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Abstract

Urbanization is manifest by changes in the physical structure of the land surface, owing

to extensive construction features such as buildings, street canyons, changes in the

thermal structure because of materials of different thermal properties and also intensive

human activities. Urban areas are generally also characterized by higher surface air

temperatures as compared to the rural surroundings. This temperature excess can be

up to 10-12°C and more and is referred to as the urban heat island(UHI)phenomenon.

Since residents living in cities are especially affected by extreme temperature events,

urban climate studies are gaining in importance. Currently, more than half of the

world s population already lives in urban areas, which accentuates the major role

agglomerations must play in mitigation and adaptation to climate change. Recom-

mendations regarding behavioural patterns during heat stress situations and urban

planning measures require a comprehensive understanding of the inner urban temper-

ature distribution including the identification of thermal hot spots. Both very cold and

very hot temperatures could affect the human health. Excessive exposure to heat is

referred to as heat stress and excessive exposure to cold is referred to as cold stress.

Urban temperature data (2 m temperature data) is very important for all investigations

on the urban heat island (UHI) effect, human health. They are usually either based on

remote sensing techniques or air temperature measurements or from models. Remote

sensing data like infra-red surface temperature from airborne measuring instruments

may have a very high spatial resolution and are presently available for many urban

areas, but only in clear sky cases. This spatial resolution is appropriate to exhibit

typical urban structures that are expected to cause the UHI effect. Nevertheless,

information on surface temperature cannot replace air temperature data, since beside

the problem that the former is typically only available for single days, there is no fixed

relation between surface and air temperatures. Especially for systematic analyses of

the relationship between urban structures and 2m temperatures for different weather

situations a large data basis is desirable. Air temperature data can be obtained from

mobile measurements and measurement at permanent or temporary weather stations.

On the one hand, the use of weather stations provides high data accuracy using a

well-known standard technology. On the other hand, the spatial representation of

weather station data within the urban environment, which is characterized by the

surface composition including buildings, infrastructure and different types of land use,

is very limited. Consequently, since the beginning of the 20th century, many efforts

have been made to identify temperature patterns in urban areas with high spatial

resolution instead of only using single point information. In this regard, in this study

Air temperature (T2m or Tair) measurements from 20 ground weather stations in Berlin

were used to estimate the relationship between air temperature and the remotely

sensed land surface temperature (LST) measured by Moderate Resolution Imaging

Spectroradiometer over different land-cover types (LCT). Knowing this relationship

enables a better understanding of the magnitude and pattern of Urban Heat Island

(UHI), by considering the contribution of land cover in the formation of UHI. In order to

understand the seasonal behaviour of this relationship, the influence of the normalized

difference vegetation index (NDVI) as an indicator of degree of vegetation on LST over



different LCT was investigated. Next to it, to evaluate the influence of LCT, a regression

analysis between LST and NDVI was made. The results demonstrate that the slope

of regression depends on the LCT. It depicts a negative correlation between LST and

NDVI over all LCTs. Our analysis indicates that the strength of correlations between

LST and NDVI depends on the season, time of day, and land cover. This statistical

analysis can also be used to assess the variation of the LST–T2m relationship during

day- and night-time over different land covers. The results show that LSTDay and

LSTNight are correlated significantly (p = 0.0001) with T2mDay(daytime air temperature)

and T2mNight(night-time air temperature). The correlation (r) between LSTDay and TDay
is higher in cold seasons than in warm seasons. Moreover, during cold seasons over

every LCT, a higher correlation was observed during daytime than during night-time. In

contrast, a reverse relationship was observed during warm seasons. It was found that

in most cases, during daytime and in cold seasons, LST is lower than T2m. In warm

seasons, however, a reverse relationship was observed over all land-cover types. In

every season, LSTNight was lower than or close to T2mNight. Air temperature (Tair or

T2m) is an important climatological variable for forest biosphere processes and climate

change research. Due to the low density and the uneven distribution of weather

stations, traditional ground-based observations cannot accurately capture the spatial

distribution of Tair. Therefore, it is necessary to develop a method for the estimation of

air temperature with reasonable accuracy and spatial and temporal resolution in the

urban areas with low temperature gauge density. But since the estimation of meteoro-

logical variables using various statistical techniques (such as linear regression models

or combined regression and kriging techniques for T interpolation) have been exam-

ined by many researchers and they came to conclusion that an appropriate machine

learning technique could be a robust computational technique which has been used for

the estimation of meteorological data as a function of the corresponding data of one or

more reference stations. In this research, Tair in Berlin is estimated during the day and

night-time over six land cover/land use (LC/LU) types by satellite remote sensing data

over a large domain and a relatively long period (7 years). Aqua and Terra MODIS

(Moderate Resolution Imaging Spectroradiometer) data and meteorological data for

the period from 2007 to 2013 were collected to estimate Tair. Twelve environmental

variables (land surface temperature (LST), normalized difference vegetation index

(NDVI), Julian day, latitude, longitude, Emissivity31, Emissivity32, altitude, albedo,

wind speed, wind direction and air pressure) were selected as predictors. Moreover, a

comparison between LST from MODIS Terra and Aqua with daytime and night-time air

temperatures (Tday, Tnight) was done respectively and in addition, the spatial variability

of LST and Tair relationship by applying a varying window size on the MODIS LST

grid was examined. An analysis of the relationship between the observed Tair and

the spatially averaged remotely sensed LST, indicated that 3 × 3 and 1 × 1 pixel

size was the optimal window size for the statistical model estimating Tair from MODIS

data during the day and night time, respectively. Three supervised learning methods

(Adaptive Neuro Fuzzy Inference system (ANFIS), Artificial Neural Network (ANN)

and Support vector machine (SVR)) were used to estimate Tair during the day and

nighttime, and their performances were validated by cross-validation for each LC/LU.

by applying each technique, a estimator model of air temperature had been generated.



The comparison between these methods has been done and finally we evaluated the

accuracy of each model and choose the best one for the high-resolution temperature

estimation. Moreover, tuning the hyper parameters of some models like SVR and ANN

were investigated. For tuning the hyper parameters of SVR, Simulated Annealing

(SA) was applied (SA-SVR model) and a multiple-layer feed-forward (MLF) neural

networks with three layers and variable nodes in hidden layers had been applied with

Levenberg-Marquardt back-propagation (LM-BP), in order to achieve higher accuracy

in the estimation of Tair. Results indicated that the ANN model achieved better accu-

racy (RMSE=2.16°C, MAE =1.69°C, R2 =0.95) than SA-SVR model (RMSE= 2.50°C,

MAE =1.92°C, R2 =0.91) and ANFIS model (RMSE=2.88°C, MAE=2.2°C, R2 =0.89)

over six LC/LU during the day and night time. The Q-Q diagram of SA-SVR, ANFIS

and ANN show that all three models slightly tended to underestimate and overestimate

the extreme and low temperatures for all LC/LU classes during the day and night-time.

The weak performance in the extreme and low temperatures are a consequence of

the small numbers of data in these temperatures. These satisfactory results indicate

that this approach is proper for estimating air temperature and spatial window size

is an important factor that should be considered in the estimation of air temperature.

Moreover, for better understanding the relationship between LST and Tair in Berlin

during day and night-time, over six land LC/LU types namely airport, agriculture, urban

area, forest, industrial and needle leaf trees, two input variable selection methods

were applied. Input variable selection is an essential step in environmental, biological,

industrial and climatological applications. One approach which help us in better under-

standing data, decreasing computation effort, the impact of curse of dimensionality and

improving the estimator performance. Through input variable selection the irrelevant

or redundant variables will be to eliminated therefore a suitable subset of variables is

identified as the input of a model. Meanwhile, the complexity of the model structure is

simplified, and the computational efficiency is improved. In this work, the two input

variable selection methods, including brute force search and greedy best search

algorithm using artificial neural network (ANN) were considered for estimating of near

surface air temperature from MODIS over six LC/LU types. The motivation behind this

research was to formulate a more efficient way of choosing input variables using ANN

models of environmental processes. Moreover, AIC, BIC and RMSE are considered

for ranking the features and finding a subset of potential variables which improves

the overall estimation performance. In this study, Aqua and Terra MODIS data and

meteorological data for the period from 2007 to 2013 were collected to estimate Tair.

Moreover, twelve environmental variables LST, normalized difference vegetation index

(NDVI), Julian day, latitude, longitude, Emis31, Emis32, altitude, albedo, wind speed,

wind direction and air pressure were selected as predictors. The results show that

the LC/LU has a key factor in the relationship between Tair and LST. The results show

that the effectiveness of optimal models in estimation Tair is varied in different LC/LU

because of the specific heat capacities of different LC/LU. Air temperature mainly rely

on the heat transfer process which was significantly affected by the local radiation

budget. Generally, air is heated much quicker over barren land than forest because,

barren land has lower heat capacity than forest. Vegetation can cause to latent heat

flux, such as enhancing or reducing transpiration and cool the Tair in forests. In this



study, the cooling effect was not take into account because of roughly distribution of

meteorological stations across different vegetation types. Therefore, it was difficult to

consider the vegetation type in our models. However, land cover also affected land

surface albedo, thus, the influence of LU/LC on estimating Tair was conditional and

time dependent because different variables are selected for the same LU/LC during

day and night time. Moreover, another issue that we tried to find an answer was, what

is the pitfall of using the global model and what is the advantage of features selection?

