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Abstract
We develop a martingale approach for a class of singular stochastic PDEs of Burgers
type (including fractional and multi-component Burgers equations) by constructing a
domain for their infinitesimal generators. It was known that the domainmust have triv-
ial intersection with the usual cylinder test functions, and to overcome this difficulty
we import some ideas from paracontrolled distributions to an infinite dimensional
setting in order to construct a domain of controlled functions. Using the new domain,
we are able to prove existence and uniqueness for the Kolmogorov backward equation
and the martingale problem. We also extend the uniqueness result for “energy solu-
tions” of the stochastic Burgers equation of Gubinelli and Perkowski (J AmMath Soc
31(2):427–471, 2018) to a wider class of equations. As applications of our approach
we prove that the stochastic Burgers equation on the torus is exponentially L2-ergodic,
and that the stochastic Burgers equation on the real line is ergodic.
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1 Introduction

The (conservative) stochastic Burgers equation u : R+×T → R (or u : R+×R → R)

∂t u = �u + ∂x u2 +√
2∂xξ, (1)

where ξ is a space-time white noise, is one of the most prominent singular stochastic
PDEs, a class of equations that are ill posed due to the interplay of very irregular noise
and nonlinearities. The difficulty is that u has only distributional regularity (under the
stationary measure it is a white noise in space for all times), and therefore the meaning
of the nonlinearity ∂x u2 is dubious.

In recent years, new solution theories like regularity structures [20,40] or para-
controlled distributions [26,33] were developed for singular SPDEs, see [38] for
an up-to-date and fairly exhaustive review. These theories are based on analytic (as
opposed to probabilistic) tools. In the example of the stochastic Burgers equation we
roughly speaking use that u is not a generic distribution, but it is a local perturbation
of a Gaussian (obtained from ξ ). We construct the nonlinearity and some higher order
terms of the Gaussian by explicit computation, and then we freeze the realization of ξ

and of the nonlinear terms we just constructed and use pathwise and analytic tools to
control the nonlinearity for the (better behaved) remainder. This requires the introduc-
tion of new function spaces of modelled (resp. paracontrolled) distributions, which
are exactly those distributions that are given as local perturbations as described before,
and for which the nonlinearity can be constructed.

This point of view was first developed for rough paths, which provide a pathwise
solution theory for SDEsbywriting the solutions as local perturbations of theBrownian
motion [37,47]. Rough paths provide a new topology in which the solution depends
continuously on the driving noise, and this is useful in a range of applications. But
of course there are also probabilistic solution theories for SDEs, based for example
on Itô or Stratonovich integration (strong solutions) or on the martingale problem
(weak solutions), and depending on the aim it may be easier to work with the pathwise
approach or with the probabilistic one.

For singular SPDEs the situation is somewhat unsatisfactory because while the
pathwise approach applies to a wide range of equations, it seems completely unclear
how to set up a general probabilistic solution theory. There are some exceptions, for
example martingale techniques tend to work in the “not-so-singular” case when the
equation is singular but can be handled via a simple change of variables and does not
require regularity structures (sometimes this is called the Da Prato-Debussche regime
[12,13]); see [52,53] and also [22,23] for a an example where the change of variable
trick does not work but still the equation is not too singular. For truly singular equa-
tions there exist only very few probabilistic results. Röckner et al. [56] constructed a
Dirichlet form for the�4

3 equation and used the pathwise results to show that the form
is closable, but it is unclear if the process corresponding to this form is the same as
the one that is constructed via regularity structures or even if it is unique.

Maybe the strongest probabilistic results exist for the stochastic Burgers Eq. (1):
First results, on which we comment more below, are due to Assing [1]. In Gonçalves
and Jara [28] construct so called energy solutions to Burgers equation, roughly speak-
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The infinitesimal generator of the stochastic Burgers… 1069

ing by requiring that u solves the martingale problem associated to

∂t u = �u + lim
ε→0

∂x (u ∗ ρε)2 +√
2∂xξ,

where ρε is an approximation of the identity. This notion of solution is refined in [27]
where the authors additionally impose a structural condition for the time-reversed
process (uT−t )t∈[0,T ], and they assume that u is stationary. These two assumptions
allow them to derive strong estimates for additive functionals

∫ ·
0 F(us)ds of u via the

Itô trick. They obtain the existence of solutions in this stronger sense by Galerkin
approximation. The uniqueness of the refined solutions is shown in [34], leading to
the first probabilistic well-posedness result for a truly singular SPDE. Extensions to
non-stationary initial conditions that are absolutely continuous with respect to the
invariant measure are given in [30,35], and in [55] some singular initial conditions are
considered; see also [36] for Burgers equation with Dirichlet boundary condition.

The reason why the uniqueness proofs work is that we can linearize the equation via
the Cole–Hopf transform: By formally applying Itô’s formula, we get u = ∂x logw,
where w solves the stochastic heat equation ∂tw = �w + √

2wξ , a well posed
equation which can be handled with classical SPDE approaches as in [17,46,54].
The proof of uniqueness in [34] shows that the formal application of Itô’s formula is
allowed for the refined energy solutions of [27], and it heavily uses the good control
of additive functionals from the Itô trick. Since the Cole–Hopf transform breaks down
for essentially all other singular SPDEs, there is no hope of extending this approach
to other equations.

The aim of the present paper is to provide a new and intrinsic (without transfor-
mation) martingale approach to some singular SPDEs. For simplicity we lead the
main argumentation on the example of the Burgers equation, but later we also treat
multi-component and fractional generalizations. The starting point is the observation
that u is a Markov process, and therefore it must have an infinitesimal generator. The
problem is that typical test functions on the state space of u (the space of Schwartz
distributions) are not in the domain of the generator; this includes the test functions
that are used in the energy solution approach, where the term

lim
ε→0

∫ t

0
[∂x (us ∗ ρε)2]( f )ds

for a test function f is not of finite variation, which means that for ϕ(u) = u( f ) the
process (ϕ(ut ))t is not a semimartingale, and therefore ϕ cannot be in the domain of
the generator. This was already noted by Assing [1], who defined the formal generator
on cylinder test functions but with image in the space of Hida distributions. Our aim
is to find a (more complicated) domain of functions that are mapped to functions and
not distributions under a formal extension of Assing’s operator.

For this purpose we take inspiration from recent developments in singular diffu-
sions, i.e. diffusions with distributional drift. Indeed, Assing’s results show that we
can interpret the Burgers drift as a distribution in an infinite-dimensional space, see
also the discussion in [35]. In finite-dimensions the papers [6,9,24,25] all follow a
similar strategy for solving dXt = b(Xt )dt +dWt for distributional b: They identify a
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1070 M. Gubinelli, N. Perkowski

domain for the formal infinitesimal generatorL = 1
2�+b ·∇ and then show existence

and uniqueness of solutions for the corresponding martingale problem. So far this is
very classical, but the key observation is that for distributional b the domain does not
contain any smooth functions and instead one has to identify a class of non-smooth
test functions with a special structure, adapted to b. Roughly speaking they must be
local perturbations of a linear functional constructed from b. This is very reminiscent
of the rough path/regularity structure philosophy, and in fact [6,9] even use tools from
rough paths resp. paracontrolled distributions.

We would like to use the same strategy for the stochastic Burgers equation. But
rough paths and controlled distributions are finite-dimensional theories, and here we
are in an infinite-dimensional setting. To set up a theory of function spaces and distri-
butions we need a reference measure (in finite dimensions this is typically Lebesgue
measure), and we will work with the stationary measure of u, the law μ of the white
noise. This is a Gaussian measure, and by the chaos decomposition we can identify
L2(μ) with the Fock space

⊕∞
n=0 L2(Tn), which has enough structure so that we can

do analysis on it. In that way we construct a domain of controlled functions which are
mapped to L2(μ) by the generator of u, and this allows us to define a martingale prob-
lem for u. By Galerkin approximation we easily obtain the existence of solutions to
the martingale problem. To see uniqueness, we use the duality with the Kolmogorov
backward equation: Existence for the backward equation yields uniqueness for the
martingale problem, and existence for the martingale problem yields uniqueness for
the backward equation.We construct solutions to the backward equation by a compact-
ness argument, relying on energy estimates in spaces of controlled functions. In that
way we obtain a self-contained probabilistic solution theory for Burgers equation and
fractional and multi-component generalizations. As a simple application we obtain
the exponential L2-ergodicity of u on the torus, and the ergodicity of the stochastic
Burgers equation on R.

Finally we study the connection of our new approach with the Gonçalves–Jara
energy solutions. One of the main motivations for studying the martingale problem
for singular SPDEs is that it is a convenient tool for deriving the equations as scaling
limits: The weak KPZ universality conjecture [8,50,51] says that a wide range of inter-
face growth models converge in the weakly asymmetric or the weak noise regime to
theKardar–Parisi–Zhang (KPZ) equation h, for which u = ∂x h. Energy solutions are a
powerful tool for proving this convergence, see e.g. [10,19,28,30,32]. For that purpose
it is crucial to work with nice test functions, and since there seems to be no easy way of
identifying the complicated functions in the domain of the generator of u with test func-
tions on the state space of a given particle system, our newmartingale problem is proba-
bly not so useful for deriving convergence theorems. This motivates us to show that the
notion of energy solution is in fact stronger than our martingale problem: Every energy
solution solves the martingale problem for our generator, and thus it is unique in law.

All this also works for the fractional and multi-component Burgers equations. For
the fractional Burgers equation we treat the entire locally subcritical regime (in the
language of Hairer [40]), which in regularity structures would lead to very complicated
expansions, while for us a first order expansion is sufficient. Although by now there are
very sophisticated and powerful black box type tools available in regularity structures
that should handle the complicated expansion automatically [2,4,7].
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The infinitesimal generator of the stochastic Burgers… 1071

Our approach is somewhat related to the recent advances in regularization by noise
for SPDEs [14,15], where unique strong solutions for SPDEs with bounded measur-
able drift are constructed by solving infinite-dimensional resolvent type equations. Of
course our drift is unbounded and not even a function.

The lynchpin of our arguments is the Gaussian invariant measureμ, and in principle
our methods should extend to other equations with Gaussian invariant measures, like
the singular stochastic Navier Stokes equations studied in [27]. It would even suffice
to have a Gaussian quasi-invariant measure, i.e. a process which stays absolutely
continuous (or rather incompressible in the sense of Definition 4.2) with respect to a
Gaussian reference measure. But for general singular SPDEs we would have to work
with more complicated measures like the �4

3 measure for which we cannot reduce
the analysis to the Fock space. Currently it is not clear how to extend our methods to
such problems, so while we provide a probabilistic theory of some singular SPDEs
that actually tackles the problem at hand and does not shift the singularity away via
the Cole–Hopf transform, it is still much less general than regularity structures and it
remains an important and challenging open problem to find more general probabilistic
methods for singular SPDEs.

Structure of the paper Below we introduce some commonly used notation. In Sect. 2
we derive the explicit representation of the Burgers generator on Fock space and we
introduce a space of controlled functions which are in the domain of the generator.
In Sect. 3 we study the Kolmogorov backward equation and show the existence of
solutions with the help of energy estimates for the Galerkin approximation and a com-
pactness principle in controlled spaces, while uniqueness is easy. Section 4 is devoted
to the martingale problem: We show existence via tightness of the Galerkin approxi-
mations and uniqueness via duality with the backward equation. As an application of
our results we give a short proof of exponential L2-ergodicity. Finally we formulate
a cylinder function martingale problem in the spirit of energy solutions, and we show
that it is stronger than the martingale problem and therefore also has unique solutions.
In Sect. 5 we briefly discuss extensions to multi-component and fractional Burgers
equations. We do all the analysis on the torus, but with minor changes it carries over to
the real line, as we explain in Sect. 5.3, where we also prove the ergodicity of Burgers
equation on the real line. The appendix collects some auxiliary estimates.
Notation We work on the torus T = R/Z and the Fourier transform of ϕ ∈ L2(Tn) is

Fϕ(k1, . . . , kn) = ϕ̂(k1, . . . , kn) =
∫

Tn
e−2πιk·xϕ(x)dx, k ∈ Z

n .

To shorten the formulas we usually write

k1:n := (k1, . . . , kn), x1:n := (x1, . . . , xn)

and

∫

x
(· · · ) :=

∫
(· · · )dx
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1072 M. Gubinelli, N. Perkowski

Moreover, we set Z0 := Z\{0} and we mostly restrict our attention to the subspace

L2
0(T

n) :=
{
ϕ ∈ L2(Tn) : ϕ̂(k1:n) = 0, ∀k ∈ Z

n\Zn
0

}
.

The space Ck
p(R

n) consists of all Ck functions whose partial derivatives of order up
to k have polynomial growth.

We write a � b or b � a if there exists a constant c > 0, independent of the
variables under consideration, such that a ≤ c · b, and we write a 
 b if a � b and
b � a.

2 A domain for the Burgers generator

2.1 The generator of the Galerkin approximation

Consider the solution um : R+ × T → R to the Galerkin approximation of the con-
servative stochastic Burgers equation

∂t u
m = �um + Bm(um) +√

2∂xξ := �um + ∂x�m(�mum)2 +√
2∂xξ, (2)

where ξ is a space-time white noise and

�mu(x) =
∑

|k|≤m

e2πιkx û(k)

is the projection onto the first 2m + 1 Fourier modes. Throughout the paper we write
μ for the law of the average zero white noise on T, i.e. the centered Gaussian measure
on H−1/2−(T) := ⋃

ε>0 H−1/2−ε(T) with covariance

∫
u( f )u(g)μ(du) = 〈 f − f̂ (0), g − ĝ(0)〉L2(T)

for all f , g ∈ ⋃
ε>0 H1/2+ε(T).

Lemma 2.1 Equation (2) has a unique strong solution um ∈ C(R+, H−1/2−(T)) for
every deterministic initial condition in H−1/2−(T). The solution is a strong Markov
process and it is invariant under μ. Moreover, for all α > 1/2 and p ∈ [1,∞), there
exists C = C(m, t, p, α) > 0 such that

E

[

sup
s∈[0,t]

∥
∥um

s

∥
∥p

H−α

]

≤ C
(
1+ ∥

∥um
0

∥
∥p

H−α

)
.

Proof Local existence and uniqueness and the strong Markov property follow from
standard theory because written in Fourier coordinates we can decouple um = vm +
Zm := �mum + (1−�m)um , where vm solves a finite-dimensional SDE with locally
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Lipschitz continuous coefficients and Zm solves an infinite-dimensional but linear
SDE. Global existence and invariance of μ are shown in Section 4 of [27]. It is well
known and easy to check that Zm has trajectories in C(R+, H−1/2−(T)), see e.g.
[31, Chapter 2.3], and vm has compact spectral support and therefore even vm ∈
C(R+, C∞(T)). Thus um has trajectories in C(R+, H−1/2−(T)). The moment bound
can be derived using similar arguments as in [27]. The reason why vm behaves nicely
is that Bm leaves the L2(T) norm invariant since

〈u, Bm(u)〉L2(T) = −〈∂x�mu, (�mu)2〉L2(T) = −1

3
〈∂x (�mu)3, 1〉L2(T) = 0

by the periodic boundary conditions. To see the invariance of μ we also need that
Bm is divergence free when written in Fourier coordinates. See Section 4 of [27] or
Lemma 5 of [32] for details. 
�

We define the semigroup of um for all bounded and measurable ϕ : H−1/2− → R

as T m
t ϕ(u) := Eu[ϕ(um

t )], where under Pu the process um solves (2) with initial
condition u.

Lemma 2.2 For all p ∈ [1,∞] the family of operators (T m
t )t≥0 can be uniquely

extended to a contraction semigroup on L p(μ), which is continuous for p ∈ [1,∞).

Proof This uses the invariance of μ and follows by approximating L p functions with
bounded measurable functions. To see the continuity for p ∈ [1,∞) we use that in
this case continuous bounded functions are dense in L p(μ). 
�

Our next aim is to derive the generator of the semigroup T m on L2(μ). For that
purpose let f1, . . . , fn ∈ C∞(T), let � ∈ C2

p(R
n,R), the C2 functions with polyno-

mially growing partial derivatives of order up to 2, and let ϕ ∈ C be a cylinder function
of the form ϕ(u) = �(u( f1), . . . , u( fn)). Let us introduce the notation

L0ϕ(u) :=
n∑

i=1

∂i�(u( f1), . . . , u( fn))u(� fi )

+
n∑

i, j=1

∂2i j�(u( f1), . . . , u( fn))〈∂x fi , ∂x f j 〉L2(T),

Gmϕ(u) :=
n∑

i=1

∂i�(u( f1), . . . , u( fn))〈Bm(u), fi 〉L2(T) =
∫

T

Bm(u)(x)Dxϕ(u)dx,

where

Dxϕ(u) =
n∑

i=1

∂i�(u( f1), . . . , u( fn)) fi (x)

is the Malliavin derivative with respect to μ, and

Lm := L0 + Gm .
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1074 M. Gubinelli, N. Perkowski

Then Itô’s formula gives

dϕ
(
um

t

) = Lmϕ
(
um

t

)
dt +

n∑

i=1

∂i�
(
um

t ( f1), . . . , um
t ( fn)

)
dMt ( fi ),

where M( fi ) is a continuousmartingale underPu , with quadratic variation 〈M( fi )〉t =
2‖∂x fi‖2L2(T)

t and therefore
∫ ·
0

∑n
i=1 ∂i�(um

t ( f1), . . . , um
t ( fn))dMt ( fi ) is a martin-

gale under Pu . Consequently, we have

T m
t ϕ(u) − ϕ(u) =

∫ t

0
T m

s (Lmϕ)(u)ds

for all u ∈ H−1/2−.
To extend this to more general functions ϕ and to obtain suitable bounds for L0

and Gm we work with the chaos expansion: Every function ϕ ∈ L2(μ) can be written
uniquely as ϕ = ∑

n≥0 Wn(ϕn), where ϕn ∈ L2
0(T

n) is symmetric in its n arguments
and Wn is an n-th order Wiener–Itô integral; recall that L2

0(T
n) = {ϕ ∈ L2(Tn) :

ϕ̂(k) = 0∀k ∈ Z
n\Zn

0}. Moreover, we have

‖ϕ‖2L2(μ)
=

∑

n≥0
n!‖ϕn‖2L2(Tn)

,

see [42,49] for details. If ϕn ∈ L2
0(T

n) is not symmetric, then we define Wn(ϕn) :=
Wn(ϕ̃n), where

ϕ̃n(x1, . . . , xn) = 1
n!

∑

σ∈�n

ϕn(xσ(1), . . . , xσ(n))

is the symmetrization of ϕn . Here�n denotes the group of permutations of {1, . . . , n},
and ‖ϕ̃n‖L2(Tn) ≤ ‖ϕn‖L2(Tn) by the triangle inequality.

Convention In what follows, a norm ‖ · ‖ without subscript always denotes the L2(μ)

norm, and an inner product 〈·, ·〉 without subscript denotes the L2(μ) inner product.

