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Abstract

Investigating the electrokinetic performance of novel electrode materials by means
of diffusional cyclic voltammetry has emerged to the standard approach in electro-
chemistry. The straightforward implementation of the method in a three-electrode
compartment provides scientists with a feasible ex-situ technique for assessing
reaction kinetics in terms of potential-dependent redox currents. Providing that
well-defined diffusion conditions are complied, i.e. the experiments are conducted
at planar electrodes in a semi-infinite diffusion domain, characteristic features such
as the separation, symmetry and magnitude of the redox peaks can be related
unambiguously to the electrode kinetics. However, as soon as non-planar elec-
trodes or electrodes with finite diffusion domains are employed an equivocation
between the measured redox peaks and the intrinsic electrode kinetics emerges.
Consequently, a quantitative interpretation of cyclic voltammetry data becomes
exceptionally arduous. In particular porous structures like felts and foams, pre-
dominantly utilized as electrode materials in the field of battery research, exhibit
an intimidating ambiguity of the polarographic current signal. Therefore, the
majority of experimentalists restrict themself to a qualitative interpretation of
cyclic voltammetry data in terms of arbitrarily chosen onset-potentials. Scientists
who are still targeting to quantify the electrode kinetics usually aim to exploit
alternative techniques such as electrochemical impedance spectroscopy. However,
from a theoretical perspective this approach is not capable of solving the dilemma
either since the experiments are subjected to the same diffusion complication,
examined with a different potential perturbation only. Consequently, developing
a theory of cyclic voltammetry for porous electrodes is inevitable to permit a
quantitative analysis of experimental results.

This thesis consists of the cumulative work on the theory of cyclic voltammetry
at macroporous electrodes with emphasis on felt-like structures. It is demon-
strated that linking the high sensitivity of cyclic voltammetry with a sophisticated
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mathematical diffusion model allows for an electrochemical and morphological
characterization of porous electrodes simultaneously, promoting the so-called
„electrochemists spectroscopy “ to the next level. All theoretical concepts are
supported by experimental data acquired for the electrochemical redox-reactions of
vanadium(II)/ vanadium(III) and oxovanadium(IV)/ dioxovanadium(V), relevant
in the field of vanadium redox-flow battery research.

In a first approximation, porous electrodes are treated as random arrays of
microelectrodes in a finite diffusion space with a statistically fluctuating size. A
systematic investigation of simulated and experimentally acquired cyclic voltam-
metry data for both, porous and non-porous electrodes, draws an enlightening
picture on the complex interplay of electrode porosity and reaction kinetics. With
this knowledge, precise values for the heterogeneous rate constant of the oxovana-
dium(IV)/ dioxovanadium(V) redox reaction are obtained. These values usually
scatter over orders of magnitude in the recent literature, most likely due to an
inconsequent interpretation of data.

In another study, a strategy for real-space simulation of cyclic voltammetry at
carbon felt electrodes is presented. For this purpose, in-situ micro X-ray computed
tomography is exploited to construct a template of the three-dimensional diffusion
domain inside a porous electrode. This renders any statistical assumptions obsolete.
To perform the simulations, two self-reliant computational methods, namely digital
simulation and convolutive modeling, are combined. The resulting method offers
significant advantages with respect to computation time, programming effort and
mathematical complexity. Since effects of electrochemical double-layer charging,
nonlinear contributions of ohmic resistances, coupled chemical reactions and lim-
ited electron transfer kinetics can be accounted for readily, the novel approach
covers an extraordinarily wide range of electrochemical situations.

The exceptional endowment of simulating polarographic experiments at porous
electrodes was finally implemented into an open source program named
„Polarographica “. This software provides the experimentalists community with a
straightforward way of interpreting cyclic voltammetry data of porous electrodes
in terms of a fitting routine. Since many other electroanalytical techniques are
supported in the environment of Polarographica as well, it will eventually lead to
a more decent interpretation of cyclic voltammetry data, based on mathematical
models instead of ambiguous current peaks and arbitrarily chosen onset-potentials.
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Zusammenfassung

Die Zyklische Voltammetrie hat sich als Standardmethode für die Charakte-
risierung der kinetischen Leistung neuartiger Elektrodenmaterialien durchgesetzt.
Die einfache Umsetzung des Verfahrens in einem Drei-Elektroden-Aufbau er-
möglicht Experimentatoren eine Evaluation der intrinsischen Reaktionskinetik
von Elektrokatalysatoren über potenzialabhängige Redoxströme. Sofern dabei
die elektrochemischen Untersuchungen unter wohldefinierten Diffusionsbedingun-
gen an planaren Elektroden in halbunendlicher Diffusion erfolgen, korrelieren
Separation, Symmetrie und Magnitude einer voltammetrischen Redoxkurve quanti-
tativ und eineindeutig mit der Elektrodenkinetik. Werden hingegen nicht-planare
Elektroden oder Elektroden mit finiten Diffusionsdomänen genutzt, so besteht
eine Mehrdeutigkeit des gemessenen Stromsignals, welche die quantitative Be-
wertung der Elektrodenkinetik als außerordentlich mühsam gestaltet. Dies ist
insbesondere für poröse Elektrodenmaterialien wie Filze oder Schäume der Fall,
welche überwiegend im Bereich der Batterietechnik Einsatz finden. Aus diesem
Grund beschränkt sich die Mehrheit der Experimentatoren gegenwärtig auf eine
rein qualitative Interpretation der voltammetrischen Daten anhand von — oftmals
willkürlich definierten — Onset-Potenzialen. Wissenschaftler/innen, die dennoch
eine quantitative Analyse der Elektrodenkinetik anstreben, weichen hingegen
zumeist auf alternative Methoden wie die elektrochemische Impedanzspektroskopie
aus. Von einer theoretischen Perspektive vermag dieser Ansatz jedoch ebenfalls
nicht das Dilemma zu lösen, da die Experimente denselben komplizierten Diffu-
sionbedingungen unterworfen sind. Aus diesem Grund erscheint die Entwicklung
einer ausgereiften Theorie der Zyklischen Voltammetrie für poröse Elektrodenstruk-
turen als unumgänglich, wenn eine quantitative Interpretation der Messergebnisse
gewünscht ist.

Die vorliegende Dissertaion enthält die gesammelten Ergebnisse zur Theorie
der Zyklischen Voltammetrie an makroporösen Elektroden mit dem Schwerpunkt
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auf filzartigen Strukturen. Es wird gezeigt, dass die Kombination der hohen Sensi-
tivität der Zyklischen Voltammetrie mit einem ausgereiften Diffusionsmodell eine
simultane Charakterisierung der elektrochemischen Kinetik sowie der Morphologie
von porösen Elektrodenmaterialien ermöglicht. Sämtliche theoretische Konzepte
werden dabei stets von experimentellen Daten für die elektrochemischen Reaktio-
nen der Vanadium(II)/Vanadium(III) und Oxovanadium(IV)/Dioxovanadium(V)
Redoxpaare, welche im Bereich der Vanadium Redox-Fluss Batterien zum Einsatz
kommen, begleitet.

In einer ersten Näherung werden poröse Elektroden als ein Netzwerk aus
Mikroelektroden mit finiten Diffusionsdomänen von statistisch fluktuierender Größe
betrachtet. Eine systematische Untersuchung von simulierten und experimentell
gewonnenen Daten generiert dabei ein aufschlussreiches Bild der komplexen Zusam-
menhänge von diffusivem Massentransport, Elektrodenporosität und intrinsischer
katalytischer Aktivität. Auf diese Weise werden schließlich akkurate Werte für
die Reaktionsgeschwindigkeitskonstanten des heterogenen Ladungstransfers der
Oxovanadium(IV)/Dioxovanadium(V) Redoxreaktion an Kohlenstoffelektroden
erhalten, welche in der aktuellen Literatur um Größenordnungen streuen.

In einer weiteren Studie wird eine Strategie für die Simulation polarographischer
Experimente in filzartigen Kohlenstoffelektroden präsentiert, welche die reale, drei-
dimensionale Struktur des Diffusionsraumes einer porösen Elektrode berücksichtigt.
Zu diesem Zweck wird zunächst die tatsächliche Diffusionsdomäne eines Kohlenstoff-
filzes mittels in-situ Röntgentomographie rekonstruiert, wodurch sämtliche statisti-
sche Annahmen über interne Diffusionsräume obsolet werden. Anschließend werden
zwei voneinander unabhängige Methoden der Berechnung voltammetrischer Experi-
mente, d.h. die Digitale Simulation und die Konvolutive Modellierung, kombiniert.
Die resultierende Methode bietet dabei signifikante Vorteile bezüglich der Berech-
nungsdauer, des Programmieraufwandes und der mathematischen Komplexität. Da
in diesem Modell eine Implementierung von elektrochemischen Doppelschichtka-
pazitäten, nicht-linearen Beiträgen von Ohmschen Widerständen, gekoppelten
chemischen Reaktionen und finiter Elektrontransfer Kinetik auf einfachste Art und
Weise erfolgen kann, deckt es einen außerordentlich weiten Teil experimenteller
Konstellationen ab.

Die Fähigkeit, polarographische Experimente an porösen Elektroden zu
simulieren, wurde schließlich in ein Open-Source-Programm mit dem Namen
„Polarographica“ implementiert. Diese Software bietet eine unkomplizierte Routine
für die Interpretation von Zyklovoltammetrie-Daten poröser Elektroden, welche
anstelle von willkürlich gewählten Onset-Potentialen auf mathematischen Modellen
basiert und künftig zu verlässlicheren Ergebnissen führen kann.
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Chapter 1

Introduction

Before deriving and discussing the theoretical concept of diffusional cyclic voltam-
metry at macroporous electrode structures in any depth, this chapter will provide
an overview on the relevance, features and limitations of this electroanalytical
technique for the field of energy conversion and storage with emphasis on the vana-
dium redox-flow system. Subsequently, the correlation between the five individual
publications related to this cumulative work will be elucidated and assembled to
the outline of this thesis.
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Chapter 1. Introduction

1.1 Motivation
Abstain from fossil fuels! Towards renewable energy sources! Save the global
climate! These and similar paradigma are the epitome of a modern and sustainable
human culture. Simultaneously, they challenge the scientific community to develop
economically and ecologically efficient systems for energy conversion and storage
in order to provide a continuous supply of intermittant 'green energy' derived from
wind and solar power. Starting from portable electronics such as smartphones and
computers towards electric cars and right up to stationary battery stacks in power
plants – energy storage is indispensible in our daily life.

Depending on the technical requirements and the amount of energy to be
accumulated, an abundance of technologies is available, e.g. lithium ion batter-
ies [1]–[3], lead accumulators[4], fuel cells [5]–[8], supercapacitors [9]–[13] and flow
batteries [14]–[20]. Among these, flow batteries and in particular the vanadium
redox-flow battery (VRFB) system are considered as promising devices for a
stationary large-scale energy storage [14], [15], [19]–[21]. Owing to the inherent
independence of capacity and power, the low-cost factor and the comparably
large cycle-lifetime this system has gathered a significant industrial interest [15].
However, the rather poor overall efficiency [14], [15] of this technology impedes its
wide range application. Consequently, improving the performance of the VRFB
technology is considered as a hot-topic in recent electrochemistry research. The
majority of studies is thereby dedicated to increase the intrinsic electrokinetic
activity of the typically carbon-based electrode materials. In this context a
plethora of modifications involving a) chemical etching, either alkaline [22]–[25]
or acidic [26]–[29], b) surface functionalization techniques via plasma
treatments [30], [31] c) surface halogenation [32], d) nitrogen doping [33]–[37]
and e) surface impregnation techniques with carbon nanoparticles [38]–[49] and/or
literally any kind of metal and metal compound [50]–[62] is proposed. However,
it is worth to note that, except from the heat treatments, none of these so-called
activation methods has made it to a commerical large scale application yet. This
might be attributed to the fact that the majority of novel electrode materials is
investigated in ex-situ setups only and that depending on the wettability [63] and
porosity [64]–[71] of the electrode, the classical electrochemical characterization
techniques are likely to be misinterpreted owing to their inherent ambiguity.

When referring to electrochemical characterization techniques, typically two
methods, namely cyclic voltammetry (CV) and electrochemical impedance spec-
troscopy (EIS) are implied. Both of them are virtually as good as each other
and should always lead to consistent results. However, since EIS requires for the
handling of complex numbers, experimentalists might be discouraged to utilize
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1.1. Motivation

it on a first glance [72]. In contrast, CV pretends to be the preferable method
since it enables a fast assessment of the electrode kinetics in terms of potential
dependent redox currents [73]. However, this is valid only as long as exception-
ally well-defined mass transfer conditions are fulfilled – in other words, provided
that the electroanalytical experiment is carried out at a planar electrode in a
semi-infinite diffusion domain. Furthermore, the electrochemical reaction is re-
stricted to a one-step, one electron process in absence of any coupled homogeneous
kinetics. Only under this particular circumstance, magnitude, separation and
shape of the respective current wave are unambiguously linked to the electrodes
kinetics [74]–[76]. In contrast, interpreting cyclic voltammetry data at non-planar
electrodes [77], [78] with optionally finite diffusion domains [79], [80] and cou-
pled chemical reactions [76], [81], [82] will pose a formidable challenge. This
is mainly caused by the fact that depending on the geometry of the electrode
under investigation the diffusive mass transport of the respective depolarizer will
behave substantially different. As a consequence, the measured current signal
turns into a highly complex function of the electrode geometry, the diffusion
domain size and the electrode kinetics [76]–[85]. A respective example is depicted
in figure 1.1. A planar electrode with an impermeable finite diffusion domain
will exhibit a narrow peak-to-peak separation as well as a low current magnitude
in a CV, since the mass transport decreases as soon as the concentration profile
hits the outer boundary [79], [80]. In contrast, the CV of a cylindrical electrode
will show a larger peak-to-peak separation and an increased peak current when
compared to a planar electrode, since the mass transport increases due to the
additional radial diffusion contribution [77], [78]. Neglecting these geometric
effects one would, however, term the cylindrical electrode as less active owing
to the larger peak-to-peak separation in the CV – which is obviously not true.
Now, bearing this in mind, one could go one step further and pose the ques-
tions: „How about a cylindrical electrode with an impermeable finite diffusion
domain?“ and in particular: „How about a felt electrode which consists of thou-
sands of cylindrical microelectrodes in direct proximity?“. Certainly, it can be
expected that in these cases the model of planar semi-infinite diffusion will provide
results which are entirely opaque. Therefore it is somewhat astonishing that many
experimentalists are still tempted to analyze CV data of macroporous electrodes
in terms of peak separations or other — almost arbitrarily chosen — parameters
like onset potentials only. Concerning the VRFB system this ambiguous way
of interpreting experimental results might be the particular reason for the vast
discrepancy of kinetic data [86] and the related multitude of the aforementioned
'activation methods'. Simultaneously, it might have disengaged other scientists from
utilizing CV in general and to regard in-operando electrochemistry in sophisticated
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Chapter 1. Introduction

Figure 1.1: Qualitative effect of the electrode geometry on the concentration profiles and the
current response during a CV experiment. In case of a cylindrical electrode the radial diffusion
contribution provides a larger mass transport which enforces a slow depletion and an increased
magnitude of the CV current wave. In contrast, a planar finite diffusion domain results in a lack
of electrochemically active species as soon as the concentration profile hits the outer boundary,
which results in a fast decay and a low magnitude in the CV current. The points c1), c2) and
c3) and p1), p2) and p3) correspond to the local two-dimensional concentration profiles during
the forward potential sweep of a CV at a cylindrical electrode in a semi-infinite and a planar
electrode in a finite diffusion domain, respectively.

setups as the only proper approach instead [87]. Although this practice will reflect
the most realistic scenario, it will introduce an abundance of other uncertainties,
which will finally prevent a conclusive determination of the intrinsic electrode
kinetics. If scientists therefore still aspire to utilize cyclic voltammetry for assessing
the electrode kinetics, the development of a reliable method for the interpretation
of experimental data is mandatory.

Contributing such a strategy was exactly the motivation of this thesis. It
was intended that linking the intrinsically high sensitivity of cyclic voltammetry
with a sophisticated diffusion model should allow for an accurate electrochemical
characterization of porous electrodes. The theoretical concept presented in this
context captures an electrochemical reaction at any degree of reversibility optionally
coupled to a) chemical reactions preceeding and following the electron transfer,
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1.2. Outline

b) unequal diffusion coefficients of the electrochemically active species, c) finite
heterogeneous electron transfer kinetics, d) nonlinear effects of ohmic resistances,
e) interfacial double-layer capacities (ideal and non-ideal) and f) parallel reactions,
competing the desired reaction. It therefore covers an exceptionally wide range
of experimental settings and will eventually lead to a significantly more precise
interpretation of experimental results.

1.2 Outline
The experimental implementation of diffusional cyclic voltammetry will be outlined
in chapter 2. Furthermore, this chapter elucidates the classical pitfalls in the
qualitative interpretation of experimental data acquired via this electroanalytical
technique. Chapter 3 reviews the theoretical development of diffusional cyclic
voltammetry with emphasis on two standard mathematical concepts utilized in
this context: a) convolutive modelling and b) digital simulation. Highlighting the
advantages and drawbacks of both of these methods this chapter will provide a
resumeé of detailed derivations on the fundamentals of diffusional CV in order to
familiarize the reader with the complex interplay of electrode kinetics and diffusive
mass transfer. In chapter 4, the vanadium redox-flow system will be intruduced
since the involved redox-reactions are the reference for all theoretical concepts
developed in the present work. Finally, chapter 5 will summarize the results of
the five individual publications related to this cumulative thesis. At first, the two
research papers entitled

'Finite Heterogeneous Rate Constants for the Electrochemical
Oxidation of VO2+ at Glassy Carbon Electrodes'.

and

'Rotating Ring-Disc Electrode Measurements for the Quantitative Electrokinetic
Investigation of the V3+-Reduction at Modified

Carbon Electrodes'

will be discussed in detail. These particular publications focus on the assessment
of electrokinetic and hydrodynamic parameters of the vanadium(II)/vanadium(III)
(V2+/V3+) and oxovanadium(IV)/dioxovanadium(V) (VO2+/VO2

+) redox-reactions
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Chapter 1. Introduction

at planar glassy carbon model electrodes. Since both studies experimentally cir-
cumvent the issue of electrode porosity, estimated hydrodynamic and electrokinetic
parameters are regarded as highly accurate reference points for all the following
works involving porous structures. Furthermore, by utilizing diffusional cyclic
voltammetry in combination with other advanced electroanalytical techniques
such as Fourier transform alternating current cyclic voltammetry (FT-ACCV),
chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) the
two publications provide valuable insights into the electrode kinetics of the respec-
tive vanadium reactions at carbon surfaces. The first publication focussing entirely
on macroporous electrode structures, entitled

'Theory of Cyclic Voltammetry in Random Arrays of Cylindrical Microelectrodes
Applied to Carbon Felt Electrodes for Vanadium Redox-Flow Batteries',

represents a method-oriented approach for describing the diffusion phenomena in
carbon felts. The porous electrodes are thereby treated as an array of cylindrical
microelectrodes. Individual electrode fibers are in turn regarded as one-dimensional
sub-structures in a finite diffusion domain with a statistically fluctuating size. For
this purpose, the theory of an electrochemical reaction at a cylindrical microelec-
trode in a finite diffusion domain, coupled to preceeding and following homogeneous
kinetics, was derived for the first time. The core of this derivation is based on
Laplace integral transformation techniques. Since the respective Laplace-domain
solution does, however, not possess an analytical time domain solution, the concept
of numerical inverse Laplace transformation was introduced. By systematically
investigating experimentally acquired and simulated data, this publication impres-
sively demonstrates that CV is capable of resolving electrode kinetics and porosity
effects of macroporous electrodes simultaneously. In this manner, it substantially
increases the experimental benefit of CV. In a follow-up publication entitled

'Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at
Macroporous Electrodes by Considering Random Arrays of Microelectrodes',

the theoretical concept of cyclic voltammetry at felt electrodes was extended to
electrode foams (arrays of spherical pores), layered structures (arrays of electrode
sheets) and capillary electrodes (arrays of cylindrical pores). By thoroughly
investigating the statistical diffusion domain effect it is shown that electrodes
consisting of cylindrical pores and spherical pores will behave qualitatively different
than arrays of microcylindrical electrodes and electrode sheets. Furthermore, the
statistical diffusion domain effect is proven to be one possible source of the tailing
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1.2. Outline

in experimental CV curves which cannot be explained by classical finite diffusion
domain models. In order to provide the strategy of CV simulation at porous
electrodes to the experimentalists community, this publication also reports on the
free software tool Polarographica which was created as a part of the present work
and which is already released at GitHub. This software provides a graphical user
interface for facile simulation and evaluation of CV data. Since Polarographica
also supports the classical non-porous diffusion models as well as many other
electroanalytical techniques, it will eventually lead to a more reliable evaluation
of experimental data. Regarding the two aforementioned publications on cyclic
voltammetry at porous electrodes it is worth to note that all porous-network models
presented, rely on a statistical assumption of the diffusion domain. Furthermore,
the effect of coupled ohmic resistances as well as interfacial double layer capacities
is not considered so far. These deficiencies were tackled in the fifth and final
publication related to this work, entitled

'Real-Space Simulation of Cyclic Voltammetry in Carbon Felt Electrodes by
Combining Micro CT Data, Digital Simulation and Convolutive Modeling'.

In this study, the internal diffusion domain of a porous felt electrode was recon-
structed from micro X-ray tomographic images. This real-space template renders
any statistical assumption on the diffusion domain obsolete. To utilize it for
the simulation of electroanalytical experiments, a numerical algorithm based on
digital simulation and convolutive modeling was developed. In this strategy, the
Douglas–Gunn modification of the three-dimensional Crank–Nicolson algorithm
is exploited first to calculate the mass transfer controlled current of the porous
network. Based on this real-space diffusion controlled current, the mass transfer
function related to the electrode under investigation is calculated subsequently.
This particular function is utilized in turn as the base for classical convolutive
modeling. This strategy preserves the great advantage of convolutive modeling –
the use of a master equation. Furthermore, it circumvents the most crucial inverse
Laplace transformation step which is usually linked to convolutive modeling, since
it avoids solving the diffusion equation by means of Laplace integral transfor-
mation techniques. Finally, the novel procedure allows for including non-linear
contributions of ohmic resistances as well as interfacial double layer capacities and
therefore covers an exceptionally huge diversity of experimental scenarios.
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Chapter 2

Fundamentals

Before targeting the theoretical fundamentals of diffusional cyclic voltammetry,
this chapter will familiarize the reader with the experimental implementation and
the features of this particular electroanalytical technique. Based on a qualitative
overview on the complex interplay of diffusive mass transfer and electrode kinetics,
the classical practice of interpreting CV data is outlined. Finally, the common
pitfalls in the evaluation of experimental CV data are elucidated.
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Chapter 2. Fundamentals

2.1 Measuring Cyclic Voltammetry
The term voltammetry basically originates from the two quantities potential (mea-
sured in Volt) and current (measured in Ampere) which are monitored during an
electroanalytical — voltammetric — experiment. The designation cyclic voltam-
metry refers to one particular type of voltammetry, where the potential of an
electrode under investigation is periodially swept at a time-variant triangular wave
(cf. figure 2.1 (A)) [88]. Cyclic voltammetry is typically conducted in a so called
three-electrode compartment consisting of an electrode under investigation (work-
ing electrode, WE), an electrode closing the electric circuit to the working electrode
(counter electrode, CE) and a non-polarizable high impedance electrode serving
as external potential anchor (reference electrode, RE). The time-variant potential
perturbation is compelled by an instrument known as potentiostat (cf. figure 2.2).
This device adjusts the potential difference between the working electrode/counter
electrode couple in a way that the voltage between the working electrode/reference
electrode pair, which is sensed over a high-impedance connection, follows the
desired time-dependent triangular wave12. The upper and lower inflection points
of the potential wave are termed anodic (upper) and cathodic (lower) switching
potential, respectively. The rate of potential chage is referred to as sweep rate or
scan rate of the experiment. Switching potentials and potential sweep rate are
therefore the three free variables during a CV experiment.