It has been debated that inferencing from a model with all the features which thought

to be important is simple and avoid the complications of model selection.



Zusammenfassung

Urbanisierung stellt eine Veränderungen in der physikalischen Struktur der Land-

oberfläche durch umfangreiche Konstruktionsmerkmale, wie Gebäude und Straßen-

schluchten, dar. Die damit verbundenen Änderungen der thermischen Struktur durch

Verwendung von Materialien mit unterschiedlichen thermischen Eigenschaften sowie

intensive menschliche Aktivität spielen hierbei eine wichtige Rolle. Urbane Gebie-

te sind im Allgemeinen durch eine höhere Oberflächentemperatur im Vergleich zur

ländlichen Umgebung gekennzeichnet. Der Temperaturüberschuss kann bis zu 10-

12°C und mehr betragen und wird als Phänomen der städtischen Wärmeinsel (UHI)

bezeichnet. Da in Städten lebende Menschen besonders stark von extremen Tempe-

raturereignissen betroffen sind, gewinnen Studien zum urbanen Klima vermehrt an

Bedeutung. Derzeit lebt mehr als die Hälfte der Weltbevölkerung in urbanen Gebieten.

Dies unterstreicht die wichtige Rolle die Ballungsräume in Bezug auf Minderung und

Anpassung an den Klimawandel darstellt. Empfehlungen bezüglich des Verhaltens

während Hitzestresssituationen sowie städtebauliche Maßnahmen erfordern ein um-

fangreiches Verständnis der innerstädtischen Temperaturverteilung einschließlich der

Identifizierung von thermischen Hotspots. Sehr kalte wie auch sehr heiße Tempe-

raturen können gleichermaßen die menschliche Gesundheit beeinträchtigen. Über-

mäßige Hitzebelastung wird als Hitzestress bezeichnet, übermäßige Kältebelastung

als Kältestress. Urbane Temperaturdaten (2m Temperaturdaten) sind wichtig für alle

Untersuchungen bezüglich des urbanen Wärmeinseleffekts (UHI), der menschlichen

Gesundheit. Normalerweise basieren die Daten entweder auf Fernerkundungstechni-

ken oder auf Messungen oder Simulationen der Lufttemperatur. Fernerkundungsdaten,

wie die der Infrarot-Oberflächentemperatur von satellitengestützen Messinstrumenten

können eine sehr hohe räumliche Auflösung haben und sind gegenwärtig für viele

urbane Gebiete zugänglich, doch nur im Fall von wolkenfreiem Himmel. Die räumli-

che Auflösung ist dafür geeignet typische urbane Strukturen zu erkennen, die den

UHI-Effekt auslösen. Dennoch können Informationen der Oberflächentemperatur, die

Lufttemperaturdaten nicht ersetzen, da neben dem Problem, dass die Oberflächen-

temperatur in der Regel nur für einzelne Tage zur Verfügung steht, es keinen festen

Zusammenhang zwischen Oberflächentemperatur und Lufttemperatur besteht. Beson-

ders für systematische Analysen der Zusammenhänge zwischen urbanen Strukturen

und der 2m-Temperatur unterschiedlicher Wettersituationen ist eine hohe Datenba-

sis wünschenswert. Daten der Lufttemperatur können von mobilen Messungen und

permanenten Messstationen oder von temporären Wetterstationen erhalten werden.

Einerseits bieten die Wetterstationen eine hohe Datenqualität durch Verwendung von

bekannten Standard-Technologien; andererseits ist die räumliche Verteilung der Wet-

terstationsdaten in der urbanen Umgebung, die durch die oberflächliche Komposition

von Gebäuden, Infrastruktur und verschiedenen Landnutzungsklassen charakterisiert

ist, sehr eingeschränkt. Seit Beginn des 20. Jahrhunderts konnten somit viele Vorzüge

bei der Identifizierung von Temperaturmustern in urbanen Gebieten mit hoher räum-

licher Auflösung erzielt werden anstatt nur einzelne Punktinformationen zu nutzen.

Folglich werden für diese Studie Lufttemperatur (T2m) oder Tair Messungen von 20

Bodenwetterstationen in Berlin verwendet, um den Zusammenhang zwischen Luft-



temperatur und Fernerkundungsdaten der Oberflächentemperatur (LST) gemessen

vom Moderate Resolution Imaging Spectroradiometer (MODIS) über verschiedene

Landnutzungstypen (LCT). Die Kenntnis über diesen Zusammenhang ermöglicht ein

besseres Verständnis der Stärke und Muster von urbanen Wärmeinseln (UHI) durch

Beachtung der Verteilung der Oberflächenbeschaffenheit bei Ausbildung von UHI. Um

das saisonale Verhalten dieses Zusammenhangs zu verstehen, wurde der Einfluss

des normalisierten Differenzvegetationsindex (NDVI) als ein Indikator für den Vege-

tationsgrad auf LST über verschiedene LCT untersucht. Darüber hinaus wurde eine

Regressionsanalyse zwischen der LST und dem NDVI durchgeführt, um den Einfluss

der LCT zu bewerten. Die Ergebnisse zeigen, dass die Steigung der Regressions-

geraden von der LST abhängt. Es besteht eine negative Korrelation zwischen LST

und NDVI über alle LCTs. Unsere Analyse signalisiert, dass die Stärke der Korrelation

zwischen LST und NDVI von der Jahreszeit, der Tageszeit sowie der Landnutzung

abhängig ist. Die statistische Analyse kann auch verwendet werden, um die Variation

der LST-T2m Beziegung während der Tages- und Nachtzeit über verschiedene Bo-

denbedeckungen zu bewerten. Die Ergebnisse zeigen eine signifikante Korrelation

(p=0.0001) von LSTday und LSTnight mit der T2mDay (Lufttemperatur tagsüber) und der

T2mNight(Lufttemperatur nachts). Zwischen LSTday und Tday ist die Korrelation (r) in

der kalten Jahreszeit höher als in der warmen. Darüber hinaus wurde eine höhere

Korrelation während der kalten Jahreszeit über alle LCTs am Tag beobachtet als in

der Nacht. In der warmen Jahreszeit wurde im Gegensatz dazu ein umgekehrter Zu-

sammenhang festgestellt. Es wurde beobachtet, dass in den meisten Fällen, tagsüber

und in kalten Jahreszeiten, die LST niedriger ist als die T2m. In warmen Jahreszeiten

wurde jedoch ein umgekehrter Zusammenhang über alle Landbedeckungsarten beob-

achtet. In jeder Saison war die LSTNight niedriger oder fast gleich wie die T2mNight. Die

Lufttemperatur (Tair oder T2m)ist eine wichtige klimatologischen Variable für Prozesse

der Waldbiosphäre und die Erforschung des Klimawandels. Aufgrund der geringen

Dichte und der ungleichmäßigen Verteilung von Wetterstationen können herkömmli-

che bodengebundene Beobachtungen die räumliche Verteilung von Tair nicht genau

erfassen. Daher ist es notwendig, eine Methode zur Abschätzung der Lufttemperatur

mit angemessener Genauigkeit sowie räumlicher und zeitlicher Auflösung in urbanen

Gebieten mit niedriger Temperaturmessdichte zu entwickeln. Da aber die Abschätzung

meteorologischer Variablen mit verschiedenen statistischen Techniken (wie linearen

Regressionsmodellen und kombinierten Regressions- und Krigingtechniken für die T-

Interpolation) von vielen Forschern untersucht wurde, kamen sie zu dem Schluss, dass

eine geeignete machine learning Technik eine robuste Rechentechnik sein könnte,

die für die Abschätzung meteorologischer Daten in Abhängigkeit von entsprechenden

Daten einer oder mehrerer Referenzstationen verwendete. In dieser Studie wird Tair
in Berlin tagsüber sowie nachts über sechs Landbedeckungs/Landnutzungsarten

(LC/LU) mittels Satelliten-Fernerkundungsdaten über einen großen Bereich und ei-

nem relativ langen Zeitraum (7Jahre) geschätzt. Daten des‚Terra und Aqua MODIS

(Moderate Resolution Imaging Spectroradiometer) und meteorologische Daten für den

Zeitraum von 2007 bis 2013 wurden gesammelt, um Tair zu bestimmen. Als Prädikato-

ren wurden zwölf Umweltvariablen (Landoberflächentemperatur (LST), normalisierter

