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(1) ABSTRACTS 

1.1 Abstract (English) 

The Subthalamic Nucleus (STN) is part of the basal ganglia, integrates glutamatergic 

cortical (hyperdirect) and pallidal GABAergic (indirect) inputs and projects to all output 

structures of the basal ganglia. As a target of deep brain stimulation (DBS), the STN is of 

clinical interest to treat symptoms of Parkinson’s Disease. 

Dynamics of neuronal synchronization in the STN have been shown to shape the nucleus` 

function in both health and disease and to be directly modulated by therapeutic DBS. Yet 

knowledge of intrinsic and afferent STN connectivity, which may underlie the synaptic 

control of STN neuronal synchronization, is limited. 

In this study, we investigate connectivity rules in the rat STN by means of simultaneous 

multiple-cell patch-clamp recordings in combination with extracellular electrical 

stimulation and neuroanatomical analysis. 

In terms of intrinsic connectivity, our findings suggest a lack of mutual synaptic 

connections between STN neurons. Analysis of afferent connectivity revealed a sparse 

and selective innervation of local clusters of STN neurons by both glutamatergic and 

GABAergic fibers. Activation of glutamatergic input in isolation resulted in highly 

synchronous recruitment of STN neurons, whereas co-stimulation of GABAergic input 

delayed and desynchronized action potential (AP) generation. While extracellular 

electrical stimulation at low frequencies depressed both glutamatergic and GABAergic 

inputs to a similar degree, DBS-like frequencies of 130 Hz resulted in a significantly 

stronger depression of glutamatergic inputs compared to depression of GABAergic 

inputs. Recovery from short-term depression was complete at both GABAergic and 

glutamatergic synapses within seconds. 

In summary, our findings indicate that STN neurons operate as parallel processing units. 

Hence, synchronization of local clusters of neurons in the STN is likely to depend on 

upstream structures, interacting with the STN via sparse and specific synaptic single fiber 

input. The vulnerability of glutamatergic input to synaptic depression at DBS-like 

frequencies suggests a DBS mechanism of action that is based on a decoupling of the 

STN from direct cortical synchronization and a shift to desynchronizing GABAergic input. 

This may contribute to the effect of electrical stimulation, counteracting exaggerated 

neuronal synchronization in Parkinson’s Disease. Together, the rapid time course of 

differential short-term depression at high stimulation frequencies and the subsequent fast 
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synaptic recovery provide assets for a moment-to-moment control of neuronal synchrony 

that next-generation DBS aims for. 
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1.2 Abstract (German) 

Der Nucleus Subthalamicus (STN) ist Teil der Basalganglien, integriert glutamaterge, 

kortikale (hyperdirekter Pfad) und GABAerge, pallidale (indirekter Pfad) Eingänge und ist 

direkt mit allen Ausgangstrukturen der Basalganglien verschaltet. Als Zielstruktur der 

Tiefen Hirnstimulation (THS) ist er von klinischem Interesse für die symptomatische 

Therapie des Morbus Parkinson. 

Neuronale Synchronisationsdynamiken bestimmen die Funktion des STN in 

physiologischen und pathologischen Zuständen und werden durch therapeutisch 

wirksame THS direkt moduliert. Dennoch ist das Wissen über synaptische 

Verschaltungsprinzipien der intrinsischen und afferenten Konnektivität, die solchen 

Synchronisationsdynamiken zugrunde liegen, beschränkt. In dieser Studie untersuchen 

wir synaptische Verschaltungsprinzipien im STN der Ratte mittels simultaner multipler 

Patch-Clamp Ableitungen in Kombination mit extrazellulärer elektrischer Stimulation und 

neuroanatomischer Analyse. 

Bezüglich intrinsischer Konnektivität legen unsere Ergebnisse nahe, dass es keine 

direkten synaptischen Verbindungen zwischen STN Neuronen gibt. Die Analyse der 

afferenten Verschaltungsmuster zeigte eine selektive Innervation lokaler Cluster von 

STN-Neuronen durch glutamaterge und GABAerge Fasern. Aktivierung von 

glutamatergen Afferenzen in Isolation löste eine hochsynchrone Rekrutierung von STN-

Neuronen aus, während eine Co-Stimulation GABAerger Eingänge zu einer Verzögerung 

und Desynchronisation der generierten Aktionspotentiale führte. Während die 

synaptische Kurzzeitdepression für glutamaterge und GABAerge Eingänge bei 

niedrigfrequenter extrazellulärer elektrischer Stimulation vergleichbar war, führten THS-

ähnliche Stimulationsfrequenzen von 130 Hz zu einer signifikant stärkeren 

Kurzzeitdepression glutamaterger im Vergleich zu GABAergen Eingängen. Die 

synaptische Depression sowohl glutamaterger als auch GABAerger Eingänge zeigte sich 

innerhalb von Sekunden reversibel. 

Zusammenfassend legen die Ergebnisse dieser Studie nahe, dass STN Neurone als 

parallele Prozessierungseinheiten operieren. Somit hängt die Synchronisation lokaler 

Cluster von STN Neuronen mutmaßlich von vorgeschaltenen Regionen ab, die über 

selektive Verschaltungen mit dem STN interagieren. Die Vulnerabilität glutamaterger 

Transmission bei THS-ähnlichen Stimualtionsfrequenzen impliziert eine Abkopplung von 

direkter kortikaler Synchronisierung, während zeitgleich eine Verschiebung hin zu 

desynchronisierenden GABAergen Eingängen stattfindet. Dies trägt möglicherweise zu 
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einer Suppression pathologisch erhöhter neuraler Synchronität, wie sie beim Morbus 

Parkinson vorkommt, bei. Zusammen stellen der rapide zeitliche Verlauf der 

differenziellen Kurzzeitplastizität bei hohen Stimulationsfrequenzen und die 

darauffolgende schnelle synaptische Erholung Voraussetzungen einer zeitlich präzisen 

Kontrolle neuronaler Synchronität im STN dar, die bei Weiterentwicklungen der THS 

angestrebt wird.   
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(2) INTRODUCTION 

Movement control critically depends on dynamic interactions between structures of the 

cortex-basal ganglia loops. Among the subcortical nuclei that participate in this circuitry, 

the Subthalamic Nucleus (STN) is the only glutamatergic structure and it directly controls 

basal ganglia-output nuclei (Synopsis Figure 1). Integrating cortical glutamatergic 

(hyperdirect pathway) and pallidal GABAergic (indirect pathway) input, the STN thus 

occupies a key position to participate in the initiation, execution, and termination of 

movement sequences (Nambu et al., 2002). Neuronal processing of such motor control 

comprises brief bursts of neuronal synchronization at beta  frequencies (13-35 Hz) 

(Mirzaei et al., 2017; Tinkhauser et al., 2017a).  

 
Synopsis Figure 1. Scheme of the hyperdirect (Cortex to STN), direct (Str to GPi), and indirect (Str to GPe 
to STN to GPi) pathways. Glutamatergic and GABAergic connections are marked red and blue, 
respectively. Empty arrows mark the indirect pathway. STN, Subthalamic Nucleus; GPe, external Globus 
Pallidus; Str, Striatum; GPi, internal Globus Pallidus; SNr, Substantia Nigra pars reticulata. 

 
Dynamics of neuronal synchrony shape STN function in health (Mirzaei et al., 2017) and 

predict pathophysiological states in movement disorders such as Parkinson’s Disease 

(PD) (Tinkhauser et al., 2017a). Furthermore, dynamics of neuronal synchrony represent 

the target in next-generation approaches of deep brain stimulation (DBS), that aim to 

interact with ongoing synchronization dynamics in a timely precise manner (adaptive 

DBS, aDBS) (Little et al., 2013; Ramirez-Zamora et al., 2017; Tinkhauser et al., 2017b). 

Despite the suggested physiological and pathophysiological importance of neuronal 

synchronization dynamics in the STN, little is known about how such transient patterns of 

synchrony emerge.  
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Neuronal synchrony in the STN can be expected to be controlled by a specific pattern of 

intrinsic and / or afferent synaptic connectivity. More specifically, functional wiring of STN 

neurons may be related to STN synchrony in any of the following ways (for illustration see 

Synopsis Figure 2): 

Hypothesis (A): Intranuclear mutual connectivity promotes the emergence of 

intrinsic synchrony. 

Hypothesis (B): Divergent connectivity of single afferent fibers causes the 

synchronous recruitment of STN neurons. 

Hypotheses (C & D): Coordinated activity of presynaptic structures up-stream of 

the STN interacting with the STN via sparse and selective input.  

Synopsis Figure 2. Schemes illustrating plausible rules of intrinsic and afferent connectivity that may allow 
for STN synchronization (see text for detailed descriptions). Empty circles represent somata of neurons 
afferent to the STN (e.g. in Cortex or GPe). Filled circles represent somata of STN neurons.  
 

Previous studies provide (indirect) evidence for each of the described scenarios:   

(A) Suggestions for mutual synaptic connectivity between glutamatergic STN neurons 

have come from three lines of evidence: First, anatomical studies have shown 

intranuclear axon-collaterals of STN neurons (Hammond and Yelnik, 1983; Kita et al., 

1983), which might serve as presynaptic sites for synaptic connections. However, no 

postsynaptic neurons have been identified in these studies. Second, computational 

models have predicted a minimum of 3% mutual synaptic connectivity between STN 

neurons (Gillies and Willshaw, 2004). Finally, complex excitatory postsynaptic currents 

(EPSCs) have been recorded in structures receiving projections from the STN following 

the electrical stimulation of the STN and have been interpreted as indirect proof for the 

existence of polysynaptic circuits between STN neurons (Shen and Johnson, 2006). 
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However, no paired patch-clamp recordings, which could ultimately prove functional 

synaptic interconnectivity between STN neurons, have been performed to date and 

evidence from other experimental approaches has questioned the existence or relevance 

of intrinsic synaptic connectivity in the STN (Wilson et al., 2004; Koshimizu et al., 2013). 

 

(B) Afferent connectivity to the STN by single GABAergic fibers arising from the Globus 

Pallisus externus (GPe) has been suggested to be sparse and selective rather than broad 

and divergent (Baufreton et al., 2009). Similarly, the cortico-STN projection, 

conceptualized as the hyperdirect pathway, has been shown to consist of axonal 

collaterals of corticofugal projections that form sparse terminal fields in the STN (Kita and 

Kita, 2012; Coude et al., 2018). Although the aforementioned anatomical evidence 

suggests selective rather than divergent input by incoming fibers, functional connectivity 

of afferent fibers to local clusters of STN neurons has not been directly assessed. Single 

afferent fibers might project to single cells (selective single fiber input) or several cells 

(divergent single fiber input) within a given cluster (Synopsis Figure 3C). The latter may 

serve to synchronously recruit targeted cells, thus contributing to the emergence of STN 

synchrony without the necessity for prior synchronization in the presynaptic structure. 