Since current and potential are related functionally, the potentiostat can be
regarded as an active element which forces any amount of current to pass through
the working electrode to achieve a given voltage with respect to the reference
electrode. Therefore, one can term cyclic voltammetry as a current controlled
technique [88]. Since the current is governed by the flow of charges (electrons),
required to obey any electrochemical process, it represents the experimentally
observable quantity in a CV measurement. Figure 2.1 (B) depicts the time depen-
dent current response of a classical CV experiment, which follows the potential
wave shown in figure 2.1 (A). Plotting the potential versus the current yields the
classical 'Bird-neck' shaped current-voltage curve of a CV experiment as depicted
in figure 2.1 (C).

1The potential wave is triangular only in case of cyclic voltammetry. It might be adjusted to
any desired shape by modifying the program defined by a function generator implemented in the
potentiostat.

2A perfectly triangular potential wave is a theoretical assumption. Under experimentally
relevant conditions, the potential wave is never completey triangular, but rather a staircase
wave. However, modern potentiostats are usually able to sufficiently approximate the triangular
potential wave by actively smoothing the input signal.
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2.1. Measuring Cyclic Voltammetry

Figure 2.1: (A) Time-variant triangular potential wave between a working electrode and
an arbitrary reference electrode of a cyclic voltammetry experiment. (B) Time-dependent
Faradaic current of an electrochemically reversible reaction at a planar electrode in semi-infinite
diffusion space related to the potential perturbation depicted in panel (A), (C) 'Bird-neck' shaped
current-voltage curve of the cyclic voltammetry experiment depicted in panel (A) and (B).

Figure 2.2: Sketch of a potentiostat. The desired potential perturbation is introduced by
the signal generator. The working electrode potential is monitored between working sense and
reference electrode.
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Chapter 2. Fundamentals

2.2 Interpreting Cyclic Voltammetry

The outstanding advantage of diffusional cyclic voltammetry stems from the excep-
tionally high sensitivity paired with the comparably low experimental effort [88].
Therefore, CV has emerged to a standard technique in almost any — not necessarily
electrochemical — laboratory. It can be utilized for a plethora of applications
ranging from electrochemical sensing and trace analysis up to mechanistic investi-
gations of chemical and electrochemical reactions. Cyclic voltammetry features
that the position, magnitude and shape of the characteristic current peaks are
functionally related to the electrode kinetics, to the electrolyte concentration and
to the number of electrons transferred, as long as

• the electroanalytical experiment is conducted at a planar electrode in a
semi-infinite diffusion domain,

• the electroanalytical experiment is conducted in a stagnant electrolyte in
absense of any convection

• the electrochemical reaction consists of a single-step electron transfer which
is not coupled to any chemical kinetics,

• the electrochemical reaction does not involve any adsorption or desorption
steps,

• the electrochemical reaction is either strictly reversible (without any activa-
tion barrier) or irreversible (kinetically hindered to fulfill the Tafel criterion),

• the concentration of the product is negligible when compared to the educt,
• the only quantity contributing to the total current is Faradaic (no double

layer charging),
• migration of ions is negligible — mass transfer is selectively governed by

diffusion
• the electrode is homogeneously active over 100% of its area,
• no Ohmic resistances are involved.

Regarging this rather restrictive list, one might get curious on which constraints are
the most descisive ones and under which circumstances CV will provide misleading
results. In fact, all of the points are extraordinarily important, even if some
parametrs can be fine-tuned experimentally to meet the desired requirements. This
will be outlined in the following sections.
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2.2. Interpreting Cyclic Voltammetry

Qualitative origin of the current/voltage curve

Any CV response can be bisected into two linear potential scans3 which are termed
either anodic (positive potential direction) or cathodic (negative potential direction)
sweep. The current response related to each of these individual scanning directions
can be regarded as a combination of a reaction controlled and a diffusion controlled
sub-region4. However, in principle the entire current response in a CV depends
on the flux of the active species towards the electrode which is governed by the
concentration gradient at the electrodes´ surface. This particular concentration
gradient is introduced by the potential perturbation which leads the experiment.
The complex interplay of potential perturbation, surface concentrations, the result-
ing concentration profiles and the fluxes are depicted in figure 2.3. In panel (A) of
figure 2.3 the time-dependent triangular potential perturbation of an exemplary
CV experiment is displayed. In this particular case the forward scan is chosen
to be anodic whereas the reverse scan is cathodic. The rate of potential change
was set to be ν = 1 V s−1. For the sake of simplicity, the example considers
an electrochemically reversible electrode reaction. This implies that the surface
concentrations are unambiguously related and instantaneously adjusted according
to the Nernst equation [74] (equation 2.1).

E(t) = E0 + RT

nF
ln
(
cO(x = 0, t)
cR(x = 0, t)

)
(2.1)

In equation 2.1, E(t) is the time dependent electrode potential, E0 is the stan-
dard electrode potential, n is the number of electrons transferred, F is Faradays
constant, T is the absolute temperature, R is the gas constant and cO(x = 0, t)
and cR(x = 0, t) are the time-dependent surface concentrations of the oxidized
and reduced species, respectively. The time-dependent surface concentration of
the electrochemically active species being consumed at the electrode surface and
being calculated on the base of equation 2.1 is depicted in figure 2.3 (B). Of course,
it can be seen that the most significant change in the surface concentration is
achieved when the ratio of the reduced species (here the educt) to the oxidized
species (here the product) approaches one.

3An electrochemical technique which consists of one linear potential scan only is termed
linear-sweep voltammetry (LSV) and represents a half-CV.

4At this stage, the extensively used term 'kinetically controlled', is deliberately avoided and
replaced by 'reaction controlled', since an electrochemically reversible reaction will not exhibit
any sign of kinetic limitation.
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Chapter 2. Fundamentals

Figure 2.3: (A) Time-dependent potential. (B) Educt surface concentration of a reversible
reaction. (C) Educt concentration profile during the forward potential sweep. (D) Educt
concentration profile during the reverse potential sweep. (E) Time-dependent dimension-less flux
of the educt governed the concentration gradient at the electrode surface. (F) Dimension-less
flux of the educt versus the applied potential.
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2.2. Interpreting Cyclic Voltammetry

This is fulfilled at cR(x = 0, t) = 0.5× cO(x = 0, t = 0) if the educt cR is the only
species present at t = 0. Assuming an initially homogeneous distribution of the
electrochemically active species inside the electrolyte, any variation in the surface
concentration will entail compensation processes in order to obey the equipartition
theorem. Therefore, any loss of educt species at the electrode surface will enforce
a diffusive flux of the same towards the electrode [89]. This diffusive flux is in turn
proportional to the concentration gradient and is therefore strongly dependent on
the concentration profile which is depicted in figure 2.3 (C) for the forward and in
figure 2.3 (D) for the reverse scan, respectively. Since the reversibility criterion
compells that any amount of electrochemically active species which reaches the
electrode surface by diffusion will be instantaneously converted to obey the Nernst
equation, the related Faradaic current is directly proportional to the flux, or
better, to the concentration gradient at x = 0. The time-dependent dimension-
less flux of the examplary CV is depicted in figure 2.3 (E). The regions termed
'reaction controlled' are related to the concentration profiles, where the surface
concentration of the electrochemically active species being consumed is signifi-
cantly different from zero. In contrast, the regions termed 'diffusion controlled'
are related to the concentration profiles, where the surface concentration of the
electrochemically active species being consumed is approximately zero. Even
though this terminology is convenient, it has to be underlined that the current
is always related to the flux and that a strict demarcation between reaction and
diffusion control is not possible. Since the two quantities 'potential' and 'diffusive
flux' are time dependent, the latter can be represented as a function of the former
one. This results in the classical cyclic flux/voltage (alias current/voltage) curve
which is depicted for the normalized flux in figure 2.3 (F). In this particular repre-
sentation, the respective forward and reverse potential scan of a CV experiment
are neatly separated at the point of potential inflection. The resulting flux/voltage
or current/voltage curve possesses two disctinct redox peaks which can be readily
utilized for either qualitative or quantitative investigation of the electrode reaction
as long as the aforementioned rectrictions are satisfied.

Qualitative interpretation of cyclic voltammetry
When regarding realistic reactions the reversibility criterion, which was assumed
so far, has to be questioned since almost any chemical conversion requires for an
activation energy. Therefore, it has to be expected that the surface concentra-
tion does particularly not follow the Nernst equation at each and every time instance
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Chapter 2. Fundamentals

Figure 2.4: (A) and (A1): influence of the height of the activation barrier (scenarios a1 to a4)
on the peak separation of the current/voltage curve in a CV experiment. (B) and (B1) influence
of the symmetry of the activation barrier (scenarios b1 to b4) on the shape of the current/voltage
curve in a CV experiment. R and O denote the reduced and oxidized species, respectively. The
curves a1 and b1 do not possess any acivation barrier at all. It can be seen that a high activation
barrier (a4) forces a large peak-to-peak separation in the CV and an early transition state (b2)
favours the forward reaction (here the oxidation).

during a potential sweep. Consequently, also the concentration gradient and the
related flux of the electrochemically active species will depend on the electrode
kinetics, meaning on the height and the symmetry of the activation barrier of
the reaction. Since the height of the activation barrier is proportional to the
amount of energy required to surpass it and since the potential is a measure for
the energy per charge, it can be expected that the surface concentrations will
adjust at comparably larger potentials with respect to the reversible case [88], [89].
In terms of a CV experiment, this implies that a kinetically controlled system
will require for more time to respond to the time-variant potential excitation.
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2.2. Interpreting Cyclic Voltammetry

Consequently, the respective redox peak in the current-voltage curve of a CV will
be more separated as the height of the potential barrier (or the rate of potential
change) increases. This scenario is depicted in figure 2.4 (A) and (A1). It can
be seen that all potential barriers depicted in figure 2.4 (A) are symmetric and
likewise the corresponding CV responses are somewhat uniform as well. In case of
a non-symmetric potential barrier — corresponding to an early or a late transition
state, respectively — also the CV response will be distorted. This scenario is
depicted in figure 2.4 (B) and (B1), respectively. It is mainly caused by the fact
that one half reaction is kinetically more feasible than the other one. Regarding
the practical application of CV in the context of battery catalyst research these
qualitative features imply that a peak separation as small as possible and a current
wave as symmetric as possible are desired since they translate to a low activation
barrier which does not disfavour one particular reaction.

Quantitative interpretation of cyclic voltammetry
Apart from the qualitative view on CV, also a quantitative interpretation of the
current/voltage curves, in particular of the forward scan, is possible as long as the
restrictions stated on page 12 are satisfied. Then, and only then, the so-called
Randles-Ševčík relations5 apply [74], [75]. These link the peak current of an
electrochemically reversible Ip,rev or irreversible Ip,irr reaction to the applied rate
of potential change, ν, as:

Ip,rev = 0.446nFAc
√
nFνD

RT
(2.2)

and

Ip,irr = 0.496nFAc
√
αnFνD

RT
. (2.3)

In equations 2.2 and 2.3, A is the electrode area, and D is the diffusion coefficient
of the electrochemically active species. The parameters n, F , R, T and c have their
usual meaning. In equation 2.3, α represents the electron transfer coefficient. This
parameter is a quantitative measure for the symmetry of the activation barrier of
the reaction under investigation [88]. It is of course absent in equation 2.2, since a
reversible reaction does not obey any kinetic limitations and therefore does not

5These are named after J. Randles [90] and A. Ševčík [91] who independently pioneered the
theory of cathode ray polarography in 1948.
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Chapter 2. Fundamentals

possess any activation barrier. In case of an electrochemically irreversible reaction
α can also be accessed from the shape of the current-voltage curve according to

α = 1.85RT
nF (Ep,irr/2 − Ep,irr)

, (2.4)

where Ep,irr/2 is the potential of the half peak current [74]. Since the peak position
in the CV of an electrochemically irreversible reaction is unambiguously related
to the potential sweep rate (with α as proportionality factor [74]), the electron
transfer coefficient can be also calculated from the derivative of the peak potential
according to

α = RT

2nF

(
∂Ep,irr

∂ln(ν)

)−1

. (2.5)

In contrast, for an electrochemically reversible reaction the peak position will be
independent of the potential sweep rate and no α can be obtained.
With the knowledge of α in case of an electrochemically irreversible reaction, the
standard rate constant, k0, can be calculated via

k0 = 2.182
√
αnFDν

RT
exp

(
αnF (Ep,irr − E0)

RT

)
, (2.6)

which is a rearranged and more handy version of the equation given by Matsuda
and Ayabe [74]. This quantity is a quantitative measure for the height of the
activation barrier. In case of an electrochemically reversible reaction with no
activation barrier k0 →∞.

Ambiguity of CV and limits of the Randles-Ševčík relations
The interpretation of cyclic voltammetry data poses a formidable challenge if one,
two or even more of the constraints given on page 12 are not fulfilled. This is
illustrated qualitatively for two selected examples, which are the origin for the most
common pitfalls in the interpretation of CV, in this sub-paragraph. Scenario I) is
dedicated to the case if the reversibility/irreversibility constraint is not fulfilled.
Scenario II) emphasizes the effect of a non-semi-infinite diffusion domain with an
impermeable outer boundary in front of the electrode.

When regarding the reversibility/irreversibility constraint, one could pose the
question of what eventuates if the electrode reaction under investigation is neither
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2.2. Interpreting Cyclic Voltammetry

electrochemically reversible nor irreversible and what actually determines electro-
chemical reversibility. For this purpose, figure 2.5 depicts the forced transition
of an electrochemical system from the reversible state to the irreversible state.
In figure 2.5, the combined influence of electrode kinetics and potential sweep
rate are depicted. For this purpose, panels (A), (B) and (C) show the simulated
dimension-less flux (or current) of a CV in a planar semi-infinite diffusion domain
for α = 0.5, α = 0.3 and α = 0.7, respectively. The standard rate constant was set
to k0 = 10−4 cm s−1. The simulations were performed at 15 potential sweep rates
spanning a logarithmic grid from ν = 1 µV s−1 to ν = 1 kV s−1. It can be seen
that the CV peak separation gets larger as the potential sweep rate increases, i.e.
the system becomes more irreversible even without changing k0. This is caused
by the fact that the rate of the electrochemical reaction gets surpassed by the
timescale of the experiment as the potential sweep rate gets sufficiently large.
This scanrate dependence of the dimension-less flux peak is depicted in panel (D)
for the respective combinations of α and k0 shown in panels (A), (B) and (C).
It can be seen that the system behaves reversible6 for potential sweep rates of
ν < 0.1 mV s−1. As the potential sweep rate becomes sufficiently large (in the
present case referring to k0 = 10−4 cm s−1 at ν > 10 V s−1), the system becomes
electrochemically irreversible7. Since the electrochemical system behaves neither
reversible nor irreversible in the intermediate region, this transient range is termed
'quasi-reversible'. In this region, the classical Randles-Ševčík relations do not
apply which renders assessing k0 and α from experimental CV data exceptionally
complicated. In order to quantify electrochemical reversibility, Matsuda and Ayabe
have introduced the parameter Λ = k0 (RT/nFDν)0.5 [74]. If Λ > 15, the reaction
is classified as reversible. In contrast, if Λ < 0.01 the reaction is termed irreversible.
It is worth to note that in the present example the quasi-reversible region covers
the entire range of experimentally reasonable potential sweep rates. This is caused
by the fact that the standard rate constant was deliberately chosen ill-suited which
may — or may not — also apply to a real electrochemical system investigated
via CV. Since from an experimental point of view, the value of k0 is not known
a-priori, particular caution has to be paid when using the Randles-Ševčík relations.

Subsequently to the potential-sweep rate dependence of the reversibility of an
electrochemical reaction, the effects of a non-semi-infinite diffusion

6For a reversible reaction the dimensionless flux peak approaches the limit of 0.446 which
corresponds to the reversible Randles-Ševčík parameter. Furthermore, the shape of the CV
curves become independent of α. [74]

7Electrochemically irreversible behaviour translates to a dimensionless flux peak which
approaches the irreversible limit of 0.496α0.5 [74].
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Figure 2.5: (A), (B) and (C): CV curves simulated for three different values of the electron
transfer coefficient α and one intermediate standard rate constant of k0 = 10−4 cm s−1 at 15
potential sweep rates spanning a logarithmic grid from ν = 1 µV s−1 to ν = 1 kV s−1. (D)
Dependence of the dimension-less flux peak (or current peak) of the forward scan on the potential
sweep rate. It can be seen that for potential sweep rates of ν < 0.1 mV s−1 the system behaves
reversible (the dimensionless flux peak approaches the reversible Randles-Ševčík parameter of
0.446 and the shape of all CV curves becomes independent of α). In contrast, at potential sweep
rates of ν > 10 V s−1 the system becomes irreversible (the dimensionless flux peak approaches
the irreversible limit of 0.496α0.5 and the shape of the individual CV responses approaches
the characteristic curvature). In the intermediate region the system behaves neither reversible
nor irreversible. Instead, it traverses from one limit to the other. This dynamic region is
the 'quasi-reversible' range in which the Randles-Ševčík relations do not apply. In the present
example, where the standard rate constant is deliberately chosen ill-suited, this region covers the
entire range of experimentally reasonable potential sweep rates.
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2.2. Interpreting Cyclic Voltammetry

domain will be outlined qualitatively at next. This scenario corresponds to an
electrochemical reaction which takes place at an electrode with an impermeable
wall in direct proximity to the reactive surface so that the mass transfer of electro-
chemically active species is somewhat hindered. Experimentally it translates to
either a) a thin layer cell, classically utilized in spectroelectrochemical applications
or in a more abstract picture to b) a homogeneously layered electrode structure,
which can be regarded as the most simple model of a porous electrode. The
corresponding concentration profiles as well as the related CV curves are depicted
for a strictly reversible reaction in figure 2.6.

Figure 2.6 (A) and (A1) serve as reference and correspond to the forward and
the backward CV scan of a reaction which takes place in a semi-infinite diffusion
domain. In this context, the term 'semi-infinite' implies that the concentration
profile will never hit the outer boundary (located at x = 50 µm in the present
example) during the timescale of the experiment and that the diffusive mass
transfer will not be limited in any occasion. In contrast, figure 2.6 (B) and (B1)
correspond to a reaction in a significantly smaller diffusion domain, where the
impermeable boundary is located at x = 3 µm in front of the active electrode
surface. The CV curves resulting from scenario (A) and (B) are depicted in
figure 2.6 (C) and labeled as a) and b) accordingly. The additional grey CV
curves correspond to ten diffusion domain sizes spanning a logarithmic grid which
ranges from xmin = 1 µm to xmax = 50 µm. It can be seen that a smaller diffu-
sion domain size will decrease the CV peak separation and height simultaneously.
Mathematically, this scenario was first ever described in the work by Aoki et
al. [79], [80]. Qualitatively, it can be ascribed to the lack of active species
reaching the electrode surface as soon as the zone of dilution in the
concentration profile hits the outer boundary. In the most extreme scenario
— a diffusion domain size which approaches zero8 — the current response will
not show any sign of diffusive mass transfer. Consequently, it will reduce to the
Nernstian surface wave. In this manner, the smallest diffusion domain size of
x = 1 µm, already results in a CV response which does almost look like two
Gaussian curves. Therefore, taking this diffusion domain effect into consideration,
it is readily possible to achieve peak separations of ∆Ep,rev < 58 mV, which is the
thermodynamic limit of a reversible CV in a semi-infinite diffusion domain. This
finally implies that in a finite diffusion domain the peak separation of a CV is not
unambiguously kinked to the electrode kinetics anymore. Instead, it is a complex
function of both, the diffusion domain size and the intrinsic electrode kinetics.

8This is just a mathematical consideration. In real systems the diffusion domain size is at
least at the size of one effective ion radius.
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Figure 2.6: (A), (A1) and (B), (B1): Forward and reverse scan of a reversible electrode reaction
in a semi-infinite and a finite diffusion space, respectively.(C) Dimension-less flux of the educt
versus the applied potential for diffusion domain sizes ranging from xmin = 1 µm to xmax = 50 µm.
(D) Dependence of the peak-to-peak separation on the diffusion domain size.
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2.2. Interpreting Cyclic Voltammetry

Considering the complex interplay of electrode kinetics together with the additional
diffusion domain effect, is proven that a unique — Randles-Ševčík like — interpre-
tation of CV curves in terms of peak positions and peak heights will be impossible
for non-planar electrodes in non-semi infinite diffusion spaces. Consequently, it
is demonstrated the classical approach of comparing peak-to-peak separation for
assessing the kinetic performance of electrode materials with different morphologies
will inevitably provide misleading or at least highly questionable results. Therefore,
taking it in a nutshell, one might be tempted to say:

„Measuring CV is an easy task while the correct interpretation will be a
lucky-punch.“.
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Chapter 3

Theoretical Background

This chapter will provide an overview on the electrochemical and
mathematical fundamentals of diffusional cyclic voltammetry. Emphasizing two
methods utilized for the simulation of CV — namely convolutive modeling and
digital simulation — the reader will be provided with detailed derivations on
the mathematics of diffusive mass transfer. These fundamental concepts can be
regarded as the ancestor of the theory developed in all the publications related to
this thesis and are therefore of utmost importance.
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Chapter 3. Theoretical Background

3.1 Electrochemical Fundamentals
When regarding any kind of electroanalytical experiment one requires for a decent
model of the electrochemical driving force of the reactions involved. In the most
simple case, the underlying process will be kinetically unlimited. Consequently,
the reaction will always obey the restrictions of thermodynamic reversibility.
Electrochemically speaking this implies that the Nernst equation will be valid
at each and every potential. In case of a kinetic limitation, the system will be
controlled by the activation barrier. In this case, one might utilize the Butler–
Volmer model of electrode kinetics. These two scenarios will be treated in the
following sub-paragraphs. The derivation introduced at this stage was particularly
developed for this thesis and gives rise to a unique notation. Of course, it is
virtually as good as the derivations provided by textbooks such as the monograph
by Bard and Faulkner [88].

