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1
INTRODUCTION

This dissertation presents two studies on convex polytopes. The motivation behind these
studies could be roughly summarized by the two questions “When is a vector of integers
the f -vector of a polytope?” and “Do alcoved polytopes have unimodal h∗-vectors?”

In this chapter we introduce the topics of the dissertation. Section 1.1 explains the
notation used throughout the dissertation. It gives a background on polytope theory. The
concepts introduced here will be used in the whole dissertation, but they are particularly
important for Part I.

The objects studied in Part I are f-vector sets and flag vector sets of polytopes. For
a given convex polytope P of dimension d, the entries fi(P ) of the f -vector f(P ) =
(f0(P ), . . . , fd−1(P )) of P are the numbers of i-dimensional faces of P . The flag vector
has as entries the numbers of chains of faces of P .
The complete set of all f -vectors of d-dimensional polytopes is only known up to dimension
3. For dimension 3, this set was described by Steinitz [82] in 1906. For higher dimensions
complete classifications of the set of f -vectors are not known. Already in dimension 4
such a result seems unattainable.
Instead of considering the whole set of f -vectors of 4-dimensional polytopes, the projections
to two of its four coordinates have been studied and have completely been classified in
the 1960s and 1970s by Grünbaum [38, Sect. 10.4], Barnette–Reay [8] and Barnette [7].
In Chapter 2 we try to generalize these results in two different ways.
In Section 2.1 we look at the set of all extended f -vectors (or flag vectors) of 4-dimensional
polytopes, and study coordinate projections of this set.
Our first main result of Chapter 2 is Theorem 2.1.5, which gives a complete description
of the projection of the set of flag vectors of 4-polytopes to the entries f0 and f03.
In Section 2.2 we generalize the results by Grünbaum, Barnette and Reay in another
way: We look at specific coordinate projections of the sets of all f -vectors of d-polytopes
of a given dimension.
The second main result of this chapter is a description of the projection of the set of
f -vectors of d-polytopes to the coordinates f0 and fd−1. For even dimensions d, the
description is given in Theorem 2.2.2: With the exception of some small pairs (f0, fd−1),
the set is completely described.
For odd dimensions d, Theorem 2.2.3 gives a description of the set with the exception of
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some pairs (f0, fd−1) close to the boundary of the set.
Chapter 2 is based on a joint paper with Günter M. Ziegler [74].
In Chapter 3 we look at the f -vector sets described in the previous chapter under a
different point of view. We want to describe how “complicated” these sets can be. In
Section 3.1 we look at some classical questions regarding ”complicated” sets. A famous
example is given by Hilbert’s tenth problem, which asks for an algorithm to find integer
solutions of Diophantine equations. It was shown by Matiyasevich et al. that such an
algorithm does not exist, not every Diophantine set is computable.
For our f -vector sets we develop in Section 3.3 a different notion of complexity, the
semi-algebraic sets of lattice points. Section 3.4 gives many examples of f -vector sets
that have a sufficiently “nice” description as the set of all lattice points inside some
semi-algebraic set.
Our main results of Chapter 3 are Theorems 3.3.4 and 3.3.5, stating that the f -vector
sets Π12(F4), the set of all edge and ridge numbers of 4-polytopes, and Fd, the set of all
f -vectors of d-dimensional polytopes, where d is greater or equal to 6, do not admit such
a simple description, they are not semi-algebraic sets of lattice points.

Chapter 3 is based on another joint paper with Günter M. Ziegler [75].

Part II focuses on Ehrhart theory of lattice polytopes, in particular the h∗-vectors of
alcoved polytopes. The work in this part is motivated by the conjectured unimodality of
the h∗-vectors alcoved polytopes.
There is a variety of conjectures and theorems about the unimodality of h∗-vectors of
certain lattice polytopes.

Unimodality in combinatorics often shows up as a consequence of some underlying alge-
braic properties. Most famously, the g-theorem (Theorem 1.1.3) for simplicial polytopes
implies that the h-vectors of simplicial polytopes are unimodal.

Stanley conjectured that all lattice polytopes with integer decomposition property
have unimodal h∗-vectors. (see [73, Question 1.1]). We study a certain class of lattice
polytopes with integer decomposition property, alcoved polytopes. Alcoved polytopes
have unimodular triangulations, which implies that their h∗-vectors are equal to the
h-vectors of the triangulations. This fact allows us to use methods from Stanley–Reisner
theory for simplicial complexes to study the h∗-vectors of alcoved polytopes.

Chapter 4 introduces background and notation used throughout this part. Section 4.1
gives the necessary notions from Ehrhart theory, and Section 4.2 introduces some impor-
tant types of triangulations. Stanley–Reisner theory is briefly introduced in Section 4.3.
Section 4.4 is concerned with various questions about unimodality in combinatorics.
In Chapter 5 we look at alcoved polytopes. The main theorems of this part are The-
orem 5.3.2 and Theorem 5.3.3. Theorem 5.3.2 gives a condition under which alcoved
polytopes have a unimodal h∗-vector.
Theorem 5.3.3 gives a bound for how far off alcoved polytopes can be from this restriction.
Chapter 5 is based on joint work with Christian Haase and Rainer Sinn.

Appendix A contains a list of polytopes with 7 and 8 vertices (given in terms of
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1.1 notation and background on polytope theory

their facet lists) which were used for the constructive part of the proof of Theorem 2.1.5.
Appendix B contains algorithms used to construct random alcoved polytopes and calculate
their h∗-vectors.

1.1 notation and background on polytope theory

In this section we give some important definitions and results on convex polytopes. For
further references, we refer the reader to Ziegler [88] and Grünbaum [38].

A convex polytope P ⊂ Rd is the convex hull of finitely many points in Rd.
The dimension of a polytope is the dimension of its affine hull.
Let P be a d-dimensional polytope, or d-polytope for short. The unique point set V
contained in all sets S ⊂ Rd such that convS = P , is called the vertex set of P and the
points in V are the vertices of P . A description of P as the convex hull of finitely many
points is called a V-description of the polytope P .
P can also be described as an intersection of finitely many closed halfspaces in Rd. Such
a description of P is called an H-description of P . In general the intersection of finitely
many closed halfspaces in Rd is a polyhedron, a bounded polyhedron is a polytope.

A face of a d-polytope P is either the polytope P itself or the intersection of P with a
hyperplane H in Rd such that P is entirely contained in one of the two closed halfspaces
H+, H− defined by H. A hyperplane H defining a face F = P ∩H of P will be called a
face-defining hyperplane of F .
A face of a polytope is again a polytope.

The empty set is a face of every polytope. Its dimension is defined to be −1. The
vertices of P are the 0-dimensional faces of P . Faces of dimension 1 are called edges,
(d− 1)-dimensional faces are called facets and (d− 2)-dimensional faces are called ridges.
All facets of P excluding P itself (but including the empty set) are called proper facets.

The poset L(P ) of all faces of a d-polytope P , partially ordered by inclusion, is a graded
lattice, called the face lattice of P [88, Thm. 2.2.7]. Two polytopes are combinatorially
equivalent if their face lattices are isomorphic. When it is clear from the context that we
talk about combinatorial properties rather than geometric properties, we often write ”the
polytope” instead of ”the combinatorial type of the polytope”.

Let P be a full-dimensional polytope in Rd with 0 in the interior. The polar of P is

P∆ := {y ∈ (Rd)∗ | yx ≤ 1 for all x ∈ P}.

P∆ is also a d-dimensional polytope with 0 in the interior and P∆∆ = P [62, Thm. 2.13].
There is a bijection between the faces of P and P∆ that reverses inclusion. In other
words, the face lattice of P∆ is the opposite of the face lattice of P :

L(P∆) = L(P )op.

This gives rise to a combinatorial notion of polarity:
Two (combinatorial types of) polytopes P , Q are said to be dual to each other if
L(Q) = L(P )op. The dual of a polytope P will be denoted by P ∗.
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For a d-dimensional polytope P , let fi = fi(P ) denote the number of i-dimensional
faces of P . The f-vector of P is then f(P ) = (f−1, f0, f1, . . . , fd−1, fd). We often omit
the trivial faces, the empty set and P itself, and write the f -vector of P simply as
f(P ) = (f0, f1, . . . , fd−1). The set of all f -vectors of d-polytopes is denoted by Fd ⊂ Zd.
The Euler–Poincaré formula

−f−1 + f0 − f1 + . . .+ (−1)dfd = 0

holds for the f -vectors of all non-empty d-dimensional polytopes P , so Fd ⊂ Zd lies on a
hyperplane in Rd. Even more, Fd spans this hyperplane: The Euler–Poincaré formula is
up to scaling the only linear relation that is satisfied by all f -vectors of d-dimensional
polytopes (Grünbaum [38, Thm. 8.1.1]).
For S ⊆ {0, . . . , d − 1}, let fS = fS(P ) denote the number of chains F1 ⊂ · · · ⊂ Fr of
faces of P with {dimF1, . . . ,dimFr} = S. The flag vector or extended f-vector of P is

(fS)S⊆{0,...,d−1}. The set of all flag vectors of d-polytopes will be denoted by F d ⊂ Z2d .
Its affine dimension is cd − 1, where cd is the d-th Fibonacci number, c1 = 1, c2 = 2,
cd = cd−1 + cd−2 ([12], Thm. 2.6).

The coordinate projection of Fd to two of its coordinates, fi and fj , will be denoted
by Πi,j(Fd) ⊂ Z2. Analogously, ΠS,T (F d) ⊂ Z2 is the projection of F d to the two
coordinates fS and fT .

A simplex is a d-dimensional polytope with d+ 1 vertices.
A polytope is called simplicial if all of its proper faces are simplices.
The dual notion is that of a simple polytope: A d-polytope is simple if all of its vertices
lie in exactly d facets.

The h-vector of a simplicial d-polytope P is the vector h(P ) = (h0(P ), . . . , hd(P )),
where

hk(P ) =

k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1(P ).

The f -vector f(P ) = (f−1(P ), . . . , fd−1(P )) of P can also be expressed in terms of the
h-vector of P :

fk−1(P ) =
k∑
i=0

(
d− i
d− k

)
hi(P ).

The h-vectors of simplicial polytopes satisfy a set of linear relations, the so-called Dehn–
Sommerville equations.

Theorem 1.1.1 (Dehn–Sommerville equations [30], [76]). If P is a simplicial d-
polytope, its h-vector satisfies:

hk(P ) = hd−k(P ).

A simplicial complex C is a finite collection of simplices such that
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(i) ∅ ∈ C,

(ii) if ∆ ∈ C, then all faces of ∆ are also in C,

(iii) the intersection ∆1 ∩∆2 of any ∆1,∆2 ∈ C is a face of both ∆1 and ∆2.

The elements of C are called faces of C. The inclusion-maximal faces are called facets.
The dimension of C is the largest dimension of its faces.
A simplicial complex is said to be pure if all of its facets have the same dimension.
The f -vector and h-vector of a simplicial complex are defined analogously to the f -vector
and h-vector of a simplicial polytope.
As with polytopes we also distinguish between a combinatorial version and a geometric
version of simplicial complexes. Geometric simplicial complexes are collections of ”geo-
metric” simplices, their vertices v1, . . . , vn are realized in Rd, and their faces are all of
the form conv{vi}i∈I for some I ⊆ {1, . . . , n}.
Abstract simplicial complexes only contain the combinatorial information of the simplicial
complex, its face lattice.
If C is an abstract simplicial complex on the vertices v1, . . . , vn, we denote the faces of C
by their vertex sets, the face of C with vertex set {vi1 , . . . , vis} is written as {vi1 , . . . , vis}.

Let C be a pure d-dimensional simplicial complex with m facets.
A shelling of C is an ordering F1, . . . , Fm of the facets of C such that either C is 0-
dimensional or for every j ∈ {2, . . . ,m},

Fj ∩ (

j−1⋃
i=1

Fi)

is a pure (d− 1)-dimensional simplicial complex.

A pure simplicial complex is shellable if it has a shelling.
Let C be a pure shellable simplicial complex with m facets and given shelling F1, . . . , Fm.
Let Fj be a facet of C with vertex set vert(Fi) = {v1, . . . , vd+1}.
We define the restriction of facet Fi as the set of all vertices v of Fi such that vert(Fi)\{v}
is contained in one of the facets F1, . . . , Fi−1 that appear earlier in the shelling.
In particular the restriction of F1 is the empty set.

Theorem 1.1.2 (See [88, Thm. 8.19]). Let C be a pure d-dimensional simplicial
complex. If C is shellable, then the entries hi of its h-vector h(C) count the facets in a
shelling whose restriction contains i vertices.

The g-vector of a d-dimensional simplicial complex C is defined from its h-vector as:

g(C) := (g0(C), . . . , gb d
2
c(C))

with g0(C) := h0(C) and gi(C) := hi(C)− hi−1(C) for i = 1, . . . , bd2c.

7



introduction

For all integers m, k ≥ 1 there is a unique expression of m as

m =

(
nk
k

)
+

(
nk−1

k − 1

)
+ . . .+

(
ni
i

)
such that nk > nk−1 > . . . > ni ≥ i ≥ 1. This expression is called the k-canonical
representation of m (see Kruskal [54]). Now we define ∂k(m) to be

∂k(m) :=

(
nk − 1

k − 1

)
+

(
nk−1 − 1

k − 2

)
+ . . .+

(
ni − 1

i− 1

)
.

We also define ∂k(0) := 0.
A sequence m = (m0,m1, . . .) of non-negative integers is called an M -sequence if m0 = 1
and mk−1 ≥ ∂k(mk) for k ≥ 1.

The next theorem, the g-theorem for simplicial polytopes, makes it possible to com-
pletely characterize the f -vectors of simplicial polytopes. We state here the numerical
version of the theorem. The algebraic version and generalizations beyond polytopes are
given in Section 4.3.

Theorem 1.1.3 (g-theorem for simplicial polytopes, Billera & Lee [17][16], Stanley [80]).

Let g = (g0, g1, . . . , gb d
2
c) ∈ Zb

d
2
c+1. Then g is the g-vector of a simplicial d-polytope if

and only if g is an M -sequence.

The Dehn–Sommerville equations together with the g-theorem describe the set of all
h-vectors (and by that also of all f -vectors) of simplicial polytopes.
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2
CHARACTERIZ ING FACE AND FLAG

VECTOR PAIRS FOR POLYTOPES

While the f -vector set F3 of 3-polytopes was characterized (easily) by Steinitz [82] in 1906,
a complete characterization of Fd is out of reach for any d ≥ 4. For d = 4, the projections
of the f -vector set F4 ⊂ Z4 onto two of the four coordinates have been determined in
1967–1974 by Grünbaum [38, Sect. 10.4], Barnette–Reay [8] and Barnette [7]. We will
review these results in Section 2.1.1.

This chapter provides new results about coordinate projections of f -vector and flag
vector sets: The first part is an extension to the flag vectors of 4-polytopes. In particular,
in Theorem 2.1.5 we fully characterize the projection of the set of all flag vectors of
4-polytopes to the two coordinates f0 and f03. Our proof makes use of the classification
of all combinatorial types of 4-polytopes with up to eight vertices by Altshuler and
Steinberg [3, 4]. We have not used the classification of the 4-polytopes with nine vertices
recently provided by Firsching [36].

In the second part we look at the set Fd of f -vectors of d-dimensional polytopes,
for d ≥ 5. Here even a complete characterization of the projection Π0,d−1(Fd) ⊂ Z2

to the coordinates f0 and fd−1 seems impossible. We call (n,m) a polytopal pair if
(n,m) ∈ Π0,d−1(Fd), that is, if there is a d-polytope P with f0(P ) = n and fd−1(P ) = m.
These polytopal pairs must satisfy the UBT inequality m ≤ fd−1(Cd(n)) given by the
Upper Bound Theorem [61] [88, Sect. 8.4], where Cd(n) denotes a d-dimensional cyclic
polytope with n vertices, and also n ≤ fd−1(Cd(m)), by duality.

Our second main result of this chapter, Theorem 2.2.2, states that for even d ≥ 4,
every (n,m) satisfying the UBT inequalities as well as n+m ≥

(
3d+1
bd/2c

)
is a polytopal pair.

However, for even d ≥ 6, there are pairs (n,m) with n+m <
(

3d+1
bd/2c

)
that satisfy the UBT

inequalities, but for which there is no polytope: We call these small exceptional pairs.
Theorem 2.2.3 states, in contrast, that for every odd d ≥ 5 there are also arbitrarily large
exceptional pairs.

11



characterizing face and flag vector pairs for polytopes

2.1 face and flag vector pairs for 4-polytopes

2.1.1 Face vector pairs for 4-polytopes

The 2-dimensional coordinate projections Πi,j(F4) of the set of f -vectors of 4-polytopes
to the coordinate planes, as determined by Grünbaum, Barnette and Reay, are given by
the following theorems. See also Figure 2.1.

Theorem 2.1.1 (Grünbaum [38, Thm. 10.4.1]). The set of f -vector pairs (f0, f3) of
4-polytopes is equal to

Π0,3(F4) = {(f0, f3) ∈ Z2 : 5 ≤ f0 ≤ 1
2f3(f3 − 3),

5 ≤ f3 ≤ 1
2f0(f0 − 3)}.

Theorem 2.1.2 (Grünbaum [38, Thm. 10.4.2]). The set of f -vector pairs (f0, f1) of
4-polytopes is equal to

Π0,1(F4) = {(f0, f1) ∈ Z2 : 10 ≤ 2f0 ≤ f1 ≤ 1
2f0(f0 − 1)}

\{(6, 12), (7, 14), (8, 17), (10, 20)}.

The existence parts of Theorems 2.1.1 and 2.1.2 are proved by taking neighborly
polytopes, which yield the polytopal pairs on the upper bound, as well as dual neighborly
polytopes for the polytopal pairs on the lower bound, and by finding some polytopes
for examples of small polyhedral pairs. From these polytopes, polytopes with all other
possible polytopal pairs are constructed by an inductive method of (generalized) stacking
(see Sections 2.1.3 and 2.1.4).

Theorem 2.1.3 (Barnette & Reay [8, Thm. 10]). The set of f -vector pairs (f0, f2) of
4-polytopes is equal to

Π0,2(F4) = {(f0, f2) ∈ Z2 : 10 ≤1
2(2f0 + 3 +

√
8f0 + 9) ≤ f2 ≤ f2

0 − 3f0,

f2 6= f2
0 − 3f0 − 1}

\{(6, 12), (6, 14), (7, 13), (7, 15), (8, 15),

(8, 16), (9, 16), (10, 17), (11, 20), (13, 21)}.

The existence part of Theorem 2.1.3 is proved similarly to the proofs of Theorems 2.1.1
and 2.1.2, additionally considering all 4-dimensional pyramids, bipyramids and prisms
(“cylinders”).

12



2.1 face and flag vector pairs for 4-polytopes

Theorem 2.1.4 (Barnette [7, Thm. 1], with corrections, cf. [49]). The set of f -vector
pairs (f1, f2) of 4-polytopes is equal to

Π1,2(F4) = {(f1, f2) ∈ Z2 : 10 ≤ 1
2f1 +

⌈√
f1 + 9

4 + 1
2

⌉
+ 1 ≤ f2,

10 ≤ 1
2f2 +

⌈√
f2 + 9

4 + 1
2

⌉
+ 1 ≤ f1,

f2 6= 1
2f1 +

√
f1 + 13

4 + 2,

f1 6= 1
2f2 +

√
f2 + 13

4 + 2}
\{(12, 12), (13, 14),(14, 13), (14, 14), (15, 15),

(15, 16), (16, 15),(16, 17), (16, 18), (17, 16),

(17, 20), (18, 16),(18, 18), (19, 21), (20, 17), (20, 23),

(20, 24), (21, 19),(21, 26), (23, 20), (24, 20), (26, 21)}.

For the proof of Theorem 2.1.4, a finite number of polytopes with few edges was found,
and polytopes with all other possible polytopal pairs were constructed using an inductive
method based on “facet splitting” (see Section 2.1.5).

The remaining f -vector projections are given by duality.

2.1.2 Flag vector pair (f0, f03) for 4-polytopes

In the following we will characterize the set

Π0,03(F 4) = {(f0(P ), f03(P )) ∈ Z2 | P is a 4-polytope},

that is, we describe the possible number of vertex-facet incidences of a 4-polytope with a
fixed number of vertices. Equivalently, this tells us the possible average number of facets
of the vertex figures, f03

f0
, for a given number f0 of vertices.

In 1984 Altshuler and Steinberg classified all combinatorial types of 4-polytopes with
up to 8 vertices [3, 4]. This classification makes our proof much easier. We will use the
classification to find examples of polytopes for certain small polytopal pairs and also to
argue that some pairs cannot be polytopal pairs of any 4-polytope. The following is our
first main theorem:
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Figure 2.1: f -vector projections, red dots are exceptional pairs

Theorem 2.1.5. There exists a 4-polytope P with f0(P ) = f0 and f03(P ) = f03 if
and only if f0 and f03 are integers satisfying

20 ≤ 4f0 ≤ f03 ≤ 2f0(f0 − 3),

f03 6= 2f0(f0 − 3)− k for k ∈ {1, 2, 3, 5, 6, 9, 13}

and (f0, f03) is not one of the 18 exceptional pairs

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31),

(7, 33), (7, 34), (7, 37), (7, 40),

(8, 33), (8, 34), (8, 37), (8, 40),

(9, 37), (9, 40), (10, 40), (10, 43).

See Figure 2.2 for a visualization of the projection in the plane (f0, f03 − 4f0).