 

(C & D) The suggested restricted connectivity of GABAergic fibers to the STN has led to 

the conclusion that there has to be prior synchronization of GPe neurons in order for the 

GPe-STN connection to contribute to the synchronization of STN neurons (Baufreton et 

al., 2009).  In addition to GABAergic inhibition, cortical excitation has been proposed to 

contribute to synaptic control of neuronal synchrony in the STN (Tachibana et al., 2011; 

Sanders and Jaeger, 2016). Previous work indicates that GABAergic inhibition occurring 

in anti-phase to glutamatergic input may further strengthen synchrony forwarded by 

cortical excitation (Baufreton et al., 2005). This adds support to the necessity of 

coordinated activity of cortex-basal ganglia loops to produce STN synchrony. Despite the 

possible importance of the interplay between neuronal structures for STN synchrony, 

knowledge of the interactions of the GABAergic and the glutamatergic input in the control 

of STN synchrony is limited and synaptic dynamics of GABAergic and glutamatergic 

inputs in response to high frequency stimulation (HFS) in the STN (the default DBS 

configuration) have not been directly compared. 
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In summary, key questions concerning synaptic connectivity within the STN remain 

unresolved. This motivates rigorous testing of the suggested patterns of intrinsic and 

afferent synaptic connectivity (Synopsis Figure 2). This study analyses connectivity rules 

in the STN by means of simultaneous multiple-cell patch-clamp recordings in combination 

with extracellular stimulation and neuroanatomical analysis. Further experiments 

examine the interactions of synaptic inputs to local clusters of STN neurons and compare 

synaptic dynamics of glutamatergic and GABAergic inputs in response to extracellular 

stimulation at low and high, DBS-like frequencies. 

 
 
 
 
(Steiner et al., 2019) 
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(3) METHODS complementing the publication 

For a detailed description of the methods and experimental paradigms, please refer to 

Steiner et al., 2019. Below, additional information on key resources and a more detailed 

description of the multi-patch experimental paradigm are provided. 

 

3.1 Table of key resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Streptavidin-Alexa Flour 647 Thermo Fisher Scientific Cat# S32357 

Chemicals, Peptides, and Recombinant Proteins 

Sucrose Sigma-Aldrich Cat# S1888 
Potassium chloride (KCl) Sigma-Aldrich Cat# P9333 
Sodium dihydrogen phosphate (NaH2PO4) Carl Roth Cat# T878.2 
Glucose Carl Roth Cat# HN06.3 
Sodium bicarbonate (NaHCO3) Sigma-Aldrich Cat# S5761 
Calcium chloride (CaCl2) Carl Roth Cat# 5239.1 
Magnesium chloride (MgCl2) Carl Roth Cat# 2189.1 
Sodium chloride (NaCl) Carl Roth Cat# 9256.2 
Potassium gluconate (K-gluconate) Sigma-Aldrich Cat# G4500 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) 

Sigma-Aldrich Cat# H3375 

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-
tetraacetic acid (EGTA) 

Sigma-Aldrich Cat# E3889 

Sodium phosphocreatine (Na2- phosphocreatine) Sigma-Aldrich Cat# P7936 
Adenosine 5′-triphosphate disodium salt hydrate 
(Na2ATP) 

Sigma-Aldrich Cat# A9187 

Guanosine 5′-triphosphate sodium salt hydrate 
(Na2GTP) 

Sigma-Aldrich Cat# G8877 

Potassium hydroxide (KOH) Carl Roth Cat# K017.1 
Gabazine TOCRIS Cat# 1262 
D-AP5 TOCRIS Cat# 0106 
CNQX disodium salt TOCRIS Cat# 1045 
Biocytin Biomol Cat# ABD-3080 
Triton X-100 Carl Roth Cat# 3051.3 
Experimental Models: Organisms 

Rat: W-Tg(Slc32a1-YFP*)1Yyan The National BioResource 
Project of the Rat in Japan 

NBRP Rat No 
0554 

Software and Algorithms 

Clampfit (10.7.0.3) Molecular Devices N/A 

Microsoft Excel (Microsoft Office Professional Plus 
2013) 

Microsoft Cooperation RRID:SCR_016
137 

MATLAB (R2015b) The Mathworks RRID:SCR_001
622 

ImageJ (1.48) NIH RRID:SCR_003
070 

Neuron (7.4) Yale University, Duke 

University 

N/A 

 

Synopsis Table 1. Table of key resources. 
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3.2 The multipatch-approach to study intrinsic and afferent connectivity 
 

 
 
Synopsis Figure 3. The multipatch-approach to study intrinsic and afferent connectivity. (A) Photograph of 
the experimental set-up featuring eight micromanipulators (seven for patch-pipettes, one for extracellular 
stimulation); (B) Screening of intrinsic connectivity: Scheme illustrates how increasing the number of 
simultaneously recorded neurons (black dots) in individual experiments significantly increases the efficiency 
of screening for synaptic connections (connecting lines). (C) Screening of afferent connectivity: Scheme 
illustrates how the combination of multi-patch recordings and extracellular stimulation can aid to 
differentiate divergent and selective single fiber input to local clusters of neurons. Schematic drawings of 
afferent fibers; flash to illustrate extracellular electric stimulation; schematic postsynaptic traces illustrate 
read-out in whole-cell voltage clamp recordings. (A) and (B) were adapted from Peng et al., 2019. 
 
To screen for synaptic connectivity, simultaneous multiple-neuron patch-clamp recordings 

represent a highly efficient experimental approach. Given their subthreshold and high 

temporal resolution, parallel patch-clamp recordings allow for the detection of both 

glutamatergic and GABAergic synaptic connections as small as 40 µV in average 

amplitude (Geiger et al., 1997). Furthermore, the whole-cell access to entire cell clusters 

enables detailed neuroanatomical analysis of the recorded clusters. 

Increasing the number of simultaneously recorded cells directly translates into a 

significant increase in synaptic connections screened in each individual experiment 

(Synopsis Figure 3A and B), according to 

 
c = n × (n-1) 

 with c := screened connections in an individual experiment and n := number of 
simultaneously recorded neurons in the respective experiment 

 

Due to the high efficiency of the multi-patch paradigm, fewer experiments are required to 

achieve comparable sample sizes (Peng et al., 2019). 
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Combining the multi-patch approach with extracellular stimulation represents a novel 

experimental approach to investigate afferent connectivity of the STN (Synopsis Figure 

3C). Extracellular electric stimulation was applied using minimal stimulation strategies in 

order to analyze how single afferent fibers connect to local clusters of STN neurons. 

Specifically, divergence of afferents onto STN neurons within a recorded cluster was 

studied by assessing the parallel emergence of postsynaptic responses in simultaneously 

recorded cells at threshold stimulation intensity (Figure 4, Steiner et al., 2019).  
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(4) SUPPLEMENTARY RESULTS to the publication 

For a detailed report of the results of this study please refer to Steiner et al., 2019. The 

following will provide supplementary information and figures not included in the 

corresponding publication.  

 

Overview of supplemental material and link to the publication: 

 Corresponding figure in 

Steiner et al., 2019 

Supplementary Figure 1 

Connectivity screening experiment in 

primary motor cortex (M1) as a control 

experiment 

Figure 2B 

Supplementary Figure 2 

Axo-dendritic and axo-axonic proximities 

of STN neurons do not translate into 

functional synaptic connectivity between 

respective cells 

Figure 2 and 3 

Supplementary Figure 3 

The rat STN represents a vGAT-

negative structure 

Figure 1D 

Supplementary Figure 4 

Patterns of spontaneous activity 

observed in the sample of STN neurons 

examined 

Figure 1C 

 

Synopsis Table 2. Overview of supplemental material and link to the publication. 
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4.1 Supplementary Figure 1: Connectivity screening experiment in primary motor 

cortex (M1) as a control experiment 

The extensive connectivity screening between STN neurons reported on in Steiner et al., 

2019 suggests a lack of mutual synaptic connectivity between the STN neurons. To 

validate the used approach of connectivity screening, control experiments were 

performed in other brain regions that are known to show high levels of connectivity. 

Supplementary Figure 1 (Synopsis Figure 4) shows a highly connected cell cluster in 

primary motor cortex (M1, layer 2/3) recorded under the same conditions as in 

experiments shown in the manuscript. The recording features a local inhibitory 

interneuron that projects to three principal cells and synaptic connectivity between the 

glutamatergic principal cells. 

 

 
 
Synopsis Figure 4. Supplementary Figure 1 (linked to Figure 2B of Steiner et al., 2019). 
Each neuron is consecutively stimulated to elicit 4 action potentials (gray boxes) in current-clamp mode. 
Simultaneous recordings of putative postsynaptic cells are shown in the same column. 30 sweep average 
shown. Excitatory and inhibitory synaptic connections are indicated by red and blue lines, respectively. 
Asterisks mark traces with varied vertical scale bar.     
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4.2 Supplementary Figure 2: Axo-dendritic and axo-axonic proximities of STN 

neurons do not translate into functional synaptic connectivity between respective 

cells 

Consistent with previous studies, Steiner et al., 2019 (Figure 3) confirms the existence of 

intranuclear axon-collaterals in STN neurons and extends previous neuroanatomical 

findings providing stainings of both the putative presynaptic cell (axon-collateral) and the 

putative postsynaptic cell (dendrites of other STN neuron within a stained cluster). Spatial 

proximities between STN neurons were observed not only for axon-collaterals but for axo-

dendritic and axo-axonal proximities as well. Obtaining simultaneous patch-clamp 

recordings of the respective pairs of neurons allowed for testing their functional synaptic 

connectivity. None of the spatial proximities observed translated into synaptic connectivity 

between the respective cells. Supplementary Figure 2 (Synopsis Figure 5) shows axo-

axonal and axo-dendritic proximities not shown in the publication and provides a single-

sweep resolution of the connectivity screening for the pair of STN neurons tested. 

 
Synopsis Figure 5. Supplementary Figure 2 (linked to Figure 2B & 3 of Steiner et al., 2019). 
2D representation of two reconstructed STN neurons with axo-axonic (*) and axo-dendritic (**,***) 
proximities. Somata and dendrites are depicted in black, axons are shown in red (putative presynaptic 
neuron) and blue (putative postsynaptic neuron). Gray circles highlight sites of proximity. Insets show 
confocal z-stack close-ups of the proximities. Red arrows point to potential contact site. Top left: 
Corresponding single sweep resolution of the tested pair of neurons. Upper traces show a train of four 
action potentials elicited in the putative presynaptic neuron. Lower traces show simultaneous recording of 
putative postsynaptic neuron (grey: single sweeps; black: 40 sweep average). 
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4.3 Supplementary Figure 3: The rat STN represents a vGAT-negative structure 

The animals used in this study express Venus-YFP (yellow fluorescent protein) under the 

vGAT- (vesicular GABA transporter) promoter to allow for labeling of putative GABAergic 

neurons by means of probing vGAT-YFP fluorescence in epifluorescence illumination. 