Lemma 2.3 Let ϕ ∈ C with chaos expansion ϕ = ∑
n≥0 Wn(ϕn). Then

L0ϕ =
∑

n≥0
Wn(�ϕn) :=

∑

n≥0
Wn

((
∂211 + · · · + ∂2nn

)
ϕn

)
.

Proof The proof is the same as for [34, Lemma 3.7]. 
�
Let us write ρm for the inverse Fourier transform of 1|·|≤m , and fx := f (x − ·).

Lemma 2.4 For ϕ ∈ C with chaos expansion ϕ = ∑
n≥0 Wn(ϕn) we define

Gm+Wn(ϕn) = nWn+1

(∫

x,s
∂xρ

m
x (s)ρm

s ⊗ ρm
s ⊗ ϕn(x, ·)

)

, (3)
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Gm−Wn(ϕn) = 2n(n − 1)Wn−1

(∫

x,y,s
∂xρ

m
x (s)ρm

s (y)ρm
s ⊗ ϕn(x, y, ·)

)

, (4)

for which Gmϕ = Gm+ϕ + Gm−ϕ. Moreover, we have for all (symmetric) ϕn+1 ∈
L2
0(T

n+1) and ϕn ∈ L2
0(T

n)

〈Wn+1(ϕn+1),Gm+Wn(ϕn)〉 = −〈Gm−Wn+1(ϕn+1), Wn(ϕn)〉.

Proof Since ‖ρm
s ‖2L2(T)

= ‖ρm‖2
L2(T)

does not depend on s and thus vanishes under
differentiation, we have

Bm(u)(x) = W2

(∫
∂xρ

m
x (s)ρm

s ⊗ ρm
s ds

)

+
∫

∂xρ
m
x (s)‖ρm

s ‖2L2(T)
ds

= W2

(∫
∂xρ

m
x (s)ρm

s ⊗ ρm
s ds

)

and then, since Dx Wn(ϕn) = nWn−1(ϕn(x, ·)) [49, Proposition 1.2.7] and by the
contraction rules for Wiener–Itô integrals [49, Proposition 1.1.3],

∫

x
Bm(u)(x)Dx Wn(ϕn)

= n
∫

x
W2

(∫

s
∂xρ

m
x (s)(ρm

s )⊗2
)

Wn−1(ϕn(x, ·))

= nWn+1

(∫

x,s
∂xρ

m
x (s)(ρm

s )⊗2 ⊗ ϕn(x, ·)
)

+ 2n(n − 1)Wn−1

(∫

x,y,s
∂xρ

m
x (s)ρm

s (y)ρm
s ⊗ ϕn(x, y, ·)

)

+ n(n − 1)(n − 2)Wn−3

(∫

x,y,z,s
∂xρ

m
x (s)ρm

s (y)ρm
s (z)ϕn(x, y, z, ·)

)

.

Let us look more carefully at the last term on the right hand side. Note that
∂xρ

m
x (s) = −∂sρ

m
s (x) and ϕn is symmetric under exchange of its arguments. There-

fore, by symmetrisation,

∫

x,y,z,s
∂xρ

m
x (s)ρm

s (y)ρm
s (z)ϕn(x, y, z, ·)

=
∫

x,y,z,s
(−∂sρ

m
s (x))ρm

s (y)ρm
s (z)ϕn(x, y, z, ·)

= −1

3

∫

x,y,z,s
∂s(ρ

m
s (x)ρm

s (y)ρm
s (z))ϕn(x, y, z, ·) = 0

by the periodic boundary conditions.We deduce that the last term in the decomposition
of

∫
x Bm(u)(x)Dx Wn(ϕn) vanishes.
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1076 M. Gubinelli, N. Perkowski

It remains to show that −G+
m is the adjoint of G−

m : Since ϕn+1 is symmetric in its
(n + 1) arguments, we have 〈ϕn+1, ψ〉L2(Tn+1) = 〈ϕn+1, ψ̃〉L2(Tn+1) for all ψ , where

ψ̃ is the symmetrization of ψ , and therefore we do not need to symmetrize the kernel
of Gm+Wn(ϕn) in the following computations:

〈Wn+1(ϕn+1),Gm+Wn(ϕn)〉
= (n + 1)!

∫

r1:n+1

ϕn+1(r1:n+1)n
∫

x,s
∂xρ

m
x (s)ρm

s (r1)ρ
m
s (r2)ϕn(x, r3:n+1)

= (n + 1)!
∫

r1:n+1

ϕn+1(r1:n+1)n
∫

x,s
ρm

x (s)2∂sρ
m
s (r1)ρ

m
s (r2)ϕn(x, r3:n+1)

= n!2(n + 1)n
∫

r1:n+1,x,s

ϕn+1(r1:n+1)ρ
m
x (s)∂sρ

m
s (r1)ρ

m
s (r2)ϕn(x, r3:n+1)

= n!2(n + 1)n
∫

r1:n,x,y,s

ϕn+1(x, y, r2:n)ρm
r1(s)∂sρ

m
s (x)ρm

s (y)ϕn(r1:n),

where in the last step we renamed the variables as follows: r1 ↔ x , r2 → y, ri → ri−1
for i ≥ 3. The claim now follows by noting that ρm

r1(s) = ρm
s (r1) and ∂sρ

m
s (x) =

−∂xρ
m
x (s), and thus

〈Wn+1(ϕn+1),Gm+Wn(ϕn)〉
= −n!2(n + 1)n

∫

r1:n

∫

x,y,s
∂xρ

m
x (s)ρm

s (y)ρm
s (r1)ϕn+1(x, y, r2:n)ϕn(r1:n)

= −〈Gm−Wn+1(ϕn+1), Wn(ϕn)〉.


�
Remark 2.5 Note that the proof did not use the specific form of ρm and the same
arguments work as long as ρm is an even function.

For m →∞, the kernel for Gm−Wn(ϕn) formally converges to

∫

x,y
∂x (δx (y)δx (r1))ϕn(x, y, r2:n−1) = −

∫

x,y
δx (y)δx (r1)∂1ϕn(x, y, r2:n−1)

= −∂1ϕn(r1, r1, r2:n−1),

where δ denotes the Dirac delta. For sufficiently nice ϕn this kernel is in L2
0(T

n−1).
On the other hand, the formal limit G+Wn(ϕn) has the kernel

∫

x
∂x (δx (r1)δx (r2))ϕn(x, r3:n+1) = − ∫

x δx (r1)δx (r2)∂xϕn(x, r3:n+1)

= −δr1(r2)∂1ϕn(r2:n+1),

which is never in L2
0(T

n+1), nomatter how nice ϕn is. The idea is therefore to construct
(non-cylinder) functions for which suitable cancellations happen between L0 and the
limit G of Gm and whose image under the Burgers generator L belongs to L2(μ).
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It will be easier for us to work on the Fock space: For n ∈ N let L2
0,s(T

n) be the

symmetric functions in L2
0(T

n) and let

�L2 = �L2(T) =
∞⊕

n=0

(
L2
0(T

n)/L2
0,s(T

n)
)

,

where L2
0(T

n)/L2
0,s(T

n) are the equivalence classes in L2
0(T

n) for the equivalence
relation that identifies two functions with the same symmetrization. We equip �L2

with the norm

‖ϕ‖2
�L2 =

∑

n

n!‖ϕ̃n‖2L2(Tn)
=

∑

n

n!
∑

k∈Zn

|F ϕ̃n(k)|2,

where we applied Parseval’s identity. The space �L2 is isomorphic to L2(μ), so in
what followswewill often identify ϕ ∈ �L2 with an element of L2(μ), and vice versa,
without explicitly mentioning it. For simplicity we will usually write ϕn ∈ L2

0(T
n)

for the n-th kernel of an element in the Fock space and �L2 = ⊕∞
n=0 L2

0(T
n), etc.,

omitting from the notation that we actually mean equivalence classes.

Definition 2.6 The number operator (or Ornstein-Uhlenbeck operator) N acts on
Fock space as (Nϕ)n := nϕn . With a small abuse of notation, we denote with the
same symbols L,L0,Gm+ ,Gm− the Fock version of the operators introduced above in
such a way that on smooth cylinder functions we have:

L0

∑

n≥0
Wn(ϕn) =

∑

n≥0
Wn((L0ϕ)n), Gm±

∑

n≥0
Wn(ϕn) =

∑

n≥0
Wn((Gm±ϕ)n). (5)

Lemma 2.7 In Fourier variables the operators L0,Gm+ ,Gm− are given by

F(L0ϕ)n(k1:n) = −(|2πk1|2 + · · · + |2πkn|2)ϕ̂n(k1:n),
F(Gm+ϕ)n(k1:n) = −(n − 1)1|k1|,|k2|,|k1+k2|≤m2πι(k1 + k2)ϕ̂n−1(k1 + k2, k3:n),

F(Gm−ϕ)n(k1:n) = −2πιk1n(n + 1)
∑

p+q=k1

1|k1|,|p|,|q|≤m ϕ̂n+1(p, q, k2:n),

(6)
respectively, where the functions on the right hand side might not be symmetric, so
strictly speaking we still have to symmetrize them.

Proof The Fourier representation for L0 is obvious. In the following we often use
without comment that ρm is an even function, i.e. ρm

s (x) = ρm
x (s). The kernel for

(Gm+ϕ)n+1 has the Fourier transform

n
∫

r1:n+1

e−2πιk·r
∫

x,s
∂xρ

m
x (s)ρm

s (r1)ρ
m
s (r2)ϕn(x, r3:n+1)

= n1|k1|,|k2|≤m

∫

r3:n+1

∫

x,s
∂xρ

m
x (s)e−2πι(k1+k2)s−2πιk3:n+1·r3:n+1
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×
∑

�

e2πι(�1x+�2:n ·r3:n+1)ϕ̂n(�)

= −n1|k1|,|k2|,|k1+k2|≤m2πι(k1 + k2)
∑

�1

∫

x
e−2πι(k1+k2)x e2πι�1x ϕ̂n(�1, k3:n+1)

= −n1|k1|,|k2|,|k1+k2|≤m2πι(k1 + k2)ϕ̂n(k1 + k2, k3:n+1).

To derive F(Gm−ϕ)n−1, note that

∫

r1:n−1

e−2πιk1:n−1·r1:n−1

∫

x,y,s
∂xρ

m
x (s)ρm

s (y)ρm
s (r1)ϕn(x, y, r2:n−1)

= 1|k1|≤m

∫

r2:n−1

e−2πιk2:n−1·r2:n−1

∫

x,y,s
e−2πιk1s∂xρ

m
x (s)ρm

s (y)ϕn(x, y, r2:n−1)

= 1|k1|≤m

∫

r2:n−1

e−2πιk2:n−1·r2:n−1

∫

x,y
∑

p+q=k1

1|p|,|q|≤m(−2πιp)e−2πι(px+qy)ϕn(x, y, r2:n−1)

= −
∑

p+q=k1

1|k1|,|p|,|q|≤m2πιpϕ̂n(p, q, k2:n−1)

= −
∑

p+q=k1

1|k1|,|p|,|q|≤mπι(p + q)ϕ̂n(p, q, k2:n−1)

= −
∑

p+q=k1

1|k1|,|p|,|q|≤mπιk1ϕ̂n(p, q, k2:n−1),

from where our representation for Gm− follows. 
�

2.2 Estimates for the Burgers drift

Here we derive some estimates for the Burgers drift. We work with weighted norms
on the Fock space. We define for suitable functions f the operators f (N ) and f (L0)

by spectral calculus, which is a complicated way of saying that

( f (N )ϕ)n = f (n)ϕn, F( f (L0)ϕ)n(k) = f (−|2πk|2)ϕ̂n(k).

Lemma 2.8 Fix w : N0 → R+ and let ϕ ∈ �L2. Then the following two bounds hold
uniformly in m:

‖w(N )(−L0)
γ−3/4Gm−ϕ‖ � ‖w(N − 1)N (−L0)

γ ϕ‖, (7)

for all γ > 1/4, and

‖w(N )(−L0)
γ−3/4Gm+ϕ‖ � ‖w(N + 1)N (−L0)

γ ϕ‖, (8)
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for all γ < 1/2. Moreover, we have the following m-dependent bound for γ ∈ [0, 1/2]:

‖w(N )(−L0)
γ−1/2Gmϕ‖ � m1/2‖(w(N + 1) + w(N − 1))N (−L0)

γ ϕ‖. (9)

Proof 1. We start by estimating Gm− uniformly in m. Observe that, by the Cauchy–
Schwarz inequality togetherwithLemmaA.1 (whichwe can apply since γ > 1/4),

∣
∣
∣
∣
∣
∣

∑

p+q=k1

1|k1|,|p|,|q|≤m ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣
∣
∣

2

≤
∑

p+q=k1

(p2 + q2 + k22 + · · · + k2n)−2γ

∑

p+q=k1

(p2 + q2 + k22 + · · · + k2n)2γ |ϕ̂n+1(p, q, k2:n)|2

� (k21 + · · · + k2n)−2γ+1/2
∑

p+q=k1

(p2 + q2 + k22 + · · · + k2n)2γ |ϕ̂n+1(p, q, k2:n)|2.

Therefore,

∑

k1:n
(k21 + · · · + k2n)2γ−3/2|F(Gm−ϕ)n(k1:n)|2

�
∑

k1:n

k21
(k21 + · · · + k2n)3/2−2γ

n4

∣
∣
∣
∣
∣
∣

∑

p+q=k1

1|k1|,|p|,|q|≤m ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣
∣
∣

2

� n4
∑

k1:n

∑

p+q=k1

k21
k21 + · · · + k2n

(p2 + q2 + k22 + · · · + k2n)2γ |ϕ̂n+1(p, q, k2:n)|2.

For C ≥ 0 the function x �→ x
x+C is increasing, and since k21 ≤ 2p2 + 2q2, we

have

k21
k21 + · · · + k2n

≤ 2p2 + 2q2

2p2 + 2q2 + k22 + · · · + k2n
� p2 + q2

p2 + q2 + k22 + · · · + k2n
.

This leads to

∑

k1:n
(k21 + · · · + k2n)2γ−3/2|F(Gm−ϕ)n(k1:n)|2

� n4
∑

k1:n

∑

p+q=k1

p2 + q2

p2 + q2 + k22 + · · · + k2n
(p2 + q2 + k22 + · · · + k2n)2γ

|ϕ̂n+1(p, q, k2:n)|2
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= n4
∑

k1:n+1

k21 + k22
k21 + · · · + k2n+1

(k21 + · · · + k2n+1)
2γ |ϕ̂n+1(k1:n+1)|2

� n3
∑

k1:n+1

(k21 + · · · + k2n+1)
2γ |ϕ̂n+1(k1:n+1)|2,

where in the last step we used the symmetry of ϕ̂n+1 in the variables k1:n+1.
Therefore, uniformly in m, we have that

‖w(N )(−L0)
γ−3/4Gm−ϕ‖2 


∑

n≥0
n!w(n)2

∑

k1:n
(k21 + · · · + k2n)2γ−3/2|F(Gm−ϕ)n(k1:n)|2

�
∑

n≥0
n!w(n)2n3

∑

k1:n+1

(k21 + · · · + k2n+1)
2γ |ϕ̂n+1(k1:n+1)|2

�
∑

n≥1
n!w(n − 1)2n2

∑

k1:n
(k21 + · · · + k2n)2γ |ϕ̂n(k1:n)|2

= ‖w(N − 1)N (−L0)
γ ϕ‖2.

2. To derive the corresponding bound for Gm+ , we apply Lemma A.1 in the fourth line
below (using that 2γ − 3/2 < −1/2 since γ < 1/2):

∑

k1:n
(k21 + · · · + k2n)2γ−3/2|F(Gm+ϕ)n(k1:n)|2

�
∑

k1:n
1|k1|,|k2|,|k1+k2|≤mn2(k21 + · · · + k2n)2γ−3/2|k1 + k2|2|ϕ̂n−1(k1 + k2, k3:n)|2

� n2
∑

�,k3:n

∑

k1+k2=�

(k21 + · · · + k2n)2γ−3/2�2|ϕ̂n−1(�, k3:n)|2

� n2
∑

�,k3:n
(�2 + k23 + · · · + k2n)2γ−1�2|ϕ̂n−1(�, k3:n)|2

� n
∑

k1:n−1

(k21 + · · · + k2n−1)
2γ |ϕ̂n−1(k1:n−1)|2.

Since Gm+ϕ0 = 0 we only have to consider n ≥ 2 and thus we can bound the factor
n by 2(n − 1) and we obtain the following estimate:

‖w(N )(−L0)
γ−3/4Gm+ϕ‖ � ‖w(N + 1)N (−L0)

γ ϕ‖.

3. If we use the cutoff inm to gain regularity in k, we get for γ ≤ 1/2 (so 2γ −1 ≤ 0):

∑

k1:n
(k21 + · · · + k2n)2γ−1|F(Gm+ϕ)n(k1:n)|2

� n2
∑

k1:n
1|k1|,|k2|,|k1+k2|≤m(k21 + · · · + k2n)2γ−1|k1 + k2|2|ϕ̂n−1(k1 + k2, k3:n)|2
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= n2
∑

k1:n−1

∑

�1+�2=k1

1|�1|,|�2|,|�1+�2|≤m(�21 + �22 + k22 + · · · + k2n−1)
2γ−1

k21 |ϕ̂n−1(k1:n−1)|2
� n2m

∑

k1:n−1

(k21 + · · · + k2n−1)
2γ−1k21 |ϕ̂n−1(k1:n−1)|2

� nm
∑

k1:n−1

(k21 + · · · + k2n−1)
2γ |ϕ̂n−1(k1:n−1)|2,

and thus ‖w(N )(−L0)
−γGm+ϕ‖ � m1/2‖w(N + 1)N (−L0)

−γ+1/2ϕ‖.
By making similar use of the cutoff 1|p|,|q|≤m , we also obtain the claimed bound

for Gm− : We estimate

∣
∣
∣
∣
∣
∣

∑

p+q=k1

1|k1|,|p|,|q|≤m ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣
∣
∣

2

� m
∑

p+q=k1

|ϕ̂n+1(p, q, k2:n)|2,

and then proceed with the same arguments as in Step 1 above; note that for C ≥ 0 the
function x �→ x

(x+C)1−2γ is increasing provided that 1− 2γ ≤ 1, i.e. γ ≥ 0. 
�
Remark 2.9 For later reference we note that a slight variation of the first estimate in
Step 1 of the proof gives for all β > 1/4 and k ∈ Z

n
0:

∣
∣
∣
∣
∣
∣

∑

p+q=k1

ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣
∣
∣

2

� (k21)
1/2−2β

∑

p+q=k1

(p2 + q2)2β |ϕ̂n+1(p, q, k2:n)|2.
(10)

Remark 2.10 When studying fluctuations ofMarkov processes, the graded sector con-
dition is sometimes useful. This condition assumes that there exists a grading of
orthogonal subspaces L2(μ) = ⊕

n≥0 An , such that on each An the quadratic form
associated with the full generator can be controlled by the one associated with its sym-
metric part, see [43, Chapter 2.7.4] for a precise definition. At first glance this might
seem tailor made to describe our situation. However, for the graded sector condition
we would need

|〈ϕn,Gm−ϕn+1〉| � (1+ n)β‖(−L0)
1/2ϕn‖‖(−L0)

1/2ϕn+1‖

for some β < 1, see [43, eq. (2.45)] while by Lemma 2.8 we can only take β = 1.
Therefore, the condition just barely fails in our setting. On the other hand, we can take
‖(−L0)

1/4ϕn‖ on the right hand side, and we will leverage this gain in regularity. And
while we can allow β = 1, for β > 1 the computations in Sect. 3.1 would not work.

