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Abstract

By means of modeling and mathematical analysis, this thesis investigates
negative phototaxis of Euglena gracilis and resulting bioconvection pat-
terns under stationary or periodic illumination.

This thesis provides a new biological hypothesis about the mechanism
of negative phototaxis of Euglena gracilis and gives an account of the
failure of pattern formation under rapidly periodic illumination which was
reported by an experimentalist.

An existing model of patterns under stationary illumination is extended
to a new model of patterns not only under stationary illumination but also
under rapidly periodic illumination. The new model has Turing instability
for coefficients corresponding to stationary illumination, and loses Turing
instability if coefficients are replaced by those corresponding to rapidly
periodic illumination. The failure of pattern formation under rapidly pe-
riodic illumination can be interpreted as the loss of Turing instability.
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Chapter 1

Introduction

Microbes form spatiotemporal patterns. Among such, cells of Euglena gracilis, a
species of single-celled photosensitive flagellate whose diagram is shown in Figure 1.1,
form a macroscopic pattern like Figure 1.2 when illuminated [SAI+11].

Figure 1.1: Diagram of a cell of Euglena gracilis.

Confined in a sealed container, made by two glass plates and a silicon rubber with
a hole placed between the plates, cells swim vertically upward when illuminated by
bright light from below. Vertical swimming results in the accumulation of cells near
the top glass. Once arriving at the top glass, cells can no longer continue swimming
upward, and make a change of direction, followed by horizontal swimming. As a result
of horizontal swimming, at points where there are too many cells meeting together,
sinking of cells by gravity occurs. A two-component system of reaction-diffusion
equations was proposed in [SAI+11] as a model of the collective behavior of cells.

Afterward, Suematsu, an author of the paper [SAI+11], also found that, such a
pattern does not emerge under certain periodically fluctuating light. Specifically, no
pattern was formed under periodic illumination of frequency around 1Hz; whereas
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Figure 1.2: Euglena bioconvection c©Nobuhiko J. Suematsu
Real picture taken in the laboratory. View from the top of the sealed container.
Darker green signifies higher concentration of cells.

similar patterns were formed under periodic illumination of frequency higher or lower
than above range of frequencies.

We want to know why cells fail to form a pattern on this condition. To answer
this question, we will build a model designed for both patterns under stationary illu-
mination and periodic illumination. We will analyze the model to find mathematical
structure of pattern formation or the failure of pattern formation. To build the model
of patterns valid for both illumination conditions, we need a better understanding of
negative phototaxis of Euglena gracilis.

To try to understand negative phototaxis better, we will perform a thought exper-
iment based on biological properties of a cell of Euglena gracilis, which can be found
in [SS17], and form a hypothesis about the mechanism of negative phototaxis, and
build a new model based on the hypothesis.

Mathematical analysis of the model will provide us with a theory of the failure
of pattern formation under periodic illumination. The underlying belief is that the
real-world phenomena in nature are governed by simple laws written in the language
of mathematics.

1.1 Phototaxis of Euglena gracilis

In this section, we introduce responses cells of Euglena gracilis exhibit when exposed
to illumination. We refer to [SS17] which covers biochemical, cellular, and molecular
biological studies on not only Euglena gracilis but also other species of Euglena in
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general. A description of photomovement of Euglena gracilis can be found in Chapter
11.

Motile microorganisms such as Euglena gracilis use a number of external stimuli
to orient in their environment. As a result, cells accumulate in suitable habitats and
form visible macroscopic patterns.

• Cells of Euglena gracilis move toward the light source at low irradiance as light is
necessary for photosynthesis and such response is called positive phototaxis.
On the other hand, excessive radiation can be detrimental, and cells move away
from the light source at high irradiance and such response is called negative
phototaxis.

• Upon a sudden decrease in light intensity cells show a step-down photophobic
response which may be a stop, a change in swimming direction or a reversal
of movement. Likewise, a sudden increase in the ambient light intensity may
result in a step-up photophobic response which may be a sudden increase
in light intensity which would occur when an organism enters a irradiated area
from a shaded one.

• The dependence of the swimming speed on the ambient irradiance is called
photokinesis.

The paraflagellar body which is at the root of the flagellum (see Figure 1.1) has
been identified as the light responsive organelle. Henceforth in this thesis, we simply
call the paraflagellar body the sensor.

While swimming in the direction of its flagellum, a cell rotates at about 1 Hz
around its long axis. See Figure 1.3. The axis itself tumbles erratically within a cone
of a 15◦ opening angle [SS17]. Due to the rotation, the stigma which is next to the
sensor (see Figure 1.1) may shade the sensor from illumination; if light comes from
the side, the sensor receives flicker, and if light comes from the front or the back, the
sensor does not receive flicker.

Stigmaless mutants, however, can also orient with respect to the light direction,
and negative phototaxis does not need a stigma. In this thesis, however, we assume
that the stigma has an important role. Our theory does not necessarily contradict
the ability of a cell without a stigma either. For more discussions, see Chapter 5,
Subsection 5.1.2 Stigmaless mutants.

In this thesis, we are concerned with negative phototaxis, i.e. the response of cells
swimming away from bright light.

1.2 Stationary illumination

Suematsu et al. [SAI+11] reported a macroscopic pattern of cells of Euglena gra-
cilis under stationary illumination, and found similarities between the pattern and
Rayleigh-Bénard convection.

Rayleigh-Bénard convection involves a fluid placed between two flat horizontal
heat conducting plates. The lower plate temperature is kept higher than the upper

3



IF
Figure 1.3: The rotation of a cell of Euglena gracilis. Note that the sensor (in blue) is

closer to the axis and the stigma (in black) rotates around the sensor.

plate temperature. The fluid near the lower plate becomes less dense due to the
thermal expansion, resulting in an intrinsically unstable situation in the gravitational
field. Due to conservation of mass, an instability occurs when the heating is so strong
that the dissipative effects of thermal conduction and viscosity are dominant. [CH93].

To make a model of the macroscopic convection of Euglena gracilis, Suematsu et
al. schematically divided the domain of the sealed container into a thin upper layer
and a thick lower layer and studied the exchange of density between the two layers on
the cross-section of the container. Based on the experimental observations, Suematsu
et al. extracted the following four features of the collective behavior of cells in the
cross-section. See Figure 1.4.

(i) Upward vertical movement due to swimming away from bright light from below
(negative phototaxis),

(ii) When a cell reaches the top glass, it can no longer continue swimming away. It
then makes a change of direction and starts moving horizontally (diffusion in
the upper layer); Diffusion in the lower layer was also assumed and it represents
the movement in the lateral direction. The lateral movement in the lower layer
was considerably weaker than that in the upper layer,

(iii) Sinking due to gravity in the upper layer at points where there are too many
cells gathering together, and

(iv) nonlocal decisions of cells in the upper layer, causing lateral swimming, deter-
mined by comparing the light intensity to the left and to the right.

As a model of the macroscopic pattern, Suematsu et al. derived a two-component
system of reaction-diffusion equations with a nonlocal term:

∂tu = d1∆u− α(u+ v)βu+ cv − κ∂x[(ψ+ − ψ−)u]

∂tv = d2∆v + α(u+ v)βu− cv,
(1.1)
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Figure 1.4: Four features of the collective behavior of cells of Euglena gracilis. (i) negative
phototaxis, (ii) diffusion in the upper and lower layers, (iii) sinking, and (iv)
lateral movement in the upper layer based on nonlocal information. Blue lines
represent top and bottom glass and red lines represent silicon rubber walls.

where

ψ+ =

∫ L

x

u(t, y) exp

(
−|x− y|

Λ

)
dy

ψ− =

∫ x

0

u(t, y) exp

(
−|x− y|

Λ

)
dy,

(1.2)

with Neumann boundary conditions. Real-valued variables u(x, t) and v(x, t) cor-
respond to the density in the upper layer and lower layer, respectively. The four
features shown in Figure 1.4 were represented by the following:

(i) Upward vertical swimming was represented by the loss of the lower layer density
v by

− cv (1.3)

and the gain of the upper layer density u by the same amount. A positive
coefficient c determines how much of the lower layer density joins the upper
lower density.

(ii) Horizontal swimming once cells arrive at the top glass was represented by dif-
fusion of the upper layer density

d1∆u. (1.4)
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Horizontal swimming of cells after they sink to the bottom was represented by
diffusion of the lower layer density

d2∆v. (1.5)

The diffusion rate in the upper layer d1 was assumed to be much higher than
the diffusion rate in the lower layer d2, i.e. d2 � d1.

(iii) The sinking was assumed to be governed by

− α(u+ v)βu. (1.6)

The coefficients α and β were used to approximate some sinking rate function
which depends on the sum of the densities on both layers. Here, the primary
choice of β is 2 or 3, depending on the resistance while sinking. The prototypes
of the resistance are viscous resistance which is of order β ≈ 2; and inertial
resistance which is of order β ≈ 3.

(iv) The nonlocal term represented the localization of the pattern, i.e. as in Figure
1.2, patterns were not formed in the whole domain. The coefficient κ is a prod-
uct of factors coming from several coefficients which were required to derive the
nonlocal term. To derive the nonlocal term, Suematsu et al. considered atten-
uation of light, the self-shading effect, and sensitivity of cells to the gradient of
the light intensity.

In this thesis, we will exclude the nonlocal term from our consideration. Suematsu
et al. also reports that if the number of cells in the sealed container is high enough, a
pattern like Figure 1.2 was formed in the whole domain. See Chapter 5, Subsection
5.3.1 Perturbations for more discussion.

1.3 Periodic illumination

Following the experiment on stationary illumination, the first author Suematsu con-
ducted another experiment on oscillatory illumination. He found that cells of Eu-
glena gracilis failed to form macroscopic patterns under certain periodic illumination.
Specifically,

• there existed a range of frequencies of order 1 Hz such that no patterns like
Figure 1.2 were formed.

• if the illumination frequency was higher than the above range of frequencies
including 1 Hz, patterns like Figure 1.2 were observed.

• if the illumination frequency was lower than the above range of frequencies
including 1 Hz, patterns were formed intermittently.
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1.4 Main question

The mechanism of the failure of pattern formation has not been given, and we try
to give an account of the mechanism, based on a thought experiment on microscopic
individual responses, backed up with mathematical treatment of the resulting model.

The main question is the mechanism of Euglena bioconvection. Especially, how
cells of Euglena gracilis fail to form a pattern like Figure 1.2 under certain periodic
illumination. The key to the problem is an account of negative phototaxis of Euglena
gracilis that is valid for both settings, in the individual level. The main question can
be reduced to how cells of Euglena gracilis make use of the information of
light their sensors receive.

We suppose that Euglena bioconvection is a result of an evolution strategy in
order to optimize the chances of survival in nature. Their responses must be tuned to
the common environment and not to artificial environments such as rapidly periodic
illumination from below. If we understand why cells of Euglena gracilis fail to form
patterns, we will understand how cells of Euglena gracilis respond to light in general.

1.5 Thought experiment

The range of frequencies of order 1 Hz such that no patterns like Figure 1.2 were
formed includes the rotation frequency of individual cells of Euglena gracilis. We
study light information the sensor of a cell receives, depending on the environment.

Imagine a cell facing perpendicular to a planar light source as in Figure 1.5.

co

fine

I

Figure 1.5: A cell facing perpendicular to the planar light source. The sensor will not be
shaded by the stigma despite the rotation.
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Even though the stigma follows around the sensor, it never blocks the light. Hence,
the sensor of a cell receives stationary illumination if the cell is perpendicular.

Next, imagine a cell facing parallel to a planar light source as in Figure 1.6.

00¥
I

Figure 1.6: A cell facing parallel to the planar light source.The sensor will be shaded by
the stigma due to the rotation.

The stigma of a cell blocks the light periodically as the cell rotates. Hence, the
sensor of a cell receives periodic illumination if the cell is parallel.

We hypothesize that each cell of Euglena gracilis distinguishes its relative position
to the light source by the period of shading of light by its stigma.

• A cell is vertical to the light source if it senses no shading.

• A cells is horizontal to the light source if it senses periodic shading.