The proof of Theorem 2.1.5 follows the proofs of the projections of the f -vector ([7],

14



2.1 face and flag vector pairs for 4-polytopes

f0

f03 − 4f0

5 6 7 8 9 10 11

10

20

30

40

50

60

70

80

90

100

110

120

130

polyhedral pairs
exceptional pairs

Figure 2.2: Projection Π0,03(F 4)
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[8], [38]), by taking small polytopal pairs as well as polytopal pairs on the boundaries
and constructing new polytopal pairs from the given ones. The inductive methods used
for this proof are the stacking and truncating constructions from Theorem 2.1.1, 2.1.2
and 2.1.3 and “facet splitting” methods generalized from the methods used in the proof
of Theorem 2.1.4.

Lemma 2.1.6. If P is a 4-dimensional polytope with f0 vertices and f03 vertex-facet
incidences, then

4f0 ≤ f03 ≤ 2f0(f0 − 3).

Proof. Every vertex of a d-polytope lies in at least d facets, so clearly 4f0 ≤ f03 holds for
all 4-dimensional polytopes, with equality if and only if P is simple.

The second inequality follows from a generalization of the upper bound theorem to flag
vectors: For any d-dimensional polytope with n vertices and for any S ⊆ {0, . . . , d− 1},

fS ≤ fS(Cd(n)),

where Cd(n) is the d-dimensional cyclic polytope with n vertices [15, Thm. 18.5.9].
In particular, 4-dimensional cyclic polytopes are simplicial, and for any 4-dimensional
polytope P ,

f03(P ) ≤ f03(C4(n)) = 4f3(C4(n)) = 2n(n− 3)

with equality if and only if P is neighborly.

Lemma 2.1.7. There is no 4-polytope P with f0(P ) = f0 and f03(P ) = f03 if (f0, f03)
is any of the following pairs:

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31),

(7, 33), (7, 34), (7, 37), (7, 40),

(8, 33), (8, 34), (8, 37), (8, 40),

(9, 37), (9, 40), (10, 40), (10, 43),

(f0, 2f0(f0 − 3)− k) for k ∈ {1, 2, 3, 5, 6, 9, 13} and for any f0 ≥ 6.

For the proof of this lemma we need some equations and inequalities which hold for the
flag vector of any 4-polytope. The following are generalizations of the Dehn–Sommerville
equations (Theorem 1.1.1) to all polytopes.

Lemma 2.1.8 (Generalized Dehn–Sommerville equations, Bayer & Billera [12, Thm. 2.1]).
Let P be a d-polytope and S ⊆ {0, 1, . . . , d − 1}. Let {i, k} ⊆ S ∪ {−1, d} such that
i < k − 1 and such that there is no j ∈ S for which i < j < k. Then,

k−1∑
j=i+1

(−1)j−i−1fS∪{j}(P ) = fS(P )(1− (−1)k−i−1).
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2.1 face and flag vector pairs for 4-polytopes

For d = 4, S = {0}, i = 0, k = 4 and with the observation f01 = 2f1 we obtain

f02 = −2f0 + 2f1 + f03. (2.1)

Lemma 2.1.9 (Bayer [11, Thm. 1.3, 1.4]). The flag vector of every 4-polytope satisfies
the inequalities

f02 − 3f2 + f1 − 4f0 + 10 ≥ 0 (2.2)

and − 6f0 + 6f1 − f02 ≥ 0. (2.3)

Inequality (2.3) holds with equality if and only if the 4-polytope is center boolean, that
is, if all its facets are simple.

Using Lemma 2.1.8 and the Euler–Poincaré formula for dimension 4 [38, Thm. 8.1.1]
to rewrite Lemma 2.1.9, we obtain the inequalities

−3f0 − 3f3 + f03 + 10 ≥ 0 (2.4)

and 4f0 − 4f1 + f03 ≤ 0. (2.5)

Proof of Lemma 2.1.7. We first show that there is no polytope P with

(f0(P ), f03(P )) = (f0, 2f0(f0 − 3)− k) for k ∈ {1, 2, 3, 5, 6, 9, 13}.

For k = 1, 2, 3 we prove the non-existence directly. For k = 5, 6 we show that if P is a
polytope with 2f0(f0 − 3)− 7 ≤ f03 ≤ 2f0(f0 − 3)− 5, then necessarily
f03 = 2f0(f0 − 3)− 7. The proof for k = 9 and k = 13 follows similarly.

For k > 0 any 4-polytope with polytopal pair (f0, 2f0(f0− 3)− k) cannot be neighborly,
so

f1 <

(
f0

2

)
.

On the other hand, for (f0(P ), f03(P )) = (f0, 2f0(f0 − 3)− k) Inequality (2.5) reads
1
2f0(f0 − 1)− k

4 ≤ f1. Both inequalities together give(
f0

2

)
− k

4
≤ f1 <

(
f0

2

)
. (2.6)

There is no integer solution for k = 1, 2, 3.

For k = 5, 6, 7, the only possible integer value for f1 is 1
2f0(f0 − 1)− 1. Assume that P

is a polytope with

f1 =

(
f0

2

)
− 1

and
2f0(f0 − 3)− 7 ≤ f03 ≤ 2f0(f0 − 3)− 5.

Since f1 =
(
f0
2

)
− 1, there is a unique pair v1, v2 of vertices of P not forming an edge.

17



characterizing face and flag vector pairs for polytopes

We call such a pair of vertices a non-edge. Any facet of P which is not a simplex must
contain this non-edge, since the only 3-polytope in which every two vertices form an
edge is the simplex. Consider a facet F which is not a simplex, and therefore contains
the unique non-edge. Such a facet F needs to exist, since if P were simplicial, f03 ≡ 0
mod 4. Observe that if F would have more than five vertices, then we could find five
vertices of F for which every two vertices form an edge. This subpolytope of F could not
be d-dimensional, for d ≤ 3. From this contradiction follows that F has five vertices. The
only combinatorial types of 3-polytopes with five vertices are the square pyramid and the
bipyramid over a triangle, only the latter has exactly one non-edge. So F is a bipyramid,
and the non-edge is between the apices of F . If there were another non-tetrahedral facet
of P , it would intersect F in a common face containing the non-edge. Such a face does
not exist, and hence P is a polytope with one bipyramidal facet and t tetrahedral facets,
for some integer t. This implies that

f03 = 4t+ 5 ≡ 1 mod 4.

From the assumption 2f0(f0 − 3)− 7 ≤ f03 ≤ 2f0(f0 − 3)− 5 follows now

f03 = 2f0(f0 − 3)− 7.

Assume now that there is a polytope P with

(f0(P ), f03(P )) = (f0, 2f0(f0 − 3)− 9).

Inequality (2.6) implies that

f1 =

(
f0

2

)
− 2 or f1 =

(
f0

2

)
− 1.

If f1 =
(
f0
2

)
− 1, then we have just proved that f03 ≡ 1 mod 4. Since f03(P ) ≡ 3 mod 4,

it follows that P has two non-edges. The inequality f1 ≤ 3f0 − 6 holds for 3-dimensional
polytopes and any facet F has at most two non-edges:(

f0(F )

2

)
− 2 ≤ f1(F ) ≤ 3f0(F )− 6⇒ f0(F ) < 6.

Any non-tetrahedral facet is hence a polytope with five vertices, a bipyramid over a
triangle or a square pyramid. Since f03(P ) ≡ 3 mod 4, there have to be at least three
non-tetrahedral facets. Bipyramids have one non-edge, not contained in any other facet.
Square pyramids have two non-edges, which are both contained in exactly one other facet.
This contradicts the fact that there are only two non-edges in P . In conclusion, there is
no polytope with (f0, f03) = (f0, 2f0(f0 − 3)− 9).

Finally, assume that there exists a polytope P with polytopal pair

(f0(P ), f03(P )) = (f0, 2f0(f0 − 3)− 13).
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2.1 face and flag vector pairs for 4-polytopes

From Inequality (2.6) it follows that P has
(
f0
2

)
−3,

(
f0
2

)
−2 or

(
f0
2

)
−1 edges. Each facet F

of P has at most three non-edges. For any facet F of P the inequality f1(F ) ≤ 3f0(F )− 6
now yields

(
f0(F )

2

)
− 3 ≤ 3f0(F )− 6 ⇒ f0(F ) < 7. If F has six vertices, it must have 12

edges and three non-edges. There are only two such combinatorially different 3-polytopes,
which both are simplicial.

Assume that P has a facet F with six vertices. Then F contains three non-edges, all
of them not in any 2-face of F and hence not in any other facet. So all other facets of P
are tetrahedra. This is a contradiction to f03(P ) ≡ 3 mod 4.

P is not simplicial, so there are non-tetrahedral facets, all of them with five vertices.
Observe that since there are at most three non-edges, we cannot have more than three
non-tetrahedral facets. Together with f03(P ) ≡ 3 mod 4, this leaves us with two cases:

(i) The non-tetrahedral facets of P are three bipyramids over triangles.

(ii) The non-tetrahedral facets of P are two square pyramids and one

bipyramid over a triangle.

In both cases, let t denote the number of tetrahedra in P . Then

f03(P ) = 2f0(f0 − 3)− 13 = 4t+ 3 · 5
⇒ t = 1

2f0(f0 − 3)− 7

⇒ f3(P ) = t+ 3 = 1
2f0(f0 − 3)− 4.

We can now calculate f2(P ) in two ways. From the Euler–Poincaré formula,

f2 = f1 + f3 − f0

=

(
f0

2

)
− 3 + 1

2f0(f0 − 3)− 4− f0

= f0(f0 − 3)− 7.

Each 2-face lies in exactly two facets. The number of 2-faces of P can therefore also be
calculated by counting the number of 2-faces in each facet. In case (i) this gives:

f2 = 1
2f23 = 1

2(4t+ 3 · 6) = f0(f0 − 3)− 5 6= f0(f0 − 3)− 7.

In case (ii) we obtain:

f2 = 1
2f23 = 1

2(4t+ 2 · 5 + 6) = f0(f0 − 3)− 6 6= f0(f0 − 3)− 7.

So there cannot be a polytope with polytopal pair (f0, 2f0(f0 − 3)− 13).

It remains to show the non-existence of 18 pairs (f0, f03). All combinatorial types of
4-polytopes with up to 8 vertices have been classified by Altshuler and Steinberg [3, 4].
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characterizing face and flag vector pairs for polytopes

From this classification it follows that there are no polytopes with polytopal pairs

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31),

(7, 33), (7, 34), (7, 37), (7, 40),

(8, 33), (8, 34), (8, 37) or (8, 40).

To see that the four pairs (9, 37), (9, 40), (10, 40) and (10, 43) are exceptional pairs, we
make use of the upper bound for the number of facets in terms of the number of vertices
and vertex-facet incidences. If there were a polytope P with polytopal pair (9, 37), (9, 40),
(10, 40) or (10, 43), due to Inequality (2.4) it would need to have less than 8 facets. By
duality, this would give us a polytope P ∗ with f03(P ∗) = 37, 40 or 43 and f0(P ∗) ≤ 7.
From the upper bound f03 ≤ 2f0(f0 − 3) it follows that f0(P ∗) = 7. As seen above,
polytopes with polytopal pair (7, 37) or (7, 40) do not appear in the classification. Pair
(7, 43) is of the type (f0, 2f0(f0 − 3)− 13), which is an exceptional pair.

We will use the classification of 4-dimensional polytopes with up to 8 vertices [3, 4]
together with some classes of polytopes, such as cyclic polytopes, pyramids, and some
additional polytopes, and from those polytopes and their polytopal pairs construct all
other possible polytopal pairs. The methods needed for this construction are described
in the following sections.

2.1.3 Stacking and truncating

The operations stacking and truncating (see [40, Sect. 16.2.1]) turn out to be essential
in finding examples of polytopes for all possible polytopal pairs (f0, f03). Let P be a
4-polytope with at least one simplex facet F and v a point beyond F and beneath all
other facets of P . Let Q = conv({v} ∪ P ). Then

f0(Q) = f0(P ) + 1 and f03(Q) = f03(P ) + 12.

Dually, let Q be a polytope obtained by truncating a simple vertex from a polytope P .
Then

f0(Q) = f0(P ) + 3 and f03(Q) = f03(P ) + 12.

The polytopes obtained through these two methods all have both a simple vertex and
a simplex facet. This means that we can stack vertices on simplex facets and truncate
simple vertices repeatedly. Truncating simple vertices and stacking vertices on simplex
facets inductively, starting from a polytope with (f0, f03) with tetrahedral facet and
simple vertex, we obtain new polytopes with

(f0 + 2m+ n, f03 + 12n) for n ≥ 0, 0 ≤ m ≤ n.
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2.1 face and flag vector pairs for 4-polytopes

Given a polytope P with a square pyramidal facet F , let v be a point beyond F and
beneath all other facets of P . Let Q = conv({v} ∪ P ). Then

f0(Q) = f0(P ) + 1 and f03(Q) = f03(P ) + 16.

The results in this section are simple consequences from [38, Thm. 5.2.1], with corrections
from [2].

2.1.4 Generalized stacking on cyclic polytopes

We need some more methods, especially to create polytopes with polytopal pair (f0, f03)
close to the upper bound f03 = 2f0(f0 − 3). For our next construction we need the
observation that every cyclic 4-polytope with n vertices has edges that lie in exactly n− 2
facets. Such edges are called universal edges. The following construction was used by
Grünbaum [38, Sect. 10.4.1] for the characterization of the sets Π0,3(F4) and Π0,1(F4).
Starting from a cyclic polytope with n vertices, we can obtain new polytopes by stacking a
vertex onto it, such that the vertex lies beyond several facets. Let Ri(n), i ∈ {1, . . . , n−3},
denote a polytope obtained from the cyclic polytope C4(n) with n vertices as the convex
hull of C4(n) and a point v, where v is beyond i facets of C4(n) sharing a universal edge.
Let F1, . . . , Fi denote these i facets, such that Fj and Fj+1 meet in a common 2-face, for
all j = 1, . . . , i− 1. Then the new polytope Ri(n) has one more vertex than C4(n) and
the following facets:

(1) All 1
2n(n− 3)− i facets of C4(n) which v lies beneath.

(2) Facets which are convex hulls of v and 2-faces of C4(n) that are contained in both a
facet which v is beyond and a facet which v is beneath. There are two types of these
facets:

(2a) Two such facets for each of the i− 2 facets F2, . . . , Fi−1 which v lies beyond and
which share two 2-faces with other facets which v lies beyond.

(2b) Three new facets for each of the two facets F1 and Fi which v lies beyond and
which share one 2-face with other facets which v lies beyond.

Note that all these facets are simplices. In conclusion, for 1 ≤ i ≤ n− 3,

f0(Ri(n)) = n+ 1 and f03(Ri(n)) = 2n(n− 3) + 4i+ 8.

Observe that
f03(C4(n+ 1)) = f03(C4(n)) + 4n− 4,

so if i = n− 3, we obtain again a neighborly polytope, with n+ 1 vertices.
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2.1.5 Facet splitting

We need to generalize the stacking method even more to obtain non-simplicial polytopes,
compare to the A-sewing construction of Lee and Menzel [58]. For easier visualization,
we choose to work in the dual setting. Instead of adding a new vertex to a polytope,
we will create a new facet in the dual polytope. This method of facet splitting was used
by Barnette [7] for the classification of Π1,2(F4): Consider a facet F of a 4-polytope P
and a hyperplane H which intersects the relative interior of F in a polygon X. If on
one side of H, the only vertices of P are simple vertices of F , then we can obtain a new
polytope P ′ by separating facet F into two new facets by the polygon X. We say that
P ′ is obtained from P by facet splitting.

2.1.5.1 Dual of a cyclic polytope

We will split a facet of the dual of a cyclic polytope (see Barnette [7]). C∗4 (n), the dual of
the cyclic polytope with n vertices, is a simple polytope with n facets, each facet having
2(n− 3) vertices. The facets are all wedges over (n− 2)-gons, that is, polytopes with
two triangular 2-faces, n− 5 quadrilateral 2-faces and two (n− 2)-gons meeting in an
edge. Let G be a 2-dimensional plane in the affine hull of a facet F of C∗4 (n). Let X be
the intersection of F and G. All vertices of C∗4(n) are simple, so we can obtain a new
polytope by facet splitting of C∗4 (n) by choosing a hyperplane H which contains G such
that on one side of H the only vertices of C∗4(n) are vertices of F . Such a hyperplane
can be found by taking the facet-defining hyperplane of F and rotating it about G. The
combinatorial properties f1 and f03 of the polytope obtained through facet splitting
depend on the choice of G: We can choose G not to intersect any vertices of F . Then,
for any i such that 3 ≤ i ≤ n− 2, X = G ∩ F can be chosen to be an i-gon. Let δ0(i, n)
denote the polytope obtained through facet splitting for this choice of G (see Figure 2.3a).
Now δ0(i, n) has one more facet and i more vertices than C∗4(n). As C∗4(n) is a simple
polytope, all of its edges lie in exactly three facets and each of the i new vertices of
δ0(i, n) lies in four facets. The new polytope has therefore 4i more vertex-facet incidences
than C∗4 (n). If we instead choose G to intersect exactly one vertex of F , X can again be
any i-gon for 3 ≤ i ≤ n− 2. Call this polytope δ1(i, n). It has one more facet and i− 1
more vertices than C∗4 (n). The i− 1 new vertices are simple, and the one vertex of C∗4 (n)
which lies in X is contained in one additional facet. In total, f03 increases by 4i− 3. The
polytopes δ0(i, n) and δ1(i, n) are used in the characterization of Π1,2(F4) [7].

Similarly, let δ2(i, n) denote the polytope obtained when G intersects two vertices of F .
As before, i can be chosen to be any integer between 3 and n− 2. The new polytope
has one more facet, i− 2 more vertices and 4i− 6 more vertex-facet incidences. If we
choose G to intersect F in three vertices, as the intersection of G and F we can obtain
i-gons for 3 ≤ i ≤ n− 3 (see Figure 2.3b). The new polytope, denoted by δ3(i, n), has
one more facet, i− 3 more vertices and 4i− 9 more vertex-facet incidences. Let us look
at the duals of these polytopes. For 3 ≤ i ≤ n− 2 we obtain polytopes δ∗0(i, n), δ∗1(i, n)
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2.1 face and flag vector pairs for 4-polytopes

(a) δ0(i, 8) (b) δ3(i, 8)

Figure 2.3: Facet of C∗
4 (8) split by an i-gon

and δ∗2(i, n) with

(f0(δ∗0(i, n)), f03(δ∗0(i, n))) = (n+ 1, 2n(n− 3) + 4i),

(f0(δ∗1(i, n)), f03(δ∗1(i, n))) = (n+ 1, 2n(n− 3) + 4i− 3),

(f0(δ∗2(i, n)), f03(δ∗2(i, n))) = (n+ 1, 2n(n− 3) + 4i− 6).

For 3 ≤ i ≤ n− 3 we obtain polytopes δ∗3(i, n) with

(f0(δ∗3(i, n)), f03(δ∗3(i, n))) = (n+ 1, 2n(n− 3) + 4i− 9).

In particular, the polytopes δ∗0(i, n), δ∗1(i, n), δ∗2(i, n) and δ∗3(i, n) have simplex facets.

2.1.5.2 Polytopes with a bipyramidal facet

Given a polytope P with a facet B which is a bipyramid over a triangle, such that at
least one apex v of B is a simple vertex, we can split the bipyramid into two tetrahedra
by “moving” v outside the affine hull of B, along the unique edge which contains v and
does not belong to B. The new polytope P̃ has the same number of vertices and one
more facet than P . The apices of the bipyramid still belong to the same number of facets
as before, but the other three vertices now belong to one more facet. In total, the number
of vertex-facet incidences increases by 3. Hence,

(f0(P̃ ), f03(P̃ )) = (f0(P ), f03(P ) + 3).

Note that P̃ has simplex facets and that any simple vertex of P is a simple vertex of P̃ .
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2.1.6 Construction of polytopal pairs (f0, f03)

We can now prove Theorem 2.1.5. First, we list some examples of polytopes with small
polytopal pairs (f0, f03) for f03 ≤ 80 with simplex facet and/or simple vertex, see Table 2.1.
The second column in the table explains how the polytope is found. Polytopes Pi are
polytopes with 7 or 8 vertices known from the classification of all polytopes with up to 8
vertices. Facet lists of all polytopes Pi can be found in Appendix A. Dual of (f0, f03)
means that the polytope is the dual of the polytope with polytopal pair (f0, f03) in the
table. A polytope P ∗ denotes the dual of a polytope P . The methods stacking on a
square pyramidal facet and splitting a bipyramidal facet and the polytopes Ri(n) are
explained above.

Together with the inductive stacking and truncating methods from Section 2.1.3, this
gives us all possible pairs for f03 ≤ 80 and, in particular, polytopal pairs (f0, f03) with
simple vertex and simplicial facet, for f0 ≥ 9, 53 ≤ f03 ≤ 64 and 4f0 ≤ f03. See Figure 2.4.
Stacking on simplex facets and truncating simple vertices of these 87 pairs of polytopes
inductively will give all polytopal pairs (f0, f03) bounded by the lower bound 4f0 ≤ f03,
f03 ≥ 53, and a line with slope 12 going through (9, 64). We have hence proved the
following.

Lemma 2.1.10. There exists a 4-polytope P with f0(P ) = f0 and f03(P ) = f03

whenever

4f0 ≤ f03 ≤ 12f0 − 44 and f03 ≥ 53.

