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Summary

This monography presents results related to the convex geometry of a family of sim-
plicial complexes called “subword complexes”. These simplicial complexes are defined
using the Bruhat order of Coxeter groups. Despite a simple combinatorial definition
much of their combinatorial properties are still not understood. In contrast, many of
their known connections make use of specific geometric realizations of these simplicial
complexes. When such realizations are missing, many connections can only be conjec-
tured to exist.

This monography lays down a framework using an alliance of algebraic combinatorics
and discrete geometry to study further subword complexes. It provides an abstract,
though transparent, perspective on subword complexes based on linear algebra and
combinatorics on words. The main contribution is the presentation of a universal partial
oriented matroid whose realizability over the real numbers implies the realizability of
subword complexes as oriented matroids.
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Zusammenfassung

Diese Monographie präsentiert Ergebnisse im Zusammenhang mit einer Familie von
simplizialen Komplexen, die ”Subwortkomplexe” genannt werden. Diese Simplizialkom-
plexe werden mit Hilfe der Bruhat-Ordnung von Coxeter-Gruppen definiert. Trotz einer
einfachen kombinatorischen Definition werden viele ihrer kombinatorischen Eigenschaften
immer noch nicht verstanden. Spezifische geometrische Realisierungen dieser Sim-
plizialkomplexe machen neue Herangehensweisen an Vermutungen des Gebiets möglich.
Wenn solche Verbindungen fehlen, können viele Zusammenhänge nur vermutet wer-
den.

Diese Monographie legt einen Rahmen fest, in dem eine Allianz aus algebraischer Kom-
binatorik und diskreter Geometrie verwendet wird, um weitere Subwortkomplexe zu
untersuchen. Es bietet eine abstrakte und transparente Perspektive auf Teilwortkom-
plexe, die auf linearer Algebra und Kombinatorik von Wörtern basiert. Der Haupt-
beitrag ist die Darstellung eines universellen, nur teilweise orientierten Matroids, dessen
Realisierbarkeit über den reellen Zahlen die Realisierbarkeit von Teilwortkomplexen als
orientierte Matroide impliziert.

vii





Acknowledgements

The author would like to express his gratitude to Federico Castillo, Cesar Ceballos,
Joseph Doolittle, Adriano Garsia, Gil Kalai, Ezra Miller, Eran Nevo, Arnau Padrol, Vin-
cent Pilaud, Vic Reiner, Christophe Reutenauer, Francisco Santos, Rainer Sinn, Richard P.
Stanley, and Günter M. Ziegler for several important discussions leading to the results
in this monograph. Further, the author is thankful to the Sagemath community, whose
work allowed to create the experimental framework leading to the present results.

The author is also particularly thankful to Elke Pose for her help in proofreading the
numerous associated required German documents.

ix





Contents

Summary v

Zusammenfassung vii

Acknowledgements ix

Notation xiii

Introduction 1

1 Preliminaries 3
1.1 Multilinear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Vandermonde matrix and Binet–Cauchy Formula . . . . . . . . . . . . . 4
1.3 Partial Schur functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Combinatorics on words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Graphs on reduced expressions . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Subword complexes of Coxeter groups . . . . . . . . . . . . . . . . . . . . 12
1.8 Fans and Gale duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Sign functions of words 17
2.1 Sign function on minors of G(w) . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The S-sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 S-sign functions on reduced expressions for small rank Coxeter groups . 23
2.4 The punctual sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Model matrices 27
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Model matrices for reduced words . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Binet–Cauchy on model matrices . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Formula for the determinant of model matrices via parameter matrices . 31
3.5 The parameter matrices behind Bergeron–Ceballos–Labbé’s counting ma-
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Notation

N,R the nonnegative integers, the real numbers
n, [n] an element of N \ {0} and {1, 2, . . . , n}([n]
k

)
the collection of k-elements subsets of [n]

#S cardinality of a set S
Sn or SS The symmetric group on n objects where S is a set of cardinality n
Z2 the multiplicative group ({±1},×)

Vd, V
∗
d a real vector space of dimension d and its dual vector space

Vander(d) Vandermonde matrix of size d

λ a partition with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0

xλ,J Schur function on variables labeled by J for the partition λ
xλ Schur function on variables labeled by [n] for the partition λ
Λ a sequence of partition of length n
XΛ,P partial Schur function with respect to an ordered set partition P

and a sequence of partitions Λ

λz,i standard partition
Λz sequence of standard partitions

S a finite alphabet of letters ordered s1 < s2 < · · · < sn

S∗ free monoid over S
e identity of S∗, the empty word
{w}i set of occurrences of the letter si in w
Ωw the ordered partition ({w}1, . . . , {w}n) for a word w ∈ S∗

|w|i the number of occurrences of the letter si in w
rev(w) the reverse word of a word w ∈ S∗

α(w) the abelian vector (|w|1, . . . , |w|n) of w ∈ S∗

w lexicographic normal form of α(w)

std(w) the standard permutation of w
inv(w) the number of inversions of std(w)

φ alphabetic order reversing map on S
←−
inv(w) the number of swaps of w in φ(S)
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(W,S) a finite irreducible Coxeter system: a Coxeter group W with generators S
` length function of Coxeter groups
w◦, N := `(w◦) the longest element of a finite Coxeter group W , the length of w◦
R(w) the set of reduced words of an element w ∈W
ν the höchstfrequenz of the group W
G(w) graph of reduced words and braid moves of w ∈W
Geven(w) graph of even braid moves of w
Godd(w) graph of odd braid moves of w
Gcomm graph of commutation classes of w
Gbraid graph of braid classes of w
G2(w) graph of only commutation moves of w
∆W (p) subword complex of type W for the word p ∈ S∗

A,B vector configurations indexed by J
coneA(C) non-negative span of a set of vectors indexed by C in A

F a vector fan
Fp,A collection of cones spanned by sets of A corresponding to faces of ∆W (p)

∆F spherical simplicial complex arising from a complete simplicial fan F
Gale(A) set of Gale transforms of A
C∗ dual simplex J \ C
coneB(C∗) dual simplicial cone of C

Fodd odd-sign function
Feven, τ(w) even-sign function, the T -sign of a word w
σ(w) the S-sign of a word w


JJ the punctual sign function

TW the variables tensor of W
P is,k(N,n, d) a parameter tensor
Cij,k(v,P) coefficient tensor of the word v with respect to P
M i

l(v,P) model matrix of the word v with respect to P
V(v) Vandermonde divisor of a word v

Conventions. Words in the alphabet S are written as a concatenation of letters. Vec-
tors and linear functions are denoted using bold letters such as e,g,v,x,y . . . . Ten-
sors are denoted using capitalized calligraphic letters such as M, T ,U ,V,X . . . . Ex-
ponents on tensors designate vector spaces while indices designate dual vector spaces.
Letters of words are considered with their embedding in the word: two letters represent-
ing the same generators are considered different, since they are at different positions.
To write classes of reduced words, we use the following convention that 12{13}21 :=

{121321, 123121}.



Introduction

Let ∆ be a simplicial complex homeomorphic to a (d− 1)-sphere.

Is there a d-dimensional simplicial polytope P whose face lattice is isomorphic to the one of ∆?

In the affirmative case, the simplicial sphere ∆ is polytopal. Steinitz showed that ev-
ery 2-dimensional simplicial sphere is polytopal [SR76][Grü03, Section 13]. In higher
dimension, this question is part of the larger “Steinitz Problem” asking to determine
polytopal spheres among all simplicial spheres. A lot of work has been done towards
brute force enumeration of simplicial and polytopal spheres in low dimensions, and
spheres with fews vertices, see [Fir17, Fir18] and [Bri16, BZ18] to get an overview of
the most recent results. The determination of the polytopality of a simplicial sphere is
known to be NP-hard [RG96, Mnë88, RGZ95], making progress in this direction con-
tinually limited. In general, approaches trying to find combinatorial local conditions
are bound to fail [Stu87]. Kalai’s squeezed spheres [Kal88] and further constructions by
Pfeifle and Ziegler [PZ04] and by Nevo, Santos, and Wilson [NSW16] show that asymp-
totically “most” simplicial spheres are not polytopal. Further, simplicial polytopes are
even “rare” among geodesic simplicial sphere, i.e. simplicial spheres with a realization
on the sphere where edges are geodesic arcs [NSW16]. Equivalently, (d − 1)-geodesic
simplicial spheres correspond to complete simplicial fans inRd; one obtains the geodesic
arcs by intersecting the fan with the unit sphere.

Facing this situation, an approach to study Steinitz problem consists in finding flexible
polytopal constructions or combinatorial obstructions to polytopality. One famous ex-
ample of polytope with many constructions is that of the associahedron [Sta63]. Among
the notable constructions are the fiber polytope realization [GKZ94, Chapter 7], the clus-
ter algebra approach [CFZ02], and the simple combinatorial construction using planar
binary trees [Lod04]. A myriad of variations and descriptions are possible [MHPS12].
The fact that it is related to so many areas of mathematics opens the door to approaches
to Steinitz problem stemming from other areas of research.



2 Introduction

Multi-triangulations offer a wide generalization of the simplicial sphere dual to the as-
sociahedron [PP12]. The simplicial complex whose faces are multi-triangulations is
conjectured to be a polytopal sphere. This conjecture first appeared in writing in the
Oberwolfach Book of Abstract of Jonsson in 2003 [Jon03]. Currently, the only known
polytopal construction is for the 2-triangulations of the 8-gon [BP09, Ceb12, BCL15],
and certain cases are known to be realizable as geodesic spheres [BCL15, Man18].

The complex of multi-triangulations turns out to be an example of subword complexes,
a family of simplicial complexes related to the Bruhat order of Coxeter groups [KM04,
KM05]. Introduced in the context of Gröbner geometry of Schubert varieties, these sim-
plicial complexes offered a rich crossroads to a variety of research avenues: cluster al-
gebras [CLS14], toric geometry [Esc16], root polytopes [EM18], Hopf algebras [BC17],
among many others. Optimists may wish that a notion from these areas is key to deter-
mine the polytopality of subword complexes and therefore determine if multi-associahedra
exist.

In the article [BCL15], Bergeon, Ceballos and the author lay down necessary conditions
for the polytopality of subword complexes. The first step consisted in showing the exis-
tence of a certain sign function, which is then used to formulate certain sign conditions
on minors of matrices to obtain signature matrices. Then, a combinatorial construction
is given that provides signature matrices and it was possible to prove that they lead
to complete simplicial fans for subword complexes of type A3 and for certain cases in
type A4. In spite of these positive results, the reason why the construction works is still
mysterious. The general knowledge on subword complexes is still scarce. Namely, cer-
tain combinatorial aspects of reduced words that lay at the center of the problem are still
not explored in details. The geometric interpretation of these aspects is hence inexistant.

In this thesis, we lay down a framework to study the relevant combinatorial and ge-
ometric properties surrounding the convexity of subword complexes. We present the
necessary notions from linear algebra, algebraic combinatorics and discrete geometry
in Chapter 1. In Chapter 2, we present a theory of sign functions that unifies the usual
sign function of permutations and the sign function presented in [BCL15]. In Chap-
ter 3, we present a theory of Model matrices based on multilinear algebra using tensors
to give a flexible factorization of “partial alternant matrices”. Finally, in Chapter 4, we
combine both theories and present the Universality of parameter matrices. The universal-
ity result shows that for each finite irreducible Coxeter group W , there exists a “partial
oriented matroid” P such that

If P is realizable, then every subword complex of type W is realizable as an “oriented matroid
polytope”.



Chapter 1

Preliminaries

1.1 Multilinear algebra

Let d ≥ 1 and Vd be a d-dimensional real vector space and denote its dual space by V ∗d .
As usual, vectors in Vd are represented as column vectors, while linear functions V ∗d are
represented as row vectors. We denote the transpose of vectors and of linear functions
by ∗>. We use Einstein summation convention for tensors, described as follows. Given
a basis {e1, . . . , ed} of Vd and a basis {f1, . . . , fd} of V ∗d , a (d× d)-matrix M i

j = (mi,j) =

(mi
j) represents the tensor

Mi
j :=

d∑
i=1

d∑
j=1

mi
je
i ⊗ fj ∈ Vd ⊗ V ∗d .

