
fragment ion generation of [M - CHz - 2 x TMSOH]"* (#.3H, Table 1;
#4H, Table 2), [M - CHz - TMSOH - [2Ho]-TMSOH]*/
[M - CH3 - [?Hs])-TMSOH - TMSOH]* (#.3H, #.4H, Tables 1 and 2)
and [M - CH; - 2x[?Ho]-TMSOH]* (#.2H, Tables 1 and 2; #.4H,
Table 1; #.3H, Table 2).

3.6 | Fragment ions representing structural
selectivity

The mass spectra of the analyzed 3-keto-4-ene steroids are
dominated by common fragment ions that contain one or several TMS
groups or are generated through their loss or rearrangement (e.g. m/z
169, [M - TMSOH]**, [M - TMSOH - CHsl]"). It is therefore
challenging to find fragment ions that can be considered specific for a
certain subclass, i.e. position of the hydroxy group in the backbone.
MS/MS experiments and stable isotope labelling helped to describe
and propose structures of the following fragment ions (Table S1,

supporting information).

3.6.1 | 2- and 4-Hydroxy steroids

The mass spectra of the analyzed 2- and 4-hydroxy steroids (1-3,
6-7) do not show abundant fragmentation and are very similar. In
order to find minor differences in the fragmentation behavior more
MS/MS experiments were necessary than for the other steroid
subclasses. With the help of isotopic labelling, accurate mass data and
MS/MS experiments, a fragmentation pathway for formestane
was established (Figure 1). The given structures were considered
most likely for the respective elemental composition; calculated
errors for each fragment ion are given in Table 1. For 2p-
hydroxyandrostenedione (10), of the fragment ions I-K and O, ions L,
M and N are only included in Table 1 but they are not discussed
below due to their very low abundance. As this steroid can easily be
distinguished from 1 and 2 because of its different retention time, the
focus of the work therefore was to find differences in the mass

spectra of 2a-hydroxyandrostenedione (1) and formestane (2).

3611 | m/z147

The fragment ion m/z 147 is indicative of vicinal or other TMS
groups close enough in the molecule to interact and form an ion
with the elemental composition of (CHg),Si=0*-Si(CH3)3.37%8 This
fragment ion is observed more prominently in the mass spectra of
the 2- and 4-hydroxy steroids (1-3, 6-7, #.10, Tables 1 and 2) but
can also be found in the spectra of the other subclasses with very
low abundance.

In the mass spectra of the perdeuterotrimethylsilylated
derivatives (1.2, 2.2, 6.2, 7.2, Tables 3 and 4) the ion at m/z 147 is
shifted to m/z 162 (+15m/z units, for a total of five CD5 groups,
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(CD3),Si=0*-Si(CD3)3, #.20, Tables 1 and 2). In the mass spectra of
the mixed deuterated derivatives, ions at m/z 153 (+6 m/z units, for
two CDs-groups, (CD3),Si=0*-Si(CH3)3) and m/z 156 (+9 m/z units,
for three CDgz-groups, (CDj3),Si=O*-Si(CHs3)3)) are observed (#.30,
#.40, Tables 1 and 2).

Interestingly, this ion represents the base peak in the MS/MS
spectra of formestane when [M - 15]" (respectively [M - 18]" in the
case of dy-TMS derivatization) is utilized as the precursor ion (2.1,
Figure 3). This finding suggests that the m/z 147 ion is formed more
readily following conformational changes after cleavage of either the
C-19 methyl group (see formation of [M - 15]%) or one of the methyl
groups from the involved TMS groups. In Figure 3 the MS/MS spectra
of the [M - 15]* ions of the 4-TMS, 3,17-bis-[?Hs]-TMS (2.4, Table 3)
and the 4-TMS, 3,17[*80,]-bis-[*Hs]-TMS (3.4, Table 3) formestane
derivatives are compared. The fragment ion at m/z 156 (2.40) is
shifted to m/z 158 by oxygen labelling (3.40, Table 1) implying that
Hy]-TMS
group and methyl cleavage occurs from the C-4 TMS group. The
MS/MS spectra of [M - CDz]*=[M - 18]* show the ion at m/z
153 for both derivatives (2.40, 3.4, Table 1). In this case the CD;
radical is cleaved from the [?Ho]-TMS group in position C-3 and the

the oxygen originates from position C-3 together with its [?

