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Abstract 

 

Adult neurogenesis is a process in which new neurons are generated in neurogenic niches and 

become recruited into distinct regions of the mature brain. In the adult songbird brain, new 

neurons are incorporated into areas that facilitate learning, production and maintenance of song. 

The striatal song nucleus Area X constantly receives new medium spiny neurons (MSNs) 

throughout adulthood, but it was not known if they are functionally integrated into the 

preexisting circuitry. To address this question, I applied Bromodeoxyuridine (BrdU) and 

lentiviral vector-mediated labelling of progenitor cells and examined the maturation, 

connectivity and singing elicited activation and of their progeny in Area X after different 

survival periods. Six weeks after their birth, the majority of new neurons expressed a marker 

for mature MSNs, show pre- and postsynaptic connections and expressed dopamine receptors, 

indicative of dopaminergic innervation. The expression of the immediate early gene EGR-1 

(early growth response protein 1) was used to assess if and at what age new neurons were 

activated by singing. Already three weeks after their labelling, a small fraction of new MSNs 

expressed EGR-1 after singing and this fraction increased with progressing maturation. 

Measuring MSN densities in zebra finches up to seven years of age provided insights into the 

dynamics of striatal adult neurogenesis and revealed that it is a process of constant new neuron 

addition.  

 New MSNs that are recruited into Area X express the forkhead box protein P2 (FoxP2). 

This transcription factor has important functions in mammalian brain development and 

mutations in FOXP2 cause speech and language impairments in humans. In zebra finches, 

correct FoxP2 expression levels in Area X are crucial for successful song learning and for song 

modulation between different social contexts. FoxP2 levels in Area X are high during the phase 

of song learning but generally low in adults and are downregulated by singing. MSNs in Area X 

exhibit different FoxP2 expression levels. Since FoxP2 downregulation after singing only 

occurs in MSNs with low FoxP2 levels (FoxP2low) and not in MSNs with high FoxP2 levels 

(FoxP2high), I postulated that the latter were recently recruited and need to become FoxP2low 

MSNs before they would be activated by singing. This hypothesis was tested by measuring 

FoxP2 protein levels and EGR-1 expression in individual new MSNs of singing and non-

singing birds at different time points after BrdU birth dating. Interestingly, FoxP2high and 

FoxP2low MSNs were equally activated during singing, indicating that this is a process 

independent of FoxP2 levels. Further, I identified that one third of new MSNs expressed FoxP2 

at high levels during early stages of their maturation. However, the majority of matured MSNs 

expressed FoxP2 at low levels, indicating an age-related decrease of FoxP2 levels in a subset 
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of newly recruited MSNs. Because Foxp2 was shown to enhance neuronal outgrowth and 

differentiation, I analyzed the dendrite morphology and the density of dendritic spines of 

FoxP2high and FoxP2low new MSNs that were virally labelled and expressed the green 

fluorescent protein. FoxP2high new MSNs had more complex dendrites and a higher density of 

the mature mushroom spines than FoxP2low new MSNs and thus probably received more pallial 

inputs during a narrow timeframe of their maturation. Comparing my results to what is known 

about MSNs of the direct and indirect pathway of the basal ganglia of rodents, I hypothesize 

that early differences in FoxP2 levels and concomitant diverging new MSNs morphology might 

indicate the existence of distinct MSN subtypes in Area X of zebra finches.  

Altogether, the presented data illustrate that new MSNs recruited into Area X of adult 

zebra finches are functional and might play a role for the maintenance of song. Within the first 

six weeks after their birth new MSNs exhibited dynamic FoxP2 expression levels which are 

liked to their dendritic arborization and spine density, thus broadening FoxP2 function by an 

implication in striatal adult neurogenesis.  
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General Introduction  

 

A brief history of adult neurogenesis 

As many fundamental scientific discoveries, the first detection of newly generated neurons in 

adult brains was a coincidence. In the early sixties, Joseph Altman studied glia proliferation 

after injury and observed many newly generated cells far away from the lesion site (Altman, 

1962b). He suspected that new neurons were generated in the adult brain (Altman, 1962a) and 

systematically injected rats and cats with tritiated thymidine at different ages (Altman, 1963). 

In follow-up studies he described postnatal neurogenesis in different species and brain regions, 

including the hippocampus and the olfactory bulb (Altman and Das, 1965a; b; 1967; Altman, 

1969). Despite publishing his reports on postnatal neurogenesis in respected journals (Altman 

and Das, 1965b; 1967; Altman, 1969) strong criticism by prominent scientists of the time who 

maintained that neurogenesis was limited to pre-natal development (Rakic, 1974) caused these 

findings to be largely forgotten for two decades (Altman, 2011). The claims that “adult centers, 

the nerve paths are something fixed, ended, and immutable” and “everything may die, nothing 

may be regenerated” postulated by Ramón y Cajal in 1913 (Ramón y Cajal, 1913) kept being 

the dogma for another 20 years.  

In 1983, Fernando Nottebohm was wondering about the seasonal volume changes in 

nuclei of the canary brain. Might fluctuations of neurons account for the volume differences? 

Using similar techniques as Altman had used, Nottebohm and his PhD student Steve Goldman 

found unequivocal evidence that neurons were born in the adult songbird brain (Goldman and 

Nottebohm, 1983). Tour-de-force follow up paper demonstrated that these new neurons were 

incorporated into functioning neural networks by showing that they responded physiologically 

to sound and made synapses with neighboring neurons (Paton and Nottebohm, 1984; Burd and 

Nottebohm, 1985). This “rediscovery” of neurogenesis in the adult telencephalon opened doors 

for many further investigations of adult neurogenesis in songbirds as well as in mammals 

(Doetsch and Scharff, 2001; Gould, 2007; Barnea and Pravosudov, 2011; Kempermann et al., 

2015).  

 

Songbirds as a model to study adult neurogenesis 

Neural plasticity, the brains ability to adapt constantly to changing conditions, can be observed 

on many levels ranging from single molecules, strengthening or weakening of synapses to new 

connections within neuronal circuits (Citri and Malenka, 2008; Ho et al., 2011; Frisen, 2016). 

The addition of new neurons into preexisting functional circuits is another intriguing way to 
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generate plasticity, because neurons as single units can be variably tuned to current demands 

(Toda and Gage, 2018). Songbirds offer an excellent model to study neurogenesis in the adult 

brain because many new neurons are recruited into brain areas that are exclusively associated 

with one particular behavior: singing. By studying adult neurogenesis in birds, it is possible to 

relate new neuron addition to a measurable behavioral output and thus interpret its role for vocal 

learning and song production.  

 

Vocal learning and song production  

Vocal communication is a common trait in the animal kingdom, but vocal production learning 

(i.e. the imitation of an acoustically perceived sound) has been demonstrated only in eight 

animal groups: three groups of birds (hummingbirds, parrots and songbirds) and five groups of 

mammals (bats, cetaceans, elephants, humans and pinnipeds) (Janik and Slater, 1997; 2000). In 

the majority of the more than 4500 songbird species both males and females sing, which also 

seems to have been the ancestral state (Odom et al., 2014). However, in other species, including 

the Australian zebra finch, and also in most of those living in the temperate zone, only the males 

sing. The time and duration when songbirds learn to produce the acoustic elements of their song 

also varies considerably. Open-ended learners like the European starling incorporate new song 

elements throughout their lives, whereas closed learners like the zebra finch only sing the 

elements that they learned during a sensitive period early in their lives (Brainard and Doupe, 

2002; London, 2017). During a sensorimotor phase, juvenile zebra finches hear and store the 

tutor’s song while they simultaneously produce a subsong. At around 90 days post hatch the 

song has crystallized and usually resembles the tutor’s song to a large extent. In comparison to 

many other songbirds, adult zebra finch song is quite stereotyped, with little variation between 

song renditions. It consists of multiple elements that form a motif. Introductory notes followed 

by multiple motifs form a song bout. Zebra finches sing in two different social contexts; they 

either direct their song towards a conspecific, in most cases during courtship (directed song), 

or they sing without directing their song towards a conspecific (undirected song, Sossinka and 

Böhner, 1980). Directed song is more stereotyped and faster than undirected song and often 

accompanied by a courtship dance (Sossinka and Böhner, 1980; Cooper and Goller, 2006; 

Ullrich et al., 2016). Despite subtle differences in song features, directed and undirected song 

elicit different neuronal activity, gene expression and neurotransmitter release (Jarvis et al., 

1998; Leblois et al., 2010; Woolley et al., 2014).  
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The song system  

The neural substrate underlying hearing, producing and learning song consists of several song 

nuclei in three interconnected pathways (Fig. 1). The motor pathway controls song production 

and connects the pallial (“cortical” like) nucleus HVC (proper name) to the robust nucleus of 

the archistriatum (RA). RA in turn connects to motor neurons in the tracheosyringeal portion 

of the hypoglossal nucleus (nXIIts), which innervates the vocal organ, called syrinx (Nottebohm 

et al, 1976). The auditory pathway processes auditory information entering the brain via the 

ears, ascending through a vertebrate-canonical series of nuclei and regions and also connects 

indirectly towards HVC and other pallial nuclei (Vates et al., 1996; Mandelblat-Cerf et al., 

2014; Murphy et al., 2017). The anterior forebrain pathway (AFP) enables song learning, song 

maintenance and social context dependent modulation of song (Bottjer et al., 1984; Sohrabji et 

al., 1990; Scharff and Nottebohm, 1991; Murugan et al., 2013; Kubikova et al., 2014; Woolley 

and Kao, 2015; Kojima et al., 2018; Xiao et al., 2020). It forms a pallial-basal ganglia-thalamo-

pallial feedback loop and connects HVC and lateral magnocellular nucleus of the anterior 

nidopallium (LMAN) to RA via striatal Area X and the medial dorsolateral nucleus of the 

anterior thalamus (DLM). Area X receives dopaminergic innervation from the ventral tegmental 

area (VTA) and the substantia nigra pars compacta (SNc, Lewis et al., 1981; Bottjer, 1993; Gale 

et al., 2008).   

 

Figure 1. The song system 

The song motor pathway (shown in black) controls the vocal organ (syrinx) via HVC >RA >nXIIts. The anterior 

forebrain pathway (AFP, shown in blue) forms a pallial-basal ganglia-thalamic-pallial loop, connecting HVC 

and RA via Area X>DLM>LMAN. Area X receives dopaminergic innervation from VTA and SNc (shown in 

green).  
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Adult neurogenesis in nuclei of the song system 

In the adult songbird brain, new neurons are generated, migrate into the telencephalon and 

incorporate into existing circuits (Alvarez-Buylla and Nottebohm, 1988). Proliferation hot spots 

at the wall of the lateral ventricle give rise to new neurons that migrate along radial glia cells 

into the parenchyma (Alvarez-Buylla and Nottebohm, 1988; Alvarez-Buylla et al., 1988b; 

1990). In the song system, pallial HVC, the caudomedial nidopallium (NCM, part of the 

auditory pathway) and striatal Area X receive new neurons (Alvarez-Buylla and Nottebohm, 

1988; Nordeen and Nordeen, 1988a, Fig. 2). First, I will expand on adult neurogenesis in HVC, 

then on adult neurogenesis Area X. HVC contains two types of projection neurons: HVCRA 

neurons are part motor pathway and project to RA whereas HVCX neurons send their axons to 

Area X (Nottebohm et al., 1976). Only HVCRA neurons are generated postnatally and in 

adulthood, in contrast to HVCX neurons, that are mainly generated in ovo (Alvarez-Buylla et 

al., 1988a; Nordeen and Nordeen, 1988b; Scotto-Lomassese et al., 2007). The specific ablation 

of either HVCRA or HVCX neurons leads to an increased recruitment of only HVCRA neurons, 

indicating that cell death of HVCX neurons does not induce their recruitment (Scharff et al., 

2000). New HVC neurons can be detected as early as one week after their birth and their 

connection to RA is robustly established between 22 and 31 days after their birth (Burek et al., 

1994; Kirn et al., 1999; Tokarev et al., 2015). They respond to auditory stimuli (Paton and 

Nottebohm, 1984) and robustly express immediate early genes after singing as early as three 

weeks after they were born, indicating that they are firing during singing (Tokarev et al., 2015). 

New neuron recruitment in songbirds can either occur as a process of addition or replacement. 

In the seasonally breeding canary, new neurons in HVC replace older ones that have died (Kirn 

and Nottebohm, 1993). In the zebra finch, new HVC neurons are added to the existing circuitry, 

resulting in a doubling of neuron density over time (Walton et al., 2012).  

Age, experience during early development, social environment and behavior impact on 

new neuron recruitment and/or survival in HVC. As zebra finches age, the rate of new neuron 

addition declines in HVC but not in other parts of the song system (Wang et al., 2002; Pytte et 

al., 2007). Since singing enhances new neuron survival in HVC of canaries (Li et al., 2000; 

Alvarez-Borda and Nottebohm, 2002), it might be possible that decreased singing rates in aged 

zebra finches cause a decline of adult neurogenesis in HVC. However, in Pytte et al. (2007), 

there was no difference in motifs per song bout between young and old zebra finches but a 

detailed analysis of singing rates across different ages might reveal a relationship between age-

dependent singing rates and the recruitment of new neurons into HVC. 
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Besides age, social environment influences adult neurogenesis in HVC. New neuron number in 

HVC co-varies among related and even unrelated adult male zebra finches when they shared 

the same nest (Hurley et al., 2008) and individuals that were held in a large mixed sex group 

had more new neurons in HVC and Area X compared to zebra fiches that were held in pairs or 

in isolation (Lipkind et al., 2002). On a cellular level, postsynaptic neural activity in RA was 

shown to be crucial for the survival of new HVC neurons (Larson et al., 2013). Further, singing 

induced brain-derived neurotrophic factor (BDNF) expression enhances the survival of new 

neurons in HVC of canaries (Li et al., 2000) and its interaction with testosterone influences 

proliferation and new neuron survival especially in seasonally breeding songbirds (Brenowitz, 

2014). HVC receives input from the auditory pathway (Vates et al., 1996) and new neurons in 

HVC respond to sound early during their maturation (Paton and Nottebohm, 1984). Auditory 

deprivation caused by bilateral deafening of adult zebra finches decreases the total number of 

new neurons in HVC indicating that auditory input is necessary for their survival (Wang et al., 

1999). Other studies found a positive or no effect of deafening on HVC neurogenesis in adults 

(Hurley et al., 2008; Pytte et al., 2012), whereby social context and different composition of 

nest mates may account for the differences between the studies. The quality of song structure 

and rates of adult neurogenesis in HVC are connected; the magnitude of song deterioration after 

paralysis of syringeal muscles and the rate of song recovery correlate positively with the number 

of new neurons incorporated into HVC (Pytte et al., 2011). If song quality affects rates of new 

neurons in HVC or vice versa awaits further investigation.  

Figure 2. Adult neurogenesis in the songbird brain 

New neurons (represented by red dots) are generated in the ventricular zone (shown in green) and migrate 

towards many regions of the telencephalon, including song system nuclei HVC (shown in yellow) and Area X 

(shown in gray).  
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The following paragraph will summarize the knowledge on adult neurogenesis in Area X, of 

which much less is known compared to adult neurogenesis in HVC. Area X is formed from the 

Islet1+ ventral striatal domain between 8 and 10 days after hatching and increases in volume 

until 40 days after hatching (Nixdorf-Bergweiler, 1996; Garcia-Calero and Scharff, 2013). 

Islet1 is a marker for the lateral ganglionic eminence where medium spiny  neurons originate 

during brain development in mammals (Stenman et al., 2003). Newly generated neurons in 

Area X are also MSNs, which is the most abundant neuron type in the striatum of mammals 

and birds (Freund et al., 1984; Farries and Perkel, 2000; Rochefort et al., 2007; Scott and Lois, 

2007). New MSNs that migrate into Area X originate at the ventricular zone (VZ) at the wall 

of the lateral ventricle adjacent to the striatum (Alvarez-Buylla et al., 1990; Scott and Lois, 

2007). MSNs are characterized by a medium sized cell soma, spiny dendrites and distinct 

electrophysiological and transcriptional profiles (Surmeier et al., 2007; Cepeda et al., 2008; 

Gokce et al., 2016; Stanley et al., 2019).  