Given a tensor T ∈ (Vd)
a × (V ∗d )b, a row of T is given by the restriction of T to a basis

element of (Vd)
a, i.e. a row is indexed by a tuple (i1, . . . , ia) ∈ [d]a. Similarly, columns

of T are obtained by restricting T to basis elements of (V ∗d )b, and are labeled by tuples
in [d]b. We view the product of (d1× d2)-matrices with (d2× d3)-matrices using tensors
using the following linear map:

(
Vd1 ⊗ V ∗d2

)
×
(
Vd2 ⊗ V ∗d3

)
→ Vd1 ⊗ V ∗d3

((x⊗ f), (y ⊗ g)) 7→ f(y) · (x⊗ g). (1.1)

More generally, given a tensor T ij ∈ Vd1 ⊗ V ∗d2
and a tensor U jk ∈ Vd2 ⊗ V ∗d3

, we write
the tensor contraction as

V ik := T ij · U jk,

using the rule given in Equation (1.1). Contraction of higher rank tensors is defined
similarly, by matching the appropriate pairs of indices.

3



4 Chapter 1. Preliminaries

1.2 Vandermonde matrix and Binet–Cauchy Formula

The Vandermonde matrix of size d is

Vander(d) :=



1 1 · · · 1

x1 x2 · · · xd

x2
1 x2

2 · · · x2
d

...
... . . . ...

xd−1
1 xd−1

2 · · · xd−1
d


=

d∑
i=1

d∑
j=1

xi−1
j ei ⊗ fj = (xi−1

j )(i,j)∈[d]×[d],

and its determinant is

det Vander(d) =
∏

1≤i<j≤d
(xj − xi) =

∑
π∈Sd

sign(π)x
π(1)−1
1 · · ·xπ(d)−1

d . (1.2)

The Vandermonde matrix also is obtained as the product of two rectangular matrices
as follows. Let Wd := W i

j,k :=
⊕d

i=1 Idd be the augmentation of d identity matrices by
concatenating them columnwise. This matrix can be rewritten as a tensor in Vd⊗V ∗d ⊗V ∗d
as
∑d

i=1

(
ei ⊗

(∑d
j=1 fj

)
⊗ fi

)
. Further, we define the tensor X k,j l ∈ Vd ⊗ Vd ⊗ V ∗d as

X k,j l :=

d∑
j=1

(
d∑

k=1

xk−1
j

)
ek ⊗ ej ⊗ fj .

By flattening it, the tensor X k,j l can be written as a matrix as

Xd =



1

x1

x2
1
...

xd−1
1

0 · · · 0

0

1

x2

x2
2
...

xd−1
2

· · · 0

... . . . ...

0 · · · 0

1

xN

x2
N
...

xd−1
N



.

From the definitions of Wd and Xd, and the properties of product of tensors, we get

Vander(d) = WdXd =W i
j,k · X k,j l.

Indeed, the data is split in order for the product to give back the Vandermonde matrix.



1.3. Partial Schur functions 5

Later on, we look at variations of the Vandermonde matrices given in this product form.
In order to get hold of the signs of determinants of these variations, we use the Binet–
Cauchy formula. If M is a matrix, we denote by [M ]Z the submatrix of M formed by
the rows (or columns) indexed by the set Z.

Theorem 1.1 (Binet–Cauchy formula, see [RS13, Section 10.5, p.377] or [AZ14, Chap-
ter 31]). If P is an (r × s)-matrix, Q an (s× r)-matrix, and r ≤ s, then

det(PQ) =
∑

Z∈([s]
r )

(det[P ]Z)(det[Q]Z), (1.3)

where [P ]Z is the (r × r)-submatrix of P with column-set Z, and [Q]Z the (r × r)-submatrix
of Q with the corresponding row-set Z.

In our case, since Wd and Xd enjoy a simple structure, it is easy to reobtain the formula
for the Vandermonde determinant:

det Vander(d) = det(WdXd) =
∑

Z∈([s]
r )

(det[Wd]Z)(det[Xd]Z).

- The matrices [Wd]Z either have two equal columns or are permutation matrices.
Therefore, the determinants det[Wd]Z are 0, 1, or −1. They are zero if at least
two columns are equal, and equal to the sign of the permutation associated to the
permutation matrix otherwise.

- The determinant of [Xd]Z is zero if two rows use the same variable xi. Otherwise,
the determinant is a monomial with variables in {x1, . . . , xd}.

Combining the two conditions for the determinants to be non-zero, we get back the fact
that the determinant of the Vandermonde matrix is the sum of the signed monomials in
exactly d−1 variables which have all distinct powers in {1, . . . , d−1} as in Equation (1.2).

1.3 Partial Schur functions

It is worth noting that alteringWd andXd defined above in particular ways lead to gen-
eralizations of the Vandermonde matrix. For example, Schur functions can be defined
this way.

Definition 1.2 (Schur functions using Vandermonde matrices [Mac15, Section 1.3], [Sta99,
Chapter 7.15], and [Sag01, Section 4.6]). Let λ = (λ1, λ2, . . . , λd) be a partition with
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λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0, and J be an ordered set of indices of cardinality d. The Schur
function xλ,J in the variables {xj : j ∈ J} is the quotient

xλ,J :=
det(x

i−1+λd−i+1

j )(i,j)∈[d]×J

det VanderJ(d)
,

where VanderJ(d) is the Vandermonde matrix Vander(d) with variables indexed by J .
When J = [n] for some n ≥ 1 we omit the subscript J and simply write xλ.

Example 1.3.

1. Let d = 3 and consider the partition (4, 1, 0). The Schur function x(4,1,0) is the de-
terminant of the matrix below divided by the Vandermonde determinant det Vander(3):

x(4,1,0) =
1

det Vander(3)

∣∣∣∣∣∣∣∣
x0+0

1 x0+0
2 x0+0

3

x1+1
1 x1+1

2 x1+1
3

x2+4
1 x2+4

2 x2+4
3

∣∣∣∣∣∣∣∣
=
(
x2

1 + x2
2 + x2

3

)
(x1 + x2)(x1 + x3)(x2 + x3).

The corresponding matrices W(4,1,0) and X(4,1,0)—whose product gives the above
matrix—are

W(4,1,0) =
⊕3

i=1


1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

 and X(4,1,0) =
∑3

j=1

(∑3
k=1 x

k−1
j

)
ek ⊗ ej ⊗ fj .

2. If we set each part in the partition λ to 0, we get back the Vandermonde matrix,
which corresponds to the degree 0 symmetric polynomial 1.

The following definition becomes natural. We have not encountered an occurrence in
this specific form in the litterature, nevertheless it has most likely been considered be-
fore.

Definition 1.4 (Partial Schur functions). Let m ≥ 1, P = (pi)
n
i=1 be an ordered set

partition of [m] where parts may be empty, and Λ = (λi)
n
i=1 be a sequence of partitions

such that the number of parts of λi is the cardinality of pi. The partial Schur function with
respect to P and Λ is

XΛ,P :=

n∏
i=1

xλi,pi .

This function is symmetric with respect to the action of
∏n
i=1 Spi as a subgroup of Sm.
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Example 1.5. Let m = 4, P = ({1, 3}, {2, 4}), Λ1 = ((0, 0), (1, 0)), Λ2 = ((1, 0), (0, 0)),
and Λ3 = ((3, 1), (2, 0)). The partial Schur functions with respect to P and the se-
quences of partitions are

XΛ1,P = x(0,0),{1,3} ·x(1,0),{2,4} = 1 · (x2 + x4),

XΛ2,P = x(1,0),{1,3} ·x(0,0),{2,4} = (x1 + x3) · 1,

XΛ3,P = x(3,1),{1,3} ·x(2,0),{2,4} = x1x3(x2
1 + x1x3 + x2

3) · (x2
2 + x2x4 + x2

4).

1.4 Combinatorics on words

For basic notions on combinatorics on words and monoids, we refer to the books [Lot97,
Chapter 1] and [Die90, Chapter 1]. Let S = {s1, . . . , sn} be a finite alphabet of letters or
generators equipped with the lexicographic order s1 < s2 < · · · < sn. Let S∗ :=

⊕
i∈N S

i

be the free monoid generated by elements in S by concatenation, and call its elements
words or expressions and denote by e the identity element or empty word. Given a word
w ∈ Sm, it is usually written w = w1 · · ·wm, where wi denotes its i-th letter, and the
length ofw ism. A wordw of lengthm is equivalently defined as a functionw : [m]→ S;
then wi represents the image w(i) ∈ S. When there exists two words u, v ∈ S∗ such that
w = ufv, the word f ∈ S∗ is called a factor ofw. An occurrence of a factor f of length k in
a wordw = w1 · · ·wm is a set of positions {i, . . . , i+(k−1)}with i ∈ [m−k+1] such that
w = w1 · · ·wi−1fwi+k · · ·wm, i.e. f = wi · · ·wi+(k−1). In particular, a factor of length 1

gives an occurrence of some letter s ∈ S. We denote by {w}i the set of occurrences of the
letter si ∈ S in w. Given a word w ∈ Sm, we hence associate the ordered set partition
Ωw = ({w}1, . . . , {w}n) of [m] to w. Further we denote the cardinality of the set {w}i
by |w|i := #{w}i. Let k ≤ m and w : [m] → S be a word of length m, a subword v of
length k of w is a word obtained by the composition v := w ◦ u, for some increasing
function u : [k]→ [m]. A subword is therefore a concatenation of a sequence of factors.
By extension, we define an occurrence of a subword as the union of the occurrences of
the factors whose concatenation give the subword. Consequently, the same word v ∈ S∗

may give rise to several subword occurrences in a longer wordw, which are obtained by
distinct sequences of factors ofw. Given a subword v = w ◦u of length k of a wordw, its
complement word w \ v is the subword of w obtained by w ◦u′ where u′ : [m− k]→ [m] is
the increasing function such that u′(i) is the i-th smallest element in [m] \ u([k]). Given
a word w = w1 · · ·wm, its reverse word rev(w) is the word wm · · ·w1.
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Define the monoid morphismα fromS∗ to the free commutative monoidNS by its image
on the set S as follows

α : S∗ → NS

s 7→ 1s(t) :=

1, if t = s,

0, else.

Given an ordering of the alphabet of generators S and a word w ∈ S∗, the image

α(w) = (|w|1, . . . , |w|n)

is a weak composition (i.e. an ordered partition where zeros can appear) called the
abelian vector of w. The morphism α records the number of occurrences of letters in
words, and can be thought as an abelianization of the monoid S∗. Consequently, the
sum of the entries in α(w) is the length of the word w. To lighten the notation, we shall
write αw for the abelian vector α(w).

1.5 Coxeter groups

For basic notions on Coxeter groups, we refer to the books [Hum90] and [BB05]. Let
(W,S = {s1, . . . , sn}) be a finite irreducible Coxeter system with Coxeter matrix M =

(mi,j)i,j∈[n]. We denote by R = {(sisj)mi,j : si, sj ∈ S} the associated set of braid re-
lations. Some choices of lexicographic orders are more natural; hence, when influencial,
we specify the ordering by indicating M and R explicitly. The set of braid relations
R generates a free submonoid R∗ of S∗ and the quotient monoid S∗/R∗ consisting of
left-cosets of R∗ in S∗ has a left- and right-inverse and thus forms a group which is iso-
morphic to W [BB05, p.3]. From this standpoint, the elements of a Coxeter group W

are equivalence classes of expressions and the representative expressions with shortest
length are called reduced. Bearing this in mind, we henceforth represent an element w
of the monoid S∗ and of the group W both using concatenation of letters. Whenever a
distinction is pertinent we emphasize if the word or its equivalence class is meant by
writing w ∈ S∗, or w ∈W , respectively.

Throughout this text, we adopt the following notations. The function ` : W → Ndenotes
the length function sending an element w ∈ W to the length of its reduced expressions,
the symbol w◦ denotes the longest element of W , and N := `(w◦). Given an element
w ∈ W , we denote the set of reduced expressions of w by R(w) which is a finite subset of
S∗.