Corollary 2.11 Let

Dnaive(Lm) := {ψ ∈ �L2 : ‖N (−L0)
1/2ϕ‖ + ‖(−L0)ϕ‖ < ∞},
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and let L̂m be the infinitesimal generator of the continuous contraction semi-
group (T m

t )t≥0 on �L2, with domain D(L̂m). Then Dnaive(Lm) ⊂ D(L̂m) and
L̂m |Dnaive(Lm ) = Lm .

Proof Let um be the process from Lemma 2, with initial condition um
0 = u. If ϕ ∈

C ∩Dnaive(Lm), then

T m
t ϕ(u) − ϕ(u) = Eu

[∫ t

0
Lmϕ(um

s )ds

]

=
∫ t

0
T m

s (Lmϕ)(u)ds.

For general ϕ ∈ Dnaive(Lm) the identity T m
t ϕ − ϕ = ∫ t

0 T m
s (Lmϕ)ds holds by

approximation (with a Bochner integral in L2(μ) on the right hand side), using our
m-dependent estimate (9) for Gm . By Lemma 2.2 the map s �→ T m

s Lmϕ ∈ L2(μ)

is continuous, and thus t−1(T m
t ϕ − ϕ) → Lmϕ in L2(μ) as t → 0. It follows that

ϕ ∈ D(L̂m) and L̂mϕ = Lmϕ. 
�
As the notation Dnaive(Lm) suggests, we will later introduce another, smaller

domain D(Lm) on which we have better estimates.

2.3 Controlled functions

Lemma 2.8 gives bounds for Gmϕ that are either in distributional spaces, or they
diverge with m. Therefore, we can only define the limiting operator G with values in
distributional spaces:

Definition 2.12 Fix w : N0 → R+ and γ > 1/4. We define the bounded linear oper-
ator

G− : w(N )−1(1− L0)
−γ �L2 → w(N )−1N (−L0)

3/4−γ �L2, G−ϕ = lim
m→∞Gm−ϕ,

where with the dominated convergence theorem it is not difficult to see that the conver-
gence holds in w(N )−1N (−L0)

3/4−γ �L2. For γ < 1/2, we also define the bounded
linear operator

G+ : w(N )−1(1− L0)
−γ �L2 → w(N )−1N (−L0)

3/4−γ �L2, G+ϕ = lim
m→∞Gm+ϕ,

again with convergence inw(N )−1N (−L0)
3/4−γ �L2. In particular, we get for δ > 0

and G := G− + G+ and ϕ ∈ �L2:

‖(−L0)
−1/4−δGϕ‖ � ‖N (−L0)

1/2ϕ‖.

The problem is that Gϕ lives in a distributional space and not in �L2. But on the
other hand we do not care so much about G itself and we are mainly interested in the
sumL := L0+G. To construct a domain that is mapped to �L2 byLwe will consider
functions ϕ for which Gϕ and L0ϕ have some cancellations, so in particular L0ϕ will
be a distribution and ϕ will be non-smooth.
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This problem has some similarities to the problem of constructing a finite-
dimensional diffusion with distributional drift b and additive noise. In that case the
formal generator is 1

2�+b ·∇, and we can construct a domain by solving the resolvent
equation (λ− 1

2�)u = b · ∇u + v for suitable v and for λ > 0.
In our case we could start with a nice function ψ ∈ �L2 and try to solve the

resolvent equation for λ > 0:

(λ− L0)ϕ = Gϕ + ψ ⇔ ϕ = (λ− L0)
−1Gϕ + (λ − L0)

−1ψ.

Then wewould getLϕ = λϕ−ψ , and the right hand side is in�L2 for ϕ,ψ ∈ �L2. If
we only consider the regularity with respect to L0 and for now we ignore the behavior
with respect to N , then the resolvent equation is actually in the “Young regime”:
Gϕ is well defined whenever ϕ ∈ (−L0)

−1/2�L2, and then G loses (−L0)
3/4+δ

“derivatives”, for any δ > 0. So if δ ≤ 1/4, then (λ − L0)
−1 gains enough regularity

to map back to (−L0)
−1/2�L2. But in this formal discussion we ignored the behavior

with respect to N , and we are unable to close the estimates because G introduces
growth inN which cannot be cured by applying (λ−L0)

−1: Indeed, we actually have
Gϕ ∈ N (−L0)

1/4+δ�L2 and not Gϕ ∈ (−L0)
1/4+δ�L2.

To overcome this problem, we introduce an approximation G� of G which captures
the singular part of the small scale behavior of G by letting

F(G�ϕ)n(k1:n) := 1|k1:n |∞≥NnF(Gϕ)n(k1:n)

for a suitable (N -dependent) cutoff Nn to be determined. The advantage of G� is that
the cutoff 1|k1:n |∞≥Nn allows us to “trade spare regularity” in (−L0) against regularity
in N . Using G� we introduce a controlled Ansatz of the form

ϕ = (−L0)
−1G�ϕ + ϕ�, (11)

where ϕ� will be chosen sufficiently regular. Note that this is essentially the resolvent
equation for λ = 0 and ψ = (−L0)ϕ

�, except that we replaced G with G�. A use-
ful intuition about the Ansatz (11) is that, starting from a given test function ϕ�, it
“prepares” functions ϕ which have the right small scale behavior compatible with the
operator L.

We start by showing that for an appropriate cutoff Nn we can solve Eq. (11) and
express ϕ as a function of ϕ�.

Definition 2.13 A weight is a map w : N0 → (0,∞) such that there exists C > 0
with w(n) ≤ Cw(n + i), for i ∈ {−1, 1}, uniformly in n. In that case we write |w| for
the smallest such constant C .

Lemma 2.14 Let w be a weight, let γ ∈ (1/4, 1/2], and let L ≥ 1. For Nn = L(1+n)3

we have

‖w(N )(−L0)
γ (−L0)

−1G�ϕ‖ � |w|L−1/2‖w(N )(−L0)
γ ϕ‖. (12)
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Thus there exists L0 = L0(|w|) such that for all L ≥ L0, and all ϕ� with
‖w(N )(−L0)

γ ϕ�‖ < ∞, there is a unique solution Kϕ� to

Kϕ� = (−L0)
−1G�Kϕ� + ϕ�

in w(N )−1(−L0)
−γ �L2, and Kϕ� satisfies

‖w(N )(−L0)
γKϕ�‖+|w|−1L1/2‖w(N )(−L0)

γ (Kϕ�−ϕ�)‖ � ‖w(N )(−L0)
γ ϕ�‖.
(13)

We also write ϕ� := Kϕ� − ϕ� = (−L0)
−1G�Kϕ�.

Proof 1. We start by estimating G�+ (which is defined like G�, only with G+ in place
of G):
∑

k1:n
|F((−L0)

γ−1G�+ϕ)n(k1:n)|2

� n2
∑

k1:n
1|k1:n |∞≥Nn

(k1 + k2)2

(k21 + · · · + k2n)2−2γ
|ϕ̂n−1(k1 + k2, k3:n)|2

≤ n2
∑

�1:n−1,p

1|�1:n−1|∞∨|p|≥Nn/2
�21

((�1 − p)2 + p2 + �22 + · · · + �2n−1)
2−2γ

|ϕ̂n−1(�1:n−1)|2,

where we used the change of variables �1 = k1 + k2, p = k2, and �2+i = k1+i

for i ≥ 0, and we used that |p| ∨ |�1− p| ≥ Nn implies |p| ∨ |�1| ≥ Nn/2. Since
(�1− p)2+ p2 
 �21+ p2 we can replace ((�1− p)2+ p2+�22+· · ·+�2n−1)

−(2−2γ )

by (p2 + �21 + · · · + �2n−1)
−(2−2γ ). And since 1− 2γ ≥ 0, we have

�21 + · · · + �2n−1 ≤ (�21 + · · · + �2n−1)
2γ (p2 + �21 + · · · + �2n−1)

1−2γ . (14)

We now use the symmetry of ϕ̂n−1(�1:n−1) in �1:n−1, before applying (14) and
Lemma A.1, to derive the estimate

n2
∑

�1:n−1,p

1|�1:n−1|∞∨|p|≥Nn/2
�21

(p2 + �21 + · · · + �2n−1)
2−2γ

|ϕ̂n−1(�1:n−1)|2

� n
∑

�1:n−1,p

1|�1:n−1|∞∨|p|≥Nn/2
�21 + · · · + �2n−1

(p2 + �21 + · · · + �2n−1)
2−2γ

|ϕ̂n−1(�1:n−1)|2

≤ n
∑

�1:n−1,p

(1|p|≥Nn/2 + 1|�1:n−1|∞≥Nn/2)
(�21 + · · · + �2n−1)

2γ

p2 + �21 + · · · + �2n−1

|ϕ̂n−1(�1:n−1)|2

� n
∑

�1:n−1

⎛

⎝
∑

|p|≥Nn/2

1

p2
+ 1|�1:n−1|∞≥Nn/2

(�21 + · · · + �2n−1)
1/2

⎞

⎠ (�21 + · · · + �2n−1)
2γ |ϕ̂n−1(�1:n−1)|2

� n
∑

�1:n−1

N−1
n (�21 + · · · + �2n−1)

2γ |ϕ̂n−1(�1:n−1)|2.

123



The infinitesimal generator of the stochastic Burgers… 1085

Thus, with our choice of Nn = L(1+ n)3,

‖w(N )(−L0)
γ (−L0)

−1G�+ϕ‖ � |w|L−1/2‖w(N )(−L0)
γ ϕ‖. (15)

2. Next, we boundG�− .We apply (10)withβ = γ (herewe need γ > 1/4) to estimate

∑

k1:n
|F((−L0)

γ−1G�−ϕ)n(k1:n)|2

�
∑

k1:n

1|k1:n |∞≥Nn n4k21
(k21 + · · · + k2n)2−2γ

∣
∣
∣
∣
∣
∣

∑

p+q=k1

ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣
∣
∣

2

�
∑

k1:n

1|k1:n |∞≥Nn n4k21(k
2
1)

3/2−2γ−1

(k21 + · · · + k2n)2−2γ

∑

p+q=k1

(p2 + q2)2γ |ϕ̂n+1(p, q, k2:n)|2

�
∑

k1:n

1|k1:n |∞≥Nn n4(k21)
3/2

(k21 + · · · + k2n)2

∑

p+q=k1

(p2 + q2)2γ |ϕ̂n+1(p, q, k2:n)|2

≤ N−1
n n4

∑

�1:n+1

(�21 + · · · + �2n+1)
2γ |ϕ̂n+1(�1:n+1)|2,

which together with Nn = L(1+ n)3 leads to the bound

‖w(N )(−L0)
γ (−L0)

−1G�−ϕ‖ � |w|L−1/2‖w(N )(−L0)
γ ϕ‖. (16)

The claimed inequality (12) now follows by combining (15) and (16).
3. Consequently, for given ϕ� ∈ w(N )−1(−L0)

−γ �L2, the map

� : w(N )−1(−L0)
−γ �L2 � ψ �→ (−L0)

−1G�ψ + ϕ� ∈ w(N )−1(−L0)
−γ �L2

satisfies for some K > 0

‖w(N )(−L0)
γ �(ψ)‖ ≤ ‖w(N )(−L0)

γ (−L0)
−1G�ψ‖ + ‖w(N )(−L0)

γ ϕ�‖
≤ K |w|L−1/2‖w(N )(−L0)

γ ψ‖ + ‖w(N )(−L0)
γ ϕ�‖ < ∞.

In particular,� is well defined, and if L is large enough so that K |w|L−1/2 ≤ 1/2,
then � is a contraction leaving the ball with radius 2‖w(N )(−L0)

γ ϕ�‖ invariant.
Therefore, it has a unique fixed point Kϕ� which satisfies

‖w(N )(−L0)
γKϕ�‖ ≤ 2‖w(N )(−L0)

γ ϕ�‖.

Since Kϕ� is a fixed point, we also get

‖w(N )(−L0)
γ (Kϕ� − ϕ�)‖ = ‖w(N )(−L0)

γ (−L0)
−1G�Kϕ�‖

� |w|L−1/2‖w(N )(−L0)
γ ϕ�‖.


�
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1086 M. Gubinelli, N. Perkowski

Remark 2.15 The lemma shows that for all ϕ ∈ w(N )−1(−L0)
−γ �L2 we can define

ϕ� := ϕ − (−L0)
−1G�ϕ and then

‖w(N )(−L0)
γ ϕ�‖ � ‖w(N )(−L0)

γ ϕ‖.

However, this only works up to γ = 1/2, so no matter how regular ϕ is, the (spatial)
regularity of ϕ� is limited in general. The key point of Lemma 2.14 is that it identifies
a class of ϕ for which ϕ� has arbitrarily good regularity.

Remark 2.16 The cutoff Nn for which we can construct Kϕ� depends on the weight
w via |w|; we say that the cutoff is adapted to the weight w if the construction of
Lemma 2.14 works. If we consider weights w(n) = (1 + n)α , then |w| is uniformly
bounded in |α| ≤ K , for any fixed K , and we can find one cutoff which is adapted to
all those weights. This is the situation that we are mostly interested in.

Remark 2.17 The bound (12) also holds for Gm,�, which is defined analogously
to G�. Therefore, we can also construct a map Km : w(N )−1(−L0)

−γ �L2 →
w(N )−1(−L0)

−γ �L2 that associates to every ϕ� ∈ w(N )−1(−L0)
−γ �L2 a unique

Kmϕ� ∈ w(N )−1(−L0)
−γ �L2 with

Kmϕ� = (−L0)
−1Gm,�Kmϕ� + ϕ�.

Let us write G≺ = G − G�. The following proposition gives a bound for LKϕ� in
terms of ϕ�. By Remark 2.17, similar bounds hold for LmKmϕ�, uniformly in m.

Proposition 2.18 Let w be a weight, let γ ≥ 0, and let the cutoff Nn be adapted to w

and (w(n)(1+ n)9/2+7γ )n, and let δ > 0. Consider

ϕ� ∈ w(N )−1(−L0)
−1�L2 ∩ w(N )−1(1+N )−9/2−7γ (−L0)

−1/4−δ�L2.

We set ϕ := Kϕ�. Then Lϕ := L0ϕ
� + G≺ϕ is a well defined operator, and we have

‖w(N )(−L0)
γG≺ϕ‖ � ‖w(N )(1+N )9/2+7γ (−L0)

1/4+δϕ�‖. (17)

Proof We treat G≺+ and G≺− separately (both with their obvious definition). We also
assume that δ ∈ (0, 1/4], but once we established the bound (17) for such δ it holds
of course also for δ > 1/4.

1. To control G≺+ϕ, we bound

∑

k1:n
(k21 + · · · + k2n)2γ |F(G≺+ϕ)n(k1:n)|2

� n2
∑

k1:n
1|k1:n |∞<Nn (k

2
1 + · · · + k2n)2γ |k1 + k2|2|ϕ̂n−1(k1 + k2, k3:n)|2
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The infinitesimal generator of the stochastic Burgers… 1087

� n2
∑

k1:n
1|k1:n |∞<Nn N 4γ

n n2γ (|k1 + k2|2)1/2+2δ N 1−4δ
n |ϕ̂n−1(k1 + k2, k2:n−1)|2

� n2+2γ N 2+4γ−4δ
n

∑

k1:n−1

(k21 + · · · + k2n−1)
1/2+2δ|ϕ̂n−1(k1:n−1)|2,

and since Nn 
 (n+1)3 weget ‖w(N )G≺+ϕ‖ � ‖w(N )(1+N )9/2+7γ (−L0)
1/4+δ

ϕ‖. Applying Lemma 2.14, we can estimate the right hand side by ‖w(N )(1 +
N )9/2+7γ (−L0)

1/4+δϕ�‖, because we assumed that δ ∈ (0, 1/4].
2. Next, let us estimate G≺−ϕ. As usual we apply (10), this time with β = 1/4+ δ >

1/4, to bound

∑

k1:n
(k21 + · · · + k2n)2γ |F(G≺−ϕ)n(k1:n)|2

� (n + 1)4
∑

k1:n
1|k1:n |∞<Nn k21(k

2
1 + · · · + k2n)2γ

∣
∣
∣
∣

∑

p+q=k1

ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣

2

� (n + 1)4
∑

k1:n
1|k1:n |∞<Nn k21(k

2
1 + · · · + k2n)2γ |k1|−4δ

∑

p+q=k1

(p2 + q2)1/2+2δ|ϕ̂n+1(p, q, k2:n)|2

� (n + 1)4+2γ N 2+4γ
n

∑

�1:n+1

(�21 + · · · + �2n+1)
1/2+2δ|ϕ̂n+1(�1:n+1)|2,

from where we deduce as before that ‖w(N )G≺−ϕ‖ � ‖w(N )(N + 1)9/2+7γ

(−L0)
1/4+δϕ�‖.


�

To simplify the notation we write from now for γ ≥ 0

α(γ ) := 9/2+ 7γ. (18)

Lemma 2.19 For a given weight w and a cutoff as in Proposition 2.18 (for γ = 0),
we set

Dw(L) := {Kϕ� : ϕ� ∈ w(N )−1(−L0)
−1�L2 ∩ w(N )−1(1+N )−9/2(−L0)

−1/2�L2}.

Then Dw(L) is dense in w(N )−1�L2. More precisely, for all

ψ ∈ w(N )−1(−L0)
−1�L2 ∩ w(N )−1(1+N )−9/2(−L0)

−1/2�L2,
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1088 M. Gubinelli, N. Perkowski

and for all M ≥ 1 there exists ϕM ∈ Dw(L) such that

‖w(N )(−L0)
1/2(ϕM − ψ)‖ � M−1/2‖w(N )(−L0)

1/2ψ‖,
‖w(N )(−L0)

1/2ϕM‖ � ‖w(N )(−L0)
1/2ψ‖,

‖w(N )LϕM‖ � M1/2(‖w(N )(−L0)ψ‖
+ ‖w(N )(N + 1)9/2(−L0)

1/2ψ‖).

(19)

If w ≡ 1, we simply write D(L).

Proof Let ψ be as in the statement of the lemma. Since such ψ are dense in
w(N )−1�L2 it suffices to construct ϕM such that the inequalities (19) hold. For
this purpose we apply Lemma 2.14 to find a unique function ϕM ∈ w(N )−1�L2 that
satisfies

ϕ̂M
n (k1:n) = 1|k|∞≥M NnF((−L0)

−1GϕM )n(k1:n) + ψ̂n(k1:n),

and for which the first two estimates in (19) hold by Lemma 2.14. To see that ϕM ∈
Dw(L) note that

ϕ̂M
n (k1:n) = F((−L0)

−1G�ϕM )n(k1:n) + ϕ̂M,�
n (k1:n),

where

ϕ̂M,�
n (k1:n) = ψ̂n(k1:n) − 1Nn≤|k|∞<M NnF((−L0)

−1GϕM )n(k1:n).