MSNs in Area X receive glutamatergic (excitatory) innervation from HVC and LMAN 

and dopaminergic innervation from VTA/SNc. Both glutamatergic and dopaminergic 

projections converge onto dendritic spines of the same MSN (Bouyer et al., 1984; Kornfeld et 

al., 2020). MSNs are GABAergic (inhibitory), they show sparse firing during singing and their 

function is feed-forward inhibition of pallial signaling (Goldberg and Fee, 2010) . They do not 

project out of Area X but innervate pallidal-like neurons (PNs) that project to thalamic DLM 

(Farries and Perkel, 2002; Kornfeld et al., 2020). Two types PNs can be distinguished in 

Area X; direct PNs that innervate DLM and indirect PNs that only innervate direct PNs (Farries 

et al., 2005; Goldberg et al., 2010; Xiao et al., 2020, Figure 3). Based on electrophysiological 

recordings, PNs have been proposed to resemble the mammalian external and internal segments 

of the globus pallidus (Goldberg et al., 2010), that are innervated by different populations of 

MSNs (Calabresi et al., 2014, Fig. 3). Gene expression profiles of single PNs in Area X, 

however, contradict this hypothesis and show that PNs appear more similar to arkypallidal cells 

of the external globus pallidus (Xiao et al., 2020) that do not project forward to neurons of the 

subthalamic nucleus but project back to the striatum (Mallet et al., 2012; Abdi et al., 2015). The 

existence of different MSN subtypes that exclusively innervate direct or indirect PNs in 

songbirds has been proposed but was not yet proven by electrophysiological recordings (Gale 

and Perkel, 2010; Pidoux et al., 2015). A recent study that analyzed the Area X transcriptome 

distinguishes even five different MSNs clusters (Xiao et al., 2020). Differential gene expression 

analysis delineated MSNs clusters that expressed classical markers of MSNs  
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that innervate the direct and indirect pathway of the mammalian basal ganglia (Xiao et al., 2020, 

Fig. 3). In rodents, direct pathway MSNs express the dopamine receptor type 1 (Drd1) and the 

forkhead box protein P2 (Foxp21), a transcription factor implicated in striatal function (Enard, 

2011, and see next section). MSNs of the indirect pathway express the dopamine receptor type 

2 (Drd2) but no or only little Foxp2 (Vernes et al., 2011; van Rhijn et al., 2018; Stanley et al., 

2019). In zebra finch Area X, FoxP2 expression is less segregated between MSN cluster; about 

60% and 20% of the MSNs that correspond to the direct or indirect pathway express FoxP2, 

respectively (Xiao et al., 2020).  

New MSNs that migrate into Area X also express FoxP2 (Rochefort et al., 2007). FoxP2 

downregulation in the SVZ decreased new MSN spine density in Area X and led to a small but 

statistically not significant effect on the rate of recruited new MSNs during song development 

in juveniles (Schulz et al., 2010). In mammals, Foxp2 is implicated in embryonic development 

of the cortex and the striatum (Tsui et al., 2013; Chiu et al., 2014; Kast et al., 2019), but which 

role FoxP2 plays for the process of adult neurogenesis in songbirds is not known.  

 

 

1 FOXP2 refers to the human gene, Foxp2 refers to the mouse gene and FoxP2 refers to all other 

species. FOXP2, Foxp2 and FoxP2 correspond to the protein product (Kaestner et al., 2000). 

Figure 3. Basal ganglia microcircuitry in mammals and songbirds 

In the mammalian striatum, dopamine receptor type 1 (D1) expressing MSNs are part of the direct pathway 

and directly innervate the internal globus pallidus (GPi), which inhibits the thalamus. Dopamine receptor type 

2 (D2) expressing MSNs are part of the indirect pathway and project to the external GP (GPe). In the songbird 

striatum, neurons in Area X receive glutamatergic innervations from HVC and LMAN. MSNs in Area X 

inhibit direct and indirect pallidal-like neurons (dPN, iPN). Only dPNs project to the thalamic nucleus DLM 

that connects to RA via LMAN. RA directly innervates the AFP via DLM. Graphic adapted from Pidoux et 

al. (2015) and Kosubek-Langer et al. (2017).  
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One striking difference between the process of adult neurogenesis in HVC and Area X is that 

in the latter the rate of recruited neurons does not decrease with age (Pytte et al., 2007), which 

is why I suspected that is has an ongoing function for song maintenance. To find out whether 

new neurons in Area X are functionally integrated into the circuitry and behaviorally relevant, 

in Publication A of this dissertation, I addressed the maturation course of new MSNs, their 

participation in singing related activity and the question if their integration into Area X is a 

process of replacement or addition.  
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FOXP2 – a transcription factor implicated in speech and language 

Mutations of the transcription factor FOXP2 cause a severe speech and language impairment 

in humans, called childhood apraxia of speech (CAS, Lai et al., 2001; MacDermot et al., 2005; 

Morgan et al., 2016). Besides a mildly impaired language perception, affected individuals 

mostly have difficulties performing fine orofacial movements that underlie speech production 

(Vargha-Khadem et al., 1998). Functional imaging revealed that the brains of affected 

individuals show structural and functional differences in cortical, cerebellar and basal ganglia 

regions (Vargha-Khadem et al., 1998; Watkins et al., 2002; Liégeois et al., 2003; Liégeois et 

al., 2016). Additional to its role in speech and language impairments, FOXP2 variants are 

associated with attention deficit/ hyperactivity disorder and FOXP2 is a risk gene in autism 

spectrum disorders (Demontis et al., 2019; Satterstrom et al., 2020). Considering the underlying 

mechanism, both brain development and later brain function may be involved (Ehninger et al., 

2008). Consistent with the former, many of FOXP2’s target genes are linked to 

neurodevelopmental disorders (Mukamel et al., 2011). Deciphering Foxp2 expression pattern 

during brain development and adulthood is crucial to understand which cell types and neuronal 

circuits are affected by Foxp2 variants or mutations. Foxp2 expression patterns in cortex, 

cerebellum, thalamus and striatum are strongly conserved across reptiles, birds and mammals 

(Ferland et al., 2003; Takahashi et al., 2003; Haesler et al., 2004; Takahashi et al., 2008; 

Campbell et al., 2009; Rodenas-Cuadrado et al., 2018). In the cortices of mice, Foxp2 is 

enriched in corticothalamic projection neurons but not in corticocortical projection neurons of 

layer 6 (Kast et al., 2019). In cerebellar cortex, Foxp2 is expressed in Purkinje cells, which send 

the main motor coordination output signals to deep cerebellar nuclei. In the striatum, Foxp2 is 

expressed in MSNs of the striosome compartment but not in the ones of the matrix (Takahashi 

et al., 2003; Takahashi et al., 2008; Chen et al., 2016). In the striosome, Foxp2 is enriched in 

dopamine receptor 1 (Drd1) expressing MSNs that innervate the direct pathway of the cortico-

striatal-thalamic motor circuit (Vernes et al., 2011; van Rhijn et al., 2018, Fig. 3). Only a small 

fraction of dopamine receptor 2 expressing (Drd2) MSNs of the indirect pathway express Foxp2 

(van Rhijn et al., 2018; Stanley et al., 2019).  

Given that the learned song in songbirds and speech in humans exhibit molecular, neural 

and behavioral similarities (Fee and Scharff, 2010; Brainard and Doupe, 2013), it is interesting 

that FoxP2 expression is low in pallial (“cortical”) regions of songbirds and high in striatum 

and thalamus (Haesler et al., 2004). In Area X of the avian striatum, FoxP2 expression levels 

are developmentally and behaviorally regulated. This is consistent with an important conserved 

role for FOXP2/FoxP2 function in the basal ganglia of humans and songbirds (Bolhuis et al., 
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2010). In fact, FoxP2 levels are upregulated in zebra finches during the phase of song learning 

and decrease with age (Haesler et al., 2004). In addition to the developmental regulation, 

singing activity itself downregulates FoxP2 expression in juveniles and adults (Teramitsu and 

White, 2006; Miller et al., 2008; Teramitsu et al., 2010). Curiously, FoxP2 expression 

intensities vary in individual MSNs; some neurons show very intense others quite weak 

immunostaining for FoxP2 (Thompson et al., 2013). The proportion of weakly stained neurons 

increases with age and decreases with undirected singing. In contrast, newly generated MSNs 

in Area X are more likely to be intensely stained for FoxP2 21 days after they were born in the 

ventricular zone (Thompson et al., 2013). Altogether this indicates that FoxP2 levels in Area X 

depend on the age of the animal, on the age of individual neurons and on behavioral processes 

that regulate its expression.  

 

Aberrant Foxp2 protein levels impair learning and striatal signaling in mammals and 

songbirds 

To elucidate FOXP2 function and the mechanisms underlying the speech impairment CAS, 

transgenic mouse models were generated that either lack one or both Foxp2 alleles or carried 

Foxp2 mutations similar to those found in CAS patients. These mutations include an arginine 

to histidine substitution within the Foxp2 DNA binding domain (R553H, Lai et al., 2001) or a 

nonsense mutation which leads to a truncated protein product that lacks the DNA binding 

domain (S321X, MacDermot et al., 2005). Heterozygous Foxp2 mutations (R552H and S321X) 

cause deficits in motor behavior and motor learning (Groszer et al., 2008; French et al., 2012; 

Kurt et al., 2012; van Rhijn et al., 2018). Interestingly, mice lacking Foxp2 exclusively in 

Purkinje cells show the largest motor deficits compared with Foxp2 KO mice that lack Foxp2 

only in cortical neurons or striatal MSNs (French et al., 2019). On a neurophysiological level, 

the Foxp2-R552H mutation specifically influence properties of the corticostriatal synapse and 

results in altered glutamate receptor ratios and impaired long-term depression (LTD) in striatal 

MSNs (Groszer et al., 2008; French et al., 2012; van Rhijn et al., 2018). In contrast to Foxp2 

mutant mice, mice carrying humanized Foxp2 alleles (Foxp2hum/hum) show a stronger LTD in 

striatal MSNs (Enard et al., 2009; Reimers-Kipping et al., 2011; Schreiweis et al., 2014). 

In zebra finches, the reduction of FoxP2 protein expression via RNA interference 

(FoxP2 knock down, KD) or FoxP2 overexpression in striatal Area X impairs song learning in 

juveniles (Haesler et al., 2007; Heston and White, 2015). Decreased or elevated FoxP2 

expression in adults abolishes social context dependent changes in song variability and causes 

syllable repetition (Murugan et al., 2013; Day et al., 2019; Xiao et al., 2020). Further, FoxP2 
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KD in adult birds decreases glutamate receptor ratios, the expression of Drd1 and of 

DARPP-32, which is an integrator protein of glutamatergic and dopaminergic signaling in 

MSNs (Murugan et al., 2013; Adam et al., 2016). Taken together, these studies highlight the 

importance of a tight regulation of FoxP2 expression levels and behaviorally driven regulation 

for its correct on-line function during song learning and song production. 

 

Foxp2 expression promotes developmental neurogenesis in mice 

Many lines of evidence indicate that Foxp2 is involved in the formation of the nervous system 

during development. The first study that addressed the role of Foxp transcription factors in the 

context of neurogenesis found that orchestrated expression of Foxp2 and Foxp4 facilitate the 

delamination of neuronal progenitor cells from the ventricular zone of the spinal cord during 

development in mice and chicken (Rousso et al., 2012).  

There are controversial reports about Foxp2s’ role in development of the cortex. In one 

study, mouse cortices were electroporated in utero at stage E13/14 with a plasmid containing a 

short hairpin that decreased Foxp2 protein levels. This Foxp2 KD perturbed the generation of 

neurons from precursors, more specifically the transition from radial precursors to intermediate 

progenitors (Tsui et al., 2013). Other studies using genetic ablation of cortical Foxp2 did not 

find abnormal cortical patterning or connectivity of corticothalamic projection neurons in 

layer 6 (Co et al., 2019; Kast et al., 2019; Medvedeva et al., 2019). One explanation for the 

discrepancy of the studies might be the lower level of Foxp2 reduction when using short hairpin 

mediated KD compared to homozygous genetic ablation (Kast et al., 2019). Interestingly, 

cortical Foxp2 ablation decreases Drd1 expression in corticothalamic and corticocortical 

projection neurons in layer 6 and increases the generation of immature interneurons (Co et al., 

2019). Experiments using cell cultures of neuronal progenitors from the medial ganglionic 

eminence (MGE) have also shown that normal Foxp2 expression is necessary for the generation 

of cortical interneurons during development (Chiu et al., 2014). 

 During brain development, Foxp2 expressing MSNs of the striatum originate in the 

lateral ganglionic eminence (LGE). Here, the neurons of the striosome compartment (Foxp2+) 

develop earlier than the neurons of the matrix (Foxp2-) (van der Kooy and Fishell, 1987). Foxp2 

is differentially expressed in the LGE of developing mice and this is associated with progenitor 

morphology during their migration. Low expression levels in the subventricular zone (SVZ, a 

proliferative zone containing progenitor cells) of the LGE are associated with multipolar 

morphology of progenitors. As progenitors migrate towards their final location, the mantle 

zone, their Foxp2 levels increase and are associated with bipolar morphology (Garcia-Calero et 
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al., 2016). Further, Foxp2 expression promotes differentiation of neuronal progenitors from the 

LGE to mature, DARPP-32 positive MSNs during development (Chiu et al., 2014).  

 

Foxp2 enhances neuronal outgrowth  

The role of Foxp2 in neuronal outgrowth was elucidated by the analysis of its target genes and 

from Foxp2 KD, mutation or overexpression both in vitro and in vivo. First, analysis of 

Foxp2/FOXP2 target genes links it to neuronal outgrowth and synaptic plasticity (Spiteri et al., 

2007; Vernes et al., 2007; Vernes et al., 2011). Second, in mouse and human neuronal cell lines, 

Foxp2/FOXP2 drives neuronal differentiation, affects gene expression and promotes neuronal 

outgrowth (Vernes et al., 2011; Devanna et al., 2014). Primary neurons harvested from 

ganglionoic eminences of Foxp2-R552H mutated mice show decreased neurite outgrowth 

compared to wild type neurons (Vernes et al., 2011). Short hairpin mediated Foxp2 KD in 

progenitors from the LGE reduced their differentiation into DARPP-32 positive MSNs (Chiu 

et al., 2014). Third, Foxp2 overexpression in the cortical and striatal SVZ promotes bipolar 

morphology of migrating neurons and increased their neurite length in vivo (Garcia-Calero et 

al., 2016). In juvenile zebra finches, lentiviral mediated FoxP2 KD in striatal progenitors in the 

VZ decreased spine density of new Area X MSNs (Schulz et al., 2010). In mouse cerebellar 

Purkinje cells, Foxp2 KD decreases their dendritic length and dendritic branching (Usui et al., 

2017). Other evidence for Foxp2’s role in neuronal outgrowth stems from Foxp2hum/hum mice. 

Their MSNs and other neuron types of the cortico-striatal circuitry possess longer dendrites 

compared to the same neurons in wild type mice (Enard et al., 2009; Reimers-Kipping et al., 

2011). Concerning MSNs, this could be due to a greater proportion of MSNs with high Foxp2 

expression found in the striatum of Foxp2hum/hum mice (Schreiweis et al., 2019). In summary, it 

has been shown with varying experimental approaches that Foxp2 is crucial for neuronal 

outgrowth in different species.  

 

Thesis outline  

As one part of my thesis I studied basic principles of adult neurogenesis in Area X. 

Publication A addresses how new medium spiny neurons are incorporated into the existing 

Area X circuit, how they mature and become active during singing. To label newly generated 

neurons, adult male zebra finches were injected with Bromdesoxyuridin (BrdU). This synthetic 

nucleoside is an analogue of thymidine and becomes incorporated into newly synthesized DNA 

during cell proliferation. It can be immunohistochemically detected in fixed tissue and the 

nuclear staining indicates that cells have been recently dividing. Because I wanted to visualize 
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not only the nucleus but entire new neurons, I applied a second approach and virally labelled 

cells in the ventricular zone (VZ). Therefore, a lentiviral vector carrying the green fluorescent 

protein reporter gene (GFP) was injected into the VZ adjacent to the lateral ventricle, where 

new neurons destinated for Area X emerge (Alvarez-Buylla et al., 1990; Scott and Lois, 2007). 

After sufficient survival time, GFP expressing new MSNs were analyzed in Area X. BrdU and 

virally mediated labelling techniques were applied in the experiments underlying the datasets 

presented in both publications. The results of Publication A show that new medium spiny 

neurons in Area X show the same properties as older, resident MSNs. Once incorporated, they 

are robustly active during singing behavior. Further, new neurons are constantly added to Area 

X, leading to a more than doubling of the neuronal density in aged zebra finches.  

The second part of this thesis especially addresses FoxP2’s role in the process of adult 

neurogenesis in Area X. Previous studies indicated that Foxp2 is implicated in both 

neurogenesis and neural outgrowth. It was known that new neurons in Area X expressed FoxP2 

but why this might be so was unknown. In Publication B, I virally labelled progenitor cells and 

later analyzed the decedents of these cells once they differentiated into new MSNs in Area X. 

The results of Publication B show that new MSNs in Area X express dynamic FoxP2 levels in 

an age dependent manner, which influence their morphology at specific timepoints during their 

maturation. 
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Maturation, Behavioral Activation,
and Connectivity of Adult-Born
Medium Spiny Neurons in a Striatal
Song Nucleus
Jennifer Kosubek-Langer *, Lydia Schulze and Constance Scharff

Animal Behavior, Freie Universität Berlin, Berlin, Germany

Neurogenesis continues in the adult songbird brain. Many telencephalic song control

regions incorporate new neurons into their existing circuits in adulthood. One song

nucleus that receives many new neurons is Area X. Because this striatal region is crucial

for song learning and song maintenance the recruitment of new neurons into Area

X could influence these processes. As an entry point into addressing this possibility,

we investigated the maturation and connectivity within the song circuit and behavioral

activation of newly generated Area X neurons. Using BrdU birth dating and virally

mediated GFP expression we followed adult-generated neurons from their place of

birth in the ventricle to their place of incorporation into Area X. We show that newborn

neurons receive glutamatergic input from pallial/cortical song nuclei. Additionally, backfills

revealed that the new neurons connect to pallidal-like projection neurons that innervate

the thalamus. Using in situ hybridization, we found that new neurons express the

mRNA for D1- and D2-type dopamine receptors. Employing DARPP-32 (dopamine and

cAMP-regulated phosphoprotein of 32 kDa) and EGR-1 (early growth response protein

1) as markers for neural maturation and activation, we established that at 42 days after

labeling approximately 80% of new neurons were mature medium spiny neurons (MSNs)

and could be activated by singing behavior. Finally, we compared theMSN density in Area

X of birds up to seven years of age and found a significant increase with age, indicating

that new neurons are constantly added to the nucleus. In summary, we provide evidence

that newborn MSNs in Area X constantly functionally integrate into the circuit and are

thus likely to play a role in the maintenance and regulation of adult song.