To achieve negative phototaxis, a cell must keep facing vertical and continue
swimming. In other words, a cell should make a change of direction if it senses
periodic shading. On the other hand, a cell should not make a change of direction if
it senses no shading.

1.6 Hypothesis

We form the following hypothesis:

A cell of Euglena gracilis makes a change of direction

if its sensor receives periodic light.
(1.7)

By the change of direction, we mean changing from the vertical position as in Figure
1.7 to the horizontal position as in Figure 1.7; and vice versa. By the periodic light,

8



we mean periodic light with frequency of order 1 Hz corresponding to the intrinsic
frequency of the rotation of a cell.

I:3
I

Figure 1.7: Two relative positions of Euglena gracilis we consider in this thesis. We hy-
pothesize that a cell changes the direction upon sensing flicker, resulting in
swimming away from light, i.e. negative phototaxis.

Here, we only consider two relative positions, and do not distinguish between a
cell facing upward and a cell facing downward. Neither do we distinguish between a
cell facing to the right and to the left. We will distinguish between extremely rapidly
periodic light and rapidly periodic light.

According to the hypothesis (1.7), in periodic settings, responses of cells to illu-
mination result in a different collective behavior which we will pursue in this thesis.

1.7 Modeling

Based on the hypothesis (1.7), we will derive a model of macroscopic patterns valid
for both stationary and periodic settings, generated by their collective behavior de-
pending on the environment.

In principle, we will follow the derivation of the Suematsu model (1.1), but have
to deviate from it to accommodate periodic cases.

1.7.1 Time-averaging

In the case of periodic illumination, we have two distinct sources of oscillation:

• external periodic illumination, and

9



• internal rotation of cells.

The external illumination can be manually controlled, and the frequencies inducing
the failure of pattern formation includes the internal rotation frequency of order 1 Hz.
We observe that the rotation of cells is rapid in the time-scale of pattern formation.
In fact, starting from the initial condition of homogeneous distribution of cells, it
took 5-8 min for cells to visibly assemble and form high-density spots at random
positions; these spots moved away from the silicon wall and gathered at the center of
the container to an ensemble of spots (12-18 min); and repeated fusion and division
of the spots as well as migration of spots as an ensemble were observed (20-180 min)
[SAI+11].

If we change the illumination conditions from stationary to periodic, a term in
the Suematsu model (1.1) corresponding to negative phototaxis has to be modified:
Consider a rapidly periodic coefficient

cper(t, ε) := c[1 + cos(2πt/ε)], (1.8)

where 0 < ε� 1, instead of the stationary coefficient c.
We will study the effect of rapidly periodic forcing on the behavior of solutions

to the Suematsu system, using a time-averaging theorem for parabolic partial differ-
ential equations under temporal (quasi-)periodic forcing [Mat08], which provides an
estimate of the difference between solutions to the system with the rapidly oscillatory
coefficient and solutions to the system with the averaged coefficient

〈cper(t, ε)〉 :=
1

ε

∫ ε

0

cper(t, ε) dt = c. (1.9)

The system with the averaged coefficient will turn out to be a good approximation
of the system with the rapidly oscillatory coefficient. In other words, the effect of
rapidly periodic forcing is small.

1.7.2 Compartmentalization

Rapid fluctuation of the vertical swimming from the lower to the upper layer turns
out to be negligible. However, rapid external fluctuation should also have an influence
on a change of relative positions of cells, as in Figure 1.7.

To describe the dynamics of cells including changes of relative positions, we will
introduce the idea of compartmentalization, as in compartmental models in epi-
demiology [BvdDW08].

Consider two schematic boxes; one for cells facing vertical, the other for cells
facing horizontal as in Figure 1.7. Then consider dynamics within each box, as well
as interactions between the two boxes. In other words, consider the densities of cells in
the upper layer facing vertical u1, those facing horizontal u2, and likewise the density
of cells in the lower layer facing vertical v1, those facing horizontal v2, as in Figure
1.8.

10



Figure 1.8: Compartmentalization. We consider cells in the upper layer facing vertical
u1, those facing horizontal u2, cells in the lower layer facing vertical v1, and
those facing horizontal v2.

We will study the exchange of the densities using the following matrix:

u1 u2 v1 v2

u1


−a b c 0

u2 a −b 0 0
v1 0 0 −a− c b
v2 0 0 a −b

=: H. (1.10)

This matrix tells us which variable loses or gains density, proportional to which rate.
For example, the (1, 1)-entry and (2, 1)-entry of the matrix H (1.10) tell us that

• the variable u1 loses its density proportional to a positive coefficient a; and

• the variable u2 gains the density the variable u1 loses.

This exchange of density corresponds to the situation that a cell in the upper layer
makes a change of direction from vertical position to horizontal position.

Similarly, the (1, 2)-entry and (2, 2)-entry of the matrix (1.10) tell us that

• the variable u2 loses some of its density proportional to a coefficient b; and

• the variable u1 gains the exactly the same density the variable u2 loses.

This exchange of density corresponds to the situation that a cell in the upper layer
makes a change of direction from horizontal position to vertical position.

The (1, 3)-entry and the (3, 3)-entry tell us that

• the variable v1 loses some of its density proportional to a coefficient c; and
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• the variable u1 gains the exactly the same density the variable v1 loses.

We assume that only cells in the lower layer that are facing vertical may arrive at the
upper layer and stay vertical.

For the (3, 3)-entry and the (4, 3)-entry, as well as the (3, 4)-entry and the (4, 4)-
entry, we assume the same responses as in the upper layer.

We assume diffusion of every variable following the Suematsu model, and we also
assume that diffusion rates in the upper layer are much higher than diffusion rates in
the lower layer.

For sinking due to gravity, we need a slight extension of the term in the Suematsu
model to deal with four variables instead of two. We assume that both variables in
the upper layer sink by the rate

α(u1 + u2 + v1 + v2)β (1.11)

with some coefficients α and β. Here, using these coefficients α and β, we want
to approximate some function depending on the sum of the densities. Moreover, we
assume that sinking is relevant for both variables in the lower layer as cells may change
the direction while sinking. We assume that sinking is governed by the following
matrix:

u1 u2 v1 v2

u1


−1 0 0 0

u2 0 −1 0 0
v1 r1 r2 0 0
v2 1− r1 1− r2 0 0

=: G. (1.12)

By the ratios 0 ≤ r1 ≤ 1 and 1 − r1, initially vertically facing cells u1 change the
direction while sinking and become either v1 or v2, and by the ratios 0 ≤ r2 ≤ 1 and
1 − r2, initially horizontally facing cells u2 change the direction while sinking and
become either v1 or v2. In terms of the resistance while sinking, the vertical direction
should be more efficient than the horizontal direction, and we expect that both ratios
0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1 are near 1.

1.8 Analysis

Our new model will be a system of reaction-diffusion equations with four variables
that captures also the change of direction of the cells. Let u = (u1, u2, v1, v2)ᵀ, where
the symbol ᵀ denotes the transpose. Let D = diag(d11, d12, d21, d22), and H and G be
defined by (1.10), and (1.12) respectively.

∂tu = D∆u + α(u1 + u2 + v1 + v2)βGu +Hu, (1.13)

with Neumann boundary conditions. We assume that the power of sinking rate β > 1,
the rates of changing direction while sinking 0 ≤ r1, r2 ≤ 1, and all other constants
a, b, c, α, d11, d12, d21, d22 > 0 are positive.

We will find a mathematical structure for pattern formation. Coefficients corre-
sponding to stationary illumination, namely the case a � b will turn out to induce
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Turing instability. Moreover, we can characterize rapidly periodic illumination, by
a ≈ b, and letting a approach b can be interpreted as changing the illumination
condition from stationary to rapidly periodic.

We may interpret the result as follows: Given a set of coefficients inducing Turing
instability, increasing the tendency of making a change from vertical to horizontal
directions, i.e. increasing a, corresponds to confusion of cells due to the external ma-
nipulation of the environment, and the system loses Turing instability, which explains
non-pattern formation under periodic illumination.

1.9 Outline

The gist of the thesis is already presented in the introduction. The main contribution
of this thesis is twofold: First, we provide a new biological hypothesis about the
mechanism of negative phototaxis. Second, we extend an existing model to another
that reveals more about the phenomenon, and provide an answer to a biological
problem, backed up with mathematical structure. The resulting system looks like
a standard reaction-diffusion equations and analysis then only requires well-known
Turing instability analysis. However, our autonomous reaction-diffusion model of the
time-periodic nonautonomous phenomenon is derived from an observation that the
governing rules of the responses are time-independent. Our new model captures the
essence of the phenomenon; the mechanism of negative phototaxis. Our analysis is
mathematical evidence of our biological hypothesis (1.7).

The rest of the thesis is organized as follows: In Chapter 2, we will prove that the
Suematsu model (1.1) without the nonlocal term has Turing instability.

In Chapter 3, we will replace one of the coefficients in the Suematsu model to
discuss the behavior of solutions under rapidly periodic forcing. Applying the time-
averaging theorem in [Mat08], we will show that the effect of rapidly periodic forcing
is limited, and rapid fluctuation of the rate of vertical swimming is negligible.

In Chapter 4, we will derive and analyze our new compartmental model for both
stationary and periodic illumination conditions. We will prove that the system has
Turing instability for coefficients corresponding to stationary illumination and does
not have Turing instability for coefficients corresponding to rapidly periodic illumi-
nation.

In Chapter 5, we will interpret the result and conclude with the future directions.
The table below (Table 1.1) summarizes the results obtained.

Illumination stationary periodic stationary or periodic
Modeling Suematsu et. al. [SAI+11] this thesis this thesis
Analysis Theorem 2.2.2 Theorem 3.3.1 Theorem 4.2.2
Pattern Yes Yes Yes or No

Table 1.1: Comparison of the theorems

13



Chapter 2

Stationary illumination

This chapter is organized as follows: Section 1 introduces the concept of Turing
instability. Section 2 presents the main theorem of this chapter. We prove that the
Suematsu model (1.1) without the nonlocal term has Turing instability. Therefore,
bioconvection patterns under stationary illumination can be explained by Turing
instability. Section 3 deals with an invariant set for the Suematsu model (1.1) without
the nonlocal term.

2.1 Turing instability

In the seminal paper on morphogenesis [Tur52], Turing showed that an originally
quite homogeneous system may develop a pattern or structure due to an instability
of the homogeneous equilibrium, which is triggered off by random disturbances.

Let

u =


u1

u2
...
um

 , f(u) =


f1(u1, u2, . . . , um)
f2(u1, u2, . . . , um)

...
fm(u1, u2, . . . , um)

 ,

and D = diag(d1, d2, . . . , dm). Consider a system of reaction-diffusion equations

∂tu = D∆u + f(u), (2.1)

with Neumann boundary conditions, where t > 0, Ω ⊂ Rn, and ∆ denotes the Laplace
operator, i.e. ∆ui =

∑n
i=1 ∂

2
xi
ui(x, t), where i = 1, 2, . . . ,m.

Remark. For the general framework of semilinear parabolic equations, we refer to
[Hen81].

We refer to [Yan15] for existence and uniqueness of solutions of reaction-diffusion
equations. For instance, assume that the initial conditions u(x, 0) = u0(x) are contin-
uous and f is of class C1. Then, for any t > 0, there exists a unique smooth solution
(of class C1 with respect to t > 0; and of class C2 with respect to x ∈ Ω).

Definition 2.1.1. A system of ordinary differential equations

∂tu = f(u) (2.2)
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is called the kinetic system of the system (2.1).

Definition 2.1.2. We call an equilibrium ū of the system (2.1) a homogeneous equi-
librium if it is an equilibrium of the kinetic system, i.e.

f(ū) = 0. (2.3)

Definition 2.1.3. We say a system of reaction-diffusion equations (2.1) has Turing
instability if the system possesses an unstable homogeneous equilibrium which is
stable in the kinetic system (2.2).

If a system has Turing instability, an originally homogeneous initial condition
may evolve to a spatially nonconstant solution, which is triggered off by spatial dis-
turbances. We are interested in such a solution and call it a pattern.