The rat STN proved to be a vGAT-negative structure in both juvenile and adult animals 

(Synopsis Figure 6). While this finding does not unequivocally refute the existence of 

some GABAergic neurons in the rat STN, it makes the targeted recording of potential 

GABAergic cells impossible in this reporter line. On a more general note, no cells that 

were clearly identified as being within the STN were excluded in this study. Because of 

the many neurons recorded from, it can be assumed that neuronal subtypes, if present, 

are included in the examined sample and thus represented in the connectivity analysis. 

 

 
 

Synopsis Figure 6. Supplementary Figure 3 (linked to Figure 1D of Steiner et al., 2019). 
Overview immunofluorescence images of the STN from vGAT-YFP transgenic rats. YFP-signal was 
enhanced via post-hoc YFP-antibody stainings. Left: animal from the juvenile cohort; right: animal from the 
adult cohort.   
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4.4 Supplementary Figure 4: Patterns of spontaneous activity observed in the 

sample of STN neurons examined 

Most of the neurons examined did not exhibit spontaneous activity. This might be due to 

the whole cell approach used in this study. The whole cell approach was necessary to 

achieve fast access to the recorded cells and maintain stability of recordings to allow for 

multi-patch experiments. 

Nevertheless, activity patterns of spontaneous activity were observed in a small subset 

of neurons: spontaneous bursting (Synopsis Figure 7A), tonic spontaneous activity 

(Synopsis Figure 7B) and plateau potentials (>200 ms) following hyperpolarizing pulses 

(Synopsis Figure 7C). Because of the recording condition chosen (see above), it is likely 

that occurrence of spontaneous activity in the examined sample of STN neurons is not 

representative and therefore best studied in future perforated-patch experiments. 

 

 
 
Synopsis Figure 7. Supplementary Figure 4 (linked to Figure 1C of Steiner et al., 2019). 
Exemplary voltage traces of STN neurons. (A) Spontaneous bursting activity of an individual STN neurons. 
(B) Tonic spontaneous activity of another STN neuron. (C) STN neuron exhibiting a plateau potential with 
rebound action potential discharge following a hyperpolarizing pulse. 
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(5) DISCUSSION beyond the publication 

5.1 The functional and structural organization of the STN microcircuitry 

5.1.1 Functional synaptic wiring of the STN neurons  

In the introduction to this thesis, it has been argued that different patterns of intrinsic and 

afferent synaptic connectivity in the STN are conceivable and need to be experimentally 

tested (Synopsis Figure 2). Referring back to these proposed patterns that allow for 

neuronal synchrony in the STN, the following summarizes related findings as provided in 

Steiner et al., 2019 (for illustration see Synopsis Figure 8): 

 

Rejected hypothesis (A): Intranuclear mutual connectivity promotes the emergence of 

intrinsic synchrony. 

No mutual synaptic connectivity between STN neurons was found despite the many 

connections tested (n=874). Therefore, mutual synaptic connectivity between STN 

neurons is improbable and not suited to explain the emergence of local synchrony 

(Synopsis Figure 8A). 

 

Rejected hypothesis (B): Divergent connectivity of single afferent fibers causes the 

synchronous recruitment of STN neurons. 

Combination of multi-patch recordings with a minimal stimulation protocol allowed for the 

testing of divergence of incoming projections which might serve for synchronous 

recruitment of STN neurons. The evidence provided by Steiner et al., 2019 makes this 

possibility improbable showing sparse and selective innervation patterns of single afferent 

fibers (Synopsis Figure 8B). 

 

Approved hypotheses (C & D): Coordinated activity of presynaptic structures up-stream 

of the STN interacting with the STN via sparse and selective input. 

Scenario A or B are improbable given the findings provided in Steiner et al., 2019. Hence, 

by means of hypotheses elimination, scenario C or D, which both rely on sparse and 

selective single fiber input to the STN, are most likely (Synopsis Figure 8 C & D). Indeed, 

interconnectivity of GPe neurons via local axon-collaterals has been confirmed by paired 

patch-clamp recordings (Bugaysen et al., 2013) and cortical pyramidal cells have been 

shown to be synchronized at beta frequencies by local interneurons (Lacey et al., 2014). 
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Synopsis Figure 8. Schemes illustrating results of intrinsic and afferent connectivity analysis (see text for 
descriptions and results of testing of rules). Empty circles represent somata of neurons afferent to the STN 
(e.g. Cortex or GPe). Filled circles represent somata of STN neurons. Red crosses indicate rejected 
hypotheses A and B; green arrows indicate approved hypotheses C and D.  
 

In conclusion, neuronal synchronization dynamics that contribute to the physiology of the 

rat STN are likely to rely on sparse single fiber input rather than broad divergence of 

single afferent fibers or mutual connectivity between STN neurons. Together, this argues 

for STN neurons as being best conceived as parallel processing units. Thus, 

synchronization of firing patterns of local populations of STN neurons will require 

synchronized input. 

 

5.1.2 Structural properties of STN afferents 

As discussed above, synaptic control of STN synchrony can be expected to exclusively 

rely on STN afferents that comprise sparse and selective GABAergic and glutamatergic 

projections to the STN. 

Previous anatomical work has suggested that single GABAergic fibers show sparse 

connectivity to local clusters of STN neurons (Baufreton et al., 2009). The experiments 

reported in Steiner et al., 2019 (Figure 4) support this hypothesis on a functional level. 

Importantly, Steiner et al., 2019 extends the analysis to glutamatergic fibers that display 

similar or even more selective innervation patterns than their GABAergic counterparts. 

Furthermore, structural differences between glutamatergic and GABAergic afferent 

fibers innervating the STN may be able to explain the differential dynamics of 

glutamatergic and GABAergic inputs during high-frequency stimulation (Figure 6, Steiner 
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et al., 2019). The following paragraphs will draw from the existing 

literature to probe such consistency. 

Comparison of previous electron-microscopy work shows a considerable difference in the 

number of boutons of hyperdirect (4 - 94 glutamatergic boutons, rat (Kita and Kita, 2012)) 

and indirect (44 - 466 GABAergic boutons, rat (Kita and Kita, 2012)) fibers projecting to 

the rat STN. GABAergic terminals per single fiber do not only outnumber their 

glutamatergic counterparts, but individual terminals have also suggested to be larger 

(indirect GABAergic: 0,7 - 4,5 µm, rat (Smith et al., 1990) vs. hyperdirect glutamatergic: 

less than 1 µm, cat (Romansky et al., 1979) or 1,02 µm ± 0,06 µm (mean ± SEM), primate 

(Coude et al., 2018)). Furthermore, the single GABAergic axons connect to individual 

STN neurons by multiple synaptic contacts (Baufreton et al., 2009), adding to the relative 

potency of single GABAergic fiber innervation in comparison to glutamatergic fibers 

belonging to the hyperdirect pathway, that have been shown to form sparse terminal fields 

in the STN (Kita et al., 2012). 

Together, this argues for larger pools of vesicles in GABAergic compared to glutamatergic 

single axon projections. This in turn can be expected to make GABAergic transmission 

less prone to synaptic depression as it has been shown that synaptic dynamics of short-

term depression depend - among other factors - on vesicle reservoir and release 

dynamics (Zucker and Regehr, 2002). Hence, ultrastructural findings support the relative 

robustness of GABAergic transmission to HFS (Figure 6, Steiner et al., 2019). 

 

5.2 Synaptic control of the STN and the DBS mechanism of action 

5.2.1 DBS mediated control of neuronal synchrony in the STN 

In a second set of experiments the unique opportunity of the multi-patch set-up was used 

to study alterations in afferent control of the STN in a DBS-like scenario. 

DBS mechanisms of action have been under debate ever since its introduction into clinical 

practice in the 1980s. Early on, it has been suggested that DBS effects might be 

comparable to transient beneficial lesions of the stimulated structure (Benabid et al., 

1987). While it has been confirmed that stimulation does suppress neuronal activity of 

STN neurons (Milosevic et al., 2019), it simultaneously recruits afferent and efferent 

fibers, resulting in ortho- and antidromic action potential (AP) propagation and thus wide-

spread effects. 

Steiner et al., 2019 suggests that sparse and selective afferents control STN neuronal 

synchrony and argues that DBS-like orthodromic stimulation of STN afferents is 
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responsible for the control of synchronization within the STN. This is not to say, however, 

that afferent antidromic or efferent effects of DBS do not contribute to its mechanism of 

action. All of these effects are likely to complement each other. Nonetheless, there is good 

reason to study the mechanisms that govern synchrony in the STN: Therapeutically 

effective DBS has been shown to decrease exaggerated synchrony in the STN (Kuhn et 

al., 2008) and STN synchrony has received attention as a biomarker for physiological 

processing (Mirzaei et al., 2017) and as a pathophysiological correlate of Parkinson’s 

Disease (Tinkhauser et al., 2017a).  

Previous work has stressed the importance of high temporal resolution in the control of 

STN synchrony via intermittent and feedback-controlled adaptive DBS (aDBS), that only 

applies stimulation when a defined threshold of synchrony is surpassed (Little et al., 

2013). Importantly, STN synchrony is a dynamic feature of motor performance and 

fluctuates over time to give bursts of oscillatory activity. While short-lived bursts of 

synchrony in the beta frequency band have shown to be an important feature of 

physiological processing (Mirzaei et al., 2017), prolonged beta bursts are linked to motor 

impairment (Tinkhauser et al., 2017a). In order to retune dynamics of synchronization, 

aDBS therefore aims to truncate long beta bursts and thus exaggerated local 

synchronization in the STN. To do so, destruction of synchrony has to be achieved in the 

time course of milliseconds (Ramirez-Zamora et al., 2017). Only then, aDBS can comply 

with the temporal scale of synchronization dynamics and allow for physiological 

synchronization dynamics in inter-stimulation intervals. Steiner et al., 2019 argues that 

the short-term plasticity of glutamatergic and GABAergic inputs may provide a 

mechanistic explanation for such moment-to-moment control of STN synchrony. In short, 

findings provided in Steiner et al., 2019 suggest this may rely on the following:  

- The particular susceptibility of the glutamatergic input to synaptic depression upon 

repetitive stimulation at high frequencies selectively decouples the STN from its 

synchronizing glutamatergic cortical drive within tens of milliseconds (Figure 6, 

Steiner et al., 2019; Synopsis Figure 9). 