In the next step we construct polytopes with 12f0 − 44 ≤ f03 ≤ 2f0(f0 − 3). In order
to do so, we give examples of polytopes with simplex facet close to the upper bound. The
cyclic polytopes have polytopal pairs

(f0(C4(n)), f03(C4(n))) = (n, 2n(n− 3)),

(f0(C4(n+ 1)), f03(C4(n+ 1))) = (n+ 1, 2n(n− 3) + 4n− 4).

Our goal is to find polytopes with tetrahedral facets and polytopal pair

(n+ 1, 2n(n− 3) + i), for i = 0, . . . , 4n− 5.

If we find such polytopes, combined with the stacking and truncating operations from
Section 2.1.3, this gives us all remaining polytopal pairs. In fact, by Lemma 2.1.7, there
are no polytopes with polytopal pair (n+1, 2n(n−3)+4n−k) for k ∈ {5, 6, 7, 9, 10, 13, 17}.
In these cases, the “next” polytope in the stacking process, a polytope with polytopal
pair (n+ 2, 2n(n− 3) + 4n− k + 12) for k ∈ {5, 6, 7, 9, 10, 13}, is given for m = n+ 1 by
the polytope with (m+ 1, 2m(m− 3) + 16− k). For k = 17, the polytope with polytopal
pair (m+ 1, 2m(m− 3)− 1) can be obtained through stacking a vertex onto two facets
of δ∗3(n− 3, n) with polytopal pair (n+ 1, 2n(n− 3) + 4n− 21) = (m, 2m(m− 3)− 17)
(see Section 2.1.5.1). Stacking a vertex onto δ∗3(n− 3, n), such that the vertex is beyond
two simplex facets which have a common 2-face, yields a new polytope with 16 more
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(f0, f03) Description

Polytopes with ∆3-facet and simple vertex

(5, 20) 4-simplex

(6, 26) 2-fold pyramid over quadrangle

(6, 29) pyramid over triangular bipyramid

(7, 29) pyramid over triangular prism

(7, 32) 2-fold pyramid over pentagon

(7, 35) P1

(7, 36) P2

(7, 39) P3

(7, 45) P5

(8, 35) P ∗1

(8, 36) P ∗2

(8, 38) 2-fold pyramid over hexagon

(8, 39) P8

(8, 42) P9

(8, 45) P11

(8, 46) P12

(8, 49) P13

(8, 52) P14

(8, 55) P15

(8, 59) P16

(8, 62) P18

(9, 39) P ∗3

(9, 42) P ∗9

(9, 45) split bipyramid in (9, 42)

(9, 46) split bipyramid in (9, 43)

(9, 49) split bipyramid in (9, 46)

(9, 52) stack onto

square pyramid in (8, 36)

(10, 45) P ∗11

(10, 46) P ∗12

(10, 49) dual of (9, 49)

(10, 52) split bipyramid in (10, 49)

(10, 55) stack onto

square pyramid in (9, 39)

(f0, f03) Description

(11, 45) P ∗5

(11, 49) P ∗13

(11, 52) dual of (9, 52)

(11, 55) dual of (10, 55)

(12, 52) P ∗14

(13, 55) P ∗15

Polytopes with ∆3-facet

(6, 36) cyclic polytope C4(6)

(7, 42) P4

(7, 46) P6

(7, 49) P7

(7, 52) R2(6)

(7, 56) cyclic polytope C4(7)

(8, 43) P10

(8, 60) P17

(8, 63) P19

(8, 65) P20

(8, 66) P21

(8, 68) P22

(8, 69) P23

(8, 70) P24

(8, 72) P25

(8, 73) P26

(8, 76) P27

(8, 80) cyclic polytope C4(8)

(9, 79) stack onto

square pyramid in (8, 63)

Polytopes with simple vertex

(9, 36) dual of cyclic polytope C4(6)

(9, 43) P ∗10

(10, 42) P ∗4

(11, 46) P ∗6

(12, 49) P ∗7

(13, 52) R2(6)∗

Table 2.1: Some polytopal pairs 25
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f03
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4f0

f03 = 2f0(f0 − 3)

obtained through stacking or truncating
obtained through truncating simple vertex
obtained through stacking on simplex facet

exceptional pairs

pairs with simple vertex
pairs with simplex facet
pairs with simplex facet and simple vertex

Figure 2.4: Polytopal pairs with f03 ≤ 80
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2.1 face and flag vector pairs for 4-polytopes

vertex-facet incidences and one additional vertex (cf. Section 2.1.4). So the new polytope
has the required polytopal pair (m+ 1, 2m(m− 3)− 1).

To find examples of polytopes with (f0, f03) = (n+ 1, 2n(n− 3) + i), for f0 = n+ 1 ≥ 9,
i = 0, . . . , 4n− 4, i 6= 4n− j for j ∈ {5, 6, 7, 9, 10, 13, 17}, we use the constructions from
Sections 2.1.4 and 2.1.5. Table 2.2 shows how the polytopes are constructed.

For f0 ≤ 8 we use the fact that polytopes with up to 8 vertices have been classified
(see Table 2.1). In particular, we can construct examples of polytopes with simplex facet,
simple vertex and polytopal pair

(n+ 2, 2n(n− 3) + i), for all i = 0, . . . , 4n− 5, n ≥ 7.

If we now inductively stack vertices on simplex facets and truncate simple vertices, we
obtain polytopes with polytopal pairs (f0, f03) with f0 ≥ 9 bounded from above by
2f0(f0 − 3) and from below by a line of slope 4, going through (9, 56). So we have found
all polytopal pairs with

4f0 + 20 ≤ f03 ≤ 2f0(f0 − 3) (2.7)

for all f0 ≥ 9, with the only exceptions for each value of f0 being the 7 pairs mentioned
above. Lemma 2.1.10 and Inequality (2.7) together give all pairs (f0, f03) with f0 ≥ 9,
f03 ≥ 53 within the bounds, excluding the exceptional pairs. Since we classified all
possible polytopal pairs with f03 ≤ 80, and in particular all polytopal pairs with f0 ≤ 8,
we have now proved Theorem 2.1.5.

2.1.7 Other flag vector pairs

The flag vector of a 4-polytope has 16 entries. Besides f∅ = 1, the following nine entries
depend on only one other entry:

f01 = 2f1, f12 = f02, f13 = f02,

f23 = 2f2, f012 = 2f02, f013 = 2f02,

f023 = 2f02, f123 = 2f02, f0123 = 4f02.

These equations are some of the Generalized Dehn–Sommerville equations for 4-dimensional
polytopes (Lemma 2.1.8). To obtain all 2-dimensional coordinate projections of the flag
vectors of 4-polytopes, we therefore only have to consider the six entries f0, f1, f2, f3,
f02 and f03. We still need to determine the projections

Π0,02(F 4),Π1,02(F 4),Π1,03(F 4) and Π02,03(F 4).

All other cases have already been done, or they follow directly, either by duality or by
the linear dependence on a single entry.

For the projections Π0,02(F 4) and Π1,02(F 4), the pairs (f0, f02) in Π0,02(F 4) satisfy
the fairly obvious bounds 6f0 ≤ f02 ≤ 3f0(f0 − 3). Equality holds for simple and
neighborly polytopes, respectively. Similarly the pairs (f1, f02) in Π1,02(F 4) satisfy
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characterizing face and flag vector pairs for polytopes

f03 ≡ 0 mod 4

f03 Example of polytope

2n(n− 3) stack onto ∆3-facet of Rn−7(n− 1)

2n(n− 3) + 4 stack onto ∆3-facet of Rn−6(n− 1)

2n(n− 3) + 8 stack onto ∆3-facet of Rn−5(n− 1)

2n(n− 3) + 12 stack onto ∆3-facet of C4(n)

2n(n− 3) + 16 R2(n)

2n(n− 3) + 20 R3(n)

. . . . . .

2n(n− 3) + 4n− 8 Rn−4(n)

2n(n− 3) + 4n− 4 C4(n+ 1)

f03 ≡ 1 mod 4

2n(n− 3) + 1 stack onto ∆3-facet of δ∗1(n− 4, n− 1)

2n(n− 3) + 5 stack onto ∆3-facet of δ∗1(n− 3, n− 1)

2n(n− 3) + 9 δ∗1(3, n)

. . . . . .

2n(n− 3) + 4n− 11 δ∗1(n− 2, n)

2n(n− 3) + 4n− 7 does not exist

f03 ≡ 2 mod 4

2n(n− 3) + 2 stack onto ∆3-facet of δ∗2(n− 3, n− 1)

2n(n− 3) + 6 δ∗2(3, n)

. . . . . .

2n(n− 3) + 4n− 14 δ∗2(n− 2, n)

2n(n− 3) + 4n− 10 does not exist

2n(n− 3) + 4n− 6 does not exist

f03 ≡ 3 mod 4

2n(n− 3) + 3 δ∗3(3, n)

. . . . . .

2n(n− 3) + 4n− 21 δ∗3(n− 3, n)

2n(n− 3) + 4n− 17 does not exist

2n(n− 3) + 4n− 13 does not exist

2n(n− 3) + 4n− 9 does not exist

2n(n− 3) + 4n− 5 does not exist

Table 2.2: Polytopal pairs (n+ 1, 2n(n− 3) + i), n ≥ 8
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2.2 face vector pair (f0, fd−1) for d-polytopes

3f1 ≤ f02 ≤ 6f1 − 3
√

8f1 + 1 − 3, with equality for 2-simple polytopes (each edge is
contained in exactly 3 facets) and neighborly polytopes, respectively.

The projection sets Π1,03(F 4) and Π02,03(F 4) are more difficult to describe even
approximately. Upper bounds for f03 in terms of f1 are achieved for neighborly polytopes,
and in terms of f02 for center boolean polytopes. The problem of finding tight lower
bounds for f03 in terms of f1 and f02 is related to the open problem of finding an upper
bound for the fatness F = f1+f2−20

f0+f3−10 of a polytope [35].

2.2 face vector pair (f0, fd−1) for d-polytopes

Now we work towards analogous results in higher dimensions. In one instance, recently
the projection Π0,1(F5) of the f -vector of 5-polytopes to (f0, f1) was determined almost
simultaneously by Kusunoki and Murai [56] and by Pineda-Villavicencio, Ugon and
Yost [71].

We consider Π0,d−1(Fd), the projection of the set of f -vectors of d-polytopes to (f0, fd−1).
In the following, for given d, we will consider pairs of integers (n,m) and analyze under
which conditions there are d-polytopes with n vertices and m facets.

Definition 2.2.1. For fixed dimension d, a pair (n,m) ∈ Nn is d-large if n+m ≥
(

3d+1
bd/2c

)
;

it is d-small otherwise. A pair (n,m) will be called an exceptional pair if m ≤ fd−1(Cd(n))
and n ≤ fd−1(Cd(m)), and if there is no d-polytope with n vertices and m facets.

The situation looks as follows:

(1) If P is a d-polytope with n vertices and m facets, then

m ≤ fd−1(Cd(n)), n ≤ fd−1(Cd(m)).

(2) If (n,m) is a pair of integers, n,m ≥ d+ 1 such that for a given dimension d,
m ≤ fd−1(Cd(n)), n ≤ fd−1(Cd(m)), then there usually exists a d-polytope with n
vertices and m facets:

(2.1) For d ≤ 4 no exceptional pairs exist.

(2.2) For even d ≥ 6, only finitely many exceptional pairs exist, all of which are
d-small (see Figure 2.5a).

(2.3) For odd d ≥ 5, there exist finitely many d-small exceptional pairs and addi-
tionally infinitely many d-large exceptional pairs for m odd and
fd−1(Cd(n− 1)) < m < fd−1(Cd(n)) and for n odd and
fd−1(Cd(m− 1)) < n < fd−1(Cd(m)) (see Figure 2.5b).

(1) are the UBT inequalities.

(2.1) holds trivially for d ≤ 2. For dimension 3, it is given by Steinitz’ classification of all
3-dimensional polytopes [82]. For dimension 4, this is Theorem 2.1.1.

(2.2) is Theorem 2.2.2 and (2.3) is Theorem 2.2.3.
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f0

fd−1

no exceptional pairs

f0

fd−1

exceptional pairs exist

(a) even dimensions (b) odd dimensions

Figure 2.5: Projections Π0,d−1(Fd)

Theorem 2.2.2. Let d ≥ 2 be even and (n,m) d-large. Then there exists a d-polytope
P with n vertices and m facets if and only if

m ≤ fd−1(Cd(n)) and n ≤ fd−1(Cd(m)).

The first inequality holds with equality if and only if P is neighborly, and the second
inequality holds with equality if and only if P is dual-neighborly.

However, for d ≥ 6 d-small exceptional pairs (n,m) exist.

Proof. The necessity of the conditions and the equality cases are direct consequences of
the upper bound theorem (McMullen [61]). For the sufficiency, consider the g-vector of
simplicial polytopes.

The d
2 -th entry of the g-vector of a cyclic polytope Cd(n) in even dimension d = 2k

with n vertices is

gd/2(Cd(n)) = gk(C2k(n)) =

(
n− k − 2

k

)
.

A consequence of the sufficiency part of the g-theorem (Billera & Lee [17, 16]) is that
there exist simplicial 2k-polytopes with n vertices, gi = gi(C2k(n)) and gk = l for all
1 ≤ i ≤ k − 1 and for all 0 ≤ l ≤

(
n−k−2

k

)
.

For all simplicial 2k-polytopes,

f2k−1 = (2k + 1) + g1(2k − 1) + g2(2k − 3) + · · ·+ gk−1 · 3 + gk.

Hence, there exist simplicial 2k-polytopes with n vertices and f2k−1(C2k(n))− l facets,
for 0 ≤ l ≤

(
n−k−2

k

)
. Observe that

(
n−k−2

k

)
> f2k−1(C2k(n))− f2k−1(C2k(n− 1)) for large

n. In particular, this inequality holds for n ≥ 7k + 2 = 7
2d + 2. This means that for
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2.2 face vector pair (f0, fd−1) for d-polytopes

n ≥ 7
2d+ 2 there are simplicial 2k-polytopes with n vertices and m facets, for all integers

m such that f2k−1(C2k(n− 1)) ≤ m ≤ f2k−1(C2k(n)). Now we can stack a vertex on a
facet of each of these polytopes and obtain polytopes with one more vertex and d−1 more
facets. The new polytope has a simple vertex and simplex facets, so we can repeatedly
stack vertices on simplex facets and truncate simple vertices. Truncating simple vertices
gives a polytope with d− 1 more (simple) vertices and one additional (simplex) facet.
Consider the pair (7k + 2,m): We have just seen that this pair is not an exceptional pair
as long as m ≥ f2k−1(C2k(7k + 1)). Stacking a vertex on a facet of a polytope with pair
(7k + 2, f2k−1(C2k(7k + 1))) gives a polytope with simplex facet, simple vertex and pair
(n0,m0) := (7k+ 3, f2k−1(C2k(7k+ 1)) + d− 1). Consider the line `1 of slope 1

d−1 through
(n0,m0). There are no exceptional pairs with n ≥ n0 above `1. The line `1 intersects the
line `2 : m = n in a pair (n, n) such that

n =
k + 1

12k + 2

(
6k + 1

k

)
<

1

2

(
6k + 1

k

)
.

Together with the dual polytope, we have obtained all polytopes with pairs (n,m) within
the bounds such that (

3d+ 1
d
2

)
≤ n+m.

Hence, there are no d-large exceptional pairs.

On the other hand, there are exceptional pairs for d-small (n,m). As an example
consider d-polytopes with d+ 2 vertices. All d-polytopes with d+ 2 vertices are simplicial
or (multiple) pyramids over some r-polytope with r + 2 vertices [88, Sect. 6.5].

There are exactly bd2c = k different combinatorial types of simplicial d-polytopes with
d+2 vertices ([38, Sect. 6.1]). One of these types is the stacked polytope with 2d facets. In
particular, for d ≥ 6, 2d ≤ k2 +k+1. Any non-simplicial d-polytope with d+2 vertices is a
pyramid and has thus at most fd−1(Pyr(Cd−1(d+1))) = fd−2(Cd−1(d+1))+1 = k2 +k+1
facets for d = 2k. This means that there are at most k − 1 different combinatorial types
of (2k)-polytopes with 2k + 2 vertices and more than k2 + k + 1 facets.

The cyclic polytope with d + 2 vertices has k2 + 2k + 1 facets for even dimensions
d = 2k. So there are k pairs (n,m) for given n and k2 + k + 1 < m ≤ fd−1(Cd(n)), but
at most k − 1 combinatorially non-equivalent polytopes. Therefore, for n = d+ 2 and
even d ≥ 6 there must be at least one exceptional pair.

An example is the pair (n,m) = (8, 14) for dimension 6: There is no 6-polytope with 8
vertices and 14 facets [37], but there are 6-polytopes with 8 vertices and 13 or 15 facets.
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characterizing face and flag vector pairs for polytopes

Theorem 2.2.3. Let d ≥ 3 be odd. If (n,m) is d-large, then there exist d-polytopes
with n vertices and m facets only if

m ≤ fd−1(Cd(n)) and n ≤ fd−1(Cd(m))

with d-large exceptional pairs occurring only for d ≥ 5, if m is odd and
fd−1(Cd(n− 1) ≤ m and if n is odd and fd−1(Cd(m− 1) ≤ n.

However, for d ≥ 5 d-small exceptional pairs (n,m) exist.

Proof. The necessity follows again from the upper bound theorem (McMullen [61]). For
the sufficiency, we follow the proof of Theorem 2.2.2.

A cyclic polytope Cd(n) in odd dimension d = 2k + 1 with n vertices has gb d
2
c equal to

gb d
2
c(Cd(n)) = gk(C2k+1(n)) =

(
n− k − 3

k

)
.

Again, by the g-theorem [17, 16, 80], there exist simplicial (2k + 1)-polytopes with n
vertices, gi = gi(C2k(n)) and gk = l for all 1 ≤ i ≤ k − 1 and for all 0 ≤ l ≤

(
n−k−3

k

)
.

For all simplicial (2k + 1)-polytopes,

fd−1 = (d+ 1) + g1(d− 1) + g2(d− 3) + · · ·+ gk−1 · 4 + gk · 2.

Hence, there exist simplicial (2k + 1)-polytopes with n vertices and f2k(C2k+1(n))− 2l
facets, for 0 ≤ l ≤

(
n−k−3

k

)
.

We have that 2
(
n−k−3

k

)
> f2k(C2k+1(n)) − f2k(C2k+1(n − 1)) holds for large n, in

particular for d = 5 if n ≥ 9 and for general d if n ≥ 5k + 1 = 5
2d− 3

2 . With the same
calculations as before, we obtain polytopes with n vertices and m facets for all pairs
(n,m) if n and m are even and if

n+m ≥ 2

2k − 1
(4k

(
4k − 1

k

)
+ 4k2 − 5k − 2).

For d ≥ 7, this implies that

n+m ≥
(

6k + 4

k

)
=

(
3d+ 1⌊

d
2

⌋ ).
For d = 5, we check that the constructions give us all polytopes with n+m ≥ 58, where(

3·5+1
2

)
> 58. We can also construct polytopes with an odd number of facets, as long as

m ≤ fd−1(Cd(n− 1)). For this, we need a generalized stacking construction similar to the
one described in Section 2.1.4. Starting with a simplicial polytope, we place a new vertex
beyond one facet, inside the affine hull of a second facet and beneath all other facets.
The new polytope has one new (simple) vertex and d− 2 new facets. The polytope has
one facet which is a bipyramid over a triangle. All other facets are simplices, so we can
apply the inductive stacking and truncating method from before.
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2.2 face vector pair (f0, fd−1) for d-polytopes

There are exceptional pairs (n,m) if m is odd and close to fd−1(Cd(n)): Non-simplicial
d-polytopes with n vertices have at most fd−1(Cd(n)) − bd2c facets. This is a direct
consequence of the upper bound theorem for almost simplicial polytopes by Nevo, Pineda-
Villavicencio, Ugon & Yost [68]. These authors give upper bounds for the number of faces
of the family P(d, n, s) of almost simplicial polytopes, d-polytopes on n vertices where
one facet has d+ s ≥ d+ 1 vertices and all other facets are simplices. Such polytopes
have at most fd−1(Cd(n))− bd2c facets. (This follows from [68], Thm. 1.2 and Prop. 4.2.)

For any non-simplicial polytope P on n vertices there exists an almost-simplicial
polytope on n vertices (i.e. a polytope with exactly one non-simplicial facet) that has at
least as many i-faces as P : Let F be a non-simplicial facet of P . If we successively pull
every vertex of vertP\ vertF (in the sense of [33]) and then pull every vertex v ∈ vertF
within the affine hull of F , then the resulting polytope is almost simplicial, with at least as
many i-dimensional faces as P . So the i-faces of non-simplicial d-polytopes on n vertices
are maximized among the almost simplicial d-polytopes on n vertices. In particular, for
any non-simplicial d-polytope P , fd−1(P ) ≤ fd−1(Cd(n))− bd2c. Thus, for odd d, odd m,
and

fd−1(Cd(n))−
⌊
d
2

⌋
< m < fd−1(Cd(n)),

(n,m) is an exceptional pair.

The rest of the theorem for d-large (n,m) follows by duality. For d-small (n,m), the
non-constructive proof for the existence of exceptional pairs in the even-dimensional case
works as well in the odd-dimensional case. It can be slightly improved: All d-polytopes
with d+ 2 vertices are simplicial or (multiple) pyramids over some r-polytope with r + 2
vertices [88, Sect. 6.5]. In particular, for d = 2k + 1 and odd m, any polytope P with
d+ 2 vertices and m facets is a pyramid over some (d− 1)-polytope Q with d+ 1 vertices
and m− 1 facets. Hence,

m− 1 = fd−2(Q) ≤ fd−2(Cd−1(d+ 1)) = k2 + 2k + 1.