Differenzvegetationsindex (NDVI), Julianischer Tag, Breitengrad, Längengrad, Emissi-



onsgrad 31, Emissionsgrad 32, Höhe, Albedo, Windgeschwindigkeit, Windrichtung

und Luftdruck) ausgewählt. Drüber hinaus wurde ein Vergleich zwischen LST von

MODIS Terra und Aqua mit Tages- und Nachtlufttemperaturen (TDay, TNight) durchge-

führt bzw. zusätzlich die räumliche Variabilität des Zusammenhangs von LST und Tair
durch Anwendung einer variierenden Fenstergröße auf das MODIS LST-Gitter unter-

sucht. Eine Analyse der Beziehung zwischen der beobachteten Tair und dem räumlich

gemittelten Fernerkundungs-LST ergab, dass die Größe 3 x 3 und 1 x 1 Pixel die

optimale Fenstergröße für das statistische Modell war, das Tair aus den MODIS-Daten

während Tages- bzw. Nachtzeit schätzte. Drei überwachte Lernmethoden (Adaptive

Neuro Fuzzy Inference system (ANFIS),künstliches neuronales Netzwerk (ANN) und

Support vector machine (SVR)) wurden verwendet, um Tair währen des Tages und der

Nacht zu schätzen. Die Leistungen wurden durch Kreuzvalidierung für jede LC/LU va-

lidiert. Durch die Anwendung jeder Technik wurde ein Schätzmodell ausgewertet und

das Beste für die hochauflösende Temperaturschätzung ausgewählt. Darüber hinaus

wurde die Einstellung der Hyperparameter einiger Modelle wie SVR und ANN unter-

sucht. Für die Einstellung der Hyperparameter von SVR wurde ‚Simulated Annealing

(SA) angewendet (SA-SVR Modell). Mit der Levenberg-Marquardt Backpropagation

(LM-BP) wurde ein mehrschichtiges Feed-forward(MLF) neuronales Netzwerk mit

drei Schichten und variablen Knoten in versteckten Schichten angewendet, um eine

höhere Genauigkeit bei der Schätzung von Tair zu erreichen. Die Ergebnisse zeigten,

dass das ANN-Modell über sechs LC/LU, tags sowie nachts, eine höhere Genauigkeit

erreichte (RMSE=2.16°C, MAE =1.69°C, R2 =0.95) als das SA-SVR-Modell (RMSE=

2.50°C, MAE =1.92°C, R2=0.91) und das ANFIS-Modell (RMSE=2.88°C, MAE=2.2°C,

R2=0.89). Das Q-Q-Diagramm von SA-SVR, ANFIS und ANN zeigt, dass alle drei

Modelle die extrem hohen und niedrigen Temperaturen für alle LC/LU-Klassen tags-

über sowie nachts leicht unterschätzen und überschätzen. Die schwache Leistung bei

extrem hohen und niedrigen Temperaturen ist eine Folge der geringen Datenmenge

bei diesen Temperaturen. Um den Zusammenhang zwischen LST und Tair in Berlin bei

Tag und Nacht besser verstehen zu können, wurden über sechs Land-LC/LU-Typen

(Flughafen, Landwirtschaft, urbanes Gebiet, Wald, Industrie und Nadelblattbäume)

zwei Auswahlmethoden für die Eingangsvariablen angewendet. Die Auswahl dieser

Variablen ist ein wesentlicher Schritt in ökologischen, biologischen, industriellen und

klimatologischen Anwendungen. Ein Ansatz, der uns hilft, Daten besser zu verstehen,

den Rechenaufwand zu verringern, die Auswirkungen des Fluches der Dimensio-

nalität und die Leistungsfähigkeit des Schätzers zu verbessern. Durch die Auswahl

der Eingabevariablen werden die irrelevanten oder redundanten Variablen eliminiert,

so dass eine geeignete Teilmenge von Variablen als Input eines Modells identifiziert

wird. Zur gleichen Zeit wird die Komplexität der Modellstruktur vereinfacht und die

Recheneffizienz verbessert. In dieser Studie wurden Aqua und Terra MODIS-Daten

und meteorologische Daten für den Zeitraum von 2007 bis 2013 gesammelt, um Tair
zu schätzen. Darüber hinaus wurden zwölf Umweltvariablen (LST, normalisierter Dif-

ferenzvegetationsindex (NDVI), Julianischer Tag, Breitengrad, Längengrad, Emis31,

Emis32, Höhe, Albedo, Windgeschwindigkeit, Windrichtung und Luftdruck) als Prädika-

toren ausgewählt. Die Ergebnisse zeigen, dass die LC/LU einen Schlüsselfaktor in der

Beziehung zwischen Tair und LST haben. Die Ergebnisse zeigen, dass die Effektivität



optimaler Modelle bei der Schätzung von Tair aufgrund der spezifischen Wärmeka-

pizität verschiedener LC/LU in unterschiedlichen LC/LU variiert. Die Lufttemperatur

hängt vor allem vom Wärmeübertragungsprozess ab, der maßgeblich vom lokalen

Strahlungsbudget beeinflusst wurde. Im Allgemeinen wird die Luft viel schneller über

unfruchtbarem Land erhitzt als über Wald, weil unfruchtbares Land eine geringere

Wärmekapazität besitzt als Waldgebiete. Vegetation kann zu latenten Wärmeflüssen

führen, z.B. zur Verbesserung oder Verringerung der Transpiration und zur Abkühlung

der Tair in Wäldern. Wegen der groben Verteilung meteorologischer Stationen auf

verschiedene Vegetationstypen wurde der Kühleffekt in dieser Studie nicht berück-

sichtigt. Aufgrund der geringen Datengrundlage war es schwierig, den Vegetationstyp

in unseren Modellen zu berücksichtigen. Die Bodenbedeckung beeinflusste jedoch

auch die Bodenoberflächenalbedo, so dass der Einfluss von LC/LU auf die Schätzung

von Tair bedingt und zeitabhängig war, da für dieselbe LC/LU tagsüber und nachts

unterschiedliche Variablen ausgewählt wurden. Darüber hinaus haben wir versucht,

eine Antwort zu finden: Was sind die Fallstricke bei der Verwendung des globalen

Modells und was ist der Vorteil der Auswahl von Merkmalen? Es wurde diskutiert, dass

die Ableitung von einem Modell mit allen als wichtig erachteten Merkmalen einfach ist

und die Komplikationen der Modellauswahl vermeidet.
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1 Introduction

1 Introduction

The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC,

the most comprehensive report on climate appraisal, referred to city area as the main

region that must respond to climate change risks. Climate change research on urban

scales has become an important topic. The international literature demonstrated the

importance of cities in coping with climate change (Betsill et al., 2011, Lindseth et

al., 2014, Grimm et al., 2018). A series of issues has been upraised by the rapid

development of urbanization, such as the large numbers of greenhouse gas emissions

of urban systems, the sprawling layout of urban spaces, and the disordered use of

land, leading some to take climate issues more seriously. Therefore, urban systems

need to respond to the major challenges of climate change.

As an introduction to urban heat islands, this chapter reviews some of the character-

istics of urban climates and the important factors which leads to urban heat islands

(UHI)and also its consequence. It is clear that, urban climates vary from those of

rural surrounding, and the magnitudes of the differences can be totally large at times,

depending on anthropogenic moisture, weather conditions, urban thermophysical,

geometrical characteristics, and heat sources present in the area. In the research of

Changnon(1976,1981), for northern hemisphere, was mentioned that, urban areas

annually have an average of 12% less solar radiation, 10% more snowfall, 14% more

rainfall, 8% more clouds, and 15%more thunderstorms than their rural area(Changnon

1976,1981). Generally, urban air temperatures are higher than their corresponding

rural area in most mid-and high latitude cities. This phenomenon is called urban heat

island which has been well documented (Chandler1960, Oke 1987, Oke 1988, Karl et

al., 1989). A heat island can occur at different scales; it can present itself around a

single building (Thurow 1989), a large portion of a city, or a small vegetative canopy

(Taha et al.,1989, Taha et al.,1991).

This chapter provides an overview of how urban heat islands forms, factors that con-

tribute to their development, study area, data description, and general description of

what have been done in each chapter.

1.1 Urban Heat Islands, Climate Change, and Global

Warming

Urban heat islands refer to the difference in temperatures measured inside and outside

the city (Oke TR. 1973, Oke TR. 1995, Rizwan et al., 2008, Oke 1982, Huang et

al., 2005, Arnfield 2003). Urban heat islands will be formed by development and the

changes in irradiative and thermal properties of urban materials, specially, thermal

emissivity, solar reflectance, and heat capacity, as they determine how the sun’s

energy is emitted, reflected and absorbed. Surface materials such as roofing, and

paving are another important factor, which must consider in urban areas as compared
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with rural area, because it has a lower albedo than those in rural settings. There-

fore, built up area generally absorb more and reflect less of the sun’s energy. This

absorbed heat rises up surface temperatures and leads to the formation of surface

and atmospheric urban heat islands. Although solar reflectance is the main determi-

nant of a material’s surface temperature, thermal emittance, or emissivity, also plays

a role. Thermal emittance is a measure of a surface’s ability to shed heat or emit

long-wave(infra-red) radiation. All things equal, surfaces with high emittance values

will stay cooler, because they will release heat more easily. As result, Albedo and

emissivity are considered as radiative properties in our model estimation. Another

key property in the formation of urban heat island is urban geometry specially at night.

Urban geometry refers to the dimensions and spacing of buildings which influences

energy absorption, wind flow, and a given surface’s ability to emit long-wave radiation

back to space.

In Down-town metropolitan, surfaces and structures are often obstructed by neighbour-

ing tall buildings, therefore, large thermal masses cannot release their heat very easily

because of these obstructions. The air above urban area is typically warmer than air

over rural surrounding, especially at night. Night-time atmospheric heat islands can

have serious health impact for urban residents during heat waves.