In particular we have LϕM = G≺ϕM +L0ϕ
M,�, and by Proposition 2.18 it suffices to

estimate ϕM,� in w(N )−1(−L0)
−1�L2 ∩w(N )−1(1+N )−9/2(−L0)

−1/2�L2. The
first contribution ψ satisfies the required bounds by assumption, so it suffices to show
that the second contribution, denote it as ψ M , satisfies

‖w(N )(−L0)ψ
M‖ � M1/2‖w(N )(1+N )9/2(−L0)

1/2ψ‖,
‖w(N )(N + 1)9/2(−L0)

1/2ψ M‖ � ‖w(N )(1+N )9/2(−L0)
1/2ψ‖. (20)

But

F((−L0)ψ
M )n(k1:n) = −1Nn≤|k|∞<M NnF(GϕM )n(k1:n),

so that we can estimate this term similarly as in (9). If the cutoff M Nn was independent
of n, we would get ‖w(N )(−L0)ψ

M‖ � (M Nn)1/2‖w(N )(1 + N )(−L0)
1/2ϕM‖

from (9), so after including the factor Nn 
 (1+ n)3 into the weight we get

‖w(N )(−L0)ψ
M‖ � M1/2‖w(N )(1+N )5/2(−L0)

1/2ϕM‖,
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The infinitesimal generator of the stochastic Burgers… 1089

and then the first estimate of (20) follows from (13). Similarly

|F((−L0)
1/2ψ M )n(k1:n)|2 
 (k21 + · · · + k2n)−11Nn≤|k|∞<M Nn |F(GϕM )n(k1:n)|2

� N−1
n |F((−L0)

−1/4G−ϕM )n(k1:n)|2
+ N−2/3

n |F((−L0)
−1/3G+ϕM )n(k1:n)|2,

and since Nn 
 (1+ n)3 we get with (7), (8) that

‖w(N )(1+N )9/2(−L0)
1/2ψ M‖

� ‖w(N )[(1+N )4(−L0)
1/2 + (1+N )9/2(−L0)

−5/12]ϕM‖,

which together with (13) yields (20) and then (19). 
�
Remark 2.20 As discussed before, our analysis also works for Lm and we define

Dw(Lm) := {Kmϕ� : ϕ� ∈ w(N )−1(−L0)
−1�L2 ∩ w(N )−1(1+N )−9/2(−L0)

−1/2�L2}.

For w ≡ 1 we also write D(Lm), and in that case D(Lm) ⊂ Dnaive(Lm) for
the domain Dnaive(Lm) of Corollary 2.11: Indeed, we have ‖(−L0)

1/2NKmϕ�‖ �
‖(−L0)

1/2Nϕ�‖ by (13). Moreover,

‖(−L0)Kmϕ�‖ ≤ ‖(−L0)(−L0)
−1Gm,�Kmϕ�‖ + ‖(−L0)ϕ

�‖,

and the second term on the right hand side is finite by assumption. For first term on the
right hand side we apply the m-dependent estimate (9) (which also holds for Gm,�)
and then (13) to bound

‖Gm,�Kmϕ�‖ � m1/2‖(−L0)
1/2Kmϕ�‖ � m1/2‖(−L0)

1/2ϕ�‖.

Remark 2.21 The same construction works for the operatorL(λ) = L0+λG for λ ∈ R.
For λ �= 1 the intersection of the resulting domain D(L(λ)) with D(L) consists only
of constants.

Lemma 2.22 For any ϕ ∈ D(L), we have

〈ϕ,Lϕ〉 = −‖(−L0)
1/2ϕ‖2 ≤ 0,

and therefore the operator (L,D(L)) is dissipative.

Proof For ϕ ∈ D(L) we have L0ϕ ∈ �L2 and ϕ ∈ (−L0)
−1/2(1 + N )−1�L2 by

assumption. So Definition 2.12 with δ = 0 (for G−) respectively δ ∈ (0, 1/4] (for G+)
gives Gϕ ∈ (−L0)

1/2�L2. Therefore, we can conclude by approximation in the chain
of equalities

〈ϕ,Lϕ〉 = −〈ϕ, (−L0)ϕ〉 + 〈ϕ,Gϕ〉 = −〈ϕ, (−L0)ϕ〉 = −‖(−L0)
1/2ϕ‖2,
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1090 M. Gubinelli, N. Perkowski

since all the inner products are well defined. Here we used the antisymmetry of the
form associated to G (see Lemma 2.4):

〈ϕ,Gϕ〉 = lim
m→∞〈ϕ,Gmϕ〉 = − lim

m→∞〈G
mϕ, ϕ〉 = −〈Gϕ, ϕ〉.


�
Remark 2.23 We can introduce another dissipative operator L− given by L− = L0 −
G = L(−1) on the domain D(L−). Then if ϕ ∈ D(L) and ψ ∈ D(L−) we have
L0ϕ,Gϕ,L0ψ,Gψ ∈ (−L0)

1/2�L2 and ϕ,ψ ∈ (N + 1)−1(−L0)
−1/2�L2 so the

identities Lϕ = L0ϕ + Gϕ, L−ψ = L0ψ − Gψ hold (as distributions) and

〈ψ,Lϕ〉 = 〈ψ,L0ϕ〉 + 〈ψ,Gϕ〉 = 〈ψ,L0ϕ〉 − 〈Gψ, ϕ〉 = 〈L−ψ, ϕ〉.

As a consequence L− ⊆ L∗ and symmetrically L ⊆ (L−)∗. The closed operators
L∗, (L−)∗ are dissipative and satisfy

L∗, (L−)∗ ≤ L0

in the sense of quadratic forms and on their respective domains.
For finite m the operator (Lm)− := L0 − Gm is defined on Dnaive((Lm)−) :=

Dnaive(Lm) and it is the restriction of the adjoint (L̂m)∗ of Lm to this domain. Indeed,
(L̂m)∗ is the infinitesimal generator of the time-reversed process (um

T−t )t∈[0,T ] for
T > 0, and this time-reversed process solves Burgers equation with a minus sign in
front of the nonlinearity (see [27,34]). So the claim (Lm)− ⊂ (L̂m)∗ follows by the
same arguments as for the forward equation.

3 The Kolmogorov backward equation

So far we constructed a dense domainD(L) for the operator L. In this section we will
analyze the Kolmogorov backward equation ∂tϕ = Lϕ. More precisely we consider
the backward equation for the Galerkin approximation (2) with generator L̂m , and we
derive uniform estimates in controlled spaces for the solution. By compactness, this
gives the existence of strong solutions to the backward equation after removing the
cutoff. Uniqueness easily follows from the dissipativity of L.

3.1 A priori bounds

Recall that T m is the semigroup generated by the Galerkin approximation um , the
solution to (2). First, we consider ϕm(t) = T m

t ϕm
0 , for ϕm

0 ∈ Dnaive(Lm), and we
derive some basic a priori estimates without using our controlled structure. Roughly
speaking our aim is to gain some control of the growth in the chaos variable n by
making use of the antisymmetry of G. In the following Sect. 3.2 we then estimate the
regularity with respect to (−L0) by using the controlled structure.

123



The infinitesimal generator of the stochastic Burgers… 1091

So let ϕm
0 ∈ Dnaive(Lm) ⊂ D(L̂m) and let ϕm(t) = T m

t ϕm
0 be the solution to

the backward equation ∂tϕ
m(t) = L̂mϕm(t). Unfortunately, we do not know yet if

ϕm(t) ∈ Dnaive(Lm) for t > 0, and we have no explicit expression for L̂mϕm(t),
which makes it difficult to derive estimates.

To circumvent this problem we introduce suitable cutoffs: Let w : N0 → R+ be
compactly supported and let K > 0, so thatw(N )1|L0|≤K is a bounded linear operator
and it commutes with the Fréchet derivative. Then

1

2
∂t‖w(N )1|L0|≤K ϕm(t)‖2 = 〈w(N )1|L0|≤K ϕm(t), w(N )1|L0|≤K L̂mϕm(t)〉

= 〈w2(N )1|L0|≤K ϕm(t), L̂mϕm(t)〉
= 〈(L̂m)∗(w2(N )1|L0|≤K ϕm(t)), ϕm(t)〉,

where (L̂m)∗ is the adjoint of L̂m . By the discussion inRemark2.23wehave (L̂m)∗ψ =
(Lm)−ψ for all ψ ∈ Dnaive((Lm)−) := Dnaive(Lm). And since w2(N )1|L0|≤K ϕm(t)
has only finitely many Fourier modes it is of course in Dnaive(Lm). This leads to

1

2
∂t‖w(N )1|L0|≤K ϕm‖2 = 〈(L0 − Gm)(w2(N )1|L0|≤K ϕm), ϕm〉

= −‖(−L0)
1/2w(N )1|L0|≤K ϕm‖2

− 〈Gm(w2(N )1|L0|≤K ϕm), ϕm〉,

where we used that −L0 is a positive operator which commutes with w(N )1|L0|≤K .
Let now K > m, so in particular Gm1|L0|≤K = Gm , and let w̃ be compactly supported
and such that w̃(n)w(n + i) = w(n + i) for i ∈ {−1, 0, 1} (i.e. w̃ ≡ 1 on a set that
is slightly larger than the support of w). Then we get, using the “skew-symmetry” of
Gm (Lemma 2.4),

〈Gm(w2(N )1|L0|≤K ϕm), ϕm〉
= 〈Gm+(w2(N )ϕm), ϕm〉 + 〈Gm−(w2(N )ϕm), ϕm〉
= 〈Gm+(w2(N )ϕm), ϕm〉 + 〈w2(N + 1)Gm−(w̃(N )ϕm), ϕm〉
= 〈Gm+(w2(N )ϕm), ϕm〉 − 〈(w̃(N )ϕm),Gm+(w2(N + 1)ϕm)〉
= −〈Gm+(h(N + 1)ϕm), ϕm〉,

where h(n) = w2(n) − w2(n − 1). So letting K →∞, we see that

1

2
∂t‖w(N )ϕm‖2 = −‖(−L0)

1/2w(N )ϕm‖2 + 〈Gm+(h(N + 1)ϕm), ϕm〉. (21)

Lemma 3.1 For all α ∈ R, there exists C = C(α) > 0 such that for all ϕm
0 ∈

(1+N )−α�L2 and for ϕm(t) = T m
t ϕm

0 :

‖(1+N )αϕm(t)‖2 ≤ CetC‖(1+N )αϕm
0 ‖2, (22)
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1092 M. Gubinelli, N. Perkowski

as well as

∫ ∞

0
e−tC‖(1+N )α(−L0)

1/2ϕm(t)‖2dt ≤ C‖(1+N )αϕm
0 ‖2. (23)

Proof 1. Unfortunatelywe cannot directly takew(n) = (1+n)α in the considerations
above, because this w is not compactly supported. But there is an alternative
representation of the norm ‖(1 + N )α · ‖: Let (ρi )i≥−1 be a dyadic partition of
unity, i.e. there are radial functions ρ−1, ρ ∈ C∞

c (R) such that with ρi := ρ(2−i ·),
for i ≥ 0, we have supp(ρi ) ∩ supp(ρ j ) = ∅ for |i − j | > 1, and such that
∑

i≥−1 ρi (x) ≡ 1. We also assume that ρ is supported in {|x | ∈ ( 34 ,
8
3 )} and that

∑
i≥−1 ρ2

i (x) 
 1; see [3, Chapter 2.2] for a construction of such a dyadic partition
of unity. In what follows we write i ∼ j if 2i 
 2 j , i.e. if |i − j | ≤ L for some
fixed L > 0. Then we have for α ∈ R and ϕ ∈ �L2:

∑

i≥−1

22iα‖ρi (N )ϕ‖2 =
∑

i≥−1

22iα
∑

n≥0
n!ρi (n)2‖ϕn‖2L2(Tn)



∑

n≥0
n!(1+ n)2α

∑

i≥−1

ρi (n)2‖ϕn‖2L2(Tn)



∑

n≥0
n!(1+ n)2α‖ϕn‖2L2(Tn)

= ‖(1+N )αϕ‖2,

where we used that
∑

i ρ2
i (n) 
 1. In other words, it suffices to show the claimed

bounds for the norm
∑

i≥−1 2
2iα‖ρi (N ) · ‖2.

2. First assume that ϕm
0 ∈ Dnaive(Lm) ∩ (1 + N )−α�L2. The starting point of our

estimate is the identity (21) whose right hand side we have to control. We use the
uniform bound (8) for Gm+ and get for g : N0 → R+ which satisfies g(n) �= 0
whenever h(n + i) �= 0, i ∈ {−1, 0, 1}:

|〈Gm+(h(N + 1)ϕm), ϕm〉|
≤ ‖g(N )−1(−L0)

−1/2Gm+(h(N + 1)ϕm)‖ × ‖g(N )(−L0)
1/2ϕm‖

� ‖g(N + 1)−1N (−L0)
1/4(h(N + 1)ϕm)‖ × ‖g(N )(−L0)

1/2ϕm‖
=

∥
∥
∥
∥

h(N + 1)

g(N + 1)
N (−L0)

1/4ϕm
∥
∥
∥
∥× ‖g(N )(−L0)

1/2ϕm‖.

Young’s inequality for products bounds the first term on the right hand side by

∥
∥
∥
∥

h(N + 1)

g(N + 1)
N (−L0)

1/4ϕm
∥
∥
∥
∥

� δ‖g(N )(−L0)
1/2ϕm‖ + δ−1

∥
∥
∥
∥
∥

(
h(N + 1)N

g(N + 1)g(N )1/2

)2

ϕm

∥
∥
∥
∥
∥

,
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for all δ > 0. With another application of Young’s inequality this yields

|〈Gm+ϕm, h(N )ϕm〉|

≤ δ‖g(N )(−L0)
1/2ϕm‖2 + C(δ)

∥
∥
∥
∥
∥

(
h(N + 1)N

g(N + 1)g(N )1/2

)2

ϕm

∥
∥
∥
∥
∥

2

,

for all δ > 0, where δ is not the same as in the previous inequality, and C(δ) > 0.
Now we take w = ρi and g = ∑

j :| j−i |≤2 ρ j and obtain for n 
 2i

∣
∣
∣
∣

h(n + 1)n

g(n + 1)g(n)1/2

∣
∣
∣
∣ = |h(n + 1)n| = |(ρi (n + 1)2 − ρi (n)2)n|
≤ (ρi (n) + ρi (n + 1))|ρi (n + 1) − ρi (n)|n
�

∑

j∼i

ρ j (n)max{‖ρ′−1‖∞, ‖ρ′‖∞}2−i n �
∑

j∼i

ρ j (n).

For n �
 2i we simply have h(n+1)n/(g(n+1)g(n)1/2) = 0. So togetherwith (21)
we obtain that for all δ > 0 there exists C = C(δ) > 0, independent of i , such
that

1

2
‖ρi (N )ϕm(t)‖2 +

∫ t

0
‖ρi (N )(−L0)

1/2ϕm(s)‖2ds

≤ 1

2
‖ρi (N )ϕm

0 ‖2 +
∫ t

0
δ
∑

j∼i

‖ρ j (N )(−L0)
1/2ϕm(s)‖2ds

+
∫ t

0
C
∑

j∼i

‖ρ j (N )ϕm(s)‖2ds.

Consequently, for any δ > 0 and α ∈ R there exists a new C = C(δ, α) > 0 such
that

1

2

∑

i≥−1

22iα‖ρi (N )ϕm(t)‖2 +
∫ t

0

∑

i≥−1

22iα‖ρi (N )(−L0)
1/2ϕm(s)‖2ds

≤ 1

2

∑

i≥−1

22iα‖ρi (N )ϕm
0 ‖2 + δ

∫ t

0

∑

i≥−1

22iα‖ρi (N )(−L0)
1/2ϕm(s)‖2ds

+ C
∫ t

0

1

2

∑

i≥−1

22iα‖ρi (N )ϕm(s)‖2ds. (24)

Now we take δ = 1/2 to bring the second term on the right hand side to the left
hand side.

3. For ϕm
0 ∈ Dnaive(Lm)∩(1+N )−α�L2 the first bound (22) now follows from (24)

and Gronwall’s lemma (and the equivalence of the norms addressed in point 1.
above). For general ϕm

0 ∈ (1+N )−α�L2 let F((ϕ
m,N
0 )n)(k) := 1n,|k|≤N ϕ̂m

0 (k),
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so ϕ
m,N
0 ∈ Dnaive(Lm) ∩ (1 + N )−α�L2 and now we use the fact that T m

t is a
continuous linear operator and apply Fatou’s lemma to deduce that

‖(1+N )αT m
t ϕm

0 ‖2 ≤ lim
N→∞‖(1+N )αT m

t ϕ
m,N
0 ‖2

≤ lim
N→∞CetC‖(1+N )αϕ

m,N
0 ‖2

≤ CetC‖(1+N )αϕm
0 ‖2.

4. To derive the second bound (23) for ϕm
0 ∈ Dnaive(Lm)∩ (1+N )−α�L2, observe

that

∂t

(

e−tC 1

2
‖ρi (N )ϕm(t)‖2

)

= e−tC 1

2
∂t‖ρi (N )ϕm(t)‖2

−Ce−tC 1

2
‖ρi (N )ϕm(t)‖2,

and thus (24) yields

e−tC 1

2

∑

i≥−1

22iα‖ρi (N )ϕm(t)‖2 +
∫ t

0
e−sC

∑

i≥−1

22iα‖ρi (N )(−L0)
1/2ϕm(s)‖2ds

≤ 1

2

∑

i≥−1

22iα‖ρi (N )ϕm
0 ‖2 + δ

∫ t

0
e−sC

∑

i≥−1

22iα‖ρi (N )(−L0)
1/2ϕm(s)‖2ds.

Now we take again δ = 1/2, bring the integral term from the right hand side
to the left, and send t → ∞ to deduce (23). The extension to general ϕm

0 ∈
(1+N )−α�L2 follows from Fatou’s lemma, as in step 3.


�
Corollary 3.2 For α and C as in Lemma 3.1 and for ϕm

0 ∈ Dnaive(Lm) with (1 +
N )αLmϕm

0 ∈ �L2 we have both

‖(1+N )α∂tϕ
m(t)‖2 = ‖(1+N )αL̂mϕm(t)‖2 ≤ CetC‖(1+N )αLmϕm

0 ‖2, (25)

as well as

‖(1+N )α(−L0)
1/2ϕm(t)‖2 � CtetC‖(1+N )αLmϕm

0 ‖2+‖(1+N )α(−L0)
1/2ϕm

0 ‖2.
(26)

Proof We use that ∂tϕ
m(t) = ∂t T m

t ϕm
0 = L̂m T m

t ϕm
0 = T m

t Lmϕm
0 . Then (25) directly

follows from (22), while (23) gives

∫ ∞

0
e−tC‖(1+N )α(−L0)

1/2∂tϕ
m(t)‖2dt ≤ C‖(1+N )αLmϕm

0 ‖2,
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and therefore

‖(1+N )α(−L0)
1/2ϕm(t)‖2

�
∥
∥
∥
∥

∫ t

0
(1+N )α(−L0)

1/2∂sϕ
m(s)ds

∥
∥
∥
∥

2

+ ‖(1+N )α(−L0)
1/2ϕm

0 ‖2

≤ t
∫ t

0
‖(1+N )α(−L0)

1/2∂sϕ
m(s)‖2ds + ‖(N + 1)α(−L0)

1/2ϕm
0 ‖2

≤ tetC
∫ t

0
e−sC‖(1+N )α(−L0)

1/2∂sϕ
m(s)‖2ds + ‖(1+N )α(−L0)

1/2ϕm
0 ‖2

≤ CtetC‖(1+N )αLmϕm
0 ‖2 + ‖(1+N )α(−L0)

1/2ϕm
0 ‖2.