Comparing this to
fd−1(Cd(d+ 2)) = k2 + 3k + 2,

we see that there are
⌊
k
2

⌋
exceptional pairs (n,m) for which there are no (2k+1)-polytopes,

such that m is odd and

k2 + 2k + 2 < m < k2 + 3k + 2.

Remark. This implies that for for odd d the projection sets Π0,d−1(Fd) have infinitely
many exceptional pairs, all of them near the boundary. For a complete characterization of
d-large pairs in Π0,d−1(Fd) one would need to analyze closely the possible facet numbers
of non-simplicial polytopes with many facets.

For low dimensions, we can improve the bounds for the d-large pairs. We have seen
that in dimension 5, a pair can be called d-large if n+m ≥ 58. Similarly, for dimension
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6, the bound for d-large pairs can be reduced to n+m ≥ 132: It can be seen from the
g-theorem that simplicial 6-polytopes with n vertices have 5n− 28, 5n− 25, 5n− 24, or
5n− 22 to f5(C6(n)) facets. For n ≥ 11, it holds that 5n− 22 < f5(C6(n− 1)). From
this, the bound n+m ≥ 132 for d-large pairs can be derived.
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3
SEMI -ALGEBRAIC SETS OF F -VECTORS

The goal of this chapter is to analyze the “complexity” of f -vector sets of polytopes. We
want to say that f -vector sets in general can be very complicated to describe. We will do
this by defining “nice” ways to describe sets, and then we will show that some f -vector
sets do not admit such a “nice” description.

First, we give a brief overview over some complexity measures of sets of integers, most
importantly the notion of Diophantine sets. In Section 3.3 we modify this to the (more
restrictive) notion of semi-algebraic sets of lattice points.

3.1 computability and hilbert’s tenth problem

In this section we talk about algorithms (or programs). Informally, by an algorithm or
program we mean a finite sequence of instructions that can be executed by an abstract
computer or machine. To formalize the notion of an algorithm, Turing [85] described in
1936 what he called “automatic machines” which became known as Turing machines. For
a formal definition of a Turing machine, see for example [48, Sect. 8.2.2].

A set of natural numbers is called computable if there is an algorithm that decides within
a finite amount of steps whether a given number belongs to the set or not. Computable
sets are also known as recursive or decidable sets.
A set of natural numbers is called recursively enumerable (or computably enumerable or
Turing-recognizable) if there is an algorithm which enumerates the numbers in the set.
That is, given a number, if the number is from the set, the algorithm will determine after
finitely many steps that the number is in the set. If the given number was not in the set,
the algorithm might decide that the number is not in the set or it might run forever.

Computable sets are recursively enumerable, but not all recursively enumerable sets
are computable. The classical example for a set which is recursively enumerable, but not
computable comes from the halting problem:
The halting problem asks for a program (an algorithm) which takes as its input another
program and an input for the program and decides in a finite amount of time whether
the program halts with this input.
Turing showed in 1936 that such a program cannot exist [85]. The halting problem was
one of the first examples of an undecidable problem, a decision problem (“yes” or “no”
question) for which no algorithm exists that can give for any input a definite “yes” or
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“no” answer. The halting set is the set of all tuples of programs and inputs such that the
program halts with the given input.
The halting set is recursively enumerable but not computable.

A Diophantine equation is a polynomial equation P (x1, . . . , xn) = 0 with integer
coefficients.
Any set of solutions to a finite system of Diophantine equations can equivalently be
described by a single Diophantine equation: Observe that (x1, . . . , xn) is a solution to
the system of polynomial equations

P1(x1, . . . , xn) = 0, . . . , Pn(x1, . . . , xn) = 0

if and only if it is a solution to the polynomial equation

P1(x1, . . . , xn)2 + . . .+ Pn(x1, . . . , xn)2 = 0.

A Diophantine set is a subset of Nm of the form{
(a1, . . . , am) ∈ Nm

∣∣∣∃ b1, . . . , bk so that P (a1, . . . , am, b1, . . . , bk) = 0
}

for some Diophantine equation P (x1, . . . , xm, y1, . . . , yk) = 0.
For a Diophantine set S ⊆ Nm, the minimal number k such that there exists a Diophantine
equation P (x1, . . . , xm, y1, . . . , yk) = 0 with{

S = (a1, . . . , am) ∈ Nm
∣∣∣∃ b1, . . . , bk so that P (a1, . . . , am, b1, . . . , bk) = 0

}
is called the Diophantine rank of S. Matiyasevich proved that every Diophantine set has
rank at most 9 (see [51], and most recently Sun [83]).
The problem of finding solutions to a Diophantine equation in natural numbers is
essentially equivalent to the problem of finding integer solutions to a Diophantine equation:
By Lagrange’s four-square theorem every natural number has a representation as a sum
of four squares. This means that finding all solutions (x1, . . . , xn) in natural numbers to

P (x1, . . . , xn) = 0

can be rewritten as the problem of finding all integer solutions
(a1, b1, c1, d1, . . . , an, bn, cn, dn) to

P (a2
1 + b21 + c2

1 + d2
1, . . . , a

2
n + b2n + c2

n + d2
n) = 0.

On the other hand, the problem of finding all integer solutions (x1, . . . , xn) to

P (x1, . . . , xn) = 0

can be rewritten as the problem of finding all solutions (a1, b1, . . . , an, bn) in natural

36



3.1 computability and hilbert’s tenth problem

numbers to
P (a1 − b1, . . . , an − bn) = 0.

Diophantine equations can be surprisingly hard to solve. For example, the problem of
the sum of three cubes asks for expressions of natural numbers as a sum of three cubes of
integers, i.e. it is the problem to find solutions (x, y, z) ∈ Z3 to

x3 + y3 + z3 = k

for given k ∈ N. Numbers equal to 4 or 5 modulo 9 are known to have no expression as a
sum of three cubes, all other natural numbers are conjectured to be a sum of three cubes.
But these expressions can be hard to find. It was a long-standing open problem to find
solutions for all k = 1, . . . , 100, see for example Miller & Woollett [64] (1955). An integer
solution to the last remaining equation

x3 + y3 + z3 = 42

was only recently found by Booker and Sutherland in 2019, see [47]. The solution they
found is

(x, y, z) = (−80538738812075974, 80435758145817515, 12602123297335631).

Many sets of integers turn out to be Diophantine, for example the prime numbers [52] or
the Fibonacci numbers [50].

In 1900 at the conference of the International Congress of Mathematicians in Paris,
David Hilbert presented 23 open problems which became famous as “Hilbert’s problems”.
As of today, some of the problems have been solved, some partially answered, and some
remain unsolved.
A problem that has been answered is Hilbert’s tenth problem, concerning Diophantine
equations. Here is Hilbert’s tenth problem in its original formulation with an English
translation by Winston [45]:

Eine Diophantische Gleichung mit irgend welchen Unbekannten und mit
ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren
angeben, nach welchem sich mittelst einer endlichen Anzahl von Operationen
entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

Given a diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

That is, Hilbert asks if there is an algorithm which can decide, given a Diophantine
equation, whether its set of integer solutions is non-empty.

It turns out that Hilbert’s tenth problem has a negative answer, there is no such
algorithm. This follows from the next theorem:
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Theorem 3.1.1 (Matiyasevich’s Theorem [59], see Davis [28] and Matiyasevich [60]).
A set of integer points is a Diophantine set if and only if it is recursively enumerable.

Matiyasevich’s Theorem is also known as the MRDP theorem after Matiyasevich, Robin-
son, Davis, and Putnam.

Because of the existence of sets like the halting set – sets which are recursively
enumerable but not computable – Matiyasevich’s Theorem shows that the algorithm
Hilbert describes cannot exist.

Another possibility to measure the complexity of integer sets is given by measuring
the computational complexity of an algorithm that decides whether an element is part of
the set.
An example of a problem that is decidable, but not solvable in polynomial time is given by
a bounded version of the halting problem: In this bounded version we ask for a program
that again takes as its input another program and an input for this program and decides
if the program halts with this input after at most n steps, where n > 0 is an integer
encoded in binary form (see [31, Prop. 3.30]). The time it takes to solve this problem
is in O(n), which is in exponential time in the number of bits, since n is encoded using
O(log2 n) bits.

3.2 complexity measures of f -vector sets

We have now seen some complexity measures for integer sets. In the subsequent sections
we will modify these notions for a complexity measure for f -vector sets of polytopes.

As before, for any d ≥ 1, let Fd ⊂ Zd let denote the set of all f -vectors (f0, f1, . . . , fd−1)
of d-dimensional polytopes.

Grünbaum has noted in [38, Sect. 5.5] that f -vector sets of polytopes, like Fd and Fds
for d ≥ 2, are recursively enumerable. By Matiyasevich’s Theorem (Theorem 3.1.1), this
implies that they are Diophantine sets.

Nevo [67, Thm. 1.4] recently pointed out that deciding whether a vector (f0, . . . , fd−1)
belongs to the set Fds of f -vectors of simplicial d-dimensional polytopes can be done in
polynomial time in the number of bits in the binary encoding of the vector,

∑d−1
i=0 dlog2 fie.

For all the known complete descriptions of projections of f -vector sets Πi,j(F4), Π0,1(F5)
and the flag vector projection Π0,03(F 4) described in Chapter 2 it follows directly from
the descriptions that it is decidable in polynomial time in the number of bits in the binary
encoding of the vector if a vector belongs to the set. For the sets Fd, for d ≥ 4, it is an
open problem if it can be decided in polynomial time if a vector (f0, . . . , fd−1) belongs to
Fd.
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3.3 semi-algebraic sets of lattice points

In the following we define another complexity measure for f -vector sets. For this we need
the notion of semi-algebraic sets.

A basic semi-algebraic set is a subset S ⊆ Rd that can be defined by a finite number
of polynomial equations and inequalities. A semi-algebraic set is any finite union of basic
semi-algebraic sets. The semi-algebraic set is defined over Z if the polynomials can be
chosen with integral coefficients. In this case we will call this a Z-semi-algebraic set.

An important property of semi-algebraic sets is the fact that they are closed under the
projection operation:

Theorem 3.3.1 (Tarski–Seidenberg theorem [10, Prop. 2.76]). The image of a semi-
algebraic set S ⊂ Rd+1 under the projection map

Π : Rd+1 −→ Rd

(x1, . . . , xd, xd+1) 7−→ (x1, . . . , xd)

is again a semi-algebraic set.

See Basu, Pollack & Roy [10] for more background on semi-algebraic sets.

We will now use these notions of semi-algebraic sets for a description of the complexity
of the f -vector sets Fd ⊂ Zd and their projection sets. For dimensions smaller or equal
to 3, we have explicit descriptions of Fd ⊂ Zd. We have that F1 = {2} ⊂ Z and
F2 = {(n, n) : n ≥ 3} ⊂ Z2. In 1906, Steinitz [82] characterized the set F3 of f -vectors
(f0, f1, f2) of 3-dimensional polytopes P as

F3 =
{

(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4
}
.

Thus for d ≤ 3 the set Fd ⊂ Zd has a very simple structure: It is the set of all integer
points in a (d− 1)-dimensional rational cone.

Inspired by this, Grünbaum in 1967 [38, Sect. 10.4] and subsequently Barnette and
Reay characterized the sets Πij(F4) of all pairs (fi, fj) that occur for 4-dimensional
polytopes. The results are Theorem 2.1.1, 2.1.2, 2.1.3 and 2.1.4. As we can see, they
again got complete and reasonably simple answers: They found that in all cases this is
the set of all integer points between some fairly obvious upper and lower bounds, with
finitely many exceptional pairs and curves.

Here we start with a formal definition of what we mean by a “simple answer”:

Definition 3.3.2 (Semi-algebraic sets of integer points). A set of A ⊂ Zd is a semi-
algebraic set of integer points if it is the set of all integer points in a semi-algebraic set,
that is, if A = S ∩ Zd for some semi-algebraic set S ⊆ Rd.

It turns out that Definition 3.3.2 is not quite general enough for f -vector theory, as
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we need to account for modularity constraints that may arise due to projections. For
example, A := {(x, y) ∈ Z2 : x = 2y} is a semi-algebraic set of integer points, but its
projection to the first coordinate Π1(A) = 2Z is not if we insist that the lattice is Z. This
is relevant for f -vector sets, as for example every simplicial 3-polytope satisfies 3f2 = 2f1,
so f2 is even and f1 is a multiple of 3. Consequently Π2(F3

s ) = {4, 6, 8, . . . }, the set of all
possible facet numbers of simplicial 3-polytopes, is not a semi-algebraic set of integer
points, but it is a semi-algebraic set of lattice points:

Definition 3.3.3 (Semi-algebraic sets of lattice points). A subset A ⊂ Rd is a semi-
algebraic set of lattice points if it is an intersection set of a semi-algebraic set with an
affine lattice, that is, if A = S ∩ Λ for a suitable semi-algebraic set S ⊆ Rd and an affine
lattice Λ ⊂ Rd.

Here by an affine lattice we mean any translate of a linear lattice, that is, a discrete
subset Λ ⊂ Rd that is closed under taking affine combinations λ1a1 + · · ·+λnan for n ≥ 1
with λ1, . . . , λn ∈ Z and λ1 + · · ·+ λn = 1. We will only consider integer lattices, that is,
sublattices Λ ⊆ Zd. Moreover, without loss of generality we may always assume that the
lattice is the affine lattice Λ = affZA spanned by A: The set of all affine combinations
yields a lattice if A ⊂ Zd, and the lattice Λ has to contain affZA.

With the generality of Definition 3.3.3, a great number of characterization results
achieved in the f -vector theory of polytopes imply that full f -vector sets or coordinate
projections (that is, single face numbers or face number pairs) are semi-algebraic sets of
lattice points. We will summarize this in Section 3.4.

Semi-algebraic sets of lattice points A ⊂ Zd are easy to identify and to characterize for
d = 1; see the beginning of Section 3.5. However, already for sets in the plane A ⊂ Z2

this becomes non-trivial. For example, the answer depends on the field of definition:
The set {(x, y) ∈ Z2 : y ≥ πx} is an R-semi-algebraic set of integer points, but not a
Z-semi-algebraic set of lattice points.

Our two main results of this chapter are the following:

Theorem 3.3.4. The set Π12(F4) of pairs (f1, f2) for 4-dimensional polytopes is not
an R-semi-algebraic set of lattice points.

Theorem 3.3.5. For any d ≥ 6, the set Fd of all f -vectors of d-dimensional polytopes
is not an R-semi-algebraic set of lattice points.

In Section 3.5 we develop proof techniques, including the “Strip lemma.” Based on
this, the proof of Theorem 3.3.4 is given in Section 3.6 and the proof of Theorem 3.3.5 in
Section 3.7.

Coordinate projections of semi-algebraic sets of lattice points are not in general again
semi-algebraic. Indeed, as we have seen before, the f -vector sets are Diophantine sets.
Since every Diophantine set has rank at most 9, the f -vector sets of polytopes are the
projections of the integer points of some semi-algebraic set defined over Z with at most 9
additional variables.
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On the other hand, the semi-algebraic sets of lattice points that we consider in this
paper are more restrictive than Diophantine sets: We are interested in the cases when a
set cannot be described as the set of integer points of a semi-algebraic set (defined over
Z or R) without additional variables. With the proof of Theorem 3.3.4, we will see that,
for example, the set Π12(F4) can be described using one additional variable (if we allow
for inequalities, which is not usual in the context of Diophantine sets, but equivalent).
The same is true for the f -vector set of simplicial 6-polytopes, F6

s .

In summary, we will show that many f -vector sets are semi-algebraic (Section 3.4),
while some are not (Theorems 3.3.4 and 3.3.5). The crucial question that remains open
concerns dimensions 4 and 5:
Open Problem 1. Is the f -vector set of 4-polytopes F4 ⊂ Z4 semi-algebraic?

(The size/fatness projection of F4 displayed and discussed by Brinkmann & Ziegler [24]
suggests that the answer is no.)
Open Problem 2. Is the f -vector set of 5-polytopes F5 ⊂ Z5 semi-algebraic?

The lattices spanned by f -vector sets, as well as more general additive (semi-group)
structures on them, are discussed by Ziegler in [87].

3.4 semi-algebraic sets of f -vectors

The following theorem summarizes a great number of works in f -vector theory, started
by Steinitz in 1906 [82] and re-started by Grünbaum in 1967 [38, Chap. 8-10].
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Theorem 3.4.1. The following sets of face numbers, face number pairs, and f -vectors,
are Z-semi-algebraic sets of lattice points:

(i) Fd, the set of f -vectors of d-dimensional polytopes for d ≤ 3,

(ii) Fds and Fds∗, the sets of f -vectors of simplicial and of simple d-dimensional polytopes
for d ≤ 5,

(iii) F3
cs, the set of f -vectors of 3-dimensional centrally-symmetric polytopes,

(iv) Πi(Fd), the sets of numbers of i-faces of d-polytopes for all d and i,

(v) Πi(Fds ) and Πi(Fds∗), the sets of numbers of i-faces of simplicial and of simple
d-polytopes,

(vi) Π01(F4), Π02(F4), and Π03(F4), sets of face number pairs of 4-polytopes,

(vii) Π01(F5), the set of pairs of“number of vertices and number of edges”for 5-polytopes,

(viii) Π0(Fdcub), the set of vertex numbers of cubical d-polytopes, for d ≤ 4 and for all
even dimensions d,

(ix) Π0(F4
2s2s), the set of vertex numbers of 2-simplicial 2-simple 4-polytopes, and

(x) Π0,d−1(Fd), the set of pairs of “number of vertices and number of facets” of d-
polytopes, for even dimensions d.

Proof. In each case, the set in question is described as all the integers or integer points
that satisfy a number of polynomial equations, strict inequalities, non-strict inequalities,
or inequalities:

(i) This is Steinitz’s result [82], as quoted in the introduction. In this case, the equation
and inequalities are linear. It also includes the information that the f -vector set of
simplicial 3-polytopes is F3

s = {(n, 3n− 6, 2n− 4) : n ≥ 4}, which yields the case d = 3
of (ii).

(ii) F4
s and F5

s can be deduced from the g-Theorem (see Section 3.7):

F4
s ={(f0, f1,−2f0 + 2f1,−f0 + f1) ∈ Z4 : f0 ≥ 5, 4f0 − 10 ≤ f1 ≤ 1

2f0(f0 − 1)},
F5
s ={(f0, f1,−10f0 + 4f1 + 20,−15f0 + 5f1 + 30,−6f0 + 2f1 + 12) ∈ Z5 :

f0 ≥ 6, 5f0 − 15 ≤ f1 ≤ 1
2f0(f0 − 1)}.

(iii) The f -vector set F3
cs of centrally-symmetric 3-polytopes spans the lattice (2Z)3.

Werner [86, Thm. 3.3.6] has described it as

F3
cs = {(f0, f1, f2) ∈ (2Z)3 : f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4, f0 + f2 ≥ 14}.

(iv),(v) Björner & Linusson [18] showed that for any integers 0 ≤ i < d there are numbers
N(d, i) and G(d, i) such that there is a simple d-polytope with n > N(d, i) i-faces if
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and only if n is a multiple of G(d, i). Additionally, G(d, i) = 1 for i ≥
⌊
d+1

2

⌋
. As a

consequence the 1-dimensional coordinate projection of the set of f -vectors of all simple
d-polytopes is a semi-algebraic set of integer points over Z. The same holds for simplicial
polytopes, by duality. Here, the number G(d, i) is equal to 1 for i ≤

⌊
d+1

2

⌋
− 1. This also

implies that the 1-dimensional projection sets Πi(Fd) are semi-algebraic sets of integer
points for all choices of d and i with the possible exception of odd d and i = d−1

2 . In
order to show that Πi(F2i+1) is a semi-algebraic set of integer points, we derive from [18]:

G(2i+ 1, i) =

{
p if i+ 2 = ps for some integer s ≥ 1 and some prime p,

1 otherwise.

Hence, Πi(F2i+1) is a semi-algebraic set of integer points if i+ 2 6= ps for all primes p
and all integers s.

Let now i + 2 = ps for some s ≥ 1 and a prime p. Assume that we have a (2i + 1)-
polytope P with a simplex facet such that gcd(fi(P ), p) = 1. Then using the construction
of connected sums by Eckhoff [32] (see also [88, p. 274]) to successively add copies of
P , its dual P ∗, simple and simplicial polytopes, we obtain (2i + 1)-polytopes with all
possible numbers n of i-faces for all sufficiently large n, that is, for n ≥M(d, i).

To complete our proof, we give a construction of the polytope P . We consider two
different cases. In the first case, let i+ 2 = 2s for some s ≥ 2.

Since G(2i, i) = 1 we can find a simple 2i-polytope R with an odd number of i-faces.
From [18] we get that

G(2i, i− 1) =

{
2 if i+ 2 = 2t for some integer t,

1 otherwise.

Thus R has an even number of (i− 1)-faces. Let Q be the connected sum R#R∗ of R
and its dual. Then fi(Q) = fi(R) + fi(R

∗) = fi(R) + fi−1(R) is odd and Q has a simplex
facet.

Let now P be the bipyramid over Q. Then fi(P ) = 2fi−1(Q) + fi(Q) is odd and P has
a simplex facet.