TMS group from position C-4 supplies the (unlabeled) oxygen for
fragment ion generation. For the 4-[2H9]-TMS, 3,17-bis-TMS
derivative (2.30) and [M - CDg]" ion as precursor, however, a
mass shift of +2 m/z units to m/z 155 (3.30, Table 1) is observed after
180-labelling because the positions of CD3 loss (C-4 [2Hs]-TMS) and
oxygen (C-3 TMS group) are opposite to those in derivatives 2.4 and
3.4. As a result, the “intact” TMS group supplies its attached oxygen

for the formation of the m/z 147 ion.

3.6.1.2 | m/z417 and 415

Fragment ions at m/z 417 (6.1l, Table 2) and 415 (1.1l, Table 1)
were observed in the mass spectra of the 2-hydroxy compounds
(1 and 6), and with a very low abundance also for the 4-hydroxy
steroids 2, 3 and 7. Deuteration showed that the fragment ions
contain two TMS groups because a mass shift of +18 m/z units
was observed (m/z 433, 1.2l, Table 1 and m/z 435, 6.21, Table 2).
The proposed elemental compositions were substantiated as
Cu4H410,Si," (exact mass 417.2640) and CpsH300,Si,* (exact mass
415.2483) via accurate mass calculations. The obtained data for
the 4-hydroxy steroids does not comply with these elemental
compositions and must therefore be of different origin: the
experimental masses were m/z 415.2112 (mass error 89.34 ppm)
for 2.1, 419.2191 (mass error 89.92ppm) for 3.1 (*8O-labelled
formestane) and 417.2265 (mass error 89.87 ppm) for 7.1. An
(exact mass 415.2119),
however, fits with the observed fragment ions, resulting in mass
errors of 1.69 ppm for 2.1, 3.10 ppm for 3.1 and 2.64 ppm for 7.1,
and might be explained by a methyl cleavage from the fragment
jon at m/z 430 (see below). MS/MS experiments with [M]** of the
mixed deuterated derivatives of the 2-hydroxy isomers 1.3, 1.4, 6.3

elemental composition of C,3H3505Si,"

and 6.4 (Tables 3 and 4) as the precursor ion imply that either the
C-2 and C-17 TMS groups are present in these fragment ions (m/z
424 131, 1.41, m/z 435 6.3, m/z 417 6.41) or the C-3 and C-17
TMS groups are present (m/z 415 1.31, m/z 433 1.41, m/z 426 6.3,
6.4l, Tables 1 and 2). When using m/z 415 (1.1l) and 433 (1.2l,
Table 1) as precursors, product ions at m/z 169 and 178 (m/z 169
+9m/z units for the [?Ho]-TMS group in position C-17) were
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FIGURE 4 MS/MS spectra of standards 2a-hydroxytestosterone-tris-TMS (6.1), 4-hydroxytestosterone-tris-TMS (7.1),
6p-hydroxytestosterone-tris-TMS (8.1) and 11p-hydroxytestosterone-tris-TMS (9.1). Precursor [M]** (#.1A), collision energy 30 eV [Color figure
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generated, which is only possible with an intact D-ring (see
above). The fragment ion at m/z 417 (6.1l, Table 2) is considered
to be the 17-hydroxy analog to m/z 415 with two additional
hydrogen atoms in the D-ring. It is therefore unlikely that the
ion at m/z 417 contains the C-2 and C-3 TMS groups and not the
C-17 TMS group.

