Appendices

A Abbreviations and symbols

Abbreviations

CCW	Critical Coulomb Wedge theory
EDM	Evolution of Deformation Map
ELA	Equilibrium Line Altitude
ISU	Incremental Surface Uplift
OOSD	Out-Of-Sequence Displacement index
PIV	Particle Image Velocimetry

Symbols related to CCW

x, y, z	Cartesian coordinates [m]
τ	Shear stress [Pa]
$ au_b$	Basal shear stress [Pa]
μ_0	Coefficient of internal friction
μ_b	Coefficient of basal friction
ϕ_0	Angle of internal friction [°]
ϕ_b	Angle of basal friction [°]
C	Cohesion [Pa]
σ_N	Normal stress [Pa]
p_f	Fluid pressure [Pa]
ρ	Density of wedge $[kg/m^3]$
8	Acceleration due to gravity = 9.81 $[m/s^2]$
Hw	height of wedge [<i>m</i>]
$ ho_w$	Density of water $[kg/m^3]$
D	Height of the water column [m]
λ_0	Internal Hubbert and Rubey pore fluid ratio
λ_b	Basal Hubbert and Rubey pore fluid ratio
Κ	Push from the rear
α	Surface slope [°]
β	Dip of the detachment [°]
Ψ_0	Angle between σ_1 and the surface slope [°]
Ψ_{h}	Angle between σ_1 and the detachment [°]

Symbols related to the scaling of analogue experiments

S	Scaling factor
С	Cohesion of natural rocks [Pa]
ρ	Density of natural rocks $[kg/m^3]$
g	Acceleration due to gravity = 9.81 $[m/s^2]$
C_M	Cohesion of analogue materials [Pa]
$ ho_M$	Density of analogue materials $[kg/m^3]$
а	Acceleration during analogue experiments = $9.81 \ [m/s^2]$

Symbols related to experiment analysis

H_0	Height of the undeformed multilayer [m]
Н	Height above the singularity [m]
L_{fp}	Horizontal distance between the deformation front of frontal accretion and the singularity [m]
L_{bp}	Horizontal distance between the deformation front of basal accretion and the singularity [m]
L_r	Horizontal distance between the deformation front of the retro-wedge and the singularity $[m]$
U	Uplift [<i>m</i>]
Ε	Erosion [<i>m</i>]
D	Length of a thrust [m]
e_{xy}	Horizontal shear strain [%]
S_{fw}	Sample standard deviation of wavelength of frontal accretion
S_{fs}	Sample standard deviation of spacing of frontal accretion
s _{bw}	Sample standard deviation of wavelength of basal accretion

Symbols related to the calculation of flexure

Vertical load of orogen [N]
Width of the hypothetical orogen $= 1 [m]$
Converted length of the pro-wedge [<i>m</i>]
Converted height of the axial-zone above the singularity [m]
Flexural parameter [m]
Flexural rigidity of the plate [<i>Nm</i>]
Acceleration due to gravity = 9.81 $[m/s^2]$
Density of a hypothetical orogen $[kg/m^3]$
Density of sediments with which the foredeep is filled with $[kg/m^3]$
Deflection of plate at $x = 0$ [m]

B Supplementary data on DVD

Experiment 9.05:	9.05 basis.avi 9.05 v _x .avi	Experiment 9.35:	9.35 basis.avi 9.35 v _x .avi
	9.05 $v_{\rm v}$.avi		9.35 $v_{\rm y}$.avi
	9.05 e_{xy} .avi		9.35 e_{xy} .avi
	5		2
Experiment 9.06:	9.06 basis.avi		
	9.06 v_x .avi		
	9.06 <i>v</i> _y .avi		
	9.06 <i>e</i> _{xy} .avi		
Experiment 9.09:	9.09 basis.avi		
	9.09 v_x .avi		
	9.09 <i>v</i> _y .avi		
	9.09 e_{xy} .avi		
Experiment 9.10:	9.10 basis.avi		
•	9.10 <i>v_x</i> .avi		
	9.10 v_{y} .avi		
	9.10 <i>e_{xy}</i> .avi		
Experiment 9.11:	9.11 basis.avi		
-	9.11 <i>v_x</i> .avi		
	9.11 v_{y} .avi		
	9.11 <i>e_{xy}</i> .avi		
Experiment 9.15:	9.15 basis.avi		
-	9.15 <i>v</i> _{<i>x</i>} .avi		
	9.15 <i>v</i> _y .avi		
	9.15 e_{xy} .avi		
Experiment 9.20:	9.20 basis.avi		
	9.20 v_x .avi		
	9.20 <i>v</i> _y .avi		
	9.20 e_{xy} .avi		
Experiment 9.25:	9.25 basis.avi		
	9.25 v_x .avi		
	9.25 <i>v</i> _y .avi		
	9.25 <i>e</i> _{xy} .avi		