In the second case, i+ 2 = ps for some integer s ≥ 1 and some odd prime p. Choose
a simple 2i-polytope R with f0(R) ≥ i + 1 and gcd(fi(R), p) = 1. Such a polytope R
exists since G(2i, i) = 1. Let P1 be the prism over R and P2 the pyramid over R∗. Then
fi(P1) = fi−1(R) + 2fi(R), fi(P2) = fi−1(R) + fi(R), P1 is a simple polytope and P2 has
f0(R) ≥ i+ 1 simplex facets. Let P be the connected sum of P2 and i+ 1 copies of P1:

P = (··((P2#P1)#P1)# . . . P1)#P1︸ ︷︷ ︸
i+1

.
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The resulting (2i+ 1)-polytope P has a simplex facet and

fi(P ) = fi(P2) + (i+ 1)fi(P1)

= fi−1(R) + fi(R) + (i+ 1)(fi−1(R) + 2fi(R))

= (i+ 2)(fi−1(R) + 2fi(R))− fi(R)

= ps(fi−1(R) + 2fi(R))− fi(R),

which is coprime to p, since fi(R) is coprime to p.

(vi) As we have seen in Section 2.1, the 2-dimensional coordinate projections Πij(F4) have
been characterized by Grünbaum [38, Thm. 10.4.1, 10.4.2], Barnette [7], and Barnette &
Reay [8]: Π03(F4) consists of all the integer points between two parabolas, Π01(F4) is the
set of all integer points between a line and a parabola, with four exceptions, and Π02(F4)
is the set of all integer points between two parabolas, except for the integer points on an
exceptional parabola, and ten more exceptional points.

(vii) The set Π01(F5) was recently determined independently by Kusunoki & Murai [56]
and by Pineda-Villavicencio, Ugon & Yost [71]: It is the set of all integer points between a
line and a parabola, except for the integer points on two lines and three more exceptional
points.

(viii) The possible vertex numbers of cubical 3-polytopes are Π0(F3
cub) = {8} ∪ {n ∈ Z :

n ≥ 10}. Blind & Blind [19] proved that the number of vertices f0 as well as of edges
f1 are even for every cubical d-polytope if d ≥ 4 is even. According to Blind & Blind
[20, Cor. 1], there are “elementary” cubical d-polytopes Cdk with 2d+1 − 2d−k vertices, for
0 ≤ k < d. (In particular, Cdd−1 has 2d+1 − 2 vertices.) As the facets of these polytopes
are projectively equivalent to standard cubes, we can glue them in facets (as in Ziegler
[87, Sect. 5.2]), and thus obtain all sufficiently large even vertex numbers. Thus Π0(Fdcub)
is a semi-algebraic subset of the lattice 2Z for even d ≥ 4.

(ix) Paffenholz & Werner [69] and Miyata [65] proved that the set of possible numbers of
vertices for 2-simplicial 2-simple 4-polytopes is Π0(F4

2s2s) = {5} ∪ {n ∈ Z : n ≥ 9}.
(x) For even d and n+m ≥

(
3d+1
bd/2c

)
there exists a d-polytope P with n vertices and m

facets if and only if m ≤ fd−1(Cd(n)) and n ≤ fd−1(Cd(m)), where Cd(n) denotes the
d-dimensional cyclic polytope with n vertices. This is Theorem 2.2.2.

3.5 proof techniques

It is easy to see that a subset A ⊆ Z is a semi-algebraic set of integer points if and only if
it consists of a finite set of (possibly unbounded) intervals of integer points. Equivalently,
a subset A ⊆ Z is not a semi-algebraic set of integer points if and only if there is a strictly
monotone (increasing or decreasing) infinite sequence of integers, with a1 < a2 < · · · or
a1 > a2 > · · · , such that a2i ∈ S and a2i+1 ∈ Z\S.

The same characterization holds for semi-algebraic sets of lattice points A ⊂ R, where
affZA takes over the role of the integers Z.

Examples of subsets of Z that are not R-semi-algebraic sets of lattice points include
the set of squares {n2 : n ∈ Z≥0}, the set {n ∈ Z : n 6≡ 0 mod 3}, and the set
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{1, 2, 4, 6, 8, 10, . . .}.
For subsets of Z2, or of Zd for d > 2, we do not have – or expect – a complete

characterization of semi-algebraic sets of integer points.

There are some obvious criteria: For example, every finite set of integer points is
semi-algebraic, finite unions of semi-algebraic sets of lattice points with respect to the
same lattice are semi-algebraic, products of semi-algebraic sets of lattice points are
semi-algebraic, and so on.

However, these simple general criteria turn out to be of little use for studying the
specific sets of integer points we are interested in. The “finite oscillation” criterion of the
one-dimensional case suggests the following approach for subsets A ⊂ Zd:

Lemma 3.5.1 (Curve lemma). If there is a semi-algebraic curve Γ that along the curve
contains an infinite sequence of integer points a1, a2, . . . (in this order along the curve)
with a2i ∈ Γ ∩A and a2i+1 ∈ Γ\A, then A is not a semi-algebraic set of integer points.
Similarly, if this holds with a1, a2, . . . ∈ Λ := affZA, then A is not a semi-algebraic set
of lattice points.

However, for our examples the semi-algebraic curves Γ of Lemma 3.5.1 do not exist.
Thus to show that a 2-dimensional set is not a semi-algebraic set of lattice points we
develop a better criterion: Instead of the “curve lemma” we rely on a “strip lemma,” which
in place of single algebraic curves considers strips generated by disjoint translates of an
algebraic curve.

In the following, we refer to Basu, Pollack and Roy [10] for notation and information
about semi-algebraic sets.

Definition 3.5.2. Let γ0 = {(x, f(x)) : x ≥ 0} ⊂ R2 be a curve, where f(x) is an
algebraic function defined for all x ≥ 0, and let c be a vector in R2. If the translates
γt = γ0 + tc for t ∈ [0, 1] are disjoint, then we refer to this family of curves C := {γt}t∈[0,1]

as a strip of algebraic curves. A substrip of C is a family CJ of all curves γt with t ∈ J ,
where J is any closed interval J ⊆ [0, 1] of positive length.

Lemma 3.5.3 (Strip lemma). Let L ⊂ Z2 be a set of integer points and Λ = affZ L
the affine lattice spanned by L. If there exists a strip of algebraic curves C such that
every substrip CJ contains infinitely many points from Λ ∩ L and infinitely many points
from Λ \ L, then L is not an R-semi-algebraic set of lattice points.

See Figure 3.1 for a visualization.

Proof. Assume that L is R-semi-algebraic, that is, there exists an R-semi-algebraic set
S ⊂ R2 such that L = S ∩ Λ. The boundary of S is the intersection of the closure
of S with the closure of R2\S, bd(S) = S ∩ R2\S. The Tarski–Seidenberg theorem
(Thm. 3.3.1) yields that the closure of a semi-algebraic set in Rd is again a semi-algebraic
set [10, Prop. 3.1]. The boundary bd(S) is the intersection of two semi-algebraic sets and
hence itself a semi-algebraic set.
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J

γ0

γ1

Figure 3.1: This sketch illustrates that for a semi-algebraic set L of lattice points there cannot be an
infinite sequence of lattice points in L, as well as not in L, in every substrip between γ0
and γ1.

Any semi-algebraic set consists of finitely many connected components, all being
semi-algebraic [10, Thm. 5.19].

From this we want to derive that for any strip of algebraic curves C there exists a
substrip CJ of C such that for some n ≥ 0, all lattice points (a, b) ∈ Λ with a ≥ n in the
substrip belong entirely to L, or all of them do not belong to L.

Denote by β1, . . . , βm all those connected components of bd(S) that contain points
(x, y) ∈ R2 with arbitrarily large x in a strip C. If such components do not exist, then
either all points of C ∩Λ with sufficiently large x-coordinate (that is, all but finitely many
of these points) lie in L, or all of them do not lie in L.

The intersection of a semi-algebraic component βj and any semi-algebraic curve γt
is again semi-algebraic, so it consists of finitely many connected components. Thus for
any given βj and γt, βj has finitely many branches to infinity such that each branch
eventually (for all sufficiently large x-coordinates) stays above γt, or below γt, or on γt.
Thus by continued bisection we find that there exists some value n′ ≥ 0 such that the
restriction of each βj to x ≥ n′ has finitely many components, each of which either lies
on a curve γt, or it is a curvilinear asymptote to some curve γt. Let the components of
{(x, y) ∈ βj : x ≥ n′} be asymptotic to (or lie on) γt1 , . . . , γtk , with 0 ≤ t1 ≤ · · · ≤ tk ≤ 1,
and let [δ0, δ1] ⊂ [0, 1] be an interval of positive length (that is, with δ0 < δ1) that is
disjoint from {0, t1, . . . , tk, 1}. Then there exists an n ≥ 0 such that the lattice points
(a, b) ∈ Λ with a ≥ n contained in the substrip obtained from [δ0, δ1] either all belong to
L or they all do not belong to L.
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3.6 edge and ridge numbers of 4-polytopes

In this section we prove Theorem 3.3.4. The following theorem is a reformulation of
Theorem 2.1.4.

Theorem 3.6.1 (Barnette [7, Thm. 1], see also [49], with corrections). Let f1 and f2

be positive integers with f1 ≥ f2. Then there is a 4-polytope P with f1(P ) = f1 and
f2(P ) = f2 if and only if

f2 ≥ 1
2f1 +

⌈√
f1 + 9

4 + 1
2

⌉
+ 1,

f2 6= 1
2f1 +

√
f1 + 13

4 + 2,

and (f1, f2) is not one of the 13 pairs

(12, 12), (14, 13), (14, 14), (15, 15), (16, 15), (17, 16), (18, 16),

(18, 18), (20, 17), (21, 19), (23, 20), (24, 20), (26, 21).

The case when f1(P ) ≤ f2(P ) is given by duality. See Figure 3.2.

Now we show that there is no semi-algebraic description of the set of pairs (f1, f2) by
proving that the set

A :=
{

(x, y) ∈ Z2 : x ≥ 0, y ≥ x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ 1
}

(3.1)

is not a semi-algebraic set of lattice points. See Figure 3.3.

The proof strategy is the following: In Lemma 3.6.2 we give an alternative description
of the set. In Lemma 3.6.3 we observe that our set has the property described in
Lemma 3.5.3, which implies that the set is not an R-semi-algebraic set of lattice points.

Lemma 3.6.2. Let x and y be nonnegative integers. Then

y ≥ x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ 1 (3.2)

if and only if

y ≥ x
2 +

√
x+ 9

4 + 2

or
y = x

2 +
√
x+ 9

4 + 3
2 + r


(3.3)

for some r = i+ 1
2 −

√
(i+ 1

2)2 − 2j

with i, j ∈ Z, i ≥ 1, 0 ≤ j ≤ i.
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f1

f2

10 20 30 40

10

20

30

40

Figure 3.2: The set Π4
12 with the two strips that will play a crucial role in the proof that the set is not

semi-algebraic, see Lemma 3.6.3 and its proof.

Proof. Let x, y ≥ 0 be integers. We consider three separate cases:

Case a : y > x
2 +

√
x+ 9

4 + 5
2 ,

Case b : y = x
2 +

√
x+ 9

4 + 3
2 + r for some r ∈ [0, 1], and

Case c : y < x
2 +

√
x+ 9

4 + 3
2 .

In Case a the first part of condition (3.3) holds trivially. Since

y > x
2 +

√
x+ 9

4 + 5
2 > x

2 +
⌈√

x+ 9
4 + 1

2

⌉
+ 1,
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10 20 30 40

10

20

30

Figure 3.3: The set A =
{

(x, y) ∈ Z2 : x ≥ 0, y ≥ x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ 1
}

condition (3.2) holds as well.

In Case c

y < x
2 +

√
x+ 9

4 + 3
2 ≤ x

2 +
⌈√

x+ 9
4 + 1

2

⌉
+ 1,

hence condition (3.2) is not satisfied. On the other hand, observe that r lies in the range
from 0 to 1 in the second part of condition (3.3). This shows us that condition (3.3) is
not satisfied either.

In Case b we prove the equivalence of condition (3.2) and (3.3) first for odd x, then for
even x.

Let x be odd, y = x
2 +

√
x+ 9

4 + 3
2 + r and r ∈ [0, 1]. Assume x = 2k + 1 for some

k ≥ 0. We have √
2k + 13

4 = y − k − r − 2. (3.4)
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Now

x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ 1 =

k +
⌈√

2k + 13
4 + 1

2

⌉
+ 3

2

(3.4)
=

k +
⌈
y − k − r − 3

2

⌉
+ 3

2 =

y + 1
2 if r ∈ [0, 1

2 [,

y − 1
2 if r ∈ [1

2 , 1].

This shows that condition (3.2) holds if and only if r ∈ [1
2 , 1].

For r ∈ [1
2 , 1] condition (3.3) is trivially satisfied. It remains to show that condition

(3.3) does not hold for r ∈ [0, 1
2 [. Assume by contradiction that condition (3.3) is satisfied

for some x odd and r ∈ [0, 1
2 [. The first part of condition (3.3) does not hold. We will see

that

r = i+ 1
2 −

√
(i+ 1

2)2 − 2j

with i ≥ 1 and 0 ≤ j ≤ i implies that x is even. Let

y = x
2 +

√
x+ 9

4 + 3
2 + i+ 1

2 −
√

(i+ 1
2)2 − 2j,

then
y − i− 2 = 1

2(x+
√

4x+ 9−
√

4(i2 + i− 2j) + 1).

So
√

4x+ 9−
√

4(i2 + i− 2j) + 1 is an integer of the same parity as x.

Either 4x+ 9 = 4(i2 + i− 2j) + 1 or both
√

4x+ 9 and
√

4(i2 + i− 2j) + 1 are integers.

To see this, observe that if a, b ∈ Z, c ∈ Z6=0, then
√
a−
√
b = c⇒ a−b−c2

2c =
√
b. This

implies that
√
b and hence

√
a is a rational number, and since a and b are integers,

√
a

and
√
b are integers as well.

In the first case, x is even. In the second case, if
√

4x+ 9 and
√

4(i2 + i− 2j) + 1 are
integers, then they are odd integers. In both cases x is an even integer, which contradicts
the assumption. Together, we obtain that conditions (3.2) and (3.3) are equivalent for
odd x, for r ∈ [0, 1].

Let x now be even, x = 2k for some k ≥ 0, and y = x
2 +

√
x+ 9

4 + 3
2 + r for some

r ∈ [0, 1]. We have

y = x
2 +

√
x+ 9

4 + 3
2 + r

> x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ r

≥ x
2 +

⌈√
x+ 9

4 + 1
2

⌉
.

Since x is even, this also shows that

y ≥ x
2 +

⌈√
x+ 9

4 + 1
2

⌉
+ 1,

so condition (3.2) holds. To see that condition (3.3) holds, we show if x and y are integers
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such that x = 2k for some k ≥ 0 and y = x
2 +

√
x+ 9

4 + 3
2 + r for some r ∈ [0, 1], then r

can be written as r = i + 1
2 −

√
(i+ 1

2)2 − 2j with integers i ≥ 1, 0 ≤ j ≤ i. For this,

note that

r = y − k − 3
2 −

√
2k + 9

4 . (3.5)

Let i := y − k − 2 and j := y(y−3)
2 + k(k+1)

2 − yk. Then

r = i+ 1
2 −

√
(i+ 1

2)2 − 2j,

y = i(i+3)
2 − j + 1, (3.6)

k = i(i+1)
2 − j − 1. (3.7)

Thus we have that (y, k) ∈ Z2 if and only if (i, j) ∈ Z2. Observe that if y, k ≥ 0 and
r ∈ [0, 1], then by (3.5), y ≥ k + 3, so i ≥ 1. It follows that r ∈ [0, 1] if and only if
0 ≤ j ≤ i. On the other hand, if i ≥ 1, j ≥ 0 and r ∈ [0, 1], then j ≤ i, so from (3.6) it
follows that y ≥ 0 and from (3.7) it follows that k ≥ 0 if i ≥ 2. If i = 1 and j = 0, then
(y, k) = (3, 0). We exclude the special case (i, j) = (1, 1), r = 1, (y, k) = (2,−1). This
proves that y and k are non-negative integers with

r = y − k − 3
2 −

√
2k + 9

4 ∈ [0, 1]

if and only if i and j are integers, (i, j) 6= (1, 1) with

i ≥ 1, 0 ≤ j ≤ i, r = i+ 1
2 −

√
(i+ 1

2)2 − 2j,

so condition (3.3) is satisfied as well.

Lemma 3.6.3. For 0 ≤ r ≤ 1, let γr be the algebraic curve y = x
2 +

√
x+ 9

4 + 3
2 + r,

restricted to x ≥ 0. To each curve γr0 with r0 ∈ [0, 1
2 ] ∩Q, there are two sequences of

curves, γr1(n) and γr2(n), such that |γr0 − γr1(n)| and |γr0 − γr2(n)| converge to 0. Each
γr1(n) contains an integer point

(
x1(n), y1(n)

)
from the set A defined by (3.1) with

x1(n)→∞ as n→∞. Each γr2(n) contains a point
(
x2(n), y2(n)

)
from Z2

≥0\A with
x2(n)→∞ as n→∞.

Proof. Let r0 ∈ [0, 1
2 [ be a rational number, r0 = p

q , p, q ∈ Z≥0. Let i = nq, j = np for

some n ∈ Z≥0, r1(n) = i + 1
2 −

√
(i+ 1

2)2 − 2j. Then i, j ∈ Z≥0, 0 ≤ j < i
2 , r1(n) ∈

[0, 1
2 [, r1(n) − r0 → 0 as n → ∞. If n is an integer such that n ≥ 1

q , then i ≥ 1 and
0 ≤ j ≤ i. Then, we have seen in Lemma 3.6.2 that(

x1(n), y1(n)) := (nq(nq + 1)− 2np− 2, nq(nq+3)
2 − np+ 1

)
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is an integer point with r1(n) = y1 − x1
2 − 3

2 −
√
x1 + 9

4 ∈ [0, 1
2 [ as n→∞. The point

(x1(n), y1(n)) satisfies

y1(n) ≥ x1(n)
2 +

⌈√
x1(n) + 9

4 + 1
2

⌉
+ 1,

which means it belongs to the set A defined in (3.1), and x1(n)→∞ as n→∞.

Now let i′ = 2nq, j′ = 2np for some n ∈ Z≥0, r2(n) = i′ + 1−
√

(i′)2 + 2i′ − 2j′ + 5
4 .

Then i′, j′ ∈ Z≥0, 0 ≤ j′ < i′

2 and r2(n)− r0 → 0 as n→∞. The point(
x2(n), y2(n)) := (4n2q2 + 4nq − 4np− 1, 2n2q2 + 4nq − 2np+ 2

)
is an integer point with odd x2(n) and r2(n) = y2 − x2

2 − 3
2 −

√
x2 + 9

4 ∈ [0, 1
2 [, where

x2(n)→∞ as n→∞. From Lemma 3.6.2 it follows that

y2(n) < x2(n)
2 +

⌈√
x2(n) + 9

4 + 1
2

⌉
+ 1,

hence the point (x2(n), y2(n)) does not belong to the set A.

Theorem 3.6.4. The set

A :=
{

(x, y) ∈ Z2
≥0 : y ≥ x

2 +
⌈√

x+ 9
4 + 1

2

⌉
+ 1
}

is not an R-semi-algebraic set of lattice points.

Proof. It follows from the proof of Lemma 3.6.2 that A can be written as the disjoint
union of the sets A1 and A2, where

A1 :=
{

(x, y) ∈ Z2
≥0 : y ≥ x

2 +
√
x+ 9

4 + 2
}

and

A2 :=
{

(x, y) ∈ Z2
≥0 : y = x

2 +
√
x+ 9

4 + 3
2 + r, r ∈ [0, 1

2 [,

r = i+ 1
2 −

√
(i+ 1

2)2 − 2j

for some i, j ∈ Z≥0, i ≥ 1, 0 ≤ j ≤ i
}
.

The affine lattice spanned by A is Λ = affZA = affZA1 = affZA2 = Z2. The set A1 is
the intersection of Z2 with the semi-algebraic set

S1 := {(x, y) ∈ R2 : x, y ≥ 0, y ≤ x
2 +

√
x+ 9

4 + 2}
= {(x, y) ∈ R2 : x, y ≥ 0, x

2

4 + y2 − xy + x− 4y + 7
4 ≤ 0}.

If there were a semi-algebraic set S such that A = S ∩ Z2, then S2 := S\S1 would be a
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semi-algebraic set and A2 = S2 ∩ Z2. We will show that there is no such semi-algebraic
set S2 and hence no semi-algebraic set S.

Let γr denote the curve y = x
2 +

√
x+ 9

4 + 3
2 + r. For given r, y ≥ 0 and x ≥ r − 9

4 , γr
is a semi-algebraic set:

γr = {(x, y) ∈ R2 : x
2

4 + y2 − xy + (r + 1
2)x− (2r + 3)y + r(r + 3) = 0}.

Set A2 can now be written as

A2 =
{

(x, y) ∈ Z2
≥0 ∩ γr : r ∈ [0, 1

2 [, r = i+ 1
2 −

√
(i+ 1

2)2 − 2j

for some i, j ∈ Z≥0, i ≥ 1, 1 ≤ j ≤ i
}
.