Reduced vegetation in urban areas, is another important property that influences

heat island development. Generally, rural area is characterized by more vegetation,

trees and open land which trees and vegetation provide shade, which leads to lower

surface temperatures. Moreover, through evapotranspiration process, they also re-

duce air temperatures. In contrary, urban areas are dominated by dry, impervious

surfaces, side-walks, and roads. Therefore, in cities, we can see less vegetation, and

more surfaces which are paved or covered with buildings. The change in land cover

results in less shade and moisture to keep urban areas cool and next to it, built up

areas evaporate less water, which leads to increase air and surface temperatures.

Furthermore, there are other additional factors which contribute to urban heat island

formation such as geographic location, certain weather condition, time of day/season,

and anthropogenic heat emissions. In addition, the UHI effect climate change. In

recent years, global temperature has elevated significantly and probably, the average

annual temperature will increase by several degrees during this century. The warming

that consequence of UHI over small region such as cities is an example of local

climate change. Basically, local climate changes which is consequence of UHI, differ

from global climate changes, because, their impact are restricted to the local scale

and decrease with distance from their source while climate change points out to any

significant change in measures of climate such as wind, temperature, or precipitation,

which lasting for an long period such as decades or longer and their impact are not

locally or regionally confined. Climate change may outcome of:

I Natural drivers, such as slow changes in the Earth’s orbit around the sun and

changes in the sun’s intensity.

I Natural processes within the climate system.

I Human activities that change the atmosphere’s composition (e.g. burning fossil

fuels) and the land surface(anthropogenic heat, deforestation, or urbanization).

2
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Global warming is an average temperature increase of the earth’s climate system,

which can lead to changes in global climate patterns. Global warming may result

from natural and human activities. Global warming can be considered as a part

of global climate change along with changes in precipitation, sea level, etc. The

UHI and global climate change (or global warming) often has similar impacts. For

example, some communities may experience longer growing seasons due to either or

both phenomena. UHI and global climate change can also increase greenhouse gas

emissions and energy demand, etc. Generally, UHI contribute to climate warming,

and elevates the intensity of high heat waves (MCCarthy et al.2010, Huang and Lu

2015). Urban warming, is also referred to as UHI, that is people who live in the urban

area are exposed to more heat stress than those living in rural surrounding (Zhou and

Shepherd 2010) which means that UHI has a great direct impact on human health

(Kovats and Hajat 2008). Heat islands have been important in some heat wave events

(Watkins et al, 2002) because extreme temperature leads to the clinical syndromes of

heat exhaustion, heat stroke, and heat cramps (Kilbourne EM.1997). Many studies

reveal that mortality is more sensitive to heat in urban areas compared with rural areas.

The prevention of deaths caused by extreme high temperatures is now an issue of

public health concern. Moreover, UHI cause serious environment (Sarrat et al., 2006;

Roth 2007; Grimm et al., 2008), and energy problems (Kolokotroni et al., 2012). It

is obvious that increased temperatures in urban area can have a direct impact on

the energy required to heat and cool buildings (Crawley et al.,2008; Lu et al., 2010;

Crawley et al., 2008).

1.2 The influence of land-cover type on the

relationship between NDVI–LST and LST-Tair

Many studies have revealed a strong negative correlation between normalized differ-

ence vegetation index (NDVI) and land surface temperature (LST) (Goward, Cruick-

shanks, and Hope 1985; Hope et al. 1986; Smith and Choudhury 1991; Schultz and

Halpert 1995;Churkina and Running 1998; Nemani et al. 2003; Julien, Sobrino, and

Verhoef 2006; Sun and Kafatos 2007; Julien and Sobrino 2009; Kumar and Shekhar

2015; Tayyebi and Jenerette 2016; Zhou et al. 2014). Previous studies have deter-

mined the variability in the slope of the inverse LST–NDVI relationship, in association

with local topographic and environmental conditions. Goward and Hope (1989) stated

that the LST–NDVI slope and intercept are expected to vary from one day to another

day based on the magnitude of incident solar radiation, advective atmospheric con-

ditions, and surface moisture availability. Hope (1988) revealed that soil moisture

potential affects the relationship between canopy temperature and NDVI. Yue et al.

(2007) have investigated the mean LST and NDVI values associated with different

land-use (LU) types in the city of Shanghai, China, and they found out that mean LST

and NDVI values associated with different LU types are significantly different. Joshi

and Bhatt (2012) stated that the areas with vegetation and water-body have lower

temperature compared to the built-up areas. Sun and Kafatos (2007) found that the
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correlation between LST and NDVI is positive for winter and negative during warm

seasons. Knowing this relationship enables a better understanding of the magnitude

and pattern of UHI, by considering the contribution of LC/LU type in the formation of

UHI. In order to understand the seasonal behaviour of this relationship, the influence

of the normalized difference vegetation index (NDVI) as an indicator of degree of

vegetation on LST over different LCT was investigated. Moreover, for investigating the

seasonal variation of the LST and NDVI relationship, a comprehensive comparison

between mean LST and NDVI, based on different LU/LC types were compared and

also a correlation analysis is carried out. In addition, in order to evaluate the influence

of LCT, a regression analysis between LST and NDVI was made. More details on this

topic was explained in the manuscript no.1 entitled ”The influence of land-cover type

on the relationship between NDVI-LST and LST-Tair” . The following major questions

will be investigated within this study?

Question 1 How the relationship between Tair and Land surface temperature(LST)

change seasonally during day and night time over six land cover types(LCT)if the

land cover type can affect the relationship between land surface temperature and air

temperature.

Question 2 How the relationship between Tair and the normalized difference vegeta-

tion index (NDVI) seasonally change during day and night time over six LCT if NDVI

has different effects on nocturnal and daily air temperatures and how is this effect in

different land cover types.

1.3 Estimation of the Near-surface Air Temperature

during the Day and Night-time from MODIS in

Berlin, Germany

Air temperature (Tair or T2m) is an important climatological variable for forest biosphere

processes and climate change research. Due to the low density and the uneven

distribution of weather stations, traditional ground-based observations cannot accu-

rately capture the spatial distribution of Tair. An accurate estimation of Tair and the

mapping of its spatial distribution are useful for predicting ecological consequences

of climate change. For example, climate warming will lead to higher temperatures

and an increase of extreme weather conditions, which are associated with changes

in wildfire regime (Westerling et al., 2006; Chen et al., 2011; Manzo-Delgado et al.,

2009), forest biomass distribution (Reich et al., 2014) and crop yield (Ruane et al.,

2014; Rosenzweig et al., 2014). The demand for accurate spatial Tair data over a

large scale has continued to rise (Oyler et al., 2015; Beier et al., 2012). However, the

spatial distribution of the weather stations in many parts of the world, is often limited

which restricts the use of Tair measurements over a large spatial domain (Vancutsem

et al., 2010). LST, but on the other hand, is measured in a global extent with significant

higher spatial coverage (Jin and Dickinson, 2010). The US National Research Council
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and the Intergovernmental Panel on Climate Change (IPCC) expressed the need

for long-term remotely sensed LST data in global warming studies to overcome the

limits of conventional surface Tair measurements (IPCC 2007, Jin 2004). Remote

sensing data has great potential to estimate spatial-temporal patterns of Tair which

can further our knowledge, on both the climate and terrestrial biological processes

at regional and global scales (Benaliet al., 2012). Monitoring and understanding the

trends of Tair and LST are crucial in the study of regional and global climate changes

(Yoo et al., 2011). LST can be monitored and modelled from multiple daily satellite

observations, such as the MODIS LST. Studies have shown that LST can be used

for linear regression estimates of daily minimum and maximum Tair on a local scale

(Mostovoy et al., 2006; Vancutsem et al., 2010; Zhang et al., 2011a; Yoo et al., 2011;

Evrendilek et al., 2012; Benali et al., 2012; Zhu et al., 2013). Cresswell et al. (1999)

found an over and underestimation of Tair during the day and at night, respectively,

from Meteosat LST observations. They attempted to correct these errors and produce

a proxy of Tair by applying a solar zenith angle correction on the Meteosat geostation-

ary observations. They achieved an accuracy of 3°C for over 70% of the Meteosat

temperatures. Similarly, Jin and Dickinson (2010) have studied the differences in the

diurnal cycles of LST and Tair over a single site. Some studies (Florio et al., 2004) have

used several statistical approaches that combined a simple AVHRR Spilt-Window

Technique (SWT) with ground meteorological station measurements in the prediction

of Tair. Other studies (Wloczyk et al., 2011) have used the Landsat LST data to derive

Tair. They have attempted to assign the satellite-derived Tair to a certain height above

the ground and have investigated the possibility of a simple correction for reference

height. They also considered the link between Tair spatial pattern and the window-size

of the Landsat LST pixels. Xu et al. (2012) used four empirical regression models to

estimate the relationship between Tair measurements and the MODIS-Aqua LST and

found different relationships between the two different LC types in their study. They

also assessed the effect of the MODIS LST window-size on the agreement between

the two variables and found that spatial averaging over multiple pixels improves the

accuracy of Tair estimates. Zaksek and Schroedter-Homscheidt (2009) reviewed the

types of methods commonly used to estimate Tair based on LST, dividing them into

three distinct groups:

I Statistical approaches which are based on regression techniques, can be simple

if only based on LST and Tair(e.g. Mostovoy et al., 2006; Vogt et al., 1997) or

advanced, when more than one independent variable is used such as solar zenith

angle (SZA), elevation, altitude, Julian day among others (Lin et al., 2012; Cresswell

et al. 1999; Jang et al. 2004). Lin et al. (2012) used stepwise linear regression

method to estimate daily maximum air temperature (Tmax) and daily minimum air

temperature (Tmin) with MAE = 1.9, agreement index = 0.79 and MAE = 1.9°C,

agreement index = 0.92, respectively, over east Africa. Fu et al. (2011) used linear

regression between MODIS LST and Tmax from stations on the northern Tibetan

Plateau. In general, these methods perform well within the spatial and time frame

they were developed, but the accuracy might decrease when extended in time and

space (Stisen et al., 2007). Statistical methods generally perform well within the

spatial and time frame they were derived in, but have limited generalization and
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require large amounts of data to train the algorithms (Stisen et al., 2007).