Keywords: adult neurogenesis, songbird, basal ganglia, Area X, EGR-1, DARPP-32, dopamine

INTRODUCTION

Adult neurogenesis is an enigmatic trait. Only some neurons continue to be generated in adulthood
whereas the majority are born during development and persist throughout the animal’s life.
Why these differences exist is still not known but much progress has been made elucidating
the mechanism and function of adult neurogenesis during the past decades (Song et al., 2016).
Neurons born in adulthood originate in regions adjacent to the ventricles that also give rise to
neurons during development. From these neurogenic niches, neural precursors delaminate and
then migrate through the dense parenchyma, incorporate into functional circuits and influence
behavior (Paredes et al., 2016).
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Considerable differences exist with respect to the extent of
adult neurogenesis in different species. As a rule of thumb,
adult-born new neurons are recruited to many brain regions in
vertebrates like teleost fish, amphibians, and reptiles, whereas
in birds the extent is still widespread but more restricted to
the forebrain (Kaslin et al., 2008). In mammals, there are even
fewer regions that continue to recruit new neurons in adulthood,
principally the dentate gyrus (DG) of the hippocampal formation
(Kempermann et al., 2015) and the olfactory bulb (Lim and
Alvarez-Buylla, 2016). Interestingly, in rats, rabbits, monkeys and
humans but not in mice, adult-generated neurons have also been
observed in the striatum (Bedard et al., 2002; Dayer et al., 2005;
Tonchev et al., 2005; Luzzati et al., 2006; Ernst et al., 2014). In
these cases, the newly generated neurons belong primarily to the
class of GABAergic interneurons, which constitute less than 5%
of the striatal neurons (Tepper et al., 2010). The most abundant
striatal cell type are medium spiny projection neurons (MSNs)
(Gerfen andWilson, 1996). In adult rodents, generation of MSNs
has only been reported in response to experimentally induced
stroke, ischemia, or lesions (Arvidsson et al., 2002; Tattersfield
et al., 2004; Hou et al., 2008). In contrast, in songbirds adultMSNs
keep immigrating in substantial numbers into the striatum under
natural conditions (Alvarez-Buylla et al., 1990). Striatal newborn
neurons originate from the progenitor containing subpallial
region in the lateral ventricle that expresses the transcription
factors ISL-1/2, NKX2.1, and DLX but not TBR1 (Scott and Lois,
2007). Of particular interest is the recruitment of MSNs into Area
X (Nordeen and Nordeen, 1988; Rochefort et al., 2007; Scott
and Lois, 2007) a region unique to songbirds relevant for song
plasticity in juveniles and adults (Sohrabji et al., 1990; Scharff
and Nottebohm, 1991; Jarvis et al., 1998; Hessler and Doupe,
1999; Woolley et al., 2014). In songbirds, new neurons destined
for Area X migrate between 1,000 and 2,000µm to their final
destination.

The dynamics of neural recruitment are best understood in
the DG and the olfactory bulb. In the former, new neurons
are added, whereas in the latter, they replace older neurons
that undergo apoptosis (Crespo et al., 1986; Imayoshi et al.,
2008). In both cases, the time it takes for new neurons to
incorporate into preexisting circuits is similar (Deshpande et al.,
2013). In songbirds, the dynamics of neural recruitment have
only been studied in the pallial/cortical song control region
HVC (proper name, Figure 1A), where glutamatergic projection
neurons undergo neurogenesis (Kirn et al., 1999; Scott and Lois,
2007; Tokarev et al., 2016).

To gain insight into the integration of GABAergic MSNs into
existing circuits, we studied their differentiation, connectivity
and activation by singing in Area X. To do so we traced
new neurons by injections of green fluorescent protein (GFP)-
expressing lentivirus into the lateral wall of the lateral ventricle
and with systemic injections of the cell birth marker 5-bromo-2′-
deoxyuridine (BrdU). We also injected retrograde tracer into one
of the target regions of Area X, and used immuno- and in situ-
histochemistry to characterize the new neurons. We report that
adult born MSNs receive glutamatergic and dopaminergic input,
connect to pallidal-like projection neurons and are activated
during singing like older, resident MSNs.

Because new HVC neurons seem to replace older ones in
canaries (Kirn and Nottebohm, 1993), whereas in zebra finches
constant neuronal addition was observed (Walton et al., 2012)
we also addressed the issue of replacement vs. addition. We
quantified neuron numbers in adult zebra finches of varying
age and found that the density of MSNs in Area X increased
with age, supporting the idea of neuron addition rather than
replacement. Overall, our results suggest that Area X receives a
constant addition of functional new GABAergic MSNs.

MATERIALS AND METHODS

Animals
Adult male zebra finches (Taeniopygia guttata) were bred
and housed at the Department of Animal Behavior at Freie
Universität Berlin. The colony was kept under a 12:12 h
light:dark-cycle and food and water were available ad libitum.
All procedures were reviewed and approved by the veterinary
department of the Freie Universität Berlin and by the ethics
committee of the Regional Office for Health and Social Affairs
Berlin (LAGeSo). The permit numbers are G0116/13 and
G0296/15. In total, we used 53 adult male zebra finches. For
the expression analysis of the early growth response protein
1 (EGR-1) and the dopamine- and cAMP-regulated neuronal
phosphoprotein (DARPP-32) in newborn cells we used 29 birds
(age 462± 158 days, mean± standard deviation, SD). Dopamine
(DA) receptor expression was studied in 5 birds (age 172 days ±
13 days, mean± SD). Five birds received lentiviral injections (age
367 days ± 109 days, mean ± SD). Density measures in Area X
were performed in 14 birds (age ranging from 372 to 2,526 days).

BrdU Injections
Birds for EGR-1 and DA receptor analysis received BrdU
(50µg/g) via intramuscular injections in the mornings for 5
consecutive days. Birds were assigned to three groups with
different survival times after BrdU injection (21, 31, and 42 days).
We choose the first survival time to be 21 days, because BrdU+
neurons in Area X were previously shown to express immediate
early genes after singing at that time (Tokarev et al., 2016).

Song Monitoring
For subsequent EGR-1 analysis, birds were kept in sound
attenuated chambers for three nights and were perfused in
the morning of the 4th day 1.5 h after the lights went on.
Vocalizations were continuously monitored via Sound Analysis
Pro (Tchernichovski et al., 2000). During those 1.5 h birds had to
sing at least 150 motifs to be included in the subsequent analysis
of EGR-1 expression.

Birds that received lentiviral injections and retrograde tracer
were isolated in sound attenuated chambers for one night before
sacrifice. Birds were kept from singing by the experimenter sitting
nearby for 1.5 h after lights went on in the morning and then
killed. This was necessary because we used some of the brain
sections in another experiment to be reported elsewhere.

Birds used for DA receptor analysis were decapitated without
previous songmonitoring and their brains were quickly dissected
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FIGURE 1 | The song system and connectivity within Area X. (A) The song motor pathway (shown in black) controls the vocal organ (syrinx) via HVC->RA->nXIIts.

The anterior forebrain pathway (AFP, shown in red) forms a cortico-basal ganglia-thalamic-cortical loop, connecting HVC and RA via Area X->DLM->LMAN.

(B) Neurons in Area X receive glutamatergic innervations from HVC and LMAN. MSNs in Area X inhibit direct and indirect pallidal-like neurons (dPN, iPN). Both types

can project to MSNs, but only dPNs project to the thalamic nucleus DLM that connects to RA via LMAN (Farries et al., 2005; Goldberg et al., 2010). RA directly

innervates the AFP via DLM. RA, Robust nucleus of the arcopallium; LMAN, Lateral magnocellular nucleus of the anterior nidopallium; XII, Nucleus; NXIIts,

tracheosyringeal part; DLM, Dorsal lateral nucleus of the medial thalamus.

1.5 h after the lights went on. All birds were killed by isoflurane
overdose.

Lentiviral Vector Injection and Backfill
To label progenitors in the lateral wall of the ventricle,
the lentiviral expression vector pFUGW (Lois et al., 2002)
containing a GFP reporter gene was stereotactically injected
into the ventricular zone under isofluorane anesthesia. Birds
were fixed in a stereotaxic head holder, with the beak in
a 45◦ angle from the vertical axis. In each hemisphere, we
injected four sites with approximately 200µl of viral construct
using the following coordinates relative to the bifurcation of
the midsagittal sinus: anterior-posterior 3.8–4.1, medial-lateral
−1.3/+1.3, dorsal-ventral −5.0, injection angle AP 10◦. To
label pallidal-like projection neurons, we injected approximately
600µl tetramethylrhodamine coupled with biotin (BDA, 3,000
MW, Molecular Probes) into DLM 4–5 days before sacrifice at
day 42.We used the following coordinates: anterior-posterior 1.2,
medial-lateral −1.3/+1.3, dorsal-ventral −4.5. After surgeries
birds were transferred to their home cages. To confirm that the
virus infected proliferating cells, some birds were injected with
BrdU (50µg/g) on the day of surgery.

Immunohistochemistry and Image Analysis
For immunohistochemistry birds were overdosed with isoflurane
and then perfused transcardially with phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde (PFA) in PBS. After
dissection, brains were post-fixed for one night, washed
for another night in PBS and cut sagitally or coronally
into 50µm sections using a vibrating microtome (VT1000S,
Leica). For BrdU antigen retrieval, sections were incubated
in 2 N HCl for 30 min at 37◦C and neutralized with
borate buffer. All other immunostainings were performed
according to standard protocols. The following antibodies

were used; primary: anti EGR-1 (rabbit, Santa Cruz sc-
189), anti DARPP-32 (mouse, kindly provided by H.C.
Hemmings, Jr., Weill Cornell Medical College, New York),
anti DARPP-32 (rabbit, abcam ab40801), anti BrdU (rat, Bio-
Rad MCA2060), anti VGLUT2 (mouse, abcam ab79157), anti
GFP (rabbit, abcam ab290). Fluorescent Secondary: anti-rabbit-
Alexa-Fluor-568 (life technologies, A10042), anti-mouse-Alexa-
Flour-568 (Life technologies, A10037), anti-rat-Alexa-Fluor-488
(Life Technologies, A21208), anti-rabbit-Alexa-Fluor-488 (Life
Technologies, A21206). Biotinylated dextran signal was amplified
using Streptavidin-Alexa-Fluor-568 (Life Technologies, S11226).
Sections were counterstained with 4′,6-Diamidin-2-phenylindol
(DAPI, Serva). Z-Stacks were obtained with a SP8 confocal
microscope (Leica) and processed using the Fiji software package
(Schindelin et al., 2012). Colors of images were adjusted (“false-
colored”) to improve visibility, particularly for readers with red-
green blindness. Axons were traced using the Simple Neurite
Tracer plugin in Fiji (Schindelin et al., 2012), starting at the
soma and using the smooth axonal morphology (in contrast to
spiny dendrites) as a criterion. MSN density was analyzed in
40µm sagittal sections containing Area X. For each bird, we
analyzed two to four different sections of both hemispheres.
Within those we counted the number of labeled neurons in at
least eight stacks, each with the measures 100 × 100 × 8µm
and used the average of those to calculate density. We counted
all nuclei (DAPI+) and all DARPP-32+ cells using the cell
counter plugin in the Fiji software package (Schindelin et al.,
2012).

In situ Hybridization
Hemispheres of birds used for in situ hybridization were
separately frozen in Tissue-Tek O.T.C. Compound medium
(Sakura) and stored at −80◦C. Hemispheres were cut in
12µm sagittal sections using a cryostat (Cryo-Star HM 560
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Cryostat, MICROM). Sections were fixed with 4% PFA for
10 min and then acetylated with 0.25% acetic anhydride in
triethanolamine for 10 min. Sections were rinsed in 2x in
saline sodium citrate (SSC) buffer, dehydrated (75% EtOH,
95% EtOH, and 100% EtOH, each for 2 min) and air
dried. Sections were prehybridized for 1 h at 60◦C in a
hybridization mix consisting of 50% deionized formamide, 5x
SSC (pH 4.5), 2% blocking reagent (Roche, 11096176001) in
1x maleic acid buffer, 2% sodium dodecyl sulfate, yeast tRNA
(Invitrogen, 0.25 mg/ml), and heparin (Polysciences, 0.1 mg/ml).
Sections were hybridized overnight with 1% digoxigenin or
fluorescin labeled RNA probe in hybridization mix at 60◦C in
a mineral oil bath. The next day, slides were rinsed twice with
chloroform followed by 2x SSC and 1x SSC. A series of post-
hybridization washes followed: 30 min in 1x SSC containing
50% formamide at hybridization temperature (60◦C). Then,
sections were washed once in 2x SSC and twice in 0.2x SSC
20 min each at hybridization temperature. After the post-
hybridization washing steps, sections were washed twice in 1x
MABT (pH 7.5), consisting of 100 mM maleic acid, 150 mM
NaCl and 0.1% Tween-20. Afterwards, sections were incubated
in 1x Roti-ImmunoBlock (Carl Roth) in 1x MABT for 30
min, then with either alkaline phosphatase (AP)-conjugated
sheep anti-DIG antibody (Roche) or AP-conjugated sheep anti-
fluorescein antibody (Roche), that were diluted 1:200 in 1x Roti-
ImmunoBlock in 1x MABT. Slices were incubated overnight
at 4◦C in a humidity chamber. After antibody incubation,
slides were washed with 1x MABT 4 times for 5 min and
equilibrated in alkaline phosphatase buffer NTMT, consisting
of 100 mM NaCl, 100 mM Tris hydrochloride pH 9.5, 50 mM
MgCl2 and 0.1% Tween-20 for 10 min. AP-labeled probes were
detected colorimetrically via the nitro blue tetrazolium/5-Bromo-
4-chloro-3-indolyl phosphate substrate system (NBT/BCIP;
Roche). NBT (final concentration: 337.5µg/ml) and BCIP (final
concentration: 175µg/ml) were diluted in NTMT and slices
were covered with this solution. Slices were incubated for 6–
8 h, then fresh NBT/BCIP solution was added and sections
were incubated overnight. The reaction was stopped by 10 min
of incubation in a stop solution consisting of 10 mM Tris
hydrochloride pH 8.0 and 1 mM EDTA. Afterwards, slides
were washed three times with 1x PBS for 5 min. Sections
were further used for immunohistochemical BrdU detection (see
Immunohistochemistry) and examined with a Zeiss Axiovert 200
fluorescent microscope.

Analysis and Statistics
Data were analyzed with the data analysis software R (R
Development Core Team, 2013) and GraphPad Prism
version 5.00 (GraphPad Software, San Diego California
USA). Data for EGR-1, DARPP-32 and DA receptor
expression passed the D’Agostino’s K2 test for normal
distribution and were then evaluated with an analysis of
variance (ANOVA) followed by a post hoc Tukey’s Honestly
Significant Difference test (HSD). To test the correlation
between DARPP-32 density and age, we performed a linear
regression analysis. Significance level was p < 0.05 for all
tests.

FIGURE 2 | Labeling of striatal progenitors. (A) Lentiviral vector injections were

surgically targeted at the wall of the lateral ventricle adjacent to the medial

striatum (MSt). The area outlined is depicted in B. (B) Many cells in the

ventricular zone (VZ) were infected, as shown by virally mediated GFP

expression in a coronal section. The ventricle is on the left side of the image.

(C–E) GFP+ neuron in the striatum recently divided and incorporated BrdU

(arrows). Dashed lines (E) indicate the planes used to generate orthogonal

views of the Z-stack (YZ, XZ). Scale bars: 25µm (B), 10µm (C–E).

RESULTS

Newborn MSNs Receive Glutamatergic
Input and Connect to Pallidal Output
Neurons
To investigate whether and when newborn neurons in Area X are
integrated into existing circuits, we used a lentivirally mediated
approach to label progenitor cells in the striatal ventricular zone
of adult male zebra finches (Figures 2A,B). By 31 days post
injection (dpi), newly generated neurons in Area X exhibited
the typical MSN morphology with relatively small nuclei (5–9
µm) and spiny dendrites. Co-labeling with BrdU confirmed that
GFP+ cells in Area X recently divided and originated from the
progenitor pool (Figures 2C–E).