This is the claimed bound (26). 
�

3.2 Controlled solutions

The estimates (25) and (26) give bounds for ϕm(t), ∂tϕ
m(t), and L̂mϕm(t) that are

uniform inm and locally uniform in t . This allows us to show that ϕm(t) ∈ Dnaive(Lm)

for all t ≥ 0:

Lemma 3.3 Let α ≥ 1 and let

ϕm
0 ∈ (1+N )−α(1− L0)

−1�L2 ∩ (1+N )−α−1(1− L0)
−1/2�L2 ⊂ Dnaive(Lm).

Then ϕm(t) := T m
t ϕm

0 ∈ Dnaive(Lm) for all t ≥ 0, and in particular L̂mϕm(t) =
Lmϕm(t).

Proof With the decomposition Lm = L0 + Gm and the m-dependent bound (9) for
Gm we get

‖(1+N )Lmϕm
0 ‖ � ‖(1+N )L0ϕ

m
0 ‖ + ‖(1+N )2(−L0)

1/2ϕm
0 ‖ < ∞

and therefore (25) shows that (1 + N )L̂mϕm(t) ∈ �L2. Another application of (9)
yields

‖Gmϕm(t)‖ � m1/2‖N (−L0)
1/2ϕm(t)‖

� ‖(1+N )Lmϕm
0 ‖ + ‖(1+N )(−L0)

1/2ϕm
0 ‖ < ∞

where the second estimate follows from (26) and we hid the factor (CtetC )1/2 inside
the implicit constant. So far we showed that L̂mϕm(t),Gmϕm(t) ∈ �L2. Moreover,
we know for any test function ψ ∈ Dnaive(Lm) = Dnaive((Lm)−) ⊂ D((L̂m)∗):

〈(L̂m − Gm)ϕm(t), ψ〉 = 〈ϕm(t), ((L̂m)∗ + Gm)ψ〉 = 〈ϕm(t),L0ψ〉.

Therefore, ϕm(t) ∈ D(L∗
0) and L∗

0ϕ
m(t) = (L̂m − Gm)ϕm(t). But using the Fourier

representation of L0 it is easy to see that this is a self-adjoint operator, and therefore
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we have ϕm(t) ∈ (1−L0)
−1�L2. Since we already saw that ϕm(t) ∈ (1+N )−2(1−

L0)
−1/2�L2, we indeed have ϕm(t) ∈ Dnaive(Lm) and the proof is complete. 
�
Our aim is now to use our a priori estimates on ϕm(t) to construct solutions of the

limiting backward equation ∂tϕ = Lϕ that are in the domain D(L) from Sect. 2.3.
Therefore, let us define

ϕm,� := ϕm − (−L0)
−1Gm,�ϕm, (27)

so that ϕm = Kmϕm,�.

Convention Throughout this section we consider a cutoff Nn in Lemma 2.14 that is
adapted to the weight (1+N )β for any β that we encounter below.

Lemma 3.4 The a priori estimates from the previous section give for ϕm
0 ∈ D(Lm) ⊂

Dnaive(Lm):

‖(1+N )α(−L0)
1/2ϕm,�(t)‖

� (tetC + 1)1/2(‖(1+N )α(−L0)ϕ
m,�
0 ‖ + ‖(1+N )α+9/2(−L0)

1/2ϕ
m,�
0 ‖). (28)

Proof It follows from (26) and Lemma 2.14 that

‖(1+N )α(−L0)
1/2ϕm,�(t)‖2

� ‖(1+N )α(−L0)
1/2ϕm(t)‖2 + ‖(1+N )α(−L0)

−1/2Gm,�ϕm(t)‖2
� tetC‖(1+N )αLmϕm

0 ‖2 + ‖(1+N )α(−L0)
1/2ϕm

0 ‖2
� (tetC + 1)(‖(1+N )α(−L0)ϕ

m,�
0 ‖2 + ‖(1+N )α+9/2(−L0)

1/2ϕ
m,�
0 ‖2),

where in the last step we applied Proposition 2.18. 
�
Unfortunately this estimate is not enough to show thatϕm ∈ D(Lm), which requires

a bound on ‖(−L0)ϕ
m,�‖ + ‖(1 + N )9/2(−L0)

1/2ϕm,�‖. And in fact we will need
even more regularity to deduce compactness in the right spaces. So let us analyze the
equation for ϕm,�. For that purpose we want to commute the time derivative ∂t with
(−L0)

−1Gm,�, so let us first show that (−L0)
−1Gm,� is a continuous linear operator:

Since |k1:n|2 ≥ |k1:n|∞ we can bound (−L0)
−1/21|k1:n |∞≥Nn by N−1

n ≤ (1 + n)−3,
and thus

‖(−L0)
−1Gm,�ϕ‖ ≤ ‖(1+N )−3(−L0)

−1/2Gm,�ϕ‖
� m1/2‖(1+N )−2ϕ‖ ≤ m1/2‖ϕ‖,

where the second inequality is a variation of (9) with γ = 1/2: Since we did not
make use of any cancellations when proving (9), we can simply ignore the additional
indicator function in Gm,� compared to Gm and in that way we get the same bound

123



The infinitesimal generator of the stochastic Burgers… 1097

for Gm,�. Consequently, (−L0)
−1Gm,� commutes with the (Fréchet) time derivative

and we get
∂tϕ

m,� = Lmϕm − (−L0)
−1Gm,�∂tϕ

m

= L0ϕ
m,� + Gm,≺ϕm − (−L0)

−1Gm,�∂tϕ
m .

(29)

The second term on the right hand side can be controlled with (17), which gives for
γ ≥ 0 and δ > 0

‖(1+N )α(−L0)
γGm,≺ϕm‖ � ‖(1+N )α+α(γ )(−L0)

1/4+δϕm,�‖,

so together with our a priori bound (28) we get

sup
t∈[0,T ]

‖(1+N )α(−L0)
γGm,≺ϕm(t)‖ �T ‖(1+N )α+α(γ )(−L0)ϕ

m,�
0 ‖

+ ‖(1+N )α+α(γ )+9/2(−L0)
1/2ϕ

m,�
0 ‖.

(30)
The remaining term (−L0)

−1Gm,�∂tϕ
m ismore tricky.We can plug in the explicit form

of the time derivative, ∂tϕ
m = Gm,≺ϕm+L0ϕ

m,�, but then we have a problemwith the
termL0ϕ

m,� because it is of the same order as the leading term of the equation forϕm,�.
Therefore, we would like to gain a bit of regularity in (−L0) from (−L0)

−1Gm,�, and
indeed this is possible by slightly adapting the proof of Lemma 2.14; see Lemma A.2
in the appendix for details. This gives for γ ∈ (1/2, 3/4)

‖(1+N )α(−L0)
γ (−L0)

−1Gm,�∂tϕ
m‖

� ‖(1+N )α+3/2(−L0)
γ−1/4(Gm,≺ϕm + L0ϕ

m,�)‖
� ‖(1+N )α+3/2+α(γ−1/4)(−L0)

1/4+δϕm,�‖
+ ‖(1+N )α+3/2(−L0)

γ+3/4ϕm,�‖.

Recall that α(γ ) = 9/2 + 7γ , and therefore 3/2 + α(γ − 1/4) ≤ α(γ ) and the first
term on the right hand side is bounded by the same expression as in (30). For the
remaining term we apply Young’s inequality: There exists p > 0 such that for all
ε ∈ (0, 1)

‖(1+N )α+3/2(−L0)
γ+3/4ϕm,�‖

� ε−p‖(1+N )p(−L0)
1/2ϕm,�‖ + ε‖(1+N )α(−L0)

γ+7/8ϕm,�‖. (31)

The first term on the right hand side is under control by our a priori estimates, and as
the following lemma shows the second term on the right hand side can be estimated
using the regularizing effect of the semigroup (St )t≥0 = (etL0)t≥0 generated by L0.

Lemma 3.5 Let γ ∈ (3/8, 5/8). There exists p = p(α, γ ) such that for all T > 0

sup
t∈[0,T ]

(‖(1+N )α(−L0)
1+γ ϕm,�(t)‖ + ‖(1+N )α(−L0)

γ ∂tϕ
m,�(t)‖)

�T ‖(1+N )p(−L0)
1+γ ϕ

m,�
0 ‖. (32)
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Proof The variation of constants formula gives ϕm,�(t) = Stϕ
m,�
0 + ∫ t

0 St−s(∂s −
L0)ϕ

m,�(s)ds, and by writing the explicit representation of St and L0 in Fourier
variables we easily see that

‖(1+N )α(−L0)
β Stψ‖ � t−β‖(1+N )αψ‖

for all β ≥ 0. Since γ + 1/8 ∈ (1/2, 3/4) we can combine this with our previous
estimates, and in that way we obtain for some K , KT > 0 and for t ∈ [0, T ]

‖(1+N )α(−L0)
1+γ ϕm,�(t)‖ � ‖(1+N )α(−L0)

1+γ ϕ
m,�
0 ‖

+
∫ t

0
(t − s)−1+1/8‖(1+N )α(−L0)

γ+1/8(∂s − L0)ϕ
m,�(s)‖ds

≤ K‖(1+N )α(−L0)
1+γ ϕ

m,�
0 ‖ + KT (1+ ε−p)‖(1+N )p(−L0)ϕ

m,�
0 ‖

+ K T 1/8ε sup
s∈[0,T ]

‖(1+N )α(−L0)
1+γ ϕm,�(s)‖.

The right hand side does not depend on t , and therefore we can take the supremum
over t ∈ [0, T ], and then we choose ε > 0 small enough so that K T 1/8ε ≤ 1/2 and
we bring the last term on the right hand side to the left and thus we obtain the claimed
bound for the spatial regularity. For the temporal regularity, i.e. for ∂tϕ

m,�, we simply
use that

∂tϕ
m,� = L0ϕ

m,� + (∂t − L0)ϕ
m,�,

and then we apply the previous bounds to the two terms on the right hand side. 
�
For s, t ∈ [0, T ] we now interpolate the two estimates

‖(1+N )α(−L0)
γ (ϕm,�(t)− ϕm,�(s))‖ �T |t − s| × ‖(1+N )p(−L0)

1+γ ϕ
m,�
0 ‖

and

‖(1+N )α(−L0)
1+γ (ϕm,�(t)− ϕm,�(s))‖ �T ‖(1+N )p(−L0)

1+γ ϕ
m,�
0 ‖

to obtain some κ ∈ (0, 1) such that

‖(1+N )α(−L0)
1+γ /2(ϕm,�(t)− ϕm,�(s))‖ � |t − s|κ × ‖(1+N )p(−L0)

1+γ ϕ
m,�
0 ‖.

For α ≥ 0 we introduce the space

Uα :=
⋃

γ∈(3/8,5/8)

K(1+N )−p(α,γ )(−L0)
−1−γ �L2 ⊆ �L2, (33)

where p(α, γ ) is as above, and U := U9/2+ := ⋃
α>9/2 Uα:
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Theorem 3.6 Let α ≥ 0 and ϕ0 ∈ Uα . Then there exists a solution

ϕ ∈
⋃

δ>0

C(R+, (1+N )−α+δ(−L0)
−1�L2)

of the backward equation
∂tϕ = Lϕ, ϕ(0) = ϕ0. (34)

For ϕ0 ∈ U we have ϕ ∈ C(R+,D(L)) ∩ C1(R, �L2) and by dissipativity of L the
solution ϕ is unique in this space.

Proof Take ϕ0 ∈ Uα and denote ϕ
�
0 = K−1ϕ0 ∈ (1 + N )−p(−L0)

−1−γ �L2 for
some γ ∈ (3/8, 5/8) and p = p(α, γ ). Consider for m ∈ N the solution ϕm to
∂tϕ

m = Lmϕm with initial condition ϕm(0) = Kmϕ
�
0. It follows from a diagonal

sequence argument that bounded sets in (1 + N )−α(−L0)
−1−γ /2�L2 are relatively

compact in (1 + N )−α+δ(−L0)
−1�L2 for δ > 0. Therefore, (ϕm,�)m is relatively

compact inC(R+, (1+N )−α+δ(−L0)
−1�L2) (equippedwith the topologyof uniform

convergence on compacts) by the Arzelà–Ascoli theorem. Let ϕ� be a limit point and
define ϕ = Kϕ�. To see that ∂tϕ = Lϕ, note that (along a convergent subsequence,
which we omit from the notation for simplicity)

ϕ(t) − ϕ(0) = lim
m→∞(ϕm(t)− ϕm(0)) = lim

m→∞

∫ t

0
Lmϕm(s)ds

= lim
m→∞

∫ t

0
(L0ϕ

m,�(s) + Gm,≺Kmϕm,�(s))ds

= lim
m→∞

∫ t

0
(L0ϕ

�(s) + Gm,≺Kmϕ�(s))ds

=
∫ t

0
(L0ϕ

�(s) + G≺Kϕ�(s))ds,

where the second-to-last step follows from our uniform bounds on L0,Gm,≺,Km and
the convergence of ϕm,� to ϕ�, and the last step follows from our bounds for G≺,K
together with the dominated convergence theorem. If α > 9/2, then ϕ ∈ D(L) by
definition, see Lemma 2.19. Moreover, in that case Lϕ ∈ C(R+, �L2) and since
ϕ(t)− ϕ(s) = ∫ t

s Lϕ(r)dr we get ϕ ∈ C1(R+, �L2). In this case we have

∂t‖ϕ(t)‖2 = 2〈ϕ(t),Lϕ(t)〉 ≤ 0,

by the dissipativity of L (Lemma 2.22). Therefore, any solution ψ satisfies ‖ψ(t)‖ ≤
‖ϕ0‖, which together with the linearity of the equation gives uniqueness. 
�

4 Themartingale problem

Our next aim is to construct a process (ut )t≥0 with infinitesimal generator given by
(an extension of) L. We will do so by solving the martingale problem for L.
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Let S ′ denote the Schwartz distributions on T.

Definition 4.1 Let u = (ut )t≥0 be a stochastic process with trajectories in C(R+,S ′)
and such that law(ut ) $ μ for all t ≥ 0. We say that u solves the martingale problem
for L with initial distribution ν if

i. u0 ∼ ν, and
ii. for all ϕ ∈ D(L) and t ≥ 0 we have

∫ t
0 |Lϕ(us)|ds < ∞ almost surely and the

process

ϕ(ut ) − ϕ(u0) −
∫ t

0
Lϕ(us)ds, t ≥ 0,

is a martingale in the filtration generated by (ut ).

Note that, since ϕ and Lϕ are not cylinder functions, we need the condition
law(ut ) $ μ in order for ϕ(ut ) and Lϕ(ut ) to be well defined.

The following class of processes will play an important role in our study of the
martingale problem.

Definition 4.2 We say that a process (ut )t≥0 with values in S ′ is incompressible if
law(ut ) $ μ for all t ≥ 0 and for all T > 0 there exists C(T ) > 0 such that for all
ϕ ∈ �L2

sup
t≤T

E[|ϕ(ut )|] ≤ C(T )‖ϕ‖.

We will establish the existence of incompressible solutions to the martingale prob-
lem by a compactness argument. The duality of martingale problem and backward
equation yields the uniqueness of incompressible solutions to the martingale problem.
Since the domain of L is rather complicated, we then study a “cylinder function mar-
tingale problem”, a generalization of the energy solutions of [27,28,34], and we show
that every solution to the cylinder function martingale problem solves the martingale
problem for L and in particular its law is unique.

4.1 Existence of solutions

Here we show that under “near-stationary” initial conditions the Galerkin approx-
imations (um)m solving (2) are tight in C(R+,S ′), and that any weak limit is an
incompressible solution to the martingale problem for the generator L in the sense of
Definitions 4.1 and 4.2. The following elementary inequality will be used throughout
this section.

Lemma 4.3 Let um be a solution to (2) with d law(um
0 )/dμ = η ∈ L2(μ). Then we

have for any measurable and bounded or positive � : C(R+,S ′) → R

|E[�(um)]| ≤ ‖η‖Eμ[�(um)2]1/2,
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The infinitesimal generator of the stochastic Burgers… 1101

wherePμ denotes the distribution of um under the stationary initial condition um
0 ∼ μ.

In particular, um is incompressible.

Proof The Cauchy–Schwarz inequality and Jensen’s inequality yield

E[�(um)] =
∫

Eu[�(um)]η(u)μ(du) ≤ ‖η‖
(∫

Eu[�(um)]2μ(du)

)1/2

≤ ‖η‖Eμ[�(um)2]1/2.


�

Recall that Dx denotes the Malliavin derivative with respect to μ.

Lemma 4.4 Let um be a solution to (2) with d law(um
0 )/dμ = η ∈ L2(μ). Let ϕ ∈

D(Lm) and consider Mm,ϕ
t := ϕ(um

t ) − ϕ(um
0 ) − ∫ t

0 Lmϕ(um
s )ds. Then Mm,ϕ is a

continuous martingale with quadratic variation

〈Mm,ϕ〉t =
∫ t

0
Eϕ(um(s))ds, where Eϕ = 2

∫

T

|∂x Dxϕ|2dx . (35)

Moreover, for w : N0 → R+ we have

‖w(N )(Eϕ)1/2‖ = √
2‖w(N − 1)(−L0)

1/2ϕ‖. (36)

Proof Let ϕ be a cylinder function with finite chaos expansion (i.e. ϕn = 0 for all n
and all sufficiently large n) and finitely many Fourier modes (i.e. ϕ̂n(k) = 0 for all
sufficiently large |k|). Then it follows from Itô’s formula that Mm,ϕ is a martingale
with quadratic variation given by (35), and the Burkholder–Davis–Gundy inequality
gives for all T > 0

E[sup
t≤T

|Mm,ϕ
t |] � E[〈Mm,ϕ〉1/2T ] ≤ ‖η‖Eμ[〈Mm,ϕ〉T ]1/2 = ‖η‖T 1/2‖(Eϕ)1/2‖.