Problem 1.6. Let w ∈W .
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1. Characterize the set of abelian vectors {αv : v ∈ R(w)}.

2. Give precise bounds on the number

ν(w) := max
{

max{αv(s) : s ∈ S} : v ∈ R(w)
}
,

which is the maximum number of occurrences of a letter in any reduced expression of w.

3. Describe the vector

µ(w) :=
(

min{αv(s) : v ∈ R(w)}
)
s∈S ,

which gives the minimum number of occurrences of each letter in any reduced expression
of w.

The abelian vectors for the reduced words of the longest element of types A,B,D, for
small rank and H are gathered in Tables A.1 to A.4 of Appendix A.

In the symmetric group case Sn+1 = An and takingw = w◦, Problem 1.6(2) is related to
the k-set problem via duality between points and pseudolines on the plane, see [Mat02,
Chapter 11], [GOT18, Chapter 5], and [PP12, Section 3.1] for a contextual explanation.
Currently, the best lower bound we know for ν(w◦) in this case is neΩ(

√
logn/2) [T0́1],

and the best upper bound is O(n4/3) [Dey98]. For a nice recent book on related topics,
see [Epp18, Section 3.5]. Further, in type A, Problem 1.6(3) is answered by

µ(w◦) =

(1, 2, . . . , dn2 e, . . . , 2, 1) if n is odd,

(1, 2, . . . , n2 ,
n
2 , . . . , 2, 1) if n is even.

Indeed, this can be proved directly using the minimal number of inversions used at each
position necessary to obtain the reverse permutation [n+ 1, n, . . . , 2, 1].

We denote ν := ν(w◦) and refer to this value as the höchstfrequenz of the group W . As
Section 3.5 reveals, the höchstfrequenz of the group W is an important parameter for
the genericity of vector configurations geometrically realizing subword complexes.

1.6 Graphs on reduced expressions

Given two words u, v ∈ S∗ representing an element w ∈ W , they are related by a se-
quence of insertion or deletion of factors contained inR∗. Based on this fact, one defines
braid moves in a word by replacing a factor sisjsi . . . of length mi,j by a factor sjsisj . . .
of length mi,j , where i 6= j. It is a well-known property of Coxeter groups that reduced
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expressions inR(w) are connected via finite sequences of braid moves, in particular that
no reductions s2

i = e are necessary [Mat64, Tit69] (see [BB05, Theorem 3.3] for a text-
book version). The graph G(w) whose vertices are reduced expressions of w and edges
represent braid moves between expressions is hence connected. The diameter of G(w)

has been studied in [AD10, RR13] and other closely related enumerative properties in
[Ten17]. Certain minors of G(w) are of particular interest here. They are represented in
Figure 1.1 using a Hasse diagram of the graph minor containment ordering. For exam-
ple, Gcomm(w) is obtained from G(w) by contracting edges of G(w) representing braid
moves of length 2. In these minors, the resulting multiple edges are fusionned into a
unique edge.

G(w)

Gcomm(w)

{2}

Gbraid(w)

{3}

Godd(w)

{even}

Geven(w)

{odd}

G2(w)

{> 2}

Figure 1.1: Minors of G(w) obtained by contracting the edges indicated by the arrow labels.

The symmetric group case has received more scrutiny: the vertices of Gbraid are called
braid classes and the vertices of Gcomm are called commutation classes. Bounds on the num-
ber of vertices of G(w) in terms of the number of vertices of Gbraid(w) and Gcomm(w) have
been obtained in [FMPT18]. An asymptotic study of expected number of commutations
in reduced words was done in type A [Rei05] and type B [Ten15] and it is possible
to determine the number of elements that have a unique reduced word [Har17]. Fur-
ther, it is possible to define a metric on this graph which relates naturally to balanced
tableaux [Ass19].

Remark 1.7. In the simply laced cases (types An, Dn, E6, E7, or E8), there are only two
types of braid moves, therefore Gbraid = Geven and Gcomm = Godd.

Remark 1.8. In the symmetric group case An, the graph Godd(w◦) is the underlying
graph of the Hasse diagram of the higher Bruhat order B(n + 1, 2), see [MS89, Zie93,
FW00]. It is also studied using rhombic tilings [Eln97], and is used to study intersec-
tions of Schubert cells [SSV97]. In other finite types, the relation between Godd(w◦) and
potential higher Bruhat orders remains unclear.

Example 1.9 (Dihedral Group I2(m)). Let W = I2(m), with m ≥ 2. The graph G(w◦)

has two vertices and one edge between them, see Figure 1.2.
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m even: (s1s2)
m
2 (s2s1)

m
2 m odd: (s1s2)b

m
2
cs1 (s2s1)b

m
2
cs2

Figure 1.2: The graphs G(w◦) for the dihedral group I2(m)

Remark 1.10. To lighten figures, we write reduced words using the indices of the letters
in S and write classes of reduced words with more than one element as 12{13}21 :=

{121321, 123121}.

Example 1.11 (Symmetric group S4 = A3). Let W = A3 and S = {s1, s2, s3}, such that
(s1s2)3 = (s1s3)2 = (s2s3)3 = e, see Figure 1.3.

G(w◦)

123121 123212 132312

312132321232321323323123232123231213

213231 212321 121321

312312 132132213213231231

mij = 2

mij = 3

G2(w◦) = Gbraid(w◦) = Geven(w◦)

{123121, 123212, 132312}

{321323, 321232, 312132}{231213, 232123, 323123}

{213231, 212321, 121321}

{312312}
{132132}

{213213}
{231231}

Gcomm(w◦) = Godd(w◦)

12{13}21 {123212}

{13}2{13}2

{321232}32{13}23{232123}

2{13}2{13}

{212321}

Figure 1.3: The graphs G(w◦), G2(w◦) = Gbraid(w◦) = Geven(w◦), and Gcomm(w◦) = Godd(w◦) for
the symmetric group S4 = A3

Example 1.12 (The hyperoctahedral group B3). Let W = B3 and S = {s1, s2, s3}, such
that (s1s2)4 = (s1s3)2 = (s2s3)3 = e. The commutation classes of w◦ are illustrated
in Figure 1.4. Since every odd-length braid moves has length 3, we get Gbraid(w◦) =

Geven(w◦). There are 42 reduced expressions for w◦. The impatient reader is invited to
see Figure 2.5 on page 24 for an illustration.

Gcomm(w◦)
mij = 4 mij = 3

3212{13}212

{13}2123212 {13}2{13}2{13}2

123212{13}2
{121232123}

12{13}2{13}23 12{13}21232

{321232121}

32{13}2{13}2123212{13}21

2{13}212321
212{13}2123

2123212{13}2{13}2{13}2{13}

Figure 1.4: The commutation classes of the longest word of the group B3

Example 1.13 (Icosahedral group H3). Let W = H3 and S = {s1, s2, s3}, such that
(s1s2)5 = (s1s3)2 = (s2s3)3 = e. There are 44 commutation classes in Gcomm(w◦); see
Figure 1.5 for an illustration.
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mij = 5 mij = 3

212{13}2{13}2{13}2123

212123212{13}2123

1212{13}212{13}2123

{121232121232123}

212{13}2123212123

212{13}212{13}212{13}

2123212123212{13}

12123212{13}2{13}2312{13}2{13}21232123

12123212{13}2123212{13}2{13}2{13}2{13}23

12{13}2{13}2{13}2123212{13}2123212{13}23

12{13}21232121232

2{13}2{13}2123212{13}2123212{13}2{13}2{13}

2{13}2{13}2{13}2{13}2{13}2123212{13}212321

2{13}2123212{13}2{13}2{13}2{13}2{13}212321

2{13}212321212321

2{13}212{13}212{13}21 12{13}212{13}212{13}2

123212123212{13}2

123212{13}2{13}2{13}2{13}2{13}2123212{13}2

123212{13}2123212{13}2{13}2{13}2{13}2{13}2

{13}2{13}2{13}2123212{13}2123212{13}2{13}2

23212123212{13}21

32{13}2123212{13}2123212{13}2{13}2{13}21

32{13}2{13}2{13}2{13}2123212{13}21232121

32123212{13}2{13}2132{13}2{13}21232121

3212{1
3}2
{13}2

{13}2
12

3212123212{1
3}2

12

{13}2
12{1

3}2
12{1

3}2
12

{13}2
123212123212

3212{1
3}2

12321212

3212{1
3}2

12{1
3}2

121

{321232121232121}

Figure 1.5: The commutation classes of the longest word of the group H3

Of particular importance for us is the fact that the graphs G(w◦), Geven(w), and Godd(w)

are bipartite graphs. The following theorem was proved for finite Coxeter group by
Bergeron, Ceballos, and the author using a geometric argument in [BCL15] and gener-
alized to infinite Coxeter groups and extended to a finer description by Grinberg and
Postnikov in [GP17] using only conjugations instead of automorphisms.

Theorem 1.14 ([BCL15, Theorem 3.1],[GP17, Theorem 2.0.3]). Let W be a Coxeter group
and w ∈ W . For any set E of braid moves closed under automorphism of W , the minor of
G(w) obtained by contracting edges not contained in E is a bipartite graph. In particular, G(w),
Geven(w), and Godd(w) are bipartite graphs.

1.7 Subword complexes of Coxeter groups

For each finite Coxeter group (W,S), Knutson and Miller introduced a family of sim-
plicial complexes called subword complexes which reveals the Bruhat order within words
in S∗ [KM04, KM05]. Subword complexes form one of the tools they used to connect
the algebra and combinatorics of Schubert polynomials to the geometry of Schubert va-
rieties. In [DHM19], Davis, Hersh and Miller explain how to use subword complexes
to study fibers of maps parametrizing totally nonnegative matrices. We present here an
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adaptation of the original definition, using results from [CLS14, Section 3] and [BCL15,
Section 2], that particularly suits our purposes.

Given a word p ∈ S∗, we can order the occurrences of all its subwords by set-inclusion
to obtain a Boolean lattice (2[`(p)],⊆) and subword complexes are certain lower ideals of
such Boolean lattices determined using reduced words. More precisely:

Definition 1.15 (Subword complexes, see [KM04, Definition 2.1]). Let (W,S) be a finite
Coxeter group, w◦ be its longest element and p ∈ Sm. The subword complex ∆W (p) is
the simplicial complex on the set [m] whose facets are complements of occurrences of
reduced words for w◦ in the word p.

Subword complexes possess a particularly nice combinatorial and topological struc-
ture: they are vertex-decomposable and homeomorphic to sphere or balls [KM04, The-
orem 2.5 and 3.7]. Knutson and Miller originally asked whether they can be realized as
the boundary of a convex polytope [KM04, Question 6.4]. So far, the realized subword
complexes include famous polytopes: simplices, even-dimensional cyclic polytopes, po-
lar dual of generalized associahedra, see [CLS14, Section 6] for a survey on the related
conjectures and the references therein. The only “non-classical” instance which is re-
alized is a 6-dimensional polytope with 12 vertices realizing the simplicial complex of
2-triangulations of the 8-gon, see [BP09, Ceb12, BCL15], which is a type A3 subword
complex. Further, fan realizations have been provided for type A3 and two cases in A4

[BCL15] and for 2-triangulations (type A) with rank 5, 6, 7 and 8 [Man18].

Due to their combinatorial provenance, we can attribute a combinatorial type to each
facet.

Definition 1.16 (Combinatorial type and abelian vector of facet). Let ∆W (p) be a sub-
word complex. The combinatorial type of a facet f of ∆W (p) is the complement subword
p \ f of f in p. Two facets are combinatorially equivalent when their combinatorial types
are the same. The abelian vector of a facet f is the abelian vector αp\f of its combinatorial
type.