Thermodynamic reversibility and the Nernst equation
Thermodynamic reversibility of an electrochemical reaction implies that any process
which compensates an external potential perturbation will be directly linked to
the Gibbs-free energy of the system. This quantity can be formulated according
to its total differential as

dG =
(
∂G

∂p

)
T,n

dp+
(
∂G

∂T

)
p,n

dT +
∑
i

(
∂G

∂ni

)
T,p

dni. (3.1)

Considering that the electrochemical reaction takes place in a condensed phase
(electrolyte), it immediately follows that dp = 0. Assuming further, that the
experiment is conducted under isothermal conditions, it also follows that dT = 0.
Consequently, equation 3.1 simplifies to

dGp,T =
∑
i

(
∂G

∂ni

)
T,p

dni. (3.2)

The partial differential coefficient in equation 3.2 can be recognized as the chemical
potential of species i according to:(

∂G

∂ni

)
T,p

= µi = µ0
i +RT · ln(ai), (3.3)
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so that one can alternatively write

dGp,T =
∑
i

µidni. (3.4)

In equation 3.4, ai represents the activity of species i, which is replaced in all the
following considerations by the normalized concentration according to ai != ci/c

0,
where c0 is the standard concentration.1. Introducing the reaction extent as
dξ = dni/νi, where νi represents the stoichiometric coefficients of the reacting
species one can write alternatively:

dGp,T =
∑
i

µiνidξ. (3.5)

Finally, considering that the tangent line in G is defined by

∆G =
(
∂G

∂ξ

)
T,p

, (3.6)

equation 3.5 can be rewritten as

∆G =
∑
i

µiνi. (3.7)

The partial differential quotient in equation 3.7 can be introduced only because p
and T are considered as constant. For a simple electrode reaction of

R
-ne−−−−−⇀↽−−−−
+ne−

O, (3.8)

where R is the reduced and O is the oxidized species, respectively, the sum in
equation 3.7 consists of two terms only and can be written as

∆G = µO − µR = µ0
O − µ0

R +RT · ln
(
cO

cR

)
. (3.9)

With the respective definition of ∆G0 = µ0
O − µ0

R it immediately follows:

∆G = ∆G0 +RT · ln
(
cO

cR

)
. (3.10)

1This might be a fair approximation as long as dilute electrolyte solutions are involved. In
this case, the electrolyte can be considered as fully dissociated and the interactions between the
molecules or ions of the electrochemically active species are assumed to be negligible.
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Considering equation 3.10 in an electrochemical sense, one can link the electric
potential difference U [V] to the difference in the chemical potentials by Faradays´
constant and the number of electrons transferred as proportionality factors. In
this manner, one arrives at

U = ±∆G
nF

. (3.11)

The ± sign in equation 3.11 arises from the ambiguity in the connection of the
device measuring the electric potential difference and the unambiguity of the sign
of ∆G. Therefore, an additional definition is required. This can be formulated as:

Uan−ca = ∆G
nF

(3.12)

and

Uca−an = −∆G
nF

, (3.13)

where the indices 'an' and 'ca' give rise to the potential differences of anode with
respect to cathode (equation 3.12) or cathode with respect to anode (equation 3.13).
In this context, the anode corresponds to the electrode where the oxidation takes
place and the cathode to the electrode where the reduction occurs. Therefore, the
anode can be considered as the electron donating site (negative potentials) and the
cathode to the electron accepting site (positive potentials). Referring the electric
potentials of any electrode reaction to one uniquely chosen reference system — the
standard hydrogen electrode — gives rise to:

Uel−SHE = ±∆G
nF

= E. (3.14)

In equation 3.14, again, the ± sign occurs, since it is not defined a-priori, whether
or not the electrode under investigation (index 'el') will be the anode or the cathode
with respect to the standard hydrogen electrode (index 'SHE'). The variable E
introduced in equation 3.14 terms the measured potential difference U as E, which
is the common formulation in the literature.
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It is, however, exceptionally worth to note that equation 3.14 gives rise to another,
yet unambiguous, formulation which can be written as

E = E0 + RT

nF
· ln

(
cO

cR

)
, (3.15)

where

E0 = ±∆G0

nF
. (3.16)

Equation 3.15 is unambiguous since the logarithmic term always contains the
ratio of oxidized to reduced species, owing to the previous definition of anodic
and cathodic reactions (equations 3.12, 3.13 and 3.14). The parameter E0 also
represents a fixed and therefore unambiguous value of an electrode potential —
the one with respect to the standard hydrogen electrode. It is the potential which
emerges when the ratio of oxidized to reduced species approaches unity and is
therefore termed standard electrode potential.

Equation 3.15 is basically the so-called Nernst equation. This particular
formulation does, however, require for two additional modifications to be the
startingpoint for all further derivations. Considering that the electric potential
will only be determined by the ratio of the electrochemically active species at the
electrode surface, one has to write

E = E0 + RT

nF
· ln

(
cO,S

cR,S

)
, (3.17)

where the index 'S' translates to a surface concentration. Considering an elec-
trochemical equilibrium, where the surface concentration of the electrochemically
active species is equal to the respective concentration in the bulk of the electrolyte
(index 'B') one can alternatively introduce the corresponding equilibrium potential
as

Eeq = E0 + RT

nF
· ln

(
cO,B

cR,B

)
. (3.18)

Since equations 3.17 and 3.18 accurately describe an electochemical system which
may, or may not be in an equilibrium state, they can be utilized for all the following
derivations, where a potential perturbation usually forces a deviation from an
initial — equilibrated — state.
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Electrode kinetics and the Butler–Volmer equation
Subsequently to discussing the electrochemical equilibrium condition and the
Nernst equation, this sub-paragraph is dedicated to the derivation of the Butler–
Volmer relation. This particular equation represents the fundamental theory of
electrode kinetics. Starting with the formulation of the Gibbs free energy of
equation 3.10 and noting that at equilibrium conditions ∆G = 0, one can write:

∆G0 = −RT · ln
(
cO,B

cR,B

)
. (3.19)

Noting that this circumstance will correspond to a certain ratio of
cO,B/cR,B = K, the equilibrium constant, one can alternatively write

∆G0 = −RT · ln(K) = −RT · ln
(
k0
→
k0
←

)
, (3.20)

where k0
→ and k0

← denote the individual standard rate constants of the forward
(oxidation) and backward (reduction) reaction, respectively. Referring to the
standard electrode potential, this implies that

E0 = RT

nF
· ln

(
k0
←
k0
→

)
. (3.21)

Introducing this into equation 3.18 and rearranging the resulting expression into
an exponential form, one arrives at:

k0
←cO,B

k0
→cR,B

= exp
(
nFEeq

RT

)
. (3.22)

The next step towards the Butler–Volmer equation is to split the exponent in
equation 3.22, by introducing an arbitrary parameter, α, which will later on
translate to the electron transfer coefficient. Doing so, one can obtain:

k0
←cO,B

k0
→cR,B

= exp
(
αnFEeq

RT

)
· exp

(
(1− α)nFEeq

RT

)
, (3.23)
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which is mathematically identical to equation 3.22. This expression can be rear-
ranged to give the very important relation:

0 = cR,B k
0
→ exp

(
αnFEeq

RT

)
− cO,B k

0
← exp

(
−(1− α)nFEeq

RT

)
. (3.24)

Equation 3.24 is of utmost importance, since it relates the reaction rates in the
forward direction (here an oxidation) and in the reverse direction (here a reduction)
with the electrode potential. The product of the individual standard rate constants
with the respective exponential terms can be translated to an Arrhenius type of
equation which states that an electrode reation is exponentially accelerated or
decelerated by the electrode potential. Therefore, one might also write

0 = v = v→ − v← (3.25)

which corresponds to a zero total reaction rate in equilibrium. From equa-
tions 3.24 and 3.25 it is now readily seen, that in case of a non equilibrium
potential, the total reaction rate will differ from zero. Likewise, the respective
surface concentrations will differ from their bulk value. Therefore, one has to state:

v = cR,S k
0
→ exp

(
αnFE

RT

)
− cO,S k

0
← exp

(
−(1− α)nFE

RT

)
, (3.26)

which can be finally rearranged to give the electric current by multiplying with
nFA. In this manner one finally obtains the most simple form of the Butler–Volmer
equation as

I = nFA

{
cR,S k

0
→ exp

(
αnFE

RT

)
− cO,S k

0
← exp

(
−(1− α)nFE

RT

)}
. (3.27)

Equation 3.27 is not too handy, as it does not include any reference potential
in a straightforward way. However, it can be rearranged readily by inserting the
known expression of the standard electrode potential. Hence, bearing in mind
equation 3.21, one might substitute

(k0
→)α = (k0

←)α exp
(
−αnFE0

RT

)
(3.28)

and

(k0
←)(1−α) = (k0

→)(1−α) exp
(

(1− α)nFE0

RT

)
. (3.29)
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Substituting these two expressions into equation 3.27 and defining the unified
standard rate constant of the reaction as k0 = (k0

→)(1−α) · (k0
←)α, one arrives at

I = nFAk0
{
cR,S exp

(
αnF (E − E0)

RT

)

− cO,S exp
(
−(1− α)nF (E − E0)

RT

)}
. (3.30)

Equation 3.30 is the most commonly utilized version of the Butler–Volmer equation,
which will be also the base for all the following considerations.

Equilibrium conditions and the exchange current
Assuming that the total current will be zero at equilibrium, one can rewrite
equation 3.30 as

Ieq = nFAk0 cR,B exp
(
αnF (Eeq − E0)

RT

)

= nFAk0 cO,B exp
(
−(1− α)nF (Eeq − E0)

RT

)
, (3.31)

where Ieq stands for the exchange current. This quantity represents the amount of
current which flows in the anodic and cathodic direction at equilibrium conditions.
Of course, the electrode potential E in equation 3.30 will be replaced by its
equilibrium value Eeq and the surface concentrations will be equal to the bulk
concentrations. Dividing equation 3.30 by Ieq and rearranging the result yields
an additional formulation of the Butler–Volmer equation, where the electrode
potentials are referred to their equilibrium value. This expression is given by

I = Ieq
{(

cR,S

cR,B

)
exp

(
αnF (E − Eeq)

RT

)

−
(
cO,S

cO,B

)
exp

(
−(1− α)nF (E − Eeq)

RT

)}
. (3.32)
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Reversible limit of the Butler–Volmer equation
When regarding equation 3.30, two extreme cases can be distinguished. In scenario
a), the standard rate constant will be very large, (k0 →∞), and in case b) it will
be very small. Considering a), it immediately follows that I/(nFAk0)→ 0. As a
consequence, equation 3.30 simplifies to

cR,S exp
(
αnF (E − E0)

RT

)
= cO,S exp

(
−(1− α)nF (E − E0)

RT

)
, (3.33)

which can be rearranged to give the Nernst equation (equation 3.17). This
implies that in case of very large reaction rates (very low activation barriers), the
Nernst equation will be valid at each and every potential which corresponds to
electrochemical reversibility. The transition from equation 3.30 to equation 3.17 can
therefore be regarded as the quantitative analogon of the qualitative explanation
of electrochemical reversibility given on page 15.

Irreversible limit of the Butler–Volmer equation: The Tafel-
criterion
In case of a very small standard rate constant of an electrochemical reaction,
equation 3.30 suggests that a significant deviation of the electrode potential E
from E0 will be required to achieve a noticable current. Since the respective
anodic and cathodic exponential terms carry an opposite sign, it is readily seen
that an acceleration of the reaction in one direction will decelerate the reverse
reaction. As a consequence one can expect that the reverse reaction will become
negligible when compared to the forward reaction if the absolute difference of
E−E0 increases. Assuming that the surface concentrations would be always equal
to the bulk concentrations2, equation 3.32 simplifies to

I = Ieq
{
exp

(
αnF (E − Eeq)

RT

)
− exp

(
−(1− α)nF (E − Eeq)

RT

)}
. (3.34)

2This is just hypothetical and implies that the mass transfer would be infinitely fast in order
to immediately compensate any consumption or production of electrochemically active species at
the electrode surface.
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Taking the definition, that the reverse reaction is equal to (or less than) one percent
of the forward reaction, equation 3.34 can be rearranged to give:

0.01 =
exp

(
αnF (E − Eeq)

RT

)

exp
(
−(1− α)nF (E − Eeq)

RT

) (3.35)

From equation 3.35, it immediately follows that at T = 298 K, the backwards
reaction can be neglected if the absolute difference of n |E − E0| ≥ 118 mV. This
limit is also called Tafel-criterion. Since any realistic electrode reaction will always
be subjected to mass transfer, which is excluded in equation 3.35 by definition,
the following sub-paragraphs will emphasize this particular effects.

3.2 Cyclic Voltammetry with Forced Convection
When performing cyclic voltammetry experiments, typically stagnant electrolyte
solutions — electrolytes in absense of any convection — are employed. These
usually demand a complicated mathematical description of the diffusive mass
transfer. However, instead of modeling the diffusive part of an electroanalytical
experiment in any depth, it is also possible to simplify it experimentally as long as
the electrode under investigation is planar and exposed to a semi-infinite diffusion
domain. Indeed, this assumption does not account for any porosity effects of
the electrode which this thesis is dedicated to, but is, however, an exceptionally
valuable tool for obtaining reference measurements for systems involving porous
structures. For this reason it is included in the present theory chapter. The imple-
mentation of a forced convection is usually accomplished by exploiting a rotating
electrode which introduces a well-defined forced convection of the electrolyte, so
that the diffusive mass transfer can be treated as a time-independent quantity.
Owing to the principle and the geometry this type of electrode is called rotating
disc electrode (RDE). A sketch of a RDE, the related steady-state concentration
gradient as well as the corresponding flux are depicted in figure 3.1. It can be seen
that the rotation of the electrode introduces a forced convection of the electrolyte
solution. Since the convective flux can be regarded as a quantity which depends
on the distance perpendicular to the electrode surface, one can equate it with the
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3.2. Cyclic Voltammetry with Forced Convection

Figure 3.1: (A) Sketch of a rotating disc electrode (RDE). (B) Concentration gradients during
a potential sweep experiment at an RDE for two different rotation frequencies. (C) Flux of the
reduced species towards the electrode during an anodic potential sweep at two different roation
frequencies. The dotted line in panels (A) and (B) marks the diffusion layer thickness, where
convective and diffusive mass transfer equate. As the rotation speed of the electrode increases,
the diffusion layer thickness decreases and causes an enhanced flux.

diffusive mass transfer to obtain the so-called diffusion layer thickness. This
quantity is represented by the dashed line in figure 3.1 (A) and corresponds to
the point at which the diffusive flux surpasses the convective mass transfer. This
quantity will depend on the rotation speed of the electrode. As long as the electrode
is rotated at a certain angular frequency, the constant diffusion layer thickness will
introduce a linear concentration gradient (cf. figure 3.1 (B), which does exclusively
depend on the concentration of the electrochemically active species at the electrode
surface. Consequently, as soon as the surface concentration of the species consumed
approaches zero, the concentration gradient will be time invariant. In this case a
flux (or current) plateau will be reached which is termed limiting current. Since
the concentration gradient is proportional to the rotation speed of the electrode in
some, yet not defined, manner the limiting current will depend on the rotation
rate as well. Considering that the electroanalytical experiment is conducted at
a potential sweep rate sufficiently slow to provide a steady state concentration
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gradient at each and every potential instance, the potential-dependent flux (or
current) will be proportional to the inverse shape of the concentration profile.
This behaviour is depicted in figure 3.1 (C). The grey curve corresponds to a low
rotation speed of the electrode (low limiting current) and the black curve to a
larger rotation speed (larger limiting current). Equating the limiting currents with
the ratio of surface-to-bulk concentration one can recognize that

ci,S
ci,B

= 1− I

Ilim,i
, (3.36)

where Ilim,i denotes the corresponding anodic or cathodic limiting current, respec-
tively. This limiting current can be expressed in terms of the Levich-equation3.
This equation originates from the hydrodynamics of a rotating disc [92] and is
given by

Ilim,i = 0.201nFAci,BD2/3
i η−1/6√ω. (3.37)

In equation 3.37, η stands for the kinematic viscosity of the electrolyte solution
and ω denotes the angular rotation frequency of the electrode. The other variables
have their usual meaning. Introducing equation 3.36 into equation 3.32 results in

I = Ieq
{(

1− I

Ilim,an

)
exp

(
αnF (E − Eeq)

RT

)

−
(

1− I

Ilim,ca

)
exp

(
−(1− α)nF (E − Eeq)

RT

)}
. (3.38)

In equation 3.38, the respective limiting currents might be substituted by the
Levich equation. Now, considering a sluggish electrode reaction which will require
for a comparably large deviation of E from its equilibrium value to attain a current
significantly different from zero, one of the exponential terms in equation 3.38 will
become negligible according to the Tafel criterion. Suppose an anodic reaction,
this translates to

I = Ieq
(

1− I

Ilim,an

)
exp

(
αnF (E − Eeq)

RT

)
. (3.39)

3A derivation of the Levich equation is not part of this thesis, since focusing on hydrodynamics
in any depth will be out of the scope.
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Defining the kinetic anodic current to be

Ikin,an = Ieq exp
(
αnF (E − Eeq)

RT

)
, (3.40)

one can rearrange equation 3.39 to

1
I

= 1
Ikin,an

+ 1
Ilim,an

, (3.41)

which represents the Koutecký-Levich equation [88]. This particular equation is of
utmost importance for the work related to chapter 5.1, where RDE measurements
are conducted to obtain a set of kinetic reference parameters for the following work
on porous electrodes. For this purpose, it might be rearranged once more in terms
of the kinetic current to give

Ikin,an = I · Ilim, an

Ilim,an − I
. (3.42)

This expression can be finally linearized to give

ln
(
I · Ilim, an

Ilim,an − I

)
= ln (Ieq) + αnF

RT
(E − Eeq). (3.43)

The outstanding advantage of equation 3.43 emerges from the feasibility of accessing
Ieq (and therefore k0) from the offset and α from the slope of a simple line equation
which can be readily generated from experimental data.

3.3 Mathematics of Diffusion
In contrast to sub-chapter 3.2 which was dedicated to avoiding the complex
interplay of diffusion phenomena and electrode kinetics under transient conditions
by introducing forced convection, this sub-chapter will solely discuss the diffusive
part of an electrochemical reaction in a stagnant electrolyte. In this context, the
diffusion equation needs to be solved to certain boundary conditions, defined by
the experiment. For this purpose, two different strategies, namely a) the Crank-
Nicolson method which falls under the category of digital simulation and b) the
Laplace transformation technique will be introduced.
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The diffusion equation
When referring to the diffusion equation, typically Ficks´ second law is implied4,
which is a second order partial differential equation [94] and can be stated as

∂c(x, y, z, t)
∂t

= D∇2 c(x, y, z, t). (3.44)

In equation 3.44, ∇2 corresponds to the Laplacian operator which contains the
second order spatial derivatives according to

∇2 =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
. (3.45)

Depending on the symmetry of the diffusion domain employed, equation 3.44 can
be simplified. In this context, three totally symmetric electrode geometries will be
regarded in the following, namely a) a planar electrode, b) a spherical electrode
and c) a cylindrical electrode. In case of c), the cylinder is significantly longer
than wide, so that the radial diffusion part can be considered as the only quantity
contributing to the mass transport. In scenario a) the case of a one-dimensional
diffusion problem at a planar electrode, the only coordinate which is left will be
the distance from the active electrode surface — suppose x. Therefore it is c(x, t)
instead of c(x, y, z, t). In this manner, one can alternatively write:

∂c(x, t)
∂t

= D
∂2c(x, t)
∂x2 . (3.46)

In case of b), the diffusion equation 3.44 can be transformed into polar coordinates
c(x, y, z, t) ≡ c(r, φ, θ, t). If the electrode will be of spherical (or hemispherical)
shape, the only quantity which governs the mass transfer will be the radial distance,
r =
√
x2 + y2 + z2. Therefore one can reduce c(r, φ, θ, t) to c(r, t) and arrives at

∂c(r, t)
∂t

= D

[
∂2c(r, t)
∂r2 + 2

r

∂c(r, t)
∂r

]
. (3.47)

4The difusion equation is named after Adolf Fick, who published his pioneering work on
diffusive mass transfer in 1855 [93]
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In scenario c), a cylindrical electrode, the diffusion equation will be reduced to a
two-dimensional problem before applying the transformation to polar coordinates
such that c(x, y, z, t) ≡ c(x, y, t). In this manner, one obtains finally

∂c(r, t)
∂t

= D

[
∂2c(r, t)
∂r2 + 1

r

∂c(r, t)
∂r

]
. (3.48)

Equations 3.46, 3.47 and 3.48 can be employed whenever the system possesses the
respective planar, spherical or cylindrical symmetry. For the sake of simplicity,
the strategies of solving the diffusion equation via digital simulation and Laplace
transformation techniques will be elucidated on the base of equation 3.46 only.

Digital simulation: The Crank–Nicolson algorithm
The idea of solving the diffusion equation in the context of electrochemical applica-
tions by means of 'digital simulation' is usually associated with the seminal work
of Feldberg in 1964 [95]. However, it is worth to note that Randles also utilized a
similar approach already 16 years earlier in 1948 [90]. By approximating the partial
derivatives in equation 3.46 by their finite difference quotients, Feldberg proposed
an explicit algorithm which successively yields the time dependent concentration
profile in front of the electrode according to

ci,t+∆t ≈ ci,t + D∆t
∆x2 ·

(
ci+1,t − 2ci,t + ci−1,t

)
, (3.49)

where the index i counts the space increments ∆x which denote the distance
from the electrode surface. Equation 3.49 is termed explicit, since it approxi-
mates the concentration at a new time instance t + ∆t on the base of the pre-
viously known values only. In a mathematical sense, equation 3.49 is somewhat
inconvenient since it provides first order accuracy in time and a second order
accuracy in space and is therefore unconditionally unstable5. Consequently, it
requires considerably small increments of ∆t to converge. It therefore represents a
straightforward but awfully inefficient way of approximating the desired solution.

5Conditional stability means that the solution depends on the choice of the respective time
and space increments of the finite difference approximations. In case of equation 3.49 one requires
for D∆t/∆x2 ≤ 0.5 to ensure numerical stability. If ∆t is chosen too large, approximating the
spatial derivative by three grid points only (cf. equation 3.49) would be insufficient.
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An alternative — and significantly more efficient — way of solving the diffusion
equation is given by the implicit Crank–Nicolson algorithm. This method was
introduced by John Crank and Phyllis Nicolson in 1947 [96] and pioneered in the
context of electrochemistry by Heinze, Rudolph and Störzbach [97]–[99]. It is based
on averaging the old (known) and new (yet unknown) concentration values at each
individual point in space. In this manner, it achieves a second order accuracy in
space and time. The respective finite difference approximation of equation 3.46
can be formulated as

ci,t+∆t − ci,t ≈
D∆t
2∆x2 ·

(
ci+1,t − 2ci,t + ci−1,t

+ ci+1,t+∆t − 2ci,t+∆t + ci−1,t+∆t

)
. (3.50)

The solution of equation 3.50 follows after separating all the known and yet
unknown concentration values. Introducing λ = D∆t/∆x2, one might equate

− λci+1,t+∆t + 2(1 + λ)ci,t+∆t − λci−1,t+∆t

=
λci+1,t + 2(1− λ)ci,t + λci−1,t. (3.51)

Taking into account all — suppose N — spatial grid points, one can rearrange
equation 3.51 into a tridiagonal matrix notation according to



β λ 0 · · · 0
λ β λ 0 ...
0 . . . . . . . . . 0
... 0 λ β λ
0 · · · 0 λ β


·



c1,t
c2,t
...

cN−2,t
cN−1,t

+



λc0,t
0
...
0

λcN,t


=

ε −λ 0 · · · 0
−λ ε −λ 0 ...
0 . . . . . . . . . 0
... 0 −λ ε −λ
0 · · · 0 −λ ε


·



c1,t+∆t
c2,t+∆t

...
cN−2,t+∆t
cN−1,t+∆t

+



λc0,t+∆t
0
...
0

λcN,t+∆t

 . (3.52)
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In equation 3.52 it is β = 2(1− λ) and ε = 2(1 + λ). The points located at i = 0
and i = N represent the boundary conditions at the electrode surface and at the
end of the diffusion layer, respectively. The boundary at the electrode surface
is thereby defined by the Nernst or Butler–Volmer equation. Since the matrix
notation in equation 3.52 accounts for all space grid points simultaneously, it offers
an unconditionally stable way of solving the diffusion equation. Consequently, it
is favoured, when compared to its explicit analogon. The tridiagonal matrices in
equation 3.52 can be regarded as a set of N − 2 linear equations which can be
solved very efficiently by utilizing the Thomas algorithm [100]. The diffusive flux
(and the related current) can be generated on the flow according to Ficks first law
as

J(x = 0, t) = − D

∆x

(
c1,t − c0,t

)
(3.53)

or more precise as

J(x = 0, t) = − D

2∆x

(
− 3c0,t + 4c1,t − c2,t

)
. (3.54)

Thereby, equation 3.54 includes a three point approximation of the concentration
gradient at the electrode surface, which is of second order accuracy [89]. It is there-
fore more precise than equation 3.53, which consists of a two point approximation
with first order accuracy, only.