In [Per15], history of research on Turing instability is mentioned as follows: The
first numerical simulations of a system exhibiting Turing patterns was published in
1972 involving the celebrated system of Gierer and Meinhardt [GM72]; it was only
20 years later that the first experimental evidence for a chemical reaction exhibiting
spatial patterns explained by these principles was obtained and named the CIMA re-
action, named after the name of the reactants used by P. De Kepper et al. [KCDB91]
and Castets et al. [CDBDK90]; in 1995, S. Kondo and R. Asai [KA95] found an expla-
nation of the patterns arising during the development of animals, proposing that the
model should be set in a growing domain, opening up a larger class of possible pat-
terns; and meanwhile several nonlinear parabolic systems exhibiting Turing patterns
have been studied. Turing’s mechanism is the simplest explanation for pattern for-
mation and one of the most counter-intuitive results in the field of partial differential
equations.

We refer to a two-volume-textbook on mathematical biology [Mur02] and [Mur03]
which treats various biological problems accessible by mathematical analysis, in par-
ticular by Turing instability analysis.

A two-component reaction-diffusion system with conservation of mass was pro-
posed as a model of cell polarity and analyzed in [IOM07], [OIC+07]. Turing instabil-
ity analysis of a system with conservation of mass, in refined modern language, can
be found in [MO10]. Written in Japanese, [Oga10] deals with bifurcation analysis of
pattern dynamics of dissipative systems, and contains Turing instability analysis.

2.2 First theorem

Consider the Suematsu system (1.1) without the nonlocal term:

∂tu = d1∆u− α(u+ v)βu+ cv =: d1∆u+ f1(u, v)

∂tv = d2∆v + α(u+ v)βu− cv =: d2∆v + f2(u, v),
(2.4)

where x ∈ Ω = [0, L] ⊂ R and t > 0, with continuous initial conditions

u0(x) = u(x, 0)

v0(x) = v(x, 0)
(2.5)

15



and Neumann boundary conditions

∂xu(t, 0) = ∂xu(t, L) = ∂xv(t, 0) = ∂xv(t, L) = 0. (2.6)

Assume that the power
β > 1, (2.7)

and all other coefficients are positive, i.e.

c, α, d1, d2, L > 0. (2.8)

Lemma 2.2.1. Consider the system (2.4), with initial conditions (2.5) and Neumann
boundary conditions (2.6). Then, the averaged total mass

s :=
1

|Ω|

∫
Ω

[u(x, t) + v(x, t)] dx (2.9)

is conserved for any t ≥ 0.

Proof. Summing up the two equations of the system (2.4), we have that the sum of
the time derivatives equals the sum of diffusion and reaction terms. Moreover,

|Ω| d
dt
s =

d

dt

∫
Ω

[u(x, t) + v(x, t)] dx =

∫
Ω

(d1∆u+ d2∆v) dx = 0, (2.10)

using the Green’s formula and the Neumann boundary conditions. Therefore,

s =
1

|Ω|

∫
Ω

(u(x, t) + v(x, t)) dx (2.11)

is a conserved quantity for any t ≥ 0.

Theorem 2.2.2. Consider the system (2.4), with initial conditions (2.5), Neumann
boundary conditions (2.6), the power condition (2.7), and the positivity condition
(2.8). Then, there exists a unique positive homogeneous equilibrium(

ū
v̄

)
=

(
cs/(αsβ + c)

s− cs/(αsβ + c)

)
, (2.12)

parametrized by any s > 0. Moreover, the homogeneous equilibrium (2.12) is stable
in the kinetic system of the system (2.4). Assume

d1∂vf1(ū, v̄)− d2∂uf1(ū, v̄) ≥ d1d2. (2.13)

Then the system (2.4) has Turing instability, i.e. the homogeneous equilibrium (2.12)
loses the stability due to diffusion.
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Proof. In (Step 1), we compute the homogeneous equilibrium using the conserved
quantity (2.9).

In (Step 2), we eliminate the trivial eigenvalue 0 using the constraint of mass and
study the linear stability of the homogeneous equilibrium under homogeneous per-
turbations. In (Step 3), we study the linear stability of the homogeneous equilibrium
under nonhomogeneous perturbations.

(Step 1) Consider the homogeneous equilibrium (ū, v̄)ᵀ of the system (2.4). Then
the conserved quantity (2.9) satisfies

s :=
1

|Ω|

∫
Ω

[u(x, t) + v(x, t)] dx = ū+ v̄, (2.14)

and hence

0 = −α(ū+ v̄)βū+ cv̄ = −αsβū+ c(s− ū) = (−αsβ − c)ū+ cs. (2.15)

By the power condition (2.7) and the positivity condition (2.8), we have

− αsβ − c < 0. (2.16)

Thus, we obtain (
ū
v̄

)
=

(
cs/(αsβ + c)

s− cs/(αsβ + c)

)
.

(Step 2) Since
f1 + f2 = 0, (2.17)

if we consider the stability of the homogeneous equilibrium (2.12) in the kinetic system
of the system (2.4), we obtain a trivial eigenvalue 0 associated with the eigenvector(

1
1

)
. (2.18)

The eigenvalue 0 can be eliminated, if the mass s is fixed. We reduce the number
of components by the constraint of mass (2.14), and consider the linear stability of
the homogeneous equilibrium (2.12) in the kinetic system of the system (2.4), under
the constraint of mass (2.14).

For any fixed s > 0, we have

∂tu = −α(u+ v)βu+ cv = −αsβu+ c(s− u) = (−αsβ − c)u+ cs, (2.19)

where
− αsβ − c < 0, (2.20)

by the power condition (2.7) and the the positivity condition (2.8). Notice that u→ ū
as t→∞ implies that v = s− u→ s− ū = v̄ as t→∞ under the constraint of mass
(2.14). Therefore, (ū, v̄)ᵀ is asymptotically stable in the kinetic system of the system
(2.4), under the constraint of mass (2.14).
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(Step 3) Consider the full system (2.4) and linearize it about the homogeneous
equilibrium (2.12). Equivalently, setting

w(x, t) =

(
u(x, t)− ū
v(x, t)− v̄

)
, D := diag(d1, d2), f :=

(
f1

−f1

)
, (2.21)

we linearize the system
∂tw = D∆w + f(w) (2.22)

about the origin w = (0, 0)ᵀ. We obtain

∂tw = D∆w + J2(ū, v̄)w, (2.23)

where J2 denotes the Jacobi matrix of f = (f1,−f1)ᵀ.
Let W (x) be the time-independent solution of the spatial eigenvalue problem

−∆W = k2W, (2.24)

with the Neumann boundary condition

(n · ∇) ·W = 0, (2.25)

for x ∈ ∂Ω. Let Wk(x) be the eigenfunction corresponding to the wave number

k = mπ/L. (2.26)

Assume that each Wk(x) satisfies the Neumann boundary conditions

(n · ∇) ·Wk(0) = (n · ∇) ·Wk(L) = 0. (2.27)

Consider the exponential Ansatz

w(x, t) =
∑
k

ck exp(λt)Wk(x) (2.28)

to the system (2.22), where ck is determined by a Fourier expansion of the initial
conditions in terms ofWk(x). Note that λ is the eigenvalue which determines temporal
growth.

Substituting the exponential Ansatz (2.28) into the linearized system (2.23), we
have

λ
∑
k

ck exp(λt)Wk(x) = D
∑
k

ck exp(λt)∆Wk(x) + J2(ū, v̄)
∑
k

ck exp(λt)Wk(x),

and cancelling exp(λt), we obtain, for each k,

λWk(x) = D∆Wk(x) + J2(ū, v̄)Wk(x)

=−Dk2Wk(x) + J2(ū, v̄)Wk(x).
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Hence, we have (
λI − J2(ū, v̄) +Dk2

)
Wk(x) = 0. (2.29)

We require nontrivial solutions for Wk(x) and obtain the characteristic polynomial∣∣λI − J2(ū, v̄) +Dk2
∣∣ = 0. (2.30)

In order for the homogeneous equilibrium (2.12) to be unstable to spatial distur-
bances, we need an eigenvalue λ = λ(k) of the matrix

Ak := J2(ū, v̄)−Dk2

=

(
−k2d1 + ∂uf1 ∂vf1

−∂uf1 −k2d2 − ∂vf1

)
(2.31)

such that, for some k ≥ 1, the eigenvalue has positive real part.
Since

trAk = −k2(d1 + d2) + trJ2(ū, v̄)

= −k2(d1 + d2)− αβcsβ

αsβ + c
− αsβ − c− αβcsβ

αsβ + c

= −k2(d1 + d2)− αsβ − c
< 0,

(2.32)

the k-th mode is unstable if
detAk < 0. (2.33)

Indeed, if
d1∂vf1(ū, v̄)− d2∂uf1(ū, v̄) ≥ d1d2, (2.34)

so that

k∗ :=

√
∂vf1(ū, v̄)

d2

− ∂uf1(ū, v̄)

d1

≥ 1,

we have

detAk = (−k2d1 + ∂uf1)(−k2d2 − ∂vf1) + ∂uf1∂vf1

= k4d1d2 + ∂vf1k
2d1 − ∂uf1k

2d2 − ∂uf1∂vf1 + ∂uf1∂vf1

= k2

{
k2 −

(
∂vf1

d2

− ∂uf1

d1

)}
< 0,

for k ∈ (0, k∗). Hence, for some k ≥ 1, the eigenvalue has positive real part, i.e. the
homogeneous equilibrium (2.12) is unstable.

Remark. In (Step 3), we studied the linear stability of the wave number k. Substi-
tuting

w = w̃ exp(λt+ ikx), (2.35)

into the system (2.22), we obtain the Jacobi matrix (2.31).
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Remark. Note that ck := (αk, βk)
ᵀ is determined by the following decomposition in

terms of the Fourier modes:

α̇k = −k2d1αk + f̂k

β̇k = −k2d2βk − f̂k,

where k ≥ 0 and f̂k is the k-th Fourier coefficient of the first component f1.
Suppress the index 1 and write f instead of f1 in this remark.
Here, α0 + β0 is independent of time t and we look for the solution satisfying

α0 + β0 = 0, because we are looking for the solution to the original system (2.4),
under the constraint of mass. Therefore, consider

α̇k = −k2d1αk + f̂k, k ≥ 0

β̇k = −k2d2βk − f̂k, k > 0

β0 = −α0.

(2.36)

We take the Taylor expansion of f at (ū, v̄)ᵀ:

f(u, v) = f(ū, v̄) + fu(u− ū) + fv(v − v̄)

+
fuu
2

(u− ū)2 + fuv(u− ū)(v − v̄) +
fvv
2

(v − v̄)2 +O(3).

Here all the derivatives, e.g. fu, fv, are evaluated at (ū, v̄)ᵀ. Now the 0-th order
equation of (2.36) reads

α̇0 = f̂0 = f(α0, β0) + fuα0 + fvβ0 +O(2) = (fu − fv)α0 +O(2)

and the equilibrium α0 is asymptotically stable as

fu − fv = trJ2(ū, v̄) < 0.

The Jacobi matrix of the nonzero modes of (2.36) is, for each k ∈ N,

Ak := J2(ū, v̄)− k2D =

(
−k2d1 + fu fv
−fu −k2d2 − fv

)
. (2.37)

2.3 Saturation of linear instability

To show that our nonlinear terms prevent the unstable equilibrium from growing
indefinitely, we will show that the system (2.4) possesses a set with the property that
if the initial and boundary values of a solution to the system lie in such a set, then
the values also lie in the set. We call such a set a positively invariant set. First, we
look for a positively invariant set for the kinetic system.

Proposition 2.3.1. The kinetic system of the system (2.4) possesses a positively
invariant set

K = {(u, v) ∈ R2 |u ≥ 0, v ≥ 0, u+ v ≤ s}. (2.38)
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Proof. We consider nullclines under the constraint of conservation of mass s = u+v.
Here, the nullclines ∂tu = f1 = 0 and ∂tv = f2 = −f1 = 0 coincide and give us a line
of equilibrium.