Example 1.17. Let W = A2 and p = p1p2p3p4p5 = s1s2s1s2s2. The subword complex
∆A2(p) has two combinatorial types of facets. The facets {1, 4} and {1, 5} have type
s2s1s2 and the facet {4, 5} has type s1s2s1. The abelian vector of {1, 4} and {1, 5} is (1, 2)

and the abelian vector of {4, 5} is (2, 1). Notice that the letters p2 and p3 are contained
in every occurrences of reduced word for w◦ in p, so 2 and 3 are non-vertices of the
subword complex ∆A2(p), see Figure 1.6:
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1

4

5 2

3

Figure 1.6: A small subword complex with two non-vertices

1.8 Fans and Gale duality

For notions related to vector configurations, simplicial fans, and Gale duality, we rely
on the reference books [Grü03, Section 5.4], [Zie95, Chapter 6] and [DLRS10, Section
2.5, 4.1, and 5.4]. We assume the reader’s familiarity with the elementary objects from
convex geometry apart from the following essential notions, that we recall below.

Definition 1.18 (Vector configuration, see [DLRS10, Definition 2.5.1]). Given a finite
totally ordered label set J of cardinality m, a vector configuration in Rd is a finite set
A := {pj | j ∈ J} of labeled vectors pj ∈ Rd. The rank of A is its rank as a set of vectors.

We assume vector configurations to have maximal rank, i.e. r = d, and we write them
as a matrices in Rd×m. We denote the non-negative span of a set of vectors given by a
subset C ⊆ J by coneA(C). A vector configuration is acyclic if there is a linear function
that is positive in all the elements of the configuration. It is totally cyclic if coneA(J) is
equal to the vector space spanned by A.

Definition 1.19 (Complete simplicial fan, see e.g. [Zie95, Section 7.1]). LetA be a vector
configuration in Rd consisting of m labeled vectors. A fan supported by A is a family
F = {K1,K2, . . . ,Kk} of nonempty polyhedral cones generated by vectors in A such
that:

- Every nonempty face of a cone in F is also a cone in F .

- The intersection of any two cones in F is a face of both.

A fan F is simplicial if every K ∈ F is a simplicial cone, and it is complete if the union
K1 ∪ · · · ∪Kk is Rd. The 1-dimensional cones of a fan are called rays, while the (d− 1)-
dimensional cones are called ridges. The spherical simplicial complex on [m] whose faces
are index sets of cones in a complete simplicial fan F is denoted by ∆F .

To each vector configuration corresponds dual objects called Gale transforms.

Definition 1.20 (Gale transform [DLRS10, Definition 4.1.35] [Zie95, Section 6.4]). Let
A ∈ Rd×m be a rank d vector configuration with m elements. A Gale transform B ∈
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R(m−d)×m of A is vector configuration of rank m − r whose rowspan equals the right-
kernel of A. We denote by Gale(A) the set of all Gale transforms of A.

Let A ∈ Rd×m be a vector configuration supporting a complete simplicial fan F . Gale
duality implies that A is totally cyclic and that its Gale duals are acyclic. Furthermore,
full-dimensional cones in F are complements of full-dimensional subconfigurations of
any B ∈ Gale(A). Given such a full-dimensional cone in F spanned by a set of vectors
C ⊆ J , its dual simplex C∗ is J \ C. The cone generated by C∗ in B ∈ Gale(A) is called
the dual simplicial cone of C and is denoted by coneB(C∗).

Following [DLRS10, Section 9.5], to obtain a realization of a simplicial sphere ∆ as the
boundary of a convex simplicial polytope one possibility is to proceed in two steps:

(T) Obtain a vector configuration A supporting a complete simplicial fan F∆ whose
cone lattice is isomorphic to the face lattice of the simplicial sphere ∆, (Triangu-
lation) and

(R) prove that the underlying triangulation of the space is regular. Equivalently, find
one point on each ray, so that taking the convex hull of these points yields a sim-
plicial polytope whose boundary complex is isomorphic to ∆. (Regularity)

The first step relies heavily on the combinatorial structure of the sphere, whereas the
success of the second step relies heavily on the geometry of the obtained simplicial fan.
We recall the following lemma that gives conditions to form a complete simplicial fan
and fulfill step (T ).

Lemma 1.21 (see [BCL15, Lemma 3]). Let ∆ be a simplicial complex on J = [m] homeomor-
phic to a sphere of dimension d− 1. A totally cyclic vector configuration A ∈ Rd×m supports a
complete simplicial fan realization of ∆ if and only if the following conditions on A and a Gale
transform B ∈ Gale(A) are satisfied.

(B) Dual simplicial cones coneB(C∗) are independant in Rm−r. (Basis)

(F) If I and J are two facets of ∆ intersecting along a ridge, then the interior of the corre-
sponding dual simplicial cones intersect. (Flip)

(I) There is a cone in A whose interior is not intersected by any other cones. (Injectivity)

Now, assume that we have completed step (T ) with a vector configuration A and a Gale
dual B. The next step is to prove that the induced triangulation of Rd by F∆ is regular.
Having a fan F∆ already guarantee that the dual simplicial cones of adjacent facets
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intersect in their interior. To have a regular triangulation, the common intersection of
all dual simplicial cones should have non-empty interior:

Proposition 1.22 (see [DLRS10, Theorem 5.4.5 and 5.4.7]). Let F be a complete simplicial
fan in Rd supported by a configuration A of m vectors and B ∈ Gale(A). The triangulation of
Rd induced by F is regular if and only if the intersection of all dual simplicial cones in B is a
full-dimensional cone in Rm−d.



Chapter 2

Sign functions of words

In the symmetric group Sn+1
∼= An, the sign of a permutation is defined using the

parity of its number of pairwise inversions; even permutations being “+” and odd per-
mutations being “−”. This definition shows directly that the Hasse diagram of the weak
order of the symmetric group (and more generally of Coxeter groups) is bipartite. In
this section, we present an extension of this notion on subsets of words of S∗ defined
using sign functions.

Definition 2.1 (Sign functions on words). Let M ⊆ S∗. A function from M to the
multiplicative group Z2 is a sign function on M .

Lemma 2.2. Let M ⊆ S∗. The set of sign functions on M with the binary operation

Z2
M × Z2

M → Z2
M

(φ, ψ) 7→ φψ(m) :=

1, if φ(m) = ψ(m),

−1, else,

form a group: the group of sign functions on M .

2.1 Sign function on minors of G(w)

Given an element w ∈ W , Theorem 1.14 gives a way to define a close cousin of signs
of permutations where now the ground set is R(w) and even and odd expressions are
then defined in various ways, as Theorem 1.14 permits. Two cases are more relevant:

Sign function Fodd Changing the sign when an odd-length braid move is done, and
leaving the sign unchanged when an even-length braid move is done. Since the

17
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minor Godd(w) is bipartite, we can assign one part to have positive sign and the
other to have negative sign. This way, along every edge representing a braid move
of odd length, the sign changes and along the contracted edges, the sign remains
unchanged.

Sign function Feven Changing the sign when an even-length braid move is done, and
leaving the sign unchanged when an odd-length braid move is done. Similarly,
since Geven(w) is bipartite we can assign positive and negative signs to the reduced
expressions.

As illustrated in Figure 1.1, since Godd is a minor of Gcomm and Geven is a minor of Gbraid,
the sign functions Feven and Fodd are class functions on braid classes and commutation
classes, respectively. These sign functions are unique up to a global multiplication by
“−1”.

Example 2.3 (Feven andFodd sign functions on braid and commutation classes in typeA3).
We can give “+” and “−” signs to the vertices of Geven(w◦) and Godd(w◦) and by Re-
mark 1.7, we get functions on braid and commutation classes that change along edges
in Geven(w◦) and Godd(w◦), see Figure 2.1.

Feven on G2(w◦) = Gbraid(w◦) = Geven(w◦)

+

{123121, 123212, 132312}

+

{321323, 321232, 312132}
−

{231213, 232123, 323123}

−
{213231, 212321, 121321}

−
{312312}

− {132132}+

{213213}
+{231231}

Fodd on Gcomm(w◦) = Godd(w◦)

+

12{13}21

−
{123212}

+{13}2{13}2

−
{321232}

+

32{13}23

−
{232123}

+ 2{13}2{13}

−
{212321}

Figure 2.1: Feven and Fodd sign functions on braid and commutation classes of w◦ in type A3

Example 2.4 (Feven sign function on braid classes of typeB3). We can give “+” and “−”
signs to the vertices of Geven(w◦) and get a class function on braid classes, illustrated in
Figure 2.2.
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Feven on Gbraid(w◦) = Geven(w◦)

mij = 2 mij = 4

−
3121{232}12

+{312132132} +{312312312} + 1321{232}12

−{312312132} − {132132132} − 1{232}12312

+ 1{232}12132

− 123121{232}

+{123123123} + 121321{232}

−
121{232}123

+

21{232}1213

− {231231213}−{213213213}−21{232}1231

+ {231213213}+ {231231231}+21321{232}1

−23121{232}1

+{232}121321

−{232}123121 − {321321321}

+

321{232}121

−
{321231212}

+

{321213212}

−
{212312123}

+

{212132123}

Figure 2.2: Feven sign function on braid classes for w◦ in type B3

The T -signature of reduced expressions is the sign function where even-length braid
moves change the sign, i.e., the sign function Feven above on the graph Geven(w◦):

Definition 2.5 (T -sign function, [BCL15, Definition 3.5]). Letw◦ be the longest element
of W . The T -sign function is defined as

τ : R(w◦)→ {+1,−1}

w 7→ τ(w),

whereby ifw andw′ are two reduced expressions ofw◦ related by a braid move of length
mi,j , then τ(w) = (−1)mi,j−1τ(w′).

Remark 2.6. The letter T is used to hint at a usual notation for the set of reflections ofW ,
see [BCL15, Remark 3.7] for an equivalent formulation in type A using T . The T -sign
function is well-defined by Theorem 1.14 and unique up to a global multiplication by
“−1”. A certain choice is well-suited for our purpose and is specified in Section 2.4.

Example 2.7. In Figures 2.1 and 2.2, we can determine the sign of all reduced expressions
using the bipartiteness of Geven(w◦), namely every element in the same braid class (of
length 3 in those cases) receive the same sign.

The T -sign function is central to a combinatorial and geometric condition that led to the
construction of complete simplicial fans for subword complexes in [BCL15]. It helped
to deliver complete fans with cone lattices corresponding to subword complexes of type
A3 and some of type A4. This condition is based on signature matrices:

Definition 2.8 (Coxeter signature matrices [BCL15, Definition 9]). Let (W,S) be a finite
irreducible Coxeter system and p ∈ Sm. A matrix B ∈ RN×m is a signature matrix of
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type W for p, if for every occurrence Z of every reduced expression v of w◦ in p, the
equality

sign(det[B]Z) = τ(v)

holds.

Let p ∈ Sm and A ∈ R(m−N)×m. We denotes by Fp,A the collection of cones spanned
by sets of columns of A that correspond to faces of the subword complex ∆W (p). The
following theorem originally from Ceballos’ dissertation demonstrates the important
role of the T -sign function, and thus of signatures matrices, for Fp,A to form a complete
simplicial fan.

Theorem 2.9 ([Ceb12, Section 3.1, Theorem 3.7], see also [BCL15, Theorem 3]). Let
p ∈ Sm and A ∈ R(m−N)×m. The collection of conesFp,A is a complete simplicial fan realizing
the subword complex ∆W (p) if and only if

(S) the Gale dual B ∈ Gale(A) is a signature matrix for p, (Signature) and

(I) there is a facet of ∆W (p) such that the interior of its associated cone in Fp,A does not
intersect any other cone of Fp,A. (Injectivity)

2.2 The S-sign function

The monoid morphism from S∗ to Z2 sending a word w to (−1)`(w) is the alternating
sign function. This function does not take the lexicographic order on S into account. In
contrast, the S-sign function defined below intrinsically makes use of the lexicographic
order. As it turns out, the S-sign function is an integral part of the sign of det[B]Z

in Definition 2.8. Before defining the sign function, we first give basic concepts, see
e.g. [Die90, Chapter 1] for more details.

Definition 2.10 (Lexicographic normal form of an abelian vector). Letw ∈ S∗ be a word
with abelian vector αw = (ci)si∈S . The word w := sc11 . . . scnn is the lexicographic normal
form of αw.