When regarding equation 3.52 and equation 3.53, it is worth to note that the
only concentration values, mandatory for computing the diffusive flux, are located
at x = 0 and x = ∆x. However, each time iteration requires for computation of
the entire concentration profile in front of the electrode which will be of course
significantly time consuming. Furthermore, since the resulting flux (or current) is
numerically estimated at each time iteration it will be obtained as a set of discrete
points only. These two drawbacks can be avoided in a very limited number of
circumstances by exploiting Laplace integral transformation techniques which will
be discussed in the following sub-paragraph.

The Laplace transformation technique
Solving the diffusion equation by means of Laplace integral transformation tech-
niques offers an exceptionally elegant strategy, against which the digital simu-
lation approach appears like a brute force method. Apart from satisfying the
electrochemists mathematical curiosity, this approach can yield analytical (or
semi-analytical) expressions for a variety of experimental circumstances. These
are — of course — preferred when compared to entirely numerical results.
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The Laplace transformation of a function f(t) is defined by the following integral

f̄(s) = L
{
f(t)

}
(s) =

∫ ∞
0

f(t) e−stdt, (3.55)

where L denotes the Laplace transformation operator and s is the Laplace trans-
formed variable related to the time t [101]. Performing the Laplace transformation
of an integral in time will result in

L
{ ∫ t

0
f(τ)dτ

}
(s) =

∫ ∞
0

( ∫ t

0
f(τ)dτ

)
e−stdt

=
∫ ∞

0

(
F (t)− F (0)

)
e−stdt

= −F (t)
s

e−st
∣∣∣∣∞
0

+ 1
s

∫ ∞
0

(
f(t)− sF (0)

)
e−stdt

= F (0)
s

+ F (0)
s

e−st
∣∣∣∣∞
0

+ 1
s

∫ ∞
0

f(t) e−stdt

= f̄(s)
s
,

(3.56)

where τ is an auxiliary variable for t, to avoid the same nomenclature in the
integrand and the integration limit. In contrast, applying transformation 3.55 to a
derivative in time yields

L
{df(t)

dt

}
(s) =

∫ ∞
0

df(t)
dt e−stdt

= f(t) e−st
∣∣∣∣∞
0

+ s
∫ ∞

0
f(t) e−stdt

= −f(0) + sf̄(s).

(3.57)

When regarding the relations in equations 3.56 and 3.57, the great advantage of the
Laplace transformation becomes obvious, which is given by converting
a differential equation into an algebraic expression [101]. Therefore, one can
realize that an integration in the time domain will correspond to a
simple division by the Laplace transformed variable in the Laplace domain. Vice
versa, a differentiation in the time domain is achieved by a multiplication by
transformed variable in the Laplace domain. Since the Laplace transformation is
usually related to time-dependent problems, it will not affect any nth-order spatial

42



3.3. Mathematics of Diffusion

derivatives. For example, consider the Laplace transformation of the nth spatial
derivative of a function f(x, t). This will be given by

L
{
∂nf(x, t)
∂xn

}
(s) =

∫ ∞
0

∂nf(x, t)
∂xn

e−stdt

= ∂n

∂xn

∫ ∞
0

f(x, t) e−stdt

= ∂nf̄(x, s)
∂xn

.

(3.58)

Regarding equations 3.57 and 3.58, the outstanding power of the Laplace trans-
formation for solving the diffusion equation emerges. By removing the partial
derivative with respect to time on the left hand side of equations 3.44-3.48 the re-
spective partial differential equations can be transformed into ordinary differential
equations (ODEs). As an example, equation 3.46 can be converted into

−c̄(x, 0) + sc̄(x, s) = D
∂2c̄(x, s)
∂x2 . (3.59)

This expression is much more facile to treat mathematically when compared to
equation 3.46, since it involves spatial derivatives only. Therefore, an efficient
routine of solving the diffusion equation might be to first perform a Laplace
transform, to subsequently solve the diffusion problem in the Laplace domain
and to finally perform an inverse Laplace transformation to obtain the desired
time-dependent result.

The formula for the inversion of the Laplace transformation — the so-called
Bromwich integral [101], [102] — is given by the following line integral parallel to
the imaginary axis

f(t) = L−1
{
f̄(s)

}
(t) = 1

2πi

∫ γ+i∞

γ−i∞
f̄(s) estds, (3.60)

where i =
√−1 and γ is a constant to be chosen so that all singularities of f̄(s)

are located at the left hand side of the respective line integral. Since a direct
evaluation of the Bromwich integral can be exceptionally complicated, one typically
refers to tables of Laplace/inverse Laplace transform pairs — like to recipes in a
mathematical cookbook. For two particular examples, relevant in the context of
electrochemistry, detailed derivations of Laplace transformation/inverse Laplace
transformation pairs are provided in appendix A of this work.
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Properties of the Laplace transformation
Subsequently to introducing the Laplace transformation technique for solving the
diffusion equation, this sub-paragraph will emphasize two important properties of
this particular integral transformation [101], [102], which are urgently required in
the context of electrochemical applications namely a) frequency shifting and b)
convolution. Regarding a), one might consider a function f(t), which is multiplied
by an exponentially decaying term in the time domain and which is going to be
Laplace transformed. This scenario can be written as

L
{
f(t) e−at

}
(s) =

∫ ∞
0

f(t) e−(s+a)tdt

= f̄(s+ a).
(3.61)

Equation 3.61 will be required when treating electrochemical reactions coupled to
homogeneous kinetics.

Regarding b), the convolution is required whenever an inverse Laplace tranforma-
tion (or Laplace transformation) is applied to a product of two
functions — suppose f and g. In case of an inverse Laplace transformation,
suppose L−1{f̄(s)ḡ(s)}(t). Then, the desired time-dependent solution is given by

L−1
{
f̄(s)ḡ(s)

}
(t) =

∫ t

0
f(τ)g(t− τ)dτ

=
∫ t

0
f(t− τ)g(τ)dτ.

(3.62)

In equation 3.62, τ represents a dummy integration variable for the time t. The
functions f(t) and g(t) are the individual inverse Laplace transformations according
to f(t) = L−1{f̄(s)}(t) and g(t) = L−1{ḡ(s)}(t). Equation 3.62 is called the
convolution theorem. It is of utmost importance when treating electroanalytical
experiments under transient conditions, i.e. when the diffusive mass transfer is
coupled (convoluted) with a potential sweep.
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3.4 Diffusional Potential Step Methods
Before discussing the concept of transient boundary conditions required for sim-
ulating cyclic voltammetry experiments, this subsection will be dedicated to
large-amplitude potential step methods. These can be regarded as an experimen-
tal extreme case, which forces the surface concentration of the electrochemically
active species to zero as soon as the experiment starts (at any t > 0). Then,
considering that the restrictions outlined on page 12 are satisfied, the resulting
analytic solution for the flux of the electrochemically active species will be given in
terms of the Cottrell equation [103] which will be derived by means of the Laplace
transformation technique, at next.

For this purpose the Laplace transformation of the one-dimensional diffusion
equation at a planar electrode, given in equation 3.59, is recovered. For the con-
sumption of the reduced species at the electrode surface during an anodic potential
step it follows

c̄R(x, s) = c̄R,B + DR

s

∂2c̄R(x, s)
∂x2 , (3.63)

where c̄R,B = cR(x, 0)/s. This ODE possesses the general solution of

c̄R(x, s) = C+exp
(
x

√
s

DR

)
+ C−exp

(
−x

√
s

DR

)
+ c̄R,B, (3.64)

with C+ and C− as constants to be determined by the boundary conditions of
the experiment. Regarding that cR(x→∞, t) = cR,B in a semi-infinite diffusion
domain, it follows that C+

!= 0. Furthermore, considering that the potential
step enforces cR(x = 0, t > 0) = 0, one can determine C− by setting x = 0, as
C− = −cR,B. In this manner, equation 3.64 can be simplified to

c̄R(x, s) = c̄R,B

(
1− exp

(
−x

√
s

DR

))
(3.65)

Since the current is related to the flux of electrochemically active species at the
electrode surface, introducing the Laplace transformed version of Ficks first law
yields

Ī(s) = −nFAJ̄R(x = 0, s) = nFADR

(
∂c̄R(x, s)

∂x

)
x=0

. (3.66)
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Performing the spatial derivative in equation 3.66 to the Laplace transformed
concentration given in equation 3.65 and subsequently setting x = 0 provides

Ī(s) = nFA
√
sDRc̄R,B. (3.67)

Recognizing that c̄R,B = cR,B/s, one can alternatively write

Ī(s) = nFA
√
DRcR,B√
s

. (3.68)

Finally, performing the inverse Laplace transformation6 on equation 3.68 with
L−1{1/√s}(t) = 1/

√
πt [104] results in the so-called Cottrell equation given by

I(t) = nFA
√
DRcR,B√
πt

. (3.69)

This expression functionally relates the current of a potential step experiment
to the respective experiment duration. It unambiguously shows that the current
decays with the inverse square root of the time as soon as the surface concentration
of the electrochemically active species approaches zero. It therefore describes the
depleting part of the current wave of a CV at a planar electrode in a semi-infinite
diffusion domain. Furthermore, it is one of the rare cases, where an entirely
analytic solution of the current wave can be derived.

Apart from finding an analytical solution to equation 3.68, one could also
attempt to solve it numerically. On a first glance, this appears redundant, since
an analytical solution offers a much more valuable tool for describing the system.
However, since in the case of cyclic voltammetry a very similar numerical treatment
is utilized, it is worth to introduce the respective concept right now. Starting with
equation 3.67 as

nFA
√
DRc̄R,B = Ī(s)√

s
(3.70)

suggests to utilize equation 3.62 with f̄(s) = Ī(s) and ḡ(s) = 1/
√
s. Defining

further that χ(t) = I(t)/nFA
√
DRcR,B one arrives at

1 = 1√
π

∫ t

0

χ(τ)√
t− τ dτ. (3.71)

6This relation is derived in section A.1 in appendix A.
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3.4. Diffusional Potential Step Methods

It is readily seen that the denominator in the integrand of equation 3.71 will
introduce a singularity at the upper integration limit. This can be, however,
circumvented by an integration by parts which provides

√
π = −2

√
t− τ χ(τ)

∣∣∣∣t
0

+ 2
∫ χ(t)

χ(0)

√
t− τdχ(τ). (3.72)

Now, discretizing the time variables t and τ , such that t = i∆t and τ = j∆t, where
j ≤ i one can approximate equation 3.72 as Riemann–Stieltjes integral. Defining
further that M(t− τ) = 2

√
t− τ/√π is the so-called mass transfer function of the

system, one arrives at

1 ≈ χ(0)M(i∆t) +
i−1∑
j=0

M((i− j)∆t)[χ((j + 1)∆t)− χ(j∆t)]. (3.73)

Recognizing that M(0) = 0, this expression can be rearranged to finally give a
recurrance relation for the dimension-less current according to

χ(i∆t) ≈ 1
M(∆t)

(
1−

i−1∑
j=1

χ(j∆t)[M((i− j + 1)∆t)−M((i− j)∆t)]
)

(3.74)

Another way of numerically solving the diffusion equation for a potential step
experiment is given by the implicit Crank–Nicolson method [96] which was in-
troduced in subsection 3.3. Defining the matrix of the known time instance in
equation 3.52 (the one that contains the coefficient β) to be Mold and the matrix
at the new time instance (the one which contains the coefficient ε) to be Mnew,
one obtains

Mold ·



c1,t
c2,t
...

cN−2,t
cN−1,t

 +



λc0,t
0
...
0

λcN,t

 = Mnew ·



c1,t+∆t
c2,t+∆t

...
cN−2,t+∆t
cN−1,t+∆t

 +



λc0,t+∆t
0
...
0

λcN,t+∆t

 . (3.75)

Setting c0,t = c0,t+∆t = 0 one defines the boundary conditions of a Cottrellian
potential step experiment at the electrode surface. For the boundary of the N th

spatial grid point one might set a constant concentration cN,t = cN,t+∆t = cR,B.
This assumption appears fair, as long as a sufficient number of spatial grid points
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Figure 3.2: Time-dependent dimensionless flux (or current) of a Cottrellian potential step
experiment simulated on (A) the base of digital simulation (equations 3.75 and 3.76) and (B)
convolutive modeling (equation 3.74). The solid line represents the analytical current response
based on the Cottrell equation 3.69. In panel (A), the simulations were performed with a)
∆x = 0.25 µm, ∆t = 0.005 s, λ = 8.00; b) ∆x = 5 µm, ∆t = 0.005 s, λ = 0.02 and c)
∆x = 20 µm, ∆t = 0.08 s, λ = 0.02, In panel B), it was used a) ∆t = 0.001 s; b) ∆t = 0.005 s
and c) ∆t = 0.01 s.

are employed to attain a semi-infinite diffusion domain7. The related dimensionless
flux χ(t) will be calculated by normalizing equation 3.54 to the square root of
the diffusion coefficient of the electrochemically active species. In analogy to
equation 3.74, consider i timesteps of ∆t in the experiment, such that t = i∆t and
therefore

χ(i∆t) =
√
D

2∆x

(
− 3c0,i∆t + 4c1,i∆t − c2,i∆t

)
. (3.76)

Equation 3.74 and 3.76 will be utilized now, for simulating the time-dependent
current response of a Cottrellian potential step experiment. Reference values
are generated on the base of the analytical result — equation 3.69. These are
depicted in figure 3.2. In figure 3.2, it can be seen that the result of digital
simulation depends on both, the choice of ∆t and ∆x, whereas convolutive mod-
eling only depends on the choice of ∆t. In the case of convolutive modeling,
it is readily seen that if ∆t decreases, the computation becomes more accurate.

7This implies that the concentration profile does not hit the outer boundary in the timescale
of the experiment.
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In the case of digital simulation, the choice of ∆x basically determines at which
point the numerical result converges. However, solely decreasing ∆x, by keeping
∆t constant will lead to unfavourably large values of the parameter λ which
will finally result in catastrophal oscillations of the numerical result (curve a) in
figure 3.2 (A)). However, it is worth to note that the numerical result will converge
in any occasion due to the unconditional stability of the Crank–Nicolson algorithm.
Nevertheless, owing to the straighforward implementation and mathematical
elegance of convolutive modeling, this technique will be emphasized in the following.

3.5 Diffusional Cyclic Voltammetry
Since the concept of convolutive modeling is considered as the more decent ap-
proach for simulating the diffusive part of electroanalytical experiments, it will be
employed in this sub-chapter. Convolutive modeling was basically pioneered by
Matsuda [74] and Aoki [77]–[80] and generalized by Oldham [105] in the context of
electrochemistry. In order to familiarize the reader with this particular technique
the mathematics of CV in a planar semi-infinite diffusion domain will considered at
next. Subsequently, the expressions for CV in a planar finite diffusion domain with
an ideally impermeable outer boundary will be derived and utilized to introduce
the co-called master-equation approach — a term first utilized by Oldham — which
generalizes convolutive modeling of CV to any kind of diffusion domain as long as
the respective mass transfer function is known.

Convolutive modeling of cyclic voltammetry at a planar
electrode in semi-infinite diffusion space
The most simple situation of cyclic voltammetry emerges, when the electroana-
lytical experiment is conducted at an ideally planar electrode in a semi-infinite
diffusion domain. Considering that the restrictions given on page 12 are fulfilled,
one might directly start the derivation by recovering the modified8 general solution

8Modified refers to the absence of the term containing C+, owing to the semi-infinite diffusion
domain.
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of the Laplace transformed version of the diffusion equation which was given in
equation 3.64 for an exemplary reduced species as

c̄R(x, s) = C−exp
(
−x

√
s

DR

)
+ c̄R,B. (3.77)

Relating the Laplace transformed flux (or current) to the Laplace transformed
surface concentration in analogy to equation 3.66 yields

Ī(s) = nFADR

(
∂c̄R(x, s)

∂x

)
x=0

= −nFA
√
sDRC−.

(3.78)

This defines the constant C− as

C− = − 1
nFA

√
DR

Ī(s)√
s
, (3.79)

such that the Laplace transformed surface concentration can be expressed as a
function of the Laplace transformed current according to

c̄R,S = c̄R,B −
1

nFA
√
DR

Ī(s)√
s
. (3.80)

In analogy, the Laplace transformed surface concentration of the oxidized species
will be given by

c̄O,S = 1
nFA

√
DO

Ī(s)√
s
, (3.81)

if the experiment starts with a negligible amount of oxidized species in the
bulk of the electrolyte. Performing the inverse Laplace transformation on equa-
tions 3.80 and 3.81 by applying the convolution theorem as outlined in equation 3.62
results in

cR,S = cR,B −
1

nFA
√
DR

1√
π

∫ t

0

I(τ)√
t− τ dτ (3.82)

for the surface concentration of the reduced species. In a similar way, the surface
concentration of the oxidized species is given by

cR,O = 1
nFA

√
DO

1√
π

∫ t

0

I(τ)√
t− τ dτ. (3.83)
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In analogy to equation 3.71, the denominator in the integrand of equations 3.82
and 3.83 will introduce a singularity at the upper integration limit which can
be circumvented by an integration by parts. Assuming that I(0) = 0 (i.e. the
experiment starts at equilibrium conditions), one obtains

cR,S = cR,B −
1

nFA
√
DR

2√
π

∫ I(t)

I(0)

√
t− τ dI(τ) (3.84)

and

cO,S = 1
nFA

√
DO

2√
π

∫ I(t)

I(0)

√
t− τ dI(τ) (3.85)

Recovering the Butler–Volmer equation as given in equation 3.30 and introducing
the dimension-less electrode potential as

ξ(t) = nF

RT
(E(t)− E0) (3.86)

results in

I(t) = nFAk0
{
cR,S eαξ(t) − cO,S e−(1−α)ξ(t)

}
. (3.87)

In equation 3.87, the time dependent surface concentrations defined by equa-
tions 3.84 and 3.85 can be inserted. After slight rearrangement, one arrives at the
following integral equation

I(t)
√
DR e−αξ(t)
k0 = nFAcR,B

√
DR

−
[
1 +

√
DR

DO
e−ξ(t)

]
· 2√

π

∫ I(t)

I(0)

√
t− τ dI(τ). (3.88)

Similar to equation 3.73, the integral in equation 3.88 can be transformed into a
sum in order to evaluate it as Riemann–Stieltjes integral.
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Therefore, taking the discretization of the time variables t = i∆t and τ = j∆t
with j ≤ i, one arrives at

I(i∆t)
√
DR e−αξ(i∆t)

k0 ≈ nFAcR,B

√
DR

−
[
1 +

√
DR

DO
e−ξ(i∆t)

]
· 2
√

∆t√
π

i−1∑
j=0

√
i− j [I((j + 1)∆t)− I(j∆t)]. (3.89)

Subsequently to rearranging the sum in equation 3.89 and isolating the I(i∆t)
term, one obtains the following recursion relation for the current of a potential
sweep experiment like the one in a CV.

I(i∆t) ≈
nFAcR,B

√
DR −

[
1 +

√
DR

DO
e−ξ(i∆t)

]
·S

√
DR e−αξ(i∆t)

k0 + 2
√

∆t√
π
·
[
1 +

√
DR

DO
e−ξ(i∆t)

] , (3.90)

where S denotes a convolution of lists9 according to

S = 2
√

∆t√
π

i−1∑
j=1

I(j∆t)
(√

i− j + 1−
√
i− j

)
(3.91)

Following the recursion relation of equation 3.90, the current response of a planar
electrode in a semi-infinite diffusion domain to basically any time-variant potential
perturbation can be computed. It is therefore not limited to CV experiments. The
only requirement is then to modify the time-dependence of the electrode potential
E(t), and hence ξ(t).

9A convolution of lists implies that the convolution integrals which were transformed into
sums are solved recursively and that the respective intermediate solutions are stored in the
computer memory as lists of discrete points.
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3.5. Diffusional Cyclic Voltammetry

Convolutive modeling of cyclic voltammetry at a planar
electrode in a finite reflective diffusion space
Considering that the electroanalytical experiment is performed at a planar electrode
in a finite diffusion domain with an impermeable outer boundary, it can be expected
that the current will be a complicated function of the electrode kinetics and the
diffusion domain size. This scenario was first ever described by Aoki [79], [80] and
generalized by Bieniasz [106]. The mathematical treatment in terms of convolutive
modeling will be, however, closely related to the semi-infinite case. This will be
demonstrated right now to emphasize an additional outstanding advantage of
convolutive modeling. The startingpoint will be again the general solution of the
Laplace transformed diffusion equation (equation 3.64) for an exemplary reduced
species as

c̄R(x, s) = C+ exp
(
x

√
s

DR

)
+ C− exp

(
−x

√
s

DR

)
+ c̄R,B. (3.92)

In contrast to the scenario of a semi-infinite diffusion domain both constants — C+
and C− — need to be preserved here since the diffusion domain size will approach
a maximum size, say x = d, instead of x→∞. Therefore, C+ is particularily not
zero. Now, again calculating the Laplace transformed current according to Ficks
first law at x = 0 gives

Ī(s) = nFADR

(
∂c̄R(x, s)

∂x

)
x=0

= nFA
√
sDR(C+ − C−).