- The sustained inhibitory input will promote desynchronization as it directly shunts 

excitatory postsynaptic currents (Figure 5, Steiner et al., 2019) and may directly 

counteract disinhibition of the STN (a hallmark of PD pathophysiology). 
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- The synaptic recovery of depressed inputs is complete within seconds (Figure 6, 

Steiner et al., 2019), so that intermittent DBS may allow for physiological 

synchronization dynamics in inter-stimulation intervals.  

The aforementioned effects cumulate in a temporally restricted synaptic decoupling of the 

STN from synchronizing afferent control and are thus in good agreement with the 

temporal precision needed in intermittent stimulation paradigms such as aDBS.  

 

 

 
Synopsis Figure 9. High-frequency stimulation of the STN results in a shift towards inhibition. Upper 
panels: Illustration of low and high frequency activation of STN afferents. Red lines represent glutamatergic 
fibers; blue lines represent GABAergic fibers. Flashes visualize extracellular electric stimulation. Lower 
panels: Effects of low vs. high frequency extracellular stimulation on the balance between synaptic inhibition 
(illustrated by blue arrows) and excitation (illustrated by red arrows) in the STN as suggested by Figure 6, 
Steiner et al., 2019. Note that during low frequency stimulation, synaptic inhibition and excitation were 
depressed to similar degrees. During high frequency stimulation, however, depression of excitatory input 
was almost complete after only five stimuli in contrast to GABAergic transmission that proved to be relatively 
robust to high frequency stimulation. In consequence, high-frequency stimulation (130 Hz) of the STN can 
be expected to result in a shift towards synaptic inhibition. 

 

5.2.3 Synaptic inhibition in the STN – a double-edged sword 

The indirect pathway has been assigned an important role in the parkinsonian 

pathophysiology. Previous work has suggested an amplified synaptic strength of the 

GPe–STN projection in the dopamine depleted state (Fan et al., 2012). Importantly, 

enhanced GABAergic transmission at the level of STN inputs can translate into 

augmented  synchronization of neuronal activity by increasing the availability of Na+ 

channels (Baufreton et al., 2005). At first sight, this synchrony promoting role of 
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GABAergic inputs to the STN might contradict what has been argued above, namely, that 

stimulation of STN afferents at high frequencies results in a shift to GABAergic 

transmission that may be therapeutic. To dissolve the paradoxon of a both pathological 

and therapeutic role of synaptic inhibition in the STN, the contribution of phase 

relationships of synaptic input to neuronal synchrony in the STN has to be considered. It 

has been shown that synaptic excitation and inhibition to the STN settle in an anti-phasic 

relationship in the dopamine-depleted state (Mallet et al., 2008). The longer this phase 

relationship is maintained, the stronger the synchronization of neuronal activity in the STN 

(Cagnan et al., 2015). Steiner et al., 2019 argues that DBS actively shunts synaptic 

excitation and inhibition, inverting the synchronizing role of GABAergic signaling by in 

phase stimulation (Figure 5, Steiner et al., 2019). Specifically, desynchronization of AP 

generation by simultaneous activation of GABAergic and glutamatergic synaptic input 

proved to depend on GABAergic inputs, as glutamatergic input in isolation recruited STN 

neurons with high synchrony. Thus, enhanced GABAergic inhibition in the parkinsonian 

context may indeed serve DBS to more effectively interfere with pathologically rigid phase 

relationships, unlocking the circuit from synchrony promoting conditions. 

Steiner et al., 2019 (Figure 5) not only provides evidence that in phase activation of 

GABAergic input has a desynchronizing effect but also shows how GABAergic co-

stimulation serves to delay AP generation in STN neurons to >20 ms after the stimulation 

pulse (median: 20.2 ms, interquartile range 6.81–119.8 ms, n=32), compared to <8 ms 

AP latency when elicited by glutamatergic inputs in isolation (median: 7.3 ms, interquartile 

range 4.53 to 8.6, n=22). If stimulation is applied at 130 Hz, intervals between individual 

stimuli are <8 ms. Because the delay of AP generation  resulting from repeatedly activated 

GABAergic afferents exceeds this interval between stimuli, it may effectively contribute to 

the suppression of firing rates of STN neurons that has been observed during high 

frequency stimulation of the STN (Milosevic et al., 2019). 

In conclusion, differential short-term depression of STN inputs at high stimulation 

frequencies arguably represents a mechanism to both cause a timely precise 

deconstruction of STN synchrony and a suppression of STN firing rates, pointing to a dual 

therapeutic role of sustained and repeatedly activated synaptic inhibition. 

 

5.2.3 Relations to previously described DBS mechanisms of action 

It has been proposed that DBS dissociates inputs and outputs of its target structures, 

thereby interfering with pathological signaling (Nambu and Tachibana, 2014; Rosenbaum 
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et al., 2014). Previous work suggests this might be achieved by blocking trans-

subthalamic loops (hyperdirect and indirect) at the level of the STN, sparring the 

disruption of other pathways (Maurice et al., 2003). 

Previous work in acute brain slices has suggested that blocking incoming and outgoing 

neuronal communication might be achieved by means of conduction block of both STN 

afferent and efferent axons (Zheng et al., 2011). The authors report that HFS results in a 

reduction of fiber volley amplitude, a measure of the number of activated axons. Drawing 

from data collected at Substantia Nigra pars reticulata (SNr) afferent synapses, 

Rosenbaum et al. developed a computational model of axonal and synaptic failure aiming 

to simulate dynamics of DBS-induced short-term depression (Rosenbaum et al., 2014). 

Due to distinct properties of the respective axons (see section 5.1.2), disruption of axonal 

conduction within the STN might differ between glutamatergic and GABAergic fibers. 

Thus, it would be conceivable to explain differential short-term synaptic dynamics by 

means of differential probabilities for axonal failure. However, Zheng et al. report a striking 

difference in the time scale of HFS-induced axonal (decay time constant of fiber volley 

amplitudes at SNr afferent synapses: 1.57 ± 0.11 s (mean ± SEM; n=7)) and much faster 

synaptic failure (decay time constant of EPSCs at SNr afferent synapses: 0.1 ± 0.02 s 

(mean ± SEM; n=5)) and conclude that axonal failure might contribute to but cannot fully 

explain the much faster decline in postsynaptic currents. Data provided in Steiner et al., 

2019 suggests that attenuation of afferent glutamatergic input to the STN is achieved 

within <50 ms (Figure 6, Steiner et al., 2019) and thus even faster than the decline of 

synaptic amplitudes Zheng et al. have reported for SNr input synapses. For these 

reasons, axonal failure might contribute to the mechanism of action of continuous DBS, 

but is insufficient to explain how intermittent stimulation paradigms interact with oscillatory 

activity in a sub-second timeframe. 

In their review from 2014, Nambu and Tachibana discuss other possible mechanisms of 

DBS-induced STN decoupling (Nambu and Tachibana, 2014). They suggest an 

equivalency of STN DBS (Maurice et al., 2003) and GABA-A-Agonist (muscimol) injection 

into the STN (Nambu et al., 2000), as both result in similar circuit dynamics reminiscent 

of a selective disruption of trans-subthalamic pathways. Nambu and Tachibana speculate 

that this equivalence may be achieved by stimulation of GABAergic fibers. Indeed, there 

is evidence that focal release of GABA at afferent terminals in the STN may be 

therapeutically effective in humans (Levy et al., 2001). However, electrical stimulation 

activates not only GABAergic, but glutamatergic axons alike. While Nambu and 
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Tachibana conclude that the composition of stimulated fibers may determine the DBS 

effect, data provided in Steiner et al., 2019 offer an alternative explanation. The proposed 

equivalency may be directly explained by differential short-term depression of synaptic 

inputs to the STN: High-frequency stimulation of STN will not only decouple the STN from 

hyperdirect excitation, but the lasting release of GABA may have an analogous effect to 

artificial GABA-A-receptor-agonist (muscimol) injections into the STN.  

Finally, it has been shown that exaggerated synchrony in the STN can be counteracted 

by local micro-injections of glutamate-receptor antagonists (CPP and NBQX; (Tachibana 

et al., 2011)). Pharmacological suppression of glutamatergic signaling can be expected 

to have an analogous effect to the almost complete suppression of EPSCs during HFS 

(Figure 6, Steiner et al., 2019). Thus, findings provided in Steiner et al., 2019 integrate 

evidence suggesting that the DBS mechanism of action depends on the release of GABA 

with other studies that have shown that the high frequency stimulation of the hyperdirect 

pathway is effective in itself (Sanders and Jaeger, 2016). 

 

5.3 Conclusion 

In conclusion, the in vitro multi-patch approach used in Steiner et al., 2019 has provided 

the opportunity to study both the intrinsic and afferent synaptic connectivity of the STN. 

This allowed for the characterization of STN neurons as parallel processing units that 

need to be synchronized by afferent structures interacting with the STN via sparse and 

selective single fiber innervation. 

Combination of the multi-patch paradigm with frequency-varied extracellular stimulation 

has shed light on the contribution of glutamatergic and GABAergic input to synaptic 

control of STN synchrony. The reported differential short-term depression of these inputs 

during high frequency stimulation may provide a synaptic mechanism to reconcile and 

integrate previously described DBS mechanisms of action. 

Together, the findings of this dissertation provide constraints for future, more realistic 

computational models of the basal ganglia circuitry and will deepen the understanding of 

how next-generation DBS applications may allow for moment-to-moment control of STN 

synchrony. 
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Leon Amadeus Steiner,1 Federico J. Barreda Tomás,2 Henrike Planert,1 Henrik Alle,1 XImre Vida,2,3

and Jörg R.P. Geiger1,3

1Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany, 2Institute of Integrative Neuroanatomy,
Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany, and 3NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin,
Germany

Adaptive motor control critically depends on the interconnected nuclei of the basal ganglia in the CNS. A pivotal element of the basal
ganglia is the subthalamic nucleus (STN), which serves as a therapeutic target for deep brain stimulation (DBS) in movement disorders,
such as Parkinson’s disease. The functional connectivity of the STN at the microcircuit level, however, still requires rigorous investiga-
tion. Here we combine multiple simultaneous whole-cell recordings with extracellular stimulation and post hoc neuroanatomical analysis
to investigate intrinsic and afferent connectivity and synaptic properties of the STN in acute brain slices obtained from rats of both sexes.
Our data reveal an absence of intrinsic connectivity and an afferent innervation with low divergence, suggesting that STN neurons operate
as independent processing elements driven by upstream structures. Hence, synchrony in the STN, a hallmark of motor processing,
exclusively depends on the interactions and dynamics of GABAergic and glutamatergic afferents. Importantly, these inputs are subject to
differential short-term depression when stimulated at high, DBS-like frequencies, shifting the balance of excitation and inhibition toward
inhibition. Thus, we present a mechanism for fast yet transient decoupling of the STN from synchronizing afferent control. Together, our
study provides new insights into the microcircuit organization of the STN by identifying its neurons as parallel processing units and thus
sets new constraints for future computational models of the basal ganglia. The observed differential short-term plasticity of afferent
inputs further offers a basis to better understand and optimize DBS algorithms.