Definition 2.11 (Standard permutation and inversion number of a word). Let w ∈ Sm

be a word with abelian vector αw. Permutations in Sm acts on the letters of w as

π · w := wπ(1) · · ·wπ(m),

where π ∈ Sm. The permutation of Sm with exactly the same inversions as w is called
its standard permutation and is denoted std(w). The standard permutation is the minimal
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length permutation whose inverse sortsw: std(w)−1·w = w. The inversion number inv(w)

of w is the number of inversions of std(w). Equivalently, the inversion number inv(w)

is the smallest number of swaps of two consecutive letters of w required to obtain the
lexicographic normal form of αw.

Remark 2.12. The lexicographic normal form appears as the nondecreasing rearrangement
of a word, see e.g. [HR01, Section 2]. Therein, the authors refer to an article of Schensted
[Sch61] where the standardization of a word was introduced.

Lemma 2.13. Let v ∈ Sm. The number of swaps inv(v) equals the number of pairs (i, j) ∈ [m]2

such that i < j and the letter vj ∈ S is smaller than the letter vi ∈ S in the lexicographic order.

Definition 2.14 (S-sign of a word). Let w ∈ S∗. The S-sign σ(w) of w is

σ(w) := (−1)inv(w),

where inv(w) is the inversion number of w.

The following proposition predicts the behavior of the S-sign depending on the abelian
vector of words.

Proposition 2.15. Let w ∈ Sm and let αw = (ci)si∈S be its abelian vector. The inversion
number of w and its reverse rev(w) satisfy

inv(w) + inv(rev(w)) =

(
m

2

)
−
∑
s∈S

(
ci
2

)
.

Therefore, inv(w) and inv(rev(w)) have the same parity if and only if
(
m
2

)
−
∑

s∈S
(
ci
2

)
is even.

Proof. We give a bijective proof. There are
(
m
2

)
pairs of distinct positions in the word w.

These pairs split into three exclusive cases.

- The two letters are the same in S,

- the two letters are in lexicographic order from left-to-right, or

- the two letters are in lexicographic order from right-to-left.

There are
∑

s∈S
(
ci
2

)
pairs in the first case. The two other cases are exactly the inversions

of w and rev(w) by Lemma 2.13.

Example 2.16 (Sign of permutations). The S-signature of words in S∗ is an extension of
the usual sign function on permutation. Let w ∈ S∗ with abelian vector αw = (1, . . . , 1).
Reading the indices of the letters of the word w from left to right gives a permutation
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of [n]. The inversion number inv(w) counts the number of pairs of (necessarily distinct)
numbers in [n] which are unordered inw and hence the S-sign ofw is equal to the usual
sign of the permutation that w represents.

Proposition 2.17. Let w ∈ S∗ and φ : S → S be the lexicographic order reversing map such
that φ(si) = sn−i+1. Denote by←−inv(w) the number of swaps of w in the reversed ordering of the
alphabet. Then

←−
inv(w) = inv(rev(w)) = inv(φ(w)).

Proof. When permuting the letters of w to obtain the lexicographic normal form with
respect to the reverse lexicographic order we obtain the reverse of the lexicographic
normal form obtained with the usual ordering of the alphabet. Therefore, reversing w
and ordering alphabetically gives the same number of inversions by symmetry, proving
←−
inv(w) = inv(rev(w)).

By Lemma 2.13, the number ←−inv(w) is equal to the number of pairs (i, j) ∈ [m]2 such
that i < j and the letter wj ∈ S is larger than the letter wi ∈ S in the lexicographic order.
By applying φ to w these pairs (i, j) become exactly the inversions of φ(w), proving that
←−
inv(w) = inv(φ(w)).

The S-sign of words behaves differently from the T -sign along braid moves as the fol-
lowing theorem shows.

Theorem 2.18. Let 1 ≤ i < j ≤ n, and u, v ∈ S∗ be two words. Further, define

bi,j := sisjsi . . . of length mi,j , κ :=
∑
i<k≤j

|u|k, and µ :=
∑
i≤k<j

|v|k.

In other words, the number κ is the number of occurrences of letters sk in u such that i < k ≤ j
and µ is the number of occurrences of letters sk in v such that i ≤ k < j. The S-sign function
σ satisfies

σ(ubi,jv) =

(−1)
mi,j

2 σ(ubj,iv), if mi,j is even,

(−1)κ+µσ(ubj,iv), if mi,j is odd.

Proof. By Lemma 2.13, we have to track the change in the number of inversions in the
word after doing a braid move.

Suppose that mi,j is even. Since the abelian vector of the words ubi,jv and ubj,iv are the
same, it suffices to examine the changes in the number of swaps involving two letters
that are contained in bi,j . Indeed, the ordering of any other pair of positions stay in-
changed. The number of swaps in bi,j is mi,j(mi,j − 2)/8 and the number of swaps in
bj,i is mi,j(mi,j + 2)/8 hence their difference is mi,j/2.
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Suppose that mi,j is odd. It suffices to consider the change in the number of swaps
involving at least one position in bi,j . The number of swaps in bi,j and bj,i are the same,
since the first occurrence of si is not swapped with any occurrence of sj in bi,j , and
putting it at the end and simultaneously replacing it by sj to obtain bj,i does not create
any new swap. Therefore, we only need to count the number of swaps involving the
first occurrence of si in bi,j with letters in u, which are not swaps once the occurrence
of si is moved at the end of bi,j and replaced by sj . This number is exactly κ. Further,
after removing si at the beginning of bi,j and putting sj at its end, we create swaps
with the letters in v which did not need to be swapped with si, this number of swaps is
exactly µ.

Corollary 2.19. Let w ∈W and u, v ∈ R(w) be two reduced words for w that are related by k
commutations, i.e. braid moves of length 2. The S- and T -sign function satisfy

σ(u) = (−1)kσ(v) and τ(u) = (−1)kτ(v).

In other words, both the S-sign and the T -sign change along braid moves of length 2.

2.3 S-sign functions on reduced expressions for small rank Cox-
eter groups

Example 2.20 (Dihedral Group I2(m)). Let W = I2(m), with m ≥ 2. The S-sign func-
tion for the reduced expressions is determined by the residue ofmmod 4, see Figure 2.3.

m ≡ 2 mod 4:

(s1s2)
m
2 (s2s1)

m
2

−
m ≡ 0 mod 4:

(s1s2)
m
2 (s2s1)

m
2

+

m ≡ 1, 3 mod 4:

(s1s2)b
m
2
cs1 (s2s1)b

m
2
cs2

+

Figure 2.3: The S-sign for reduced expressions of w◦ for the dihedral group I2(m). Since the S-
sign values vary within the same residue class, we label the edge by the product of the S-signs

of its vertices.

Example 2.21 (Symmetric group S4 = A3). Let W = A3. The S-sign function for the
reduced expressions of w◦ is not equal to the T -sign, see Figure 2.4. For example, the
underlined braid move of length 3 between s1s2s1s3s2s1 and s2s1s2s3s2s1 changes the
S-sign: by computing the values of κ and µ in Theorem 2.18, we get κ = 0 and µ = 1.
In contrast, the T -sign does not change since 3 is odd.

Example 2.22. Let W = B3. The S-sign function on reduced expressions of w◦ is il-
lustrated in Figure 2.5. Observe that the S-sign does not change on all braid moves of
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G(w◦)

+

123121

−
123212

+

132312

+

312132

+

321232

−
321323

+

323123

−
232123

+

231213

+

213231

+

212321

−
121321

−312312 − 132132− 213213−231231

mij = 2

mij = 3

Figure 2.4: The S-sign for reduced expressions of w◦ in type A3

length 3, hence in this case, the S-sign is a well-defined class function on braid classes
Geven(w◦) = Gbraid(w◦). Nevertheless, it is not equal to the T -sign function on Geven(w◦)

since the T -sign function changes along braid moves of length 4.

G(w◦)

mij = 2 mij = 3 mij = 4

+ 312132312

−312132132 −312312312 − 132132312

+312312132 + 132132132 + 132312312

− 132312132

− 123212132

+ 123212312

− 132123212

+ 312123212

−123121232

−123121323 + 121321232

+123123123 + 121321323

−
121323123

+ 213231213

− 231231213−213213213−213231231

+ 231213213+ 231231231+213213231

−231213231

− 231212321

+213212321

−212321231

+

212321213

− 323121321

+323123121 + 321321321

−
321323121

+232123121

− 232121321

−
321232121

−
321231212

+

312123212

+

212312123

−
212132123

−
121232123

Figure 2.5: The S-sign function on reduced words of w◦ in type B3

2.4 The punctual sign function

The existence of polytopal realizations of subword complexes requires the existence of
the T -sign function, as first observed in [Ceb12, Proposition 3.4]. As we have seen in
Definition 2.8, the T -sign prescribes the orientation of dual simplicial cones in order to
get a complete simplicial fan. The S-sign further takes care of the intrinsic ordering re-
lated to a word and contributes to determine the orientation of dual simplicial cones. We
investigate these relations further in Sections 3 and 4. Here, we introduce the punctual
sign function which considers both signs and give some examples.
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Definition 2.23 (Punctual sign function 

JJ
1). The punctual sign function 

JJ is defined as



JJ : R(w◦)→ {+1,−1}

w 7→ σ(w) · τ(w),

where σ is the S-sign function on words in S∗ and τ is the T -sign function on reduced
wordsR(w◦).

Since T is defined up to a global multiplication by “−1”, the punctual sign function
is also well-defined up to a global multiplication by “−1”. For this reason, we hence-
forth fix the T -sign of the lexicographically first reduced subword of w◦ occuring in
(s1 · · · sn)∞ to have positive sign. The definition of product of sign functions allows to
interpret the values of the 

JJ-sign function: it is positive when the S and T functions are
equal, and negative otherwise. Further, its behavior along braid moves is determined
as follows. Set w = ubi,jv and w′ = ubj,iv with `(bi,j) = mi,j as in Theorem 2.18, then



JJ(w) =




JJ(w′) if mi,j ≡ 2 mod 4,

−

JJ(w′) if mi,j ≡ 0 mod 4,

(−1)κ+µ


JJ(w′) if mi,j ≡ 1 or 3 mod 4.

Example 2.24 (Dihedral Group I2(m)). LetW = I2(m), withm ≥ 2. The punctual sign
function for the reduced expressions of w◦ is determined by the residue ofmmod 4, see
Figure 2.6.

m ≡ 2 mod 4

(s1s2)
m
2 (s2s1)

m
2

+

m ≡ 0 mod 4

(s1s2)
m
2 (s2s1)

m
2

−
m ≡ 1, 3 mod 4

(s1s2)b
m
2
cs1 (s2s1)b

m
2
cs2

+

Figure 2.6: The punctual signs for reduced expressions of the dihedral group I2(m). Since the
punctual sign values varies within the same residue class, we label the edge by the product of

the punctual signs of its vertices.

Example 2.25 (Symmetric group S4 = A3). LetW = A3. The punctual sign function is
illustrated in Figure 2.7.

1By multiplying the sign functions S and T , we can see the abbreviation “s.t.” (sine tempore), which
describes academic events starting punctually. The symbol 

JJ can be pronounced using IPA as "St.



26 Chapter 2. Sign functions of words

G(w◦)

+

123121

−
123212

+

132312

+

312132

+

321232

−
321323

−
323123

+

232123

−
231213

−
213231

−
212321

+

121321

+312312 + 132132− 213213−231231

mij = 2

mij = 3

Figure 2.7: The punctual sign function for reduced expressions of the group A3

Example 2.26 (Hyperoctahedral group B3). Let W = B3. The punctual sign function
is illustrated in Figure 2.8.

G(w◦)

mij = 2 mij = 3 mij = 4

− 312132312

−312132132 −312312312 − 132132312

−312312132 − 132132132 − 132312312

− 132312132

− 123212132

− 123212312

− 132123212

− 312123212

+123121232

+123121323 + 121321232

+123123123 + 121321323

+

121323123

+ 213231213

+ 231231213+213213213+213231231

+ 231213213+ 231231231+213213231

+231213231

+ 231212321

+213212321

+212321231

+

212321213

− 323121321

−323123121 − 321321321

−
321323121

−232123121

− 232121321

−
321232121

+

321231212

+

312123212

−
212312123

−
212132123

+

121232123

Figure 2.8: The punctual sign function on reduced words of w◦ in type B3.