(3.93)

Considering a no-flux boundary at x = d implies that

0 =
(
∂c̄R(x, s)

∂x

)
x=d

= C+ exp
(
d

√
s

DR

)
− C− exp

(
−d
√

s

DR

)
. (3.94)

Combining equations 3.93 and 3.94 allows for determining both constants C+ and
C− as

C+ = Ī(s)
nFA

√
sDR

exp
(
−d
√

s

DR

)

exp
(
−d
√

s

DR

)
− exp

(
d

√
s

DR

) (3.95)
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and

C− = Ī(s)
nFA

√
sDR

exp
(
d

√
s

DR

)

exp
(
−d
√

s

DR

)
− exp

(
d

√
s

DR

) . (3.96)

Substituting equations 3.95 and 3.96 back into equation 3.92 and evaluating the
expression at x = 0 allows for calculating the surface concentrations according to

c̄R,S = c̄R,B −
Ī(s)

nFA
√
sDR

exp
(
d

√
s

DR

)
+ exp

(
−d
√

s

DR

)

exp
(
d

√
s

DR

)
− exp

(
−d
√

s

DR

) , (3.97)

or extensively simplified by identifying the hyperbolic cotangent function as

c̄R,S = c̄R,B −
Ī(s)

nFA
√
DR

coth
(
d

√
s

DR

)
√
s

. (3.98)

In analogy, the surface concentration of the oxidized species can be obtained as

c̄O,S = Ī(s)
nFA

√
DO

coth
(
d

√
s

DO

)
√
s

. (3.99)

The most crucial step is now, to perform the inverse Laplace transformation of
equations 3.98 and 3.99 to access the respective time-domain solution. The inverse
Laplace transformation of the function convoluted with the current is given in
terms of Jacobi theta functions10 [79], [80], [104] and can be written as

L−1
{coth (

√
s)√

s

}
(s) = Θ3(0|t)

= 1 + 2
∞∑
k=1

exp(− π2k2t).
(3.100)

10This particular derivation is included in section A.2 in appendix A.
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However, for the sake of simplicity and generality, urgently required in the context
of this thesis, suppose a function mR(t), which defines

L−1


coth

(
d

√
s

DR

)
√
s


(t) = mR(t) (3.101)

and another function mO(t) which defines

L−1


coth

(
d

√
s

DO

)
√
s


(t) = mO(t). (3.102)

In this manner, one would readily obtain the convolution integrals

cR,S = cR,B −
1

nFA
√
DR

∫ t

0
I(τ)mR(t− τ)dτ (3.103)

and

cO,S = 1
nFA

√
DO

∫ t

0
I(τ)mO(t− τ)dτ. (3.104)

In analogy to the planar electrode in a semi-infinite diffusion domain these ex-
pressions could be treated by an integration by parts to remove the singularity
in the integrand, which defines the antiderivatives of mR and mO as MR and MO,
respectively. The resulting expressions can also be inserted into the Butler–Volmer
equation and finally rearranged to provide a recursion formula which is fairly similar
to — but much more generalized than — equation 3.90. Owing to the generality of
this recursion relation, it is termed The Master Equation of convolutive modeling.
It is given as

I(i∆t) ≈
nFAcR,B

√
DR −SR −

√
DR

DO
e−ξ(i∆t)SO

√
DR e−αξ(i∆t)

k0 +MR(∆t) +MO(∆t)
√
DR

DO
e−ξ(i∆t)

, (3.105)
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where SR denotes a convolution of lists of the reduced species according to

SR =
i−1∑
j=1

I(j∆t)
(
MR((i− j + 1)∆t)−MR((i− j)∆t)

)
(3.106)

and SO the respective convolution of lists for the oxidized species as

SO =
i−1∑
j=1

I(j∆t)
(
MO((i− j + 1)∆t)−MO((i− j)∆t)

)
. (3.107)

Equation 3.105 can be considered as somewhat universal, since it allows for
computing electroanalytical experiments to any kind of potential excitation and
in any kind of diffusion domain, considering that the respective mass transfer
functions are known a-priori. It is, however, different from the expressions given
by Oldham [105], since it avoids a double-integration. When referring to porous
electrodes, computing this particular mass transfer functions will be the emphasis
of the final publication related to this thesis which is given in section 5.5 of
chapter 5. However, before referring to CV porous electrodes, the following section
will provide an overview on the theoretical work which has been published in this
particular context.

3.6 Cyclic Voltammetry at Porous Electrodes
Subsequently to introducing two 'recipes' for the mathematical treatment of dif-
fusional cyclic voltammetry, this section will be dedicated to the very limited
amount of publications on the theory of CV at porous electrode structures which
was mainly pioneered by the group of Compton.

Probably the first study which emphasized the effect of electrode porosity on
the current response of diffusional cyclic voltammetry has been published by this
group in 2006 [64]. There, the authors proposed a theoretical model for describing
an electrode which is accessible through randomly distributed cylindrical pores of
uniform diameter in an insulating layer which covers the surface. The respective
numerical computations of the electroanalytical experiments were performed on
the base of digital simulation.

In 2007, the same group published an article on cyclic voltammetry at random
arrays of microband electrodes inlayed into an inert surface [107]. This might
not be associated with a porous electrode on a first glance, but does, however,
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highlight the effects of a statistically distributed diffusion domain on CV which
is extraordinarily important for porous electrodes. In 2008, three additional
scientific reports of the Compton group were published which are dedicated to
a) the influence of electrode porosity on CV [65], b) the influence of electrode
roughness on CV [108] and c) to the theory for electrodes covered with a porous
layer of carbon-nanotubes [109]. In the same year, a work very similar to c) was
independently published by Holloway and Wildgoose [110].

In ref. [65], the authors proposed a theoretical model for describing an electrode
which is covered with a porous layer of catalytically active material by assuming
a regular array of hollow-cylindrical pores. In order to reduce the mathematical
complexity, they treated each cylindrical pore as an individual sub-structure and
approximated the diffusion domain by assuming translational symmetry of these
sub-units. For their computations, they again utilized digital simulation. In 2009,
another research paper on cyclic voltammetry at microelectrode arrays was pub-
lished, which highlights the limitations of the diffusion domain approximation [111]
which was introduced so far.

In 2014, the Compton group published a theoretical concept which treats porous
electrodes as an array of hollow spheres[66]. They highlight the experimental rele-
vance of this particular concept for electrocatalysts which have been synthesized
via electroplating on micro-spherical particles. However, it might also hold for
materials which have been synthesized via bubble templating. The authors point
out, that the current response of such a porous electrode can exhibit two distinct
current peaks, even if just one redox reaction is involved. This exceptionally impor-
tant remark is ascribed to the two distinct diffusion modi which occur in parallel
and which can be termed as internal spherical finite (in the individual pores) and
planar semi-infinite (towards the entire electrode). Again, the calculations were
performed via digital simulation.

In 2017, another study on porous electrodes was published by the Compton
group [69]. In this paper, the authors investigated the theory of CV experiments
which consist of multiple cycles in order to find out whether or not the current
wave will converge to a constant shape within time. Since CV experiments are
typically conducted for more than one cycle this study is fairly important for the
experimentalists community as a time-variant CV will complicate any experimental
evaluation.

Even though the latter four studies are a great pioneering work on the theory
of porous electrodes, they do not provide any experimental reference. Furthermore,
they are somewhat incomplete, since no distribution of pore sizes is considered
which might be, however, of relevance when describing porous electrodes.
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The first — and to the best of the authors knowledge only — publication which
combined experimental and theoretical work on porous electrodes is the one
from Smith et al. [67] which was published in 2015 and which is entitled
'The electrochemical characterisation of graphite felts '. In this particular pub-
lication, the diffusion domain of a felt electrode was approximated by a planar
finite reflective diffusion model — analog to a thin layer cell. The diffusion layer
thickness in turn was estimated from the average pore volume of the felt and
defined as the half-average void distance. Again, no statistical effects of the dif-
fusion domain size were considered, i.e. a constant diffusion layer thickness was
assumed. Nevertheless, it is remarkable, how well this rigorous approximation
can already fit the presented experimental data when compared to the classical
planar semi-infinite diffusion model. For this reason, this particular study can be
regarded as the ancestor and the main motivation of the combined theoretical and
experimental work presented in this thesis.
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Chapter 4

The VRFB System

Since any theoretical model requires for an experimental validation, this chapter will
be dedicated to the experimental reference of this thesis, the vanadium redox-flow
system. However, it is worth to mention that the theoretical concepts derived in
this work chronologically emerged in the exactly opposite order. This implies that
the theory was created in order to accurately interprete experimentally acquired
CV data of the VRFB system in terms of electrode kinetics. This chapter will be
split into two subsections. At first, the working principle of redox-flow batteries will
be introduced with emphasis on the vanadium redox-flow system. Subsequently,
an overview on the extensive amount of activation methods for the improvement
of this particular technology will be given.
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4.1 Technical Implementation of the Vanadium
Redox-Flow System

When referring to large-scale electrochemical energy storage systems, redox-flow
batteries are promising candidates since they allow for an independent adjustment
of capacity and power. In a redox-flow battery, the capacity is determined by the
size of the electrolyte reservoirs, while the stacksize limits the maximum power
output of the system [15]. The conversion between electrical and chemical energy
occurs at the typically high surface area carbon felt electrodes (cf. figure 4.1) of
an electrochemical cell under continous supply (flow) of the liquid electrolytes.
The electrodes are separated by an ion-conducting membrane or separator which
prevents the two electrolytes from mixing and which allows for a transport of the
charge carrying ions to maintain electroneutrality.

The first real redox-flow battery utilized an electrolyte solution which contained
the ferric/ferrous (Fe2+/Fe3+) redox couple in the positive and the chromic/chromous
(Cr2+/Cr3+) redox couple in the negative half-cell [15], [112]. Unfortunately, this
technology was prone to cross-contamination which resulted in a significant capac-
ity fading over a short period of time. Consequently, a number of other redox-flow
systems have been proposed, which have been reviewed by Wang in 2012 [15].
Among them, the vanadium redox-flow system is probably the most important
and promising one. It was invented and pioneered by the group of Maria Skyllas-
Kazacos in the 1980s [113]–[115] and recently gathers a significant industrial interest
all around the world. It utilizes the four oxidation states of vanadium, separated
as two redox couples in the so-called anolyte and catholyte, respectively. A sketch
of a vanadium redox-flow battery is depicted in figure 4.2. Since it is based on
only one active element, cross-contamination is not an issue. Furthermore, since it
utilizes aqueous electrolytes, the common hazards of other electrochemical energy
conversion and storage devices, i.e. internal shortning (related to Li-ion batteries)
or risk of explosions (related to hydrogen based fuel cells) are not an issue.

The conversion of energy is achieved by changes in valence states of the vana-
dium species, which can be formulated in terms of the following redox reactions.

V O+
2 + 2H+ +e−−−−⇀↽−−−−e−

V O2+ +H2O (4.1)

V 3+ +e−−−−⇀↽−−−−e−
V 2+ (4.2)
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Figure 4.1: Scanning electron microscopy image of a carbon felt typically utilized as electrode
material in a vanadium redox flow battery. The fibrous sructure of the electrode provides a
stable network with a large active surface area for the desired electrochemical redox reactions of
the vanadium species.

Figure 4.2: Sketch of a vanadium redox-flow battery during the discharging process. The
positive redox couple (VO2+/VO2

+) and negative redox couple(V2+/V3+) are stored in aqueous
electrolyte solutions in separate tanks. During the charging or discharging process, the electrolytes
are pumped through the electrodes of the respective battery cell, where the electrochemical
reactions take place. To preserve electroneutrality, counter-ions diffuse through the ion-conducting
membrane in the opposite direction of the electric current.
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The electrode reaction of the positive half-cell (equation 4.1 has a standard electrode
potential of E0 = 1.005 V vs. SHE, whereas the redox reaction of the negative side
has a standard electrode potential of E0 = −0.255 V. The total electrochemical
redox-reaction can be formulated as

V O+
2 + 2H+ + V 2+ −−⇀↽−− V O2+ +H2O + V 3+ (4.3)

and has, of course, a standard cell voltage of 1.26 V. This potential difference is
in the range of the stability window of water, which is why aqueous electrolytes
can be employed. This fact, together with the low-cost factor of the electrode
materials which are typically carbon felts renders the vanadium redox-flow system
an overall cost efficient and attractive technology. Nevertheless, the low energy
density of the electrolytes, the sluggish electrode kinetics as well as a whole bunch
of degradation phenomena impede the wide range industrial application and the
commercial breakthrough of the VRFB. Consequently, a significant effort has been
taken to improve all the components related to this technology among which the
most popular one lies in enhancing the electrode kinetics.
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4.2 On 'Outstanding Activities' and 'Improved
Kinetics'

In recent years, an impressive amount of scientific reports on the improvement
of the sluggish electrode kinetics related to the vanadium redox flow system
have been published. These include a) chemical treatments like alkaline [22]–[25]
or acidic [26], [29] etching, surface hydroxylation [27] and halogenation [32], b)
electrochemical etching techniques [116] or c) impregnation techniques with either
carbon nanoparticles [35], [37], [46]–[48] or literally any kind of metal or metal
compounds such as bismuth [55], iridium [50], niobium [53], titanium nitride [56],
titanium carbide [61], titanium oxide [52], [54], [60] and zirconia [58] (this list is far
from being exhaustive). Furthermore, thermal decomposition and carbonization
techniques [33], [49] or plasma treatments [30], [31] have been proposed, which all
lead to the same conclusion — enhanced catalytic activity. With a wink of the eye,
the storyline of the majority of these studies can be summarized as follows:

• Take a commercial electrode material, suppose a carbon felt,
• etch/oxidize/coat or somehow modify its surface in an optionally advanced

way and term the synthesis route as facile and scalable,
• characterize the novel electrode material by means of any technique which is

accessible to you. In particular, do not miss out on XPS, Raman spectroscopy,
IR spectroscopy, etc,

• investigate the electrocatalytic performance of the novel electrode material
by means of standard electrochemical characterization techniques such as
cyclic voltammetry and probably electrochemical impedance spectroscopy,

• interprete the CV data classically in terms of peak separations or by applying
the Randles-Ševčík equation and verify a superior catalytic for your electrode
material,

• finally, but optionally, propose a sophisticated reaction mechanism.

Even if this list is an exaggeration which might sound malicious, it is exceptionally
worth to note that among the multitude of activation methods only the simple heat
treatment has been commercialized to date. Furthermore, it appears questionable
whether or not carbonized waste-coffee beans [117] and carbonized corn protein [118]
or graphene decorated carbon [47] will save the global climate by 'outstandingly'
boosting the performance of a VRFB. In contrast, as pointed out in the previous
chapters of this thesis, it is very much likely that the auspicious electrode kinetics
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Figure 4.3: Cyclic voltammograms acquired for the electrochemical oxidation of VO2+ in
2 M H2SO4 at a potential sweep rate of 20 mV/s at (A) a planar glassy carbon electrode and
(B) a carbon felt electrode (GFD4.6, SGL Carbon). The potentials are referred to a saturated
silver/silver chloride electrode. After the oxidation peak, the current of the CV curve acquired at
the planar electrode decays according to an inverse square root function, typical for a semi-infinite
diffusion domain. In contrast, the current wave of the felt electrode decays much steeper owing
to the effect of a finite diffusion domain. Furthermore, the current magnitude of the CV of the
felt electrode is about ten times larger, when compared to the planar electrode which is caused
by the huge internal surface area of a felt electrode.

may be caused by the inherent ambiguity of CV at porous electrodes which
can easily lead to misinterpretation. To demonstrate this significant ambiguity,
figure 4.3 depicts the CV measurements of the electrochemical oxidation of VO2+

at (A), a planar glassy carbon electrode and (B), a carbon felt electrode (GFD4.6,
SGL Carbon). It can be seen that the two CV curves are substantially different
with respect to shape, magnitude and separation of the redox peaks. Consequently,
an interpretation of the felt electrode CV with the model of a planar electrode will
certainly lead to incorrect results. For this particular reason, the essence of this
thesis is to develop a theoretical model for cyclic voltammetry at porous electrodes
which allows for a reliable characterization of the electrode kinetics.
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Chapter 5

Discussion of Related
Publications

This chapter will assemble the individual publications related to this thesis. The
first two studies, presented in sections 5.1 and 5.2 are dedicated to a thorough
investigation of the positive and negative VRFB half-cell reactions under well-
defined semi-infinite diffusion conditions. Based on a combination of CV/LSV
with other advanced electroanalytical techniques, exceptionally accurate values
for hydrodynamic and electrokinetic parameters are obtained. These constitute
the base for the three follow-up publications presented in sections 5.3, 5.4 and 5.5,
where sophisticated diffusion models for CV at porous electrodes are derived and
experimentally validated.
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5.1 Finite Heterogeneous Kinetics
The first publication presented in this cumulative thesis, which is entitled

'Finite Heterogeneous Rate Constants for the Electrochemical
Oxidation of VO2+ at Glassy Carbon Electrodes'.

comprises the preliminary studies on the positive VRFB half-cell reactions under
well-defined diffusion conditions. Chronologically it was, however, the second
last manuscript submitted and the last manuscript which had been accepted for
publication. It is attached as original scientific research paper in section 6.1.

By experimentally avoiding the use of porous electrodes, this study provided
highly accurate information on hydrodynamic and kinetic parameters of the
electrochemical oxidation of the oxovanadyl cation at carbon surfaces. Furthermore,
it led to an extension of the classical Butler–Volmer model of electrode kinetics
by considering a maximum heterogeneous reaction rate which is independent of
the electrode potential. It can be therefore regarded as a combined experimental
and theoretical work on the VRFB related reactions. Furthermore, it builds a
solid fundament for this thesis, since all the kinetic information acquired, served as
reference for the following publications which involved porous electrode structures.

Motivation
Owing to the vast discrepancy in the kinetic data of the VRFB related reactions at
porous electrodes, this study intended to exclude the complicated porous diffusion
domain effects experimentally. For this purpose, planar electrodes in semi-infinite
diffusion space were employed. Since the reactions related to the vanadium redox-
flow system are usually termed as kinetically sluggish, it was assumed that the
classical way of data interpretation by means of the irreversible Randles-Ševčík-,
the Koutecky–Levich-, the Cottrell- and the Tafel-analysis will be sufficient to
gather conclusive remarks on the respective electrode kinetics. This was, however,
not the case. In contrast, it was found that particularly the Randles–Ševčík analysis
will result in an incorrect interpretation of the electrode kinetics. Furthermore, the
Koutecký–Levich analysis revealed a very specific feature — a non-zero ordinate
intercept — which cannot be explained in terms of the classical model. These
two, very specific findings led to the concept of finite heterogeneous electron
transfer kintics, which deviate from the classical Butler–Volmer behaviour and
which account for the experimental findings. This new model will be presented in
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brief in this sub-chapter. Furthermore, a 'master equation', which accounts for
finite electrode kinetics and which is slightly different from the one presented in
the original publication will be derived in order to provide a uniform notation
and nomenclature throughout this thesis. A discussion of experimental details of
this study will not be included in the main part of this chapter. For experimental
details the reader is referred to the original publication in the section 6.1.

Theory of finite electron transfer kinetics
The kinetics and hydrodynamics of an electrochemically irreversible reaction
which takes place at a planar electrode surface in a semi-infinite diffusion
domain might be investigated by utilizing the relations given in tables 5.1
and 5.2. These are either derived from or equivalent to the expressions
named in the previous chapters of this thesis and are assembled here to
improve the readibility. Hence, table 5.1 includes all the expressions for an
electrochemical reaction at a stationary electrode. In contrast, table 5.2
lists the expressions for an electrode reaction involving the forced convection
of a rotating disc electrode.

Table 5.1: Equations for extracting kinetic and hydrodynamic parameters of an electrochemically
irreversible reaction taking place at a planar electrode in a semi-infinite diffusion domain in a
stagnant electrolyte solution.

Name Equation
Randles–
Ševčík Ip,irr = 0.496nFAc

√
nFDνα

RT

Matsuda–
Ayabe
(I)

α = 1.85RT
nF (Ep,irr/2 − Ep,irr)

Matsuda–
Ayabe
(II)

α = RT

2nF

(
∂Ep,irr

∂ln(ν)

)−1

Nicholson–
Shain k0 = 2.182

√
αnFDν

RT
· exp

(
αnF (Ep,irr − E0)

RT

)

Cottrell I = nFAc
√
D√

πt
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Table 5.2: Equations for extracting kinetic and hydrodynamic parameters of an electrochemically
irreversible reaction taking place at a planar electrode in a semi-infinite diffusion domain under
forced convection (rotating disc electrode).

Name Equation
Koutecký–
Levich

1
I

= 1
Ikin

+ 1
Ilim

Levich Ilim = 0.201nFAcD2/3η−1/6√ω

Tafel
ln (Ikin) = ln

(
I · Ilim

Ilim − I
)

=

ln (Ieq) + αnF (E − Eeq)
RT

Butler–
Volmer Ieq = nFAck0 exp

(
αnF (Eeq − E0)

RT

)

The first intention in this study was to accurately assess the diffusion coefficient of
the oxovanadyl cation in the supporting electrolyte solution (sulfuric acid). For this
purpose, the Levich equation and the Cottrell equation were combined in a very
specific and novel way which eliminates the concentration dependence and surface
area dependence of the current and also does not require for an a-priori knowledge
of n. By conducting all experiments at four different electrolyte concentrations,
the second partial derivatives of the Cottrell equation and the Levich equation
could be calculated from experimental data according to

I
′′

lim = ∂2Ilim

∂c∂ω1/2 = 0.201nFAD2/3η−1/6 (5.1)

and

I
′′

Cot = ∂2ICot

∂c∂t−1/2 = nFA
√
D√

π
, (5.2)
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where ICot denotes the time dependent current of a Cottrellian potential step
experiment1. Combining these two expressions resulted in

D = 489 η
(
I

′′
lim
I

′′
Cot

)6

. (5.3)

In this manner, the diffusion coefficient of the oxovanadyl cation was accurately
calculated as D = 2.26 · 10−6 cm2/s. In an analogue way combining the second
partial derivative of the irreversible Randles–Ševčík equation as

I
′′

p,irr = ∂2Ip,irr

∂c∂ν1/2 = 0.496nFA
√
nFDα

RT
(5.4)

with the second partial derivative of the Cottrell equation (equation 5.2) allowed
for an estimation of α as

α = 1.294 RT
nF

(
I

′′
p,irr

I
′′
Cot

)2

. (5.5)

Following equation 5.5 and assuming n = 1, the electron transfer coefficient for
the electrochemical oxidation of the oxovanadyl cation at a glassy carbon surface
was obtained as α = 0.32. In order to scrutinize this result, α was also calculated
by the Matsuda and Ayabe relations [74], given in table 5.1 and via Tafel-analysis
according to the equation given in table 5.2. For details on this procedure, the
reader is referred to the original publication in section 6.1. In contrast to the
value of α = 0.32, obtaind from the Randles–Ševčík approach, all these analysis
consistently resulted in α ≈ 0.38.

This contradictive value for the electron transfer coefficient, even for the most
simple electrode geometry, was one motivation for the development of an extended
model of electrode kinetics. The second motivation emerged from a careful look on
the Koutecký–Levich analysis2 (cf. figure 2B in the original publication). There it
was seen that the so-called Levich–line does not intersect the origin. The Levich
line basically corresponds to the Koutecký–Levich equation at large overpoten-
tials such that the hydrodynamic limiting current should already be established.

1The index denotes the Cottrellian current and is introduced here to distinguish this particular
quantity from the total current of an RDE experiment.

2The so-called Koutecký–Levich analysis consists of a plot of the reciprocal limiting current
versus the reciprocal square root of the angular rotation frequency of the working electrode in
the case of an RDE experiment.
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Mathematically, this implies that Ikin ≈ ∞. Experimentally it is, however, suffi-
cient if Ikin � Ilim, which should hold true for large overpotentials. Under this
circumstance, the Koutecký–Levich equation will reduce to the Levich equation (cf.
table 5.2). Now, extrapolating to an infinite rotation rate (to zero of the abscissia
in a Koutecký–Levich plot), implies that also the term I−1

lim → 0. Therefore, one
would expect a zero ordinate intercept from a theoretical point of view. However,
non-zero ordinate intercepts in Koutecký-Levich analysis have been also reported
for thin-film coated electrodes which are subjected to finite mass transfer across
the film/solution interface [119]. Nevertheless, since the electrodes utilized in this
study were not subjected to any coating, the experimental results required for
additional investigations. These will be discussed right now.

The only way to achieve a non-zero ordinate intercept in a Koutecký–Levich
plot in a mathematical sense will be the assumption that Ikin � ∞ or better,
Ikin = const = Ikin, max. This assumption does, however, demand that the electrode
kinetics will approach a plateau which is independent of the applied potential
and which finally translates to the term — finite heterogeneous reaction rates or
kinetic limiting current. Since all the analysis related to this publication had been
performed at four different analyte concentrations, a hypothetical concentration
dependence of this kinetic limiting current could be investigated with ease. Indeed,
a linear concentration dependence of this particular quantity could be verified
which finally allowed to define Ikin, max = nFAckmax, with kmax as maximum het-
erogeneous rate constant.