Consider the region defined by

K = {(u, v) ∈ R2 |u ≥ 0, v ≥ 0, u+ v ≤ s}, (2.39)

as in Figure 2.1.

Figure 2.1: The set K = {(u, v) ∈ R2 |u ≥ 0, v ≥ 0, u + v ≤ s} is positively invariant for
the kinetic system. Plot of vector field (f1, f2) = (f1,−f1)ᵀ with coefficients
s = 1, c = 2, α = 1, and β = 2. Yellow line represents the line of equilibrium
f1 = f2 = 0. Red line represents the constraint of mass u+ v = s.

Then, on the u-axis, vectors within the triangle face upper left as the first compo-
nent is negative and the second component is positive. On the v-axis, vectors within
the triangle face lower right as the first component is positive and the second com-
ponent is negative. On the line u+ v = s, the equilibrium is asymptotically stable as
we saw in (Step 2) of the proof of Theorem 2.2.2.
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A triangular region, however, is not known to be positively invariant for a reaction-
diffusion system with distinct diffusion rates. Therefore, we make a detour and take
a family of rectangles inside the triangle, which evolves to the rectangle touching the
stable equilibrium.

Figure 2.2: Illustration of vector field
on the boundary when the
rectangular region is off to
the left.

Figure 2.3: Illustration of vector field
on the boundary when the
rectangular region is off to
the right.

Figure 2.4: Illustration of vector field
on the boundary when the
rectangular region touches
the intersection of the line
of equilibrium and the con-
straint of mass.

Consider an extended system of the system (2.4):

∂tu = d1∆u− α(u+ v)βu+ cv =: d1∆u+ f1(u, v)

∂tv = d2∆v + α(u+ v)βu− cv =: d2∆v + f2(u, v)

ṫ = 1,

(2.40)
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and denote the nonlinearity of this extended system by

F (u1, u2, v1, v2) =

f1(u, v)
f2(u, v)

1

 . (2.41)

Define
S := {(u, v, t) | (u, v) ∈ Γ(t), t ≥ 0}. (2.42)

EH
Figure 2.5: Cross-section of the invariant set Γ(t) converges to Γ∞.

Proposition 2.3.2. The set S is positively invariant for the extended system (2.40).

Proof. We will show that for the outward normal η at any boundary point u∗ ∈
∂Γ(t), the inner product is negative, i.e.

〈η, F (u∗, t)〉 ≤ 0, (2.43)

for (x, t) ∈ Ω × (0, T ]. Then a corollary to Theorem 1 in [Wei75] shows that S is a
positively invariant set. Theorem 1 in [Wei75] assumes that diffusion coefficients are
equal, but we have two distinct diffusion coefficients d1 6= d2. However, the normal
vector of the boundary of a rectangle whose edges are parallel to the axes has 0 as
one of the first two components. Hence, multiplying the nonlinearity (2.41) by such
a normal vector, only one of the two diffusion coefficients appears in an inequality.
Therefore, Theorem 1 in [Wei75] is applicable, and a corollary reads as follows:

Lemma 2.3.3. [Wei75] Let S be a closed convex subset of Rm with the property that
for any outward normal at any boundary point of S, the inequality (2.43) is satisfied.
Here, m denotes the number of components of the extended system.
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Assume that the nonlinearity (2.41) is uniformly Hölder continuous in x and t
and Lipschitz continuous in (u, v, t)ᵀ for (x, t) ∈ Ω× (0, T ].

If (u, v, t)ᵀ is any solution of the extended system in (x, t) ∈ Ω × (0, T ] which is
continuous in (x, t) ∈ Ω̄ × (0, T ], and if the values of (u, v, t)ᵀ on Ω̄ × {0} and on
∂Ω × [0, T ] are bounded and Hölder continuous and lie in S, then (u, v, t)ᵀ ∈ S in
Ω× (0, T ].

To apply Lemma 2.3.3, we compute the inner product.
Imagine S as a cuboid whose bottom lies on Γ(0) and evolves in the time-direction.

The right vertical edge of the bottom evolves in the time direction, constituting a
sidewall of the boundary of M . Similarly, the upper horizontal edge evolves in the
time direction, constituting another sidewall. Two sides of S are flat because the
u-axis and v-axis do not evolve over time, and the cross-section Γ(t) converges to Γ∞
as t→∞.

Let h1 be the first component of the flux vector on the sidewall of the right vertical
edge of Γ(t).

h1 = 〈η, ∂t(u, v, t)ᵀ〉, (2.44)

where η is the outer normal vector on the boundary of M .
On the sidewall of the right vertical edge, the outer normal is η = (1, 0, f1(u∗))

ᵀ,
and

h1 = d1∆u+ f1(u∗). (2.45)

Similarly, let h2 be the second component of the flux vector on the sidewall of the
side wall of the upper horizontal edge of Γ(t).

h2 = 〈η, ∂t(u, v, t)ᵀ〉. (2.46)

Similarly, on the upper horizontal edge, the outer normal vector is η = (0, 1, f2(u∗))
ᵀ

and
h2 = d2∆v + f2(u∗). (2.47)

If we have both
h1, h2 ≤ 0, (2.48)

then we have an inward flux on the boundary of S.
Now, on the vertical edge of the cross-section Γ∞, we have monotonicity in v.

That is,
∂vf1 = c− αβ(u+ v)β−1u ≥ c− αβsβ (2.49)

and if
c− αβsβ ≥ 0, (2.50)

we have
∂vf1 ≥ 0. (2.51)

If
∂vf1 = c− αβ(u∗ + v)β−1u∗ ≤ c− αβuβ∗ ≤ 0, (2.52)

we have
∂vf1 ≤ 0. (2.53)
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For either case, we have a non-positive value of f1 as

f1(u∗, v∗) = 0 ≤ 0, (2.54)

and
f1(u∗, 0) = −αuβ+1

∗ ≤ 0. (2.55)

Similarly, on the horizontal edge of the cross-section Γ∞, we have monotonicity in
u:

∂uf2 = αβu(u+ v)β−1 + α(u+ v)β ≥ 0, (2.56)

and
∂uf2 ≥ 0. (2.57)

At the corner, we have
f2(u∗, v∗) = 0 ≤ 0. (2.58)

By the maximum principle, both ∆u and ∆v take the maximum value 0 at the
boundary. Hence, we have both

h1, h2 ≤ 0, (2.59)

for (x, t) ∈ Ω× (0, T ].
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Chapter 3

Effect of rapidly periodic forcing

This chapter is organized as follows: Section 1 introduces a rapidly periodic forcing

cper(t, ε) := c[1 + cos(2πt/ε)], (3.1)

where 0 < ε � 1. Section 2 introduces Gevrey regularity so that we can state the
time-averaging theorem which we want to apply. Section 3 contains the main theorem
of this chapter. To examine the effect of rapidly periodic forcing on the Suematsu
model without the nonlocal term (2.4), we will apply a time-averaging theorem for
semilinear parabolic partial differential equations under rapid quasi-periodic forcing
[Mat08]. The system with the averaged intensity coefficient

〈cper(t, ε)〉 :=
1

ε

∫ ε

0

cper(t, ε) dt =
1

ε

∫ ε

0

c[cos(2πt/ε) + 1] dt = c. (3.2)

turns out to be a good approximation of the system with rapidly periodic forcing
cper(t, ε).

3.1 System with rapidly periodic forcing

We study the effect of rapidly periodic forcing of stationary illumination. Instead of
taking a constant rate of exchange from the lower layer to the upper layer, we take a
rapidly periodic coefficient

cper(t, ε) := c[1 + cos(2πt/ε)], (3.3)

where 0 < ε � 1. This coefficient is designed so that the averaged intensity corre-
sponds to the stationary illumination.
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Consider the Suematsu model with rapidly periodic forcing as follows:

∂tu = d1∆u− α(u+ v)βu+ cper(t, ε)v

= d1∆u− α(u+ v)βu+ cv + c cos(2πt/ε)v

= d1∆u− α(u+ v)βu+ cv +
1

ε

∫ ε

0

c cos(2πt/ε)v dt

+ c cos(2πt/ε)v − 1

ε

∫ ε

0

c cos(2πt/ε)v dt

∂tv = d2∆v + α(u+ v)βu− cper(t, ε)v

= d2∆v + α(u+ v)βu− cv − c cos(2πt/ε)v

= d2∆v + α(u+ v)βu− cv − 1

ε

∫ ε

0

c cos(2πt/ε)v dt

− c cos(2πt/ε)v +
1

ε

∫ ε

0

c cos(2πt/ε)v dt,

(3.4)

where 0 < ε� 0.

3.2 Time-averaging

We will apply theorem B on p.434 in [Mat08] to obtain an estimate of the effect of
rapid forcing.

3.2.1 Gevrey regularity

Before stating assumptions for the time-averaging theorem, let us introduce some
terminology.

We will follow [Mat01], which extended results of [FT98]. For the description of
Sobolev spaces; see [Tem88].

Definition 3.2.1. Let Ω = [0, L]d, d = 1, 2, 3, where L > 0. Gevrey class Gσ,ν(Ω,Rn)
is defined by

Gσ,ν(Ω,Rn) := D
(
Aν exp(σ(−∆)1/2)

)
, (3.5)

where A = − diag(d1, . . . , dn)∆ is a sectorial operator.

A norm is given by

|u|Gσ,ν =

 n∑
k=1

∑
j∈Zd

ujku
j
k(1 + dk‖j‖2)2ν exp(2σ‖j‖)

1/2

, (3.6)

where dk is the diffusion coefficient of the k-th component and ujk is the k-th compo-
nent of the Fourier coefficient of the Fourier expansion of the periodic function u into
exp(i2π

L
j · x).
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Gevrey class Gσ,ν(Ω,Rn) contains functions whose Fourier modes decay exponen-
tially fast. For σ > 0, the Fourier coefficients uj of u ∈ Gσ,ν(Ω,Rn) decay like

‖j‖−2ν exp(−σ‖j‖). (3.7)

Gevrey class Gσ,ν(Ω,Rn) is a Hilbert space with the scalar product

(v, w)G0,ν =
n∑
k=1

∑
j∈Zd

vjkw
j
k(1 + dk‖j‖2)2ν exp(2σ‖j‖), (3.8)

where vj and wj are the Fourier coefficients in Rn of the periodic functions v and w.
Note that

G0,ν(Ω,Rn) = H2ν
per(Ω,Rn) = Xν , (3.9)

with X = L2(Ω,Rn).
By Hm

per(Ω), or also Wm,p
per (Ω), we denote the space of restrictions to Ω of periodic

functions which are in Hm(O), or Wm,p(O), on every bounded open set O. To study
the spaces Hm

per(Ω), we can use the Fourier series expansion

u(x) =
∑
j∈Zn

uj exp(i
2π

L
j · x), (3.10)

with ūk = u−k so that u is real. Then u is in L2(Ω) if and only if

‖u‖2
L2(Ω) = |Ω|

∑
j∈Zn
|uj|2 <∞, (3.11)

and u is in Hm
per(Ω), s ∈ R+, if and only if∑

j∈Zn
(1 + |j|2)s|uj|2 <∞. (3.12)

Lemma 3.2.1. [Mat01] For ν > d and σ > 0, all functions u ∈ Gσ,ν(Ω,Rn) are real
analytic.

3.2.2 Assumptions

Below, we will collect assumptions in the theorem.

(H1) There exists a sequence of Galerkin projections (PN)N∈N which satisfy the fol-
lowing:

(i) The sequence of projections converges strongly to the identity on X:

lim
N→∞

PNu = u (3.13)

in X for all u ∈ X.
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(ii) The projections PN commute with A on its domain of definition

PNAu = APNu (3.14)

for all u ∈ D(A).

(iii) The operator A is bounded on the range of PN

|APNu|X ≤ N |PNu|X (3.15)

for all u ∈ X.

(H2) In the periodic case p = 1, we require ω 6= 0.

In the quasi-periodic case, let ω ∈ Rp be such that there exist constants γ > 0
and τ > p− 1 such that for all m ∈ Zp \ {0},

|(m,ω)| ≥ γ|m|−τ , (3.16)

where (· , ·) denotes the inner product on Rp and | · | denotes the norm of m, i.e.
|m| =

∑p
j=1 |mj|.