Key words: high-frequency stimulation; minimal stimulation; multipatch recordings; short-term plasticity; subthalamic nucleus;
synaptic connectivity

Introduction
Adaptive motor control in vertebrates relies on the integrative
properties of interconnected neuronal networks, including the

motor cortex and the structures of the basal ganglia (Stephenson-
Jones et al., 2011). Among the latter, the subthalamic nucleus
(STN) is the only glutamatergic nucleus (Bolam et al., 2000).
Further, it occupies a pivotal position within these circuits: it
integrates complex afferent input, most prominently the cortical
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Significance Statement

The subthalamic nucleus (STN) is a pivotal element of the basal ganglia and serves as target for deep brain stimulation, but
information on the functional connectivity of its neurons is limited. To investigate the STN microcircuitry, we combined multiple
simultaneous patch-clamp recordings and neuroanatomical analysis. Our results provide new insights into the synaptic organi-
zation of the STN identifying its neurons as parallel processing units and thus set new constraints for future computational models
of the basal ganglia. We further find that synaptic dynamics of afferent inputs result in a rapid yet transient decoupling of the STN
when stimulated at high frequencies. These results offer a better understanding of deep brain stimulation mechanisms, promoting
the development of optimized algorithms.
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“hyperdirect” (Nambu et al., 2002) and the pallidal “indirect”
pathway (Smith et al., 1990), and targets the main output nuclei
of the basal ganglia. The STN has also received substantial attention
as a major target for deep brain stimulation (DBS) to treat symptoms
of Parkinson’s disease (PD) (Benabid et al., 1994; Chen et al., 2006).
Despite increasing interest in the physiology of the STN and its clin-
ical relevance, however, intrinsic and afferent connectivity of STN
neurons and their synaptic properties are not fully explored.

Under physiological conditions, neurons in the basal ganglia
engage in brief transient synchronization at beta frequencies, and
the dynamics of synchronization are instrumental to basal gan-
glia function (Feingold et al., 2015; Mirzaei et al., 2017; Tin-
khauser et al., 2017a). Conversely, beta activity recorded in the
STN is exaggerated in PD (Neumann et al., 2016; Steiner et al.,
2017; Tinkhauser et al., 2017a), and clinically effective DBS re-
duces synchrony in this nucleus (Kühn et al., 2008). Nevertheless,
little is known of the anatomical substrate underlying synchroni-
zation in the STN. As neuronal network synchrony may depend
on both afferent and intrinsic connectivity, prime candidates,
which could mediate synaptic control of neuronal synchrony in
the STN, include the following: (1) glutamatergic afferents of the
hyperdirect cortical input, (2) GABAergic afferents belonging to
the indirect pathway, and (3) intranuclear mutual connectivity of
STN neurons. In terms of afferent connectivity, there is limited
information on the organization of incoming GABAergic inputs
(Baufreton et al., 2009); however, functional connectivity of glu-
tamatergic projections, potentially more critical to the control of
synchrony in the STN (Gradinaru et al., 2009; Li et al., 2012;
Sanders and Jaeger, 2016), is not well understood. More specifi-
cally, incoming fibers of both indirect (Baufreton et al., 2009) and
hyperdirect pathways collateralize in the STN (Kita and Kita,
2012), and their divergence may serve as an anatomical prereq-
uisite for synchronous recruitment. Mutual synaptic connectiv-
ity between STN neurons has been suggested on the basis of
anatomical (Hammond and Yelnik, 1983; Kita et al., 1983; Chang
et al., 1984; Ammari et al., 2010; Gouty-Colomer et al., 2018) and
indirect electrophysiological observations (Shen and Johnson,
2006; Ammari et al., 2010; Chu et al., 2012), but these observa-
tions were called into question by contrasting findings (Wilson et
al., 2004; Koshimizu et al., 2013). Thus, the mere existence of
functional intranuclear connections remains contentious.

In the present study, we combine simultaneous whole-cell re-
cordings of up to 7 neurons with extracellular stimulation and mor-
phological analysis of the recorded neuronal clusters, to investigate
the intrinsic and afferent functional connectivity of rat STN neurons.
We further analyze functional properties and interactions of synap-
tic inputs to these neurons. Finally, we compare synaptic dynamics
of both glutamatergic and GABAergic inputs in response to repeti-
tive stimulation at low and high, DBS-like frequencies.

Materials and Methods
Slice preparation. Acute brain slices (n � 64) were prepared from 38
juvenile (P14-P21) transgenic Wistar rats of both sexes expressing
Venus-YFP under the VGAT promoter (Uematsu et al., 2008) (RRID:
RGD_2314361). To control for age-dependent effects, we performed
additional experiments in a set of 4 adult animals (P61-P70). Animal
handling and all procedures were performed in accordance with guide-
lines of local authorities (Berlin, [T0109/10]), the German Animal Wel-
fare Act, and the European Council Directive 86/609/EEC. Animals were
decapitated after receiving isoflurane anesthesia, and the head was im-
mediately submerged in an ice-cold sucrose-based slicing solution con-
taining the following (in mM): 196 sucrose, 2.5 KCl, 1.2 NaH2PO4, 20
glucose, 26 NaHCO3, 0.5 CaCl2, 3.5 MgCl2 enriched with carbogen (95%
O2/5% CO2).

Horizontal and parasagittal 300-�m-thick slices containing the STN
were cut using a VT1200 vibratome (Leica Microsystems). Acute slices of
both horizontal and parasagittal orientation were cut to enable compar-
ison of our results with those of previous studies working in either of
these two planes. Subsequently, slices were stored in an ACSF containing
the following (in mM): 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 11 glucose, 19
NaHCO3, 2.4 CaCl2, 1.2 MgCl2, bubbled with carbogen (95% O2/5%
CO2). For recovery, slices were kept at 34°C for a minimum of 30 min.
Slices were stored in an interface-type chamber in carbogenated ACSF for
up to 5 h before being transferred to the recording chamber.

Whole-cell patch-clamp recordings. Recordings were performed in a
submerged-type recording chamber continuously perfused with ACSF
held at 34°C. Somatic whole-cell patch-clamp recordings were per-
formed using pipettes pulled from borosilicate glass capillaries (2 mm
outer/1 mm inner diameter) on a horizontal puller (P-97, Sutter Instru-
ment). The pipettes were filled with an intracellular solution containing
the following (in mM): 145 K-gluconate, 6 KCl, 10 HEPES, 0.2 EGTA, 5
Na2-phosphocreatine, 2 Na2ATP, 0.5 Na2GTP, and 2 MgCl2 (290 –300
mOsm, pH adjusted to 7.2 with KOH); 0.1% biocytin was added for
morphological analysis in a subset of experiments. Filled pipettes had a
resistance of 3–7 M�. Membrane potential values given in the text are not
corrected for the liquid junction potential.

Cells were visualized using infrared differential interference contrast
video microscopy (BX-51WI, Olympus). The STN was identified as an
almond-shaped structure in close proximity to the internal capsule and sub-
stantia nigra pars reticulata (SNr; Fig. 1A). Identification was confirmed by
probing VGAT-YFP fluorescence in epifluorescence illumination using a
490 nm LED light source (Thorlabs). The STN was homogeneously YFP-
negative, in contrast to the neighboring SNr.

We recorded from up to 7 cells simultaneously in depths of up to 72 �m
beneath slice surface (mean � SEM: 39 � 1 �m; Fig. 1B). The series resis-
tance in current-clamp recordings was compensated using the automated
bridge balance compensation of the amplifier. Recordings were performed
using 4 two-channel Multiclamp 700B amplifiers (Molecular Devices). Data
were low-pass filtered at 6 kHz using the amplifiers built-in Bessel filter and
digitized with a Digidata 1550 (Molecular Devices) at a sampling rate of 20
kHz. The pClamp 10.3.0.7 software package (Molecular Devices) was used
for data acquisition and analysis. Recorded cells had a resting membrane
potential of �60 � 1 mV (mean � SEM).

Synaptic connectivity screening. Trains of 4 action potentials (APs) at 20
Hz, a physiological burst frequency in the STN (Tinkhauser et al., 2017a),
were elicited in a single cell by injecting 1- to 2-ms-long suprathreshold
current pulses of 1–2.5 nA. Each recording sweep was 8 s long, and the
individual cells were stimulated sequentially in 1 s intervals; therefore,
each cell was activated once every 8 s (0.125 Hz). For the analysis of
synaptic connectivity, 20 – 40 sweeps were averaged. All postsynaptic
traces were thoroughly examined for postsynaptic potentials with a max-
imum latency of �3 ms to presynaptic APs, allowing for the detection of
unitary postsynaptic potentials as small as 40 �V in average amplitude
(Böhm et al., 2015; Peng et al., 2017).

Visualization of recorded neurons. After recording and concomitantly
filling the cells with biocytin, slices were immersion-fixed in a solution
containing 4% PFA and 4% sucrose in 0.1 M PB for a minimum of 12 h
(overnight) at 4°C. Slices were then rinsed extensively in 0.1 M PB and
subsequently permeabilized in a solution containing 0.3%– 0.5% Triton
X-100 in 0.1 M PB. Processed and biocytin-containing cells were visual-
ized using avidin-conjugated AlexaFluor-647 (Thermo Fisher Scientific;
dilution 1:500; RRID:AB_2336066) before being coverslipped using an
aqueous mounting medium. Imaging of the slices was performed on a
confocal laser-scanning microscope (Olympus FluoView FV1000) using
a 4� objective for overview of cell clusters, and a 30� silicone-
immersion objective (numerical aperture, 1.05) to obtain image stacks
for the assessment of single-cell morphology. Fluorescence emission
from YFP-labeled putative GABAergic cells was elicited by the 480 nm
line of an Argon laser. A 643 nm laser diode was used to visualize the
AlexaFluor-647 in biocytin-labeled neurons (Fig. 1D). Selected cells were
morphologically reconstructed using the Simple Neurite Tracer plug-in
(Longair et al., 2011) in the Fiji distribution of ImageJ software (National
Institutes of Health; RRID:SCR_003070; Fig. 1E).
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Analysis of spatial proximities between STN neurons. Spatial proximities
between pairs of recorded STN neurons were screened for using the
ImageJ software. We examined confocal image stacks of 5 cell clusters
from 5 animals. Potential contacts were classified as contacts originating
from main axon segments or axon collaterals. Reconstructed cell pairs from
recorded cell clusters were analyzed for potential contacts using a custom
NEURON (https://neuron.yale.edu/neuron/) script. Number and den-
dritic length of potential contacts within 4 �m radius (center to center)
from the central axis of the axon were determined per cell pair from the
recorded clusters.