Chapter 3

Model matrices

In this section, we give a factorization formula for the determinant of matrices(
fi,j(xj)

)
i,j∈[k]

,

where fi,j(xj) is a polynomial in R[xj ] of bounded degree. Matrices of this form include
the so-called alternant matrices. They were considered already in the XIXth century, if not
earlier, see [Sta99, Chapter 7, Notes]. The case when fi,j does not depend on the index
j (equivalently, if interchanging variables is equivalent to permuting the columns) is
classical [Ait39, Chapter 6] and [Mui60, Chapter XI]. The Vandermonde matrix is the
case when fi,j(xj) = xi−1

j , for i, j ∈ [k]. Since all the columns of the Vandermonde
matrix are equal up to change of variables, its determinant is an alternating polyno-
mial in the variables x1, . . . , xk with respect to the group action of Sk by permuting the
variable indices. As Definition 1.2 shows, the same holds for the columns of the matrix
used to define Schur functions, leading to the fact that its determinant is divisible by
the Vandermonde determinant and thus the quotient is a symmetric polynomial in the
variables x1, . . . , xk. At the opposite end, if no two columns are equal up to a change of
variables, no non-trivial permutation action acts canonically on the determinant.

We are particularly interested in the case when subsets of columns are equal up to a
change of variable. When the columns are partitioned into subsets of columns that are
equal up to permuting the variable indices, we get a partially symmetric polynomial ex-
pressible as a product of symmetric polynomials, see Theorem 3.15 and Corollary 3.16.
The Binet–Cauchy formula is at the center of the approach below.

27
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3.1 Definitions

In order to study matrices with polynomial entries, we define certain tensors. They
allow to dissect the data into smaller pieces, that are then easier to control and analyze
as done in Sections 1.2 and 1.3. The variables tensor is used to provide polynomials of
degree at most d− 1 in a (N ×N)-matrix:

Definition 3.1 (Variables tensor). Let d ≥ N ≥ 1. The variables tensor T k,j l(d,N) is the
tensor in Vd ⊗ VN ⊗ VN ∗ over R[x1, . . . , xN ] defined as

T k,j l(d,N) :=

N∑
j=1

j∑
l=j

(
d∑

k=1

xk−1
l

)
ek ⊗ ej ⊗ fl.

The parameter tensor encodes the coefficients of the polynomials that appear:

Definition 3.2 (Parameter tensor). Let d ≥ N ≥ 1 and S be an alphabet of cardinality n.
A parameter tensor P is,k(N,n, d) is a tensor in VN ⊗ Vn∗ ⊗ Vd∗ over R.

We index the basis tensors of VN⊗Vn∗⊗Vd∗with the set [N ]×S×{0, 1, . . . , d− 1}. In par-
ticular, the columns of a parameter tensor are indexed by couples in S×{0, 1, . . . , d− 1}.

Definition 3.3 (Coefficients tensor of a word). Let d ≥ 1, v = v1v2 . . . vN be a word
in S∗, and P = (pis,j)(i,j,s)∈[N ]×S×{0,...,d−1} be a parameter tensor. The coefficients tensor
of v with respect to P is the tensor in VN ⊗ VN ∗ ⊗ Vd∗ defined as

Cij,k(v,P) :=
N∑
i=1

N∑
j=1

d∑
k=1

pivj ,k−1 ei ⊗ fj ⊗ fk.

Multiplying the coefficients tensor with the variables tensor and flattening, we get a
matrix that models square matrices where certain groups of columns are equal up to a
relabeling of variables, according to occurrences of letters in the chosen word v.

Definition 3.4 (Model matrix of a word). Let d ≥ 1, v = v1v2 . . . vN be a word in S∗,
and P = (pis,j)(i,s,j)∈[N ]×S×{0,...,d−1} be a parameter tensor. Denote by R[P] the real
polynomial ring whose variables are the non-zero coefficients of P . The model matrix
of v with respect to P is the (N ×N)-matrix

M i
l(v,P) := Cij,k(v,P) · T k,j l(d,N),

whose entries in column l are polynomials of degree d− 1 in the variable xl with coef-
ficients taken in the parameter tensor P with second index vl.
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The entries of M(v,P) in column l are polynomials in (R[Pvl ])[xl]. Further, whenever
vi = vj and i 6= j, the columns i and j are equal up to relabeling their variables. We
have already seen such examples: the Vandermonde matrix in Section 1.2, and in Ex-
ample 1.3. Here is another example that we examine further later on.

Example 3.5. Consider the matrix

M =


1 0 1 0

0 1 0 1

−x1 x2 −x3 x4

x2
1 −x2

2 x2
3 −x2

4

 .

In this case, d− 1 = 2, N = 4, and v = s1s2s1s2. The corresponding parameter tensor is

P := (e1⊗fs1⊗f1)−(e3⊗fs1⊗f2)+(e4⊗fs1⊗f3)+(e2⊗fs2⊗f1)+(e3⊗fs2⊗f2)−(e4⊗fs2⊗f3).

The matrix can be written using the corresponding coefficients and variables matrices
as:

M =
⊕2

k=1

P︷ ︸︸ ︷
1 0 0 0 0 0

0 0 0 1 0 0

0 −1 0 0 1 0

0 0 1 0 0 −1

×


1 x1 x2
1 0 0 0 0 0 0 0 0 0

0 0 0 1 x2 x2
2 0 0 0 0 0 0

0 0 0 0 0 0 1 x3 x2
3 0 0 0

0 0 0 0 0 0 0 0 0 1 x4 x2
4


>

.

3.2 Model matrices for reduced words

For the remainder of Section 3, we present the results with the combinatorics of Coxeter
groups in mind. The general result about the factorization of determinants of matrices
of polynomials can be deduced directly by removing the restrictions coming from the
Coxeter group in play. We remind the reader of the definitions of the following objects
used throughout this section.

(W,S) := a finite irreducible Coxeter system,
n := #S, the cardinality of S,
N := `(w◦), the length of the longest element,
ν := the höchstfrequenz of W , defined in Section 1.5.

Definition 3.6 (Variables tensor of a Coxeter system). The variables tensor of (W,S) is
the variables tensor TW := T k,j l(ν,N).
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Definition 3.7 (Model matrix of a reduced word). Let P = (pis,j)(i,j,s)∈[N ]×S×{0,...,ν−1}

be a parameter tensor and v = v1v2 . . . vN ∈ R(w◦). The model matrix of v with respect
to P is the (N ×N)-matrix

M i
l(v,P) := Cij,k(v,P) · T k,j l(ν,N),

Example 3.8 (Symmetric groupS3 = A2). We haven = 2, ν = 2,R(w◦) = {s1s2s1, s2s1s2},
and N = 3. The model matrix for s1s2s1 is

M(s1s2s1,P) =


p1
s1,0 + p1

s1,1x1 p1
s2,0 + p1

s2,1x2 p1
s1,0 + p1

s1,1x3

p2
s1,0 + p2

s1,1x1 p2
s2,0 + p2

s2,1x2 p2
s1,0 + p2

s1,1x3

p3
s1,0 + p3

s1,1x1 p3
s2,0 + p3

s2,1x2 p3
s1,0 + p3

s1,1x3

 .

The model matrix for s2s1s2 is

M(s2s1s2,P) =


p1
s2,0 + p1

s2,1x1 p1
s1,0 + p1

s1,1x2 p1
s2,0 + p1

s2,1x3

p2
s2,0 + p2

s2,1x1 p2
s1,0 + p2

s1,1x2 p2
s2,0 + p2

s2,1x3

p3
s2,0 + p3

s2,1x1 p3
s1,0 + p3

s1,1x2 p3
s2,0 + p3

s2,1x3

 .

3.3 Binet–Cauchy on model matrices

We use Binet–Cauchy’s formula (1.3) from Section 1.2 to give a description of the de-
terminants of model matrices. Before giving a first description, we set some useful no-
tations and give two lemmas. Let Z ⊆ {0, . . . , νN − 1} and #Z = N , we write

Z = {z1, z2, . . . , zN},

such that z1 < z2 · · · < zN , and

zi = qiν + ri, with 0 ≤ ri < ν, for all i ∈ [N ].

We use the setZ to index columns of the coefficients tensor and the rows of the variables
tensor. The correspondance between indices in Z and columns of the coefficients tensor
is described as follows. The columns of the coefficients tensor are labeled by couples in
[N ] × [ν]. Given a couple (j, k) indexing a column of the coefficients tensor, we define
q := j − 1, r := k − 1, and z := qν + r. This way, the couple (j, k) corresponds to a
unique element z in {0, . . . , νN − 1}, and vice-versa. The index z = qν + r correspond
to the index (q, r) ∈ {0, 1, . . . , N − 1} × {0, 1, . . . ν − 1}, and (j, k) ∈ [N ] × [ν]. The
correspondance with rows of the variables tensor works similarly.
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The following two lemmas can be checked using the definition of parameter and vari-
ables tensors and properties of the determinant.

Lemma 3.9. Let Z ⊆ {0, . . . , νN − 1} with #Z = N . The determinant of the variables
tensor TW restricted to the rows in Z is

det[TW ]Z =

0 if qi = qj for some i 6= j,

xr11 · · ·x
rN
N else.

Lemma 3.10. Let P be a parameter matrix for (W,S), v = v1v2 · · · vN ∈ R(w◦), and Z ⊆
{0, . . . , νN − 1} with #Z = N . If ri = rj and vi = vj with 1 ≤ i < j ≤ N , then the
determinant of the coefficients tensor C(v,P) restricted to the columns in Z is 0.

Given a reduced expression v = v1v2 · · · vN ∈ R(w◦), the previous lemmas motivate the
definition of the following set of N -subsets of {0, . . . , νN − 1}:

Zv := {Z ⊂ {0, . . . , νN−1} : #Z = N, qi 6= qj for all i 6= j, and if vi = vj , then ri 6= rj}.

The subsets inZv are precisely those whose summand are not implied to be equal to zero
in the Binet–Cauchy formula for the determinant of the model matrix. The following
proposition is a consequence of Lemmas 3.9 and 3.10, and Theorem 1.1, and is improved
in Theorem 3.15.

Proposition 3.11. Let P be a parameter matrix for (W,S), and v ∈ R(w◦). The determinant
of the model matrixM(v,P) is

detM(v,P) =
∑
Z∈Zv

det[C(v,P)]Z · xr11 · · ·x
rN
N .

3.4 Formula for the determinant of model matrices via param-
eter matrices

We proceed to express detM(v,P) for some reduced word v ∈ R(w◦) in terms of max-
imal minors of P . We begin by a bijection to relabel the columns appropriately using
a permutation and a tuple of partitions. Given some set of indices Z ∈ Zv, if vi = vj

and i 6= j, then ri 6= rj . Consequently the matrix [C(v,P)]Z formed by concatenating
the columns in Z is equal to a column permutation πZ of the matrix [P]z of P formed
by concatenating the columns in the set

z := {(si, rj) : j ∈ [N ], vj = si and zj = qjν + rj ∈ Z}
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increasingly with respect to the lexicographic order. Given the abelian vector αv =

(ci)si∈S of v, this motivates the definition of the following subsets of columns of P :

Zαv := {z ⊆ S × {0, , . . . , ν − 1} : z contains exactly ci elements (si, ·),∀si ∈ S}.

For each letter si ∈ S, we write the values rj where vj = si in a list of length ci:

Ri := [rj : if vj = si]
N
j=1.

Since all entries inRi are distinct, the listRi corresponds canonically to a permutation πi
in S{v}i . The permutations {πi}ni=1 act on disjoint sets and can be seen as permutations
in SN , so we define πZ := π1 · · ·πn ∈ SN . Observe that this permutation πZ ∈ SN is
such that π · v = v. Further, the map

Zv → Zαv ×
n∏
i=1

S{v}i

Z 7→ (z, πZ)

is a bijection.

Lemma 3.12. Let v ∈ R(w◦). If Z ∈ Zv, then

det[C(v,P)]Z = σ(v)σ(πZ) det[P]z.