C Technical specifications of tested springs

Number of spring	Diameter of wire [<i>mm</i>]	Mean diameter of spring [<i>mm</i>]	External diameter of spring [mm]	F_{Nmax} [N]
KM 3315	1.6	20.0	21.6	57.25
KM 3349	1.8	18.2	20.0	101.60
KM 3375	2	19.0	21.0	84.16
KM 3415	2.5	20.0	22.5	200.70
KM 3447	3.0	19.8	22.8	407.60
KM 3465	3.2	20.0	23.2	442.20

Table C.1: Technical specifications of tested springs.

D List of experiments

Test-experiments Group A

Material	Sand: S30T 1 st charge, $20 - 630 \mu m$ Glass beads: $300 - 400 \mu m$ Sandpaper: $< 400 \mu m$
Setup	No flexure, thickness of lower (upper) plate 5 (10) <i>cm</i> , position of glass-bead layer in lower (upper) plate at 2.5 (5) <i>cm</i>
Documentation	Photos at every 10 cm of convergence, video

Experiment	Location of erosion	Mode of erosion*
4.06	Ø	Ø
4.07	pro-wedge	distributed
4.08	retro-wedge	distributed
* Erosion was simulated after 40 cm of convergence, at every 10 cm of convergence (see section 4.2).		

Table D.1: Test-experiments Group A

Test-experiments Group B

Material	Sand: S30T 2^{na} charge, $20 - 630 \mu m$ Glass beads: $300 - 400 \mu m$ Sandpaper: $< 400 \mu m$
Setup	Flexure (spring KM3415 [4 in text])
Documentation	Photos at every 10 cm of convergence, video

1

Experiment	Distance spring - free end [cm]	Thickness of lower/upper plate [cm]	Thicknessratio lower : upper sand unit*
9.01	44	3/10	1:1
9.02	44	6/6	1:1
9.03	44	6/6	1:2
9.04^{+}	30	6/6	1:2

* Lower sand unit is located beneath, upper sand unit is located above the glass-bead layer.

[†] No photographic documentation.

Table D.2: Test-experiments Group B

1st experimental series

Material	Sand: S30T 2^{nd} charge, $20 - 630 \mu m$ Glass beads: $300 - 400 \mu m$ Sandpaper: $< 400 \mu m$
Setup	Flexure (spring KM3415 [4 in text] 30 <i>cm</i> from free end) No change of the mechanic stratigraphy across the singularity. An additional glass-bead layer is located between upper plate base and sand. Thickness of the sand layer 6 <i>cm</i> .
Documentation	Photos at every 10 cm of convergence, video, PIV

Experiment	Flexure	Number of detachments	Height of detachment layer(s) above conveyor belt [cm]
9.05	\checkmark	1	2
9.15	\checkmark	0	Ø
9.20	\checkmark	2	2 and 4
9.25	Ø	1	2
9.35*	\checkmark	0	Ø
* Upper plate consists of mortar.			

Table D.3: Kinematic boundary conditions of 1st experimental series.

2nd experimental series

Material	Sand: S30T 2^{nd} charge, $20 - 630 \mu m$ Glass beads: $300 - 400 \mu m$ Sandpaper: $< 400 \mu m$
Setup	Flexure (spring KM3415 [4 in text] 30 <i>cm</i> from free end) Mechanic stratigraphy is the same as in experiment 9.05, which is used as reference. An additional glass-bead layer is located between upper plate base and sand.
Documentation	Photos at every 10 cm of convergence, video, PIV

Experiment	Location of erosion	Mode of erosion*
9.05 [†]	Ø	Ø
9.06	retro-wedge	distributed
9.07	pro-wedge	ş
9.08	retro-wedge	distributed [‡]
9.09	pro-wedge	distributed
9.10	pro-wedge	focused
9.11	retro-wedge	focused

* See section 4.2 for further description. Erosion was simulated after 40 cm of convergence, at every 10 cm of convergence. [†] Reference experiment.