I The second category is index-based such as Temperature Vegetation index (TVX).

It is based on the assumption that for an infinitely thick canopy, the top-of-canopy

temperature is the same as within the canopy (Czajkowski et al., 2000; Prihodko

and Goward (1997), Nemani and Running et al., 1989; Nieto et al., 2011) and

uses the Normalized Difference Vegetation Index (NDVI) as a key input variable.

However, the assumption of linear and negative slope between LST and NDVI is not

always applicable and is influenced by the seasons, the type of ecosystem and soil

moisture variability (Sandholt et al., 2002; Vancutsem et al., 2010). Zhu et al. (2013)

used the TVXmethod to estimate daily Tmax with RMSE (the root mean square error)

=3.709°C, MAE (the mean absolute error) = 3.03°C and r (correlation coefficient) =

0.83 in Xiangride River Basin of China. However, Vancutsem et al. (2010) found

that TVX method did not adapt to different ecosystems over Africa because non-

significant relationship between LST and NDVI in their study. Karnieli et al. (2003)

found that the approaches based on this negative NDVI/LST relationship have

minimal utility in energy-limited environments (e.g., high latitude and elevations)

compared to moisture-limited environments because vegetation-expressed NDVI

response is more related to available solar radiation than land surface conditions

(e.g., soil moisture).

I The final approach uses surface energy balance parametrizations based on physically-

based models (Sun et al., 2005). The sum of incoming net radiation is considered

equal to the sum of the soil heat flux, sensible flux and latent heat flux (Zaksek and

Schroedter-Homscheidt, 2009; Meteotest 2010; Sun et al., 2005). However these

methods require large amounts of information that are usually not only from remote

sensing (e.g., roughness, soil physical properties) (Benali et al., 2012, Mostovoy et

al., 2006, Prince et al., 1998).

Most of the previous studies have focused on daily estimations or instantaneous Tair.

The TVX method has been widely used for Tair estimation. Czajkowski et al. (2000)

estimated Tavg for a weekly period with associated RMSE between 1.72 and 3.48°C

and R2=0.64. Stisen et al. (2007) and Prihodko and Goward (1997) estimated Tair
with RMSE higher than 2.5°C and R2 between 0.64 and 0.86. Cresswell et al. (1999)

used a statistical method to derive instantaneous Tair with an associated RMSE below

3°C for more than 70% of the sampled data. Zaksek and Schroedter-Homscheidt

(2009) used a more sophisticated method, which was based on the energy balance

to estimate instantaneous Tair with an RMSE of 2°C. Vancutsem et al. (2010) used

1 km MODIS data to estimate weekly Tmin and Tmax. They reported correlations

between LST and Tmin ranging from 0.01 to 0.96 for several stations and Tmax was

estimated with R2=0.92 and RMSE=1.83°C. Moreover, in previous studies, several

variables were employed to estimate air temperature. For example, the variables

used by Benali et al. (2012) included LST, Julian Day, elevation, and the distance to

coast. Benali et al. (2012) used both weekly daytime LST data (LSTday) and night-

time LST data (LSTnight) to estimate the average, maximum and minimum weekly

temperature. They found that there was a higher correlation between average weekly

temperature and averaged weekly LSTnight, which indicates the potential of LSTnightin
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estimating averaged weekly temperature. The variables used by Kim and Han (2013)

included LST, NDVI, altitude, and solar zenith angle. The variables used by Cristóbal,

Ninyerola and Pons (2008) included LST, NDVI, and albedo. The variables used by

Zakšek and Schroedter-Homscheidt (2009) included LST, NDVI, solar zenith, albedo,

solar radiation, and altitude. After comprehensive consideration of these variables,

twelve variables were selected as the predictors for the modelling of air temperature

during the day and night-time: LST, NDVI, Julian day, latitude, longitude, Emissivity31,

Emissivity32, altitude, albedo, wind speed, wind direction and air pressure. The

reasons for selecting these parameters are described in manuscript no.2 entitled

“Estimation of the Near-Surface Air Temperature during the Day and Night-time from

MODIS in Berlin, Germany”. In this study, Tair in Berlin is estimated during the day and

night time over six LC/LU types by satellite remote sensing data over a large domain

and a relatively long period (7 years). Aqua and Terra MODIS (Moderate Resolution

Imaging Spectro-radiometer) data and meteorological data for the period from 2007

to 2013 were collected to estimate Tair. First, this chapter presents the comparison

of state-of-the-art remote sensing-based LST data from MODIS with Tair for the six

LC/LU. Within this study, we compared the relationship between Tair and the Four LST

products of MODIS over Berlin because of influence of the time of observation on

the estimation of Tair which has been studied and discussed in several studies, which

resulted in different conclusions. Benali et al.(2012) stated that the use of both aqua

LSTday and LSTnight could improve the estimation of Tday and Tnight, respectively. In

the other word, the aim is to analyse the agreement between LST from MODIS Terra

and Aqua and air for the period of 2007 to 2013 based on different LC/LU, and then

to investigate the spatial variability of LST and Tair relationship by applying a varying

window size on the MODIS LST grid based on different LC/LU. The comparison is

done by using statistical parameters such as the correlation coefficient, the slope

and the intercept with the y-axis of the regression line, mean bias error (MBE), and

normalized mean bias also known as bias. Secondly, this study was to develop a

simplified parametrization model for estimating Tair during the day and night-time

from MODIS LST products and auxiliary data over Berlin, using three supervised

learning methods (Adaptive Neuro Fuzzy Inference system (ANFIS), Artificial Neural

Network (ANN) and Support vector machine (SVR)), and their performances were

validated by cross-validation for each LC/LU. Twelve environmental variables (land

surface temperature (LST), normalized difference vegetation index (NDVI), Julian

day, latitude, longitude, Emissivity31, Emissivity32, altitude, albedo, wind speed, wind

direction and air pressure) were selected as predictors. Moreover, tuning the hyper

parameters of some models like SVR and ANN were investigated. For tuning the

hyper parameters of SVR, Simulated Annealing (SA) was applied (SA-SVR model)

and a multiple-layer feed-forward (MLF) neural networks with three layers and different

nodes in hidden layers are used with Levenberg-Marquardt back-propagation (LM-BP),

in order to achieve higher accuracy in the estimation of Tair. The errors associated

with Tair estimation based on remote sensing data are often large and strongly limit

its applicability (e.g. Czajkowski et al., 2000; Vazquez et al., 1997; Vogt et al., 1997).

One of the objectives of this work is to provide Tair estimations with an accuracy, which

will potentate the future applications. The comprehensive description is provided on
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chapter 3. The following major questions will be investigated within this chapter:

Question 3) How is the Spatio-temporal variability of LST-Tair relationship: the rela-

tionship between remotely sensed LST and Tair, is strongly influenced by the local

surface heat fluxes, is analysed by overlaying a spatial window of varying size on the

MODIS LST grid.

Question 4) How is the relationship between observed Tair and the four LST Products

over Berlin.

Question 5) What is the best method to estimate air temperature from remote sensed

land surface temperature and how can we find the best estimator?

1.4 Feature selection for estimating of near surface

air temperature from MODIS over different LC/LU

(Germany, Berlin)

The focus of this chapter is on feature set reduction. The problem is important because

a high number of features in a dataset leads to model over-fitting, which in turn leads to

poor results on the validation datasets. Additionally, constructing models from datasets

with many features is more computationally demanding (Korn et al., 2011). All this

leads researcher to propose many methods for feature set reduction. The reduction is

performed through the processes of feature extraction (transformation) and feature

selection. Feature extraction methods such as Principal Component Analysis (PCA,

Linear Discriminant Analysis (LDA) and Multidimensional Scaling work by transforming

the original features into a new feature set constructed from the original one based

on their combinations, with the aim of discovering more meaningful information in

the new set (Tang et al. 2014). The new feature set can then be easily reduced

by taking into consideration characteristics such as dataset variance coverage. In

this chapter, we focus on feature selection and provide an overview of the existing

methods that are available for handling several different problems. The objective

of this research is to describes the procedures of the input variable selection for

estimating Tair during day and night time over six LC/LU using both Terra and Aqua

MODIS LST products (daytime and night-time) and auxiliary data from 2007–2013.