3.6.1.3 | m/z356,341 and 313

Fragment ions m/z 358, 343 and 315 for the 17-hydroxy steroids
6 and 7 and the respective analogs m/z 356, 341 and 313 for the
17-oxo steroids 1-3 (#.1J, 1K, 1L, Tables 1 and 2; 2.1J, 2.1K, 2.1L,
Figure 1) were found to be common for both subclasses, 2- and 4-OH
steroids. However, the abundance in the product ion spectra of the
2-hydoxy isomers is much higher than for the 4-hydroxy isomers
where only relative intensities below 10% for these fragments are
detected (1.1, 2.1, 3.1, Figure 2; 6.1, 7.1, Figure 4). MS/MS
experiments for 6 and 7 revealed that cleavage of a methyl group
from the ion at m/z 358 results in m/z 343 and, after a neutral loss of
28 Da (CO) from the A-ring, a product ion at m/z 315 (6.1L, 7.1L,
Table 2) is generated. The same was seen for the m/z 356, 341 and
313 ions for the 17-oxo steroids 1-3. The fragment ion [M - 15]"
only resulted in m/z 343/341 and not m/z 358/356 in MS/MS
experiments, which indicates that the same methyl group (probably
the C-19 angular methyl group) is cleaved off in the formation of
[M - 15]* and is present in m/z 358/356.

To obtain more information about these three fragment ions,
mass spectra of the isotopically labelled formestane derivatives were
compared. In the case of the perdeuterotrimethylsilylated and the
4-TMS, 3,17-bis-[?Hs]-TMS derivative all fragment ions were shifted
by +9 m/z units to yield m/z 365 (2.2), 2.4)), 350 (2.2K, 2.4K) and
322 (2.2L, 2.4L, Table 1). No mass shift was observed for the 4-[2Ho]-
TMS, 3,17-bis-TMS derivative (2.3J, 2.3K, 2.3L, Table 1). This leads to
the conclusion that these three fragment ions only contain one TMS
group that is not located in the A-ring and it is therefore proposed to
be the one in position C-17 (2.1J, 2.1K, 2.1L, Figure 1 and Table S1,
supporting information).

Mass spectra of 2O-labelled formestane were used to further
investigate the position of the remaining hydroxy group in ring
A. Mass shifts of both +2 and +4m/z units were observed for
fragment ions m/z 356 (to m/z 358 and 360, 3.1J) and 341 (to m/z
343 and 345, 3.1K, Table 1) which indicate that the hydroxy group in
these two fragment ions originates from either position C-3 or
position C-4. For the fragment ion at m/z 313 the observed mass shift
was +2 m/z units to m/z 315 (3.1L, Table 1) which complies with the
assumption that there is only one (labelled) oxygen left in the
fragment ion, namely the one at position C-17.

In the case of the formestane derivatives doubly labelled with
180 and [?Ho|TMS, the detected fragment ions were shifted
accordingly to m/z 367 (m/z 356 +2+9, 3.2), 3.4)), 369 (m/z 356 +4
+9,3.2), 3.4)), 352 (m/z 341 +2+9, 3.2K, 3.4K), 354 (m/z 341 +4 +
9, 3.4K) and 324 (m/z 313+ 2+ 9, 3.2L, 3.4L Table 1).
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3.6.14 | m/z269 and 267