(37)
Moreover, for any w : N0 → R+ we get the following equality for the “weighted
energy”:

‖w(N )(Eϕ)1/2‖2 = 2
∫

T

‖w(N )∂x Dxϕ‖2dx

= 2
∫

T

( ∞∑

n=1

(n − 1)!w(n − 1)2n2‖∂xϕn(x, r2:n)‖2L2
r (Tn−1)

)

dx

= 2
∞∑

n=1

n!w(n − 1)2n
∑

k1:n
|2πk1|2|ϕ̂n(k1:n)|2
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= 2
∞∑

n=1

n!w(n − 1)2
∑

k1:n
(|2πk1|2 + · · · + |2πkn|2)|ϕ̂n(k1:n)|2

= 2‖w(N − 1)(−L0)
1/2ϕ‖2. (38)

If ϕ ∈ D(Lm) ⊂ Dnaive(Lm) ⊂ (−L0)
−1/2(1+N )−1�L2, where the first inclusion

holds by Remark 2.20, then we consider the function ϕM with finite chaos expansion
and finitely many Fourier modes, given by

F(ϕM )n(k) := 1n,|k|≤M ϕ̂n(k).

Then ϕM converges to ϕ in (1 − L0)
−1/2(1 + N )−1�L2 ∩ (1 − L0)

−1�L2 =
Dnaive(Lm). So (37) together with (38) (for w ≡ 1) shows that the continuous martin-
gales Mm,ϕM

converge uniformly on compacts in L1(P) to a continuous martingale
Mm,ϕ with quadratic variation given by (35). Moreover, we have for fixed t ≥ 0

Mm,ϕ
t = L1 − lim

M→∞ Mm,ϕM

t

= L1 − lim
M→∞

(

ϕM (um
t ) − ϕM (um

0 ) −
∫ t

0
LmϕM (um

s )ds

)

= ϕ(um
t )− ϕ(um

0 ) −
∫ t

0
Lmϕ(um

s )ds,

where the last step follows from the incompressibility of um and becauseϕM converges
in Dnaive(Lm) to ϕ. Since Mm,ϕ and the process on the right hand side are both
continuous, they are indistinguishable.

It remains to show that (38) also holds for the limit ϕ of ϕM . This follows from two
applications of the monotone convergence theorem because on both sides of (38) the
number of positive terms that are summed up increases if we increase M . 
�

We need to control higher moments to prove tightness, and the following classical
result is useful for this purpose.

Remark 4.5 Let p ≥ 2 and define cp := √
p − 1. It follows from the hypercontractiv-

ity of the Ornstein–Uhlenbeck semigroup that ‖|ϕ|p/2‖2 ≤ ‖cNp ϕ‖p for all ϕ ∈ �L2;
see [49, Theorem 1.4.1].

In Lemma 2.19 we defined a domain Dw(L) of functions that are mapped to
w(N )−1�L2 by L. From now on, we writeDp(L) := Dw(L) for w(n) = cn

p with the
constant cp > 0 of Remark 4.5.

Theorem 4.6 Let η ∈ L2(μ) and let um be the solution to (2) with law(um
0 ) ∼ ηdμ.

Then (um)m∈N is tight in C(R+,S ′), and any weak limit is incompressible and it solves
the martingale problem for L with initial distribution ηdμ.
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Proof 1. We first consider p ≥ 2 and ϕ ∈ D2p(Lm) and we derive an esti-
mate for E[|ϕ(um

t ) − ϕ(um
s )|p]. For that purpose we split ϕ(um

t ) − ϕ(um
s ) =∫ t

s Lmϕ(um
r )dr + Mm,ϕ

t − Mm,ϕ
s , and observe that by Lemma 4.3 and Remark 4.5

E

[∣∣
∣
∣

∫ t

s
Lmϕ(um

r )dr

∣
∣
∣
∣

p]

� Eμ

[∣
∣
∣
∣

∫ t

s
Lmϕ(um

r )dr

∣
∣
∣
∣

2p
]1/2

≤ |t − s|p‖|Lmϕ|p‖ ≤ |t − s|p‖cN2pLmϕ‖p.

Next, we bound themartingale termwith the Burkholder–Davis–Gundy inequality
and (36):

E[|Mm,ϕ
t − Mm,ϕ

s |p] � E

[(∫ t

s
Eϕ(um

s )ds

)p/2
]

� Eμ

[(∫ t

s
Eϕ(um

s )ds

)p]1/2

� |t − s|p/2‖(Eϕ)p/2‖ ≤ |t − s|p/2‖cN2p(Eϕ)1/2‖p

� |t − s|p/2‖cN2p(−L0)
1/2ϕ‖p.

2. Let now ϕ ∈ c−N2p (−L0)
−1�L2 ∩ c−N2p (1 + N )−9/2(−L0)

−1/2�L2. We apply

Step 1 and (19) to find for all M ≥ 1 a function ϕM ∈ D2p(Lm) with

E[|ϕ(um
t ) − ϕ(um

s )|p]
� E[|ϕ(um

t )− ϕM (um
t )|p] + E[|ϕ(um

s ) − ϕM (um
s )|p]

+ E[|ϕM (um
t ) − ϕM (um

s )|p]
� ‖|ϕ − ϕM |p‖ + |t − s|p/2‖cN2p(−L0)

1/2ϕM‖p + |t − s|p‖cN2pLmϕM‖p

� ‖cN2p(ϕ − ϕM )‖p + |t − s|p/2‖cN2p(−L0)
1/2ϕM‖p + |t − s|p‖cN2pLmϕM‖p

� M−p/2‖cN2pϕ‖p + |t − s|p/2‖cN2p(−L0)
1/2ϕ‖p

+ |t − s|p M p/2(‖cN2p(−L0)ϕ‖p + ‖cN2p(1+N )9/2(−L0)
1/2ϕ‖p).

For |t − s| ≤ 1 we choose M = |t − s|−1 and see that the right hand side is of
order |t − s|p/2. The law of the initial condition ϕ(um

0 ) does not depend on m,

so for p > 2 and ϕ ∈ c−N2p (−L0)
−1�L2 ∩ c−N2p (1 + N )−9/2(−L0)

−1/2�L2 it
follows from Kolmogorov’s continuity criterion that the sequence of real valued
processes (ϕ(um))m is tight in C(R+,R). This space contains all functions of
the form ϕ(u) = u( f ) with f ∈ C∞(T), where u( f ) denotes the application of
the distribution u ∈ S ′ to the test function f . Therefore, we can apply Mitoma’s
criterion [48] to deduce that the sequence (um) is tight in C(R+,S ′).

3. It remains to show that any weak limit u of (um) is incompressible and it solves
the martingale problem for L with initial distribution ηdμ. As um

0 ∼ ηdμ, also
any weak limit has initial distribution ηdμ. To see that u is incompressible, note
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that for ϕ ∈ �L2:

E[|ϕ(ut )|] ≤ lim inf
m→∞ E[|ϕ(um

t )|] ≤ ‖η‖‖ϕ‖.

implies that for ϕ ∈ �L2 and for any bounded cylinder function ψ

lim sup
m→∞

|E[ϕ(ut )] − E[ϕ(um
t )]| ≤ E[|(ϕ − ψ)(ut )|]

+ lim sup
m→∞

{∣∣E[ψ(ut )] − E[ψ(um
t )]∣∣+ E[|(ϕ − ψ)(um

t )|]}

� ‖ϕ − ψ‖.

Since the bounded cylinder functions are dense in �L2, the left hand side must

equal zero. The same argument also shows that lim supm→∞
∣
∣
∣E

[∫ t
s ϕ(ur )dr

]

−E

[∫ t
s ϕ(um

r )dr
] ∣∣
∣ = 0 and then that for ϕ ∈ D(L) and for bounded and contin-

uous G : C([0, s],S ′) → R:

E

[(

ϕ(ut )− ϕ(us) −
∫ t

s
Lϕ(ur )dr

)

G((ur )r∈[0,s])
]

= lim
m→∞E

[(

ϕ(um
t ) − ϕ(um

s ) −
∫ t

s
Lϕ(um

r )dr

)

G((um
r )r∈[0,s])

]

.

This is not quite sufficient to prove that the left hand side equals zero, because um

solves the martingale problem forLm and not forL. But for ϕ ∈ D(L) there exists
ϕ� with ϕ = Kϕ�, so let us define ϕm = Kmϕ�. It follows from the dominated
convergence theoremand the proof of Lemma2.14 that ‖ϕm−ϕ‖ → 0 asm →∞.
Moreover, Lmϕm = L0ϕ

� + Gm,≺Kmϕ�, and therefore another application of
the dominated convergence theorem in the proof of Proposition 2.18 shows that
‖Lmϕm − Lϕ‖ → 0. Hence, the incompressibility of um yields

lim
m→∞E

[(

ϕ(um
t ) − ϕ(um

s ) −
∫ t

s
Lϕ(um

r )dr

)

G((um
r )r∈[0,s])

]

= lim
m→∞E

[(

ϕm(um
t ) − ϕm(um

s ) −
∫ t

s
Lmϕm(um

r )dr

)

G((um
r )r∈[0,s])

]

= 0,

which concludes the proof.

�

Remark 4.7 For simplicity we restricted our attention to η ∈ L2(μ). But the same
arguments show the existence of solutions to the martingale problem for initial con-
ditions ηdμ with η ∈ Lq(μ) for q > 1. The key requirement is that we can control
expectations of um in terms of higher moments under the stationary measure Pμ, and
this also works for η ∈ Lq(μ). For q < 2 wewould simply have to adapt the definition
of incompressibility and to restrict our domain in the martingale problem from D(L)

toDq ′(L), where q ′ is the conjugate exponent of q. On the other hand the uniqueness
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The infinitesimal generator of the stochastic Burgers… 1105

proof below really needs η ∈ L2 because we only control the solution to the backward
equation in spaces with polynomial weights, but not with exponential weights.

4.2 Uniqueness of solutions

Let η ∈ �L2 be a probability density (with respect to μ). Let the process (ut )t≥0 ∈
C(R+,S ′) be incompressible and solve the martingale problem for L with initial
distribution u0 ∼ ηdμ. Here we use the duality of martingale problem and backward
equation to show that the law of u is unique and that it is a Markov process with
invariant measure μ.

In LemmaA.3 in the appendix we show that for ϕ ∈ C(R+,D(L))∩C1(R+, �L2)

the process ϕ(t, ut ) − ϕ(0, u0) −
∫ t
0 (∂s + L)ϕ(s, us)ds, for t ≥ 0, is a martingale.

This will be important in the proof of the next theorem.

Theorem 4.8 Let η ∈ �L2 with η ≥ 0 and
∫

ηdμ = 1. Let u be an incompressible
solution to the martingale problem for L with initial distribution u0 ∼ ηdμ. Then u
is a Markov process and its law is unique. Moreover, μ is a stationary measure for u.

Proof Let ϕ0 ∈ U and let ϕ ∈ C(R+,D(L)) ∩ C1(R+, �L2) be the solution to
∂tϕ = Lϕ with initial condition ϕ(0) = ϕ0, see Theorem 3.6. Then Lemma A.3
shows that

E[ϕ0(ut )] = E[ϕ(t − t, ut )]
= E

[

ϕ(t − 0, u0) +
∫ t

0
(−∂tϕ(t − s, us) + Lϕ(t − s, us))ds

]

= E[ϕ(t, u(0))] = 〈ϕ(t), η〉

is uniquely determined. Here we used that if ‖−∂tϕ(t − s)+Lϕ(t − s)‖ = 0, then by
assumption also E[| − ∂tϕ(t − s, us)+Lϕ(t − s, us)|] = 0. It is easy to see that U is
dense inD(L), and sinceD(L) is dense in �L2 and E[|ψ(ut )− ψ̃(ut )|] � ‖ψ − ψ̃‖,
the law of ut is unique.

Next, let ψ1 be bounded and measurable and let ψ2 ∈ U . Let 0 ≤ t1 < t2 and let
∂tϕ2 = Lϕ2 with initial condition ϕ2(0) = ψ2. Then

E[ψ1(ut1)ψ2(ut2)] = E[ψ1(ut1)ϕ2(t2 − t2, ut2)]
= E

[

ψ1(ut1)

{

ϕ2(t2 − t1, ut1) +
∫ t2

t1
(−∂t + L)ϕ2(t2 − s, us)ds

}]

= E[ψ1(ut1)ϕ2(t2 − t1, ut1)].

Since we already saw that the law of u(t1) is unique, also the law of (ut1 , ut2)

is unique (by a monotone class argument). Iterating this, we get the uniqueness
of law(ut1 , . . . , utn ) for all 0 ≤ t1 < · · · < tn , and therefore the uniqueness of
law(ut : t ≥ 0).

To see the Markov property, let 0 ≤ t < s, let X be an Ft = σ(ur : r ≤ t)
measurable bounded random variable, and let ϕ0 ∈ U . Let ϕ be the solution to the
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backward equation with initial condition ϕ(0) = ϕ0. Then

E[Xϕ0(us)] = E[Xϕ(s − s, us)]
= E

[

X

(

ϕ(s − t, ut )+
∫ s

t
(−∂t + L)ϕ(s − r , ur )dr

)]

= E[Xϕ(s − t, ut )],

which shows that E[ϕ0(us)|Ft ] = ϕ(s − t, ut ) = E[ϕ0(us)|ut ]. Now the Markov
property follows by another density argument.

To see that u is stationary with respect to μ it suffices to consider the Galerkin
approximation with initial distribution law(um

0 ) = μ. This is a stationary process and
it converges to the solution of the martingale problem, which therefore is a stationary
process with initial distribution μ. 
�
Remark 4.9 The strong Markov property seems difficult to obtain with our tools: If
τ is a stopping time, then there is no reason why the law of uτ should be absolutely
continuous with respect to μ, regardless of the initial distribution of u. Since such
absolute continuity is crucial for our method, it is not clear how to deal with (uτ+t )t≥0.

Definition 4.10 For t ≥ 0 we define Tt as the continuous extension to �L2 of the map

U � ϕ0 �→ ϕ(t) ∈ �L2,

where ϕ solves the backward equation with initial condition ϕ0. Since (T m
t ) is a

contraction semigroup on �L2 for all m, Fatou’s lemma yields that ‖ϕ(t)‖ ≤ ‖ϕ0‖.
So Tt indeed exists and is unique.

Proposition 4.11 The operators (Tt )t≥0 define a strongly continuous contraction semi-
group on �L2 and

Ttϕ = ϕ +
∫ t

0
TsLϕds, t ≥ 0,

for all ϕ ∈ D(L). The Hille–Yosida generator L̂ of (Tt )t is an extension of L, and
D(L) is a core for L̂ (i.e. L̂ is the closure of L).

Proof To see the semigroup property, let η ∈ �L2 be such that ηdμ is a probability
measure. Let u be the solution to the martingale problem forLwith initial distribution
ηdμ. We showed in the proof of Theorem 4.8 that for ϕ ∈ U we have 〈Ttϕ, η〉 =
E[ϕ(ut )] and almost surely E[ϕ(ut+s)|Fs] = Ttϕ(us), and thus

〈Tt+sϕ, η〉 = E[ϕ(ut+s)] = E[E[ϕ(ut+s)|Fs]] = E[Ttϕ(us)] = 〈Ts(Ttϕ), η〉.

Since Tt+s, Tt , and Ts are contractions, and since U ⊂ �L2 is dense, the equality
holds for all ϕ ∈ �L2. By linearity it extends to all η ∈ �L2, and therefore (Tt ) is a
semigroup.
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It also follows from the martingale problem that for ϕ ∈ D(L)

Ttϕ = ϕ +
∫ t

0
TsLϕds, t ≥ 0

and this also proves the strong continuity of t �→ Ttϕ. By approximation the continuity
extends to t �→ Ttψ for all ψ ∈ �L2.

We conclude that ∂t Ttϕ|t=0 = Lϕ for ϕ ∈ D(L), and thus L̂ is an extension of L.
Moreover, Theorem 3.6 shows that Tt : U → D(L) for all t ≥ 0. Since U ⊂ D(L)

and U is dense, D(L) is a core for L̂ by Proposition 1.3.3 in [18]. 
�

4.3 Exponential ergodicity

The Burgers generator formally satisfies a spectral gap inequality and thus it should
be exponentially L2-ergodic (see e.g. [39, Chapter 2] for the definition of the spectral
gap inequality and its relation to exponential ergodicity). Indeed, the symmetric part
of L is L0 for which the spectral gap is known, and its antisymmetric part G should
not contribute to the spectral gap inequality. Having identified a domain for L, we
can make this formal argument rigorous. We remark that the ergodicity of Burgers
equation was already shown in [41], even in a stronger sense. The only new result here
is the exponential speed of convergence (and our proof is very simple).

Consider ϕ ∈ U and let (ϕ(t)) be the unique solution to the backward equation
with ϕ(0) = ϕ that we constructed in Theorem 3.6. From Proposition 4.11 we know
that Ttϕ = ϕ(t) for the Burgers semigroup, and from Lemma 2.22 we obtain

1

2
∂t‖ϕ(t)‖2 = −‖(−L0)

1/2ϕ(t)‖2.

Assume that
∫

ϕdμ = ϕ0 = 0 for the zero-th chaos component, which by construction
holds whenever (K−1ϕ)0 = 0. Using the stationarity of (ut ) with respect to μ we see
that then also (ϕ(t))0 = 0. Recall that F(ϕ(t))n(k1:n) = 0 whenever ki = 0 for some
i , which leads to

‖(−L0)
1/2ϕ(t)‖2 ≥ |2π |2‖ϕ(t)‖2,

and thus ∂t‖ϕ(t)‖2 ≤ −8π2‖ϕ(t)‖2. Therefore, Gronwall’s inequality yields

‖Ttϕ‖ ≤ e−4π2t‖ϕ‖. (39)

This holds for all ϕ ∈ U with
∫

ϕdμ = 0, but since the left and right hand side can
both be controlled in terms of ‖ϕ‖ it extends to all ϕ ∈ �L2 with

∫
ϕdμ = 0.

There are two interesting consequences:

1. The measureμ is ergodic: Recall that the set of invariant distributions of a Markov
process is convex, and the extremal points are the mutually singular ergodic mea-

sures. Moreover, μ is ergodic if and only if for all A ⊂ S ′ with Tt1A
μ−a.s.= 1A for
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t ≥ 0 we haveμ(A) ∈ {0, 1}, see [16, Theorem 3.2.4]. But from (39) we know that

Tt1A → μ(A) in L2(μ) as t → ∞, so if Tt1A
μ−a.s.= 1A we get 1A

μ−a.s.= μ(A)

and thus μ(A) ∈ {0, 1}. Therefore, μ is ergodic and in particular there exists no
invariant distribution that is absolutely continuous with respect to μ, other than μ

itself.
2. We can solve the Poisson equation L̂ϕ = ψ for all ψ ∈ �L2 with

∫
ψdμ = 0 by

setting ϕ = ∫∞
0 Ttψdt , which is well defined by (39). Here L̂ is the Hille–Yosida

generator and we do not necessarily have ϕ ∈ D(L).