Placement of stimulation electrode/extracellular stimulation settings. For
extracellular stimulation, a tungsten bipolar electrode (tip diameter �30
�m) was placed in the rostral part of the STN (Fig. 1B). The electrode was
lowered �50 �m into the slice. Stimulation intensity varied between 8
and 500 �A across experiments, with a pulse duration of 100 �s.

Drugs. Drugs were purchased from Tocris Bioscience. Concentrated
stock solutions of gabazine (GABA-A-receptor antagonist), D-AP5, and
CNQX disodium salt (ionotropic glutamate-receptor antagonists) were
made with H2O and diluted in ACSF immediately before use for bath
application at final concentrations of 10, 50, and 10 �M, respectively.

Minimal stimulation paradigm. Stimulation intensity was increased in
steps of 10 �A until a postsynaptic response was seen in one of several
simultaneously recorded cells, and subsequent stimulation intensity ad-
justed in steps of 1 �A to precisely determine the minimal stimulation
threshold. Divergence of afferents onto STN neurons within a recorded
cluster was studied by assessing the parallel emergence of postsynaptic
responses in simultaneously recorded cells. To study GABAergic trans-
mission in more detail, glutamatergic transmission was blocked in a
subset of experiments using D-AP5 and CNQX. Glutamatergic transmis-
sion was studied in isolation in the presence of gabazine.

Single-pulse stimulation. Single stimulation pulses of up to 500 �A
were applied without pharmacological manipulation to cause broad af-
ferent activation and reveal the degree of overlay of GABAergic and

glutamatergic synaptic responses within single cells and across a recorded
cluster. Experiments were performed both in voltage- and current-clamp
mode to study synaptic inputs and AP generation in STN neurons, re-
spectively. In each experiment, we recorded 10 sweeps to screen signal
variability. To disentangle AP generation in STN neurons from the in-
fluence of afferent GABAergic activity, experiments were performed in
the presence of gabazine in a subset of experiments. While most experi-
ments were performed at resting membrane potential, some cells were
depolarized to �60 or �50 mV (in both the gabazine and nongabazine
condition) to facilitate AP generation. Whenever single-pulse stimula-
tion evoked APs in one of the recorded cells, we evaluated the first AP
after stimulus. In a next step, we compared cell-specific median latencies
and SDs of APs. SDs were omitted whenever less than two APs were
recorded. On a group level, we compared between the gabazine and
nongabazine condition across cells.

Variation of extracellular stimulation frequency. To study frequency-
dependent dynamics of synaptic inputs to STN neurons, stimuli of 500
�A were applied at 10, 20, and 130 Hz. Each stimulation train was applied
for 1 s, and the stimulation interval was followed by a 4 s break. Thus, the
total sweep duration was 5 s. A total of 10 sweeps were recorded for each
stimulation frequency and averaged for subsequent analysis. Experi-
ments with clear and reliable onset of synaptic responses (either com-
pound glutamatergic or compound GABAergic) in all tested stimulation
frequencies were included in further post hoc analysis. In a subset of
experiments, it was necessary to extrapolate the stimulation artifact offset
toward baseline to correctly assess EPSC or IPSC amplitude. To quantify
and normalize synaptic depression for individual cells, we calculated synap-
tic depression ratios dividing the synaptic current amplitude evoked by the
fifth stimulus by the synaptic current amplitude evoked by the first stimulus.
To quantify synaptic recovery after DBS-like stimulation frequencies of 130
Hz, we compared synaptic current amplitudes after the first stimulus in the
first sweep to their counterparts in the 10th sweep.

A B C D

E

Figure 1. Electrophysiological and morphological characterization of clusters of neurons within the STN. A, Left, Schematic drawing of an acutely isolated rat brain. Parallel lines indicate
orientation of subsequently obtained “horizontal” slices. Right, Anatomical landmarks in a horizontal brain slice with the STN in each hemisphere highlighted in red. B, Experimental paradigm: up
to 7 STN neurons were recorded simultaneously. An extracellular stimulation electrode was placed at the rostral tip of the STN to stimulate axons afferent to the cluster of recorded neurons. C, AP
pattern of an STN neuron in response to a depolarizing current injection superimposed on a voltage trace in response to a hyperpolarizing current injection, which results in a rebound spike
characteristic for STN neurons. D, Fluorescence microscopic image of a horizontal slice obtained from a VGAT-YFP rat (see Materials and Methods) containing both the STN (VGAT-YFP-negative) and
the SNr (VGAT-YFP-positive). Red-labeled structures in the STN represent seven simultaneously recorded and biocytin-filled neurons. E, Reconstruction of the same cluster of neurons shown in D.
Black represents dendrites and somata. Red represents axons. Note the partially preserved axonal projections to the SNr.
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Statistical analysis. Statistical analyses
were performed in Excel (Microsoft; RRID:
SCR_016137) and MATLAB (The MathWorks;
RRID:SCR_001622). Data are presented as the
median and interquartile range, unless other-
wise stated. Boxplots (central line, median;
box, 25%–75%; maximal whisker length, 2
times the interquartile range; data points be-
yond the whiskers displayed using “	”) are
used to illustrate sample distributions. Group
data were compared using nonparametric Wil-
coxon signed-rank test and Mann–Whitney U
test for paired and nonpaired comparisons, re-
spectively. Multiple comparisons were cor-
rected for by multiplying p values by the
number of comparisons (Bonferroni correc-
tion). Final p values �0.05 were considered
significant.

Results
Multipatch experiments reveal no
synaptic interconnectivity between
simultaneously recorded STN neurons
To probe intranuclear mutual connectiv-
ity between STN neurons, we performed
multiple whole-cell recordings from local
clusters of up to 7 neurons simultaneously
(Fig. 2A), allowing us to test up to 42 pos-
sible synaptic connections at once (Fig.
2B). Using this approach, we examined a
total of 830 connections between STN
neurons in the juvenile cohort: 418 of
those in slices cut in the parasagittal plane
and 412 in the horizontal plane. Interso-
matic distances between recorded cells
ranged between 20 and 208 �m (Fig. 2C).
The connectivity analysis was extended to
an adult cohort to control for age-
dependent effects, whereby an additional
44 synaptic connections were tested. In
none of the tested connections did an AP
in a putative presynaptic cell result in a
temporally correlated postsynaptic po-
tential in a simultaneously recorded cell,
indicating a lack of functional connectiv-
ity between STN neurons.

To assess the morphological character-
istics of the recorded cells, a subset of neu-
rons were intracellularly filled, visualized,
and reconstructed (38 STN cells in 7 clus-
ters). Examined STN neurons had homo-
geneous morphological characteristics,
featuring an ovoid soma and a bipolar
dendritic tree with 4 – 6 primary dendrites
(median: 5). Dendrites were aspiny, ex-
tended up to a distance of 322.2 �m
(272.5 to 393 �m) from the soma, and had
a total length of 2191 �m (median; 1768 –
2865 �m). Somatodendritic domains
were restricted to the STN, although occa-
sionally individual dendrites were ob-
served to extend outside the nucleus for
shorter distances. For 27 neurons, an axon
could be unequivocally identified. Most

A

B

C

Figure 2. Simultaneous recordings of up to 7 STN neurons show no mutual synaptic connectivity. A, Reconstruction of
simultaneously recorded STN neurons (different cluster than in Fig. 1). B, Connectivity screening of the set of cells in A.
Neurons are stimulated consecutively to generate a burst of four APs (gray boxes). Recordings of the other, potentially
postsynaptic, neurons are shown in the respective column as averages of 40 sweeps. Note the complete lack of AP-evoked
unitary postsynaptic potentials. C, Distributions of distances between tested pairs of neurons in horizontal and parasagittal
slices.
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cells showed a typical axonal morphology
as previously described for STN projec-
tion neurons (Koshimizu et al., 2013): a
thick initial segment followed by a T-shaped
bifurcation with the secondary axon
branches projecting rostrally and cau-
dally, respectively (16 cells; Figs. 1E, 3). In
some of these neurons (n � 8), the caudal
axon branch could be followed as far as the
SNr within the slice. In a few neurons (6
cells), local axonal collaterals were observed.
The number of collaterals emerging from
the primary and secondary axon was, how-
ever, low, and they showed little further
branching (median number of collateral
branches per cell was 3; 1–5). Therefore, the
extent of the axon local collaterals remained
limited with a total length of 368 �m (me-
dian; 315–659 �m, 6 cells).

As the possibility of intranuclear syn-
aptic contacts has been raised by previous
anatomical studies (Hammond and Yel-
nik, 1983; Kita et al., 1983; Chang et al.,
1984; Ammari et al., 2010; Gouty-
Colomer et al., 2018), we examined the
overlap of dendritic and axonal arboriza-
tions of the recorded neurons. Visual
inspection revealed axo-dendritic prox-
imities between neuron pairs of the re-
corded and visualized STN clusters (Fig.
3). To systematically analyze the existence
of such potential contacts, axons and den-
drites of the reconstructed cells were ex-
amined pairwise for locations of close
proximity (see Materials and Methods).
In 50 of 84 cell pairs examined, a total of
91 axo-dendritic proximities was found.
Of these, 79 involved a primary axon and
12 small-caliber axon collaterals. Axo-
dendritic proximities were found mostly
proximally on the potential postsynaptic
cell at a median distance of 87 �m (41–
146 �m, 91 potential contacts) measured
along the dendrites from the soma. In ad-
dition, we also observed 12 axo-axonic
proximities in 8 of the 84 examined cell
pairs. Thus, the overlap of axonal and
dendritic arbors and the existence of
proximities between neurites of STN cells
suggest that an anatomical potential of in-
tranuclear connectivity exists; however,
these spatial proximities do not translate
into functional synaptic connections be-
tween the cells.