Two other fragment ions observed in all the 2- and 4-hydroxy
steroids are m/z 267 (1.1N, 2.1N, 6.1N, 7.1N) and its analog m/z
269 (1.1M, 2.1M, 6.1M, 7.1M, Tables 1 and 2). The latter contains
two more hydrogen atoms and is more pronounced in the mass
spectra of the 4-hydroxy steroids 2-3 and 7. These fragment ions are
proposed to originate from the A-ring and contain two TMS groups
(2.1N, 2.1M, Figure 1). Thus, a mass shift of +18 m/z units for the
perdeuterotrimethylsilyl (m/z 287 1.2M, 2.2M, 6.1M, 7.1M and m/z
285 1.2N, 2.2N, 6.1N, 7.1 N, Tables 1 and 2) derivatives and a mass
shift of +9 m/z units for the respective mixed deuterated derivatives is
observed (m/z 278 1.3M, 1.4M, 2.3 M, 2.4M,, 6.3M, 6.4M, 7.3M, 7.4M
and m/z 276 1.3N, 1.4N, 2.3N, 2.4N, 6.3N, 6.4N, 7.3N, 7.4N, Tables 1
and 2). There is an additional mass shift of +2m/z units for the
180-labelled formestane derivative to m/z 269 (m/z 267 +2, 3.1N)
and 271 (m/z 269 +2, 3.1M, Table 1) which complies with the
proposed structure and accurate mass data. In the mass spectra of the
doubly labelled formestane derivatives, these two fragment ions were
shifted to m/z 289 (m/z 269 +2 + 18, 3.2M), 287 (m/z 267 + 2+ 18,
3.2N), 280 (m/z 269 +2+9, 3.3M, 3.4M) and 278 (m/z 267 +2+9,
3.3N, 34N, Table 1).

MS/MS analyses showed that [M - 15]* as precursor ion gives
rise to the ions m/z 267 for 1 and m/z 269 for 2 in high abundance
(1.1, 2.1, Figure 3), which could be used to better distinguish these
structurally closely related compounds, for example using the MRM
transitions m/z 503 — m/z 269 and m/z 267 in addition to the
transitions previously described.’” In the case of the 17-hydroxy
analogs, MS/MS of [M - 15]* showed both product ions m/z 269 and
267 in the mass spectrum of 7 (4-hydroxytestosterone) and a product
ion at m/z 267 in the spectrum of 6 (2-hydroxytestosterone).

3.6.1.5 | m/z430

The loss of 88 Da from [M]** was only observed in the mass spectra
of 2, 3 and 7 (#.1D, Tables 1 and 2) as a very small signal and it must
therefore originate from ring A. It was seen at unit resolution but
could not be detected using the GC/QTOF mass spectrometer in scan
mode. This may be explained by differences in the mass analyzer
design and overlap of the isotopic cluster of this ion with the M +1
jon of the fragment ion at m/z 429 (M - TMSO]*, 2.1E, Table 1).
MS/MS experiments indicated a concerted cleavage of a methyl and a
TMS radical with a proposed elemental composition of C54H35035Sis"
(accurate mass 430.2354). The accurate mass of the corresponding M
+1 ion of the fragment ion at m/z 429 is 430.2673 (C,5H40D0,Siy");
the mass difference between these two ions is only 0.0319 m/z units.
The recorded value in MS/MS experiments was 430.2425 with a
mass error of 16.5 ppm (2.1D, Table 1) for [M - CH; - TMS]** and
57.64 ppm for the explanation involving the M+ 1 ion. Except for
perdeuterotrimethylsilylation (2.2D, 3.2D, 7.2D), the observed masses
for the isotopically labelled derivatives revealed lower mass errors for
the [M - CHs - TMS]** hypothesis (#.3D, #.4D, Tables 1 and 2)
although still much higher than those obtained for all other fragments
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described in Tables 1 and 2. *80O-labelling was helpful in the case of
the fragment ion at m/z 443 (3.4D, Table 1, CpsH»9D0%0,Si,"",
443.3004) because the mass difference from its m/z 429 counterpart
(Ca5H3,D980,Si,", 442.3289) was 0.9715m/z units and both
fragment ions were observed in the respective mass spectra.
To propose a definite structure for the fragment ion at m/z
430 (m/z 432 for 7), further experiments, e.g.®O-labelling for

4-hydroxytestosterone (7), are needed.