Newly generated granule neurons in the adult murine DG
first receive long-range cortical inputs at 3 weeks of age, whereas
granule cells in the olfactory bulb connect already at 2 weeks
of age to presynaptic cortical neurons (Deshpande et al., 2013).
We wanted to know if and when newborn MSNs in Area X
receive glutamatergic inputs from afferent cortical song nuclei.
Using VGLUT2 (vesicular glutamate transporter 2) (Figure 3A)
as a marker we found glutamatergic synapses at spines of newly
generated MSNs at 31 dpi (Figures 3B–E). These glutamatergic
innervations are likely to originate from the pallial song nuclei
HVC and LMAN (Figure 1). We also noticed spines without
VGLUT2 immunoreactivity (Figures 3B,F–H).
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FIGURE 3 | Adult generated MSNs in Area X receive glutamatergic input. (A) VGLUT2 is expressed in a punctate pattern in the neuropil, corresponding to presynaptic

glutamatergic terminals in Area X. (B) High-resolution scan of an adult generated MSN dendrite (GFP+, red). The Z-scan was collapsed. The focus planes of spines in

dashed boxes are shown in C–H. (C–E) Arrow points to a dendritic spine of an adult generated MSN that colocalized with VGLUT2. (F–H) Arrow points to a spine of

new MSN that did not colocalize with VGLUT2. Dashed lines (E,H) indicate the planes used to generate orthogonal views of the Z-stack (YZ, XZ). Scale bars: 2.5µm

(B–H), 25µm (A).

After confirming glutamatergic input onto new MSNs, we
tested if they contribute to signal transmission via pallidal-
like output neurons. In the adult HVC, newborn projection
neurons were found to be connected to their target nucleus at
3 weeks of age (Tokarev et al., 2016). We therefore predicted
that newborn MSNs connected to their target cells in a similar
way. Additional to GFP-labeling of progenitors in the VZ, we
retrogradely labeled one class of pallidal-like neurons that project
directly from Area X to the thalamic nucleus DLM (Figures 1,
4A,B; Goldberg et al., 2013).This neuron type is considered to
be homologous to primate internal pallidal neurons (Goldberg
and Fee, 2010). Retrogradely labeled neurons had big somata and
smooth, aspiny dendrites; consistent with this cell type (Reiner
et al., 2004; Figure 4C). We found connections from newborn
MSNs to pallidal-like neurons at 31 dpi and 42 dpi. We observed
connections between axons and axonal boutons of new MSNs
and dendrites of pallidal-like neurons; in that case, axons often
wrapped around pallidal-like neuronal dendrites (Figures 4G–J).
Additionally, their axons were often found in close apposition
to the somata of pallidal-like neurons (Figures 4D–F). We
specifically searched for backfilled pallidal-like neurons with new
MSNs (GFP+) nearby. At 31 dpi, we observed that in a fraction

of 0.73 of pallidal-like neurons, new MSN axons contacted their
dendrites. In a fraction of 0.27 of pallidal-like neurons, both their
somata and dendrites received contacts by new MSNs axons (in
total 22 pallidal-like neurons, 2 animals). At 42 dpi, we found that
in a fraction of 0.69 of pallidal-like neurons, new MSN axons
contacted their dendrites. In a fraction of 0.31 of pallidal-like
neurons, both their somata and dendrites received contacts by
new MSNs axons (in total 26 pallidal-like neurons, 2 animals).

Newborn MSNs Receive Dopaminergic
Innervation
Besides glutamatergic input from the song nuclei HVC and
LMAN, MSNs in Area X also receive dopaminergic innervations
from the ventral tegmental area (VTA) and the substantia nigra
pars compacta (SNc), (Lewis et al., 1981; Bottjer, 1993; Gale
et al., 2008). DA signaling via D1 receptors modulates social
context dependent song variability; DA concentration in Area X
is higher during female directed courtship song than when birds
sing by themselves (Sasaki et al., 2006; Leblois et al., 2010). DA
signaling can either be activating or inhibiting, depending on
the receptor it is binding to Gerfen and Surmeier (2011). DA
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FIGURE 4 | New MSNs have axosomatic and axodendritic contacts to pallidal-like projection neurons in Area X. (A) Pallidal-like projection neurons in Area X were

labeled via retrograde tracing. BDA was injected into thalamic nucleus DLM, the target of pallidal-like projection neurons in Area X. (B) Additionally, progenitors were

labeled in the VZ via lentivirally mediated GFP expression. The area outlined is depicted in C. (C) Newborn MSNs (GFP+) and pallidal-like neurons were both present

in sections of Area X. (D) The axon of a newborn MSN passed the soma of a pallidal-like projection neuron (BDA). The pallidal-like neuron in the dashed box is

magnified in E,F. (E,F) Axosomatic contacts (arrows) of new MSN on pallidal-like neuron somata. (G) The axon a newborn MSN wrapped around dendrites of a

pallidal-like neuron. The area in the dashed box is magnified in H. (H–J) Axodendritic contacts (arrows) of newborn MSN onto pallidal-like neurons. Dashed lines

(E,F,H–J) indicate the planes used to generate orthogonal views of the Z-stack (YZ, XZ). Scale bars: 5 µm (H,I), 10 µm (E,F,J), 25 µm (G), 50 µm (C,D).

binding to D1-like receptors rises the resting potential and hence
increases the chance of an action potential, whereas DA binding
to D2-like receptors has the opposite effect. Neurons in the avian
striatum express four types of dopamine receptors. Different
from mice, up to 50% of MSNs in songbirds express both D1
and D2 receptor types (Kubikova et al., 2010). To test if newborn
neurons differ from older, resident neurons in Area X in their
expression of DA receptors, we combined in situ hybridization to
detect DA receptor mRNA with BrdU labeling (Figures 5A–G).
Because the majority of new neurons were mature at 42 days after
BrdU labeling (Figure 6L), we decided to analyze DA receptor

expression at that point. We found that a fraction of 0.89 ± 0.03
of new neurons expressed D1A, 0.94± 0.02 D1B, and 0.69± 0.03
D2 receptor mRNA (Figure 5H).

These results did not differ statistically from DA receptor
mRNA expression values we found in non-BrdU labeled cells
(0.9 ± 0.08 D1A, 0.95 ± 0.05 D1B, and 0.66 ± 0.08 D2). The
averages of single-labeled D1A and D2 cells added up to more
than 1, indicating that at least a fraction of 0.58 of BrdU+ cells
co-expressed both receptor types. The averages of single-labeled
D1B and D2 indicate that at least a fraction of 0.63 of BrdU+ cells
co-expressed D1B and D2 receptors.
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FIGURE 5 | Newborn MSNs do not differ from mature MSNs in their DA receptor expression. (A) Dopamine receptors were highly expressed in the MSt and Area X

shown here for D1A in a non-fluorescent in situ hybridization (blue precipitate). (B–D) New MSNs (BrdU+, arrow, fluorescent green label) expressed dopamine

receptor D1A (dark precipitate). (E–G) New MSNs (BrdU+, arrow) expressed DA receptor D2. (H) There was no significant difference in the expression of dopamine

receptor types between older neurons (BrdU-) and 42-day-old neurons (BrdU+). One data point represents one animal. Shown are mean and SD. Scale bars: 10 µm

(B–F), 500 µm (A).

Age Dependent Activation of Newborn
MSNs during Singing Behavior
Having confirmed that newborn MSNs receive both
glutamatergic and dopaminergic input and are connected
to output neurons, we tested if they participate in signal
transduction during singing. We used the immediate early
gene EGR-1 as an indicator for neuronal activity (Knapska and
Kaczmarek, 2004) in Area X and quantified its expression after
singing in new neurons at different survival times (Figure 6A).
Undirected singing resulted in elevated EGR-1 expression in
Area X (Figure 6B), as expected (Jarvis et al., 1998; Mello and
Ribeiro, 1998).

The fraction of singing-activated, newborn neurons in Area
X (BrdU+/EGR-1+, Figures 6C–F) cells increased from 0.18
± 0.17 at 21 dpi to 0.72 ±0.07 at 42 dpi (F = 13.05, p
= 0.00038, Figure 6K). There was no significant difference in
activation of new neurons between 21 and 31 dpi (F = 13.05,
p = 0.149), but between 31 and 42 dpi (F = 13.05, p = 0.019,
Figure 6K). Additionally, we evaluated the maturation course
and quantified the expression of the MSN marker DARPP-
32 in newborn neurons (BrdU+/DARPP-32+, Figures 6G–J).
DARPP-32 expression significantly increased from 0.0075 ±

0.015 at 21 dpi to 0.44± 0.09 at 31 dpi (F= 180.8, p= 6.3× 10−6)
to 0.9±0.01 at 42 dpi (F = 180.8, p= 8.3× 10−6, Figure 6L).

Age Dependent MSN Density in Area X
When studying adult neurogenesis, it is always of concern
whether newly-generated neurons are added continuously to an
existing circuit or if they replace older neurons. Both strategies
can occur in the same organism: newly generated granule cells
in the mouse DG are added to the existing cell pool, whereas in
the olfactory bulb new granule cells replace old neurons (Crespo
et al., 1986; Imayoshi et al., 2008).

In the canary song control nucleus HVC, newly generated
projection neurons are replaced seasonally, while in the zebra
finch HVC, new neurons are continuously added to the existing
circuit (Walton et al., 2012). To investigate which strategy
applies in Area X of zebra finches, we quantified the density

of MSNs in zebra finches at different ages. MSN density
in Area X increased significantly between 1 and 6 years of
age (linear regression, R2 = 0.679 p = 0.0003, Figure 7G).
MSN packing density increased from 78 × 104 cells/mm3 in
Area X of a 1-year-old zebra finch (Figures 7A–C) to 163 ×

104 cells/mm3 in as 6-year-old zebra finch (Figures 7D–F).
Assuming an Area X size of 1.532 mm3 (Nixdorf-Bergweiler,
1996) the total number of MSNs in Area X more than
doubled from 1.2 to 2.5 million within 5 years. The fraction
of MSNs out of all DAPI+ cells also increased significantly
with MSN density (linear regression, R2 = 0.34 p = 0.0286,
Figure 7H).

DISCUSSION

In the present study, we investigated key features of adult-
generated MSN that integrate into the avian striatal song
nucleus Area X. Area X receives long-range cortical glutamatergic
innervations from premotor nuclei HVC and LMAN (Bottjer
and Johnson, 1997). We tested whether newborn MSNs in
Area X receive this input by searching for glutamatergic
presynaptic terminals on GFP-labeled newborn neurons after
their migration from the ventricular zone. We found those
contacts as early as 31 dpi. This time frame of being contacted
by long-range excitatory input is similar to that reported for
newborn hippocampal granule cells in mice (Deshpande et al.,
2013), even though the migration distance of new MSNs from
the VZ to Area X is considerably longer. This suggests that
glutamatergic innervation of adult-born neurons is more a
question of absolute age than a question of time of arrival at
their final destination. We did not find presynaptic terminals
on all dendritic spines, perhaps because those were in the
process of being contacted or eliminated (Ramiro-Cortes et al.,
2014).

Besides glutamate, dopaminergic innervation from VTA and
SNc is the second main input to Area X (Lewis et al., 1981;
Bottjer, 1993; Gale et al., 2008). By combining BrdU birth
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FIGURE 6 | Newborn MSNs are activated during singing in an age-dependent manner. (A) Experimental design: Adult male zebra finches (n = 6 per age group)

received BrdU injections and were sacrificed at 21, 31, or 42 dpi after singing. (B) Region specific EGR-1 expression in Area X but not in the surrounding striatum after

singing. (C–F) Newborn neuron (31 dpi, arrow) expressed EGR-1 after singing. (G–J) Newborn neuron (31 dpi arrow) expressed DARPP-32. (K) The fraction of new

cells (BrdU+) that were activated after singing (EGR-1+) increased significantly between 21 and 42 dpi and between 31 and 42 dpi (shown are mean and SD). (L) The

fraction of new cells (BrdU+) that express DARPP-32 increased significantly from 21 to 42 dpi (shown are mean and SD). *P ≤ 0.05; ***P ≤ 0.001. Scale bars: 10µm

(C–J), 100µm (B).

dating with in situ hybridization for DA receptors we established
that 6-weeks old MSNs in Area X expressed mRNA for D1-
and D2-type receptors in the same fractions as older, resident
neurons. This suggests that newborn Area X neurons participate
in dopaminergic signaling in the same way as older neurons do.
It would be interesting to test if a time-dependent dopamine
receptor expression in new neurons was crucial for specific
stages of neurogenesis. For example, dopaminergic innervation
via D3 receptors stimulates the very early process of progenitor
proliferation in mammals and birds (Coronas et al., 2004;
Lukacova et al., 2016) and in new murine granular cells, D1-
type receptor expression is found earlier than D2-type receptor
expression (Mu et al., 2011).

Having established the inputs onto new MSNs we were
interested in their connection to pallidal-like projection neurons
inside Area X. Direct pallidal-like neurons project to thalamic
nucleus DLM and exhibit different firing patterns than indirect
pallidal-like neurons (Goldberg and Fee, 2010; Woolley et al.,
2014). We observed terminal boutons of newborn MSNs in close
proximity to somata and dendrites of direct pallidal-like neurons.
This suggests that newborn Area X neurons participate in signal
transduction via the pallidal-like projection neurons. Future
studies might address whether the innervation and connectivity
to output neurons occurs even earlier than by 31 days after
generation in the VZ, the time point we chose.

Given that newborn MSN have the morphological hallmarks
to receive and transmit signals within Area X, we tested whether
they are active during production of undirected song, which
is known to induce EGR-1 protein expression (Jarvis et al.,
1998; Mello and Ribeiro, 1998). We found that 20% of 21 day

old MSN expressed EGR-1 after singing, but DARPP-32 was
not detected in any MSN at that age. By 42 days of age, the
majority of newborn MSNs expressed both proteins, raising the
possibility that new MSNs may have to be physiologically active
to trigger their further maturation. This is consistent with the
fact that in mammals EGR-1 acts as a transcriptional activator
of DARPP-32 (Keilani et al., 2012). One interpretation of our
data is that singing-driven EGR-1 triggersmaturation of newborn
MSNs. This idea is supported indirectly; in mammals, the brain-
derived neurotrophic factor (BDNF) enhances EGR-1 binding
to the Darpp-32 gene (Keilani et al., 2012). In canaries, BDNF
levels are positively correlated with singing and enhance the
survival of newly recruited HVC neurons (Rasika et al., 1999;
Li et al., 2000). Similar mechanisms were shown in rodents;
voluntary running exercise increases BDNF levels (Kobilo et al.,
2011) and individual running activity positively correlates with
rates of neurogenesis in the DG (Kodali et al., 2016). If overall
individual singing activity influenced neuronal maturation via
a BDNF/EGR-1/DARPP-32 pathway, it could explain the high
variance in the fraction of activated new MSN during the early
maturation phase (31 dpi) in contrast to the later maturation
phase (42 dpi). New neurons that survived by then might have
reached a stable state, whereas others that were not reliably EGR-
1 activated by behavior were eliminated, similar to mechanisms
found in the DG of mice (Veyrac et al., 2013).

Are new neurons in Area X added to existing circuits as
a replacement of neurons that have died or are they added
to the existing cell pool? In the songbird HVC both strategies
exist: in canary HVC, seasonal fluctuations in projection neuron
death and the recruitment of new neurons are correlated and
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FIGURE 7 | MSN density in Area X increases with age. (A–C) MSNs

(DARPP-32+) in Area X of a 1-year-old zebra finch male. (D–F) MSN

(DARPP-32+) in Area X of a 6-year-old zebra finch male. (G) The density of

MSNs (Darpp-32+) increased significantly with age. (H) The fraction of MSNs

(DARPP-32+) of all DAPI+ nuclei increased with MSN density. In (G,H) one

data point represents one animal (mean of both hemispheres). Scale bars:

20µm (A–F).

the peaks of neural recruitment coincide with the incorporation
of new song elements. Together these data are consistent with
a replacement strategy (Kirn et al., 1994). In the zebra finch
HVC, new projection neurons are added constantly to HVC,

resulting in an increasing density within the nucleus (Walton
et al., 2012). Correlative evidence suggests that the age-dependent
decline of new neuron addition in HVC is associated with
increasing song stereotypy (Pytte et al., 2007). Together, these
data are best explained by an addition strategy. In the present
dataset, we show that the density of DARPP-32 positive MSNs
in Area X increased significantly with age, implying that new
MSNs were constantly added to the circuit. This does not
exclude the possibility that some new neurons replaced apoptotic
cells. In fact, experimentally induced apoptosis correlates with
replacement by new neurons in zebra finch HVC (Scharff et al.,
2000). Further, we found that the fraction of cells that were
DARPP-32+ relative to all Area X cells also increased with age.
Since the DARPP-32 neurons constitute the majority of cells
that undergo adult neurogenesis, this finding emphasizes that
increased cell density in Area X is a consequence of continued
recruitment of newly born MSN during the course of aging.

Our findings suggest that, once matured, newborn MSNs
fulfill the same function as older, resident MSNs, at least
concerning the features we analyzed. MSNs function via feed
forward inhibition, e.g. sparsely spiking MSNs inhibit tonically
active pallidal-like projection neurons. Their high frequency
bursts can evoke spiking of DLM neurons via inhibitory rebound
(Person and Perkel, 2005, 2007; Kojima and Doupe, 2009). This
process in modulated by dopaminergic signals from VTA/SNc.
Dopaminergic neurons in VTA/SNc encode performance errors
in singing zebra finches (Gadagkar et al., 2016).