Proof. From the definition of C(v,P) and Zv, the matrix [C(v,P)]Z is a permutation of
the columns of a column-submatrix ofP . The column of C(v,P) indexed by zj = qjν+rj

correspond to the column of P indexed by the ordered pair (si, rj) where vj = si. We
use the latter labeling to obtain the permutation of the columns of [C(v,P)]Z in two steps
as follows. First permute the columns using π−1

Z . This permutation orders increasingly
the labels rj while keeping the labels si unchanged. Then, permute the columns using
std(v)−1. Since the standard permutation of v has shortest length, it does not change
the ordering whenever two columns have the same first label coordinate.

Before giving the factorization formula, we give two last definitions. The first one is
related to a common bijection between subsets

([n]
k

)
and partitions with exactly k parts

(that may be empty) of size at most n− k.

Definition 3.13 (Standard partition Λz). Let v ∈ R(w◦) with abelian vectorαv = (ci)si∈S

and z ∈ Zαv . For i ∈ [n], order decreasingly the elements ofRi and substract ci− j to the
element at position j (starting at j = 1) to obtain the standard partition λz,i. The sequence
of partitions Λz is defined as (λz,i)

n
i=1.
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Definition 3.14 (Vandermonde divisor). Given v ∈ R(w◦) with abelian vector αv =

(ci)si∈S , let
V(v) :=

∏
si∈S
ci≥2

∏
vj=vk=si
j<k

(xk − xj)

be the Vandermonde divisor of v. The degree of V(v) is
∑

si∈S
(
ci
2

)
.

Theorem 3.15. Let P be a parameter matrix for a Coxeter system (W,S), v ∈ R(w◦), and
Ωv := ({v}1, . . . , {v}n) be the ordered set partition of [N ] determined by v. The determinant of
the model matrix M(v,P) of v with respect to P is the multivariate polynomial

detM(v,P) = σ(v)V(v)
∑
z∈Zαv

det[P]zXΛz,Ωv ,

where Λz = (λz,1, . . . , λz,n), and XΛz,Ωv is the partial Schur function with respect to Λz and
Ωv, as defined in Section 1.3.

Proof. Let v = v1v2 · · · vN , with vi ∈ S. Since setting xk = xj whenever vj = vk =

si for some si ∈ S in M(v,P) makes its determinant vanish, we know from Hilbert’s
Nullstellensatz that (xk − xj) divides the determinant, see e.g. [Hum90, Lemma 3.3].
Hence, we know that V(v) divides detM(v,P), and need to determine the quotient of
the division.

Yet by Proposition 3.11,

detM(v,P) =
∑
Z∈Zv

det[C(v,P)]Z · xr11 · · ·x
rN
N .

By Lemma 3.12
det[C(v,P)]Z = σ(v)σ(πZ) det[P]z,

and M(v,P) now becomes

detM(v,P) =
∑
Z∈Zv

σ(v)σ(πZ) det[P]z · xr11 · · ·x
rN
N ,

= σ(v)
∑
Z∈Zv

det[P]zσ(πZ) · xr11 · · ·x
rN
N .

Since Z is uniquely determined by (z, πZ) and vice-versa, we rewrite the sum as

detM(v,P) = σ(v)
∑
z∈Zαv

det[P ]z
∑

π1∈S{v}1

∑
π2∈S{v}2

· · ·
∑

πn∈S{v}n

σ(πZ) · xπ(1)
1 · · ·xπ(N)

N ,

= σ(v)
∑
z∈Zαv

det[P ]z
∑

π1∈S{v}1

σ(π1)
∑

π2∈S{v}2

σ(π2) · · ·
∑

πn∈S{v}n

σ(πn) · xπ(1)
1 · · ·xπ(N)

N .
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The powers of the variables xj such that j ∈ [N ] and vj 6= sn stay constant in the last
sum, so we factor their product to get

detM(v,P) = σ(v)
∑
z∈Zαv

det[P ]z
∑

π1∈S{v}1

σ(π1)
∑

π2∈S{v}2

σ(π2) · · ·
∏

i∈[N ]\{v}n

x
π(i)
i

∑
πn∈S{v}n

σ(πn) ·
∏

j∈{v}n

x
π(j)
j .

By Definition 1.2, we get

∑
πn∈S{v}n

σ(πn) ·
∏

j∈{v}n

x
π(j)
j = det Vander{v}n(cn)xλz,n,{v}n .

The latter equality leads to the equation

detM(v,P) = σ(v) det Vander{v}n(cn)

×
∑
z∈Zαv

det[P ]zxλz,n,{v}n
∑

π1∈S{v}1

σ(π1)
∑

π2∈S{v}2

σ(π2) · · ·
∑

πn−1∈S{v}n−1

σ(πn−1)
∏

i∈[N ]\{v}n

x
π(i)
i .

Repeating the last step n− 1 times, we get

detM(v,P) = σ(v)V(v)
∑
z∈Zαv

det[P]zxλz,1,{v}1xλz,2,{v}2 · · ·xλz,n,{v}n .

Corollary 3.16. If the abelian vector of v is αv = (ci)si∈S , then the polynomial

∑
z∈Zαv

det[P ]zXΛz,Ωv ,

is symmetric with respect to the group
∏n
i=1 Sci acting on {x1, . . . , xN} by permutation of

indices such that vπ(j) = vj , for all j ∈ [N ].

Corollary 3.17. If xi > 0 for all i ∈ [N ] and xj > xi whenever i < j and vi = vj , then

sign(detM(v,P)) = σ(v) sign

∑
z∈Zαv

det[P]zXΛz,Ωv

 .

Example 3.18 (Example 3.5 continued). The S-sign of v = s1s2s1s2 is −1 and the Van-
dermonde divisor is (x3 − x1)(x4 − x2). To obtain the determinant of M , we should
compute the minors of P with 2 columns in the first block corresponding to the letter s1

and 2 columns in the second block corresponding to the letter s2. There are 9 minors
in total, of which only two are non-zero: when z1 = {(s1, 0), (s1, 1), (s2, 0), (s2, 2)}, and
z2 = {(s1, 0), (s1, 2), (s2, 0), (s2, 1)}. We get det[P]z1 = −1 and det[P]z2 = 1. By Theo-
rem 3.15, the determinant of M is

detM = −(x3−x1)(x4−x2)
(
(−1)

(
x(0,0),{1,3}x(1,0),{2,4}

)
+ (1)

(
x(1,0),{1,3}x(0,0),{2,4}

))
.
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We get the values of the Schur polynomials from Example 1.5. Thus

detM = −(x3 − x1)(x4 − x2)(x1 − x2 + x3 − x4).

The sum in the formula for the determinant is in fact a tensor in V ⊗ V , where V is the
vector space over the partitions of length 2 with parts of size at most 1:

x(0,0),{2,4} x(1,0),{2,4} x(1,1),{2,4}
x(0,0),{1,3} 0 −1 0

x(1,0),{1,3} 1 0 0

x(1,1),{1,3} 0 0 0

= −x(0,0),{1,3} ⊗x(1,0),{2,4} + x(1,0),{1,3} ⊗x(0,0),{2,4}.

Example 3.19. Consider the matrix

M =


x1 + 1 x2 + 1 x3 + 1

x2
1 + x1 x2

2 + x2 x2
3 + x3

x2
1 + 1 x2

2 + 1 x2
3 + 1

 .

It can be written using the coefficients and variables matrices as:

M =

3⊕
i=1


1 1 0

0 1 1

1 0 1

×


1 x1 x2
1 0 0 0 0 0 0

0 0 0 1 x2 x2
2 0 0 0

0 0 0 0 0 0 1 x3 x2
3


>

.

Since interchanging variables is equivalent to permuting columns, the parameter tensor
is a usual matrix

P =


1 1 0

0 1 1

1 0 1


and there is only one subset z ∈ Z(3), i.e. all the columns of P . The S-sign of the word
s1s1s1 is +1. The Vandermonde part is (x3 − x1)(x3 − x2)(x2 − x1). The determinant of
P is 2 and x(0,0,0) = 1. Using Theorem 3.15 we get

detM = 2(x3 − x1)(x3 − x2)(x2 − x1).

3.5 The parameter matrices behind Bergeron–Ceballos–Labbé’s
counting matrices

In the article [BCL15], the construction of fans is based on a matrix called counting ma-
trix, whose entries enumerated occurrences of certain subwords contained in a fixed
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word. As it turns out, these counting matrices are signature matrices. The factorizations
of the determinants of counting matrices were critical in order to prove the correctness
of the construction. In view of the intricate description in the previous section, the fact
that counting matrices of type A3—obtained via a simple combinatorial rule—are sig-
nature matrices should be regarded as a highly exceptional and yet not fully explained
behavior.

The theory of parameter matrices allows to shed some new light on the factorization
formulas of counting matrices. Indeed, Theorem 3.15 gives a complete description of the
factorizations presented in the article [BCL15]. Furthermore, for any finite irreducible
Coxeter group, it precisely dictates how one may obtain signature matrices through
parameter matrices. We revisit here these counting matrices using parameter matrices.

3.5.1 Type A1

We have n = N = ν = 1. Parameter matrices are (1×1)-matrices P = (p) containing the
real number p and the variables matrix TW is (1). This way, given the only reduced word
v = s1, the model matrix M(v, P ) is the (1 × 1)-matrix (p). In order to be a signature
matrix, the real number p should be non-zero. In [BCL15, Appendix], the counting
matrix is obtained by setting p = 1.

3.5.2 Type A2

We have n = 2, N = 3, and ν = 2. Parameter tensors are (3 × 2 × 2)-dimensional,
compare with Example 3.8. For some given positive integer m, the counting matrix
Ds1s2,m gives rise to the parameter matrix

Ps1s2,m =

(s1, 0) (s1, 1) (s2, 0) (s2, 1)
1 0 0 0

m −1 0 1

0 0 1 0

.

This parameter matrix has two non-zero minors {(s1, 0), (s1, 1), (s2, 0)} and {(s1, 0), (s2, 0),
(s2, 1)}, which are both equal to−1. Further, the corresponding partial Schur functions
X((0,0),(0)),({1,3},{2}) and X((0),(0,0)),({2},{1,3}) are both equal to 1. For v = s1s2s1, the
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model matrix M(s1s2s1, Ps1s2,m) is

M(s1s2s1, Ps1s2,m) =


1 0 1

−x1 +m x2 −x3 +m

0 1 0

 .

For v = s2s1s2, the model matrix M(s2s1s2, Ps1s2,m) is

M(s2s1s2, Ps1s2,m) =


0 1 0

x1 −x2 +m x3

1 0 1

 .

To get back the counting matrix, one has to set the parameter xi to be the position of
the factor s1s2 in which vi appears in (s1s2)m, and remove 1 if vi = s1. This number fits
exactly with how the counting matrix is defined in this case.

From this, we get that

detM(s1s2s1, Ps1s2,m) = σ(s1s2s1)(x3 − x1) · (−1 · 1)

= (−1)(x3 − x1)(−1) = (x3 − x1).

The determinant of the model matrix M(s2s1s2, Ps1s2,m) is similar.

3.5.3 Type A3

We have n = 2, N = 6, and ν = 3. Parameter tensors are (6 × 3 × 3)-dimensional. For
some given positive integerm, the counting matrixDs1s2s3,m gives rise to the parameter
matrix

Ps1s2s3,m =

0 1 2 3 4 5 6 7 8

(s1, 0) (s1, 1) (s1, 2) (s2, 0) (s2, 1) (s2, 2) (s3, 0) (s3, 1) (s3, 2)



1 0 0 0 0 0 0 0 0

0 1 0 m+ 1 −1 0 0 0 0

0 1
2

1
2 0 m+ 1 −1

(
m+2

2

)
−m− 3

2
1
2

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 m+ 1 −1 0

0 0 0 0 0 0 1 0 0

.
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Whereas, the counting matrix Ds2s1s3,m gives rise to the parameter matrix

Ps2s1s3,m =

0 1 2 3 4 5 6 7 8

(s1, 0) (s1, 1) (s1, 2) (s2, 0) (s2, 1) (s2, 2) (s3, 0) (s3, 1) (s3, 2)



0 0 0 1 0 0 0 0 0

m+ 1 −1 0 0 1 0 0 0 0

0 0 0 0 1 0 m+ 1 −1 0(
m+1

2

)
1
2 −1

2 0 0 1
(
m+1

2

)
1
2 −1

2

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

.