(H3) For all ε > 0 and u ∈ X the quasi-periodic term has zero mean:∫
θ∈T

g(u, θ, ε) dθ = 0. (3.17)

(H4) There exists a closed, densely defined, boundedly invertible operator Γσ,ν with
the domain of definition

Gσ,ν := D(Γσ,ν) ⊂ D(A) (3.18)

such that R(PN) ⊂ Gσ,ν , Γσ,ν(R(PN)) = R(PN) for all N , and Γσ,νAu = AΓσ,νu
for all u ∈ R(PN). Here by D and R, we denote the domain, and the range,
respectively. We equip the Gevrey spaces Gσ,ν with the graph norm

|u|Gσ,ν = |u|X + |Γσ,νu|X . (3.19)

We assume that Gevrey-smooth functions are exponentially well approximated
by the Galerkin projections PN

|Γ−1
σ,ν(id− PN)|L(X,X) ≤ C0 exp(−`0/N

ν) (3.20)

for N -independent constants C0(σ, ν) and c0(σ, ν).

(H5) There is a Gevrey class Y = Gσ,ν with σ, ν > 0 and a constant δ > 0 for the size
of the complex extension such that the following properties of the nonlinearities
hold.

The nonlinearities f : (Y + δ) → YC and g : (Y + δ) × (T + δ) × R → YC are
analytic and bounded on bounded subsets when considered on Gevrey spaces,
extended in the complex direction. In addition, all of the above statements are
assumed to hold when the space of Gevrey regularity Y = Gσ,p is replaced by
Y = X.

(H6) The operator A generates a strongly continuous semigroup both on X and Gσ,ν .
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3.2.3 Time-averaging theorem

The theorem to apply is on page 434 in [Mat08] which reads as follows:

Proposition 3.2.2. [Mat08] Let X be a real Banach space and A be a closed densely
defined operator with domain D(A) generating a strongly continuous semigroup. De-
note by T = (R/Z)p the p-dimensional torus. Consider the following initial value
problem on the phase space X × T:

u̇ = Au+ f(u) + g(u, θ, ε) (3.21)

θ̇ = ω/ε, (3.22)

where t > 0, u ∈ X, θ ∈ T, and 0 < ε � 1, with initial conditions u(0) = u0 and
θ(0) = θ0. Assume (H1)-(H5), then for any ball of radius R in Gσ,ν, there exists
an ε0 > 0 such that for 0 < ε < ε0, the following holds: There exists a C1-near-
identity-transformations u = v + εw(v, θ, ε) such that the transformed equation has
the form

v̇ = Av + f(v) + ḡ(v, ε) + r(v, θ, ε) (3.23)

θ̇ = ω/ε, (3.24)

with initial conditions v(0) = u0 and θ(0) = θ0, where ḡ and r are some bounded
functions on balls in X satisfying

|ḡ(v, ε)|X ≤ C(|v|X)ε(τ+1)/(τ+1+1/ν) (3.25)

|r(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−`/ε1/(τ+1+1/ν)). (3.26)

Assume also that (H6) holds. Then the solutions of the truncated equation

˙̄v = Av̄ + f(v̄) + ḡ(v̄, ε) (3.27)

θ̇ = ω/ε, (3.28)

with initial condition v̄(0) = u0 and θ(0) = θ0 remain close to the solutions of the
transformed equation (3.23), i.e.

|v(t)− v̄(t)|X ≤ C(T,R) exp(−`/ε1/(τ+1+1/ν)), (3.29)

for some C(T,R) where v(t) is a solution of the equation (3.23), resp. v̄(t) is a
solution of the equation (3.27), that remains inside the ball BR(Gσ,ν) for t ∈ [0, T ].

3.3 Second theorem

As an application of the time-averaging theorem, we can say that the effect of rapidly
periodic forcing is negligible.
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Theorem 3.3.1. Consider the Suematsu model with rapidly periodic forcing (3.4).
Then the effect of rapidly periodic forcing is exponentially small. More precisely,
there exists a time-periodic coordinate transformation that converts the system (3.4)
into the Suematsu model without the nonlocal term (2.4) with an exponentially small
remainder which can be truncated without any qualitative change of behavior of solu-
tions.

Proof. Theorem 3.3.1 is a straightforward application of Proposition 3.2.2 to the
system (3.4). To apply the proposition, We need to show that the conditions (H1)-
(H6) are satisfied:

(H1) Projection to spatial Fourier modes satisfies the conditions.

(H2) Our forcing c cos(2πt/ε) is periodic and 1 = ω 6= 0.

(H3) For all ε and (u, v)ᵀ ∈ X the periodic term has zero mean. In fact, we have sub-
tracted the mean before so that this assumption is satisfied. We can explicitly
check the condition as follows:∫ 1

0

[
c cos(2πt/ε)v(x, t)− 1

ε

∫ ε

0

c cos(2πt/ε)v(x, t) dt

]
dθ

=

∫ 1

0

[
c cos(2πθ)v(x, εθ)−

∫ 1

0

c cos(2πt′)v(x, εt′) dt′
]
dθ

=

∫ 1

0

c cos(2πθ)v(x, εθ) dθ −
∫ 1

0

c cos(2πt′)v(x, εt′) dt′

= 0,

where θ := t/ε.

(H4) The operator Γσ,ν is designed so that it behaves like exp(σ|A|ν).
For sectorial operators like the Laplacian A = ∆ on regular domains, the Gevrey
space can be defined as the domain of Γσ,ν = exp(σ(−A)ν).

We may define the norm by

|u(t)|Gσ,1/2 = |u|X + | exp(σ(−∆)1/2)u|X . (3.30)

The Gevrey norm can be expressed in spatial Fourier modes. For

u(x) =
∑
k∈Z

uk exp(i2πkx) ∈ Gσ,1/2, (3.31)

with uk ∈ Cn, we have

|u|2Gσ,1/2 =
∑
k∈Z

|uk|2(1 + exp(σ|k|))2. (3.32)

Let
PNu =

∑
k∈Z,4π2|k|2≤N

uk exp(i2πkx). (3.33)
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Then

|(id− PN)u|X =

∣∣∣∣∣∣
∑

k∈Z,|k|>
√
N

uk exp(i2πkx)

∣∣∣∣∣∣
X

≤ exp(−σN1/2)|u|Gσ,1/2 . (3.34)

(H5) Our nonlinearity is entire in u and real analytic in θ, hence it is analytic in
Gσ,1/2 and in X.

(H6) In the case of reaction-diffusion equations, the sectorial operator A = D∆
generates a strongly continuous semigroup both on X and Gσ,1/2.

By the Proposition 3.2.2, there exists a time-periodic coordinate transformation
that converts the Suematsu model with rapidly periodic forcing (3.4) into the Sue-
matsu model with correction and some remainder.

Moreover, the nonautonomous remainder is exponentially small, namely

|r(u, θ, ε)|X ≤ C(|u|Gσ,1/2) exp(−`/ε1/(τ+3)), (3.35)

where ν = 1/2, and the solutions to the truncated system, i.e. the Suematsu model
with the averaged coefficient 〈cper(t, ε)〉 = c and some correction, with relevant initial
conditions remain close to the solutions to the system with the remainder, namely

|r(u(t), θ(t), ε)|X ≤ C(|u0|X) exp(−`(t)/ε1/(τ+3)), (3.36)

with `(t) = min(t, t∗, `), where t∗ is the maximal Gevrey exponent.
Finally, recall that we added and subtracted the mean of oscillation

1

ε

∫ ε

0

c cos(2πt/ε)v(x, t) dt (3.37)

for both components. Provided that ε is small, i.e. the oscillation is rapid, the variable
v does not change much during the short time-interval, so that we can put it outside
the integral, to approximate the value of the integral. But then,∫ ε

0

c cos(2πt/ε) dt = 0, (3.38)

and the mean turns out to be small. Thus the averaged system with correction
approximates well the Suematsu model with rapidly periodic forcing.
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Chapter 4

Stationary or rapidly periodic
illumination

This chapter is organized as follows: In Section 1, we derive a new model using
the idea of compartmentalization and time-averaging. The new model assumes the
biological hypothesis (1.7); that is, Euglena gracilis makes a change of direction if it
senses flicker.

The new compartmental model has Turing instability for coefficients correspond-
ing to stationary illumination and loses Turing instability for coefficients correspond-
ing to rapidly periodic illumination. Therefore, the failure of pattern formation under
certain rapidly periodic illumination can be explained by the loss of Turing instability.

4.1 Modeling

Negative phototaxis is directional. To understand the mechanism of negative photo-
taxis, we distinguish cells between those facing perpendicular to the light source and
those facing parallel to the light source.

Different responses depending on the relative positions of cells boil down to a
simple single rule (1.7). Based on this rule, we build a new model not only for
stationary illumination but also for rapidly periodic illumination.

4.1.1 Compartmentalization

Let u1, u2, v1, and v2 denote the density of cells in the upper layer facing vertical,
that of those facing horizontal, the density of cells in the lower layer facing vertical,
and that of those facing horizontal, respectively. We will then describe the exchange
of densities using the following matrix:

u1 u2 v1 v2

u1


−a b cper(t, ε) 0

u2 a −b 0 0
v1 0 0 −a− cper(t, ε) b
v2 0 0 a −b

(4.1)
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Here, we assumed the same responses both in the upper and the lower layers but
assumed that only cells in the lower layer that are facing vertical may arrive at the
upper layer remaining to be vertical.

Observe that the frequency of periodic shading due to the rotation, which is of
order of seconds, is rapid, in the time-scale of pattern formation, which is of order
of 10 minutes. Moreover, Theorem 3.3.1 guarantees that rapid external forcing by
cper(t, ε) := c[1 + cos(2πt/ε)] is qualitatively equivalent to stationary illumination by

〈cper(t, ε)〉 :=
1

ε

∫ ε

0

c[1 + cos(2πt/ε)] dt = c.

In other words, the oscillatory illumination from below is so rapid that only the
averaged amount of light matters to drive cells to swim away. On the other hand,
rapidly periodic forcing causes a change of direction of cells. Thus, the cells in the
lower layer that are facing vertical may swim away vertically, but some cells make a
change of direction because their sensors receive periodic light, remaining in the lower
layer, facing the other direction.

Averaging out the rapidly periodic coefficient cper(t, ε) = c in the compartmental-
ization matrix (4.1), we obtain the compartmentalization matrix H defined in (1.10).

4.1.2 Characterization of illumination conditions

Now, we characterize illumination conditions by different responses depending on the
relative position.

First, consider stationary illumination from below. (Assume that illumination is
strong enough to induce negative phototaxis.)

• If a cell faces vertical relative to the planar light source, then it senses station-
ary light input, as in Figure 1.7.

• On the other hand, if a cell faces horizontal relative to the source, then it senses
periodic light input, due to its own rotation with frequency about 1 Hz.

Next, consider rapidly periodic illumination from below of period same as the in-
trinsic rotation with frequency about 1 Hz. (Assume again that the averaged intensity
is high enough to induce negative phototaxis.)

• If a cell faces vertical relative to the planar light source, then it senses periodic
light input, due to external oscillation as in Figure 1.7.

• On the other hand, if a cell faces horizontal relative to the source, then it also
senses periodic light input, due to both its own rotation and external oscil-
lation. Here the period of light input depends on the two phases of oscillations,
but we focus on its periodicity and ignore fluctuations of the period of light
input.

34



We suppose that phototaxis, including negative phototaxis, is optimized in sta-
tionary illumination as it should cause a cell to swim to a more preferable environment
and we will formulate negative phototaxis as follows: A cell behaves according to the
input its sensor receives.

• If its sensor receives stationary input, then the cell keeps the direction, as the
present direction is already good. Here, we do not distinguish between cases a
cell faces toward and away from the light source.

• If its sensor receives periodic input, then the cell makes a change of direction,
as the present direction is not good for it to get away from light. Here, it is
possible that as a result of the turn, it ends up facing toward the light source.