Consider an interval [r, r + ε] ⊂ [0, 1
2 ]. Take a rational r0 ∈ ]r, r + ε[. By Lemma 3.6.3,

there exist infinitely many integer points both from A2 and from R2/A2 with arbitrarily
high x-coefficient in the interval [r, r + ε]. By Lemma 3.5.3, this implies that A2 and
hence A cannot be the intersection of Z2 with any semi-algebraic set.

Theorem 3.6.4 implies Theorem 3.3.4: Π4
12 is not a semi-algebraic set of lattice points.

3.7 the set Fd for dimensions 6 and higher

In this section we prove Theorem 3.3.5. For this we need the notion of g-vectors of
simplicial polytopes as described in Section 1.1. We can also express the g-vector of a
simplicial d-polytope P in terms of its f -vector:

gk =
k∑
i=0

(−1)k−i
(
d− i+ 1

d− k + 1

)
fi−1 for 0 ≥ k ≥ bd

2
c.

Definition 3.7.1. Let Gd denote the set of g-vectors of simplicial d-polytopes and let Gdij
denote the projection of the set of g-vectors of simplicial d-polytopes to the coordinates i
and j,

Gdij :=
{

(gi(P ), gj(P )) : P is a simplicial d-polytope
}
.

Lemma 3.7.2. The set Gd23 is not an R-semi-algebraic set of lattice points for d ≥ 6.

Proof. The g-theorem (Theorem 1.1.3) gives us

Gd23 =
{

(g2(P ), g3(P )) ∈ Z2 : g2, g3 ≥ 0, ∂3(g3) ≤ g2

}
.

Here,

∂3(g3) :=

(
n3 − 1

2

)
+ . . .+

(
ni − 1

i

)
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where ni, . . . , n3 are the unique integers such that 1 ≤ i ≤ ni < . . . < n3 and

g3 =

(
n3

3

)
+ . . .+

(
ni
i

)
.

See Figure 3.4.
The affine lattice is Λ = Z2. We show that this set is not an R-semi-algebraic set of

lattice points. We will do this by considering the strip between the curve

γ0 : g3 = 1
2g2 + 1

3g2

√
2g2 + 1

4

through the points (
(
k
2

)
,
(
k+1

3

)
) for k ∈ Z≥0, and the same curve, shifted by the vector

(1, 1) ∈ R2,

γ1 : g3 = 1
2(g2 − 1) + 1

3(g2 − 1)
√

2(g2 − 1) + 1
4 + 1.

We look at the points with g2 =
(
k
2

)
and g2 =

(
k
2

)
+ 1 for any integer k ≥ 2. Observe that

points with g2 =
(
k
2

)
in the strip satisfy ∂3(g3) ≤ g2 and points with g2 =

(
k
2

)
+ 1 in the

strip satisfy ∂3(g3) > g2. Additionally, if k →∞, the number of points with g2 =
(
k
2

)
and

with g2 =
(
k
2

)
+ 1 in the strip goes to infinity. By Lemma 3.5.3 this implies that the strip,

and hence the whole set Gd23, is not a semi-algebraic set of lattice points.

Now we are ready to prove Theorem 3.3.5:

Proof of Theorem 3.3.5. The projection set Gd
23 is not semi-algebraic by Lemma 3.7.2.

This projection appears in the restriction of the set Gd to g1 := g2 and gi := 0 for
all 4 ≤ i ≤ bd2c. Therefore Gd is not an R-semi-algebraic set of lattice points. The
transformation from the g-vector to the f -vector is unimodular. Hence the set Fds of
f -vectors of simplicial d-polytopes is not a semi-algebraic set of lattice points, for any
d ≥ 6. The set Fd of f -vectors of all d-polytopes is not a semi-algebraic set of lattice
points, because its restriction to 2fd−2 = dfd−1, the set of f -vectors of simplicial polytopes,
is not a semi-algebraic set of lattice points.
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Figure 3.4: The set Gd
23, d ≥ 6
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Part II

ALCOVED POLYTOPES AND
UNIMODAL ITY





4
UNIMODAL ITY

In this part we discuss whether a certain class of lattice polytopes, alcoved polytopes,
have unimodal h∗-vectors. We start with some background on Ehrhart theory and
Stanley–Reisner theory.

4.1 ehrhart theory

We briefly introduce concepts from Ehrhart theory used in this part. For more on Ehrhart
theory, see Beck & Robins [13].
A polytope whose vertices all have integer coordinates is called a lattice polytope.

For a d-dimensional lattice polytope P , let LP (t) denote the number of lattice points
in the t-th dilate of P :

LP (t) := |tP ∩ Zd|.
The Ehrhart series of P is

EhrP (z) := 1 +
∑
t∈N>0

LP (t)zt.

The following theorem is the main theorem of Ehrhart theory:

Theorem 4.1.1 (Ehrhart [34, Thm. 2]). Let P be a d-dimensional lattice polytope.
Then there exist complex numbers h∗i such that EhrP (z) is a rational function

EhrP (z) =
h∗0(P ) + h∗1(P )z + . . .+ h∗d(P )zd

(1− z)d+1

where h∗0(P ) + h∗1(P ) + . . .+ h∗d(P ) 6= 0. A corollary of this theorem is that LP (t) can
be expressed as a polynomial of degree d in the variable t, i.e. there exist numbers
q0(P ), q1(P ), . . . , qd−1(P ), qd(P ) such that

LP (t) = q0(P ) + q1(P )t+ . . .+ qd−1(P )td−1 + qd(P )td

for all t ∈ N>0.
This polynomial is called the Ehrhart polynomial of P .
The vector h∗(P ) := (h∗0(P ), h∗1(P ), . . . , h∗d(P )) of coefficients of the numerator of the
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Ehrhart series is called the h∗-vector (h-star-vector) of P .
In Ehrhart’s original theorem, the coefficients h∗i were only known to be complex numbers.
By now, more is known about these coefficients:

Theorem 4.1.2 (Stanley [78, Thm. 2.1]). The coefficients of the h∗-vector of a lattice
polytope are non-negative integers.

Some entries of the h∗-vector have a combinatorial interpretation (see [41, Section 1]):

h∗0(P ) = 1, h∗1(P ) = |P ∩ Zd| − (d+ 1), and h∗d(P ) = |int(P ) ∩ Zd|.

The lattice distance between a hyperplane H and a lattice point p is 0 if p ∈ H and
otherwise n + 1, where n is the number of hyperplanes parallel to H through lattice
points which are lying strictly between p and H. In particular, a hyperplane H and a
point p /∈ H have lattice distance 1 if there are no lattice points between H and the
hyperplanes parallel to H containing p.
Analogously, the lattice distance between a facet F and a lattice point is the lattice
distance between aff(F ) and p.

A lattice polytope with 0 in its interior is called reflexive if its polar is also a lattice
polytope.
Often, lattice polytopes are called reflexive if they are reflexive up to translations.
Equivalently, a lattice polytope is reflexive (up to translations) if it has a unique interior
lattice point and all facets have lattice distance 1 from the interior lattice point.
A lattice polytope P ⊂ Rn is Gorenstein of index k if kP , the k-th dilate of P , is a
reflexive polytope for some k ∈ N>0.

Theorem 4.1.3. [43, Hibi] A lattice d-polytope P in Rd is reflexive (up to unimodular
equivalence) if and only if its h∗-vector is symmetric, i.e.:

h∗i = h∗d−i for 0 ≤ i ≤ d.

A lattice polytope P is said to possess the integer-decomposition property (IDP) if
every integer point in kP , for all k ∈ N>0, can be written as a sum of k integer points of
P .
Polytopes which possess the IDP are called IDP polytopes, for short.

4.2 triangulations

Next we look at some triangulations of lattice polytopes.
Additional information on triangulations can be found in the book by De Loera, Rambau,
and Santos [29].
A triangulation of a point configuration A is a simplicial complex with vertex set in A
that covers conv(A).
With a triangulation of a lattice polytope P we always mean a triangulation of the point
configuration P ∩ Zd.
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A full-dimensional lattice simplex S in Rd with vertices v0, . . . , vn is called a unimodular
simplex if the vectors vn−v0, vn−1−v0, . . . , v1−v0 form a basis for Zd. All d-dimensional
lattice simplices have the same volume, the volume 1

d! . The volume of lattice polytopes
is often ”normalized” by the factor d!, so that a unimodular simplex is said to have
normalized volume 1.
A triangulation of a lattice polytope is a unimodular triangulation if all its simplices are
unimodular.
Lattice polytopes with unimodular triangulations also possess the IDP [39, Thm. 1.2.5].

A triangulation ∆(P ) of a d-polytope P is called a regular triangulation if the following
conditions hold:
P is the image π(Q) of a polytope Q ⊂ Rd+1 under the projection to the first d coordinates:

π : Rd+1 −→ Rd(
x

xd+1

)
7−→ x,

and ∆(P ) is the image of all lower faces of P under the projection π. Here, a lower face
F is a face whose outer normal vector has a negative last coordinate.

Lattice polytopes which have a unimodular triangulation satisfy particular nice condi-
tions.
The following proposition gives an example of such a condition. It allows us to reduce
all questions about h∗-vectors of lattice polytopes with unimodular triangulations to
questions about the h-vectors of the triangulation:

Proposition 4.2.1 (Betke & McMullen [14]). For any lattice polytope P which has
a unimodular triangulation ∆(P ), the h∗-vector of P is equal to the h-vector of ∆(P ).

4.3 algebraic background

Here we explain some notation from Stanley–Reisner theory that will be used in Chapter 5.
More details can be found for example in the books by Stanley [77], Bruns & Herzog [25]
and Miller & Sturmfels [63].
Let ∆ be an abstract simplicial complex with vertices x1, . . . , xn. Let K be a field and
K[X1, . . . , Xn] be the polynomial ring over K where variable Xi corresponds to vertex xi.
The Stanley-Reisner ideal of ∆ is the squarefree monomial ideal I∆ of K[X1, . . . ,Xn]
generated by all the square-free monomials Xi1Xi2 . . . Xis corresponding to the non-faces
{xi1 , xi2 . . . , xis} of ∆:

Xi1Xi2 . . . Xis ∈ I∆ if {xi1 , xi2 . . . , xis} /∈ ∆.
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The face ring (or Stanley-Reisner ring) K[∆] of ∆ is the quotient of K[X1, . . . ,Xn] by
the Stanley-Reisner ideal,

K[∆] := K[X1, . . . , Xn]/I∆.

The Stanley–Reisner correspondence allows us to express many combinatorial problems
of simplicial complexes in terms of homological algebra. We need the notion of a Cohen–
Macaulay ring. In general, a commutative Noetherian local ring is called Cohen–Macaulay
if its depth is smaller or equal to its Krull dimension.
Since we are only interested in Stanley-Reisner rings, we can simplify this definition to a
characterization of Cohen–Macaulay rings for the case of certain quotient rings:

Proposition 4.3.1 (Hironaka’s criterion, see [81], Prop. 4.1). Let K be an infinite
field and let R := K[X0, . . . , Xn]/I be the quotient of K[X0, . . . , Xn] by a homogeneous
ideal I. Let d denote the Krull dimension of R. R is a Cohen–Macaulay ring if and
only if there exist d homogeneous, linear elements θ1, . . . , θd from R and finitely many
elements η1, . . . , ηn from R such that every p ∈ R has a unique representation as

p =

n∑
i=1

ηipi(θ1, . . . , θd),

where the pi(θ1, . . . , θd) are elements in K[θ1, . . . , θd].

Equivalently, we can say that R is a free K[θ1, . . . , θd]-module with basis (η1, . . . , ηn).

The system Θ := (θ1, . . . , θd) is called a linear system of parameters (l.s.o.p.) for R. If
there exists a l.s.o.p. for a ring R, then any generic choice of θ1, . . . , θd will be a l.s.o.p.
The term “generic” here refers to elements from a Zariski open subset of Rd1 [53].

A simplicial complex ∆ with vertices x0, . . . , xn is called Cohen–Macaulay over a field K
if the Stanley-Reisner ring K[X0, . . . , Xn]/I∆ is a Cohen–Macaulay ring.

Reisner’s criterion gives a characterization of Cohen–Macaulay complexes in terms of
their homology groups:

Proposition 4.3.2 (Reisner’s criterion [72]). A simplicial complex ∆ is Cohen–
Macaulay over a field K if and only if for any face F of ∆,

dimK(
∼
H i(link∆(F ); k)) = 0 for i < dim(link∆(F )).

That is, ∆ is Cohen–Macaulay over K if and only if the homology of each face’s link
vanishes below its top dimension.

In particular, this implies that pure shellable simplicial complexes are Cohen–Macaulay.

If we now have a pure shellable simplicial complex ∆ of dimension d− 1, then its face
ring K[∆] has Krull dimension d. According to Hironaka’s criterion we can choose a
l.s.o.p. Θ = (θ1, . . . , θd) and consider the quotient ring K[∆]/Θ. This ring can now be
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written as a direct sum

K[∆]/Θ = (K[∆]/Θ)0 ⊕ (K[∆]/Θ)1 ⊕ . . .⊕ (K[∆]/Θ)d,

where dimK(K[∆]/Θ)i <∞ for i = 0, . . . , d.

Proposition 4.3.3 (see Stanley [77, Sect. 2.2]). Let ∆ be defined as above with
K[∆]/Θ = (K[∆]/Θ)0 ⊕ (K[∆]/Θ)1 ⊕ . . .⊕ (K[∆]/Θ)d. Let h(∆) = (h0, . . . , hd) be the
h-vector of ∆. Then

dimK(K[∆]/Θ)i = hi

for i = 0, . . . , d.

Let ∆ be a (d−1)-dimensional Cohen–Macaulay complex with face ringK[X1, . . . , Xn]/I∆ =
K[∆] and with l.s.o.p. Θ. An element ω ∈ K[X1, . . . ,Xn] of degree 1 is called a strong
Lefschetz element for K[∆]/Θ if the multiplication by ωd−2i,

ωd−2i : (K[∆]/Θ)i −→ (K[∆]/Θ)d−i

m 7−→ ωd−2im,

is a bijection for 0 ≤ i ≤ bd2c.
Following the notation from [55], we call ω an almost strong Lefschetz element for

K[∆]/Θ if the multiplication by ωd−1−2i,

ωd−1−2i : (K[∆]/Θ)i −→ (K[∆]/Θ)d−1−i

m 7−→ ωd−1−2im,

is an injection for 0 ≤ i ≤ bd−1
2 c.

A Cohen–Macaulay complex ∆ is said to possess the strong Lefschetz property if there
exists a strong Lefschetz element for K[∆]/Θ.

The necessity of the g-theorem for simplicial polytopes (Thm. 1.1.3) follows from the
following theorem, the algebraic g-theorem for simplicial polytopes:

Theorem 4.3.4 (Stanley [80]). Boundary complexes of simplicial polytopes possess
the strong Lefschetz property.

The generalization of the g-theorem to simplicial spheres is known as the g-conjecture.
Adiprasito recently announced a proof of the g-conjecture for the more general class of
simplicial rational homology spheres:

Theorem 4.3.5 (Adiprasito [1]). Simplicial rational homology spheres have the strong
Lefschetz property.
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4.4 unimodality of h-vectors and h∗-vectors

A finite sequence (s1, s2, . . . , sn) is called unimodal if there exists an index k ∈ {1, . . . , n}
such that s1 ≤ . . . ≤ sk ≥ . . . ≥ sn.

It follows directly from the definition of strong Lefschetz elements that the h-vectors of
Cohen–Macaulay complexes with strong Lefschetz property are symmetric and unimodal.

In particular the h-vectors of simplicial polytopes and simplicial spheres are unimodal.

There is a variety of conjectures and theorems about the unimodality of h-vectors and
h∗-vectors of different objects. We refer to Stanley [79], Brenti [23], Brändén [21] for
surveys on unimodality in combinatorics. In the following we look at a few conjectures
concerning unimodality in Ehrhart theory. More details can be found in the survey of
Braun [22].

Let us start with a class of lattice polytopes that are known to have unimodal h∗-vectors.

Theorem 4.4.1 (Hibi [42]). Reflexive lattice polytopes up to dimension 5 have
unimodal h∗-vectors.

This theorem does not hold for higher dimensions. Mustaţă and Payne [66, Ex. 1.1], [70,
Thm. 1.4] showed that there exist reflexive polytopes (even simplices) of all dimensions
greater than 5 without unimodal h∗-vectors.
However, the next theorem shows that if a reflexive (or more generally a Gorenstein)
polytope has a regular unimodular triangulation, then its h∗-vector is unimodal.

Theorem 4.4.2 (Bruns & Römer [27, in the proof of Theorem 1]). Let P be a
Gorenstein polytope with regular unimodular triangulation ∆. Then ∆ has the strong
Lefschetz property.
In particular, Gorenstein lattice polytopes with regular unimodular triangulation have
unimodal h∗-vectors.

Using the g-theorem for simplicial spheres (Thm. 4.3.5), we can drop the condition of a
regular triangulation: Any Gorenstein lattice polytope with unimodular triangulation
has a unimodal h∗-vector (see [27, Sect. 1]).

It has been conjectured that the property of having a unimodular triangulation can be
weakened even more to the more general condition of having the IDP.

Conjecture 4.4.3 (Hibi & Ohsugi [44]). A lattice polytope which is Gorenstein and
IDP has unimodal h∗-vector.

Even more generally, there are no known examples of IDP polytopes without unimodal
h∗-vectors. The next question or conjecture is part of a conjecture from Stanley that
standard graded Cohen–Macaulay integral domains have unimodal h-vectors.

Conjecture 4.4.4 (Stanley, see [73, Question 1.1]). IDP polytopes have unimodal
h∗-vectors.

Instead of considering all IDP polytopes, we can restrict ourselves to certain classes
of IDP polytopes. A special class of polytopes that is conjectured to have unimodal
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h∗-vectors are the order polytopes:
Let P = P ({p1, . . . , pn},4) be a finite poset. The order polytope O(P ) ⊂ Rn is defined
by the inequalities:

0 ≤ xi ≤ 1 for all i ∈ {1, . . . , n},
xi ≤ xj if pi 4 pj .

Order polytopes have regular unimodular triangulations. We will see an example of such
a triangulation for the more general class of alcoved polytopes in Definition 5.1.1.

In Chapter 5 we will consider lattice polytopes with regular unimodular triangulation
(and which are not necessarily Gorenstein or reflexive).
The next theorem shows us what is known about their h∗-vectors.

Theorem 4.4.5 (Hibi & Stanley, see Athanasiadis [5, Theorem 1.3]). Let P be a
d-dimensional lattice polytope with a regular unimodular triangulation. Then:

h∗i (P ) ≥ h∗d+1−i(P ) for 1 ≤ i ≤ bd+1
2 c,

h∗b d+1
2
c(P ) ≥ . . . ≥ h∗d−1(P ) ≥ h∗d(P ),

h∗i (P ) ≤
(h∗1(P )+i−1

i

)
for 0 ≤ i ≤ d.

This theorem together with the known conditions h∗(P ) = (1, 0, . . . , 0) if P is a simplex
and h∗0(P ) = 1 ≤ |P ∩ Zd| − (d + 1) = h∗1(P ) otherwise, directly implies the following
result.

Corollary 4.4.6. Lattice polytopes with regular unimodular triangulation of di-
mension smaller or equal 4 have unimodal h∗-vectors.
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5
ALCOVED POLYTOPES

In this chapter we look at a particular class of polytopes, alcoved polytopes. Alcoved
polytopes are an example of a class of lattice polytopes with regular unimodular triangu-
lations or more generally, IDP polytopes. As we have seen, IDP polytopes are conjectured
to have unimodular h∗-vectors (Conjecture 4.4.4). We will use the properties of alcoved
polytopes to make some statements about their h∗-vectors.
Let us start with some definitions:

5.1 alcoved polytopes

Definition 5.1.1. A hyperplane coming from an affine Coxeter arrangement of type Ad
is a hyperplane of the form

Hd(i, j, k) = {


y1
...

yd

 ∈ Rd | yi − yj = k}

for some k ∈ Z, i, j ∈ {0, . . . , d} and y0 := 0. We will call such hyperplanes alcove
hyperplanes.

A d-dimensional polyhedron is called an alcoved polyhedron of Lie type A if all of its
facet-defining hyperplanes are alcove hyperplanes. If P is bounded it is called an alcoved
polytope of Lie type A.
In the following by an alcoved polytope we always mean an alcoved polytope of Lie type
A.
The H-description of an alcoved d-polyhedron P with m facets can be given as

P = {x ∈ Rd |Mx ≤ b},

for b ∈ Zm and M an (m × d)-matrix with row vectors ak ∈ {ei, ei − ej} for some
i, j ∈ 1, . . . , d, for all k ∈ {1, . . .m}. M is a totally unimodular matrix, i.e. every minor of
M is in {0,±1}. In particular, this implies that alcoved polytopes are lattice polytopes
(see [9, Sect. 7.1]).

Subdividing an alcoved d-polytope P by all alcove hyperplanes Hd(i, j, k) gives a
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unimodular triangulation [57, Section 2.3], the alcoved triangulation. The simplices of
the alcoved triangulation are called alcoves. The unimodular triangulation is regular, for
example via the lifting function:

yd+1 =
d∑
i=1

y2
i +

∑
{i,j}∈{1,...,d}

(yi − yj)2.