Since such a finite reaction rate can be expected to significantly affect the
current response under any kind of mass transfer conditions the influence on a
stationary potential-sweep experiment and on the related Randles–Ševčík analysis
had been revisited. Furthermore, also the Koutecký–Levich equation has been sig-
nificantly modified. For this purpose, an alternative version of the Butler–Volmer
equation has been introduced at first, which can be formulated as

I = nFAk0
{
cR,S

kmaxeαξ
kmax + k0 eαξ − cO,S

kmaxe−(1−α)ξ

kmax + k0 e−(1−α)ξ

}
, (5.6)

where ξ is the dimension less electrode potential as defined by equation 3.87 in
chapter 3.5. It is readily seen that as kmax → ∞, equation 5.6 reduces to the
classical, kinetically unlimited Butler–Volmer equation as given by equation 3.87.
Treating equation 5.6 in analogy to equation 3.32 and following the exact same
derivation as defined by equations 3.36–3.41, one obtains a three-term Koutecký-
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Levich like expression which can be stated as

1
I

= 1
Ikin

+ 1
Ikin, max

+ 1
Ilim

. (5.7)

For details on this derivation3, the reader is referred to the original publication in
section 6.1. The third additive term in equation 5.7 can be regarded as the cause
of the ordinate intercept in the Koutecký–Levich plots, which cannot be explained
by the classical model and therefore as the first proof of concept.

The second validation of the new model follows by introducing the finite
heterogeneous reaction rates into the theory of stationary CV/LSV and to explain
the inadequacy of the Randles–Ševčík equation. For this purpose, the surface
concentrations in equation 5.6 are replaced by their respective convolution integral
expressions. These were defined by equations 3.84 and 3.85 for a planar electrode
in a semi-infinite diffusion domain or more general by equations 3.103 and 3.104
for an electrode of arbitrary geometry in an arbitrary diffusion domain. Following
this strategy, a modified version of the master equation which was given by
equation 3.105 is obtained. This new expression incorporates the information on
the finite heterogeneous electron transfer kinetics and can be stated as

I(i∆t) ≈
fan(i∆t)

[
nFAcR,B

√
DR −SR

]
− fca(i∆t)

√
DR

DO
e−ξ(i∆t)SO

√
DR e−αξ(i∆t)

k0 + fan(i∆t)MR(∆t) + fca(i∆t)MO(∆t)
√
DR

DO
e−ξ(i∆t)

.

(5.8)

Again, SR and SO denote the convolution of lists of the reduced and oxidized
species as defined by equations 3.106 and 3.107. The only difference to equa-
tion 3.105 remains in the fan(i∆t) and fca(i∆t) terms which are defined by

fan(i∆t) = kmax

kmax + k0 eαξ(i∆t) (5.9)

and

fca(i∆t) = kmax

kmax + k0 e−(1−α)ξ(i∆t) . (5.10)

3This derivation is not included here, since this thesis emphasizes the diffusion phenomena in
stagnant electrolyte solutions. Nevertheless, the three-term Koutecký–Levich equation has been
included here, since it gave rise to the concept of finite kinetics.
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A detailed derivation was omitted here since it will be analog to the strategy
outlined in the theoretical fundamentals of chapter 3 section 3.5. However, it
should be noted that equation 5.8 reduces to equation 3.105, if kmax → ∞. For
this reason, equation 5.8 can be regarded as a generalized version of equation 3.105
which accounts for electron transfer kinetics at any degree of limitation.

Since computing CV/LSV on the base of equation 5.8 and evaluating the respec-
tive simulated data in terms of the classical Randles-Ševčík relation reproduces the
experimentally observed mismatch in the electron transfer coefficient, equation 5.8
can be regarded as the closing validation of the concept of finite electron transfer
kinetics. Hence, by carefully reconsidering all the previous results it was found that
the electrochemical oxidation of the oxovanadyl-cation at glassy carbon surfaces
possesses an electron transfer coefficient of α = 0.38, a standard heterogeneous rate
constant of k0 = 1.35× 10−5cm/s and a maximum heterogeneous rate constant of
kmax = 2.60× 10−2cm/s.

Finally, by regarding equation 5.8 the exceptional power of convolutive mod-
eling in the context of electrochemistry emerges once more. This implies that
convolutive modeling is capable to incorporate an entirely new concept of electrode
kinetics, by introducing two factors at very specific positions in the respective
master equation. Ultimately, the values for D, k0, α and kmax together with the
generalized master equation 5.8 can be regarded as a reference for all the following
studies which are dedicated to the electrochemcial oxidation of VO2+ at porous
electrodes and therefore close this sub-chapter.
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5.2 Quantifying Parasitic Reactions
The second publication related to this cumulative thesis, which is entitled

'Rotating Ring-Disc Electrode Measurements for the Quantitative Electrokinetic
Investigation of the V3+-Reduction at Modified Carbon Electrodes'

is dedicated to an in depth investigation of the negative VRFB half cell reaction at
well-defined model electrodes in order to generate a reference for following studies
involving porous electrode structures. Well-defined model electrodes imply that the
issue of electrode porosity is avoided experimentally by utilizing planar electrodes
in a semi-infinite diffusion domain. The particular use of a rotating ring-disc
electrode allowed for a separation of the desired electrochemical reduction of V3+

and the parasitic hydrogen evolution. In this manner, an accurate value for the
diffusion coefficient of the V3+ cation was obtained for the very first time. With
the konwledge of this particular quantity, CV simulations were performed in order
to fit experimentally acquired data. This allowed for a quantitative interpretation
of the electrode kinetics of the desired and parasitic electrochemical reactions
simultaneously. Furthermore, selected examples of the 'carbon activation methods'
which are proposed in the literature and which are typically conducted in porous
electrodes only, were thoroughly revisited under well-defined diffusion conditions.
This revealed that only one out of four of these methods really enhanced the
electrode kinetics. Finally, it could be shown that the reduction rate of V3+ has
an optimum at E − ERHE = −0.45 V and decreases when the electrode potential
is swept more negative. Since electrode potentials below E − ERHE = −0.6 V
are detrimental to the electrode kinetics, the results of this study are of utmost
experimental relevance.

Motivation
The main motivation for the work presented in this section emerged from the
model of finite heterogeneous electron transfer kinetics which was introduced in
the previous section. Since in this case the finite reaction rate has led to an
underestimation of the electron transfer coefficient, α, due to a lowered peak
current in a Randles–Ševčík analysis, the opposite trend was expected here. This
presumption was based on the fact that the negative VRFB reaction is always
accompanied by a parasitic hydrogen evolution which contributes to the Faradaic
current. For this reason the measured current will always be larger than the
actual pure V3+ reduction current which renders a classical estimation of α, k0
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and D impossible. Consequently, the aim of this study was to first separate
parasitic and desired electrochemical reactions and to subsequently characterize
them individually. For this purpose, the rotating ring-disc electrode (RRDE)
technique was first ever employed in the context of VRFB research. Furthermore,
two additional advanced electroanalytical techniques, namely electrochemical
impedance spectroscopy in combination with the distribution of relaxation times
(DRT) analysis and Fourier transform alternating current cyclic voltammetry (FT-
ACCV) have been applied. In this manner it was possible to clearly distinguish
between parasitic and desired current contributions.

The implementation and fundamentals of the RRDE technique will be outlined
in brief next. In contrast, a description of EIS/DRT and FT-ACCV is not included
as it would be out of the scope of this thesis. Since these two techniques served,
however, as an additional support of the RRDE data, the reader is referred to the
original publication attached in section 6.2 for further details.

The RRDE technique
The method of the rotating ring-disc electrode can be thought of as a modification
of a classical rotating disc electrode which has been introduced and schematically
depicted in the theory section (cf figure 3.1).

A RRDE basically consists of a ring-shaped electrode surrounding the disc of a
classical RDE (cf figure 5.1). Disc and ring electrode are thereby separated by an
electrically insulating gap and can be subjected to a different potential program
each. The device which controls the time dependent potential of disc and ring
simultaneously is known as bipotentiostat. An RRDE allows for re-oxidizing or
re-reducing the product species which is formed during the reaction at the disc, at
the ring. In case the desired reaction which occurs at the disc is accompanied by
a parasitic reaction, the RRDE enables that the rate of product formation can
be investigated selectively by deliberately detecting one species which passes the
ring. In the present study, the RRDE was used in a way that the V2+ produced at
the disc electrode gets re-oxidized at the ring. In contrast, any hydrogen which
is evolved as the product of a parasitic reaction at the disc is not detected at
the ring. Consequently, the ring current can be regarded as the quantity related
to the desired vanadium reaction and allows for calculating the related diffusion
coefficient to high accuracy.
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Figure 5.1: Sketch of a rotating ring-disc electrode utilized for separating the desired reduction
of V3+ from the parasitic hydrogen evolution which occur in parallel at the disc electrode. V2+

which is produced at the disc gets re-oxidized at the ring electrode. This enforces a ring-current
which is related to vanadium species only.

Results and discussion
Three common methods of carbon surface activation were investigated throughout
this study. These fall under the category of chemical etching techniques and
involve I) alkaline etching (with concentrated KOH), II) acidic etching (with
H2SO4/HNO3) and III) surface oxidation (with H2O2). All surface modifications
were performed at standard vulcan XC72 carbon. Pristine vulcan XC72 carbon
served as reference material. For experimental details the reader is referred to the
original publication in the section 6.2 of this thesis.

By thoroughly investigating the ring currents of the RRDE experiments, the
diffusion coefficient of the V3+-cation was obtained as D = 3.51×10−6±0.22 cm2/s.
Since the ring current excludes all contributions from a parasitic hydrogen evo-
lution, the respective D can be regarded as a highly accurate reference value.
Consequently, it was utilized in a fitting routine of experimentally acquired CV
responses. The actual CV fitting process was performed manually by minimizing
the standard deviation of experimentally acquired to simulated data. The respec-
tive CV simulations were performed on the base of equation 5.8. However, since it
was set kmax = 1000 cm/s, also equations 3.90 or 3.105 could have been employed.
This is indeed an important remark, since it suggests that the negative VRFB
reaction does not obey a kinetic limitation like its positive analogon. The parasitic
hydrogen evolution was considered as a parallel reaction which is independent of
any vanadium redox process. Consequently, the related current was also calculated
on the base of equations 3.90 or 3.105. Since fitting the CV responses will therefore
account for both, desired and undesired reactions, it will provide the respective
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kinetic information simultaneously. The thus obtained kinetic data is summarized
for the carbon materials investigated in this study in table 5.3. It can be seen
that among the chemical surface modification techniques, only an etching with
hydrogen peroxide led to a minor enhancement of the V3+/V2+ redox kinetics.
In contrast, the rate of the hydrogen evolution was changed significantly by up
to three orders of magnitude. Furthermore, it is worth to note that an acidic
etching with H2SO4/HNO3 significantly decreases the electrode activity for both,
desired and parasitic reactions, which contradicts the findings in the literature.
The highest selectivity for the desired vanadium reaction was offered by the pristine
carbon material.

Table 5.3: Kinetic data in terms of α and k0 obtained for the surface modified carbon electrodes
investigated in this study.

Vanadium reaction Hydrogen evolution
α k0/cm s−1 α k0/cm s−1

Pristine XC72 0.54 9.0× 10−4 0.36 9.0× 10−10

H2SO4/HNO3 XC72 0.55 3.5× 10−5 0.31 3.1× 10−9

KOH XC72 0.52 6.0× 10−4 0.28 2.3× 10−8

H2O2 XC72 0.51 1.0× 10−3 0.32 3.6× 10−9

The final conclusion of this study was therefore that the common surface modifi-
cation techniques — typically performed at porous electrodes — do not enhance
the catalytic activity for the negative VRFB reaction at all. In contrast, it is
much more likely that the observed enhancement effect is caused by an increased
hydrogen evolution rate or an increased wettability of the porous electrodes which
leads to a lowered total charge transfer resistance.

Now, bearing in mind the more decent model of electrode kinetics which was
introduced in section 5.1, as well as the remarks on the diffusion coefficients and
electrode kinetics of the positive and negative VRFB reactions, the experimental
reference for the following three publications related to cyclic voltammetry at
porous electrodes is finally established.
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5.3 The Diffusion Domain Approximation for Felt
Electrodes

The first study on the theory of cyclic voltammetry at porous electrodes which is
related to this thesis is entitled

'Theory of Cyclic Voltammetry in Random Arrays of Cylindrical Microelectrodes
Applied to Carbon Felt Electrodes for Vanadium Redox-Flow Batteries'.

In this publication the carbon felt electrodes, typically employed in a VRFB are
regarded as an array of cylindrical microelectrodes in a finite external cylindrical
diffusion domain with a statistically fluctuating size. This publication was the
very first combined experimental and theoretical study on cyclic voltammetry at
carbon felt electrodes which accounts for the cylindrical symmetry of the fibers
of a felt electrode. Furthermore, it was the first publication on the simulation of
cyclic voltammetry at cylindrical electrodes in a finite external cylindrical diffusion
domain on the base of convolutive modeling in general. It was shown that the
novel theoretical concept can be exploited readily for a simultaneous evaluation
of electrode kinetics and pore size distribution of carbon felt electrodes. In this
manner, the inherent ambiguity of CV at porous electrodes was finally overcome.

Motivation
The motivation of this particular publication emerged from the plethora of studies
on cyclic voltammetry at porous carbon felt electrodes in the context of VRFB
research and the contradictive findings on the electrode kinetics. It was intended to
create a reliable strategy for the interpretation of CV data, even in case of porous
electrodes. Furthermore, it was assumed that a decent diffusion model should allow
for a simultaneous investigation of electrode kinetics and electrode porosity. Despite
that some publications which attempted to include the effect of electrode porosity
by considering arrays of electrode sheets [67] or hollow-spherical electrodes [66], a
sophisticated theoretical model for felt electrodes was not accessible a priori. In
order to create a respective diffusion model the fibers of a carbon felt were assumed
as cylindrical microelectrodes in a finite external cylindrical diffusion domain with
a statistically fluctuating size. The entire felt electrode was in turn regarded as an
array of these individual sub-structures. To account for an even broader range of
experimental circumstances it was considered that the electrochemical reaction
might be coupled to preceeding and following homogeneous chemical equilibria.
In order to benefit from the master-equation approach outlined in the theory
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section (section 3.5 equation 3.105), the simulations of the CV responses of the
individual cylindrical microelectrodes have been performed on the base of Laplace
integral transformation techniques and convolutive modeling. Since the respective
Laplace-domain solution for the mass transfer function does, however, not possess
an analytic inversion, the concept of numerical inverse Laplace transformation was
exploited. This idea was first ever introduced in the context of electrochemistry
in a series of publications by Montella [120]–[122] who suggested the use of the
Gaver–Stehfest [123] inversion formula. Alternatively, in this work, a modified
Talbot-contour was first ever utilized for electrochemical simulations. Adopting
the idea of reference [124], a strategy for evaluating cyclic voltammetry at carbon
felt electrodes was presented. This routine is based on a manual fitting routine of
experimentally acquired CV data for the positive VRFB half cell reaction.

The mass transfer function of a cylindrical external finite
diffusion domain coupled to homogeneous kinetics
The considerable challenges of convolutive modeling related to this publication were
a) to compute the time-dependent mass transfer functions related to an external
cylindrical finite diffusion domain and b) to include the preceding and following
homogeneous chemical reactions. Since this exceptionally lengthy derivation could
not be included in the original publication4, but is, however, one of the major
highlights of this thesis it will be included in its whole beauty here. The pre-
processing step in this derivation is roughly oriented on the idea of Koutecký and
Brdička [125] and starts with the following sequence of reactions

E
kp−−⇀↽−−−
k−p

R (5.11)

R
−ne−−−−−⇀↽−−−−
+ne−

O (5.12)

O
kf−−⇀↽−−
k−f

P . (5.13)

4Only the results were given as equations 1 and 2 in the publication — cf chapter 6.
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Considering the reactions take place at a cylindrical (micro)electrode, the respective
partial differential equations for the species E and R, linked by a preceeding
chemical equilibrium can be formulated as follows:

∂cE(r, t)
∂t

= DR

[
∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

]
− kpcE(r, t) + k−pcR(r, t). (5.14)

∂cR(r, t)
∂t

= DR

[
∂2cR(r, t)
∂r2 + 1

r

∂cR(r, t)
∂r

]
− k−pcR(r, t) + kpcE(r, t). (5.15)

Likewise, the partial differential equations for the species O and P can be stated
as:

∂cO(r, t)
∂t

= DO

[
∂2cO(r, t)
∂r2 + 1

r

∂cO(r, t)
∂r

]
− kfcO(r, t) + k−fcP(r, t). (5.16)

∂cP(r, t)
∂t

= DO

[
∂2cP(r, t)
∂r2 + 1

r

∂cP(r, t)
∂r

]
− k−fcP(r, t) + kfcO(r, t). (5.17)

These four expressions are derived from Ficks second law in one-dimensional
cylindrical symmetry, which was given by equation 3.48 in section 3.3. They
consider that species E and R have the common diffusion coefficient DR and
species O and P have the common diffusion coefficient DO. The next step is
to unify the two partial differential equations of the preceeding and following
chemical reactions to one combined expression each. This is shown exemplary for
the preceding equilibrium.

Pre-processing of the differential equations

Considering the equilibrium constant of the preceeding chemical reaction as

Kp = kp

k−p
= cR(r, 0)
cE(r, 0) = cR,B

cE,B
, (5.18)

one can substitute kp in equations 5.14 and 5.16 such that

∂cE(r, t)
∂t

= DR

[
∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

]
+ k−p [(cR(r, t)−KpcE(r, t)] (5.19)

∂cR(r, t)
∂t

= DR

[
∂2cR(r, t)
∂r2 + 1

r

∂cR(r, t)
∂r

]
− k−p [(cR(r, t)−KpcE(r, t)]. (5.20)
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Introducing two new variables in a way that

ψp(r, t) = cE(r, t) + cR(r, t) (5.21)

and

φp(r, t) = cR(r, t)−KpcE(r, t), (5.22)

one obtains the following two expressions

∂cE(r, t)
∂t

= ∂ψp(r, t)
∂t

− ∂cR(r, t)
∂t

(5.23)

∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

= ∂2ψp(r, t)
∂r2

+ 1
r

∂ψp(r, t)
∂r

− ∂2cR(r, t)
∂r2 − 1

r

∂cR(r, t)
∂r

. (5.24)

Substituting equation 5.22 into equations 5.19 and 5.20 one arrives at

∂cE(r, t)
∂t

= DR

[
∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

]
+ k−pφp(r, t) (5.25)

∂cR(r, t)
∂t

= DR

[
∂2cR(r, t)
∂r2 + 1

r

∂cR(r, t)
∂r

]
− k−pφp(r, t). (5.26)

Now, eliminating cE(r, t) in equation 5.25 by substituting equations 5.23 and 5.24
gives

∂ψp(r, t)
∂t

− ∂cR(r, t)
∂t

= DR

[
∂2ψp(r, t)

∂r2

+ 1
r

∂ψp(r, t)
∂r

− ∂2cR(r, t)
∂r2 − 1

r

∂cR(r, t)
∂r

]
+ k−pφp(r, t). (5.27)

This expression is rearranged once more which yields

∂ψp(r, t)
∂t

= DR

[
∂2ψp(r, t)

∂r2 + 1
r

∂ψp(r, t)
∂r

]
+ k−pφp(r, t)

+ ∂cR(r, t)
∂t

−DR

[
∂2cR(r, t)
∂r2 + 1

r

∂cR(r, t)
∂r

]
. (5.28)
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It is now readily seen that a substitution of the second line of equation 5.28 with
equation 5.26 will result in the very handy expression of

∂ψp(r, t)
∂t

= DR

[
∂2ψp(r, t)

∂r2 + 1
r

∂ψp(r, t)
∂r

]
. (5.29)

Equation 5.29 is almost identical to equation 3.48 in the theory section (it is
written in terms of the variable ψp(r, t) only). The next step is to generate a similar
expression in terms of the variable φp(r, t) as well. Starting with equation 5.22
one can note that

∂cR(r, t)
∂t

= ∂φp(r, t)
∂t

+Kp
∂cE(r, t)

∂t
(5.30)

and

∂2cR(r, t)
∂r2 + 1

r

∂cR(r, t)
∂r

= ∂2φp(r, t)
∂r2 + 1

r

∂φp(r, t)
∂r

+Kp

{
∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

}
. (5.31)

Inserting these two expressions in equation 5.26 results in

∂φp(r, t)
∂t

+Kp
∂cE(r, t)

∂t
= DR

[
∂2φp(r, t)
∂r2 + 1

r

∂φp(r, t)
∂r

+Kp

{
∂2cE(r, t)
∂r2 + 1

r

∂cE(r, t)
∂r

}]
− k−pφp(r, t) (5.32)

Collecting all terms which contain cE(r, t) on the right hand side of equation 5.32
and substituting with equation 5.25 results in

∂φp(r, t)
∂t

= DR

[
∂2φp(r, t)
∂r2 + 1

r

∂φp(r, t)
∂r

]
− (Kpk−p + k−p)φp(r, t). (5.33)

This equation can be simplified even further by the definition given in equation 5.18.
Introducing another variable p as apparent rate constant of the preceding homoge-
neous chemical equilibrium as p = kp + k−p, one finally obtains

∂φp(r, t)
∂t

= DR

[
∂2φp(r, t)
∂r2 + 1

r

∂φp(r, t)
∂r

]
− pφp(r, t). (5.34)
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Solution via Laplace transformation

Equations 5.29 and 5.34 are solved right now by means of Laplace integral transfor-
mation techniques. Applying the Laplace transformation to equations 5.29 and 5.34
as outlined in the theory section results in

ψ̄p(r, s) = DR

s

[
∂2ψ̄p(r, s)

∂r2 + 1
r

∂ψ̄p(r, s)
∂r

]
+
ψ∗p
s

(5.35)

and

φ̄p(r, s+ p) = DR

s+ p

[
∂2φ̄p(r, s+ p)

∂r2 + 1
r

∂φ̄p(r, s+ p)
∂r

]
+

φ∗p
s+ p

, (5.36)

where the property of the Laplace transformation given in equation 3.61 in the
theory section was utilized in equation 5.36. Furthermore, it was introduced
ψ∗p = ψp(r, 0) = cR,B + cE,B and φ∗p = φp(r, 0) = cR,B − KpcE,B. The general
solutions of equations 5.35 and 5.36 are given in terms of modified Bessel functions
of the first and of the second kind and of order zero which are denoted as I0 and
K0, respectively. By recognizing that φ∗p = 0 and ψ∗p = ctot

5 these solutions can be
stated as

ψ̄p(r, s) = Cψ,+I0

(
r

√
s

DR

)
+ Cψ,−K0

(
r

√
s

DR

)
+ ctot

s
(5.37)

and

φ̄p(r, s) = Cφ,+I0

(
r

√
s+ p

DR

)
+ Cφ,−K0

(
r

√
s+ p

DR

)
. (5.38)

The next step is to perform a Laplace transformation on equations 5.21 and 5.22
which yields

ψ̄p(r, s) = c̄E(r, s) + c̄R(r, s) (5.39)

and
φ̄p(r, s+ p) = c̄R(r, s+ p)−Kpc̄E(r, s+ p). (5.40)

5Caution, ψ∗
p = ctot is a valid assumption if only species E and R are initially present in the

electrolyte. Then, ctot denotes the total concentration of the analyte.
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By combining equations 5.39 and 5.40 one can obtain the Laplace transformed
concentration of the reduced species as

c̄R(r, s) = Kpψ̄p(r, s) + φ̄p(r, s+ p)
1 +Kp

. (5.41)

In order to use equation 5.41, the functions ψ̄p(r, s) and φ̄p(r, s + p) need to be
determined next. This follows from the symmetry of the finite external cylindrical
diffusion domain which is depicted in figure 5.2. In order to obtain ψ̄p(r, s), the
constants Cψ,+ and Cψ,− need to be calculated. This is performed similar to the
procedure outlined in section 3.5. The spatial derivative of ψ̄p(r, s), evaluated at
the electrode surface (r = a) can be stated as

∂ψ̄p(r, s)
∂r

∣∣∣∣∣
r=a

= ∂c̄R(r, s)
∂r

∣∣∣∣∣
r=a

+ ∂c̄E(r, s)
∂r

∣∣∣∣∣
r=a

. (5.42)

Since species E is not directly consumed at the electrode surface, a no-flux boundary
can be assumed. Consequently, it holds

∂c̄E(r, s)
∂r

∣∣∣∣∣
r=a

= 0. (5.43)

Therefore, equation 5.42 reduces to

∂ψ̄p(r, s)
∂r

∣∣∣∣∣
r=a

= ∂c̄R(r, s)
∂r

∣∣∣∣∣
r=a

= Ī(s)
nFADR

. (5.44)

Performing the spatial derivative on equation 5.37 and rearranging the result yields

Ī(s)
nFA

√
sDR

= Cψ,+I1

(
a

√
s

DR

)
− Cψ,−K1

(
a

√
s

DR

)
, (5.45)

where I1 and K1 are first order modified Bessel functions of the first and of the
second kind. Now, considering a no-flux boundary for both species E and R at
r = a+d = u, which follows from the definition of an impermeable wall surrounding
the cylindrical electrode one can also state that

∂ψ̄p(r, s)
∂r

∣∣∣∣∣
r=u

= 0. (5.46)
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Figure 5.2: Sketch of a finite external cylindrical diffusion domain. The electrode surface is
located at r = a, whereas the impermeable outer boundary is located at r = d.