Two input variable selection methods were applied because predictor selection is an

essential step in environmental, biological, industrial and climatological applications.

Feature Selection helps in understanding data, reducing computation requirement,

reducing the effect of curse of dimensionality and improving the predictor performance.

Through input variable selection to eliminate the irrelevant or redundant variables,

a suitable subset of variables is identified. Meanwhile, the complexity of the model

structure is simplified and the computational efficiency is improved. In order to find out

which variables, among 12 predefined variables as potential predictors, are the most

effective parameter to describe the relationship between LST and Tair, brute-force

search or exhaustive search (ES) and greedy best first search by using ANN were
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applied in this study. In addition, there are several research’s which estimated Tair
but the most recently popular studies of Tair estimation using statistic approaches are

shown in Table 3.1 in chapter 3. However, most of these studies have only used LST

daytime and LST night-time solely for Tair maximum (Tmax) and Tair minimum (Tmin)

estimation, respectively. In a recent study (Zeng et al 2015), both LST night-time and

daytime were used for estimation of Tmax and Tmin. Moreover, Zaksek and Schroedter-

Homscheidt (Zakšek et al. 2009) stated that Tair is driven more by LST than by direct

solar radiation, meaning that LST is the most important variable for Tair estimation;

in reference to previous studies (Vancutsem et al. 2010, Benali et al. 2012, zeng et

al. 2015, Zhang et al. 2011, Jang and Viau 2004) also in consideration of all of the

available data that potentially have an effect on the accuracy of Tair estimation of the

study area. The 12 variables, including LST, emissivity31, emissivity32, Albedo, NDVI,

altitude, relative humidity, latitude, wind speed, wind direction, air pressure and Julian

day, as the potential variables (candidate variables) are considered for Tair estimation.

Besides the LST variables, NDVI was selected because it influences the land surface

vegetation properties. Elevation, latitude was chosen for capturing the variability of

climatic conditions between different regions. We chose Julian day because it reflects

seasonal variation in air temperature. In order to assess, rank the feature, select

the best model through many candidate model, and find a subset of variables which

improves the overall prediction performance several criterion, such as: Root mean

squared error (RMSE), Bayesian Information Criterion (BIC), and Akaike Information

Criteria (AIC).

The following major questions will be investigated within this study:

Question 6)
To rank the features base on using the Greedy Best-First Search and Brute-force

search to find the optimal subset of feature which are influence the relationship

between LST and Tair during day and night for different LC/LU using RMSE, BIC,

and AIC.

Question 7)
Why not just use the global model? It has been argued that one should make

inference from a model with all the factors thought to be important. This approach

would seem to be simple and avoid the complications of model selection.

Question 8)
How can we select the best approximate model and evaluate them?

1.5 Structure of the Thesis

This thesis is organized into five main chapters and each chapter begins with an

introduction, methods and conclusion section.In Chapter 1, is an overall introduction.

In chapter 2, method and data are described. In chapter 3, The influence of land cover
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type on the relationship between NDVI–LST and LST-Tair is briefly discussed. In chap-

ter 4, Estimation of the Near-surface Air Temperature during the Day and Night-time

from MODIS in Berlin using ANN, SA-SVR, and ANFIS are briefly explained. Further-

more, an optimization method namely, simulated annealing algorithm is investigated.

In chapter 5, a comprehensive description of Feature selection for estimating of near

surface air temperature from MODIS over different LC/LU is explained. In chapter 6 is

dedicated to conclusions and discussions and final chapter is about outlook.
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2 Data and Method

2.1 Study Area

Berlin is the capital city of Germany. It is located in the north-east of the country,

covers an area of 892 km2. Berlin is located on a mostly flat topography. Regarding

land use patterns, Berlin is characterized by a significant amount of green areas and

water bodies. Outside the inner-city, there is a relatively low building and population

density, with many allotment gardens for private cultivation and recreation. There are

a considerable number of urban brownfield sites, despite the slight trend of population

growth in the last decade. Berlin consists of 45% water bodies and urban green spaces

(forested and unforested,allotment gardens), almost 20% transport and infrastructural

areas(streets and railways), and around 35% built-up areas (e.g. residential use).

Table 2.1 shows the location and related land use of the weather stations in Berlin

used in this study.

Table 2.1: Information about weather stations over Berlin, including their LC/LU, Lati-

tude, Longitude and Elevation.

Station LU Lat Long Elevation(m)

Botanischer-Garten Green urban area 52.45 13.30 46.88

Fasanenstraße Industrial, commercial, public, military 52.51 13.33 34.08

Tegel-Forstamt Forest 52.60 13.27 39.58

Gatow Industrial, commercial, public, military 52.47 13.13 47.09

Marzahn Green urban area 52.54 13.58 50.61

Pichelsdorf Evergreen needle leaf tree 52.50 13.19 29.66

Wannsee Evergreen needle leaf tree 52.43 13.18 40.77

Dahlem-FU Industrial, commercial, public, military 52.45 13.31 67.50

Tegel Airport 52.56 13.30 35.25

Schönefeld Airport 52.38 13.53 45

Buch Industrial, commercial, public, military 52.63 13.50 65.45

Marzahn Green urban area 52.54 13.55 63.29

Kaniswall Agriculture, semi-natural and wet area 52.40 13.73 32.57

2.2 Data Description

Three main datasets for the period of 2007-2013 according to the availability of

meteorological station record and MODIS data were used:

1 Remotely sensed data.
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2 Ground measurements from 20 meteorological stations in Berlin.

3 Digital elevation model (Berlin Digital Environmental Atlas).

2.2.1 MODIS Data

The LST product from MODIS has been used in previous studies to derive Tair(Benali

et al., 2012, Vancutsem et al., 2010, Zhu et al., 2013). MODIS sensors were launched

on board the National Aerodynamics and Space Administration (NASA) Observing

System (EOS) Terra and Aqua satellites in December 1999 and May 2002, respectively

(Zhu et al., 2013). Both sensors are on board sun-synchronous polar orbiting satellites.

MODIS Terra data is available during 10:30 – 12:00 a.m. and p.m. (daytime/night-time)

local time, while MODIS Aqua sensor collects the imagery during 1:00 – 3:00 a.m.

and p.m. (daytime/night-time). All MODIS LST data used in this study were acquired

from the U.S. Geological Survey (USGS) website (Piao et al., 2009). We used two

MODIS LST products (v005, h18v03), MOD11A1 and MYD11A1 from Terra and Aqua

satellites, respectively. The MODIS LST consists of daytime and night-time data at a

spatial resolution of 1 km. Thus, in total there are four LST datasets: Aqua daytime,

Aqua night-time, Terra daytime and Terra night-time.

2.2.1.1 Vegetation Index

Normalized difference vegetation index is the most common remote sensing index

used to parametrize vegetation status (Zhu et al., 2013, Stow et al., 2004, Raynolds et

al., 2008). The absorption and reflectivity of the vegetation cover are correlated with

their structural properties, such as leaf area index (LAI), fractional vegetation cover

(FVC), and their physiological condition (Bustos et al.2014, Raynolds et al., 2006).

The values of NDVI vary between −1 and 1, where the range between 0.2 and 0.9 is

mostly common in continuous vegetation cover (Bustos et al.2014). In this study, the

NDVI was extracted from Terra (MOD13A2.005) and Aqua (MYD13A2.005) products

with 16-day temporal and 1km resolution as mentioned in table 2.2.

2.2.2 Meteorological Data

Air temperature observations were obtained from 20 meteorological ground stations

in the study area. The measurements included daily Tair, wind speed, wind direction,

air pressure and relative humidity. The meteorological station records were obtained

from the Deutscher Wetterdienst(ftp://ftp-cdc.dwd.de/pub/CDC) and from the Freie uni-

versity Berlin meteorological station (http://mevis-www.met.fu-berlin.de/devel/mevis).

The time selected for our study ranged from 2007 to 2013 according to the availability

of meteorological station and MODIS data. Moreover, the accuracy of observation

data in meteorological stations is as following:
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1 2m air temperature: ±0.2K
2 Wind speed: ±0.3% of measured value

3 Wind direction: ±5C°

4 Relative humidity: ±0.3% up to ±0.5%
5 Air pressure: ±0.1hpa

2.2.3 Auxiliary Data

In addition to MODIS products (LST, emissivity31, emissivity32), Albedo and NDVI,

some auxiliary variables were used, including latitude, altitude, Julian day, air pres-

sure, wind speed, wind direction and relative humidity. These auxiliary variables

either have a known impact on Tair and LST or influence the relationship between

Tair and LST. Latitude, Land cover/Land Use (LC/LU) and altitude were derived from

the location of meteorological stations. Altitude was obtained from a 5m resolution

digital elevation model(DEM) (downloaded from https://www.eea.europa.eu/data-and-

maps/data/urban-atlas). Moreover, Julian day was also considered as proxies for the

fraction of solar energy absorption during the day and emission during the night, influ-

encing the diurnal amplitude of Tair throughout the year. Julian day is the continuous

count of days from 1 January every year. In addition, the LC/LU of each meteorological

station was extracted in terms of its position, and reclassified into urban, industrial, for-

est, airport, needle leaf trees and agriculture based on a 5m resolution map of LC/LU,

which was downloaded from https://www.eea.europa.eu/data-and-maps/data/urban-

atlas. In addition, all data (Auxiliary and MODIS data) were combined to create a

single dataset for each LC/LU for day and night-time. The collinearity of independent

variables was detected using variance inflation factor (VIF > 10) and pair wise correla-

tion (r > 0.75) (Zurr et al., 2010, Dormann et al., 2013). More descriptions regarding,

temporal matching of Tair to LST observations is presented in Chapter 4.