3.6.2 | 6-Hydroxy steroids

The two 6-hydroxy steroids 4 and 8 exhibit a fragment ion m/z 319 in
their GC/MS spectra (4.1P, Table 1; 8.1P, Table 2) which is not
observed for the other subclasses and has been used previously as an
Since both

compounds (4 and 8) yield the same fragment ion, it cannot originate

identifying fragment ion for screening purposes.*

from the D-ring but from other parts of the steroid backbone. After
perdeuterotrimethylsilylation the ion was shifted to m/z 337 (+18 m/z
units, 4.2P, 8.2P) and to m/z 328 (+9 m/z units, 4.3P, 4.4P, Table 1;
8.3P, 8.4P, Table 2) in the mass spectra of the mixed deuterated
derivatives. This leads to the conclusion that the fragment ion contains
the two TMS groups from ring A and ring B. Its elemental composition
was substantiated with accurate mass data. Furthermore, it was also
observed in the MS/MS spectra of the respective [M - 15]" ions.
Hence, its structure was proposed as an A/B-ring fragment composed
of C1-C11 as displayed in Table S1 (supporting information).

3.6.3 | 11-Hydroxy steroids

There are several fragment ions in the GC/MS spectra of the
11-hydroxy steroids 5 and 9 that are indicative for the position of the
hydroxy group of 11-hydroxy steroids. Fragment ions m/z 219 (5.1 T,
9.1T), 234 (5.1S, 9.1S) and 387 (5.1R, 9.1R, Tables 1 and 2) were
observed for both compounds, and m/z 389 (9.1Q, Table 2) for the
17-hydroxylated steroid 9 only. After isotopic labelling with [2Hs]-
TMS and accurate mass analyses it was apparent that the fragment
ion at m/z 387 contains one more double bond than m/z 389 and
that these
perdeuterotrimethylsilylation resulted in a mass shift of +18 m/z units
(m/z 405, 5.2R, 9.2R, Tables 1 and 2 and m/z 407, 9.2Q, Table 2). In
the case of 9, generation of the fragment ion at m/z 387 was also
- 105]" ion (9.1G, Table 2) as the
precursor in MS/MS measurements and it can thus be explained by a
subsequent loss of ethylene [M - 105 - 28]".

abundance, this finding could not be substantiated with the

two fragment ions bear two TMS moieties:

observed when using the [M
Due to its very low

deuterated derivatives. The formation of fragment ions m/z 387
from 5 and m/z 389 from 9 require an overall loss of C¢Hq50Si®
(IM - 131]") from the respective molecular ion, which can be
explained by cleavage of C-15-C-17 from the D-ring together with
the attached C-17 TMS group. MS/MS experiments of the mixed
deuterated derivatives 5.3, 5.4, 9.3 and 9.4 (Tables 3 and 4) revealed
that fragments Q and R contain either the C-11 TMS and the C-3 or
C-17 group (m/z 387 9.4R, m/z 389 9.4Q, m/z 396 5.3R, 5.4R, 9.3R,

9.4R, m/z 398 9.3Q, 9.4Q, m/z 405 9.3R, m/z 407 9.3Q) or the C-3
and C-17 TMS group (m/z 387 5.3R, m/z 396 9.4R, m/z 398 9.3Q,
9.4Q, m/z 405 5.4R, Tables 1 and 2). These findings suggest that
these fragments are not as specific for the 11-hydroxy steroids as
initially postulated. In fact, they were also observed in the mass
spectra of the other compounds 1-4 (m/z 387) and 6-8 (m/z 389),
although in very low MS/MS  experiments of
180-formestane (3.1, Table 3) substantiated different routes of
formation for the fragment ion at m/z 387, because mass shifts of
2m/z units (m/z 389.2239 (mass error 6.68 ppm), C-4 and C-3/C-17
TMS group present) and 4m/z units (m/z 391.2248 (mass error

abundance.

1.79 ppm), C-3 and C-17 TMS group present) were observed.