We end on some speculations how constant addition of
new neurons might affect the AFP and in turn the motor
pathway. Constant MSN addition in face of an unchanged
number of pallidal-like neurons would be expected to cause
stronger inhibitory MSN action on pallidal-like neurons. In
turn, DLM would experience fewer inhibitory rebound spikes,
causing lower activation of LMAN neurons. Ultimately this
would result in reduced excitation of motor nucleus RA by
the AFP. If this hypothesis holds true, signaling through
the AFP would diminish, as birds get older. In adult birds,
the AFP mediates differences in song variability (Hessler and
Doupe, 1999; Woolley et al., 2014). Song variability, including
deterioration, can be induced experimentally by distorting
auditory feedback via deafening or tracheosyringeal nerve cut
(Williams and McKibben, 1992; Hough and Volman, 2002;
Nordeen and Nordeen, 2010). The AFP seems to mediate this
degradation process, since lesions of the AFP output nucleus
LMAN prevent song deterioration after auditory feedback
distortion (Brainard and Doupe, 2000). Interestingly, song
deterioration after deafening is less severe in old birds compared
to young birds, and song becomes more stereotyped with age,
consistent with our hypothesis (Lombardino and Nottebohm,
2000; Brainard and Doupe, 2001; Pytte et al., 2007, 2012). This
scenario does not exclude the possibility that new MSNs initially
might undergo a narrow plastic phase, during which they can
be tuned and possibly counteract song drift. In summary, we
demonstrate that within a month after their generation newly
generated MSNs in Area X of adult zebra finches are connected
to other song nuclei and participate in neuronal firing during
song production. The net increase of Area X neurons with age
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might provide a mechanism to achieve the equilibrium between
plasticity and stereotypy needed to sustain adult song behavior.
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Dynamic FoxP2 levels in male zebra 
finches are linked to morphology 
of adult-born Area X medium spiny 
neurons
Jennifer Kosubek-Langer* & Constance Scharff

The transcription factor FOXP2 is crucial for the formation and function of cortico-striatal circuits. 
FOXP2 mutations are associated with specific speech and language impairments. In songbirds, 
experimentally altered FoxP2 expression levels in the striatal song nucleus Area X impair vocal learning 
and song production. Overall FoxP2 protein levels in Area X are low in adult zebra finches and decrease 
further with singing. However, some Area X medium spiny neurons (MSNs) express FoxP2 at high 
levels (FoxP2high MSNs) and singing does not change this. Because Area X receives many new neurons 
throughout adulthood, we hypothesized that the FoxP2high MSNs are newly recruited neurons, not yet 
integrated into the local Area X circuitry and thus not active during singing. Contrary to our expectation, 
FoxP2 protein levels did not predict whether new MSNs were active during singing, assayed via 
immediate early gene expression. However, new FoxP2high MSNs had more complex dendrites, higher 
spine density and more mushroom spines than new FoxP2low MSNs. In addition, FoxP2 expression levels 
correlated positively with nucleus size of new MSNs. Together, our data suggest that dynamic FoxP2 
levels in new MSNs shape their morphology during maturation and their incorporation into a neural 
circuit that enables the maintenance and social modulation of adult birdsong.

The forkhead box P2 transcription factor (FOXP2) is linked to speech and language disorders. Heterozygous 
FOXP2 mutations in humans affect both the coordination of fine orofacial movements and language percep-
tion1–3. Because songbirds – like humans – need to learn most of their communicative vocalizations, they offer 
a unique model to study the role of FoxP2 (for nomenclature FOXP2/FoxP2 see Methods) for vocal learning 
and for the maintenance of learned vocalizations as adults4. Studying the relationship between FoxP2 and vocal 
learning in songbirds may inform the neurogenetic mechanism underlying the speech deficits in patients carrying 
FOXP2 mutations for the following reasons. The FoxP2 protein coding sequence is highly conserved between 
humans and songbirds as are the brain expression patterns, notably in the cerebellum and striatum5–7. Moreover, 
genetic manipulations of FoxP2 expression levels in the striatal song nucleus Area X during the critical phase of 
song learning lead to inaccurate and incomplete imitation of the tutor’s song and more variable vocal produc-
tion3,8–10. This phenotype bears similarities to the specific speech deficits called developmental verbal dyspraxia, 
DVD (or childhood apraxia of speech), that patients carrying FOXP2 mutations suffer from. The core-phenotype 
of DVD consists of altered precision, consistency and sequencing of movements underlying speech in the absence 
of neuromuscular deficits11. In addition, altered FoxP2 levels in adult Area X affect the dopaminergic modulation 
of corticostriatal signaling important to song variability and affect song maintenance12,13, stressing the fact that 
tight regulation of FoxP2 expression is a prerequisite for correct neural transmission in differentiated neural cir-
cuits. Additional effects of Foxp2 and its disruption on the embryonic development and the function of neural cir-
cuits have been described in mice14–23. Further evidence for the biological relevance of tight regulation of FoxP2 
expression levels comes from the following studies. FoxP2 expression levels in Area X transiently increase during 
song learning but are lower in adults7,24. Singing decreases overall FoxP2 levels in Area X but not in the surround-
ing striatum and the degree of FoxP2 down regulation correlates with the amount of produced song25–27. This 
relationship is missing in deafened birds, pointing to an important role of auditory feedback for singing-driven 
FoxP2 down regulation27. How does singing affect FoxP2 expression at the cellular level? Medium spiny neurons 
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(MSNs), the most abundant cell type in the avian striatum, predominantly express FoxP2 at low levels (FoxP2low) 
while a subset expresses FoxP2 at very high levels (FoxP2high). Both subtypes are not equally affected by singing; 
the density of FoxP2high MSNs is not measurably different after singing, contrary to the decreasing density of 
FoxP2low MSNs24. The authors hypothesized that the difference might be due to the neuronal age. Adult Area X 
constantly receives new MSNs that originate at the ventricular zone28–33. FoxP2high MSNs colocalize more fre-
quently with a marker for new neurons than FoxP2low MSNs24. Recently we showed that new MSNs mature and 
participate in singing activity – as measured by immediate early gene activation – within a timeframe of six 
weeks34. Whether FoxP2 influences not only the function but also the integration of new neurons into existing 
circuits is still an open question. Based on the results of Thompson et al. (ref. 21) we hypothesized that FoxP2high 
MSNs are newly recruited into Area X and need to become FoxP2low MSNs before they can participate in singing. 
To test this, we labelled neuronal progenitors in adult zebra finches. At different time points after these cells had 
migrated into Area X, we quantified their expression levels of FoxP2 and whether they also expressed the imme-
diate early gene expression EGR-1 after singing.

In rodents, Foxp2 expression is associated with neurite outgrowth, neuronal morphology and synapse forma-
tion in cortico-striatal circuits18,19,35–37. Foxp2 expression levels vary in striatal MNSs and these differences may 
be relevant for the morphology of striatal MSNs. Dopamine receptor 1 (D1) expressing MSNs38 express Foxp2 
at higher levels than dopamine receptor 2 (D2) expressing MSNs23,35. These differences in Foxp2 levels may be 
linked to anatomical differences between D1 and D2 MSNs35,39. Furthermore, in mice carrying humanized Foxp2 
alleles (Foxp2hum/hum mice), Foxp2high MSNs are more numerous in the dorsal striatum and their MSNs have 
longer dendrites than wildtype mice36,37. Based on the latter results we hypothesized that FoxP2 levels of new 
MSNs in adult songbirds correlate with their neural morphology. To test this, we virally labelled neural progen-
itors and analyzed their FoxP2 expression, dendrite complexity and spine density after migration into Area X.

Results
Dynamic FoxP2 levels in new MSNs in Area X. To assess FoxP2 protein levels in individual newborn 
neurons we labelled progenitor cells with Bromodeoxyuridine (BrdU) and detected BrdU+/FoxP2+ cells after 
21, 31 and 42 days post BrdU injection (dpi) in Area X of adult male zebra finches (Fig. 1a,b). We found that 
FoxP2 expression in Area X was very variable, with some neurons expressing FoxP2 at particularly high levels 
and some at low levels (Fig. 1c). At 21 dpi and at 31 dpi, the mean pixel intensities of all BrdU+/FoxP2+ cells 
formed a bimodal distribution, whereas at 42 dpi the distribution was unimodal and shifted to low FoxP2 expres-
sion (Fig. 1d). We classified all neurons that had expression intensities within the top 30% of the measured pixel 
intensity distribution as FoxP2high neurons. Neurons within the bottom 30% of the measured pixel intensity dis-
tribution were considered as FoxP2low. Because we were interested in the two extremes of the expression levels in 
this study, we did not analyze the new neurons with intermediate FoxP2 expression levels further (29.3% ± 9.4, 
SD, see Methods). At 21 dpi and at 31 dpi 36.17% ± 6.02 (SEM) and 34.91% ± 2.53 (SEM) percent of all BrdU+ 
cells were FoxP2high neurons, respectively. At 42 dpi the percentage of FoxP2high cells had significantly decreased to 
12.95% ± 2.87 (SEM) on average (p = 0.0077, Kruskal-Wallis test, Fig. 1f,g). The percentage of FoxP2low neurons 
increased significantly from 21 dpi (34.59 ± 5.86, SEM) and 31 dpi (34.06 ± 3.35, SEM) to 42 dpi (59.19 ± 4.02, 
SEM, p = 0.013, ANOVA, Fig. 1e,g). We also noticed that BrdU+ cells varied in their nucleus size. Quantification 
revealed that the distribution of the nucleus size was shifted towards bigger nuclei at 31 dpi (data not shown). 
BrdU+/FoxP2+ cells at 31 dpi had significantly bigger nuclei (7.37 µm ± 0.94 (SD) than BrdU+/FoxP2+ cell at 
21 dpi (6.88 µm ± 0.9 (SD), p = 0.00025, chi-square = 75.358, df = 2) or 42 dpi (6.74 µm ± 0.59 (SD), p = 2 × 10−6, 
chi-square = 75.358, df = 2, data not shown). Interestingly there was a significant positive relationship with a low 
effect size between nucleus size and FoxP2 expression levels in all three experimental groups (21 dpi: r2 = 0.086, 
p = 0.017, 31 dpi: r2 = 0.083, p = 5.2 × 10-7, 42 dpi = r2 = 0.039, p = 0.0012, Fig. 1h).

Singing induced activity of new MSNs is independent of FoxP2 levels. In adult zebra finches 
FoxP2 expression levels in Area X are behaviourally regulated. Undirected singing leads to downregulation of 
FoxP2 mRNA and protein24–26. Undirected singing is also associated with expression of the immediate early gene 
EGR-1 in Area X, which is therefore often used as a molecular readout of the neuronal activity associated with 
undirected song40–44. We hypothesized that FoxP2 levels in new FoxP2high neurons needed to be downregulated 
before activation by singing could occur, resulting in EGR-1 expression. Consequently, we did not expect to find 
BrdU+/FoxP2high/EGR-1+ MSNs in Area X. To test this, we analyzed BrdU+/EGR-1 ± /FoxP2+ cells in birds 
that had sung before sacrifice after 21 dpi, 31 dpi and 42 dpi.

Contrary to our hypothesis we found BrdU+/FoxP2high/EGR-1+ cells in Area X (Fig. 2a) in all groups, with 
large differences between birds. At 31 dpi, on average 41.45% ± 15.43 (SEM) of new neurons expressed FoxP2high 
and were also activated by singing (BrdU+/FoxP2high/EGR-1+) and 40.28% ± 13.34 (SEM) of the new neu-
rons that expressed FoxP2high were not activated by singing (BrdU+/FoxP2high/EGR-1-) (Fig. 2b). At 42 dpi, the 
more birds had sung the fewer FoxP2high new neurons were found, resulting in a significant negative relation-
ship between the number of BrdU+/FoxP2+/EGR-1+ neurons and the number of motifs sung before sacrifice 
(r2 = 0.753, p = 0.025, Fig. 2c) which was not the case at 21 dpi (r2 = 0.168, p = 0.493, data not shown) nor at 31 
dpi (r2 = 0.164, p = 0.425, data not shown). 

FoxP2 levels in new MSNs influence dendritic arborization and spine density. Because of the 
relationship of FoxP2 levels and nucleus size we wanted to further characterize the morphology of new neurons 
expressing different FoxP2 levels. We used a lentiviral approach to express Green Fluorescent Protein (GFP) in 
progenitor cells at their place of birth in the lateral wall of the lateral ventricle (Fig. 3a). After 31 and 42 dpi we 
found labeled neurons (GFP+) in Area X and the surrounding striatum (Fig. 3b). GFP+ neurons exhibited the 
typical morphology of medium spiny neurons with small somata and spiny dendrites (Fig. 3c) and expressed 
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FoxP2 (Fig. 3d,e). First, we traced FoxP2high and FoxP2low new neurons at 31 dpi (Fig. 4a) and found that FoxP2high 
neurons had more primary dendrites (p = 0.021, Mann Whitney test, Fig. 4b), a higher total branch length 
(p = 0.003, Mann Whitney test, Fig. 4e) and thicker dendrites than FoxP2low neurons (p = 0.003, t-test, Fig. 4f). 
Second, we analyzed the extent of dendritic arborization of GFP+/FoxP2+ neurons using a Sholl analysis (see 

Figure 1. Dynamic FoxP2 expression levels in new MSNs. (a) The song motor pathway (main nuclei outlined 
in black) controls the vocal organ (syrinx). The anterior forebrain pathway (shown in green) forms a cortico 
(HVCm, lMAN) -basal ganglia (Area X) –thalamo (DLM) –cortical (RA) loop. (b) Experimental schedule: adult 
male zebra finches received BrdU on five consecutive days and were sacrificed 21, 31 or 42 days after injections 
(dpi). (c) Examples of FoxP2high (top row, immunoreactivity shown in green) and FoxP2low (bottom row) new 
(BrdU+ immunoreactivity shown in white) MSNs in Area X at 31 dpi. Nuclear expression of FoxP2 and BrdU 
coincides with DAPI label in blue. (d) Density plots of FoxP2 pixel intensities of individual new MSNs in Area 
X at different time points after BrdU injections. The color scheme indicates increasing pixel intensity from low 
(blue) to high (yellow) intensity. Ticks at the bottom of each plot represent individual MSNs. (e) Percentage 
of new FoxP2low MSNs significantly increases from 21/31 dpi to 42 dpi. (f) Percentage of new FoxP2high MSNs 
significantly decreases from 21/31 dpi to 42 dpi. (g) Empirical cumulative distribution function (ECDF) of 
FoxP2 pixel intensities of individual new MSNs in Area X. FoxP2 pixel intensities are similar at 21 and 31 dpi 
and are lower at 42 dpi. (h) FoxP2 pixel intensities of new MSNs positively correlate with nucleus diameter. Each 
dot represents one new MSNs. Sample size (d-h): 733 MSNs of 17 zebra finches. *p ≤ 0.05, **p ≤ 0.01. Scale 
bar: 20 µm (g). RA, Robust nucleus of the arcopallium; LMAN, Lateral magnocellular nucleus of the anterior 
nidopallium; NXIIts, tracheosyringeal part of the hypoglossal nucleus; DLM, Dorsal lateral nucleus of the 
medial thalamus.
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Figure 2. Singing-induced EGR-1 activation of new MSNs is independent of FoxP2 levels. (a) The white 
arrow in all 4 panels points to a new (BrdU+ immunoreactivity, white) MSN that expresses FoxP2high 
(immunoreactivity, green) and also EGR-1 (immunoreactivity, purple) after undirected singing. The blue DAPI 
staining shows other cells that are not new, but express FoxP2 at low levels, some of which also express EGR-
1. Scale bar: 10 µm. (b) At 31 dpi new neurons can either be activated by undirected singing (EGR-1+, right 
column) or not (EGR-1-, left column). In both cases, the new MSN can either express FoxP2low or FoxP2high. (c) 
At 42 dpi the number of FoxP2/BrdU+/EGR-1+ neurons negatively correlate with the number of motifs sung 
during the 90 min before sacrifice. Sample size (b): 108 MSNs of 6 zebra finches. Sample size (c): 156 MSNs of 6 
zebra finches.

Figure 3. New MSNs that were GFP-labeled as progenitors at the ventricular zone and migrated to Area X 
express FoxP2. (a) Injections with a lentivirus into the ventricular zone resulted in GFP expression in the neural 
progenitors of MSN. (b) 31 dpi after viral injections, many GFP-labelled neurons can be observed in Area X and 
the surrounding striatum. (c) New GFP-expressing MSNs in Area X. Somata in the dashed boxes are magnified 
in (d) and (e). (d,e) Virally labelled MSNs (GFP immunoreactivity, white) express FoxP2 (immunoreactivity, 
green). Scale bars: 10 µm (d, e), 50 µm (c), 1 mm (b).
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Methods). At 31 dpi FoxP2high neurons had more intersections at 20 µm distance from the soma (p = 0.024, paired 
t-test, Fig. 4a,d) and a higher number of maximal intersections (p = 0.019, t-test, Fig. 4c) than FoxP2low neurons, 
reflecting more extensive dendritic arborizations in FoxP2high than FoxP2low neurons. Second, Third, we used a 
semi-automated quantification approach to assess the number of dendritic spines in GFP+/FoxP2+ neurons at 
31 dpi. FoxP2high neurons in Area X had more dendritic spines than FoxP2low neurons (p = 0.034, paired t-test, 
Fig. 5a–c). Overall, FoxP2high neurons had more mushroom spines than FoxP2low neurons (p = 0.0186, Mann 
Whitney test, Fig. 5d). There was no difference in the number of stubby spines (p = 0.819, Mann Whitney test) or 
thin spines (p = 0.409, Mann Whitney test) between FoxP2high and FoxP2low neurons (Fig. 5d). Because of the dif-
ference in mushroom spine number, we assumed that FoxP2 expression levels might influence mushroom spine 
head size, too. However, quantification revealed no difference in mushroom spine head size between FoxP2high 
and FoxP2low neurons (p = 0.317, Mann Whitney test, Fig. 5e). In a last step we compared spine densities between 
new MSNs at 31 dpi and 42 dpi. Since at 42 dpi only few new neurons were FoxP2high we included only FoxP2low 
new neurons in this analysis (Fig. 5f). At 42 dpi, the spine density of FoxP2low new neurons was higher than in 
FoxP2low neurons at 31 dpi (p = 2.517 × 10−4, t-test, Fig. 5f). This elevated spine density was largely due to an 
increase in thin spines (p = 8.422 × 10−4, Mann Whitney test) and not mushroom spines (p = 0.39, t-test) or 
stubby spines (p = 0.119, Mann Whitney test).