In Section 4.4 we have already seen an example of alcoved polytopes, the order polytopes.
Another example is the class of hypersimplices ∆d−1,k. Hypersimplices can be defined as

∆d−1,k :=
{
x ∈ Rd−1

∣∣ k − 1 ≤ x1 + . . .+ xd−1 ≤ k
}
∩ [0, 1]d−1,

the slice of the (d− 1)-dimensional 0/1-cube between
∑d−1

i=1 xi = k − 1 and
∑d−1

i=1 xi = k.
Let zi := x1 + . . .+ xi for all i = 1, . . . , d− 1. After this transformation of variables, the
hypersimplex ∆d−1,k can be expressed as the alcoved polytope given by the inequalities

0 ≤ z1 ≤ 1,

k − 1 ≤ zd−1 ≤ k,
0 ≤ zi − zi−1 ≤ 1 ∀ i = 2, . . . , d− 1.

See Lam & Postnikov [57] for additional information and further examples of alcoved
polytopes.

5.2 the polytope Qd

The polytope that we are about to define will be very useful for the proofs of our theorems.
Since an alcoved polytope can only have a finite amount of admissible facet normals,
there exists a unique alcoved polytope of minimal volume among all alcoved polytopes
containing the origin in the interior. This polytope is obtained by taking the intersection
of all facet-defining half-spaces that are defined by alcove hyperplanes and contain the
origin in the interior:

Definition 5.2.1. Let Qd denote the alcoved polytope of minimal volume among all
d-dimensional alcoved polytopes that have the origin in the interior:

Qd := {


y1
...

yd

 ∈ Rd | yi − yj ≤ 1 for 0 ≤ i, j ≤ d, y0 = 0}.

The next proposition gives some idea about the combinatorial and geometric properties
of the polytope Qd.

68
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(a) Alcoved triangulation of the hexagon Q2 (b) Alcoved triangulation of Q3

Figure 5.1: Examples of the polytope Qd

Proposition 5.2.2.

(i) Qd is centrally symmetric.

(ii) Qd has 2
(
d+1

2

)
facets.

(iii) Qd is the convex hull of the union of the cubes [−1, 0]d and [0, 1]d. This is a
polytope that contains 2d+1 − 1 lattice points. It has one interior lattice point and
all other 2d+1 − 1 lattice points are vertices.

(iv) The polytope Qd is a projection of the (d + 1)-dimensional unit cube [0, 1]d+1.
Moreover, Qd has the same h∗-vector as the unit cube [0, 1]d+1.

Proof of Proposition 5.2.2. (i) Central symmetry follows immediately from the hyper-
plane description.
(ii) To see that Qd has 2

(
d+1

2

)
facets, observe that all 2

(
d+1

2

)
hyperplanes in the hyperplane

description of Qd are irredundant: The point with coordinates xi = 1, xj = −1 and
xk = 0 for all k ∈ {0, . . . d} \ {i, j} is not contained in Qd, but it is contained in the
polyhedron obtained by removing {x ∈ Rd | xi− xj ≤ 1} from the hyperplane description
of Qd.
(iii) The cubes [−1, 0]d and [0, 1]d have 2d lattice points each. The only lattice point in
common is 0, so together they have 2d+1 − 1 lattice points.
It follows readily from the hyperplane description of Qd that all vertices from the cubes
[−1, 0]d and [0, 1]d are contained in Qd. So the convex hull of [−1, 0]d and [0, 1]d is
contained in Qd. Since Qd is an alcoved polytope, and hence a lattice polytope, in order
to show that Qd is equal to the convex hull it suffices to show that the vertices of the
cubes [−1, 0]d and [0, 1]d are the only lattice points contained in Qd. From the inequalities
xi ≤ 1 and −xi ≤ 1 follows that all coordinates of the points in Qd lie between −1 and
1. Because of the inequality xi − xj ≤ 1, no point in Qd can contain both xi = 1 and
xj = −1 as coordinates. This shows that all lattice points in Qd are vertices from [−1, 0]d

or from [0, 1]d, and hence that Qd is the convex hull of [−1, 0]d and [0, 1]d. The point 0
is the unique interior lattice point of Qd, all other 2d+1 − 2 lattice points are vertices:
No point with coordinates in {0, 1} or {−1, 0} besides the point 0 can be written as a
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convex combination of the other points.
(iv) Qd is the image of the unit cube [0, 1]d+1 under the projection ϕ : Rd+1 → Rd,
ei 7→ ei for i = 1, . . . , d and ed+1 7→ −e1− . . .− ed with totally unimodular transformation
matrix  Id

−1
...

−1

 .

The (d + 1)-simplices in the alcoved triangulation of the (d + 1)-cube are of the form
conv{0, ei1 , ei1 + ei2 , . . . , ei1 + ei2 + . . .+ eid+1

}.
They are mapped to conv{0, ei1 , ei1 +ei2 , . . . , ei1 +ei2 + . . .+eid}, where ij ∈ {0, . . . , d}

with e0 := −e1 − . . .− ed. These are the d-simplices of the alcoved triangulation of Qd.
Intersections of (d + 1)-simplices in the alcoved triangulation of the (d + 1)-cube are
mapped to the intersections of the corresponding d-simplices of Qd. So if ∆1, . . . ,∆(d+1)!

is a shelling order of the (d+ 1)-simplices of the alcoved triangulation of [0, 1]d+1, then
ϕ(∆1), . . . , ϕ(∆(d+1)!) is a shelling order of the d-simplices of the alcoved triangulation of
Qd. The triangulations have therefore the same h-vectors. Since alcoved triangulations
are unimodular triangulations, it follows that Qd has the same h∗-vector as [0, 1]d+1.

5.3 alcoved polytopes with interior lattice points

In this section we focus on alcoved polytopes with interior lattice points. We do this
because reflexive alcoved polytopes (which have 1 interior lattice point) are known to
have unimodal h∗-vector. Given ”nice” alcoved polytopes with interior lattice points,
we can use reflexive alcoved polytopes as a base case for an inductive proof about the
unimodality of the h∗-vectors. ”Nice” here means polytopes that are unions of reflexive
alcoved polytopes, or in other words alcoved polytopes that have interior lattice points
and all facets have lattice distance 1 to the interior lattice points.

Proposition 5.3.1. Let P be a d-dimensional alcoved polytope with interior lattice
points such that all facets have lattice distance 1 to the interior lattice points. Denote
by ∆ the simplicial complex of the alcoved triangulation of P on the vertex set P ∩Zd =
{x1, . . . , xn}. Let K[∆] = K[X1, . . . , Xn]/I∆ be the face ring of ∆ and Θ = {θ0, . . . , θd}
a linear system of parameters for K[∆]. Then the multiplication by a generic element ω
in K[X1, . . . , Xn] of degree 1,

ω : (K[∆]/Θ)j −→ (K[∆]/Θ)j+1,

is an injection for 0 ≤ j ≤ bd2c − 1.

We prove the proposition by induction on the number of interior lattice points. The
proof is based on the proof of Theorem 1.1 of Kubitzke & Nevo [55], showing a similar
condition for barycentric subdivisions of shellable simplicial complexes.
For background on homological algebra, especially the functor Tor, see [46, Sect. III.8].
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Proof. Let P be a d-dimensional alcoved polytope with one interior lattice point and
such that all of the facets of P have lattice distance 1 to the interior lattice point. P is
(translation-equivalent to) a reflexive polytope. By Thm 4.4.2 reflexive (or more generally
Gorenstein) polytopes with regular unimodular triangulation have the strong Lefschetz
property. The induction assumption is hence satisfied.
Now assume P has at least two interior lattice points. Pick two interior lattice points p
and q, and choose a facet F of P that is not parallel to the line through p and q. Let Hp

be the hyperplane parallel to F through p and Hq the hyperplane parallel to F through
q. Hp and Hq are disjoint by the choice of F . Let H+

p and H−p denote the two closed
half-spaces defined by Hp. P ∩H+

p and P ∩H−p are both d-dimensional alcoved polytopes.
Let P1 denote the one of these two polytopes containing point q. Similarly let P2 denote
the polytope containing p among the two polytopes P ∩H+

q and P ∩H−q . The facets of P1

and P2 all have lattice distance 1 to the interior lattice points. P1 ∩P2 is a d-dimensional
alcoved polytope as well (possibly without interior lattice points). Let ∆, ∆1 and ∆2

denote the alcoved triangulations of P , P1 and P2, respectively. Let K[∆],K[∆1],K[∆2]
and K[∆1 ∩∆2] be the corresponding face rings.
For some K[X1, . . . , Xn]-module A, an ideal I of A and a quotient module A/I, let (p)A/I
denote the image of an element p ∈ A under the projection to A/I given by:

(Xi)A/I =

Xi if Xi /∈ I
0 otherwise.

Consider the following Mayer–Vietoris sequence of K[X1, . . . , Xn]-modules:

0→ K[∆]
ϕ−→ K[∆1]⊕K[∆2]

ψ−→ K[∆1 ∩∆2]→ 0, (5.1)

where the homomorphisms are given in the following way:

ϕ : K[∆] −→ K[∆1]⊕K[∆2]

p 7→ ((p)K[∆1],−(p)K[∆2])

and

ψ : K[∆1]⊕K[∆2] −→ K[∆1 ∩∆2]

(p, q) 7→ (p)K[∆1∩∆2] + (q)K[∆1∩∆2].
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Explicitly this means

ϕ(Xi) =


(Xi,−Xi) for Xi /∈ I∆1 ∪ I∆2

(Xi, 0) for Xi ∈ I∆2 \ I∆1

(0,−Xi) for Xi ∈ I∆1 \ I∆2

and

ψ(Xi, Xj) =



Xi +Xj for Xi, Xj /∈ I∆1∩∆2

Xi for Xi /∈ I∆1∩∆2 , Xj ∈ I∆1∩∆2

Xj for Xi ∈ I∆1∩∆2 , Xj /∈ I∆1∩∆2

0 for Xi, Xj ∈ I∆1∩∆2 .

Map ϕ is injective: ϕ(p) = (0, 0) implies p ∈ I∆.
Map ψ is surjective: p ∈ K[∆1 ∩∆2] is the image of (p, 0) (and of (0, p)).
The image of ϕ is the kernel of ψ:
ψ((p)K[∆1],−(p)K[∆2]) = 0 for all p ∈ K[∆], so Im(ϕ) ⊆ ker(ψ).
On the other hand, if ψ(p, q) = 0 for some p ∈ K[∆1], q ∈ K[∆2], then
(q)K[∆1∩∆2] = −(p)K[∆1∩∆2] and hence ϕ(p ∪ {−q}) = (p, q), and therefore
ker(ψ) ⊆ Im(ϕ).
So the sequence is a short exact sequence.
Choose a linear system of parameters Θ = {θ1, . . . , θd} for K[∆] in such a way that
(Θ)∆1

:= {(θ1)∆1 , . . . , (θd)∆1}, (Θ)∆2 and (Θ)∆1∩∆2 are linear systems of parameters for
K[∆1],K[∆2] and K[∆1 ∩∆2], respectively. A generic choice of θi satisfies this condition:
According to the definition, a l.s.o.p. for K[∆] is given by a generic choice of θ1, . . . , θd.
Then the projections of θ1, . . . , θd to K[∆1],K[∆2] and K[∆1 ∩∆2] are still generic in the
respective rings and therefore linear system of parameters for these rings.
We introduce the following notation for the sake of brevity:

S := K[X1, . . . , Xn],

K(∆) := K[∆]/Θ,

K(∆1) := K[∆1]/Θ∆1 ,

K(∆2) := K[∆2]/Θ∆2 ,

K(∆1 ∩∆2) := K[∆1 ∩∆2]/Θ∆1∩∆2 .

Tensoring the terms in (5.1) with S/Θ over S induces the following Tor-long exact
sequence:

. . . → Tor1(K[∆], S/Θ)→ Tor1(K[∆1]⊕K[∆2], S/Θ)

→ Tor1(K[∆1 ∩∆2], S/Θ)
δ→ Tor0(K[∆], S/Θ)

→ Tor0(K[∆1]⊕K[∆2], S/Θ)→ Tor0(K[∆1 ∩∆2], S/Θ)→ 0,
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where δ : Tor1(K[∆1 ∩∆2], S/Θ)→ Tor0(K[∆], S/Θ) is the connecting homomorphism.
Observe that

Tor0(K[∆], S/Θ) ∼= K(∆),

Tor0(K[∆1]⊕K[∆2], S/Θ) ∼= K(∆1)⊕K(∆2),

Tor0(K[∆1 ∩∆2], S/Θ) ∼= K(∆1 ∩∆2).

Also, Tor1(K[∆1 ∩∆2], S/Θ) = 0, since K[∆1 ∩∆2] is free as an S-module.
We obtain the following exact sequence of S-modules:

0→ K(∆)→ K(∆1)⊕K(∆2)→ K(∆1 ∩∆2)→ 0,

and from this the following commutative diagram for 0 ≤ j ≤ bd2c − 1:

0 → K(∆)j → K(∆1)j ⊕K(∆2)j

↓ ω ↓ (ω, ω)

0 → K(∆)j+1 → K(∆1)j+1 ⊕K(∆2)j+1

where ω is a generic degree one element in S. By the induction hypothesis, the multipli-
cations

ω : (K(∆1))j −→ (K(∆1))j+1

and
ω : (K(∆2))j −→ (K(∆2))j+1

are injective for 0 ≤ j ≤ bd2c − 1. From the commutative diagram it can be deduced that

ω : (K(∆))j −→ (K(∆))j+1

is injective for 0 ≤ j ≤ bd2c − 1.

In the above proposition we considered alcoved polytopes that are unions of reflexive
alcoved polytopes. The proposition makes use of a certain property of the alcoved
triangulation, namely the fact that the alcoved triangulation of any alcoved polytope
with m ≥ 2 interior lattice points can be described as a union of two simplicial complexes
that are again alcoved triangulations of alcoved polytopes, each with less than m interior
lattice points. This property does not hold for general regular unimodular triangulations.
As an example consider the polygon with regular unimodular triangulation in Figure 5.2.
The polygon has two interior lattice points p and q. There is no subcomplex of the
triangulation whose underlying set is a convex polytope with unique interior lattice point
p.

Now we are ready to prove our main theorem of this chapter, which tells us that alcoved
polytopes that can be obtained as unions of reflexive alcoved polytopes have unimodal
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p

q

Figure 5.2: No proper subcomplex containing p in the interior has a convex underlying set.

h∗-vectors.

Theorem 5.3.2. Let P be a d-dimensional alcoved polytope with interior lattice
points such that all facets of P have lattice distance 1 to the interior lattice points.
Then its h∗-vector is unimodal.

Proof. Proposition 5.3.1 implies that the entries of the h∗-vector increase until h∗b d
2
c:

h∗0(P ) ≤ h∗1(P ) ≤ . . . ≤ h∗b d
2
c(P ).

The second part of the theorem follows from Theorem 4.4.5. For all d-dimensional lattice
polytopes with regular unimodular triangulation, the entries of the h∗-vector decrease
starting from h∗b d+1

2
c(P ):

h∗b d+1
2
c(P ) ≥ . . . ≥ h∗d−1(P ) ≥ h∗d(P ).

For even dimensions d Theorem 5.3.2 tells us that the peak always occurs at the middle
entry h∗d

2

(P ). For odd dimensions d the theorem only tells us that the peak occurs either

at h∗d−1
2

(P ) or at h∗d+1
2

(P ). In Appendix B we describe the algorithms that we used to

generate random alcoved polytopes and calculate their h∗-vectors. We tested around
20.000 alcoved polytopes of dimension up to 16. All h∗-vectors were unimodal. We tested
around 1.000 alcoved polytopes with interior lattice points. The h∗-vectors of all of these
polytopes had their peak at h∗d d−1

2
e(P ). See Appendix B.4 for some examples of h∗-vectors

of some randomly generated alcoved polytopes.
Given an arbitrary alcoved polytope P with interior lattice points we can find an alcoved
polytope P ′ with unimodal h∗-vector inside P by moving the facet-defining hyperplanes
of P towards the interior lattice points until all facets have lattice distance 1 to the
interior lattice points.
Since the h∗-vector of the alcoved polytopes are the h-vectors of the alcoved triangulations,
it follows that h∗i (P ) ≥ h∗i (P ′) for all i ∈ {0, . . . , d}. A good approximation of P by P ′

gives a good approximation of h∗(P ) by h∗(P ′).
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It is therefore interesting to know how well P ′ approximates P . The next theorem tells
us how far a facet can be from the interior lattice points.

Theorem 5.3.3. Let P be a d-dimensional alcoved polytope with interior lattice
points. Then the maximal lattice distance of a facet of P to the interior lattice points is
d− 1.

Proof. Let F be a facet of P . Let P ′ be the d-dimensional alcoved polyhedron obtained
by removing the facet-defining hyperplane of F from the hyperplane description of P .
We distinguish between two different cases: Either P ′ is an unbounded polyhedron or a
polytope.
Case 1. If P ′ is an unbounded polyhedron, then F has lattice distance 1 to the interior
lattice points. To see this, observe that the recession cone C of P ′ is an alcoved cone, i.e. an
affine cone that is an alcoved polyhedron. The intersection of an alcoved polyhedron with
alcove hyperplanes (hyperplanes parallel to facets of Qd) is again an alcoved polyhedron,
any possible vertices have to be lattice points by Definition 5.1.1. Let x be an interior
lattice point of P (and hence of P ′). Let C′ denote the translate of C with apex x. C′ is
contained in the interior of P ′. Let H be the hyperplane parallel to F that has distance
1 from x and separates x and F . The intersection of C′ with H is a lattice polytope
contained in the interior of P ′. If F has distance larger than 1 from x, then C′ ∩H is
contained in the interior of P and its vertices are interior lattice points of P with smaller
lattice distance to F than the distance between x and F . This shows that F has lattice
distance 1 to the interior lattice points of P .
Case 2. See Figure 5.3 for an example in dimension 3. Let x be an interior lattice point

0
HF

G

HQ

R

Q3

HG

Figure 5.3: The hyperplanes containing the red facets of Q3 intersect in the affine hull of face G of R.

of P closest to F . We may assume that x = 0. Let HF be the hyperplane containing
F . The polytope Qd from Definition 5.2.1 is contained in all alcoved d-polytopes which
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contain the origin in the interior. Any facet of an alcoved d-polytope is parallel to two
facets of Qd. Among the two facet-defining hyperplanes of Qd which are parallel to F , let
HQ denote the one separating 0 and F . The vertices of Qd on HQ are lattice points in
P which are closer to F than 0. Since 0 is closest to F among all interior lattice points
of P , these lattice points have to be in the boundary of P , each of the points has to
be contained in at least one facet of P . Consider only the facets of P containing the
vertices of Qd in HQ and (additionally) facet F . The facet-defining half-spaces of these
facets define an alcoved polyhedron with 0 in the interior. If the polyhedron R obtained
by removing the facet-defining half-space of F from the hyperplane description of the
polyhedron is unbounded in the direction of the facet normal of F , then by case 1 HF

(and hence F ) has lattice distance 1 from 0. Assume the polyhedron R is bounded in
direction of the facet normal of F . Then there is a hyperplane HG parallel to HF which
intersects R in a k-face G of R and such that HF separates x and HG. If HQ = HG, then
HF = HQ, and HF has distance 1 from 0. Assume HG is not equal to HQ. Then HG

is not equal to HF either. We will show that HG has lattice distance at most d from 0,
and therefore HF has at most lattice distance d− 1 from 0. G is given as an intersection
of d− k facets of R. The hyperplane HG containing G and parallel to F is of the form
{x ∈ Rd | xi − xj = l} for some i, j ∈ {0, . . . , d} with i 6= j and x0 := 0 and for some
positive integer l.

We know that the difference xi − xj = l is defined from some equations of the form
xs−xt = 1, for s, t ∈ {0, . . . , d} and s 6= t. So the difference l between the two variables xi
and xj can be obtained from setting the difference between some pairs of d− 1 variables
to 1. This shows that l ∈ {0, . . . , d}.
We can also state this as a graph theoretical problem: Let G be a simple graph on d+ 1
vertices v0, . . . , vd+1. There is an edge between vertex vs and vertex vt if and only if
either {x ∈ Rd | xs − xt = 1} or {x ∈ Rd | xt − xs = 1} is a hyperplane of R intersecting
in face G. If G would contain a cycle (vs1 , vs2), (vs2 , vs3), . . . , (vsr−1 , vsr), (vsr , vs1), then
xs1 > xs2 > . . . > xsr > xs1 , a contradiction. So G does not contain any cycles, it is
a forest. The condition that R is bounded in the direction of the facet-normal of F
translates to the condition that vertex xi and vertex xj are path-connected. The longest
possible path-length in a forest on d+ 1 vertices is d. The difference l is therefore at most
d and facet F has lattice distance at most d− 1 to 0.

We end this chapter with a proposition that shows that the bound from Theorem 5.3.3
is sharp for all dimensions d.

Proposition 5.3.4. There is a d-dimensional alcoved polytope for any d ∈ N which
has a facet with lattice distance d− 1 to the interior lattice points.

Proof. We construct an example from the following polytope: Let P be the scaling of
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5.3 alcoved polytopes with interior lattice points

the order polytope of the chain of length d by (d+ 1):

P = {x ∈ Rd : x1 ≥ 0,

x2 ≥ x1,

x3 ≥ x2,

...

xd ≥ xd−1,

xd ≤ d+ 1}.

P is a reflexive alcoved simplex. The vertex description of P is given by

P = conv{(0, 0, . . . , 0, 0), (0, 0, . . . , 0, d+ 1), . . . ,

(0, d+ 1, . . . , d+ 1, d+ 1), (d+ 1, d+ 1, . . . , d+ 1, d+ 1)}.

Its unique interior lattice point is p = (1, 2, 3, . . . , d). The polytope P ∩{x ∈ Rd | x1 ≤ d}
is still an alcoved polytope with unique interior lattice point p. The hyperplane
{x ∈ Rd | x1 = d} defining the new facet has distance d− 1 from point p.