2.3 LST Pre-Processing

A certain number of pre-processing steps were required to convert the original LST

product in HDF format to raster layers with a versatile projected coordinate system.

Firstly, raster subsets of the LST product were extracted based on the boundary extent

of the study area. LST L3 product is gridded in the global Sinusoidal projection, and the

grid containing data for the study area is located at column 18(h18 and line 03 (v03).

It is important to eliminate low quality data in the MODIS LST data because remote

sensing based Tair estimates are strongly influenced by errors (e.g., errors caused by

clouds and large sensor viewing angles, uncertainties in surface emissivity (Wan et

al., 2004). Validation studies of MODIS LST show that under clear sky conditions the

precision is approximately 1 K or less, but higher errors would be observed at large

viewing angles and in semiarid regions (Wan et al., 2008). So only the pixels of the

targeted land cover types that were flagged in the MODIS quality assurance data as

cloud free and of high quality were retained.
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Table 2.2: Data source and variables
Variable ID Variable Abbreviation Source Explanation

1 Land Surface Temperature LST MODIS

Land

Surface temperature derived over the 2007 to 2013 time period using MYD11A1,

MOD11A1 product

2 Julian Date JD Meteorological data
The continuous count of days was from 1 January

to the last day every year.

3 Emissivity31 Emiss31 MODIS
Emissivity31 derived over the 2007 to 2013 time

period using MYD11A2, MOD11A1 product

4 Emissivity32 Emiss32 MODIS
Emissivity32 derived over the 2007 to 2013 time

period using MYD11A2, MOD11A1 product

5 Normalized Difference Vegetation Index NDVI MODIS
Vegetation index at 1km resolution from Terra

(MOD13A2.005) and Aqua (MYD13A2.005) products with 16-day temporal resolution

6 Albedo Albedo MODIS
Albedo at 1Km resolution from Terra

(MCD43B3.005) product with 16-day temporal resolution

7 Relative Humidity RH Meteorological data
The RH was extracted for each station during the

year of 2007 to 2013

8 Altitude Alt DEM

The altitude extracted from a 5m resolution

digital elevation model (DEM) according to the location of meteorological

stations

9 Latitude Lat Meteorological data
The geographical location of meteorological

stations was extracted from meteorological metadata

10 Wind Direction WD Meteorological data
The WD was extracted for each station during the

year of 2007 to 2013.

11 Wind Speed WS Meteorological data
The WS was extracted for each station during the

year of 2007 to 2013

12 Air Pressure AP Meteorological data
The AP was extracted for each station during the

year of 2007 to 2013
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2 Data and Method

2.3.1 Calculation of LST for each Weather Station

The LST for each meteorological station were determined as described in the study of

Noi et al.,2017. It should be noted that, only the LST data under clear sky then the

following steps were applied to retrieve the LST for each station:

I A total of 5110 MODIS files(MOD11A1 and MYD11A1, h18v03, Collection 5, from 1

January 2007 to 31 December 2013 over Berlin) in HDF (Hierarchical Data Format)

format were re-projected toWGS-1984-UTM-zone-33N using the nearest neighbour

re-sampling method.

The LST-Day-1km, LST-Night-1km, Daytime LST observation time, and Night-time

LST observation time) were extracted.

I For each weather stations, LST data are retrieved from MODIS using nearest

neighbor algorithm for the pixels in which the weather stations are located.

I Using the following equation, all LST data (DN value) were converted to Celsius

temperature where 0.02 is the scale factor of the MODIS LST product.

T (C°) = 0.02 ∗ DN − 273.15 (2.1)

I Removing low quality data: MODIS LST products are not available for a location

(pixel), if clouds are present (Wan, 2008). To avoid this kind of data, only the

pixels of the targeted land cover types that were flagged in the MODIS quality

assurance data as cloud-free and of high quality were retained (Ackerman et al.,

2008, Williamson et al., 2013).
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3 The influence of land cover type on the

relationship between NDVI–LST and

LST-Tair

3.1 Introduction

Many studies have revealed a strong negative correlation between normalized differ-

ence vegetation index (NDVI) and land surface temperature (LST) (Goward, Cruick-

shanks, and Hope 1985; Hope et al. 1986; Smith and Choudhury 1991; Schultz

and Halpert 1995;Churkina and Running 1998; Nemani et al. 2003; Julien, Sobrino,

and Verhoef 2006; Sun and Kafatos 2007; Julien and Sobrino 2009; Kumar and

Shekhar 2015; Tayyebi and Jenerette 2016; Zhou et al. 2014). Previous studies

have determined the variability in the slope of the inverse LST–NDVI relationship, in

association with local topographic and environmental conditions. Goward and Hope

(1989) stated that the LST–NDVI slope and intercept are expected to vary from one

day to another day based on the magnitude of incident solar radiation, advective

atmospheric conditions, and surface moisture availability. Hope (1988) revealed that

soil moisture potential affects the relationship between canopy temperature and NDVI.

Using an LST–NDVI scatter plot, Price (1990) differentiated between areas of full

vegetation cover, dry soils, and moist soil. Hope and McDowell (1992) used the LST

and NDVI relationship to discriminate between burned and unburned surfaces. The

LST and NDVI slope has been utilized in many applications associated with water and

energy balance. Research has shown that this slope is related to moisture availability

and canopy resistance, indicating vegetation stress and/or soil water stress. Other

researchers (Nemani and Running 1989, 1993; Carlson, Gillies, and Perry 1994;

Goetz1997) found that the slope is inversely correlated with the crop moisture index

(CMI), developed by Palmer (1968) to assess short-term crop water conditions. CMI

is based on the concept of abnormal evapotranspiration (ET) deficit, calculated as

the dierence between computed actual ET and computed potential ET (i.e. expected

or appropriate ET). Actual ET is based on the temperature and precipitation that

occurs during a week and computed soil moisture in both topsoil and subsoil layers.

In addition, the slope of LST and NDVI is also related to vegetation type, topography,

and vegetation cover, respectively (Nemani et al. 1993). Goetz (1997) revealed that

the slope varies with climate conditions, with steeper slopes associated with drier

situations. Other studies have shown that the slope is related to the rate of ET from

the surface. Prihodko and Goward (1997), Boegh et al. (1999), and Goward, Xue, and

Czajkowski (2002) used NDVI and LST data to estimate near-surface air temperature.

In addition, Weng, Lu, and Schering (2004) found that the vegetation fraction has a

slightly stronger negative correlation with LST. Yue et al. (2007) have investigated the

mean LST and NDVI values associated with dierent land-use (LU) types in the city

of Shanghai, China, and they found out that mean LST and NDVI values associated

with different LU types are significantly dierent. Joshi and Bhatt (2012) stated that
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the areas with vegetation and water-body have lower temperature compared to the

built-up areas. Sun and Kafatos (2007) found that the correlation between LST and

NDVI is positive for winter and negative during warm seasons. Moreover, Gorgani,

Panahi, and Rezaie (2013) applied a regression technique to obtain the correlation

between LST and NDVI in the city of Mashhad, Iran. They found that the regression

coefficient from NDVI to LST is negative. Moreover, a considerable amount of research

has been conducted to investigate relationships between LST and urban LU/land

cover (LC) (e.g. Weng, Lu, and Schering 2004; Yuan and Bauer 2007; Buyantuyev

and Wu 2010; Zhou, Huang, and Cadenasso 2011, 2017; Huang and Cadenasso

2016) in Urban Heat Island (UHI) issue because the surface UHI relates directly to

land surface characteristics (Oke 1995; Quattrochi and Luvall 1999; Voogt and Oke

2003). In addition, in order to investigate the driving mechanism of UHI more deeply,

increasing emphases have been placed on the research of vegetation–LST relation-

ship (Petropoulos, Griths, and Kalivas 2014; Li et al. 2009). Gallo and Owen (1999)

assessed seasonal trends in LST and NDVI and found that dierences in NDVI and

satellite-based surface temperature accounted for 40% of the variation in urban–rural

temperature dierences. Zhou et al. (2014) investigated the seasonal variability of the

relationships between LST and LU/LC variables and how the spatial and thematic

resolutions of LU/LC variables aect these relationships. They developed 10 models

to evaluate eects of spatial and thematic resolution of LU/LC data on the observed

relationships between LST and LU/LC variables for each season. They found that the

directions of the eects of LU/LC variables on estimation LST were consistent across

seasons, but the magnitude of eects, varied by season, providing the strongest predic-

tive capacity during summer and the weakest during winter. Moreover, the correlation

between LST and NDVI was examined by Sruthi and Mohammed Aslam (2015) for

monitoring and early warning system for the farmers regarding agricultural drought

issue in the Study of Raichur District. The LST–NDVI relationships as an indicator of

drought were considered by Karnieli et al. (2009). The relationships between NDVI

and temperature have also been utilized in various studies to evaluate two variables –

fractional vegetation cover and surface soil water content (Gillies, Kustas, and Humes