Discussion
In the present study we investigated the dynamics of FoxP2 expression in adult-born MSNs in the striatal song 
nucleus Area X of adult male zebra finches. We show that the new MSN strongly expressed FoxP2 at their arrival 
in Area X from the ventricular zone (VZ) where they were born 21 days prior. During this stage and at interme-
diate maturation stages (31 days) one third of new MSNs expressed FoxP2 at high levels. At the late maturation 
stage (42 days) most new MSNs expressed FoxP2 at low levels (Fig. 6). Together with our previous data we con-
clude that reaching low FoxP2 levels is a sign that adult-born born MSN in Area X have reached maturity by 6 
weeks after their generation in the VZ34.

Figure 4. FoxP2 expression levels are linked to distinct morphologies of new MSNs at 31 dpi. (a) Examples of 
dendrite tracings of new FoxP2low and FoxP2high MSNs. The black dot marks the center of the soma. (b) Number 
of primary dendrites is significantly increased in FoxP2high compared to FoxP2low new MSN. (c) Maximal 
number of intersections between dendrites and Sholl circles is significantly higher in FoxP2high than in FoxP2low 
new MSN. (d) Sholl analysis revealed that dendrites of new FoxP2high MSNs had more complex arborizations 
as indicated by more intersections at 20 µm from the soma than new FoxP2low MSNs. Shown are mean ± SEM. 
Data points of FoxP2high neurons were slightly shifted to the right for better visibility. (e) FoxP2high new MSNs 
have a significantly higher total branch length than FoxP2low new MSNs. (f) At 31 dpi new FoxP2high MSNs have 
thicker dendrites than new FoxP2low MSNs. Sample size (a-f): 52 MSNs of 4 zebra finches. Scale bars: 25 µm. 
*p ≤ 0.05; **p ≤ 0.01.
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Since our previous work demonstrated that new MSNs participate in singing-associated neural activity in 
Area X34 here we asked if this was linked to FoxP2 levels. After singing FoxP2 mRNA and protein levels are lower 
in Area X tissue25–27 than when birds were silent whereas the expression of the immediate early gene EGR-1 
increases linearly the more birds sing undirected song40,41. Analyzing expression levels in individual neurons 
revealed that only FoxP2low MSNs, but not Foxp2high MSNs seemed to be subject to singing induced FoxP2 down-
regulation24. We therefore hypothesized that FoxP2high MSNs were not yet connected into the circuit and therefore 
not regulated by singing. Our data contradict this hypothesis. We show that the induction of the immediate early 
gene EGR-1 in MSNs after singing was equally likely in FoxP2low and FoxP2high MSNs, suggesting that both were 
functionally incorporated into the song circuit.

Previous work showed that the degree of FoxP2 downregulation correlates with the quantity of produced song 
and depends on auditory feedback, which is relayed to Area X via the cortical song nucleus HVC27,45. In our study, 
the relationship between FoxP2 downregulation and song quantity was present in new MSNs at 42 dpi but not 
earlier and we therefore suggest that new MSNs start to receive auditory feedback signals between 31 and 42 dpi.

What might cause the age-dependent FoxP2 downregulation in new MSNs? One possibility is that intrinsic 
mechanisms, depending more on cell age than on extracellular inputs, downregulate FoxP2 during maturation. 
Another possibility is that EGR-1 gradually decreases FoxP2 levels during every singing event. This latter scenario 
is consistent with the findings that the FoxP2 promoter contains EGR-1 binding sites4,46 and that EGR-1 expres-
sion is crucial for functional integration of new neurons in the adult rodent hippocampus47.

We also tested if varying FoxP2 levels affect neuronal morphology in adult male zebra finches and analyzed 
dendrite complexity and spine density of virally labelled new FoxP2low and FoxP2high MSNs. We now show dif-
ferences between the morphology of adult generated MSNs that express FoxP2 at high or low levels; high FoxP2 
levels were associated with greater dendrite complexity and higher dendritic spine density in comparison to 
neurons with low FoxP2 levels (Fig. 6). Concerning spine density, our results are consistent with previous studies 

Figure 5. FoxP2 levels are associated with dendritic spine density of new MSNs. (a) New FoxP2high MSNs 
had significantly more dendritic spines than new FoxP2low MSNs at 31 dpi (shown are mean ± SEM). Lines 
connect data from the same animal. (b) Confocal 12 µm projection showing an example of FoxP2low new MSN 
dendrite with mushroom (filled arrow), stubby (dashed arrow) and thin spines (unfilled arrow). (c) Example of 
FoxP2high new MSNs dendrite. (d) New FoxP2high MSNs have more mushroom spines than FoxP2low new MSN 
at 31 dpi. (e) Mushroom spine head size is not different between MSNs with different FoxP2 levels. (f) New 
FoxP2low MSNs at 42 dpi show overall more dendritic spines and more thin spines than new FoxP2low MSNs at 
31 dpi. Sample size (a,d,e,f): 52 MSNs of 4 zebra finches. Sample size (f): 23 MSNs of 3 zebra finches. *p ≤ 0.05; 
***p ≤ 0.001. Scale bars: 5 µm (b,c).
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in juvenile zebra finches, since experimental FoxP2 knockdown decreased overall spine densities of new Area X 
MSNs48. Moreover, our results are in line with findings in mice that link Foxp2 to neuronal outgrowth and spine 
density in striatal neurons and their progenitors18,19,35–37. Additionally, we find similarities between mice and birds 
on the level of spine types. We show that FoxP2low new MSNs 31 dpi have fewer mushroom spines than FoxP2high 
new MSNs. In mice, striatal spiny neurons of heterozygous Foxp2 knockdown mice show specifically a decrease 
of mushroom and branched spines whereas stubby and thin spines are not affected19. In birds and mammals, 
dendritic spines of striatal MSNs receive both glutamatergic dopaminergic input from cortical/pallial regions and 
the midbrain, respectively. In the case of new MSNs in Area X, we hypothesize that high FoxP2 expression levels 
during their maturation might increase their capacity for receiving both inputs.

What mechanisms might account for morphological differences between FoxP2low and FoxP2high MSNs? They 
may originate from differential target gene activation in FoxP2low and FoxP2high MSNs. FoxP2 has hundreds of 
downstream target genes of which many are part of networks associated with neurite development35,49–52. One 
specific candidate is the myocyte enhancer factor 2C (Mef2c), a negative regulator of synaptogenesis19. Foxp2 
specifically promotes corticostriatal synaptogenesis via the repression of Mef2c. Whether a similar mecha-
nism shapes the integration of new MSNs into the avian corticostriatal network remains to be elucidated by 
future studies. In zebra finch Area X, two direct FoxP2 targets are associated with neuronal outgrowth; the 
very-low-density-lipoprotein receptor (VLDLR) and the contactin-associated protein-like 2 (CNTNAP2). Their 
expression correlates positively with FoxP2 in juveniles and in singing adults53,54. Thus, in new Area X neurons, 
VLDLR and CNTNAP2 would be expected to be highly activated during singing in FoxP2high MSN but not in 
FoxP2low MSNs and may thus generate the diverging MSNs morphology we found.

We would like to propose some speculations regarding possible functions of two MSNs subpopulations that 
differ in FoxP2 expression levels. We found that these populations differed in nucleus size, dendritic complexity 
and spine density during an early time period of their integration into Area X. We do not know if the observed 
morphological differences persist long-term because of a lack of markers that could distinguish former FoxP2high 
MSNs from former FoxP2low MSNs in later maturation phases. If these two subpopulations persist long-term, they 
might resemble striato-nigral and striato-pallidal MSNs of the direct and indirect pathway in mammals. These 
MSNs subtypes are morphologically and neurochemically different. Direct pathway MSNs express the dopa-
mine receptor D1 and their dendrites are more complex than indirect pathway MSNs that express the dopamine 
receptor D239,55. High Foxp2 levels in D1 MSNs and low Foxp2 in D2 MSNs have been proposed to be linked to 
this anatomical dichotomy35. The avian direct and indirect pathway through the basal ganglia however is not 
characterized by different MSN projections but rather by direct and indirect pallidal-like output neurons that 
project from Area X to the thalamus56. To date, it is not known if MSN subtypes exclusively synapse on either 
direct or indirect pallidal-like neurons57. Contrary to mammalian MSNs, more than half of the Area X MSNs 
express multiple dopamine receptors58 so that they cannot be used as markers for indirect versus direct pathway 
neurons. Investigating potential avian MSNs subtypes and the developmental role FoxP2 plays in those will be of 
interest for future studies.

What might be the function of new MSNs in Area X and how is it affected by FoxP2 expression lev-
els? Our previous study showed that once matured, new MSNs have similar characteristics as older, res-
ident MSNs and are active during singing34. General MSNs function is feed forward inhibition within a 
cortico-striatal-thalamo-cortical loop during singing59. We hypothesize that new MSNs in adult zebra finches are 
entrained to produce a correct firing pattern in a plastic phase during their maturation and thus may counteract 

Figure 6. Graphical summary of the main results. The fraction of adult generated FoxP2high MSNs from zebra 
finch Area X decreases with maturation. FoxP2high new MSNs show higher spine densities, more mushroom 
spines and a more complex dendritic arborization than FoxP2low new MSNs.
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song drift, as has been suggested before33,60. This process might be in influenced by varying FoxP2 expression 
levels and the resulting morphological differences between putative subpopulations of new MSNs. FoxP2high new 
neurons with a higher dendrite complexity and more dendritic spines might be more receptive to tuning than 
FoxP2low new neurons. For further interpretations of our findings it will be crucial to gain additional knowledge 
on the microcircuitry of Area X and on the role neurons play for its function.

In summary, FoxP2 expression levels vary in adult-born MSN at different maturation times after they have 
been recruited to Area X. We show that the different FoxP2 expression levels correlate with neuronal morphology 
and spine density. Varying FoxP2 expression levels during a specific time window might permit different target 
gene activation important for correct incorporation and function of new MSNs in Area X.

Methods
FoxP2 nomenclature. We follow the nomenclature proposed by61, FOXP refers to the human gene, Foxp 
refers to the mouse gene and FoxP refers to all other species. FOXP, Foxp2 and FoxP2 correspond to the protein 
product.

Animals. 42 adult male zebra finches (Taeniopygia guttata, age >120 days) were used in the present study, 
bred and housed at the Department of Animal Behaviour at Freie Universität Berlin. The colony was kept under a 
12:12 h light:dark-cycle with food and water ad libitum. All experiments were reviewed and approved by the vet-
erinary department of the Freie Universität Berlin and by the ethics committee of the Regional Office for Health 
and Social Affairs Berlin and were performed in accordance with relevant guidelines and regulations. The permit 
numbers are G0116/13 and G0296/15.

Experiments. We conduced three experiments. In the first, we analyzed FoxP2 expression levels of new neu-
rons (BrdU+, see below) in Area X at three time points, e.g. at 21 days (5 birds, 166 neurons), 31 days (6 birds, 
295 neurons) or 42 days (6 birds, 272 neurons) after BrdU injections (dpi). In the second experiment we analyzed 
FoxP2 expression levels and the expression of the early growth response protein 1 (EGR-1) at 21 dpi (6 birds, 127 
neurons), 31 dpi (6 birds, 108 neurons) and at 42 dpi (6 birds 156 neurons). In the third experiment we analyzed 
FoxP2 expression levels, dendrite morphology and spine density of new neurons that were labelled via lentiviral 
infection. In total we analyzed 52 neurons of 4 zebra finches (13 ± 3 neurons/bird, mean ± SD) at 31 dpi and 23 
neurons of 3 zebra finches at 42 dpi (7.6 ± 0.5 neurons/bird, mean ± SD).

BrdU injections. For the analysis of FoxP2 levels and EGR-1 expression in newborn neurons 35 birds 
received BrdU (50 µg/g) via intramuscular injections in the mornings for 5 consecutive days. Birds were assigned 
to three groups with different survival times (21, 31, and 42 days after BrdU injection, dpi).

Song monitoring. For FoxP2 expression level analysis after BrdU treatment or lentiviral injections, 17 birds 
were isolated in sound attenuated chambers for one night before sacrifice. In the following morning, birds were 
kept from singing by the experimenter sitting nearby for 1.5 h after lights went on. For EGR-1 expression analysis 
in new neurons after singing, 18 birds were kept in sound attenuated chambers for three nights and were perfused 
in the morning of the 4th day 1.5 h after the lights went on. During those 1.5 h birds had to sing at least 150 motifs 
to be included in the subsequent analysis of EGR-1 expression. Vocalizations were continuously monitored via 
Sound Analysis Pro62.

Lentiviral Vector injection. To label progenitor cells at the lateral wall of the ventricle, the lentiviral expres-
sion vector pFUGW63 containing a GFP reporter gene was generated as described in Lois et al.63 and stereotac-
tically injected into the ventricular zone of 7 birds under isoflurane anesthesia. Titers ranged from 2 × 106 and 
3 × 107 viral particles/µl. Birds were fixed in a stereotaxic head holder, with the beak in a 45° angle from the 
vertical axis. In each hemisphere, approximately 200 µl of virus containing solution were injected into four sites. 
Following coordinates relative to the bifurcation of the midsagittal sinus were used: anterior-posterior 3.8–4.1, 
medial-latera −1.3/+1.3, dorsal-ventral −5.0, injection angle: 10° lateral.

Immunohistochemistry. For immunohistochemical staining birds were overdosed with isoflurane and 
immediately perfused transcardially with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 
(PFA) in PBS. Brains were dissected, post-fixed in 4% PFA for one night and washed for another night in PBS. 
Brains were cut sagitally or frontally into 50 µm sections using a vibrating microtome (VT1000S, Leica). BrdU 
antigen retrieval required incubation in 2N HCl for 30 min at 37 °C and neutralization with borate buffer. GFP 
signal was enhanced via antibody staining. All immunostainings were performed according to standard proto-
cols. The following primary antibodies were used: anti FoxP2 (goat, Abcam ab1307, dilution:1:1000), anti EGR-1 
(rabbit, Santa Cruz sc-189, dilution:1:600), anti BrdU (rat, Bio-Rad MCA2060, dilution: 1:200), anti GFP (rabbit, 
Abcam ab290, dilution:1:1000). Fluorescent secondary antibodies were the following: anti-rat-Alexa-Fluor-488 
(Life Technologies, A21208, dilution: 1:200), anti-rabbit-Alexa-Fluor-568 (Life Technologies, A10042, dilution: 
1:200), anti-goat-Alaxa-Fluor-647 (Life Technologies, A21447, dilution: 1:200). To visualize nuclei, all sections 
were counterstained with 4′, 6-Diamidin-2-phenylindol (DAPI, Serva).