Different responses depending on the relative positions boil down to a single rule:
Euglena gracilis makes a change of direction if it senses flicker of frequency
≈ 1Hz of its intrinsic rotation.

Therefore, we may characterize illumination conditions by coefficients in the com-
partmentalization matrix H defined by (1.10) as follows:

• Stationary illumination corresponds to the case where vertical cells tend to keep
vertical and horizontal cells tend to make a change of direction, i.e. a� b.

• rapidly periodic illumination corresponds to the case where both vertical cells
and horizontal cells equally tend to make a change of direction, i.e. a ≈ b.

See Figure 4.1.

:$ #

I

Figure 4.1: The tendency of making a change of direction from vertical to horizontal
relative position a; and the tendency of making a change of direction from
horizontal to vertical relative position b.
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4.1.3 New model

Let u := (u1, u2, v1, v2)ᵀ, f := (f1, f2, f3, f4)ᵀ, D := diag(d11, d12, d21, d22),

G :=


−1 0 0 0
0 −1 0 0
r1 r2 0 0

1− r1 1− r2 0 0

 , and H :=


−a b c 0
a −b 0 0
0 0 −a− c b
0 0 a −b

 .

We obtain the following model:

∂tu = D∆u + α(u1 + u2 + v1 + v2)βGu +Hu =: D∆u + f(u), (4.2)

where x ∈ Ω = [0, L] ⊂ R and t > 0, with continuous initial conditions

u10(x) = u1(x, 0)

u20(x) = u2(x, 0)

v10(x) = v1(x, 0)

v20(x) = v2(x, 0)

(4.3)

and Neumann boundary conditions

∂xu1(t, 0) = ∂xu1(t, L) = ∂xu2(t, 0) = ∂xu2(t, L) = 0

∂xv1(t, 0) = ∂xv1(t, L) = ∂xv2(t, 0) = ∂xv2(t, L) = 0.
(4.4)

Remark. Componentwise, the new model (4.2) can be written as follows:

∂tu1 = d11∆u1 − α(u1 + u2 + v1 + v2)βu1 − au1 + bu2 + cv1

=: d11∆u1 + f1(u1, u2, v1, v2)

∂tu2 = d12∆u2 − α(u1 + u2 + v1 + v2)βu2 + au1 − bu2

=: d12∆u2 + f2(u1, u2, v1, v2)

∂tv1 = d21∆v1 + r1α(u1 + u2 + v1 + v2)βu1 + r2α(u1 + u2 + v1 + v2)βu2

− av1 + bv2 − cv1

=: d21∆v1 + f3(u1, u2, v1, v2)

∂tv2 = d22∆v2 + (1− r1)α(u1 + u2 + v1 + v2)βu1

+ (1− r2)α(u1 + u2 + v1 + v2)βu2 + av1 − bv2,

=: d22∆v2 + f4(u1, u2, v1, v2).

(4.5)

4.2 Third theorem

Consider the new compartmental model (4.2), with initial conditions (4.3) and Neu-
mann boundary conditions (4.4).

Assume that the power
β > 1, (4.6)
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the sinking rates
0 ≤ r1, r2 ≤ 1, (4.7)

and all other coefficients are positive, i.e.

a, b, c, α, d11, d12, d21, d22, L > 0. (4.8)

Lemma 4.2.1. The averaged total mass

s :=
1

|Ω|

∫
Ω

[u1(x, t) + u2(x, t) + v1(x, t) + v2(x, t)] dx (4.9)

is conserved for any t ≥ 0.

Proof. If we sum up all four equations, we have time-derivatives on the left hand
side and the sum of diffusion and reaction terms on the right hand side. The reaction
terms on the right hand side are designed to add up to 0 and we have Neumann
boundary conditions. Thus, the system (4.2) is mass-conserved, i.e.

d

dt

∫
Ω

(u1(x, t) + u2(x, t) + v1(x, t) + v2(x, t)) dx

=

∫
Ω

(d11∆u1 + d12∆u2 + d21∆v1 + d22∆v2) dx = 0, (4.10)

the last identity holds by the integration by parts and Neumann boundary conditions.
Hence

s :=
1

|Ω|

∫
Ω

(u10(x) + u20(x) + v10(x) + v20(x)) dx (4.11)

is conserved for any t ≥ 0.

The next theorem elucidate how Turing instability is lost, and the associated
pattern formation fails under rapidly periodic illumination.

Theorem 4.2.2. Consider the new compartmental model (4.2), with initial conditions
(4.3) and Neumann boundary conditions (4.4), the power condition (4.6), the sinking
rate condition (4.7), and the positivity condition (4.8). Then, there exists a unique
positive homogeneous equilibrium 

u1

u2

v1

v2

 (4.12)

parametrized by any s > 0. The explicit form of the homogeneous equilibrium (4.12)
can be found in Appendix A. Assume

det
(
J4(u1, u2, v1, v2)− k2D

)
< 0 (4.13)

for some wave number k ∈ N. Here, J4 denotes the Jacobi matrix of the kinetics
f := (f1, f2, f3, f4)ᵀ of the system (4.2). Then the system has Turing instability.
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Moreover, there exists a set of coefficients for which the homogeneous equilibrium
(4.12) is stable in the kinetic system of the system (4.2) and det (J(u1, u2, v1, v2)− k2D)
surpasses 0 as the value of a approaches the value of b, i.e. Turing instability is lost
as a approaches b.

Proof. Similarly to Proof of Theorem 2.2.2, in (Step 1) we compute the homoge-
neous equilibrium using the conserved quantity (4.9). In (Step 2), we study the linear
stability of the homogeneous equilibrium under homogeneous perturbations. In (Step
3), we study the stability of the homogeneous equilibrium under nonhomogeneous
perturbations. In (Step 4), we will present a set of coefficients for which the homoge-
neous equilibrium (4.12) loses its stability the determinant surpasses 0 as the value
of a approaches the value of b.

(Step 1) Consider the homogeneous equilibrium (ū1, ū2, v̄1, v̄2)ᵀ of the system (4.2).
Note that the sum f1 + f2 + f3 + f4 is identically zero. Hence, it suffices to solve
f1 + f2 + f3 = 0 at the homogeneous equilibrium (ū1, ū2, v̄1, v̄2)ᵀ.

Now, the conserved quantity (4.11) satisfies

s =
1

|Ω|

∫
Ω

(ū1 + ū2 + v̄1 + v̄2) dx = ū1 + ū2 + v̄1 + v̄2, (4.14)

and equations for the first three components read as follows:

0 =− αsβū1 − aū1 + bū2 + cv̄1

0 =− αsβū2 + aū1 − bū2

0 =r1αs
βū1 + r2αs

βū2 − av̄1 + bv̄2 − cv̄1.

(4.15)

We can solve (4.15) as a linear system:

B

ū1

ū2

v̄1

 :=

−a− αsβ b c
a −b− αsβ 0

r1αs
β − b r2αs

β − b −a− b− c

ū1

ū2

v̄1

 =

 0
0
−bs

 . (4.16)

Since

detB = r1α
2cs2β − aα2s2β − α2bs2β − α2cs2β − abc− a2αsβ − αb2sβ

− b2c− 2aαbsβ − aαcsβ − 2αbcsβ + r2aαcs
β + r1αbcs

β

= −(1− r1)α2cs2β − (1− r2)aαcsβ − (1− r1)αbcsβ

− aα2s2β − α2bs2β − abc− a2αsβ − αb2sβ

− b2c− 2aαbsβ − αbcsβ

< 0,

we can invert the matrix B to solve for the homogeneous equilibrium (4.12).
The explicit expression can be found in Appendix A.
(Step 2) If we consider the stability of the homogeneous equilibrium (A.5) in the

kinetic system of the system (4.2), we obtain a trivial eigenvalue 0 associated with
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the eigenvector 
1
1
1
1

 . (4.17)

We can indeed eliminate the eigenvalue 0, if we reduce the number of components
by the mass constraint (4.14), and consider the linear stability of the homogeneous
equilibrium (A.5) of the first three components of the kinetic system of the system
(4.2):

∂tu1 = −α(u1 + u2 + v1 + v2)βu1 − au1 + bu2 + cv1

= f1(u1, u2, v1, v2)

∂tu2 = −α(u1 + u2 + v1 + v2)βu2 + au1 − bu2

= f2(u1, u2, v1, v2)

∂tv1 = r1α(u1 + u2 + v1 + v2)βu1 + r2α(u1 + u2 + v1 + v2)βu2

− av1 + bv2 − cv1

= f3(u1, u2, v1, v2).

(4.18)

We can compute the Jacobi matrix of the system and the explicitly expression
can be found in Appendix A.

Notice that (u1, u2, v1)→ (ū1, ū2, v̄1) as t→∞ implies that v2 = s−u1−u2−v1 →
s − ū1 − ū2 − v̄1 = v̄2 as t → ∞. Therefore, if we have an asymptotically stable
equilibrium (ū1, ū2, v̄1), then (ū1, ū2, v̄1, v̄2) is also asymptotically stable under the
constraint of mass (4.14).

We will check the stability of the homogeneous equilibrium (A.5), later with the
set of coefficients that gives us an unstable equilibrium under nonhomogeneous per-
turbations.

(Step 3) Now consider the full reaction-diffusion system and linearize it about the
homogeneous equilibrium (A.5). Equivalently, setting

w(x, t) = (u1(x, t), u2(x, t), v1(x, t), v2(x, t))ᵀ − (ū1, ū2, v̄1, v̄2)ᵀ, (4.19)

D := diag(d11, d12, d21, d22), and f := (f1, f2, f3, f4)ᵀ, we linearize the system

∂tw = D∆w + f(w) (4.20)

about the origin w = (0, 0, 0, 0)ᵀ. We obtain

∂tw = D∆w + J4(ū1, ū2, v̄1, v̄2)w, (4.21)

where J4 denotes the Jacobi matrix of f := (f1, f2, f3, f4)ᵀ.
Substituting

w = w̃ exp(λt+ ikx), (4.22)
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into the system (4.21), we study the linear stability of the wave number k:

λw̃ =


−k2d11 + f1u1 f1u2 f1v1 f1v2

f2u1 −k2d12 + f2u2 f2v1 f2v2

f3u1 f3u2 −k2d21 + f3v1 f3v2

f4u1 f4u2 f4v1 −k2d22 + f4v2

 w̃ (4.23)

=: Akw̃, (4.24)

where derivatives are evaluated at the homogeneous equilibrium. Consider the char-
acteristic polynomial of Ak:

Φ(λ) = det(λI − Ak)
= λ4 + (−trAk)λ

3 + pλ2 + qλ+ (−1)4 det(Ak),
(4.25)

where p and q are some polynomials in k2 and coefficients.
If

trAk = −k2(d11 + d12 + d21 + d22) + trJ(ū1, ū2, v̄1, v̄2) < 0, (4.26)

the value of the characteristic polynomial at λ = 0:

Φ(0) = detAk < 0 (4.27)

implies that there exists an eigenvalue with positive real part, depending on the wave
number k.

(Step 4) For example, the following set of coefficients realizes the scenario: s = 3,
b = 1, c = 1, α = 1, β = 2, r1 = 0.9, r2 = 0.8, d11 = 1, d12 = 2, d21 = 0.01, and
d22 = 0.1. The ratio a/b then determines the sign of detAk. In particular, the wave
number k becomes unstable as the value of a approaches b. Figure 4.2 illustrates how
the first mode becomes stable as a approaches b.

Fix a = 0.2. Figure 4.2 illustrates which modes grow. For this particular set
of coefficients, the wave number k such that 0 ≤ k2 ≤ 16, i.e. k = 1, 2, 3, 4 grow
exponentially.