It immediately follows that

Cψ,+I1

(
u

√
s

DR

)
− Cψ,−K1

(
u

√
s

DR

)
= 0. (5.47)

By substituting equation 5.47 into equation 5.45, the constants Cψ,+ and Cψ,− are
obtained as

Cψ,+ = Ī(s)
nFA

√
DR

1√
s
×


K1

(
u

√
s

DR

)

K1

(
u

√
s

DR

)
I1

(
a

√
s

DR

)
−K1

(
a

√
s

DR

)
I1

(
u

√
s

DR

)
 (5.48)

Cψ,− = Ī(s)
nFA

√
DR

1√
s
×


I1

(
u

√
s

DR

)

K1

(
u

√
s

DR

)
I1

(
a

√
s

DR

)
−K1

(
a

√
s

DR

)
I1

(
u

√
s

DR

)
 . (5.49)
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These can be substituted readily into equation 5.37 to provide the function ψ̄p(r, s)
as

ψ̄p(r, s) = ctot

s
− Ī(s)
nFA

√
DR

1√
s
×


K1

(
u

√
s

DR

)
I0

(
r

√
s

DR

)
+ I1

(
u

√
s

DR

)
K0

(
r

√
s

DR

)

K1

(
a

√
s

DR

)
I1

(
u

√
s

DR

)
−K1

(
u

√
s

DR

)
I1

(
a

√
s

DR

)
 . (5.50)

The next step is to determine the function φ̄p(r, s). Subsequently to starting with

∂φ̄p(r, s)
∂r

∣∣∣∣∣
r=a

= ∂c̄R(r, s)
∂r

∣∣∣∣∣
r=a
−Kp

∂c̄E(r, s)
∂r

∣∣∣∣∣
r=a

= Ī(s)
nFADR

. (5.51)

and

∂φ̄p(r, s)
∂r

∣∣∣∣∣
r=u

= 0 (5.52)

the derivation follows the exact same way like the derivation of ψ̄p(r, s), i.e deter-
mining the constants Cφ,+ and Cφ,− and substituting them back into equation 5.38.
Doing so, one arrives at

φ̄p(r, s) = − Ī(s)
nFA

√
DR

1√
s+ p

×


K1

(
u

√
s+ p

DR

)
I0

(
r

√
s+ p

DR

)
+ I1

(
u

√
s+ p

DR

)
K0

(
r

√
s+ p

DR

)

K1

(
a

√
s+ p

DR

)
I1

(
u

√
s+ p

DR

)
−K1

(
u

√
s+ p

DR

)
I1

(
a

√
s+ p

DR

)
 . (5.53)
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Finally, substituting equations 5.50 and 5.53 into equation 5.41, and evaluat-
ing the resulting expression at r = a provides the Laplace transformed surface
concentration of the reduced species according to

c̄R,S = c̄R(a, s) = ctotKp

s(1 +Kp) −
Kp

(1 +Kp)nFA
√
DR

Ī(s)√
s
×


K1

(
u

√
s

DR

)
I0

(
a

√
s

DR

)
+ I1

(
u

√
s

DR

)
K0

(
a

√
s

DR

)

K1

(
a

√
s

DR

)
I1

(
u

√
s

DR

)
−K1

(
u

√
s

DR

)
I1

(
a

√
s

DR

)


− 1
(1 +Kp)nFA

√
DR

Ī(s)√
s+ p

×


K1

(
u

√
s+ p

DR

)
I0

(
a

√
s+ p

DR

)
+ I1

(
u

√
s+ p

DR

)
K0

(
a

√
s+ p

DR

)

K1

(
a

√
s+ p

DR

)
I1

(
u

√
s+ p

DR

)
−K1

(
u

√
s+ p

DR

)
I1

(
a

√
s+ p

DR

)
 , (5.54)

which is identical to equation 1 in the original publication. Following an analogue
derivation of equations 5.18 to 5.54, the surface concentration of the oxidized
species could be obtained as well. However, there is a much more decent way by
comparing the equilibrium term (the "s+ p"-term in equation 5.54). Considering a
preceeding equilibrium which lies entirely on the side of species R, the equilibrium
constant Kp will become large. Therefore, the "s+ p"-term in equation 5.54 will
approach zero due to the factor of 1/(1 +Kp). In contrast, the Kp/(1 +Kp)-term
will approach one. The resulting expression corresponds therefore to the scenario
without a preceeding equilibrium.

Now, considering the apparent rate constant of a following chemical equilibrium
as f = kf + k−f and the respective equilibrium constant as Kf = kf/k−f as
introduced in equation 5.13, one can recognize that Kf will be very small in case
of an equilibrium located at the side of species O. Consequently, the respective
equilibrium terms of the oxidized species have to be paired in the opposite way,
when compared to the reduced species. Thus, it directly follows that the Laplace
transformed surface concentration of the oxidized species is given by
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c̄O,S = c̄O(a, s) = 1
(1 +Kf)nFA

√
DO

Ī(s)√
s
×


K1

(
u

√
s

DO

)
I0

(
a

√
s

DO

)
+ I1

(
u

√
s

DO

)
K0

(
a

√
s

DO

)

K1

(
a

√
s

DO

)
I1

(
u

√
s

DO

)
−K1

(
u

√
s

DO

)
I1

(
a

√
s

DO

)


+ Kf

(1 +Kf)nFA
√
DO

Ī(s)√
s+ f

×


K1

(
u

√
s+ f

DO

)
I0

(
a

√
s+ f

DO

)
+ I1

(
u

√
s+ f

DO

)
K0

(
a

√
s+ f

DO

)

K1

(
a

√
s+ f

DO

)
I1

(
u

√
s+ f

DO

)
−K1

(
u

√
s+ f

DO

)
I1

(
a

√
s+ f

DO

)
 , (5.55)

Equation 5.55 is now identical to equation 2 in the original publication, such that
the derivation of the Laplace domain solution is completed.

Since equations 5.54 and 5.55 do not possess an analytic time domain solution
(at least no such solution was found during extensive research), the concept of
a numerical inverse Laplace transformation was introduced. For this purpose, a
modified Talbot contour was first ever utilized in the context of electrochemistry.
In this manner, the respective time domain solution was approximated to high
accuracy. Before introducing the Talbot-inversion, the respective mass transfer
functions will be defined implicitly in the following.

In order to preserve a uniform notation throughout this thesis, the mass transfer
functions mR(t) and mO(t) which were introduced in section 3.5, are implicitly
defined for a cylindrical electrode in a finite external diffusion domain as

mR(t) = L−1
{

1√
s
×


K1

(
u

√
s

DR

)
I0

(
a

√
s

DR

)
+ I1

(
u

√
s

DR

)
K0

(
a

√
s

DR

)

K1

(
a

√
s

DR

)
I1

(
u

√
s

DR

)
−K1

(
u

√
s

DR

)
I1

(
a

√
s
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and
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With the property of the Laplace transformation which was given in equation 3.61,
one can directly note the magnificent simplification of
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and
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Therefore, the time-dependent surface concentrations can be stated implicitly
in terms of convolution integrals as outlined in section 3.5. Since mR(t) and
mO(t) both posses a weak singularity at the upper integration limit of τ = t, an
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integration by parts is performed in analogy to equations 3.82 - 3.85 in the theory
section. This yields

c̄R,S = ctotKp

(1 +Kp) −
Kp

(1 +Kp)nFA
√
DR

∫ t

0
I(τ)MR(t− τ)dτ

− 1
(1 +Kp)nFA

√
DR

∫ t

0
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and
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with MR(t) and MO(t) being the antiderivatives of mR(t) and mO(t). These can
be evaluated easily by exploiting the relation 3.56, which was derived in the theory
section. Hence, it is
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and

MO(t) = L−1
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Figure 5.3: (A), modified Talbot contour which is based on equation 5.64 for ten values of
t linearly spaced between tmin = 0.1 s and tmax = 1.0 s. The dotted vertical line corresponds
to the Bromwich contour defined by equation 3.60 in the theory section with γ = 10. (B) and
(C), real and imaginary part of the exemplary function f(z) = z−1/2 which are associated to
the values of z defined by equation 5.64. The function chosen as an example corresponds to the
Laplace domain solution of the derivative of the mass transfer function for a planar semi-infinite
diffusion domain.

The inverse Laplace transformation in equations 5.62 and 5.63 is performed sub-
sequently, by using the modified Talbot countour suggested by Weideman and
Dingfelder[126], which is depicted in figure 5.3A. The Talbot contour basically
distorts the Bromwich-line which was defined by equation 3.60 in the theory section
into a parabola-like shape [126]–[128]. In this manner, it defines a path in the
complex plane along which a numerical integration can be performed readily. The
parameterized integration path is given by

z(Θ) = 24
t

(−0.6122 + 0.5017Θ · cot(0.6407Θ) + i · 0.2339Θ), (5.64)
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The time domain solution can be approximated subsequently via

f(t) ≈ Re

( 24∑
k=1

F̄ (z(Θk))etz(Θk)dz(Θ)
dΘ

∣∣∣∣
Θ=Θk

)
. (5.65)

where the nodes are located at

Θk = −π + 2π
24 ·

(
k − 1

2

)
. (5.66)

Since the contour defined by equation 5.64 adapts its width according to the
respective value of t, it provides a maximum accuracy. In figure 5.3B and C, the
real and imaginary part of the test function f(z(θ)) = z(θ)−1/2 are depicted. This
function has a singularity at z = 0, which is enclosed by the Talbot contour. Since
this fulfills Cauchys integral theorem, the inverse Laplace transformation can be
approximated. In case of a function whose singularities are located far away from
the real axis, i.e. outside of the contour6 the Talbot contour cannot be applied
for a numerical inversion of the Laplace transformation. For more details on the
Talbot contour, the reader is referred to the original publication by Weidemann
and Dingfelder [126].

Now, treating equations 5.60 and 5.61 in analogy to equation 3.84 and 3.85, one
obtains a modified master equation, which accounts for preceeding and following
homogeneous chemical equilibria. This expression can be formulated as

I(i∆t) ≈

1
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j=1 I(j∆t)δMR(i, j)[Kp + e−p[i−j]∆t]

]
√
DR e−αξ(i∆t)

k0 +MR(∆t) +MO(∆t)
√
DR

DO
e−ξ(i∆t)

−

e−ξ(i∆t)
1 +Kf

√
DR

DO

∑i−1
j=1 I(j∆t)δMO(i, j)[1 +Kfe−f [i−j]∆t]

√
DR e−αξ(i∆t)

k0 +MR(∆t) +MO(∆t)
√
DR

DO
e−ξ(i∆t)

. (5.67)

6Such a function possesses oscillatory behaviour in the time domain.
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In equation 5.67, it is defined that

δMR(i, j) = MR((i− j + 1)∆t)−MR((i− j)∆t) (5.68)

and

δMO(i, j) = MO((i− j + 1)∆t)−MO((i− j)∆t). (5.69)

By exploiting equation 5.67, with the respective MR(t) and MO(t) defined by
equations 5.62 and 5.63, it was finally possible to simulate a CV response for one
single electrode in an external cylindrical finite diffusion domain with coupled
preceeding and following chemical equilibria.

The diffusion domain approximation

The final step was to implement the effect of a statistically distributed finiteness
of the diffusion domain inside of a felt electrode. For this purpose, the porous
structure was assumed as an array of cylindrical microelectrodes as depicted in
figure 5.4. This implies that a certain fraction of the void volume of the entire felt
electrode was assigned to each individual electrode fiber. Since all the fibers inside
of a felt electrode possess approximately the same diameter, the simulations were
performed by considering a variable distance d and a constant a only. Since very
large and very low values of d are rather improbable, the respective individual CV
responses required for a statistical weightning. For this purpose a suitably chosen
density distribution function was assumed. For details on the statistical weightning
process, the reader is referred to the original publication in section 6.3. However,
schematically, it is depicted in figure 5.5 and can be summarized as follows.

At first, individual CV responses are simulated for different values of the
diffusion domain size. This is depicted in figure 5.5A for the diffusion domain
sizes shown in figure 5.5B. It can be seen that for a large diffusion domain size
the magnitude and peak-to-peak separation of the individual CV responses are
increased, which is typical for a finite diffusion domain model. In figure 5.5B, the
density distribution function, which was assumed to describe the individual fiber
distances inside of a felt electrode is depicted. The integral of each interval of this
paricular distribution function corresponds to the probability of finding a pair of
cylindrical microelectrodes (fibers) at a certain distance to each other.
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Figure 5.4: Diffusion domain approximation for a carbon felt electrode. The felt (cf SEM
image) is assumed as an array of cylindrical microelectrodes. By assigning a certain fraction of
the felt volume to each individual microelectrode, CV simulations are performed on the base of
equation 5.67, Thereby a variable finiteness of d is considered.

Consequently, the current magnitudes of the individual CV responses which are
calculated in figure 5.5A, need to be multiplied by this particular statistical weights.
This is depicted in figure 5.5C. It can be seen that — especially for curve (d) —
a low statistical weight decreases the current contribution significantly. Finally,
the individual CV responses which are depicted in figure 5.5C are added to yield
the superimposed CV response of the entire felt electrode which is depicted in
figure 5.5D.

Now, following this routine, a novel strategy for simulating CV responses
of carbon felt electrodes was created. In the original publication it is shown
furthermore, that manually fitting experimentally acquired CV data for the positive
VRFB half-cell reaction provides a fairly good agreement with the kinetic reference
data presented in section 5.1. Furthermore, the distance distributions which were
utilized throughout the fitting process agree with porosimetry measurements of the
particular felt electrode type. Therefore, it was finally concluded that the novel
strategy overcomes the inherent ambiguity of CV in porous structures and finally
provides a reliable way for analyzing electrode kinetics and electrode porosities of
felt electrodes simultaneously.
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Figure 5.5: Qualitative sketch of the statistical weightning process of the diffusion domain
approximation for a carbon felt electrode. (A) Individual CV responses at four different diffusion
domain sizes, where the diffusion domain size increases from (a) to (d). (B) Weibull-like density
distribution function for describing the nearest neighbor distances inside of a felt electrode. The
integral segments below the curve correspond to the probability of finding a pair of cylindrical
microelectrodes in the distances of (a) to (d), respectively. (C) Individual CV curves of panel
(A) multiplied by their respective statistical weight which was obtained from panel (B). (D)
Superimposed, statistically weighted CV responses, i.e. the entire CV response of a felt electrode.
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5.4 The Generalized Diffusion Domain Approx-
imation

In the fourth publication related to this thesis which is entitled

'Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at
Macroporous Electrodes by Considering Random Arrays of Microelectrodes',

all the previous concepts were combined. The diffusion domain approximation
which was introduced in section 5.3 was extended to layered structures, electrodes
with hollow-cylindrical pore structures and electrode foams. For this purpose,
random 1D, 2D, and 3D arrays of planar, hollow-cylindrical and hollow-spherical
microelectrodes were considered. Furthermore, the effect of preceeding and fol-
lowing homogeneous chemical equilibria and finite heterogeneous electron transfer
kinetics was included. This accounts for an exceptionally broad range of experi-
mental cirumstances. In order to provide the experimentalists community with
an alternative way of interpreting CV data at porous and non-porous electrodes
a powerful open source tool, named Polarographica7, was created. This program
provides a graphical user interface and therefore allows for a facile simulation and
evaluation of electroanalytical experiments which will eventually result in a more
reliable interpretation of CV data. Since detailed derivations are provided in the
original publication, this section will mainly introduce Polarographica in brief.

Motivation
The motivation of this particular publication was to generalize the diffusion domain
approximation presented in section 5.3 to any kind of porous electrode structure. In
order to provide an overview on the complex interplay of diffusive mass transfer at
porous electrodes, coupled chemical kinetics and modified heterogeneous electrode
kinetics, numerous simulations were performed. Furthermore, the effect of electrode
porosity on the CV response is emphasized in order to explain the tailing in
experimental CV data which is not captured by the classical finite diffusion domain
models. However, since a purely theoretical model does not provide a significant
benefit to the experimentalists community, a software tool for facile simulation
and interpretation of CV at porous electrodes was desired and finally created.
This program will be introduced as the result of the related publication in this
sub-chapter.

7The name 'Polarographica' is derived from 'polarography' and 'graphical user interface'

95



Chapter 5. Discussion of Related Publications

Polarographica

The software tool Polarographica was mainly created to allow for an evaluation of
cyclic voltammetry data at porous electrode structures by a manual fitting routine.
Nevertheless, it also supports an automated version of the classical evaluations
(Randles–Ševčík, Cottrell, Koutecký–Levich, Tafel) as well as simulation and fitting
routines for a whole series of other electroanalytical techniques. Among them
are voltamperometric methods such as chronoamperometry, large-sine amplitude
cyclic voltammetry, Fourier transformation alternating current cyclic voltammetry,
cyclic-staircase voltammetry and random input voltammetry as well as impedance
methods such as potentiostatic electrochemical impedance spectroscopy and the
distribution of relaxation times analysis. The main graphical user interface of
Polarographica is depicted in figure 5.6. Figure 5.7 in turn depicts the simulation
mode for a CV experiment at a porous carbon felt electrode in analogy to the
theory presented in section 5.3.

Figure 5.8 shows the 'superposition mode' of Polarographica which can be
used for a) overlaying up to 50 CV experiments at different potential sweep rates
(referred to as Randles–Ševčík mode) or b) for superimposing up to 50 different CV
curves (referred to as additive mode). An ancestory version of the additive mode
was utilized for superimposing the desired vanadium reduction and the hydrogen
evolution reaction in the study which was presented in section 5.2.

Since this thesis is restricted to the theory of cyclic voltammetry experiments at
porous electrodes, the additional electroanalytical methods supported by Polaro-
graphica will not be discussed in detail. However, it is worth to note that all the
voltamperometric simulations are based on the same master equation. This partic-
ular equation resulted from a combination of equation 5.8 in section 5.1 as well as
equation 5.67 from section 5.3. It therefore accounts for an electrochemical reaction
which is coupled to homogeneous chemical equilibria and optionally possesses finite
heterogeneous electron transfer kinetics. This provides a maximum flexibility
which captures an exceptionally broard range of experimental circumstances. This
— so to say — final master equation of this thesis is given by equation 5.70. The
definition of fan(i∆t) and fca(i∆t) is identical to equations 5.9 and 5.10 and the
definition of δMR(i, j) and δMO(i, j) follows from equations 5.68 and 5.69, re-
spectively. The time-dependent mass transfer functions MR(t) and MO which are
individually required for each diffusion model which is supported by Polarographica
are calculated from their respective Laplace domain solutions by means of numeri-
cal inverse Laplace transformation. For this purpose, the modified Talbot contour
proposed by Dingfelder and Weideman was exploited as outlined in section 5.3.

96



5.4. The Generalized Diffusion Domain Approximation

Figure 5.6: Main menu of Polarographica with all supported functions and electroanalytical
techniques. The four diffusion models for cyclic voltammetry at porous electrodes which were
derived in the related publication are depicted schematically.
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Figure 5.7: CV simulation mode of Polarographica for a carbon felt electrode which is considered
as an array of cylindrical microelectrodes. This model is equivalent to the theory presented in
section 5.3.

Figure 5.8: Superposition mode of Polarographica. This feature allows for adding (additive
mode) or overlaying (Randles–Ševčík mode) up to 50 different CV curves.
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For details on the numerical inversion of the Laplace transformation, the reader
is referred to the original publication attached in section 6.4 of this thesis. The
respective Laplace domain solutions of the mass transfer functions are also given
in the appendix of this particular publication.

I(i∆t) ≈
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1 +Kp
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. (5.70)

The different electroanalytical techniques which are implemented into Polarograph-
ica simply rely on subjecting equation 5.70 to different potential programs — i.e.
by varying the input signal ξ(t)

In case of the random network diffusion models, the effect of electrode porosity
was introduced similar to the publication presented in section 5.3. By considering
1D, 2D, and 3D arrays of planar, hollow-cylindrical and hollow-spherical micro-
electrodes the diffusion domain inside of the porous electrodes is approximated.
The respective distance distributions which are required for a proper statistical
weightning of the individual CV responses of the microelectrode sub-units inside
the porous electrodes are assumed to follow a three-parameter generalized gamma
distribution. Details on the respective statistical weightning process can be found
in the original publication. Finally, in the supporting information of the original
publication, an example for a CV fitting routine can be found. This can be regarded
as an instruction on how to use Polarographica for the evaluation of experimentally
acquired CV data without any programming effort and decent knowledge on the
mathematics of diffusion and concludes the respective publication.
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5.5 The Unified Mass-Transfer Function and CV
in Real-Space

The fifth and final publication related to this cumulative thesis is entitled

'Real-Space Simulation of Cyclic Voltammetry in Carbon Felt Electrodes by
Combining Micro X-Ray CT Data, Digital Simulation and Convolutive Modeling'.

In this study the diffusion domain approximation approach — introduced in the
two foregoing publications — for the modeling of voltamperometric experiments
at porous electrodes was circumvented. The alternative CV simulation strategy
consists of four successive steps. At first, by exploiting micro X-ray tomography,
the diffusion domain inside of a porous felt electrode is resonstructed. Subsequently,
the time-dependent current related to this real-space template is calculated to
Cottrellian boundary conditions by means of digital simulation. The third step is
to compute the mass transfer function related to the particular porous electrode
stucture by an inverse convolution algorithm from the time dependent current
wave. Finally, the thus obtained mass transfer function is utilized to compute the
related CV experiments on the base of equation 5.70 from section 5.4. Since almost
any real electroanalytical experiment involves coupled electrolyte resistances and
interfacial double layer capacities, these quantities have been included into the
respective model as well. Ultimately, the novel theoretical concept was validated
by experimental data acquired for the positive VRFB half-cell reaction which
concludes the respective publication.