MS/MS experiments confirmed that m/z 219 is produced not
only from [M]** but also from [M - 15]" and m/z 234 which indicates
a methyl radical loss in its fragmentation pathway. Only one TMS
group remains in the fragment ions m/z 219 and 234 because the
observed mass shift in the mass spectra is only +9 m/z units to m/z
228 (5.2 T, 9.2T) and m/z 243 if all the TMS groups in steroids 5 and
9 are labelled with [2Hs]-TMS (5.2, 9.2S, Tables 1 and 2). The mass
spectra of the mixed deuterated derivatives showed two
corresponding fragment ions, one with a mass shift of +9 m/z units
and one without a mass shift (5.3S, 5.4S,5.3T, 54T, 9.35,9.4S,9.3T,
94T, Tables 1 and 2). This finding implies that the TMS group at
either position C-3, C-11 or C-17 is present in these fragment ions.
Thus, formation of this ion is probably related to a loss of the C-and
D-ring, as illustrated in Table S1 (supporting information). Further
research, especially more MS/MS experiments and 80 labelling of

steroids 5 and 9, is needed to further evaluate the obtained results.

4 | CONCLUSIONS

In summary, generation of common TMS-derived and additional
fragment ions dependent on the different ring hydroxylation sites was
proposed and confirmed in MS/MS experiments. TMS-derived
fragment ions were common for all the 3-keto-4-ene hydroxy steroids
under investigation while some more specific fragment ions were
observed for each hydroxy steroid subclass.

These MS/MS transitions can be used in screening and can
facilitate the detection of hydroxy steroids with the same mass,
similar retention times and only little mass spectral fragmentation.
Because the data was obtained using reference standards, caution
regarding possible interferences should be exercised when the
proposed MRM transitions are applied to urine samples.

The presented study postulates that the loss of a methyl group
from 3-keto-4-ene hydroxy steroids occurs mainly from the steroid
nucleus (preferably from the C-19 angular methyl group) and even
seems to be a prerequisite for the formation of the fragment ion
[M - 105]* from the A/B-ring due to conformational changes in 2-, 4-
or 6-hydroxy steroids. As described before, neutral losses such as
TMSOH from the derivatized steroid are not a random process but
are highly dependent on the steric environment. If no suitable

hydrogen for its cleavage is available, especially as in case of the
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2- and 4-hydroxy-3-keto-4-enes, a TMSO radical loss is observed in
the respective mass spectra. The overall loss of 89 Da may be
considered as a sequential or concerted cleavage of a TMS-derived
methyl radical and a neutral loss of (CH3),SiO. The m/z 147 ion can
serve as an indicator for vicinal TMS groups (in 2- or 4-hydroxy
isomers); the oxygen was shown to originate from the position of the
respective intact TMS moiety in ring A.

With the help of deuterated derivatization agents and labelling
utilizing H,'80, the structures of postulated fragment ions more
specific for the different steroid subclasses could be further elucidated,
e.g. m/z 319 for the 6-hydroxy, m/z 417/415, 358/356, 343/341,
315/313, 269 and 267 for the 2- and 4-hydroxy and 219 for the
11-hydroxy compounds. The MS? transition m/z 503 — 269 was
revealed as suitable for selective formestane determination, while
2-hydroxyandrostenedione yielded m/z 503 — 267 as a MS? transition.

Minor drawbacks of the described approach include low
abundance of some product ions in the MS/MS spectra and possible
TMS migration upon fragment ion formation (which cannot be ruled
out completely). Two out of three functional groups were always
derivatized in the same manner, making it more challenging to
distinguish between TMS enol ethers on positions C-3 and C-17 for
the 17-oxo steroids.

Apart from finding a derivatization procedure to isotopically label
every single functional group separately, 8O-labelling will also be
conducted for all other standards as well in future studies. In this way,
proposed fragmentation pathways and fragment ion structures will be

further evaluated and confirmed.
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