Confocal imaging and image processing and quantification. Z-Stacks of BrdU+ or GFP+ cells 
in Area X were obtained with a SP8 confocal microscope (Leica). For FoxP2 scanning, all microscope settings 
were kept constant. Scans of BrdU+ nuclei were performed using a 63x lens (digital zoom 2.0), an image size of 
1024 × 1024 pixels and a z-stack size of 1 µm. Whole neurons (GFP+) were imaged using a 63x lens, an image size 
of 2042 × 2042 pixel and a z-stack size of 1 µm. Acquired images were processed using the Fiji software package64. 
Only neurons with spiny long dendrites were included in the analysis. The Rolling Ball Background Subtraction 
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plugin was used to subtract background. We measured the mean pixel intensity of nuclear FoxP2 expression, by 
positioning a circle of 4 µm in diameter (12.56 µm2) in the center of the BrdU+ nucleus. In total we analyzed the 
intensity of the FoxP2 expression dependent fluorescence of 166 BrdU+ cells at 21 dpi (n = 5), 295 BrdU+ cells 
at 31 dpi (n = 6) and 272 BrdU+ cells at 42 dpi (n = 6). FoxP2high were defined as cells that fell into the top 30% of 
measured mean pixel intensities in one animal (i.e. if the highest mean pixel intensity in one animal was 240 we 
counted all BrdU+ cells that had a FoxP2 mean pixel intensity between 168 and 240 as FoxP2high neurons). We 
decided on the 30% value because it covered the FoxP2high expressing cells in the bimodal distribution of all FoxP2 
intensities. We defined the neurons that fell into the bottom 30% of measured mean pixel intensities as FoxP2low. 
As for the FoxP2high cutoff, the bottom 30% contained the low-intensity peak of the bimodal density distribution. 
Because we particularly wanted to address the effect of high and low FoxP2 expression levels on neuronal prop-
erties, neurons with intermediate FoxP2 expression levels were not considered for further analysis. The Simple 
Neurite Tracer plugin (Fiji) was used to trace individual neurons and we analyzed their total branch length and 
number of primary dendrites. The traces were then used by the Sholl analysis plugin in Fiji65. We measured inter-
sections of dendrites with concentric circles that were placed every 10 µm starting from the center of the soma. 
The maximal number of intersections per neuron was extracted from the Sholl analysis dataset. For dendritic 
spine analysis images were deconvolved using the Tikhonov-Miller algorithm in the DeconvolutionLab plugin 
in Fiji66. Prior to deconvolution an individual point spread function was generated for each image using the Born 
and Wolf 3D optical model in the PSF Generator plugin in Fiji67. Semiautomated dendritic spine counts were per-
formed using the software NeuronStudio68 that uses a spine classification algorithm. For spine classification, the 
default settings were used to classify spines as mushroom, stubby or thin spines: a head-to-neck ratio threshold 
of 1.1 µm, a height-to-width ratio threshold of 2.5 µm and a minimum mushroom head size of 0.35 µm. A spine is 
considered mushroom if the head-to-neck ratio is above the threshold and its head is larger than 0.35 µm. A spine 
is considered stubby if its head-to-neck ratio and its heights-to-width ratio are below threshold. In all other cases 
spines were classified as thin. On average, we analyzed spines densities on secondary dendrites along the length 
of 118 µm ± 1.92 (mean, SEM) per neuron. In total, we analyzed spines of 52 individual neurons of 4 animals in 
experimental group 31 dpi, and 23 neurons of 3 animals at 42 dpi. Additionally, we measured the dendrite diam-
eter of 44 new neurons in 4 animals (8–12 neurons per animal) using the line measuring tool in Fiji64. We took 5 
measures on each of 3 secondary dendrites per neuron (in total 15 measures per neuron). The experimenter was 
blind to FoxP2 levels of individual neurons during the whole quantification process, because cells were selected 
for quantification based on their BrdU+ fluorescence or their EGR-1 fluorescence and FoxP2 fluorescence in a 
different channel was quantified last. The datasets generated and analysed during the current study are available 
from the corresponding author on request.

Statistics. The software R was used to analyze data69. Significance level was p < 0.05 for all tests. Plots were 
generated using the ggplot package in R70. For the analysis of FoxP2high neurons we used a Kruskal-Wallis test fol-
lowed by a Dunn’s test for pairwise comparison. For the analysis of FoxP2low neurons we used ANOVA followed 
by a Bonferroni’s multiple comparison test. The relationship of (a) FoxP2 levels and nuclear diameter as well as (b) 
FoxP2+ neurons and singing were determined using a linear regression analysis. Dendritic spine data (all spines) 
and Sholl data were analyzed using the paired Student’s t-test. Data from the spine type analysis, mushroom head 
size, total dendrite length, number of primary dendrites and dendrite thickness were analyzed using the Mann 
Whitney test. Number of maximal intersections was analyzed using the Student’s t-test. Choice of test was based 
on previous analysis for normality using the Shapiro-Wilk-test and variance analysis using the F-test or Levene’s 
test.
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General Discussion  
 

Songbirds offer a model for studying functional adult striatal neurogenesis and its role 
for the maintenance of a learned behavior 
 
In this thesis, I present evidence for functional adult neurogenesis in the striatal song nucleus 

Area X, which is implicated in song learning as well as in the long-term maintenance of song 

(Sohrabji et al., 1990; Scharff and Nottebohm, 1991; Ali et al., 2013; Kubikova et al., 2014; 

Kojima et al., 2018). In Publication A, I applied BrdU birth dating of new neurons and immuno-

histochemically analyzed their maturation course and singing induced activity in Area X after 

varying survival times. Further, I virally labelled progenitor cells in the neurogenic niche 

adjacent to the lateral ventricle and imaged the descending new medium spiny neurons (MSNs) 

in Area X. To elucidate the connectivity of new MSNs, I retrogradely traced their postsynaptic 

target cells, labelled presynaptic contacts from pallial nuclei and detected indicators of 

dopaminergic signaling. The results presented in Publication A provide evidence that new 

MSNs in Area X mature within a time frame of six weeks and are robustly active during singing. 

Their connectivity within the local circuitry resembles the one of older, resident MSNs. By 

analyzing MSNs densities in zebra finches up to seven years of age, I found that adult 

neurogenesis is a process of constant addition, most likely increasing inhibitory signaling within 

Area X. Altogether, the data presented in Publication A filled several knowledge gaps about 

the processes of striatal adult neurogenesis and illustrate that adult born neurons in Area X 

fulfill many essential prerequisites for a functional role in adult song maintenance.  

Because adult neurogenesis in HVC has been intensively studied I will outline 

similarities and differences between adult neurogenesis in HVC and Area X. One essential 

similarity is that in both nuclei only one cell type is subject to adult neurogenesis; in HVC only 

HVCRA but not HVCX projection neurons and in Area X only MSNs but not pallidal-like 

neurons are recruited (Alvarez-Buylla et al., 1988a; Nordeen and Nordeen, 1988b; Rochefort 

et al., 2007; Scotto-Lomassese et al., 2007). This indicates that the parts of the ventricular zone 

(VZ) that give rise to pallial and striatal cells are either determined to produce a specific neuron 

type like in the mammalian subventricular zone (Kelsch et al., 2007; Merkle et al., 2007; Merkle 

et al., 2014) or that local cues in HVC and Area X only allow differentiation into one neuron 

type. Since HVCRA neurons are mainly born post hatch, while most of HVCX neurons are 

generated in ovo (Alvarez-Buylla et al., 1988a), it is conceivable that adult neurogenesis 

represents a prolongation of juvenile neurogenesis. The fact that adult neurogenesis in HVC 

decreases with age supports this notion (Wang et al., 2002; Wilbrecht et al., 2002; Pytte et al., 
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2007). Striatal neurons are born during early embryonic development and after hatching. 

Compared to other telencephalic regions, the striatum receives the highest number of new 

neurons after hatching (Alvarez-Buylla et al., 1994) and Area X forms about 8-10 days post 

hatch (Garcia-Calero and Scharff, 2013). Assuming that adult neurogenesis in Area X is an 

extension of juvenile neurogenesis, I would expect that its rate decreased with age, like in HVC. 

Interestingly, this is not the case and rates of Area X neurogenesis remain constant in adults 

(Pytte et al., 2007).  

 Another similarity is that both new neuron types connect to their targets. New HCVRA 

neurons connect to their target RA, e.g. are retrogradely labelled, by 21 days after they 

originated in the pallial VZ (Kirn et al., 1999; Tokarev et al., 2015). Publication A shows that 

new MSNs in Area X locally contacted pallidal-like neurons as early as 31 days after their 

generation in the striatal ventricular zone. New MSNs migrate at least 1000 µm from the VZ to 

Area X whereas new HVC neurons only migrate approximately less than 100 µm. Taking the 

longer migration time of new MSNs from the VZ to Area X into account it is plausible that the 

time between birth dating and connection to target neurons is very similar in new HVC neurons 

and new MSNs.  

Both new HVC and Area X neurons are activated by singing, as shown by the induction 

of immediate early gene transcription (Tokarev et al., 2015; Kosubek-Langer et al., 2017). In 

Publication A, I analyzed the percentage of new MSNs that expressed the immediate early 

gene (IEG) EGR-1 after undirected singing . A methodologically similar study investigated IEG 

expression in new HVCRA neurons after directed or undirected singing (Tokarev et al., 2015). 

Comparing only the fraction of neurons that were new (BrdU+) and active during singing 

(IEG+), it becomes clear that their proportion increased significantly with age. After 6 or 8 

weeks, between 70-80% of new neurons were activated by singing, both in Area X and HVC 

respectively (Kosubek-Langer et al., 2017; Tokarev et al., 2015). In HVC, a stable fraction of 

new neurons was IEG+ without being retrogradely filled from RA, e.g. are probably not 

connected (Tokarev et al., 2015). In new MSNs it is not clear if singing related activity depends 

on coincident postsynaptic connections. Furthermore, the variability of how many new neurons 

are active during singing decreases with survival time in both nuclei, i.e. the older the new 

neurons become the more robust is their activation by singing across animals. EGR-1 

expression is crucial for the survival of new granule neurons in the murine dentate gyrus of the 

hippocampal formation (Veyrac et al., 2013). Further, EGR-1 induces the expression of 

DARPP-32, a marker for mature MSNs, in primary striatal neurons (Keilani et al., 2012). Taken 
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together, singing-induced IEG expression most likely promotes both the maturation and 

survival in new HVC and Area X neurons.  

Another feature common between adult neurogenesis in HVC and Area X is that it is a process 

of addition rather than of replacement. In both song nuclei the density of the added neuron type 

increases with age and their total neuron number doubles within 11 or 5 years in HVC and 

Area X, respectively (Walton et al., 2012; Kosubek-Langer et al., 2017). In contrast, in seasonal 

breeding songbirds like canaries, new HVC neurons replace neurons that have died after the 

preceding breeding season (Kirn et al., 1994; Thompson and Brenowitz, 2009). When neurons 

are constantly added, as is the case in zebra finches, the anterior forebrain pathway faces two 

challenges. First, all new MSNs have to be innervated by an unchanging number of HVCX and 

LMAN neurons. Second, the pallidal-like neurons receive increasing inhibitory input from an 

increasing number of MSNs. The same would be true for neurons in VTA/SNc that sent 

dopaminergic innervation to Area X. Further experiments need to elucidate the concrete 

timeline of all innervations on new MSNs and how pre- and postsynaptic neurons adapt to 

increasing neuron numbers in Area X.  

Many questions about the process of adult neurogenesis remain unanswered. What are 

the cues that stop migration of new neurons and how do they become entrained to their specific 

firing pattern, especially during singing? Adult-generated granule cells (GCs) in the 

mammalian hippocampus receive input from mature GCs during a very restricted early time 

window of their maturation. As their inputs from the entorhinal cortex become stronger, the 

local inputs from mature GCs decrease (Vivar et al., 2012). If a similar scenario applied to new 

MSNs in Area X they would be first entrained by older MSNs, before they would receive pallial 

inputs from HVC and LMAN. Some evidence supports the hypothesis that new neurons are 

entrained by local mature neurons the songbird brain. First, HVC neurons are often found in 

clusters with direct soma-soma contact and new neurons can be part of these clusters (Burd and 

Nottebohm, 1985). Second, new post migratory HVC neurons are found in closer proximity 

than still migratory neurons (Scott et al., 2012). The notion that mature and new neurons form 

clusters opens the possibility that they might use gap junctions for electrical coupling (Gahr and 

Garcia-Segura, 1996; Alvarez-Buylla and Kirn, 1997). If neuronal clusters indeed are involved 

in the maturation of new HVC and Area X neurons awaits further studies. In Area X, 

dopaminergic signaling from VTA encodes performance errors (i.e. the matching of prediction 

and actual song performance, Gadagkar et al., 2016; Kearney et al., 2019) and may be another 

mechanism involved in the entrainment of new MSNs. Since new MSNs express Drd1A, Drd1B 
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and Drd2 dopamine receptors (Kosubek-Langer et al., 2017), their entrainment by VTA 

dopaminergic signals is likely.  

In the following section, the possible function of adult neurogenesis in Area X and HVC 

will be discussed. Two lines of evidence suggest that in zebra finches new HVCRA neurons are 

involved in adult song stereotypy (Pytte, 2016). First, specific ablation of HVCRA neurons 

impairs song structure and the addition of new HVCRA neurons is associated with the recovery 

of the stereotyped song (Scharff et al., 2000). Second, the recovery of distorted song after 

paralysis of syringeal muscles or deafening correlates with the numbers of new neurons in HVC 

(Pytte et al., 2011; Pytte et al., 2012). In Area X, I propose that adult neurogenesis also serves 

to keep adult song from drifting and that it has two temporally segregated effects, an immediate 

effect and a long-term effect. New neurons might provide a tool to counterbalance slight 

changes in song features originating from physiological changes. Adult generated granule cells 

in the dentate gyrus of mice undergo a sensitive phase between 1 and 1.5 months of their 

maturation in which they exhibit enhanced synaptic plasticity that may contribute to behavioral 

driven plasticity (Ge et al., 2007). Accordingly, each new MSN might have a sensitive time 

window during maturation, in which it can be entrained to the song template, correct subtle 

song changes and ultimately prevent song drift. Publication A shows that very young and 

probably not fully matured new MSNs were active during singing and singing was shown to 

enhance new neuron survival (Li et al., 2000). Therefore, it is conceivable that singing plays a 

dual role for new neurons: (a) triggering the production of neurotrophins that secure their 

survival and (b) entrainment to firing patterns during singing. Whether singing is relevant 

during a sensitive period or if it affects the (electro-) physiological properties of new neuron 

maturation and whether gap junctions between young and old MSNs are involved in this process 

awaits further studies.  

A long-term consequence of adult striatal neurogenesis would be song stabilization by 

progressive “silencing” of the anterior forebrain pathway (AFP). In this scenario, the addition 

of new MSNs would increase inhibition onto pallidal-like neurons within Area X and ultimately 

lead to fewer excitatory outputs to the motor pathway. Two lines of evidence support this 

hypothesis. First, specific loss of MSNs in an avian model for Huntington’s Disease leads to 

decreased inhibition on pallidal-like neurons in Area X and abnormal firing in downstream 

LMAN (Tanaka et al., 2016), indicating that the total number of MSNs in Area X does matter 

for proper signaling in downstream nuclei of the AFP. Second, studies that tested the effect of 

lacking auditory feedback on song production provide evidence that feedback from AFP to the 

motor pathway decreases with age. Song deteriorates after the ablation of auditory feedback by 
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deafening, but this process can be prevented by lesions within the AFP (Brainard and Doupe, 

2000; Kojima et al., 2013). In old adults, deafening has only moderate effects on song compared 

to young adults, indicating that the AFP of old birds is less sensitive to the ablation of auditory 

feedback, probably to a large extent because of memory consolidation (Lombardino and 

Nottebohm, 2000; Brainard and Doupe, 2001). But constant addition of new inhibitory neurons 

within Area X might serve as an additive factor that decreases AFP feedback onto the motor 

pathway with age. Increased feed forward inhibition is also one proposed function of new 

granule neurons within the hippocampal dentate gyrus-CA3 circuit (Miller and Sahay, 2019). 

If the prediction about the immediate (variability) and long-term (stability) effect of adult 

neurogenesis in Area X holds true, can be tested in further experiments.  

Beyond its putative role in maintaining birdsong, why is studying striatal adult 

neurogenesis in birds of interest? First, striatal MSNs are implicated in motor related 

neurodegenerative disorders like Huntington’s and Parkinson’s disease (Reiner et al., 2011; 

Nelson and Kreitzer, 2014). Two studies already addressed the effect of the mutated huntingtin 

protein on avian basal ganglia function, either in transgenic zebra finches that express the 

human mutant huntingtin protein (mHTT, Liu et al., 2015) or by expressing the mutated 

huntingtin gene fragment in Area X of adult zebra finches using local virus injections (Tanaka 

et al., 2016). These studies found aberrant song development in juveniles, sequence instability 

in adults and loss of MSNs in Area X concomitant with decreased inhibition of pallidal-like 

neurons. In mHTT transgenic zebra finches the song degradation subsided and stabilized after 

9-15 months of age and this was proposed to be linked with the replacement of dead MSNs 

with new MSNs (Liu et al., 2015). Since Area X recovers extensively within six months after 

neurotoxic lesions and incorporate new, functional MSNs (Kubikova et al., 2014; Lukacova et 

al., 2017), recovery from MSNs loss in mHTT birds seems possible. The second reason why 

studying striatal adult neurogenesis in songbirds is interesting is that the natural generation of 

new striatal MSNs does not occur in adult mammals. It can be experimentally induced by 

stroke, ischemia or lesions, but the survival rates are low (Arvidsson et al., 2002; Parent et al., 

2002; Tattersfield et al., 2004; Yamashita et al., 2006). Only GABAergic interneurons are 

generated under natural conditions and after brain damage in the striatum of adult rats, rabbits, 

monkeys and humans (Bédard et al., 2002; Tonchev et al., 2003; Dayer et al., 2005; Tonchev 

et al., 2005; Luzzati et al., 2006; Yang et al., 2008; Liu et al., 2009; Wei et al., 2011; Ernst et 

al., 2014). In rodents, two other prominent neurogenic niches persist during adulthood; the 

subventricular zone that gives rise to granule interneurons that incorporate into the olfactory 

bulb (Lledo and Valley, 2016) and the subgranular zone of the dentate gyrus (DG) of the 
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hippocampal formation (Altman and Das, 1965a; Kempermann et al., 2015). In the latter, new 

granule cells (GCs) are generated from radial glia cells and incorporate into the granule cell 

layer of the DG, where they become fully mature GCs within 4-8 weeks (Esposito et al., 2005). 