For a visualization in dimension 3, see Figure 5.4.

x1 = 3

(1, 2, 3)
(4, 4, 4)

(0, 0, 0)

(0, 0, 4)

(0, 4, 4)

Figure 5.4: The blue facet has lattice distance 2 from the interior lattice point. The red facets of Q3

are contained in facets of the bigger polytope.
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Part III

APPENDIX





A
FACET L ISTS OF POLYTOPES

Table A.1 lists all polytopes Pi with 7 and 8 vertices from Table 2.1 used in the construction
of all possible pairs (f0, f03). The polytopes are given by their facet list. See Fukuda,
Miyata & Moriyama [37] for a complete list of all 31 polytopes with 7 vertices and all
1294 polytopes with 8 vertices. Entry 7.x in the last column means that the polytope can
be found as the x-th polytope listed in the classification of 4-polytopes with 7 vertices.

polytope facet list row

P1 [654321][65430][6520][6420][5310][5210][4310] 7.3

[4210]

P2 [65432][65431][65210][64210][5320][5310][4320] 7.21

[4310]

P3 [65432][65431][65210][6421][5320][5310][4320] 7.22

[4310][4210]

P4 [65432][65410][6531][6431][5420][5321][5210] 7.11

[4320][4310][3210]

P5 [65432][6541][6531][6431][5421][5320][5310] 7.16

[5210][4320][4310][4210]

P6 [65432][65431][6521][6420][6410][6210][5320] 7.24

[5310][5210][4320][4310]

P7 [65432][6541][6531][6430][6410][6310][5421] 7.13

[5320][5310][5210][4320][4210]

P8 [765432][765410][76321][75310][64210][5430] 8.186

[4320][3210]

P9 [765432][76541][76310][75310][64210][6320] 8.285

[5420][5410][5320]

P10 [76543][76542][76321][75310][75210][64310] 8.1145

[64210][5430][5420]

P11 [765432][76541][76310][54310][7531][6421] 8.241
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[6320][6210][4320][4210]

P12 [765432][76541][76320][75310][54310][7610] 8.353

[6421][6210][4320][4210]

P13 [765432][76541][73210][63210][7631][7520] 8.201

[7510][6420][6410][5420][5410]

P14 [765432][76541][76310][7531][6430][6410] 8.306

[5420][5410][5321][5210][4320][3210]

P15 [765432][76510][7641][7541][6530][6421] 8.117

[6321][6310][5420][5410][5320][4210][3210]

P16 [76543][76521][76420][7542][6531][6431] 8.676

[6410][6210][5432][5320][5310][5210][4320]

[4310]

P17 [76543][76542][73210][63210][7632][7531] 8.909

[7520][7510][6431][6420][6410][5431][5420]

[5410]

P18 [76543][76521][7642][7542][6530][6510] 8.778

[6432][6320][6210][5430][5421][5410][4321]

[4310][3210]

P19 [76543][76542][73210][7631][7621][7530] 8.910

[7520][6431][6420][6410][6210][5431][5420]

[5410][5310]

P20 [76543][7652][7642][7531][7521][7431][7421] 8.805

[6530][6521][6510][6430][6420][6210][5310]

[4310][4210]

P21 [76543][76542][7632][7531][7521][7320][7310] 8.1227

[7210][6431][6420][6410][6320][6310][5431]

[5421][4210]

P22 [7654][7653][7643][7542][7532][7431][7421] 8.1262

[7321][6540][6530][6431][6410][6310][5420]

[5320][4210][3210]

P23 [76543][7652][7642][7531][7521][7431][7421] 8.806

[6530][6521][6510][6430][6420][6210][5310]

[4321][4320][3210]

P24 [76543][76542][7631][7621][7531][7520] 8.1041

[7510][7210][6430][6420][6321][6320][5431]

82



facet lists of polytopes

[5420][5410][4310][3210]

P25 [7654][7653][7643][7542][7532][7431][7421] 8.1263

[7321][6542][6530][6520][6430][6420][5321]

[5310][5210][4310][4210]

P26 [76543][7652][7642][7541][7521][7420][7410] 8.815

[7210][6530][6521][6510][6432][6320][6210]

[5431][5310][4320][4310]

P27 [7654][7653][7643][7542][7532][7431][7421] 8.1266

[7321][6542][6530][6520][6431][6420][6410]

[6310][5321][5310][5210][4210]

Table A.1: Polytopes Pi with 7 and 8 vertices

83





B
ALGORITHMS

Here we list algorithms used to calculated h∗-vectors of polytopes and test for unimodality.
All algorithms are written as SageMath code [84]. We also give some examples of alcoved
polytopes and their h∗-vectors.

B.1 convert ehrhart polynomial to h∗-polynomial

Given the Ehrhart polynomial of a lattice polytope P we can calculate the h∗-polynomial
of P with help of the Eulerian numbers (see [13, Sect. 2.2]). The Eulerian number A(d, k)
for integers d, k ≥ 1 is the number of permutations of the integers 1 to d with exactly
k − 1 ascents.
Eulerian numbers can be defined recursively as:

A(d, 1) = 1,

A(d, k) = 0 for d < k,

A(d, k) = (d− k + 1)A(d− 1, k − 1) + kA(d− 1, k) for 2 ≤ k ≤ d.

Another possibility to define the Eulerian numbers is in the following way:

∑
j≥0

jdzj =

∑d
k=0A(d, k)zk

(1− z)d+1
.

Let P be a d-dimensional lattice polytope with Ehrhart series EhrP (z) and Ehrhart
polynomial LP (t) = q0(P ) + q1(P )t+ . . .+ qd−1(P )td−1 + qd(P )td.

The h∗-polynomial of P is

h∗P (z) = (1− z)d+1 EhrP (z).

We can now calculate the h∗-polynomial from the Ehrhart polynomial using Eulerian
numbers:
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h∗P (z) =(1− z)d+1 EhrP (z)

=(1− z)d+1
∑
t≥0

LP (t)zt

=(1− z)d+1
∑
t≥0

(

d∑
j=0

qjt
j)zt

=(1− z)d+1(q0(1 + z + z2 + . . .) + q1(z + 2z2 + 3z3 + . . .) + . . .

+ qd(z + 2dz2 + 3dz3 + . . .))

=(1− z)d+1
d∑
i=0

qi(
∑
j≥0

jizj)

=(1− z)d+1
d∑
i=0

qi

∑d
k=0A(i, k)zk

(1− z)i+1

=

d∑
i=0

qi(

d∑
k=0

A(i, k)zk)(1− z)d−i.

The following program was written together with Sophia Elia. This program converts
the Ehrhart polynomial of a lattice polytope to the h∗-polynomial. The Ehrhart poly-
nomials of lattice polytopes can be calculated using LattE Integrale [6]. There is also a
built-in normaliz function [26] to calculate the Ehrhart series of a polytope, but it had
too long run-time for our examples.

def eulerian_numbers(n):

r’’’

Computes the Eulerian numbers up to A(n,n).

OUTPUT:

An n+1 by n+1 matrix of the Eulerian numbers up to A(n,n).

’’’

A = zero_matrix(n+1,n+1)

A[0,0] = 1

for i in range(1,n+1):

A[i,0] = 0

A[i,1] = 1

for j in range(2,n+1):

for k in range(2,j+1):

if j == k:

A[j,k] = 1

else:

A[j,k] = (j-k+1)*A[j-1,k-1] +k*A[j-1,k]

return(A)
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B.1 convert ehrhart polynomial to h∗-polynomial

def eulerian_polynomial(n):

r’’’

Computes the nth Eulerian polynomial.

’’’

R = PolynomialRing(ZZ, ’t’)

t = R.gen()

A = eulerian_numbers(n)

return(R.sum( A[n,i]*t**i for i in range(n+1)))

def ehr_to_hstar(ehr_poly):

r’’’

Convert the Ehrhart polynomial of a lattice polytope to the

h*-polynomial.

The Ehrhart series can be rewritten as follows:

$$Ehr_P(t) = \sum_{m\geq 0}L_P(m)t^m

= \sum_{m\geq 0}\sum_{j \geq 0}^{d}q_j m^j t^m$$,

where L_P(m) = \sum_{j \geq 0}^{d}q_j m^j is the Ehrhart polynomial

of P.

The numerator of the rational expression for the series

$\sum_{m\geq 0 }m^j t^m $ is an Eulerian polynomial. This function

uses the Eulerian polynomials to transform from the Ehrhart

polynomial to the h*-polynomial.

INPUT:

‘‘ehr_poly‘‘ , a polynomial in ’t’ with rational coefficients, the

output of the ‘‘ehrhart_polynomial‘‘ function.

OUTPUT:

The h*-polynomial as a polynomial in ’t’ with non-negative integral

coefficients.

EXAMPLE:

The h*-polynomial of a unimodular simplex is always 1. Here we

test the conversion for a 4-dimensional simplex:

sage: p = polytopes.simplex(4)

sage: e = p.ehrhart_polynomial()

sage: ehr_to_hstar(e)

1

’’’

# change the polynomial into a vector

Ring = PolynomialRing(QQbar, ’t’)

t = Ring.gen()

ehr_poly = ehr_poly.coefficients()

# get the dimension of the polytope

d = len(ehr_poly)-1
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# compute the h* polynomial

factors = zero_vector(d+1)

factors = factors.change_ring(Ring)

for j in range(d+1):

factors[j] = ehr_poly[j]*(1-t)**(d-j)*eulerian_polynomial(j)

return sum(factors)

B.2 generic alcoved polytopes

We give an example of a function which allows us to create random alcoved polytopes. The
polytopes are full-dimensional and inscribed in a dim(P )-dimensional cube of side-length
5 (or smaller). This assures that the volume does not get too large for computation.

def alcoved_matrix(dim, vec):

r’’’

Computes a hyperplane representation matrix of an alcoved polytope.

INPUT: The dimension ’dim’ of the polytope, and

the coefficient vector ’vec’ of dimension

2*(dim choose 2)+2*dim for the hyperplanes.

OUTPUT: A (2*(dim choose 2)+2*dim)x(dim+1)-matrix

for the H-description of an alcoved polytope.

’’’

c = binomial(dim,2)

M_help = Matrix (2*c,dim)

M = Matrix (2*c+2*dim,dim+1)

#

# all hyperplanes of type x_i-x_j = constant:

for i in range(c):

# all sets of 2 indices out of all indices for each choice of

(x_i,x_j)

pairij = Combinations(range(dim),2).list()[i]

M_help[2*i, pairij[0] ] = 1

M_help[2*i,pairij[1] ] = -1

M_help[2*i+1, pairij[0] ] = -1

M_help[2*i+1, pairij[1] ] = 1

for i in range(2*c):

M[i, 0 ] = vec[i]

for j in range(dim): M[i,j+1] = M_help[i,j]

# all hyperplanes of type +x_i = constant

# and -x_i = constant

for i in range(2*c, 2*c+dim):

M[i, 0] = vec[i]

M[i+dim, 0] = vec[i+dim]

M[i, i+1-2*c]=-1

M[i+dim, i+1-2*c]=1

return M
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def random_vector(dim):

r’’’

Computes a random (2*(dim choose 2)+2*dim)-dimensional coefficient

vector for a generic alcoved polytope of dimension ’dim’ contained

in the cube [-2,3]^dim and containing the cube [0,1]^dim.

’’’

rand=random_matrix(ZZ, 1, 2*binomial(dim,2),

x=1,y=6).augment(random_matrix(ZZ, 1, dim, x=1,

y=4).augment(random_matrix(ZZ, 1, dim, x=0, y=3)))[0]

return rand

def small_random_vector(dim):

r’’’

Computes a random (2*(dim choose 2)+2*dim)-dimensional coefficient

vector for a generic alcoved polytope of dimension ’dim’ contained

in the cube [0,3]^dim and containing the cube [0,1]^dim.

This is better suited for higher dimensions, where the run-time

would otherwise get too long.

’’’

rand=random_matrix(ZZ, 1, 2*binomial(dim,2),

x=1,y=4).augment(random_matrix(ZZ, 1, dim, x=1,

y=3).augment(random_matrix(ZZ, 1, dim, x=0, y=2)))[0]

return rand

def alcoved_polytope(dim,vec):

r’’’

Computes an alcoved polytope of dimension ’dim’ based on a vector

’vec’ that determines the position of the defining hyperplanes.

INPUT: The dimension ’dim’ of the polytope and a

(2*(dim choose 2)+2*dim)-dimensional vector ’vec’.

OUTPUT: An alcoved polytope of dimension ’dim’.

’’’

P = Polyhedron(ieqs = alcoved_matrix(dim, vec), backend=’normaliz’)

return P

B.3 unimodality

The programs in this section are a function that determines whether a list is unimodal
and a function that tests the h∗-vectors of a given number of randomly generated alcoved
polytopes of a given dimension for unimodality.
First we convert the h∗-polynomial to the h∗-vector:

# h^*-vector from h^*-polynomial

def Hvec(x): return

(ehr_to_hstar(x.ehrhart_polynomial())).coefficients()

Then we determine if a list or tuple is unimodal:
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def unimodal(ls):

r’’’

Determines if a list or tuple ’ls’ is unimodal.

INPUT: List or tuple ’ls’ of numbers.

OUTPUT: ’True’ if the list is unimodal, ’False’ otherwise.

’’’

# determines index of the first decrease in the list

decr= next((i for i in range(1,len(ls)) if ls[i]-ls[i-1]<0),False)

if (decr == False) or (decr == len(ls)):

return True

else:

# determines if there is an increase after the decrease

if any(ls[i]-ls[i-1]>0 for i in range(decr+1,len(ls))):

return False

else: return True

Next we test several h∗-vectors of alcoved polytopes for unimodality:

def test_for_unimodality(num_of_tests, dim):

r’’’

This function tests the h^*-vectors of ’num_of_tests’ many random

alcoved polytopes of dimension ’dim’ for unimodality.

INPUT: The number of tests ’num_of_tests’ and the dimension ’dim’ of

the polytopes that should be tested.

OUTPUT: Returns the vector that defines the first polytope with

non-unimodal h^*-vector (with the alcoved_polytope-function)

if there is any.

’’’

for i in range(num_of_tests):

rv = random_vector(dim)

P = alcoved_polytope(dim,rv)

hvector = Hvec(P)

if unimodal(hvector) == False:

print(’There is an alcoved polytope with non-unimodal

h-star-vector!’)

return rv

print(’All {} tested polytopes have unimodal

h-star-vector.’.format(num_of_tests))

B.4 examples

In Table B.1 there are some examples of (unimodal) h∗-vectors calculated with the
function Hvec coming from alcoved polytopes randomly generated with the functions
random_vector and alcoved_polytope. There is one example for each dimension be-
tween 3 and 16. For dimension 16 we used the small_random_vector to generate the
polytopes.
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Dim. h∗-vector

3 1, 98, 188, 22

4 1, 104, 370, 146, 3

5 1, 356, 3216, 3965, 722, 6

6 1, 278, 3442, 7074, 2977, 189

1, 522, 9978, 33062,

7 26037, 4584, 102

1, 1962, 89574, 650410,

8 1210219, 643554, 86807, 1762

1,

5624,

409384,

4544444,

9 13413250,

12480018,

3617286,

265589,

2485

1,

11361,

1472932,

26848012,

10 130799314,

213186186,

123024451,

23477417,

1154189,

6839

1,

14350,

2256181,

51639116,

327390062,

11 729687382,

621049446,

198471087,

20964122,

521849,

1070

1,

19944,

5228717,

186169763,

1812852282,

12 6346402583,

8965318338,

5257171069,

1223272752,

98031585,

1936661,

3716

1,

91329,

44855680,

2470235309,

35303767765,

180399454984,

13 380503494555,

350270955412,

139818187839,

22527990348,

1233354464,

15460541,

13816

1,

92744,

61035357,

4461610156,

84498080329,

579384773749,

14 1683186967226,

2226507192578,

1364315287619,

375282480730,

42267367262,

1603500992,

13275503,

6792

1,

240485,

278806016,

30713524660,

831462306799,

8037261688378,

33174929171015,

15 63952385251690,

59735193988116,

26931894294332,

5599149137353,

484130852634,

14170655809,

90022039,

36218

1,

93896,

91469858,

10614760282,

323897816139,

3658410128555,

18169693219004,

16 43468545132385,

52316695445712,

31944633402938,

9656730519861,

1355225501529,

77874204105,

1436104725,

4957986,

586

Table B.1: Examples of h∗-vectors
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& Hall / CRC Press LLC, 2017, pp. 383–413 (see p. 20).

[41] Martin Henk and Makoto Tagami. Lower bounds on the coefficients of Ehrhart
polynomials. In: European J. Combin. 30 (2009), pp. 70–83 (see p. 60).

[42] Takayuki Hibi. Algebraic combinatorics on convex polytopes. Carslaw Publications,
1992 (see p. 64).

97

http://arxiv.org/abs/1803.05205
www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/
www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/
http://arxiv.org/abs/1405.1687v3


Bibliography

[43] Takayuki Hibi. Ehrhart polynomials of convex polytopes, h-vectors of simplicial
complexes, and nonsingular projective toric varieties. In: Discrete Comput. Geom-
etry (1991). DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer.
Math. Soc., Providence, RI, pp. 165–177 (see p. 60).

[44] Takayuki Hibi and Hidefumi Ohsugi. Special simplices and Gorenstein toric rings.
In: J. Combin. Theory Ser. A 113.4 (2006), pp. 718–725 (see p. 64).

[45] David Hilbert. Mathematische Probleme. In: Göttinger Nachrichten (1900), pp. 253–
297. English Translation by Mary Winston Newson: Mathematical Problems, in
Bull. Amer. Math. Soc. 8.10 (1902), pp. 437–479 (see p. 37).

[46] Peter John Hilton and Urs Stammbach. A Course in Homological Algebra. Springer
Berlin and Heidelberg, 1971 (see p. 70).

[47] Patrick Honner. Why the Sum of Three Cubes Is a Hard Math Problem. Quanta
Magazine. November 5, 2019, URL www.quantamagazine.org/why-the-sum-of-

three-cubes-is-a-hard-math-problem-20191105/, accessed May 2020 (see
p. 37).

[48] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. 3rd ed. Pearson Addison–Wesley,
2008 (see p. 35).
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ZUSAMMENFASSUNG

Die vorliegende Arbeit behandelt zwei unterschiedliche Themenkomplexe aus dem Bereich
der Polytoptheorie. Der erste Themenkomplex ist in Teil I enthalten und unterteilt in
Kapitel 2 und 3. In diesem Teil beschäftigen wir uns mit den Mengen der f -Vektoren
und Fahnenvektoren von Polytopen.

Ein neues Resultat aus Kapitel 2 ist die komplette Beschreibung der Projektion der
Fahnenvektoren von 4-dimensionalen Polytopen auf die Einträge f0, die Anzahl der Ecken,
und f03, die Anzahl der Ecken-Facetten-Inzidenzen. Dies ist Satz 2.1.5.

Weitere neue Resultate sind die Sätze 2.2.2 und 2.2.3. Darin wird die Menge aller
Paare von Ecken- und Facettenanzahl von d-dimensionalen Polytopen beschrieben.

In Kapitel 3 wird das Konzept der semi-algebraischen Mengen von Gitterpunkten
entwickelt. Dieses Konzept bietet uns eine Möglichkeit, die “Komplexität” der Mengen
von f -Vektoren zu beschreiben. Wir betrachten eine Reihe von verschiedenen f -Vektor-
Mengen und stellen fest, dass diese sich größtenteils als Menge aller Gitterpunkte in einer
semi-algebraischen Menge beschreiben lassen. Unsere Hauptresultate in diesem Kapitel
sind die Sätze 3.3.4 und 3.3.5, die besagen, dass zwei bestimmte f -Vektor-Mengen sich
nicht als Menge aller Gitterpunkte in einer semi-algebraischen Menge beschreiben lassen.
Diese Mengen sind erstens die Menge der Anzahl aller Kanten und 2-dimensionalen
Seiten von 4-dimensionalen Polytopen, und zweitens die Menge aller f -Vektoren von
d-dimensionalen Polytopen, mit d größer oder gleich 6.

In Teil II beschäftigen wir uns mit einer Fragestellung aus dem Bereich der Ehrharttheo-
rie, die Frage, ob Alkovenpolytope unimodale h∗-Vektoren haben. Teil II ist aufgeteilt in
Kapitel 4 und Kapitel 5.

In Kapitel 4 werden die notwendigen Konzepte aus Ehrharttheorie und Stanley–Reisner-
Theorie erläutert, und einige Unimodalitätsvermutungen vorgestellt.

Kapitel 5 handelt von Alkovenpolytopen und deren h∗-Vektoren. Die beiden Hauptre-
sultate in diesem Kapitel sind die Sätze 5.3.2 und 5.3.3. Satz 5.3.2 gibt eine Bedingung
an, unter welcher Alkovenpolytope unimodale h∗-Vektoren haben: Alle Alkovenpolytope
mit inneren Gitterpunkten, deren Facetten Gitterabstand 1 zu den inneren Gitterpunkten
haben, haben unimodale h∗-Vektoren. Satz 5.3.3 begrenzt, wie sehr Alkovenpolytope diese
Bedingung verfehlen können. Der Satz besagt, dass die Facetten von d-dimensionalen
Alkovenpolytopen mit inneren Gitterpunkten höchstens Abstand d− 1 zu den inneren
Gitterpunkten haben.
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