4.4 Martingale problemwith cylinder functions

The martingale approach to Burgers equation is particularly useful for proving that the
equation arises as scaling limit of particle systems. The disadvantage of the martingale
problem based on controlled functions is that, given a microscopic system for which
we want to prove convergence to Burgers equation, it may be difficult to find similar
controlled functions before passing to the limit. Instead it is often more natural to
derive a characterization of the scaling limit based on cylinder test functions. Here
we show that in some cases this characterization already implies that the limit solves
our martingale problem for the controlled domain of the generator, and therefore it is
unique in law. The biggest restriction is that we have to assume that the process allows
for the Itô trick:

Definition 4.12 A process (ut )t≥0 with trajectories in C(R+,S ′) solves the cylinder
function martingale problem for L with initial distribution ν if u0 ∼ ν, and if the
following conditions are satisfied:

i. E[|ϕ(ut )|] � ‖ϕ‖ locally uniformly in t , namely u is incompressible;
ii. There exists an approximation of the identity (ρε) such that for all f ∈ C∞(T)

the process

M f
t = ut ( f ) − u0( f ) − lim

ε→0

∫ t

0
Lεus( f )ds

is a continuous martingale in the filtration generated by (ut ), where

Lεu( f ) = L0u( f )+ 〈∂x (u ∗ ρε)2, f 〉L2(T);

moreover M f has quadratic variation 〈M f 〉t = 2t‖∂x f ‖2
L2 .

iii. The Itô trick works: for all cylinder functions ϕ and all p ≥ 1 we have

E

[

sup
t≤T

∣
∣
∣
∣

∫ t

0
ϕ(us)ds

∣
∣
∣
∣

p
]

� T p/2‖cN2p(−L0)
−1/2ϕ‖p.

Remark 4.13 In [27,28] so called stationary energy solutions to the Burgers equation
are defined. The definition in [27] makes the following alternative assumptions:
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i’. For all times t ≥ 0 the law of ut is μ;
ii’. the conditions in ii. abovehold, and additionally theprocess limε→0

∫ t
0 Lεus( f )ds

has vanishing quadratic variation;
iii’. for T ≥ 0 let ût = uT−t ; then M̂ f

t = ût ( f ) − û0( f ) + limε→0
∫ t
0 Lεûs( f )ds

is a continuous martingale in the filtration generated by (ût ), with quadratic
variation 〈M̂ f 〉t = 2t‖∂x f ‖2

L2 .

Clearly i’. and ii’. are stronger than i. and ii., and it is shown [34, Proposition 3.2] that
any process satisfying i’., ii’., iii’. also satisfies the first inequality in

E

[

sup
t≤T

∣
∣
∣
∣

∫ t

0
L0ϕ(us)ds

∣
∣
∣
∣

p
]

� T p/2‖(Eϕ)p/4‖2 � T p/2‖cNp (Eϕ)1/2‖p


 T p/2‖cNp (−L0)
1/2ϕ‖p, (40)

where the second inequality uses Remark 4.5, and the third inequality is from (36). If∫
ϕdμ = 0, we can solve the equation −L0ψ = ϕ and then (40) applied to ψ gives

E

[

sup
t≤T

∣
∣
∣
∣

∫ t

0
ϕ(us)ds

∣
∣
∣
∣

p
]

� T p/2‖cNp (−L0)
−1/2ϕ‖p,

i.e. a stronger version of iii. Therefore, we also have uniqueness in law for any process
which satisfies i’., ii’. and iii’., or alternatively i., ii., and (40).

Note that the constant cN2p in iii. is not a typo. This is what we get if we consider

a non-stationary process whose initial condition has an L2-density with respect to μ

and we apply Lemma 4.3 to pass to a stationary process that has the properties above.

In what follows we fix the filtration Ft = σ(us : s ∈ [0, t]), t ≥ 0, and we assume
that u solves the cylinder function martingale problem for L with initial distribution
ν.

Lemma 4.14 Let ϕ(u) = �(u( f1), . . . , u( fk)) ∈ C be a cylinder function. Then the
process

Mϕ
t = ϕ(ut ) − ϕ(u0) − lim

m→∞

∫ t

0
Lmϕ(us)ds

is a continuous martingale with respect to (Ft ), where for Bm(u) := ∂x�m(�mu)2:

Lmϕ(u) = L0ϕ(u) +
k∑

i=1

∂i�(u( f1), . . . , u( fk))〈Bm(u), fi 〉L2(T).

Proof Let us write

um
t ( f ) := u0( f ) +

∫ t

0
us(� f )ds + Am, f

t + M f
t

:= u0( f ) +
∫ t

0
us(� f )ds +

∫ t

0
〈Bm(us), f 〉L2(T)ds + M f

t ,
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1110 M. Gubinelli, N. Perkowski

for f ∈ C∞(T). Then by Itô’s formula the process

ϕ(um
t ) − ϕ(um

0 ) −
∫ t

0
L0ϕ(um

s )ds −
∫ t

0

k∑

i=1

∂i�(um
s ( f1), . . . , um

s ( fk))dAm, fi
s

is amartingale. In [34,Corollary 3.17] it is shown that for allα < 3/4 and all T > 0 and
p ∈ [1,∞)we haveE[‖Am, fi − A fi ‖p

Cα([0,T ],R)
] → 0 for the limit A fi of Am, fi . Here

Cα([0, T ],R) is the space of α-Hölder continuous functions. Strictly speaking [34]
only consider the approximation ∂x (�mu)2 of the nonlinearity, but it is not difficult
to generalize the analysis to ∂x�m(�mu)2. In particular, we have

lim
m→∞E

[∣∣
∣
∣ϕ(um

t )− ϕ(um
0 )−

∫ t

0
L0ϕ(um

s )ds −
(

ϕ(ut ) − ϕ(u0)−
∫ t

0
L0ϕ(us)ds

)∣∣
∣
∣

p]

= 0.

Moreover, we can interpret
∫ t
0

∑k
i=1 ∂i�(um

s ( f1), . . . , um
s ( fk))dAm, fi

s as a Young
integral. Therefore, Theorem 1.16 in [45] together with the Cauchy–Schwarz inequal-
ity yields

E

[∣∣
∣
∣
∣

∫ t

0

k∑

i=1

∂i�(um
s ( f1), . . . , um

s ( fk))dAm, fi
s −

∫ t

0

k∑

i=1

∂i�(us( f1), . . . , us( fk))dAm, fi
s

∣
∣
∣
∣
∣

]

�
k∑

i=1

E[‖∂i�(um( f1), . . . , um( fk))

− ∂i�(u( f1), . . . , u( fk))‖2Cβ ([0,T ],R)
]1/2E[‖Am, fi ‖2Cα([0,T ],R)]1/2,

for β > 1−α and α < 3/4. Since ∂i� is locally Lipschitz continuous with polynomial
growth of the derivative and we may take β < α, and since um converges to u in
L p(Cα([0, T ],R)), the first expectation on the right hand side converges to zero. The
second expectation E[‖Am, fi ‖2Cα([0,T ],R)

] is uniformly bounded in m, and therefore
the left hand side converges to zero. Similar arguments show that

lim
m→∞E

[∣
∣
∣
∣
∣

∫ t

0

k∑

i=1

∂i�(us( f1), . . . , us( fk))dAm, fi
s

−
∫ t

0

k∑

i=1

∂i�(us( f1), . . . , us( fk))dA fi
s

∣
∣
∣
∣
∣

]

= 0,
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The infinitesimal generator of the stochastic Burgers… 1111

and since all the convergences are in L1 we get that

Mϕ
t = ϕ(ut ) − ϕ(u0) −

∫ t

0
L0ϕ(us)ds −

∫ t

0

k∑

i=1

∂i�(us( f1), . . . , us( fk))dA fi
s

= ϕ(ut ) − ϕ(u0) −
∫ t

0
L0ϕ(us)ds − lim

m→∞

∫ t

0

k∑

i=1

∂i�(us( f1), . . . , us( fk))dAm, fi
s

is a continuous martingale. 
�

While it may not be obvious from the proof, here we already used that the Itô trick
works for (ut ). Indeed, Corollary 3.17 of [34] crucially relies on it.

Theorem 4.15 Let u solve the cylinder function martingale problem for L with initial
distribution ν. Then u solves the martingale problem for L in the sense of Sect. 4.1,
and in particular its law is unique by Theorem 4.8.

Proof Letϕ ∈ D(L) and defineϕM viaF(ϕM
n )(k) = 1n≤M1|k|≤M ϕ̂n(k). In particular,

ϕM ∈ C and by Lemma 4.14 the process

MϕM

t = ϕM (ut ) − ϕM (u0)− lim
m→∞

∫ t

0
LmϕM (us)ds

is a martingale. By construction E[|ϕM (ut ) − ϕM (u0) − ϕ(ut ) − ϕ(u0)|] → 0 as
M →∞, so if we can show that

lim
M→∞E

[∣∣
∣
∣ lim
m→∞

∫ t

0
LmϕM (us)ds −

∫ t

0
Lϕ(us)ds

∣
∣
∣
∣

]

= 0,

then the proof is complete. We saw in the proof of Lemma 4.14 that the integral∫ t
0 LmϕM (us)ds converges in L1 as m → ∞, and therefore we can exchange the
limit in m with the expectation. So it suffices to show that the right hand side of the
following inequality is zero:

lim
M→∞ lim

m→∞E

[∣∣
∣
∣

∫ t

0
(LmϕM − Lϕ)(us)ds

∣
∣
∣
∣

]

�t lim
M→∞ lim

m→∞‖(−L0)
−1/2(LmϕM − Lϕ)‖

� lim
M→∞ lim

m→∞[‖(−L0)
1/2(ϕM − ϕ)‖ + ‖(−L0)

−1/2(GmϕM − Gϕ)‖].

For the first term on the right hand side this follows from the fact that ‖(−L0)
1/2ϕ‖ �

‖(−L0)
1/2ϕ�‖ by Lemma 2.14 and from the dominated convergence theorem. For the

second term on the right hand side we have by the triangle inequality and Lemma 2.8
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1112 M. Gubinelli, N. Perkowski

‖(−L0)
−1/2(GmϕM − Gϕ)‖ ≤ ‖(−L0)

−1/2Gm(ϕM − ϕ)‖
+ ‖(−L0)

−1/2(Gm − G)ϕ)‖
� ‖(−L0)

1/2N (ϕM − ϕ)‖ + ‖(−L0)
−1/2(Gm − G)ϕ‖.

Thefirst termvanishes as M →∞. The second termvanishes by the uniformestimates
of Lemma 2.8 together with the dominated convergence theorem. 
�

5 Extensions

The uniqueness in law of solutions to the cylinder function martingale problem is
not new, the stationary case was previously treated in [34] and a non-stationary case
(even slightly more general than the one covered here) in [35]. This was extended to
Burgers equation with Dirichlet boundary conditions in [36]. However, these works
are crucially based on the Cole–Hopf transform that linearizes the equation, and they
do not say anything about the generatorL. In the followingwe show that our arguments
adapt to some variants of Burgers equation, none of which can be linearized via the
Cole–Hopf transform. In that sense our new approach is much more robust than the
previous works.

5.1 Multi-component Burgers equation

Let us consider the multi-component Burgers equation studied in [21,44]. This equa-
tion reads for u ∈ C(R+, (S ′)d) as

∂t u
i = �ui +

d∑

j, j ′=1

�i
j j ′∂x (u

j u j ′) +√
2∂xξ

i , i = 1, . . . , d,

where (ξ1, . . . , ξd) are independent space-time white noises and we assume the so
called trilinear condition of [21]:

�i
j j ′ = �i

j ′ j = �
j
j ′i ,

i.e. that� is symmetric in its three arguments (i, j, j ′).Under this condition the product
measure μ⊗d is invariant for u, also at the level of the Galerkin approximation, see
Proposition 5.5 of [21].We can interpretμ⊗d as awhite noise on L2

0({1, . . . , d}×T) 

L2
0(T,Rd), equipped with the inner product

〈 f , g〉L2(T×{1,...,d}) :=
d∑

i=1

〈 f i , gi 〉L2(T) :=
d∑

i=1

〈 f (i, ·), g(i, ·)〉L2(T)

and where we assume that f̂ (i, 0) := f̂ i (0) = 0 for all i , and similarly for g; see
also Example 1.1.2 of [49]. To simplify notation we write Td = T × {1, . . . , d}
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The infinitesimal generator of the stochastic Burgers… 1113

from now on, not to be confused with T
d . Cylinder functions now take the form

ϕ(u) = �(u( f1), . . . , u( f J )) for � ∈ C2
p(R

J ) and f j ∈ C∞(Td) 
 C∞(T,Rd),
where the duality pairing u( f ) is defined as

u( f ) =
d∑

i=1

ui ( f i ) =
d∑

i=1

ui ( f (i, ·)),

and in what follows we switch between the notations f i (x) = f (i, x) depending
on what is more convenient. The chaos expansion takes symmetric kernels ϕn ∈
L2
0(T

n
d) as input, and the Malliavin derivative acts on the cylinder function ϕ(u) =

�(u( f1), . . . , u( f J )) with f j ∈ C∞(Td) 
 C∞(T,Rd) and � ∈ C2
p(R

J ) as

Dζ ϕ = D(i x)ϕ =
J∑

j=1

∂ j�(u( f1), . . . , u( f J )) f i
j (x)

=
J∑

j=1

∂ j�(u( f1), . . . , u( f J )) f j (ζ ),

where from now on we write ζ for the elements of Td . As for d = 1, we also have
Dζ Wn(ϕn) = nWn−1(ϕn(ζ, ·)). Let us write formally

B(u)(ζ ) = B(u)(i, x) =
d∑

j, j ′=1

�i
j j ′∂x (u

j u j ′)(x)

= W2

⎛

⎝
d∑

j, j ′=1

�i
j j ′∂x (δ( j x) ⊗ δ( j ′x))

⎞

⎠ ,

where δ( j x)(iy) = 1i= jδ(x − y). Then the Burgers part of the generator is formally
given by

Gϕ(u) = 〈B(u), Dϕ(u)〉L2(Td ) =:
∫

ζ

B(u)(ζ )Dζ ϕ(u)dζ.

This becomes rigorous if we consider the Galerkin approximation with cutoff �m ,
but for simplicity we continue to formally argue for m = ∞. We have the following
generalization of Lemma 2.4:

Lemma 5.1 We have G = G+ + G−, where

G+Wn(ϕn) = nWn+1

⎛

⎝
∫

(i x)

d∑

j, j ′=1

�i
j j ′∂x (δ( j x) ⊗ δ( j ′x))⊗ ϕn((i x), ·)

⎞

⎠ ,
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1114 M. Gubinelli, N. Perkowski

G−Wn(ϕn)

= 2n(n − 1)Wn−1

⎛

⎝
∫

(i1x1),(i2x2)

d∑

j, j ′=1

�
i1
j j ′∂x1(δ( j x1)(i2x2)δ( j ′x1))⊗ ϕn((i1x1), (i2x2), ·)

⎞

⎠ .

Moreover we have for all ϕn+1 ∈ L2(Tn+1) and ϕn ∈ L2(Tn):

〈Wn+1(ϕn+1),G+Wn(ϕn)〉 = −〈G−Wn+1(ϕn+1), Wn(ϕn)〉.
Proof This follows similarly as in Lemma 2.4, making constant use of the trilinear
condition for �. 
�

The Fourier variables now are indexed by Z0 × {1, . . . , d} =: Zd , and we write
(ik) or κ for the elements of Zd , and

f̂ (κ) = f̂ (ik) =
∫

T

e−2πιkx f (i, x)dx, κ = (ik) ∈ Zd .

We have for ϕ = ∑
n Wn(ϕn):

‖ϕ‖2 =
∑

n

n!
∑

κ∈Zn
d

|ϕ̂n(κ)|2.

Lemma 5.2 In Fourier variables the operators L0,G+,G− are given by

F(L0ϕ)n(κ1:n) = −(|2πk1|2 + · · · + |2πkn|2)ϕ̂n(κ1:n),

F(G+ϕ)n(κ1:n) = −(n − 1)
d∑

i=1

�i
i1i22πι(k1 + k2)ϕ̂n((i(k1 + k2)), κ3:n+1),

F(G−ϕ)n(κ1:n) = −2πιk1n(n + 1)
d∑

j1, j2=1

�
i1
j1 j2

∑

p+q=k1

ϕ̂n(( j1 p), ( j2q), κ2:n+1),

respectively.

Proof The proof is more or less the same as for d = 1. 
�
In other words, G+ and G− are finite linear combinations of some mild variations of

the operators that we considered in d = 1. In particular they satisfy the same estimates
and we obtain the existence and uniqueness of solutions to the martingale problem for
L = L0 + G+ + G− as before, and also for the cylinder function martingale problem.

5.2 Fractional Burgers equation

In the paper [27] the authors not only study the stochastic Burgers equation, but also
the fractional generalization

∂t u = −Aθ u + ∂x u2 + Aθ/2ξ,
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The infinitesimal generator of the stochastic Burgers… 1115

for θ > 1/2 and A = −�. They define and construct stationary energy solutions for
all θ > 1/2, and they prove uniqueness in distribution for θ > 5/4. Here we briefly
sketch how to adapt our arguments to obtain the uniqueness for θ > 3/4, also in
the non-stationary case as long as the initial condition is absolutely continuous with
density in L2(μ). Unfortunately we cannot treat the limiting case θ = 3/4 which
would formally be scale-invariant and which plays an important role in the work [29].

In Section 4 of [27] it is shown that, just as for θ = 1, the white noise is an invariant
measure for μ. By adapting the arguments of Lemma 3.7 in [34] we see that the
(formal) generator of u is given by

L = Lθ + G,

where

F(Lθϕ)n(k1:n) = −(|2πk1|2θ + · · · + |2πkn|2θ )ϕ̂n(k1:n).

Up to multiples ofN we can estimate (−Lθ ) by (−L0)
θ and vice versa, so we would

expect that (−Lθ )
−1 gains regularity of order (−L0)

−θ . We saw in Lemma 2.8 that
G loses (−L0)

3/4 regularity, and therefore it is canonical to assume θ > 3/4. To
construct controlled functions we only need to slightly adapt Lemma 2.14 and to
replace (−L0)

−1 by (−Lθ )
−1. For simplicitywe restrict our attention to θ ≤ 1 because

this allows us to estimate

(|k1|2θ + · · · + |kn|2θ )−1 ≤ (k21 + · · · + k2n)−θ , i.e. ‖(−Lθ )
−1ϕ‖ ≤ ‖(−L0)

−θϕ‖.
(41)

Lemma 5.3 Let θ ∈ (3/4, 1], let w be a weight, let γ ∈ (1/4, 1/2], and let L ≥ 1.
For Nn = L(1+ n)3/(4θ−3) we have

‖w(N )(−L0)
γ (−Lθ )

−1G�ϕ‖ � |w|L3/2−2θ‖w(N )(−L0)
γ ϕ‖, (42)

where the implicit constant on the right hand side is independent of w. Therefore, the
construction of controlled functions ϕ = Kϕ� = (−Lθ )

−1G�+ϕ + ϕ� for given ϕ�

works as in Lemma 2.14.