They are embedded in the hippocampal-entorhinal formation that plays a major role in the 

formation of episodic memories. New GC function in adult rodents is implicated in context 

discrimination, memory consolidation, forgetting, pattern separation and feed-forward 

inhibition in DG-CA3 (Miller and Sahay, 2019). Their recruitment and survival are positively 

influenced by exercise and environmental enrichment (Vivar et al., 2013; Kempermann, 2019). 

If neurogenesis in the hippocampus persists in the adult human brain is currently highly 

debated, with differences in human tissue fixation protocols being the main contentious issue 

(Boldrini et al., 2018; Cipriani et al., 2018; Kempermann et al., 2018; Paredes et al., 2018; 

Sorrells et al., 2018; Moreno-Jimenez et al., 2019; Tobin et al., 2019). Taken together, songbirds 

provide a unique model for studying the natural generation of a neuron type that is highly 

relevant for movement, learning and cognition and that is not renewed in mammals.  

 

FoxP2 function is extended by an implication in adult neurogenesis within a pallial-basal 
ganglia-thalamo-pallial circuit 
 
How do levels of a transcription factor in individual neurons influence their morphology and 

function? With my thesis work I tried to answer that question by studying the protein levels of 

FoxP2 in new MSNs in Area X. The motivation for this study came from a report that MSNs 

in Area X expressed FoxP2 at either high and low levels (FoxP2high or FoxP2low MSNs) and 

that the distribution of expression intensities was age dependent with FoxP2high neurons 

decreasing as zebra finches aged (Thompson et al., 2013). From the observation that singing 

only decreases the density of FoxP2low and not FoxP2high neurons (Thompson et al., 2013), I 

hypothesized that FoxP2 levels in young neurons need to decrease before they participate in 

singing activity. Publication B of this thesis indeed illustrates that FoxP2 expression levels 

decrease with age; 30-40 % of new MSNs in Area X expressed FoxP2 at high levels during 

early maturation stages (21 and 31 days after BrdU labelling) and this fraction of FoxP2high 

MSNs decreased with maturation (Kosubek-Langer and Scharff, 2020). At a later maturation 

stage (42 days after BrdU labelling) only approximately 10% of new MSNs were FoxP2high. 

Contrary to my hypothesis, new MSNs participated in singing activity (measured by EGR-1 

expression) independent of their FoxP2 expression level. In Publication B, I measured the 

FoxP2 expression levels of individual GFP expressing new MSNs and analyzed their dendrite 

morphology and spine density. Interestingly, FoxP2 expression levels in individual new MSNs 
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correlated with both. FoxP2high new MSNs had more elaborate dendrites and a higher density 

of dendritic spines than FoxP2low new MSNs. In detail, the mature mushroom spines were more 

numerous in FoxP2high than in FoxP2low new MSNs, indicating that FoxP2high new MSNs have 

built stronger connections with their presynaptic inputs. MSNs dendrites form synaptic contacts 

with axons from HVC and LMAN (Kornfeld et al., 2020). The former guides the temporal 

features of song (Long and Fee, 2008), whereas the latter generates variability during singing 

(Kao et al., 2005; Ölveczky et al., 2005; Kao and Brainard, 2006; Kao et al., 2008; Ölveczky et 

al., 2011). The majority of HVC axons synapse onto MSN dendritic spines whereas LMAN 

axons preferentially terminate on MSN dendritic shafts (Kornfeld et al., 2020). Moreover, HVC 

synapses onto MSN spines are larger than those of LMAN (Kornfeld et al., 2020). Given that 

FoxP2high new neurons had more of the large mushroom spines than FoxP2low new neurons, I 

speculate that they receive more inputs form HVC and become tightly entrained to song timing. 

If FoxP2low new neurons, on the other hand, receive more LMAN synapses on dendritic shafts 

and thus a higher proportion of variable inputs awaits further investigation. Nevertheless, the 

differences in dendritic spine densities in FoxP2high and FoxP2low new MSNs during a narrow 

time window of their maturation might reflect differential innervation by upstream song nuclei 

with opposing functions.  

The results presented in Publication B are consistent with previous studies that linked 

Foxp2/FoxP2 expression with neuronal outgrowth and spine density (Enard et al., 2009; Schulz 

et al., 2010; Reimers-Kipping et al., 2011; Vernes et al., 2011). Many studies describe the role 

of Foxp2 during developmental neurogenesis (Rousso et al., 2012; Tsui et al., 2013; Chiu et al., 

2014; Co et al., 2019; Kast et al., 2019), but Publication B is the first report that links FoxP2 

expression to the process of adult neurogenesis. This expands FoxP2 function by neuronal 

outgrowth of newly recruited striatal MSNs.  

 Varying Foxp2 levels have been previously detected. On a cellular level, Foxp2 

expression is enriched in Drd1 MSNs of the direct pathway, whereas only few Drd2 MSNs of 

the indirect pathway express Foxp2 (Vernes et al., 2011; van Rhijn et al., 2018). These 

immunohistochemical results are supported by single cell RNA sequencing of the adult murine 

striatum showing that Foxp2 in only enriched in Drd1 MSNs (Stanley et al., 2019). But Foxp2 

expression levels are also compartmentalized; Foxp2high MSNs are more numerous in the 

striosome than in the matrix compartment (Takahashi et al., 2003; Takahashi et al., 2008; Chen 

et al., 2016; Schreiweis et al., 2019). The striosome forms a three-dimensional labyrinth-like 

structure that permeates the matrix and comprises 10-15% of the striatum. Striosome and matrix 

are neurochemically different but both harbor MSNs of the direct and indirect pathway 
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(Brimblecombe and Cragg, 2017). Dopamine levels are higher in the matrix than in the 

striosomes (Salinas et al., 2016). In genetically engineered mice that carry humanized Foxp2 

alleles (Foxp2hum/hum) the density of Foxp2high MSNs increased in the striosome of the dorsal 

striatum in comparison to wildtype littermates. In the ventral striatum, however, the density of 

Foxp2high MSNs increased in the matrix, not in the striosome. It is not clear which 

(developmental) processes lead to the increase in Foxp2high MSNs, nor in which MSNs subtype 

Foxp2 expression is elevated in Foxp2hum/hum mice. Further, it needs to be determined how 

increased Foxp2 levels relate to the increased dendrite length found in striatal MSNs and other 

neurons of the striatal-basal ganglia circuit of Foxp2hum/hum mice (Enard et al., 2009; Reimers-

Kipping et al., 2011).  

In Publication B, I present data that FoxP2 expression levels distinguish fractions of 

new MSNs in Area X during a short, specific time window of their maturation. Older, mature 

MSNs cannot be distinguished by their FoxP2 expression levels. I argue that these early 

differences in FoxP2 expression and concomitant morphological features may imprint young, 

new MSNs and give rise to different MSNs subtypes, as is the case in mice. In mice, Drd1 direct 

and Drd2 indirect pathway striatal MSNs (see Fig. 3 of the Introduction) cannot only be 

segregated by the expression of dopamine receptors but by many other characteristics. 

Dopamine modulates the response of MSNs to cortical inputs; Drd1s increase the intrinsic 

excitability of MSNs, whereas Drd2s decrease the intrinsic excitability of MSNs (Surmeier et 

al., 2014). Direct pathway activation promotes movement, while indirect pathway activation 

suppresses motor behaviors (Kravitz et al., 2010). Further, direct and indirect MSNs differ in 

electrophysiological properties (Cepeda et al., 2008; Day et al., 2008), morphology (Gertler et 

al., 2008), synaptic plasticity (Kreitzer and Malenka, 2007; Shen et al., 2008), cortical inputs 

(Wall et al., 2013) and brain-wide responses (Lee et al., 2016).  

There is nothing known about the connectivity or electrophysiology of MSNs subtypes 

in birds, although their existence has been presumed (Gale and Perkel, 2010; Pidoux et al., 

2015). But gene expression data provides hints for the existence of MSNs subtypes. Single 

nucleus RNA sequencing identified five MSN cluster, of which two resembled the gene 

expression profile of direct and indirect MSNs of the murine striatum (Xiao et al., 2020). 

However, mRNA and protein abundance do not always correlate (Vogel and Marcotte, 2012) 

and RNA profiles reflect one snapshot of a dynamic system, hence RNA profiling alone is 

insufficient to determine neuronal subtypes. Corresponding to the murine basal ganglia, avian 

indirect MSNs would exclusively innervate indirect pallidal-like neurons that inhibit the direct 

pallidal-projection neurons. Following evidence underpin the hypothesis that early FoxP2 
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expression levels may indicate MSN subtype specification. First, mouse Drd1 direct MSNs and 

corresponding direct MSNs in zebra finches both express FoxP2 at high levels whereas Drd2 

indirect MSNs in mammals and birds express only low levels of Foxp2 (Vernes et al., 2011; 

van Rhijn et al., 2018; Xiao et al., 2020). Second, both FoxP2high new MSNs in zebra finches 

and Drd1 MSNs in mice had (a) more intersections in the Sholl analysis, which indicates a 

higher dendritic complexity (b) a higher cumulative dendritic length, and (c) more primary 

dendrites compared to FoxP2low new MSNs and Drd2 MSNs, respectively (Gertler et al., 2008; 

Kosubek-Langer and Scharff, 2020). To test if this hypothesis holds true it requires suitable 

markers, tracings and electrophysiological recordings. Unfortunately, a single avian MSNs 

often expresses multiple dopamine receptors (Kubikova et al., 2010; Kosubek-Langer et al., 

2017; Xiao et al., 2020) and therefore MSNs in songbirds cannot be distinguished by their 

dopamine receptors, which is possible in rodent MSNs. It is however possible that a 

combination of several marker proteins will reveal MSN subtypes also in birds. Another 

challenge in the detection of MSN subtypes is the fact that their targets, the direct and indirect 

pallidal-like projection neurons, lie within Area X and this complicates their detection via 

retrograde tracings. But since MSN subtypes may have different roles during song learning as 

well as in the modulation of variability during directed and undirected singing, their detection 

and how FoxP2 expression is involved in their subtype specification is of particular interest.  

In summary, proper amounts of Foxp2 protein are crucial for a wide array of 

neurobiological processes including brain development and motor learning in mammals 

(French et al., 2007; Fujita et al., 2008; Groszer et al., 2008; Enard et al., 2009; Reimers-

Kipping et al., 2011; French et al., 2012; Kurt et al., 2012; Tsui et al., 2013; Chiu et al., 2014; 

Chen et al., 2016; French et al., 2019; Kast et al., 2019). In zebra finches, the tight regulation 

of FoxP2 protein levels is particularly important for its on-line function during song learning in 

juveniles and for context-dependent song variability in adults (Haesler et al., 2004; Haesler et 

al., 2007; Murugan et al., 2013; Heston and White, 2015; Day et al., 2019). In Publication B, 

I present the first evidence that FoxP2 protein levels are as well relevant during the process of 

striatal adult neurogenesis (Kosubek-Langer and Scharff, 2020), which broadens FoxP2 

function in adult songbirds.  
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Zusammenfassung 
 

Adulte Neurogenese ist ein Prozess, bei dem neue Nervenzellen in einer neurogenen Nische 

gebildet werden und in bestimmte Regionen des adulten Gehirns einwandern. Im Gehirn von 

erwachsenen Singvögeln werden neue Nervenzellen in Regionen integriert, die das Lernen, die 

Produktion und die Erhaltung des Gesangs steuern. Neue medium spiny neurons 

(dornenbesetzte Nervenzellen von mittlerer Größe, folgend MSNs) wandern kontinuierlich in 

den striatalen Basalgangliennukleus Area X ein, es war jedoch nicht bekannt, ob sie funktionell 

in die vorhandenen Schaltkreise integriert werden. Um diese Frage zu beantworten, habe ich 

Vorläuferzellen mit dem chemischen Basenanalogon Bromdeoxyuridin oder durch eine 

lentiviral vermittelte Expression eines fluoreszierenden Proteins markiert. Neue Nervenzellen 

in Area X wurden nach unterschiedlichen Zeitspannen auf ihre Reifung, Vernetzung und 

neuronale Aktivität während des Gesangs hin untersucht. Bereits sechs Wochen nach ihrem 

Entstehen sind die meisten neuen Nervenzellen in Area X ausgereift, weisen prä- und 

postsynaptische Verbindungen auf und exprimieren Dopaminrezeptoren, die auf dopaminerge 

Innervation hinweisen. Um zu beantworten ob und ab welchem Alter neue Nervenzellen durch 

Singen aktiviert werden, wurde die Expression des Gens EGR-1 (early growth response 1) 

genutzt, weil es schon wenige Minuten nach Beginn der neuronalen Aktivität transkribiert wird. 

Bereits drei Wochen nach ihrer Entstehung exprimiert ein kleiner Teil der neuen Nervenzellen 

EGR-1 als Folge deren Aktivierung durch Singen und mit fortschreitender Reifung nimmt der 

Anteil der durch Singen aktivierten neuen Nervenzellen zu. Um die Dynamik der striatalen 

adulten Neurogenese zu verstehen, wurde die Dichte von MSNs in Zebrafinken bis zu einem 

Alter von sieben Jahren untersucht. Die Ergebnisse deuten darauf hin, dass es sich bei der 

striatalen adulten Neurogenese um einen Prozess handelt, bei dem neuen Nervenzellen dem 

Nervengeflecht konstant hinzugefügt werden.  

MSNs die in Area X einwandern exprimieren das Forkhead-Box-Protein P2 (FoxP2). 

Dieser Transkriptionsfaktor hat wichtige Funktionen bei der Entwicklung des Gehirns von 

Säugetieren und dessen Mutation verursacht beim Menschen eine Sprachstörung (Verbale 

Entwicklungsdyspraxie). Bei Zebrafinken sind korrekte Expressionsniveaus von FoxP2 in 

Area X entscheidend für erfolgreiches Gesangslernen und für die Gesangsmodulation in 

verschiedenen sozialen Kontexten. FoxP2 Expression in Area X ist während der Phase des 

Gesangslernens hoch, jedoch niedrig bei adulten Tieren und während des Gesangs wird die 

FoxP2 Expression sogar herunterreguliert. MSNs in Area X weisen unterschiedliche FoxP2 

Expressionsniveaus auf. Die Herunterregulierung von FoxP2 nach dem Singen tritt nur in 
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MSNs mit niedrigem FoxP2 Expressionsniveau und nicht in MSNs mit hohem FoxP2 

Expressionsniveau auf. Daher postulierte ich, dass MSNs mit hohem FoxP2 Expressionsniveau 

erst kürzlich in Area X eingewandert sind und deren FoxP2 Expression erst verringert werden 

muss, bevor sie durch Singen aktiviert werden können. Diese Hypothese wurde getestet, indem 

das FoxP2 Expressionsniveau und die EGR-1-Expression in einzelnen neuen MSNs von 

singenden und nicht singenden Zebrafinken zu verschiedenen Zeitpunkten nach ihrer 

Entstehung bestimmt wurde. Interessanterweise war die Aktivierung der neuen MSNs 

unabhängig von ihrem FoxP2 Expressionsniveaus. Ein weiteres Ergebnis war, dass ein Drittel 

der neuen MSNs in frühen Reifungsstadien FoxP2 in hohen Mengen exprimierte. Die Mehrheit 

der gereiften MSNs exprimierte FoxP2 jedoch in geringen Mengen, was auf eine altersbedingte 

Abnahme der FoxP2 Proteinmengen in einer Fraktion der neuen MSNs hinweist. Da gezeigt 

wurde, dass Foxp2 das Wachstum und die Differenzierung von Neuronen fördert, habe ich die 

Morphologie der Dendriten und die Dichte der Dornenfortsätze von neuen MSNs mit hohem 

oder geringem FoxP2 Expressionsniveau analysiert. Im Vergleich hatten neue MSNs mit 

hohem FoxP2 Expressionsniveau komplexere Dendriten und eine höhere Dichte an 

pilzförmigen Dornenfortsätzen. Dies deutet darauf hin, dass sie während eines kurzen 

Zeitraums ihrer Reifung mehr Verknüpfungen mit vorgeschalteten Gesangsnuklei ausbildeten. 

Ein Verglich der hier präsentieren Ergebnisse mit den MSNs der direkten und indirekten 

Verbindungen der Basalganglien von Nagetieren, lässt schlussfolgern, dass unterschiedliche 

FoxP2 Expressionsniveaus und die damit einhergehende dichotome Morphologie neuer MSNs 

auf die Existenz unterschiedlicher Subtypen ebendieser in Area X von Zebrafinken hindeuten. 

Zusammenfassend zeigen die präsentierten Daten, dass die neuen MSNs, die in Area X von 

erwachsenen Zebrafinken rekrutiert werden, funktionsfähig sind und für die Erhaltung des 

Gesangs eine wichtige Rolle spielen könnten. Innerhalb der ersten sechs Wochen nach ihrer 

Bildung weisen neue MSNs dynamische FoxP2 Expressionsniveaus auf. Letztere korrelieren 

positiv mit der Komplexität der dendritischen Verzweigungen und der Dichte der 

Dornenfortsätze von neuen MSNs, wodurch die Funktion von FoxP2 um eine Rolle in der 

striatalen adulten Neurogenese erweitert wurde. 
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