[§] Maximum erosion (distributed) of 1 cm per 10 cm of convergence at the toe of the pro-wedge.

[±] Maximum erosion 2 cm was simulated at every 20 cm convergence.

Table D.4: Kinematic boundary conditions of 2^{nd} experimental series.

3rd experimental series

Material	Sand: S30T 2^{nd} charge, $20 - 630 \mu m$		
	Glass beads: $300 - 400 \mu m$		
	Sandpaper: $< 400 \mu m$		
Setup	Flexure (spring KM3415 [4 in text] 30 <i>cm</i> from free end) Mechanic stratigraphy is the same as in experiment 9.05, which is used as reference. An additional glass-bead layer is located between upper plate base and sand.		
Documentation	Photos at every 10 cm of convergence, video, PIV		

Experiment	Mode of erosion*	Maximum erosion of pro-/retro-wedge $[cm]^{\dagger}$
9.12	distributed	0.5/1
9.16	focused	0.5/1
9.17	distributed	1/0.5
9.18	focused	1/0.5

* See section 4.2 for further description. Erosion was simulated after 40 cm of convergence.

[†] Per 10 cm convergence.

Table D.5: Kinematic boundary conditions of 3^{rd} experimental series.

4th experimental series

Material	Sand: S Glass b Sandpa	$30T 2^{nd}$ charge, eads: $300 - 400 \mu$ per: $< 400 \mu m$	20 – 630 µm 1m	
Setup	Flexure Mechar which i An addi plate ba	(spring KM3415 ic stratigraphy is s used as reference tional glass-bead se and sand.	[4 in text] 30 <i>cm</i> from the same as in expected. layer is located betw	om free end) riment 9.05, ween upper
Documentation	Photos at every 10 cm of convergence, video, PIV			
	Experiment	Mode of erosion*	Location of erosion	Maximum erosion $[cm]^{\dagger}$
	9.21	distributed	retro-wedge	0.5

 9.21
 distributed
 retro-wedge
 0.3

 9.22
 distributed
 retro-wedge
 2

 * See section 4.2 for further description. Erosion was simulated after 40 cm of convergence.

 † Per 10 cm convergence.

Table D.6: Kinematic boundary conditions of 4^{th} experimental series.

5^{th} experimental series - Cascadia (Conducted by Dirk Scherler and Silvan Hoth)

Material	Sand: S30T 2^{nd} charge, $20 - 630 \mu m$ Glass beads: $300 - 400 \mu m$ Sandpaper: $< 400 \mu m$
Setup	Flexure (spring KM3415 [4 in text] 30 <i>cm</i> from free end) No change of the mechanic stratigraphy across the singularity, except a glass-bead layer between upper plate base and sand. Exp. 9.23. Mechanic stratigraphy is the same as in experiment 9.15. Exp. 9.24. Incoming layer consists of 3 <i>cm</i> sand, upper plate is made up of mortar, which also covers the first 70 <i>cm</i> of the lower plate.
Erosion	Exp. 9.23. Erosion pattern resembles the one observed in Cascadia. Erosion was simulated at every $10 cm$ of convergence, after $100 cm$ of initial convergence. Exp. 9.24. Erosion pattern resembles the one observed in Cascadia. Erosion was simulated at every $20 cm$ of convergence, after $290 cm$ of initial convergence.
Documentation	Photos at every 10 cm of convergence, video, PIV

Curriculum vitae

Name:	Silvan Hoth
Born:	3. September 1974, Schwedt an der Oder
Citizenship:	German

School

1981 – 1989	Polytechnische Oberschule Neubrandenburg, Germany
1989 – 1990	Erweiterte Oberschule Neubrandenburg, Germany
1990–1994	Gymnasium Großburgwedel, Germany
	Degree: Abitur

University

1995 – 1999 1999 – 2000	 Freiberg University of Mining and Technology, Germany Royal Holloway and Bedford New College, University of London, UK Degree: Master of Science in Basin evolution and Dynamics Master Thesis (Royal Holloway, Freiberg): Structural and sedimentological evolution of Block 53/10 South Hewett Basin during the Upper Rotliegend II. A seismic attribute approach.
1998 - 2000	Scholarship of Studienstiftung des deutschen Volkes
Research	
2001-2005	Research Assistant at GFZ Potsdam, Germany; Section 3.1

»Lithosphere Dynamics« (Prof. Onno Oncken)