Proof We treat G�+ and G�− separately. We use (41) and that 1 − 2γ ≥ 0 to estimate
the G�+ term as in the proof of Lemma 2.14:

∑

k1:n
|F((−L0)

γ (−Lθ )
−1G�+ϕ)n(k1:n)|2

� n
∑

�1:n−1,p

(1|p|≥Nn/2 + 1|�1:n−1|∞≥Nn/2)
(�21 + · · · + �2n−1)

2γ

(|p|2 + |�1|2 + · · · + |�n−1|2)2θ−1 |ϕ̂n−1(�1:n−1)|2
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1116 M. Gubinelli, N. Perkowski

� n
∑

�1:n−1

(

N 3−4θ
n + 1|�1:n−1|∞≥Nn

(�21 + · · · + �2n−1)
2θ−3/2

)

(�21 + · · · + �2n−1)
2γ |ϕ̂n−1(�1:n−1)|2

� n
∑

�1:n−1

N 3−4θ
n (�21 + · · · + �2n−1)

2γ |ϕ̂n−1(�1:n−1)|2,

where the third step follows from Lemma A.1 (and here we need θ < 3/4).
For the G− term we have by the same arguments as in Lemma 2.14 and using (41)

and that θ > 3/4

∑

k1:n
|F((−L0)

γ (−Lθ )
−1G�−ϕ)n(k1:n)|2

�
∑

k1:n

1|k1:n |∞≥Nn n4(k21)
3/2

(k21 + · · · + k2n)2θ

∑

p+q=k1

(p2 + q2)2γ |ϕ̂n+1(p, q, k2:n)|2

≤ N 3−4θ
n n4

∑

�1:n+1

(�21 + · · · + �2n+1)
2γ |ϕ̂n+1(�1:n+1)|2,

and from now on the proof is the same as for Lemma 2.14. 
�

Proposition 2.18 remains essentially unchanged in the fractional setting, because
for ϕ = Kϕ� we have Lϕ = G≺ϕ + Lθϕ

�. The only difference is that, since we still
want to measure regularity in terms of (−L0), we have ‖Lθϕ

�‖ � ‖N 1−θ (−L0)ϕ
�‖

by Hölder’s inequality. Also the proof of Lemma 2.19 carries over to our setting. And
also the analysis of the backward equation is more or less the same as before. The
main difference is that nowwe only have a priori estimates inw(N )−1(−L0)

−θ/2�L2

and no longer in w(N )−1(−L0)
−1/2�L2. But for the controlled analysis it is only

important to have an a priori estimate in (−L0)
−1/4−δ�L2, because that is what we

need to control the contribution from G≺. So since θ/2 > 3/8 > 1/4 the same
arguments work, and then we obtain the existence and uniqueness of solutions to the
backward equation and to the martingale problem by the same arguments as for θ = 1,
and also the cylinder function martingale problem has unique solutions.

5.3 Burgers equation on the real line

The stochastic Burgers equation on R+ × R has essentially the same structure as the
equation on R+ × T. The only difference is that now we have to work with Fourier
integrals instead of Fourier sums, which might lead to divergences at k 
 0. But since
most of our estimates boil down to an application of Lemma A.1, and this lemma
remains true if the sum in k is replaced by an integral, most of our estimates still work
on the full space. In fact all estimates in Sect. 2 remain true, but some of them are
not so useful any more because we no longer have ‖ϕ‖ � ‖(−L0)

γ ϕ‖ for γ > 0 and∫
ϕdμ = 0. But we can strengthen the results as follows (with the difference to the

previous results marked in blue):
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The infinitesimal generator of the stochastic Burgers… 1117

• In Lemma 2.14 we can use the cutoff 1|k1:n |∞>Nn to estimate

‖w(N )(1− L0)
γ (−L0)

−1G�ϕ‖
� ‖w(N )(−L0)

γ (−L0)
−1G�ϕ‖ � |w|L−1/2‖w(N )(−L0)

γ ϕ‖
≤ |w|L−1/2‖w(N )(1− L0)

γ ϕ‖

and thus

‖w(N )(1− L0)
γKϕ�‖ + L1/2‖w(N )(1− L0)

γ (Kϕ� − ϕ�)‖
� ‖w(N )(1− L0)

γ ϕ�‖.

Similarly, we get in Lemma A.2 the better bound

‖w(N )(1− L0)
γ (−L0)

−1G�ϕ‖ � |w|‖w(N )(1+N )3/2(−L0)
γ−1/4ϕ‖.

• In the proof Proposition 2.18 we used the bound (k21 + · · · + k2n)2γ1|k1:n |∞≤Nn ≤
n2γ N 4γ

n , and of course this works also with (1+ k21 + · · · + k2n)2γ , so that we get
the slightly stronger result

‖w(N )(1− L0)
γG≺ϕ‖ � ‖w(N )(1+N )9/2+7γ (−L0)

1/4+δϕ�‖.

• The definition of the domain in Lemma 2.19 is problematic now, because it does
not even guarantee that D(L) ⊂ �L2. So instead we set

Dw(L) := {Kϕ� : ϕ� ∈ w(N )−1(−L0)
−1�L2 ∩ w(N )−1(1+N )−9/2(1− L0)

−1/2�L2},

and then we get from the stronger version of Lemma 2.14 the better estimate

‖w(N )(1− L0)
1/2(ϕM − ψ)‖ � M−1/2‖w(N )(1− L0)

1/2ψ‖,
‖w(N )(1− L0)

1/2ϕM‖ � ‖w(N )(1− L0)
1/2ψ‖.

• The analysis in Sect. 3.1 does not change, and Lemma 3.1 together with Corol-
lary 3.2 give as an a priori bound on ‖(1+N )α(1−L0)

1/2ϕm‖ and ‖(1+N )α∂tϕ
m‖

in terms of ϕm
0 .• In the controlled analysis of Sect. 3.2we can strengthen the bound fromLemma 3.4

to control ‖(1 + N )α(1− L0)
1/2ϕm,�‖ in terms of ϕ

m,�
0 , and this is sufficient to

control (1− L0)
γGm,≺ϕm . Throughout, we replace all bounds for terms of the

form (−L0)
γ (·) by corresponding bounds for (1− L0)

γ (·). Here we need the
strengthened version of Lemma A.2 mentioned in the first bullet point, and we
also use that ‖(1+N )α(1− L0)

β Stψ‖ � (t−β ∨ 1)‖(1+N )αψ‖.
• The existence proof for strong solutions to the backward equation was based on the
fact that, on the torus, bounded sets in (1 +N )−κ(1 − L0)

−γ �L2 are relatively
compact in (1 + N )−κ ′(1 − L0)

−γ ′
�L2 if κ ′ < κ and γ ′ < γ . But on R this

is false, for example the Sobolev space H1(R) is not compactly embedded in

123



1118 M. Gubinelli, N. Perkowski

L2(R). On the other hand, bounded sequences in any separable Hilbert space have
weakly convergent subsequences, and in Lemma A.4 we prove a version of the
Arzelà–Ascoli theorem for the weak topology. So we let

Uα :=
⋃

γ∈(3/8,5/8)

K(1+N )−p(α,γ )(1− L0)
−1−γ �L2 ⊆ �L2,

and we replace the compactness argument in the proof of Theorem 3.6 by a weak
compactness argument. By the Fatou property of the norm under weak conver-
gence, we deduce that any weak limit point ϕ� of (ϕm,�)m is in C(R+, (1 +
N )−α+δ(−L0)

−1�L2). Moreover, the weak convergence is sufficient to identify
ϕ(t) − ϕ(0) = ∫ t

0 (L0ϕ
�(s) + G≺Kϕ�(s))ds, where ϕ = Kϕ�. After that, the

arguments are the same as on T.
• Existence and uniqueness for themartingale problemare shown in exactly the same
way as on the torus, the only difference is that we have to use the stronger version
of Proposition 2.18 to approximate cylinder functions by functions in D(L).

• The cylinder function martingale problem is more complicated: In the proof of
Theorem 4.15 we used that ‖(−L0)

−1/2Gϕ‖ � ‖(−L0)
1/2ϕ‖, which is no longer

true on the full space. But we can decompose G = G− + G+ and estimate the
contribution from G− by directly using Lemma 2.8 for γ = 3/4, without applying
the Itô trick (it follows from Young’s inequality for products that D(L) ⊂ (1 +
N )−1(−L0)

−3/4�L2). And forG+ we can use the Itô trick together with the bound
‖(−L0)

−1/2G+ϕ‖ � ‖(−L0)
1/4ϕ‖ � ‖(1− L0)

1/2ϕ‖, where the right hand side
is under control.

In that way all results from Sects. 2.3–4 apart from Sect. 4.3 carry over to Burgers
equation on R. Of course, the exponential ergodicity of Sect. 4.3 does not hold on the
full space, because L0 no longer has a spectral gap.

But we can still prove a qualitative ergodicity result. By (the full space version of)
Lemma 2.22 we know that

〈ϕ,Lϕ〉 = −‖(−L0)
1/2ϕ‖2,

for all ϕ ∈ D(L). By (the full space version of) Proposition 4.11, the Hille–Yosida
generator L̂ of the semigroup (Tt ) is the closure of L. So for all ϕ ∈ D(L̂) there exists
a sequence (ϕM ) ⊂ D(L) such that ϕM → ϕ and LϕM → L̂ϕ in �L2. Then Fatou’s
lemma gives

〈ϕ,−L̂ϕ〉 = lim
M→∞〈ϕ

M ,−L̂ϕM 〉 ≥ ‖(−L0)
1/2ϕ‖2.

So if ϕ ∈ D(L̂) is such that μ-almost surely L̂ϕ = 0, then

0 = 〈ϕ,−L̂ϕ〉 ≥ ‖(−L0)
1/2ϕ‖2,

and therefore (−L0)
1/2ϕ = 0.With the Fourier representation ofL0 this easily implies

that ϕ − ∫
ϕdμ = 0, i.e. the only functions ϕ ∈ D(L̂) with L̂ϕ = 0 are constants. If
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ϕ ∈ �L2 is such that Ttϕ = ϕ, then ϕ ∈ D(L̂) and L̂ϕ = 0, and therefore the only
invariant functions for Tt are constants. This proves ergodicity by general principles,
see [16, Theorem 3.2.4].

As far as we are aware, the ergodicity of the stochastic Burgers equation on R is a
new result. For more regular noise, the ergodicity onRwas recently shown by Bakhtin
andLi [5] and byDunlap et al. [11]. Both of theseworks prove a one-force-one-solution
principle, which is stronger than ergodicity.

Acknowledgements We would like to thank the Isaac Newton Institute for Mathematical Sciences for
support and hospitality during the programme SRQ: Scaling limits, Rough paths, Quantum field theory
when part of the work on this paper was undertaken. We are grateful to the anonymous referees for their
very detailed reports, which helped to greatly clarify the presentation.Moreover, the argument in Lemma 3.3
was kindly pointed out to us by one of the referees. The main part of the work was done while N.P. was
employed at Max-Planck-Institute for Mathematics in the Sciences, Leipzig, and at Humboldt-Universität
zu Berlin.

Funding Open Access funding provided by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Auxiliary results

The following simple estimate is used many times, so we formulate it as a lemma.

Lemma A.1 Let C ≥ 0, a > 1/2, and k ∈ Z be such that k2 + C > 0. Then

∑

p+q=k

(
1

p2 + q2 + C

)a

=
∑

p

(
1

p2 + (k − p)2 + C

)a

�
(

1

k2 + C

)a− 1
2

.

Proof Since p2 + (k − p)2 
 p2 + k2, we have

∑

p

(
1

p2 + (k − p)2 + C

)a

�
∫ ∞

0

(
1

y2 + k2 + C

)a

dy

= (k2 + C)−a
∫ ∞

0

⎛

⎜
⎝

1
(

y√
k2+C

)2 + 1

⎞

⎟
⎠

a

dy

= (k2 + C)−a+ 1
2

∫ ∞

0

(
1

y2 + 1

)a

dy,

and since 2a > 1 the integral on the right hand side is finite and our claim follows. 
�
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Lemma A.2 In the context of Lemma 2.14 let now γ ∈ (1/2, 3/4). Then we have

‖w(N )(−L0)
γ (−L0)

−1G�ϕ‖ � |w|‖w(N )N 3/2(−L0)
γ−1/4ϕ‖.

Proof In Step 1 of the proof of Lemma 2.14 we derived, for all γ ∈ R, the estimate

‖w(N )(−L0)
γ (−L0)

−1G�+ϕ‖2 �
∑

n≥2
n!w(n)2n

∑

�1:n−1,p

1|�1:n−1|∞∨|p|≥Nn

× �21 + · · · + �2n−1

(p2 + �21 + · · · + �2n−1)
2−2γ

|ϕ̂n−1(�1:n−1)|2.

If 2− 2γ > 1/2 (which is equivalent to γ < 3/4), it follows from Lemma A.1 that

∑

n≥2
n!w(n)2n

∑

�1:n−1,p

1|�1:n−1|∞∨|p|≥Nn

�21 + · · · + �2n−1

(p2 + �21 + · · · + �2n−1)
2−2γ

|ϕ̂n−1(�1:n−1)|2

�
∑

n≥2
n!w(n)2n

∑

�1:n−1

�21 + · · · + �2n−1

(�21 + · · · + �2n−1)
3/2−2γ

|ϕ̂n−1(�1:n−1)|2

=
∑

n≥1
n!(n + 1)w(n + 1)2(n + 1)

∑

�1:n
(�21 + · · · + �2n)2γ−1/2|ϕ̂n(�1:n)|2

≤ |w|2‖w(N + 1)N (−L0)
γ−1/4ϕ‖2.

For (−L0)
−1G�−ϕ we argue similarly as in Step 2 of the proof of Lemma 2.14: We

apply (10) with β = γ − 1/4 > 1/4 (here we need γ > 1/2) to estimate

∑

k1:n
|F((−L0)

γ−1G�−ϕ)n(k1:n)|2

�
∑

k1:n

1|k1:n |∞≥Nn n4k21
(k21 + · · · + k2n)2−2γ

∣
∣
∣
∣

∑

p+q=k1

ϕ̂n+1(p, q, k2:n)

∣
∣
∣
∣

2

�
∑

k1:n

1|k1:n |∞≥Nn n4k21(k
2
1)

1−2γ

(k21 + · · · + k2n)2−2γ

∑

p+q=k1

(p2 + q2)2γ−1/2|ϕ̂n+1(p, q, k2:n)|2

≤ n4
∑

�1:n+1

(�21 + · · · + �2n+1)
2γ−1/2|ϕ̂n+1(�1:n+1)|2,

which leads to‖w(N )(−L0)
γ (−L0)

−1G�−ϕ‖ � |w|‖w(N )(1+N )3/2(−L0)
γ−1/4ϕ‖.


�
Lemma A.3 Let ϕ ∈ C(R+,D(L)) ∩ C1(R+, �L2) and let u be an incompressible
solution of the martingale problem for L. Then

ϕ(t, ut ) − ϕ(0, u0) −
∫ t

0
(∂s + L)ϕ(s, us)ds, t ≥ 0,
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is a martingale.

Proof We discretize time: Set tk = kt/n and

ϕ(t, ut ) − ϕ(0, u0) =
n−1∑

k=0

[ϕ(tk+1, utk+1) − ϕ(tk , utk+1) + ϕ(tk , utk+1)− ϕ(tk , utk )]

=
n−1∑

k=0

[∫ tk+1

tk
∂sϕ(s, utk+1)ds +

∫ tk+1

tk
Lϕ(tk , us)ds + Mϕ(tk )

tk+1
− Mϕ(tk )

tk

]

.

Now for [s]n = min{tk : tk ≥ s} (which depends on n because the tk depend on n)

E

[∣∣
∣
∣
∣

n−1∑

k=0

∫ tk+1

tk
∂sϕ(s, utk+1)ds −

∫ t

0
∂sϕ(s, us)ds

∣
∣
∣
∣
∣

]

≤
∫ t

0
E[|∂sϕ(s, u[s]n )− ∂sϕ(s, us)|]ds,

and

E[|∂sϕ(s, u[s]n ) − ∂sϕ(s, us)|] ≤ E[|∂sϕ(s, u[s]n )|] + E[|∂sϕ(s, us)|] � ‖∂sϕ(s)‖

is bounded in [0, t]. Moreover, by approximating ∂sϕ(s) in �L2 with continuous
functions, we get limn→∞ E[|∂sϕ(s, u[s]n )− ∂sϕ(s, us)|] = 0 for all s, and therefore
by dominated convergence

lim
n→∞E

[∣∣
∣
∣
∣

n−1∑

k=0

∫ tk+1

tk
∂sϕ(s, utk+1)ds −

∫ t

0
∂sϕ(s, us)ds

∣
∣
∣
∣
∣

]

= 0.

Since ϕ ∈ C(R+,D(L)) we know that Lϕ ∈ C(R+, �L2) and thus, using once more
the incompressibility,

lim
n→∞E

[∣∣
∣
∣
∣

n−1∑

k=0

∫ tk+1

tk
Lϕ(tk, us)ds −

∫ t

0
Lϕ(s, us)ds

∣
∣
∣
∣
∣

]

= 0.

The convergence of the Lebesgue integrals is in L1, and therefore the martingale
property is inherited in the limit:

0 = lim
n→∞E

[

ϕ(t, ut ) − ϕ(0, u0) −
n−1∑

k=0

[∫ tk+1

tk
∂sϕ(s, utk+1)ds +

∫ tk+1

tk
Lϕ(tk, us)ds

]]

= E

[

ϕ(t, ut ) − ϕ(0, u0) −
∫ t

0
[∂sϕ(s, us) + Lϕ(s, us)]ds

]

,

and similarly for the conditional expectations. 
�
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Lemma A.4 (“Arzelà–Ascoli theorem for the weak topology”) Let H be a separable
Hilbert space, let T > 0, and let X ⊂ C([0, T ], H) be a family of functions which is

(i) uniformly bounded, i.e. supt∈[0,T ] sup f ∈X ‖ f (t)‖ < ∞, and
(ii) uniformly equicontinuous, i.e. limε→0 sup f ∈X sup|t−s|≤ε ‖ f (t)− f (s)‖ = 0.

Then for any sequence ( fn)n∈N ⊂ X there exists a subsequence ( fnk )k∈N and an
f ∈ C([0, T ], H), such that for all h ∈ H:

lim
k→∞ sup

t∈[0,T ]
|〈 f (t)− fnk (t), h〉| = 0. (43)

Proof Let (tm)m∈N be a dense subset of [0, T ]. By uniform boundedness together with
a diagonal sequence argument we can find a subsequence ( fnk )k∈N of ( fn)n∈N ⊂ X
such that for all m the sequence fnk (tm) converges weakly to some f (tm) ∈ H .
Moreover,

‖ f (tm)− f (tm′)‖ ≤ lim inf
k→∞ ‖ fnk (tm) − fnk (tm′)‖ ≤ sup

g∈X
sup

|t−s|≤|tm−tm′ |
‖g(t)− g(s)‖,

so the uniform equicontinuity ofX implies that f is uniformly continuous on the dense
set (tm) ⊂ [0, T ]. Therefore, it has a unique continuous extension to all of [0, T ], which
we still denote by f . Now we apply the same arguments as in the standard proof of the
Arzelà–Ascoli theorem, based on the equicontinuity of X , to see that the convergence
in (43) holds. 
�
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