Let us check the linear stability of the homogeneous equilibrium under homoge-
neous perturbations for the set of coefficients s = 3, a = 0.2, b = 1, c = 1, α = 1,
β = 2, r1 = 0.9, r2 = 0.8, d11 = 1, d12 = 2, d21 = 0.01, and d22 = 0.1. We can
compute the Jacobi matrix

J3(ū1, ū2, v̄1, v̄2) (4.28)

=

−2238309/207910 2791/20791 2791/20791
170919/207910 −209530/20791 −1620/20791
1859031/207910 835956/103955 −220069/207910

 , (4.29)

and
det J3 = −225748161/2079100 ≈ −108.5798, (4.30)
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Figure 4.2: detA1 depending on the ratio of the values a and b. As p := a/b increase
from 0 to 1, the value detA1 surpasses 0. (Left picture); detAk depending on
the wave number k. The picture shows the wave numbers for which detAk is
negative, so that eigenvalues with positive real part emerge. (Right picture).

hence the product of the three eigenvalues is away from 0. The numerically calculated
eigenvalues are the following:

λ1 = −0.9956− 0.0000i

λ2 = −10.9121− 0.0000i

λ3 = −9.9944 + 0.0000i,

(4.31)

all the eigenvalues are real and strictly negative.

4.3 Saturation of linear instability

As well as the Suematsu model without the nonlocal term (2.4), our compartmental
model (4.2) also possesses a positively invariant set.

Proposition 4.3.1. The kinetic system of the system (4.2) possesses a positively
invariant set.

Proof. We consider nullclines under the constraint of conservation of mass s = u1 +
u2 + v1 + v2.

We have a positively invariant set K defined by u1 ≥ 0, u2 ≥ 0, v1 ≥ 0, v2 ≥ 0,
and u1 + u2 + v1 + v2 ≤ s.

Observe that along u1-axis, the arrows face inward. Indeed, the origin (0, 0, 0, 0)
lies on the intersection of u1-nullclines, u2-nullclines, v1-nullclines, and v2-nullclines.
In addition, these nullclines do not intersect with any of the four axes except at the
origin so that the part of each axis as an edge of the region K is entirely contained
in one basic region.

The vector at (1, 0, 0, 0) is (−α − a, a, γα, (1 − γ)α) and at all other points the
vectors are oriented inward. Notice that except for u1, the values are non-negative.
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go 9

¥ .

Figure 4.3: Vector field along u1-axis to illustrate a higher dimensional picture of an in-
ward flux on the axis.

Similarly, along u2-axis, v1-axis, and v2-axis, respectively, the arrows face inward.
At (0, 1, 0, 0), the vector is (b,−α − b, δα, (1 − δ)α). At (0, 0, 1, 0), the vector is
(c, 0,−a − c, a). At (0, 0, 0, 1), the vector is (0, 0, b,−b). Notice that except for the
value on the axis, other values are non-negative.

Furthermore, the hypersurface defined by the constraint of conservation of mass
u1 + u2 + v1 + v2 ≤ s is the upper face. As the homogeneous equilibrium for the
kinetics under the mass constraint is stable, it follows that the vector field inside the
region never faces out of the region.

For the full system (4.2), we consider a family of cuboids under the hypersurface
u1 + u2 + v1 + v2 ≤ s.

Consider an extended system of the system (4.2):

∂tu1 = d11∆u1 − α(u1 + u2 + v1 + v2)βu1 − au1 + bu2 + cv1

=: d11∆u1 + f1(u1, u2, v1, v2)

∂tu2 = d12∆u2 − α(u1 + u2 + v1 + v2)βu2 + au1 − bu2

=: d12∆u2 + f2(u1, u2, v1, v2)

∂tv1 = d21∆v1 + r1α(u1 + u2 + v1 + v2)βu1 + r2α(u1 + u2 + v1 + v2)βu2

− av1 + bv2 − cv1

=: d21∆v1 + f3(u1, u2, v1, v2)

∂tv2 = d22∆v2 + (1− r1)α(u1 + u2 + v1 + v2)βu1

+ (1− r2)α(u1 + u2 + v1 + v2)βu2 + av1 − bv2,

=: d22∆v2 + f4(u1, u2, v1, v2)

ṫ = 1,

(4.32)
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and denote the nonlinearity of this extended system by

F (u1, u2, v1, v2) =


f1(u1, u2, v1, v2)
f2(u1, u2, v1, v2)
f3(u1, u2, v1, v2)
f4(u1, u2, v1, v2)

1

 . (4.33)

Define
M := {(u1, u2, v1, v2, t) | (u1, u2, v1, v2) ∈ Γ(t), t ≥ 0}. (4.34)

We will show that the flux at the boundary is inward and apply Lemma 2.3.3.

Remark. We have to deal with a 5-dimensional set, but the argument is similar to
that for the 3-dimensional invariant set in the proof of Proposition 2.3.2. To aid
visualization, we slightly abuse notation used in Proposition 2.3.2 with an increased
number of components for a higher dimensional argument.

Proposition 4.3.2. Let u∗ = (u1∗, u2∗, v1∗, v2∗)
ᵀ ∈ ∂Γ(t). Assume that

b

αβ
≤ u1

β
∗ , (4.35)

c

αβ
≤ u1

β
∗ , (4.36)

and
a

αβ
≤ u2

β
∗ . (4.37)

Then, the set M is positively invariant for the extended system.

Proof. Let h1 be the first component of the flux vector on the sidewall of the hyper-
edge determined by fixing u1∗ of the 4-dim cross-section Γ∞. Similarly, let h2 be
the second component, h3 be the third component, and h4 be the fourth component,
respectively, of the flux vector on the sidewall of the hyper-edge determined by fixing
u2∗, v1∗, v2∗, respectively, of the 4-dim cross-section Γ∞.

Now,
h1 = 〈η, ∂t(u1, u2, v1, v2, t)

ᵀ〉 = d11∆u1 + f1(u∗), (4.38)

as η = (1, 0, 0, 0, f1(u∗))
ᵀ on the sidewall of the hyper-edge determined by fixing u1∗.

Similarly,
h2 = 〈η, ∂t(u1, u2, v1, v2, t)

ᵀ〉 = d12∆u2 + f2(u∗), (4.39)

h3 = 〈η, ∂t(u1, u2, v1, v2, t)
ᵀ〉 = d21∆v1 + f3(u∗), (4.40)

and
h4 = 〈η, ∂t(u1, u2, v1, v2, t)

ᵀ〉 = d22∆v2 + f4(u∗). (4.41)

If we fix u1, then f1 has monotonicity in u2, v1, and v2. That is,

∂u2f1 = b− αβu1(u1 + u2 + v1 + v2)β−1 ≤ b− αβu1
β
∗ ≤ 0, (4.42)
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by the assumption (4.35). We have

∂v1f1 = c− αβu1(u1 + u2 + v1 + v2)β−1 ≤ c− αβu1
β
∗ ≤ 0, (4.43)

by the assumption (4.36). We also have

∂v2f1 = −αβu1(u1 + u2 + v1 + v2)β−1 ≤ 0. (4.44)

Therefore, fixing u1∗ ∈ ∂M , f1 attains its maximum at (u1∗, 0, 0, 0), and

f1(u1∗, 0, 0, 0) = −au1∗ − αu1
β+1
∗ ≤ 0. (4.45)

Similarly,

∂u1f2 = a− αβu2(u1 + u2 + v1 + v2)β−1 ≤ a− αβu2
β
∗ ≤ 0, (4.46)

by the assumption (4.37). We have

∂v1f2 = −αβu2(u1 + u2 + v1 + v2)β−1 ≤ 0, (4.47)

and
∂v2f2 = −αβu2(u1 + u2 + v1 + v2)β−1 ≤ 0. (4.48)

Therefore, fixing u2∗ ∈ ∂M , f2 attains its maximum at (0, u2∗, 0, 0), and

f2(0, u2∗, 0, 0) = −bu2∗ − αu2
β+1
∗ ≤ 0. (4.49)

Likewise,

∂u1f3 = αβr1u1(u1 + u2 + v1 + v2)β−1 + αr1(u1 + u2 + v1 + v2)β

+ αβr2u2(u1 + u2 + v1 + v2)β−1

≥ 0,

(4.50)

∂u2f3 = αβr1u1(u1 + u2 + v1 + v2)β−1 + αβr2u2(u1 + u2 + v1 + v2)β−1

+ αr2(u1 + u2 + v1 + v2)β

≥ 0,

(4.51)

and

∂v2f3 = −a+ αβr1u1(u1 + u2 + v1 + v2)β−1 + αβr2u2(u1 + u2 + v1 + v2)β−1 − c
≥ 0,

(4.52)

by assumptions (4.36) and (4.37). Therefore, fixing v1∗, f3 attains its maximum at
(u1∗, u2∗, v1∗, v2∗), and

f3(u1∗, u2∗, v1∗, v2∗) = 0 ≤ 0. (4.53)
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Again similarly,

∂u1f4 = −αβr1u1(u1 + u2 + v1 + v2)β−1 − αr1(u1 + u2 + v1 + v2)β

− αβr2u2(u1 + u2 + v1 + v2)β−1 + αβu1(u1 + u2 + v1 + v2)β−1

+ αβu2(u1 + u2 + v1 + v2)β−1 + α(u1 + u2 + v1 + v2)β

≥ 0,

(4.54)

∂u2f4 = −αβr1u1(u1 + u2 + v1 + v2)β−1 − αβr2u2(u1 + u2 + v1 + v2)β−1

− αr2(u1 + u2 + v1 + v2)β + αβu1(u1 + u2 + v1 + v2)β−1

+ αβu2(u1 + u2 + v1 + v2)β−1 + α(u1 + u2 + v1 + v2)β

≥ 0,

(4.55)

and

∂v1f4 = a− αβr1u1(u1 + u2 + v1 + v2)β−1 − αβr2u2(u1 + u2 + v1 + v2)β−1

+ αβu1(u1 + u2 + v1 + v2)β−1 + αβu2(u1 + u2 + v1 + v2)β−1

≥ 0.

(4.56)

Therefore, fixing v2∗, f4 attains its maximum at (u1∗, u2∗, v1∗, v2∗), and

f4(u1∗, u2∗, v1∗, v2∗) = 0 ≤ 0. (4.57)

By the maximum principle, we have that ∆u1, ∆u2, ∆v1, and ∆v2 take the max-
imum value 0 at the boundary. Hence, we have all

h1, h2, h3, h4 ≤ 0, (4.58)

for (x, t) ∈ Ω× (0, T ].
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Chapter 5

Discussions

In this chapter, we will interpret the result and admit some limitations of our model.
Note that experimental observations are consistent with our hypotheses, which

however does not prove the hypotheses. In the sense of Karl Popper, our hypotheses
merely stand the test of available experimental data, and have not been falsified.

Finally, we will conclude this thesis with some future directions.

5.1 Interpretation

The Suematsu model without localization for the stationary setting has Turing in-
stability by Theorem 2.2.2 and the effect of rapidly periodic forcing is limited by
Theorem 3.3.1.

By Theorem 4.2.2, there is a set of coefficients that realizes the scenario. Namely,
considering the density associated to each point of the schematically divided two
layers of the cross-section of the sealed container, the bioconvection patterns can be
regarded as the exchange of density between the two layers. Moreover, depending on
the external illumination conditions, dynamics of the density associated to one of the
two directions at each point can also be emulated. Especially, the exchange of density
facing either direction within a layer plays a role to form or not form macroscopic
patterns.

Varying coupling strength of diffusion, sinking, and vertical swimming, in par-
ticular, choosing values of diffusion coefficients, we found a parameter region which
seems to be correspondent to the phenomenon we wanted to emulate.

We showed one such set of parameters, namely s = 3, b = 1, c = 1, α = 1, β = 2,
r1 = 0.9, r2 = 0.8, d11 = 1, d12 = 2, d21 = 0.01, and d22 = 0.1. For these coefficients,
instability is induced depending on the value of a. If the value of a is small enough,
compared with the value of b, the system is Turing unstable; whereas the value of a
is large enough, the system is stable. The above is precisely the scenario we expected
in the beginning.

Let us start from the following hypothesis. Each cell navigates by light information
its sensor receives. If it senses flicker, then it makes a change of direction. If it does
not sense flicker, then it keeps swimming. Under stationary illumination, each cell
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is able to respond to the environment in such a way its navigation system works
well. As a result, vertical swimming is maintained for long enough time, and the top-
heavy condition induces convection. Under rapidly periodic illumination, each cell
gets confused by our artificial nasty manipulation of the external environment, and
vertical swimming weakens, so that the necessary top-heavy condition is no longer
satisfied and no convection emerges.