Minimal stimulation experiments
demonstrate sparse projections by
incoming afferent fibers onto local
clusters of STN neurons
To study functional connectivity of afferents to STN neurons and
in particular their divergence, we next applied extracellular stim-
ulation while recording in voltage-clamp mode from clusters of
STN neurons (Fig. 4). The stimulating electrode was placed in the

rostral end of the STN, where afferents enter the nucleus (Kita
and Kita, 2012; Mallet et al., 2012). To activate single afferent
axons, we applied a minimal stimulation protocol, and diver-
gence was assessed by the number of simultaneously appearing

A

B

Figure 3. Local axo-dendritic proximities between neurons of the STN. A, B, 2D representations of reconstructed STN neurons
with axo-dendritic proximities. Soma and dendrites of putative presynaptic cells (black) and their axons (red); blue represents
putative postsynaptic cells. Gray circles represent site of proximity. Insets, Confocal z stack close-ups of the proximities. Letters a– h
show corresponding sites in 2D representations of reconstructed neurons. Red arrows indicate potential contact site. The cells in
panel A are taken from the cluster displayed in Figure 1E.
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synaptic inputs in cells of the recorded
cluster (see Materials and Methods).
Given our finding of absent intranuclear
connectivity, responses to intranuclear stimu-
lation should reflect the activation of pro-
jections to the nucleus.

In all cell clusters tested, the excitatory
synaptic input was detected in only one of
the recorded neurons at minimal stimula-
tion intensity, and this was independent
of the slice orientation (horizontal plane:
4 clusters; cluster sizes: 7, 7, 7, and 6 cells;
parasagittal plane: 4 clusters; cluster sizes:
7, 7, 7, and 6 cells; Fig. 4A,B), indicating a
very low divergence of the input fibers.
When stimulation intensity was subse-
quently increased, synaptic inputs were
also recorded in other cells of the respec-
tive cluster, confirming that these cells
also received afferent synaptic inputs;
however, these can be assumed to be me-
diated by distinct afferent fibers.

This observation was replicated for the
GABAergic input in the presence of
CNQX and APV: in 7 of 10 clusters tested,
only a single cell showed inhibitory synap-
tic responses at threshold stimulation
intensity (horizontal plane: 4 clusters,
cluster sizes: 7, 7, 6, and 5 cells; parasagit-
tal plane: 3 clusters, cluster sizes: 5, 5, and
5 cells; Fig. 4C,D). However, in 3 further
clusters, postsynaptic currents were re-
corded in two neurons at the minimal
stimulation intensity (horizontal plane: 2
clusters, cluster sizes: 7 and 4 cells; para-
sagittal plane: 1 cluster, cluster size: 6 cells;
Fig. 4E,F), reflecting that a sparse diver-
gence of afferent fibers may exist.

GABAergic responses were elicited
with short latency (2.81 ms, 2.22–3.75 ms,
n � 13) in the presence of AMPA- and
NMDA-receptor blockers, making poly-
synaptic activation unlikely. There was no
difference between synaptic latencies of
glutamatergic responses (2.81 ms, 2.34 –
4.0 ms, n � 8) and GABAergic responses.
Thus, it is highly likely that both the IPSCs

A

B

C

D

E

F

Figure 4. Minimal stimulation experiments reveal a low divergence of glutamatergic and GABAergic projections to local clus-
ters of STN neurons. A, Minimal stimulation of afferents to a cluster of STN neurons in the presence of the GABAA-R blocker

4

gabazine. *First neuron of the cluster that displayed evoked
postsynaptic currents. Red represents traces in which evoked
postsynaptic currents were detected. B, Enlarged traces from
neuron 5 (*) in A. C, Minimal stimulation of afferents to a clus-
ter of STN neurons in the presence of CNQX and D-AP5
(glutamate-receptor blockers). **First neuron of the cluster
that displayed evoked postsynaptic currents. Blue represents
traces in which evoked postsynaptic currents were detected.
D, Enlarged traces from neuron 1 (**) in C. E, Minimal stimu-
lation of afferents to a cluster of STN neurons in the presence of
CNQX and D-AP5 (glutamate-R blockers). Parallel appearance
of two inhibitory synaptic inputs (***, ****). Blue represents
traces in which evoked postsynaptic currents were detected. F,
Enlarged traces from neuron 2 (***) and neuron 7 (****) in E.
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and the EPSCs were monosynaptic. Furthermore, synaptic am-
plitudes of the glutamatergic responses were in a remarkably nar-
row range (27.5 mA, 24.75–31.5 mA, n � 8), consistent with their
single contact-mediated, monosynaptic nature. GABAergic in-
puts, in contrast, had large amplitudes with higher variability (47
mA, 22.38 –110.63 mA, n � 13). This finding is consistent with
previously reported sparsely distributed terminal clusters of
GABAergic afferent input to the STN that form multiple synaptic
contacts onto individual STN neurons (Baufreton et al., 2009).

In summary, this suggests that both glutamatergic and
GABAergic incoming fibers to the nucleus provide a sparse and
selective, rather than a broad and divergent, input onto local
clusters of STN neurons.

Costimulation of inhibitory and excitatory afferents delays
and disperses AP generation in STN neurons
To investigate the joint effect of convergent glutamatergic and
GABAergic afferents, large-intensity extracellular stimuli were
applied (see Materials and Methods). The simultaneous activa-
tion of the sparse projections produced compound postsynaptic
currents in individual STN neurons (Fig. 5). Within the same cell
cluster, however, neurons showed diverse synaptic responses pre-
dominantly glutamatergic, GABAergic, or mixed (Fig. 5B).

To study the timing of AP generation in STN neurons in re-
sponse to these variable synaptic currents, we switched to the
current-clamp mode (Fig. 5C). Under this condition, the same
stimuli elicited APs in a subset of cells (32 of 142 neurons tested,
23%). In most cells, the APs had long latencies and showed high
temporal dispersion (Fig. 5C). On the group level, the median
latency was 20.2 ms (6.81–119.8 ms, n � 32), with a temporal
dispersion of 7.24 ms (SDs across cells, 0.77–31 ms, n � 28).

To next examine APs evoked by the excitatory input in isola-
tion, we bath-applied gabazine to block GABAA receptor-
mediated synaptic components (Fig. 5D). This manipulation
resulted in a recruitment of 32% of STN neurons (23 of 73 neu-
rons tested). Compared with control, APs were elicited with
markedly shorter latency (median latencies across cells: 7.3 ms,
4.53– 8.6 ms, n � 22; p � 0.002) and lower temporal variability
(SDs across cells: 0.46 ms, 0.12–1.11 ms, n � 18; p � 0.002).

In summary, excitatory afferents alone drive STN neurons
with short latency and low temporal variability. In contrast, co-
stimulation of inhibitory afferents delays and disperses AP gen-
eration in STN neurons. Thus, the interaction of simultaneously
recruited glutamatergic and GABAergic inputs can desynchro-
nize neurons of the STN.

Repetitive DBS-like stimulation produces differential
short-term depression of glutamatergic and GABAergic
inputs to the STN
In view of the tight interplay of glutamatergic and GABAergic
inputs in the recruitment of STN neurons, we next aimed to study
the dynamics of these two afferent systems during repetitive stim-
ulation. We applied 1 s trains of extracellular stimuli at low (10
and 20 Hz) and high, DBS-like frequencies (130 Hz) while re-
cording from the cell clusters (Fig. 6). As described above, the
compound synaptic responses were variable across the cells of the
recorded clusters. Nevertheless, both compound glutamatergic
and GABAergic synaptic responses showed short-term depres-
sion during the stimulus train.

For low-stimulation frequencies, synaptic depression was
comparable for compound excitatory and compound inhibitory
responses. At 10 Hz, the synaptic depression ratio (fifth/first syn-
aptic amplitude) for EPSCs was 0.44 (0.4 – 0.55, n � 12) and for

IPSCs 0.58 (0.55– 0.62, n � 9; p � 0.27 for EPSCs vs IPSCs). At 20
Hz, the depression ratio for EPSCs was 0.32 (0.3– 0.54, n � 12)
and for IPSCs 0.58 (0.5– 0.62, n � 9; p � 0.46 for EPSCs vs IPSCs;
Fig. 6A). The synaptic depression ratios were not significantly
different between 10 Hz and 20 Hz stimulation neither for com-
pound EPSCs (p � 0.61) nor for IPSCs (p � 1). However, DBS-
like high-frequency stimulation at 130 Hz caused a dramatic
decrease of the EPSC amplitude over the train resulting in a de-
pression ratio of 0.07 (0.03– 0.13, n � 12; Fig. 6B,C). Comparing
the degree of depression of EPSCs, the difference was highly sig-
nificant between 130 Hz and 10 Hz (p � 0.004) or 20 Hz (p �
0.004), respectively (Fig. 6D). In contrast, the IPSCs showed only
moderate depression even at high frequencies (ratio of 0.46, 0.4 –
0.48, n � 9; p � 0.001 for EPSCs vs IPSCs) and no statistical
differences when comparing stimulation frequencies of 130 Hz
versus 10 Hz (p � 0.07) or 20 Hz (p � 0.18; Fig. 6D).

Despite strong synaptic depression during the stimulation
train, both EPSCs and IPSCs rapidly recovered after a 4 s break
(Fig. 6E). Synaptic amplitudes in response to the first stimulus in
the trains showed no significant difference between the first and
the 10th repetition either for EPSCs (first: �78 pA, �118 to �62
pA; 10th: �85 pA, �125 to �52 pA, n � 12; p � 0.57) or for
IPSCs (first: 109 pA, 67 to 226 pA; 10th: 130 pA, 75 to 237 pA,
n � 9; p � 0.91; Fig. 6F).

In summary, the degree of synaptic depression does not differ
between compound glutamatergic and GABAergic synaptic in-
puts for low-stimulation frequencies. However, at high, DBS-like
frequencies, the compound glutamatergic drive rapidly and al-
most completely depresses after only a few stimuli in the train. In
contrast, the GABAergic input remains relatively robust at a
moderate level of depression. Thus, the differential dynamics of
STN inputs will cause a major shift in the balance of excitation
and inhibition toward inhibition.

Discussion
In our study, focusing on the synaptic connectivity of the STN, we
found no evidence for intranuclear mutual connections between
STN neurons in acute slices of juvenile and adult rats. We ob-
served sparse divergence of individual afferent fibers of both glu-
tamatergic and GABAergic input onto neurons of the recorded
clusters when tested by a minimal stimulation protocol. Recruit-
ment of pharmacologically isolated glutamatergic afferents at
higher stimulus intensities evoked short-latency, highly synchro-
nous APs, whereas costimulation of glutamatergic and GABAer-
gic afferents resulted in delayed and dispersed AP generation in
STN neurons. Finally, repetitive extracellular stimulation at high,
DBS-like frequencies, but not at low frequencies, produced dif-
ferential short-term plasticity of glutamatergic and GABAergic
inputs, due to a dramatic reduction of excitatory but not inhibi-
tory responses. Thus, DBS-like stimulation patterns can dynam-
ically shift the balance of synaptic excitation and inhibition in the
STN toward inhibition.