Although the two parameter matrices look different, their non-zero minors are almost
all equal. In order to specify the columns of the parameter matrices compactly, we label
the nine columns from 0 to 8 from left-to-right:

det[P∗]{0,1,2|3,4|6} = 1
2 , det[P∗]{0,1,2|3|6,7} = 1

2 , det[P∗]{0,1|3,4,5|6} = −1

det[P∗]{0,1|3,4|6,8} = −1
2 , det[P∗]{0,1|3,5|6,7} = 1, det[P∗]{0,1|3|6,7,8} = −1

2

det[P∗]{0,2|3,4|6,7} = −1
2 , det[P∗]{0|3,4,5|6,7} = 1, det[P∗]{0|3,4|6,7,8} = −1

2

The only minor which is different is det[P∗]{0,1|3,4|6,7} which is 0 for Ps1s2s3,m and 1

for Ps2s1s3,m. This explains the very small differences in the formulas for the deter-
minants in [BCL15, Table 2 and 3] although the way they are obtained are different.
The difference appears in a factor for words with abelian vector (2, 2, 2). For example,
consider the reduced word v = s2s1s3s2s3s1. Then Ωv = ({2, 6}, {1, 4}, {3, 5}) and
there are three minors of Ps1s2s3,m in Zαv that are non-zero: z1 := {0, 1, 3, 4, 6, 8}, z2 :=

{0, 1, 3, 5, 6, 7}, and z3 := {0, 2, 3, 4, 6, 7}. By Theorem 3.15 and Example 2.21 the deter-
minant of the model matrix M(v, Ps1s2s3,m) is

detM(v, Ps1s2s3,m) = (1)(x4 − x1)(x6 − x2)(x5 − x3)
(

det[P ]z1XΛz1,Ωv
+ det[P ]z2XΛz2,Ωv

+ det[P ]z3XΛz3,Ωv

)
,

= (x4 − x1)(x6 − x2)(x5 − x3)

(
−1

2
· (x3 + x5) + 1 · (x1 + x4)− 1

2
· (x2 + x6)

)
,

= −1

2
(x4 − x1)(x6 − x2)(x5 − x3) (x3 + x5 − 2 · (x1 + x4) + x2 + x6) ,

= −1

2
(x1 − x4)(x2 − x6)(x3 − x5) (2 · (x1 + x4)− x2 − x6 − x3 − x5) .

The last expression is written as in [BCL15, Table 3].
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3.5.4 Type A4

As noticed in [BCL15, Section 9], the construction using counting matrices in type A4

delivered a parameter matrix which was not generic enough. Indeed, the reduced word
w = s2s1s2s3s4s2s3s2s1s2 has abelian vector (2, 5, 2, 1) and the counting matrix only
gives points lying on curves of degree 3 in R10. Hence taking 5 points on the curve
corresponding to the letter s2 does not span a 5-dimensional space, which is neces-
sary for a dual simplicial cone corresponding to the reduced word w. Let c = s2s4s1s3

and w◦(c) := s2s4s1s3s2s4s1s3s2s4. The reduced word w appears first as a subword of
ckw◦(c) when k ≥ 2. This explains the non-zero numbers in the fourth column of Ta-
ble 7 of [BCL15], which represented (in particular) the word w. This case epitomizes
the fundamental difference between realizing the cluster complex as a simplicial fan and
realizing the multi-cluster complex as a simplicial fan. When k increases in the above
word, certain reduced words which never appear as subword in the cluster complex,
suddenly appear and require a higher genericity. In fact, the höchstfrequenz is at least
neΩ(
√

logn/2) and the parameter tensor should have at least this degree of genericity in
order to produce a signature matrix.





Chapter 4

Universality of parameter matrices

In this section, we show that parameter tensors are universal in the following sense:

Given a complete simplicial fan F supported by a vector configuration A

realizing a subword complex ∆W (p) and a Gale dual B ∈ Gale(A), there
exists a parameter tensor PA that parametrizes B. Equivalently, B is the
product of a variables tensor and a coefficient tensor C(p,P) given by some
parameter tensor P .

Concretely, consider some matrix A ∈ R(m−N)×m, whose column i correspond to the
i-th letter pi of p and a Gale dual B ∈ Gale(A). For each letter sj ∈ S, proceed as
follows. Consider the columns i ∈ [m] of B such that pi = sj , i.e. the occurrences of sj
in p. For each coordinate k ∈ [N ] of the columns, it is possible to find a polynomial of
degree at most |p|j − 1 that interpolate the values at these occurrences. There are many
possibilities to do so; to get a specific choice, we consider the two-dimensional points
(i,B(k, i)) for the k-th coordinate, where B(k, i) denotes the the k-th entry of the i-th
column of B. This way, as i increases, so does the first entry xi := i. Doing this for each
letter sj ∈ S, we get a parameter tensor PB with d := max{|p|j − 1 : j ∈ [n]}. In order
to know if B is a signature matrix for p, we use Corollary 3.17.

Theorem 4.1. Let p ∈ Sm and A ∈ R(m−N)×m. Further let PB denote the parameter tensor
associated to a Gale dual B ∈ Gale(A) as above. In particular, assume that xi > 0 for all
i ∈ [N ] and xj > xi whenever i < j and vi = vj . The matrix B is a signature matrix for p if
and only if

sign

∑
z∈Zαv

det[PB]zXΛz,Ωv

 = 

JJ(v) = σ(v)τ(v)

for every reduced word v of w◦ which is a subword of p.

41



42 Chapter 4. Universality of parameter matrices

The definition of signature matrix involves checking every occurrence of every reduced
expression directly on the Gale dual B. The previous theorem shows that it suffices
to check the parameter matrix once for each commutation classes under the condition
that it was constructed via the above procedure, which yields increasing input numbers
{xi}i∈[r]. Indeed, both sides of the equation remain invariant after doing a braid move
of length 2 on v, thanks to Corollary 2.19. Moreover, given two reduced subwords with
the same combinatorial type, or even with the same abelian vector, the left-hand side are
equal up to a relabeling of variables. Thus, the previous theorem reduces significantly
the amount of minors to check in a Gale dual matrix in order to verify if it is a signature
matrix:

it suffices to examine the signs of minors of the parameter matrix given by the abelian vectors of
reduced words inR(w◦).

The following universality result follows from the above discussion.

Theorem 4.2 (Universality of parameter tensors). Let p ∈ Sm and Fp,A be a complete
simplicial fan realizing the subword complex ∆W (p) for some matrix A ∈ R(m−N)×m. There
exist a parameter tensor PA, and m real numbers xi > 0, with i ∈ [m], such that

- i < j and pi = pj implies xi < xj , and

- for every reduced word v of w◦ which is a subword of p, the following equality holds

sign

∑
z∈Zαv

det[PA]zXΛz,Ωv

 = 

JJ(v) = σ(v)τ(v).

This theorem illustrates how both the S-sign and T -sign functions lay at the heart of geo-
metrical realizations of subword complexes.

Example 4.3 (Example 3.18 continued, 2k-dimensional cyclic polytopes on 2k + 4 ver-
tices). Let k ≥ 1, c = s1s2, w◦(c) = s1s2s1s2, and p = ckw◦(c). We now consider the
curves f1(x) = (1, 0,−x, x2) and f2(x) = (0, 1, x,−x2) and we assign a number xi > 0

to each letter pi of p, such that xj > xi whenever pi = pj and j < i. If pi = s1, we eval-
uate f1 at xi, otherwise pi = s2 and we evaluate f2 at xi to assign a vector in R4 to each
letter of p. There are two reduced words s1s2s1s2 and s2s1s2s1. Using the computation
in Example 3.18, we get the following conditions

−1 = 

JJ(s1s2s1s2) = sign(xi1 − xi2 + xi3 − xi4) if pi1pi2pi3pi4 = s1s2s1s2,

1 = 

JJ(s2s1s2s1) = sign(−xi1 + xi2 − xi3 + xi4) if pi1pi2pi3pi4 = s2s1s2s1,
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to get a signature matrix. These conditions are equivalent to x1 < x2 < · · · < x2k+3 <

x2k+4. This comes as no surprise, since this is an instance of the 2k-dimensional cyclic
polytope on 2k + 4 vertices. Taking xi = i, we can verify that all conditions are satis-
fied and we get a signature matrix for the (dual of the oriented matroid of the) cyclic
polytope.





Appendix A

Some Abelian vectors of reduced
words of the longest elements

Here we give the possible abelian vectors of the longest element w◦ for the finite ir-
reducible Coxeter groups of small rank. The computations used Sage’s implementa-
tion of Coxeter groups to generate all reduced word [SageMath]. The generation of the
reduced word proceeds without much difficulty; the current bottleneck being that in
types A,B,D,H of higher ranks and other types, the computations all require more
than 256GB of RAM memory.

Type An Abelian vectors of w◦
s1 {(1)}

s1 s2 {(2, 1), (1, 2)}

s1

s2
s3 {(3, 2, 1), (2, 3, 1), (2, 2, 2), (1, 3, 2), (1, 2, 3)}

s1

s2 s3
s4 {(4, 3, 2, 1), (3, 4, 2, 1), (3, 3, 3, 1),

(3, 3, 2, 2), (3, 2, 4, 1), (3, 2, 3, 2),
(2, 5, 2, 1), (2, 4, 3, 1), (2, 4, 2, 2),
(2, 3, 4, 1), (2, 3, 3, 2), (2, 3, 2, 3),
(2, 2, 4, 2), (2, 2, 3, 3), (1, 4, 3, 2),
(1, 4, 2, 3), (1, 3, 4, 2), (1, 3, 3, 3),
(1, 2, 5, 2), (1, 2, 4, 3), (1, 2, 3, 4)}

s1

s2 s3 s4
s5 97 abelian vectors with coordinatewise

minimum (1, 2, 3, 2, 1) and maximum (5, 6, 6, 6, 5).

Table A.1: Abelian vectors of the reduced words for the longest element in type A
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Type Bn Abelian vectors of w◦

s1 s2
4

{(2, 2)}

s1

s2
s3

4
{(3, 4, 2), (3, 3, 3)}

s1

s2 s3
s4

4
{(4, 6, 4, 2), (4, 6, 3, 3), (4, 5, 5, 2), (4, 5, 4, 3), (4, 4, 6, 2), (4, 4, 5, 3), (4, 4, 4, 4)}

Table A.2: Abelian vectors of the reduced words for the longest element in type B

Type Dn Abelian vectors of w◦

s1

s2 s3
s4

{(4, 2, 4, 2), (3, 3, 4, 2), (3, 3, 3, 3),
(3, 2, 5, 2), (3, 2, 4, 3), (2, 4, 4, 2),
(2, 3, 5, 2), (2, 3, 4, 3), (2, 2, 6, 2),
(2, 2, 5, 3), (2, 2, 4, 4)}

s1

s2 s3 s4
s5

111 abelian vectors with coordinatewise
minimum (2, 2, 4, 3, 2) and maximum (6, 6, 9, 7, 5)

Table A.3: Abelian vectors of the reduced words for the longest element in type D4 and D5

Type Hn Abelian vectors of w◦

s1

s2
s3

5
{(6, 6, 3), (5, 7, 3), (5, 6, 4), (5, 5, 5)}

Table A.4: Abelian vectors of the reduced words for the longest element in type H3
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l(v,P), 28

of v, 30

reduced expressions,R(w), 8

Schur function, xλ,J , 6

partial, XΛ,P , 6
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S-sign function, σ, 21
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group, 17

punctual, 
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signature matrix, 19

sphere
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standard partition, λz,i, 32

subword complex, ∆W (p), 13

Tensor
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coefficients, Cij,k(v,P), 28

column, 3

row, 3

variables ∼ of (W,S), 29
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rank, 14

totally cyclic, 14

word, 7

abelian vector, αw, 8

complement, 7

empty, e, 7

identity element, e, 7

inversion number, inv(w), 21

length, 7

lexicographic normal form, w, 20

ordered set partition Ωw, 7

reverse, rev(w), 7

standard permutation, std(w), 20

subword, 7
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