Our unnatural environment causes the confusion of cells and we have found that
the rotation of a cell can realize a simple way for the intensity-and-periodicity-based
navigation system.

Our system was built based on a hypothesis about the inner mechanism of each
cell, namely Euglena gracilis makes a change of direction if and only if it senses flicker.
Instead of taking a microscopic viewpoint of biology, we took a macroscopic approach
dealing with their collective behavior.

On the other hand, our mathematical analysis is an evidence of the hypothesis
based on our thought experiment,

and we hope that our hypothesis will be supported by future experiments.
We hope that a quantitative analysis supported by the wet lab experiments confirm

our theoretical result.

5.1.1 Suematsu model

Retrospectively, we notice that the Suematsu model without the nonlocal term (2.4)
is a special case of our new model: All cells are vertical and there is no dynamics of
directions. In other words, First theorem is a corollary of Third theorem.

Relative positions of cells and their dynamics turned out to be crucial to explain
patterns in the periodic setting, which then provides us with an insight into the inner
mechanism of phototaxis, even under stationary setting, where the Suematsu model
is able to describe the phenomenon very well.

The stationary illumination from below is already unnatural, in the sense the
navigation system of Euglena gracilis must have developed for the natural environ-
ment in the daylight. Usually, the sunshine illuminates the earth from above and
it is beneficial for plants to synthesize energy. Nevertheless, in that environment,
an interesting bioconvection pattern was observed in the laboratory, which attracted
people studying the mechanism of the collective behavior. Rapidly periodic illumi-
nation from below is even more unnatural. However, studying this rather artificial
setting, we are able to test the mechanism of negative phototaxis.

5.1.2 Stigmaless mutants

We assumed a definitive role of the stigma. If the periodic shading of the sensor by
the stigma is absent, our hypothesis has to be modified.

However, even if stigmaless mutants can also orient with respect to the light
direction, and negative phototaxis does not need a stigma, our assumptions are not
necessary contradictory.
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Indeed, we assumed that a cell keeps swimming if it does not sense flicker. In other
words, a cell does not need its stigma unless it wants to make a change of direction.

Without the ability of making a change of direction, we expect different macro-
scopic patterns, and further experiments are desired.

5.2 Limitations

In this thesis, there are many features we had to discard.
First, we only considered two relative positions of a cell. Recall Figure 1.7. How-

ever, the absorption of light the chloroplast might have an influence on the information
the sensor receives, and this information might help a cell to determine if it faces to-
ward or away from the light source. It is worth investigating the two cases, assuming
some rules of responses depending on whether a cell faces toward or away from the
light source.

Second, we assumed that all cells of Euglena gracilis swim at a constant speed.
However, it is known that the speed of swimming depends on the environment, and
such response is called photokinesis. Euglena gracilis is also known to show fatigue,
which is not so surprising to human beings, and also cells can get older. Moreover,
randomness of their movement was only implicitly included in our model as diffusion.

Third, even though the de facto standard of the governing equations for fluid is the
Navier–Stokes equations, we adopted an approach using a reaction-diffusion system.
Eventually, though, it would be great if one could unify bioconvection from fluid
dynamics’ point of view and bioconvection from reaction-diffusion systems’ point of
view.

5.3 Future directions

As future directions, the following are worth investigation:

(i) Study permissible perturbations to our new system by a drift term,

(ii) Push ahead with the modeling part furthermore, and

(iii) Include stochasticity into our model.

5.3.1 Perturbations

Although we discarded the nonlocal term of the Suematsu model in my dissertation,
one can argue that nonlocal interactions such as the self-shading effect should play a
role to form patterns.

Perturbation of the steady state of the Suematsu system (2.4) by the nonlocal
term was studied in [Tok17], and it turned out that the effect of the nonlocal term
on the equilibrium of the system under stationary illumination was limited.

However, it might have some influence on the transient or equilibrium of our
extended system. Moreover, localization itself is interesting and worth further studies.

48



5.3.2 Modeling

As the next step, we should consider configurations continuously dependent on the
angle of the vertical line and the long axis of the cell. This would make the model more
complicated as it involves a transport equation to describe the angular interactions.
Transport equations in biology have been attracting much attention [Per07], and I
would like to make a progress in this direction.

I would also like to regard non-pattern formation under periodic illumination as a
resonance phenomenon. Resonance phenomena appear also in biology. For example,
the frequency at which a dog pants is close to the resonant frequency of its respiratory
system, which causes the maximum amount of air to move in and out of the dog
and minimizes the effort that the dog must exert to cool itself [YF12]. By analogy,
the frequency at which Euglena gracilis self-rotates might be close to the resonant
frequency of its internal signaling system, which could make it possible for such a
primitive microorganism to distinguish rapid oscillatory illumination from stationary
illumination.

5.3.3 Stochasticity

Stochasticity can be included in addition to diffusion to model randomness of move-
ment. The stochastic nature of the movement of Euglena gracilis was reported by
[RRS+15]. Euglena gracilis swims by swinging its flagellum around and generates
active fluctuations due to internal random performance of the propulsive motor, re-
sulting in the stochastic nature of the movement.

Models of the chemotaxis view the chemotactic response as analogous to Brownian
motion [KS71]. However, one must be careful as the cell of Euglena gracilis is much
bigger than water molecules and thus Brownian motion should be negligible, at least
to the cell itself as a particle. Also, notice the fundamental differences of chemotaxis
and phototaxis. For instance, chemical substances stay at a particular moment to
generate the gradient of concentration but light travels much faster than chemical
substances. Statistical physical arguments may be necessary to describe how the
sensor receives light.
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Appendix A

Explicit expressions

Here, explicit expressions of the homogeneous equilibrium (A.5) and of the Jacobi
matrix at the homogeneous equilibrium (A.8) in the proof of Theorem 4.2.2 can be
found.

A.1 Homogeneous equilibrium

Since
detB < 0,

we can invert the matrix B to solve for the homogeneous equilibrium (4.12) as follows:ū1

ū2

v̄1

 = B−1

 0
0
−bs

 =
1

detB
AdjB

 0
0
−bs

 , (A.1)

where the adjugate denotes the transpose of its cofactor matrix.
Here the cofactor matrix of the 3× 3 matrixa11 a12 a13

a21 a22 a23

a31 a32 a33

 (A.2)

is

C =


+ det

(
a22 a23

a32 a33

)
− det

(
a21 a23

a31 a33

)
+ det

(
a21 a22

a31 a32

)
− det

(
a12 a13

a32 a33

)
+ det

(
a11 a13

a31 a33

)
− det

(
a11 a12

a31 a32

)
+ det

(
a12 a13

a22 a23

)
− det

(
a11 a13

a21 a23

)
+ det

(
a11 a12

a21 a22

)

 , (A.3)
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and the adjugate is

Adj

a11 a12 a13

a21 a22 a23

a31 a32 a33



= Cᵀ =


+ det

(
a22 a23

a32 a33

)
− det

(
a12 a13

a32 a33

)
+ det

(
a12 a13

a22 a23

)
− det

(
a21 a23

a31 a33

)
+ det

(
a11 a13

a31 a33

)
− det

(
a11 a13

a21 a23

)
+ det

(
a21 a22

a31 a32

)
− det

(
a11 a12

a31 a32

)
+ det

(
a11 a12

a21 a22

)

 .

(A.4)

Explicitly, homogeneous equilibrium (A.1) can be written in terms of s > 0 as
follows:

ū1(s) = (bcs(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ

+ αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

ū2(s) = (abcs)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β),

v̄1(s) = (bs(α2s2β + aαsβ + αbsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ

+ αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β),

v̄2(s) = s− ū1(s)− ū2(s)− v̄1(s)

= s− (bs(α2s2β + aαsβ + αbsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc

+ a2αsβ + αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

− (abcs)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ − α2cr1s
2β

+ 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s
β − αbcr1s

β)

− (bcs(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β).

(A.5)

A.2 Jacobi matrix at the homogeneous equilibrium

(A.5)

We can compute the Jacobi matrix of the system as follows:

J3 =

J11 J12 J13

J21 J22 J23

J31 J32 J33

 , (A.6)
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where

J11 = −a− α(u1 + u2 + v1 + v2)β − αβu1(u1 + u2 + v1 + v2)β−1

J12 = b− αβu1(u1 + u2 + v1 + v2)β−1

J13 = c− αβu1(u1 + u2 + v1 + v2)β−1

J21 = a− αβu2(u1 + u2 + v1 + v2)β−1

J22 = −b− α(u1 + u2 + v1 + v2)β − αβu2(u1 + u2 + v1 + v2)β−1

J23 = −αβu2(u1 + u2 + v1 + v2)β−1

J31 = αr1(u1 + u2 + v1 + v2)β + αβr1u1(u1 + u2 + v1 + v2)β−1

+ αβr2u2(u1 + u2 + v1 + v2)β−1

J32 = αr2(u1 + u2 + v1 + v2)β + αβr1u1(u1 + u2 + v1 + v2)β−1

+ αβr2u2(u1 + u2 + v1 + v2)β−1

J33 = αβr1u1(u1 + u2 + v1 + v2)β−1 − c− a+ αβr2u2(u1 + u2 + v1 + v2)β−1

(A.7)
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and substituting the homogeneous equilibrium (A.5) into the Jacobi matrix, we have

J11(ū1(s), ū2(s), v̄1(s), v̄2(s))

= −a− αsβ − (αbβcssβ−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc

+ a2αsβ + αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J12(ū1(s), ū2(s), v̄1(s), v̄2(s))

= b− (αbβcssβ−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J13(ū1(s), ū2(s), v̄1(s), v̄2(s))

= c− (αbβcssβ−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J21(ū1(s), ū2(s), v̄1(s), v̄2(s))

= a− (aαbβcssβ−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J22(ū1(s), ū2(s), v̄1(s), v̄2(s))

= −b− αsβ − (aαbβcssβ−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ

+ αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J23(ū1(s), ū2(s), v̄1(s), v̄2(s))

= −(aαbβcssβ−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J31(ū1(s), ū2(s), v̄1(s), v̄2(s))

= αr1s
β + (aαbβcr2ss

β−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

+ (αbβcr1ss
β−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J32(ū1(s), ū2(s), v̄1(s), v̄2(s))

= αr2s
β + (aαbβcr2ss

β−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

+ (αbβcr1ss
β−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

J33(ū1(s), ū2(s), v̄1(s), v̄2(s))

= (aαbβcr2ss
β−1)/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ + αb2sβ

− α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β)

− c− a+ (αbβcr1ss
β−1(b+ αsβ))/(b2c+ aα2s2β + α2bs2β + α2cs2β + abc+ a2αsβ

+ αb2sβ − α2cr1s
2β + 2aαbsβ + aαcsβ + 2αbcsβ − aαcr2s

β − αbcr1s
β).

(A.8)
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Deutsche Zusammenfassung

Mittels Modellierung und mathematischer Analyse untersucht diese Doktorarbeit
die negative Phototaxis bei Euglena gracilis und die daraus resultierenden Biokon-
vektionsmuster unter stationärer oder periodischer Illumination.

Diese Dissertation liefert eine neue biologische Hypothese über den Mechanis-
mus der negativen Phototaxis bei Euglena gracilis. Darüberhinaus erklärt sie die
ausbleibende Musterbildung bei schneller periodischer Illumination wie sie im Exper-
iment beobachtet wurde.

Ein existierendes Modellgleichungssystem für Muster unter stationärer Illumina-
tion wird so erweitert, dass es nun sowohl stationäre als auch schnelle periodische
Illumination beschreibt. Das neue Modell weist eine Turing-Instabilität für Koeffizien-
ten auf, die einer stationären Illumination entsprechen, und verliert diese, wenn die
Koeffizienten durch solche, die der schnellen periodischen Illumination entsprechen,
ersetzt werden. Das Ausbleiben der Musterbildung bei der schnellen periodischen
Illumination kann als Verlust der Turing-Instabilität interpretiert werden.
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