Sparse afferent and absent intrinsic connectivity of the STN
The rat STN is considered to comprise a homogeneous popu-
lation of glutamatergic neurons. Nevertheless, features of
GABAergic transmission in a subset of STN neurons have pre-
viously been reported despite predominant evidence for their
glutamatergic phenotype (Jin et al., 2011). Lévesque and Par-
ent (2005) further suggested that the human STN contains
GABAergic interneurons. The lack of vGAT-YFP expression
and the homogeneity of morphological properties in our sam-
ple do not support the existence of GABAergic neurons in the
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rat STN. This question, however, would need further investi-
gation and the possibility of interspecies differences has to be
acknowledged.

Intranuclear mutual connectivity between glutamatergic STN
neurons has been proposed to be of crucial importance for com-

putational function and to contribute to neural synchrony in this
nucleus (Gillies and Willshaw, 2004; Shen and Johnson, 2006;
Ammari et al., 2010). Convergently, anatomical studies demon-
strated local axon collaterals of STN neurons (Hammond and
Yelnik, 1983; Kita et al., 1983; Chang et al., 1984; Ammari et al.,

A B

C

D

E

F

Figure 5. GABAergic costimulation delays and desynchronizes AP generation in STN neurons. A, Schematic drawing of experimental paradigm. Red represents glutamatergic afferents to the STN.
Blue represents GABAergic afferents to the STN. B, Example traces of compound glutamatergic, GABAergic, and mixed compound synaptic currents in a cluster of STN neurons. C, Voltage-clamp and
current-clamp recordings of an individual STN neuron. D, Voltage-clamp and current-clamp recordings of the same STN neuron as in C in the presence of gabazine. E, Boxplots displaying the
distribution of the medians of AP latency following a single stimulus as exemplified in C and D. Top, n � 32 neurons without synaptic blockers (black). Bottom, n � 22 in the presence of gabazine
(red). **Highly significant difference ( p � 0.01). F, Boxplots displaying the distribution of SDs of AP latency after a single stimulus as exemplified in C and D. Top, n � 28 neurons without synaptic
blockers (black). Bottom, n � 18 in the presence of gabazine (red).
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2010; Gouty-Colomer et al., 2018), interpreted as indication of
local synaptic connections. Consistently, we found axon collater-
als, albeit with a limited extent, for a subset of STN neurons. We
also observed proximities between axons and dendrites of STN
neurons. Results of our extensive multiple whole-cell recordings,
however, revealed no functional connectivity between any of the
closely spaced neuron pairs examined. Thus, the putative ana-
tomical contacts do not translate into discernible functional
connectivity, making mutual synaptic connectivity between glu-
tamatergic STN neurons unlikely. This is in good agreement with
previous acute slice work that investigated synchrony in the STN
(Wilson et al., 2004). Our results contrast those obtained in or-
ganotypic rat midbrain slice culture pointing to intranuclear ex-
citatory connectivity (Chu et al., 2012), which, however, might be
explained by extensive axonal sprouting in such preparations
(Debanne et al., 1998). Local axon collaterals and axo-dendritic

proximities may serve other functions, such as regulation of re-
mote inputs, as suggested for striatal microcircuits (Du et al.,
2017).

Combination of multiple recordings with minimal stimula-
tion further allowed us to assess the divergence of afferent inputs
to the STN. Our results reveal that both excitatory and inhibitory
afferents show low divergence onto the closely spaced neurons of
STN cell clusters. This finding is in good agreement with a previous
study demonstrating a sparse and selective connectivity from the
GPe onto STN neurons (Baufreton et al., 2009). Our results extend
these findings by showing that glutamatergic projections exhibit a
similar or even more selective projection pattern, in good agreement
with previous anatomical data (Kita and Kita, 2012).

Both mutual intrinsic and divergent afferent connectivity may
serve as anatomical substrates for the emergence of synchrony in
a local neuronal network. Although we cannot fully rule out the

A B

C D

E F

Figure 6. Sustained inhibition during DBS-like stimulation contrasts rapid depression of excitatory inputs. A, Averaged voltage-clamp traces at 20 Hz stimulation frequency in four simultaneously
recorded STN neurons. B, Averaged voltage-clamp traces from the same STN neurons as in A at 130 Hz stimulation frequency. C, Same traces as in B (black frame), albeit as single sweeps at higher
temporal resolution; the respective average traces are superimposed in black. D, Group data (n � 12 compound, predominantly glutamatergic EPSCs: red boxes; and n � 9 compound, predomi-
nantly GABAergic IPSCs: blue boxes) show distribution of synaptic depression ratios (fifth/first) for the respective stimulation frequencies. **Highly significant difference ( p � 0.01). E, Represen-
tative traces show the synaptic responses evoked by the first pulses of the 10 consecutive 130 Hz stimulus trains. Blue represents compound, predominantly GABAergic IPSCs. Red represents
predominantly glutamatergic EPSCs. F, Summary box charts show the peak amplitudes of the first synaptic responses in the first and 10th stimulation trains. Blue represents compound,
predominantly GABAergic IPSCs (n � 9). Red represents compound, predominantly glutamatergic EPSCs (n � 12).
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existence of recurrent excitatory connections in the STN, these
must be of very low occurrence with minimal somatic effect.
Furthermore, the afferent inputs, in particular the excitatory
projections, show minimal divergence. Together, these features
identify STN neurons as independent processing units, which
integrate convergent sparse afferent inputs in a largely parallel
manner. Synchrony in such a system will be inherited from up-
stream structures. Reciprocal interactions with the GPe may fur-
ther endow the STN with pattern generation capabilities (Bevan
et al., 2002). Because remote afferents take center stage for the
synchronization in the STN, their interactions and dynamic
properties are critical for synaptic control of the nucleus.

GABAergic coactivation desynchronizes STN neurons
Activation of the afferent input at higher stimulation intensities
produced diverse patterns of compound synaptic currents across
the neurons of the recorded clusters, reflecting the convergence
of a varying composition of stimulated glutamatergic and
GABAergic fibers onto the cells. While the convergent excitatory
input in isolation was able to recruit STN neurons with short
latency and high temporal precision, the costimulation of
GABAergic fibers delayed and desynchronized APs under control
conditions, as suggested by Bevan et al. (2007).

However, simultaneous convergent glutamatergic and GABAer-
gic input is unlikely to occur under in vivo conditions. Still, the
extracellular costimulation paradigm of excitatory and inhibitory
afferents in our experiments might bear direct relevance for DBS
in the clinical setting, which similarly activates a mixed popula-
tion of afferent fibers (Reich et al., 2015). In PD, pallidal GABAe-
rgic transmission to the STN is increased (Fan et al., 2012; Chu et
al., 2015) and phase-shifted (Mallet et al., 2008a,b) relative to
synchronized motor cortex excitation (Goldberg et al., 2002).
Importantly, out-of-phase inhibition, when preceding EPSPs,
can support AP generation by increasing the availability of Na	

channels (Baufreton et al., 2005). In an oscillatory context, when
excitation and inhibition alternate in the cycle, inhibition can
enhance the efficiency, precision, and ultimately the synchrony of
spiking (Baufreton et al., 2005). Our results on the desynchroniz-
ing effect of GABAergic costimulation suggest that DBS inverts
this synchronizing role of the GABAergic input. In forcing simul-
taneous activation of inhibitory and excitatory inputs, it is di-
rectly shunting and hyperpolarizing excitatory input, effectively
closing the time window in which a synchronized afferent drive
can recruit the STN.

Sustained inhibition contrasts rapid depression of excitatory
inputs during high-frequency stimulation
The particular susceptibility of the glutamatergic drive to synap-
tic depression upon repetitive stimulation at high frequencies has
further relevance for DBS. Previous studies have proposed short-
term depression as a DBS mechanism of action (Zheng et al.,
2011; Rosenbaum et al., 2014; Milosevic et al., 2018). Our results
corroborate this finding: in contrast to stimulation at low fre-
quencies, when glutamatergic and GABAergic inputs showed
comparable degrees of depression, high frequencies produced a
rapid and dramatic reduction in EPSCs, whereas IPSCs remain
relatively robust, resulting in a shift toward inhibition. Note-
worthy, the activation of inhibitory input during DBS has
recently received attention (Chiken and Nambu, 2014), but
has not been directly compared to DBS effects on excitatory
inputs. The shift in the balance largely decouples the STN from
its glutamatergic cortical drive, whereas the maintained inhib-
itory input promotes desynchronization. Thus, differential

short-term depression of synaptic transmission represents a
mechanism to attenuate the unpredictable variability of re-
cruited afferent fibers.

From synaptic dynamics to therapeutic interventions
While the STN receives glutamatergic and GABAergic inputs,
previous studies argued that the selective stimulation of the hy-
perdirect pathway alone could account for therapeutic effects of
DBS (Gradinaru et al., 2009; Sanders and Jaeger, 2016). Both the
therapeutic DBS effects observed in the aforementioned studies
and the effects on glutamatergic afferent control presented in our
study critically depend on stimulation frequency. Limiting the
DBS mechanism of action to effects on the hyperdirect pathway,
however, fails to explain why electrode placement in the GPi, a
frequently used alternative target in PD which is not monosyn-
aptically connected to the cortex, is comparable in its clinical
effect (Follett et al., 2010; Williams et al., 2014). Indeed, recent
studies suggest that GPi-DBS, similar to STN-DBS, is reducing
cortical beta-gamma phase-amplitude coupling (Malekmoham-
madi et al., 2018), a previously reported biomarker of PD (de
Hemptinne et al., 2013). Thus, it seems unlikely that the DBS
mechanism of action is exclusively depending on selective stim-
ulation of the hyperdirect pathway. Instead, electrical stimulation
plausibly targets both GABAergic and glutamatergic fibers simul-
taneously. As both GPi and STN are similar in integrating
GABAergic and glutamatergic inputs, differential short-term
plasticity could provide a general, target-independent mecha-
nism that prevents the downstream propagation of pathological
activity.

Further, our results may shed light on the synaptic mecha-
nisms underlying feedback-controlled intermittent forms of DBS
(Little et al., 2013; Herz et al., 2018). These adaptive stimulation
paradigms have been proposed to trim excessive synchronization
at beta frequencies with high temporal precision (Ramirez-
Zamora et al., 2017; Tinkhauser et al., 2017b). Our data suggest
that the rapid depression of glutamatergic inputs and the promo-
tion of desynchronizing afferent control complies with the neces-
sity for fast, temporally precise disruption of local synchrony.
Because synaptic recovery is complete within seconds, intermit-
tent DBS allows for physiological synchronization dynamics in
interstimulation intervals. In conclusion, the dynamic properties
of afferent synapses revealed in this study fit well to intermittent
stimulation paradigms, allowing for fast yet temporally restricted
functional decoupling of the STN from synchronizing inputs.
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