Motivation
The motivation for the work presented in this section resulted from the diffusion
domain approximation for porous electrodes which has been introduced in the
latter two publications and which offers two significant drawbacks. Since this
approximation considers the porous electrode as an array of individual microelec-
trodes which are independent of each other, the effect of overlapping diffusion
zones inside of the random network was excluded by definition. Furthermore, the
effect of mass transport from and towards the porous electrode structures was not
considered. This has been caused by the fact that the diffusive part of the system of
interest was solved on the base of Laplace integral transformation techniques which
require for a symmetrical diffusion domain and therefore a discretization of the
porous electrode structure into distinct and symmetrical sub-units. Consequently,
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the mathematical treatment of a random network diffusion model, which possesses
an inherent anisotropy of the diffusion domain was not yet possible by means
of Laplace transformation techniques and the outstanding advantage of using
a master equation was never employed in this context either. The emphasis of
the study related to this section was now, to create a routine for simulating CV
experiments at electrodes with an anisotropic diffusion domain and to preserve
the advantage of utilizing a master equation.

Cyclic voltammetry in real-space: The four-step strategy
In order to simulate cyclic voltammetry experiments in an anisotropic diffusion
domain, it was mandatory to avoid the direct utilization of Laplace transformation
techniques for solving the diffusive part of the system of interest. However, for
preserving the advantages of a master equation, a Laplace transformation needs to
be involved implicitly. For this purpose, an algorithm of four successive steps was
proposed. These can be summarized as follows and are schematically depicted in
figure 5.10.

At first, the real-space diffusion domain inside of a porous electrode was
reconstructed from micro X-ray tomography data. Subsequently, this template
was utilized to simulate the time dependent current of a chronoamperometric
experiment to Cottrellian boundary conditions by means of digital simulation.
For this purpose, the Douglas–Gunn modification [129] of the three dimensional
Crank–Nicolson method was exploited [96]. Since the native Crank-Nicolson
method in three spatial dimensions gets exceptionally expensive with respect
to the computation time, this particular modification was necessary to render
the simulations tracktable. The full Crank–Nicolson method in the three spatial
dimension can be derived from equation 3.44 in analogy to the procedure outlined
in the theory section. In this manner, the three-dimensional Crank–Nicolson
method can be stated as

− λci,j,k−1,t+∆t − λci,j−1,k,t+∆t − λci−1,j,k,t+∆t + (2 + 6λ)ci,j,k,t+∆t

− λci+1,j,k,t+∆t − λci,j+1,k,t+∆t − λci,j,k+1,t+∆t

=
λci,j,k−1,t + λci,j−1,k,t + λci−1,j,k,t + (2− 6λ)ci,j,k,t

+ λci+1,j,k,t + λci,j+1,k,t + λci,j,k+1,t. (5.71)

where the parameter λ has its usual definition and i, j k represent the counting
of spatial grid points in the x, y and z direction, respectively. Unfortunately,
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this procedure results in a heptadiagonal sparse matrix whose rang scales with
the third power of grid points. This renders the computation of realistic sample
volumes impossible. The banded structure of the respective full Crank–Nicolson
matrix (of rang 64) is depicted for a 4× 4× 4 voxels diffusion field in figure 5.9.

To overcome the computational expense of the three dimensional Crank–
Nicolson method, the Douglas–Gunn modification was introduced. This approach
basically splits each individual time march of the Crank–Nicolson method in three
sub-steps. Since step I is implicit in x-direction and explicit in y- and z-directions,
step II is implicit along the y direction and step III along the z-direction, this
particular method is termed alternating direction implicit (ADI). The three steps
can be stated as follows: Step I:

− λci−1,j,k,t+∆t/3 + 2(1 + λ)ci,j,k,t+∆t/3 − λci+1,j,k,t+∆t/3 =
[λ · (ci−1,j,k,t + ci+1,j,k,t + 2ci,j−1,k,t + 2ci,j+1,k,t+

2ci,j,k−1,t + 2ci,j,k+1,t − 10ci,j,k,t) + 2ci,j,k,t] · ci,j,k,t=0 (5.72)

Step II:

− λci,j−1,k,t+2∆t/3 + 2(1 + λ)ci,j,k,t+2∆t/3 − λci,j+1,k,t+2∆t/3 =
[λ · (ci−1,j,k,t+∆t/3 − 2ci,j,k,t+∆t/3 + ci+1,j,k,t+∆t/3+

ci−1,j,k,t + ci+1,j,k,tci,j−1,k,t + ci,j+1,k,t+
2ci,j,k−1,t + 2ci,j,k+1,t − 8ci,j,k,t) + 2ci,j,k,t] · ci,j,k,t=0 (5.73)

Step III:

− λci,j,k−1,t+∆t + 2(1 + λ)ci,j,k,t+∆t − λci,j,k+1,t+∆t =
[λ · (ci−1,j,k,t+∆t/3 − 2ci,j,k,t+∆t/3 + ci+1,j,k,t+∆t/3+
ci,j−1,k,t+2∆t/3 − 2ci,j,k,t+2∆t/3 + ci,j+1,k,t+2∆t/3+

ci−1,j,k,t + ci+1,j,k,tci,j−1,k,t + ci,j+1,k,t+
ci,j,k−1,t + ci,j,k+1,t − 6ci,j,k,t) + 2ci,j,k,t] · ci,j,k,t=0 (5.74)

Since each of these three successive steps is involves tridiagonal matrices only,
which can be solved very efficiently by utilizing the Thomas algorithm [100], the
ADI method is substantially faster than the full Crank-Nicolson scheme.
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Figure 5.9: Counting of spatial grid points and the resulting structure of the heptadiagonal
full Crank–Nicolson matrix which corresponds to a 4 × 4 × 4 voxels diffusion field with outer
no-flux boundaries.

Subsequently to solving the time dependent concentration profile inside of the
real-space network, the chronoamperometric current is calculated according to
Ficks first law. Based on this chronoamperometric current response, the time
dependent mass transfer function related to the real-space diffusion domain of the
porous electrode is calculated. For this purpose, an inverse convolution algorithm
was designed, which is basically the reverse computation of equation 3.74. It was
obtained by rearranging equation 3.73 in terms of M(t) instead of I(t). Once
the mass transfer function was computed, the simulation of cyclic voltammetry
experiments could be performed readily, by utilizing equation 5.70. In order to
implement the current contributions of interfacial double layer capacities and the
non-linear effects of coupled ohmic resistances into the convolution algorithm, the
master equation approach represented by equation 5.70 was refined by the model
proposed by Montalla [130]. For details on this extended model, the reader is
referred to the original publication in section 6.5 of this thesis. In this manner,
a final model for the simulation of cyclic voltammetry experiments at porous
electrodes is created which

• accounts for anisotropic diffusion domains in macroporous electrodes,
• preserves all the advantages of convolutive modeling and allows for the use

of a master equation,
• optionally accounts for homogeneous chemical reactions and finite heteroge-

neous kinetics which deviate from Butler–Volmer behaviour,
• includes the non-linear effects of coupled ohmic resistances and interfacial

double layer capacities.
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Figure 5.10: Sketch of the novel four-step strategy for simulating cyclic voltammetry exper-
iments at porous electrodes. At first, the diffusion domain inside of the porous structure is
reconstructed from micro X-ray tomography measurements. Subsequently, the Cottrellian current
response of this real-space network is computed by means of digital simulation. In the third
step, the mass transfer function related to the porous electrode is calculated by an inverse
convolution algorithm. Finally, this mass transfer function is utilized for simulating CV via
classical convolutive modeling.

Since a manual fitting of simulated data to experimentally acquired data, which is
based on the novel four-step strategy provides an excellent agreement with the
reference data which was acquired in the first publication of this cumulative thesis,
it can be concluded that the inherent ambiguity of cyclic voltammetry of porous
electrodes was finally overcome.
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Chapter 6

Original Publications

This chapter comprises all the original publications related to this cumulative
thesis. All manuscripts were translated to original TEX language to provide a
uniform style. The original publications can be accessed by their respective DOI.
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Abstract
The electrochemical oxidation of VO2+ at planar glassy carbon electrodes is in-
vestigated via stationary and rotating linear sweep voltammetry as well as via
chronoamperometry. It is demonstrated that introducing finite kinetic rate con-
stants into the Butler-Volmer equation captures the experimentally observed
concentration dependence of the ordinate intercept in Koutecký-Levich plots, that
cannot be explained by using the classical model. This new concept leads to
a three-term Koutecky-Levich equation considering mass transport limitations,
Butler-Volmer kinetics as well as finite heterogeneous kinetics simultaneously.
Based on these findings it is pointed out that stationary linear sweep voltammetry
followed by an irreversible Randles-Ševčík analysis is not sufficient for deducing
the electrode kinetics of the VO2+-oxidation. In contrast, it is verified experimen-
tally and theoretically that a Tafel analysis will still provide reasonable values of
k0 = 1.35·10-5 cm/s and α = 0.38, respectively. Finally, it is shown that introducing
the concept of finite heterogeneous kinetics into the theory of stationary linear
sweep voltammetry also explains the failure of the irreversible Randles-Sevcik
relation leading to an extension of the classical model and providing insights into
the electrochemical oxidation reaction of VO2+.
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Abstract
Thin film rotating-ring disc electrode (RRDE) technique is exploited to quan-
tify the parasitic hydrogen evolution reaction (HER) competing with the desired
V 3+-reduction at surface modified carbon nanoparticles for application as electro-
catalysts in the negative half-cell of vanadium redox-flow batteries (VRFB). Carbon
based electrode materials are derived from standard Vulcan XC-72 carbon, treated
by chemical surface etching techniques proposed for carbon felt-electrodes in the
literature. Additional electrochemical characterization is performed using station-
ary cyclic voltammetry (CV) followed by fitting of CV data, Fourier-transform
alternating-current cyclic voltammetry (FT-ACCV) and electrochemical impedance
spectroscopy (EIS) followed by distribution of relaxation times (DRT) analysis.
To our knowledge the present paper is the first study using the RRDE technique
for separating HER and V3+-reduction reactions. It is demonstrated that the ratio
of HER to V 3+-reduction significantly depends on the chemical pretreatment of
the carbon electrodes and that the V3+-reduction proceeds at an optimum rate at
E − ERHE = −0.45 V. Separating the HER from the V 3+-reduction also allows
us to provide highly accurate values for the diffusion coefficient of the V 3+-ion in
sulfuric acid solutions.

Keywords: Vanadium redox-flow batteries; Rotating ring-disc electrode; Cyclic
voltammetry fitting; Distribution of relaxation times analysis;
Carbon based electrodes

Journal: J. Electroanal. Chem.; DOI: 10.1016/j.jelechem.2020.113843
Submitted on 30 September 2019; accepted on 09 January 2020

a Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
b Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
* Correspondence: Tim Tichter, t.tichter@fu-berlin.de





THEORY OF CYCLIC VOLTAMMETRY IN
RANDOM ARRAYS OF CYLINDRICAL

MICROELECTRODES APPLIED TO
CARBON FELT ELECTRODES FOR

VANADIUM REDOX FLOW BATTERIES

Tim Tichter, Dirk Andrae, Jacob Mayer, Jonathan Schneider,
Marcus Gebhard, Christina Roth

DOI: 10.1039/C9CP00548J

Individual contributions

Tim Tichter:
Conceptualization, Developing the theory, Methodology, Scientific programming,
Writing – original draft, Writing – review & editing

Dirk Andrae:
Scientific discussion (mathematics), Writing – original draft

Jacob Mayer:
Data acquisition (electrochemistry)

Jonathan Schneider:
Data acquisition (electrochemistry)

Marcus Gebhard:
Data acquisition (scanning electron microscopy)

Christina Roth:
Supervision, Funding acquisition

https://doi.org/10.1039/C9CP00548J




THEORY OF CYCLIC VOLTAMMETRY IN
RANDOM ARRAYS OF CYLINDRICAL

MICROELECTRODES APPLIED TO
CARBON FELT ELECTRODES FOR

VANADIUM REDOX FLOW BATTERIES

Tim Tichtera,*, Dirk Andraea, Jacob Mayera, Jonathan Schneidera,
Marcus Gebhardb, Christina Rothb

Abstract
In order to quantitatively investigate the kinetic performance and the pore size
distribution of carbon felt electrodes for the application in vanadium redox flow
batteries, the theory of cyclic voltammetry (CV) is derived for a random network
of cylindrical microelectrodes on the base of convolutive modeling. In this context
we present an algorithm based on the use of a modified Talbot contour for inverse
Laplace transformation, providing the mass transfer functions required for the
calculation of the CV responses in external cylindrical finite diffusion space. First
order homogenous chemical kinetics preceding and/or following the electrochemical
reactions are implemented in this algorithm as well. The VO2+ oxidation is investi-
gated as model reaction at pristine and electrochemically aged commercial carbon
felt electrodes. A fit of simulated data to experimental data clearly shows that an
electrochemical aging predominantly affects the kinetics of the electron transfer
reaction and that internal electrode surfaces and pore size distributions remain
constant. The estimated pore size distributions are in excellent agreement with
porosimetry measurements, validating our theory and providing a new strategy to
determine electrode porosities and electrode kinetics simultaneously via CV.
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Abstract
An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at
macroporous electrodes such as felts, foams, and layered structures is presented.
By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelec-
trodes, hollow cylindrical microelectrodes, and hollow-spherical microelectrodes
the internal diffusion domains of the macroporous structures are approximated.
A universal algorithm providing the time-dependent surface concentrations of
the electrochemically active species, required for simulating cyclic voltammetry
responses of the individual planar, cylindrical, and spherical microelectrodes, is
presented as well. An essential ingredient of the algorithm, which is based on
Laplace integral transformation techniques, is the use of a modified Talbot con-
tour for the inverse Laplace transformation. It is demonstrated that first-order
homogeneous chemical kinetics preceding and/or following the electrochemical
reaction and electrochemically active species with non-equal diffusion coefficients
can be included in all diffusion models as well. The proposed theory is supported
by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6]4-

at platinum electrodes as well as for a technically relevant reaction, the oxidation
of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide
a powerful open source tool for simulating and evaluating CV data implemented
into a Python graphical user interface (GUI).
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Abstract
A novel four-step strategy for real-space simulation of cyclic voltammetry (CV)
at carbon felt electrodes is presented, circumventing the diffusion domain approx-
imation approach used so far for CV simulation at porous electrodes. At first,
the three-dimensional template of the internal electrode structure is constructed
from micro X-ray tomography measurements. Subsequently, by exploiting the
Douglas–Gunn modification of the three-dimensional Crank–Nicolson algorithm
to Cottrellian boundary conditions, the mass transfer controlled current of this
"true" network is obtained. Based on this current, the third step is to compute the
mass transfer functions related to the electrode under investigation by an inverse
convolution algorithm. In this manner, the spatial dimensionality of the system is
reduced from three to one, resulting in significant savings in computation time.
The fourth and final step is then to simulate CV experiments via classical convolu-
tion methods, featuring the great advantage that any degree of electrochemical
reversibility, coupled homogeneous reactions, electrolyte resistances and double
layer capacities can be inplemented readily. As a proof of concept, the simulations
are supported by experimental data acquired for the oxidation of VO2+ in carbon
felt electrodes.

Keywords: Convolution; Crank–Nicolson technique; Douglas–Gunn algorithm;
Porous electrodes; Vanadium redox-flow batteries

Journal: Electrochimica Acta; DOI: 10.1016/j.electacta.2020.136487
Submitted on 11 April 2020; accepted on 20 May 2020

a Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
b Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
c Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
* Correspondence: Tim Tichter, t.tichter@fu-berlin.de





Chapter 7

Conclusion and Future
Perspectives

In this cumulative thesis, the classical theory of cyclic voltammetry was extended
to (macro)porous electrode structures. In particular, two different models for
describing carbon felt electrodes were developed which are summarized graphi-
cally in figure 7.1. At first, by regarding felt electrodes as an array of individual
cylindrical microelectrodes in a finite external cylindrical diffusion domain with
a statistically fluctuating size, a method oriented approach for describing porous
electrode structures was provided. This model was referred to as diffusion domain
approximation. Since the CV responses of the individual microelectrodes were sim-
ulated on the base of Laplace integral transformation techniques and convolutive
modeling, implementing the effects of homogeneous chemical reactions preceeding
and/or following the heterogeneous electron transfer was readily possible by exploit-
ing the so-called master equation approach. In this context, the Laplace domain
solution of the mass transfer function of an electrode reaction which occurs in a
finite external cylindrical diffusion domain and which is coupled to homogeneous
chemical reactions was derived for the first time. Since no analytic function in
the time-domain, related to this particular Laplace domain solution, could be
found the concept of numerical inverse Laplace transformation was exploited. For
this purpose, a modified Talbot contour was first ever utilized in the context
of electrochemistry. In this manner, it was possible to readily simulate cyclic
voltammetry experiments at carbon felt electrodes to high accuracy. As a proof of
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Figure 7.1: Graphical summary of the two strategies for the simulation and evaluation of cyclic
voltammetry experiments at macroporous electrodes which have been developed throughout this
thesis.
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concept, the simulations were supported by experimental data acquired for the
electrochemical oxidation of the oxovanadyl cation at carbon felt electrodes.

In a follow up study, the diffusion domain approximation approach which was
initially designed for carbon felt electrodes was generalized to layered electrode
structures, electrodes with a hollow cylindrical pore structure and electrode foams.
In order to provide the experimentalists community with a novel and reliable
way of interpreting cyclic voltammetry data at porous electrode sturctures, this
generalized diffusion domain approximation was implemented into a powerful open
source tool for simulating and evaluating electroanalytical experiments, which was
named Polarographica.

Since any diffusion domain approximation excludes the effect of overlapping
diffusion zones inside of the random network by definition, a second — yet much
more sophisticated — model for cyclic voltammetry at carbon felt electrodes was
created in the final publication related to this thesis. This model utilizes the
real-space template of the diffusion domain, which was experimentally acquired
by means of micro X-ray tomography. Based on a novel four-step strategy which
involves digital simulation and convolutive modeling, the CV responses related
to this real-space template of the diffusion domain were simulated. Since this
strategy implicitly involves the Laplace transformation technique, it preserves the
advantages of convolutive modeling. It therefore features that a master equation
can be utilized even in case of the anisotropic diffusion domain of a porous electrode.
In order to cover an even broader range of experimental cicumstances, the contri-
butions of interfacial double layer capacities and the non-linear effects of coupled
ohmic resistances, present in almost any realistic electroanalytical experiment, have
been included as well. Together with the effects of coupled homogeneous chemical
reactions and the concept of finite heterogeneous electron transfer kinetics which
has been developed in this thesis, the novel model provides a maximum flexibility
for simulating and evaluating cyclic voltammetry experiments at porous electrodes.
Since interpreting CV experimental data at porous electrodes on the base of this
novel model provides an excellent agreement with reference measurements under
well-defined diffusion conditions it was concluded that the inherent ambiguity of
cyclic voltammetry at porous electrodes was finally overcome.

However, since any theoretical model captures a limited extent of experimental
circumstances only, also the concepts presented in this thesis require for contin-
uous improvements and refinements. In this context, particularly the real-space
simulation technique might be extended to account for internal Ohmic drop effects
inside of porous electrode structures according to a transmission line model. Fur-
thermore, the implementation of parasitic reactions might be performed in terms
of convoluted currents rather than by the recent superposition approach. Finally,
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complex reaction mechanisms and more decent theories of the electron transfer
might be incorporated in the recent model. These can eventually account for
almost any experimental situation and draw a conclusive picture on the electrode
kinetics in each and every occasion.

In order to provide experimentalists with all the novel strategies for simulating
and evaluating electroanalytical experiments at (macro)porous electrode structures,
the ultimate target remains in continuously implementing future developments
into Polarographica. This will allow for a facile, GUI-supported and standardized
evaluation of experimentally acquired data which will eventually lead to a reliable
interpretation of electrode kinetics and might be therefore beneficial for the entire
electrochemistry community.
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Appendix A

Additional Derivations

The following appendix contains two additional derivations of Laplace transforma-
tion/inverse Laplace transformation pairs, which are referred to in the main part
of this cumulative thesis and which belog to a planar semi-infinite and a planar
finite reflective diffusion domain.



Appendix A

A.1 Planar Semi-Infinite Diffusion
The aim of this section is finding the Laplace transformation of the function
f(t) = (πt)−1/2. Consider

f̄(s) = L
{

1√
πt

}
(s) =

∫ ∞
0

1√
πt

e−stdt (A.1)

and substitute t1/2 = x, such that dt = 2t1/2dx. This results in the expression

f̄(s) = 2√
π

∫ ∞
0

e−sx2dx, (A.2)

which can be regarded as Gaussian integral. Since∫ ∞
−∞

e−ax2dx =
√
π

a
(A.3)

with a as a constant such that a > 0, it can be noticed that∫ ∞
0

e−ax2dx = 1
2

√
π

a
. (A.4)

This finally yields

f̄(s) = 1√
s
. (A.5)

In this manner, the following Laplace transformation/inverse Laplace transforma-
tion pair is defined:

L
{

1√
πt

}
(s) = 1√

s
(A.6)

L−1
{

1√
s

}
(t) = 1√

πt
(A.7)
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A.2 Planar Finite Reflective Diffusion
The aim of this section is to find the inverse Laplace transformation of the function
f̄(s) = coth(s1/2)/s1/2, or in particular of f̄(s) = coth(as1/2)/s1/2, where a is a
constant which fulfills a > 0 and which translates to a2 = d2/D. For this purpose,
one might start with the definition of Eulers infinite sine product according to

sin(x) = x
∞∏
k=1

(
1− x2

k2π2

)
. (A.8)

Noting that the hyperbolic sine function and the sine function are related via

sinh(x) = sin(ix)
i , (A.9)

where i =
√−1, one can obtain

sinh(x) = x
∞∏
k=1

(
1 + x2

k2π2

)
. (A.10)

Taking the logarithm of equation A.10 results in

ln(sinh(x)) = ln(x) +
∞∑
k=1

ln
(

1 + x2

k2π2

)
. (A.11)

Performing a differentiation with respect to x on equation A.11 gives

∂ln(sinh(x))
∂x

= cosh(x)
sinh(x) = coth(x) = 1

x
+
∞∑
k=1


2x
π2k2

1 + x2

π2k2

 , (A.12)

with coth(x) being the hyperbolic cotangent function. Now, taking x = s1/2 as
well as the initial function of f̄(s) = coth(s1/2)/s1/2, one arrives at

f̄(s) = 1
s

+ 2
∞∑
k=1

( 1
s+ π2k2

)
. (A.13)
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The inverse Laplace transformation can be applied readily on equation A.13. The
first term is easily identified as the Laplace transformation of 1. The infinite
sum in turn might be inverted term by term by exploiting the relation given in
equation 3.61. This finally yields

L−1
{
f̄(s)

}
(t) = 1 + 2

∞∑
k=1

exp(−π2k2t). (A.14)

The right hand side of equation A.14 can be identified as the Jacobian Θ3 function.
This defines the Laplace transformation/inverse Laplace transformation pair of

L{Θ3(0|t)} (s) = coth(
√
s)√

s
(A.15)

L−1
{
coth(

√
s)√

s

}
(t) = Θ3(0|t) = 1 + 2

∞∑
k=1

exp(−π2k2t), (A.16)

which was used along with equation 3.100 in the theory section.
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