1997; Goward, Xue, and Czajkowski 2002; Carlson, Gillies, and Schmugge 1995;

Gillies and Carlson 1995). Moreover, research on LST has shown that the partitioning

of sensible, latent heat fluxes and surface radiant temperature response depends on

varying surface soil water content and vegetation cover (Owen, Carlson, and Gillis

1998). A higher level of latent heat exchange was found in areas with higher levels of

vegetation, while sensible heat exchange was favoured more by sparsely vegetated

areas such as urban areas (Oke 1982). This finding has led to more research focusing

on the relationship between LST and vegetation abundance (Carlson, Gillies, and

Perry 1994; Gillies, Kustas, and Humes 1997; Gallo and Owen 1999; Gillies and

Carlson 1995; Lo, Quattrochi, and Luvall 1997; Weng2001). However, the relationship

between NDVI and LST also varies according to the seasons (Sun and Kafatos 2007;

Bayarjargal et al. 2006) and surface moisture conditions. The correlation between

NDVI and LST decreases when surface moisture increases (Lambin and Ehrlich 1996;

Prihodko and Goward 1997; Moran et al. 1994; Sandholt, Rasmussen, and Andersen

2002). Other methods use this relationship to estimate surface ET and soil moisture
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(Carlson 2007), coupling the Soil Vegetation Atmosphere Transfer (SVAT) model to

the NDVI and LST relationship to study land–atmosphere interactions (Petropoulos,

Carlson, and Wooster 2009). To account for seasonal variations, many researchers

(Voogt and Oke 1998; Cresswell et al.1999) have used the Solar Zenith Angle (SZA)

to correct the air temperature (Tair) retrieval. Cresswell et al. (1999) used a regression

analysis technique between SZA and LST to retrieve Tair obtaining an accuracy within

3 K for 70% of the observations and an accuracy of 5 K and above for the remaining

observations. Moreover, several methods and approaches have been developed to

interpret the relationships between LST and NDVI, including:

1 The ’triangle’ method using soil–vegetation–atmosphere transfer model (Gillies,

Kustas, and Humes 1997; Carlson, Gillies, and Schmugge1995; Gillies and Carlson

1995).

2 In situ measurement method (Friedl and Davis 1994).

3 Remote sensing-based method (Betts et al. 1996).

3.2 Material and methods

3.2.1 The study area

Berlin is the capital city of Germany. It is located in the north-east of the country,

covers an area of 892 km2, with a population of 3.5 million. Berlin is located on a

mostly flat topography. Regarding LU patterns, Berlin is characterized by a significant

amount of green areas and water-bodies. Outside the inner city, there is a relatively

low building and population density, with many allotment gardens for private cultivation

and recreation. There are a considerable number of urban brownfield sites, despite

the slight trend of population growth in the last decade. While some crucial local

structural changes have taken place since the early 1990s (especially at the location

of the former Berlin wall), the overall LU patterns have remained relatively constant

over the past decade. Figure 1 shows the LU map of Berlin. Berlin consists of 45%

water-bodies and urban green spaces (forested and unforested, allotment gardens),

almost 20% transport and infrastructural areas (streets and railways), and around

35% built-up areas (e.g. residential use). Table 1 shows the location and related LU

of the weather stations in Berlin used in this study.

3.2.2 Data description

In order to find the relationship between NDVI and LST, as well as LST and Tair, three

main data sets for the period of 2007–2013 were used:

1 Remotely sensed data.
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Figure 3.1: Land-use map of Berlin. S.L in Legend means soil sealing.

2 Ground measurements from 20 meteorological stations in Berlin.

3 Digital elevation model (Berlin Digital Environmental Atlas).

The meteorological stations in this study are located in dierent LU/LC types (see Table

3.1, making it possible to study the eect of different LU/LC types). In general, the

meteorological stations are categorized into the following six dierent LU/LC types

based on a 5 m resolution map of LU/LC which is downloaded from https://www.eea.

europa.eu/data-and-maps/data/urban-atlas:

1 Urban areas (green urban areas, discontinuous low-density urban fabric, and dis-

continuous dense urban fabric)

2 Industrial (Industrial, commercial, public, and military)

3 Forest

4 Airport
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Table 3.1: Information about weather stations over Berlin, including their Land cover,

Lat, Long and Elevation

Station Land cover Latitude Longitude Elevation(m)

Botanischer-Garten Green urban area 52.45 13.30 46.88

Fasanenstraße Industrial,commercial,public,military 52.51 13.33 34.08

Tegel-Forstamt Forest 52.60 13.27 39.58

Gatow Industrial,commercial,public,military 52.47 13.13 47.09

Marzahn Green urban area 52.54 13.58 50.61

Pichelsdorf Everegreen needleleaf tree 52.50 13.19 29.66

Wannsee Everegreen needleleaf tree 52.43 13.18 40.77

Dahlem-FU Industrial,commercial,public,military 52.45 13.31 67.50

Tegel Airport 52.56 13.30 35.25

Schönefeld Airport 52.38 13.53 45

Buch Industrial,commercial,public,military 52.63 13.50 65.45

Marzahn Discontinues Dense urban fabric 52.54 13.55 63.29

Kaniswall Agriculture,semi-natural and wet area 52.40 13.73 32.57

Tempelhof Airport 52.46 13.40 47.74

Eiskeller Agriculture,semi-natural and wet area 52.58 13.13 31.78

Kreuzberg Industrial,commercial,public,military 52.49 13.40 34.91

Wannsee-meteo Everegreen needleleaf tree 52.43 13.18 43.49

Aldershof Industrial,commercial,public,military 52.42 13.52 35.15

Potsdam Industrial,commercial,public,military 52.38 13.11 33.79

Insulaner Discontinues Low Density urban fabric 52.45 13.35 43.75

5 Agriculture (agriculture and semi-natural)

6 Needle leaf trees area (evergreen needle leaf tree)

The second source of data is the satellite data. The satellite data used in this study

are LSTs at 1 km spatial resolution derived from Moderate Resolution Imaging Spec-

troradiometer (MODIS) sensors on board Terra and Aqua satellites. Aqua has a 1:30

am/pm equator crossing time, while Terra has a 10:30 am/pm equator crossing time,

meaning MODIS data are typically available on a daily basis. These data have been

downloaded from the Land Processes Distributed Active Archive Center (https://lpdaac.

usgs.gov/).The following MODIS products (version 5) were used:

1 MODIS daily LST at 1 km resolution, from Terra (MOD11A1.005)

2 MODIS daily LST at 1 km resolution, from Aqua (MYD11A1.005)

3 MODIS monthly vegetation index at 1 km resolution from Terra (MOD13A2.005)

4 MODIS monthly vegetation index at 1 km resolution from Aqua (MYD13A2.005)

product

The MODIS monthly vegetation product contains both NDVI and the enhanced vege-

tation index (EVI), retrieved from blue, red, and near-infrared reflectance, centred at
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469, 645, and 858 nm channels, respectively. The MODIS NDVI and EVI products

are calculated from atmospheric bidirectional surface reflectance values that have

been masked for clouds, cloud shadows, water, and heavy aerosols. The MODIS

LST is derived from two thermal infrared band channels, 31 (10.78–11.28 mm) and 32

(11.77–12.27 mm), using the split window algorithm (Wan et al. 2002). This algorithm

corrects for emissivity and atmospheric eects by using a look-up table based on global

land surface emissivity in the thermal infrared (Snyder et al. 1998). Daily MODIS LST

and monthly NDVI from Aqua and Terra were extracted at the nearest points to the

stations during day- and night-time by considering quality assurance information in the

MODIS product (Only values labelled as ’good data’ or ’marginal data’). The data have

a significant number of missing points due to clouds,heavy aerosols, gaps between

satellite swaths, and failed retrievals under certain conditions. We combined the Aqua

and Terra products by considering their overpass time, so as to increase the maximum

of usable observations as Alcantara et al. (2013) did in his research. The third source

of data was the URBAN ATLAS (www.eea.europa.eu/data-and maps/data/urban-atlas,

2012), used for the LU/LC classification.

3.2.3 Day/night analysis

Apart from spatial variations,observation time can aect the relationship between LST

and Tair time series. To identify any variability in LST and Tair relationship in a diurnal ba-

sis, time series of both variables were separated based on the MODIS overpass times

to produce two series over single pixel window from MODIS-Terra and MODIS-Aqua

day and night. In addition, in order to analyse the seasonal eect on the relationship

between NDVI and LST, and between LST and Tair, the seasonal time series were

created for each LU/LC during day- and night-time. Moreover, for temporal matching

of LST with the Tair from meteorological stations, the two approaches were considered:

(1) For those meteorological stations that minutely data are available, the air tempera-

ture at over pass time of the satellite was collected. (2) But for other meteorological

stations with hourly data, a linear equation was considered for calculating the T2m at

the overpass time of satellite.

3.2.4 Statistical methods

A simple linear relationship is often assumed between LST and Tair and also between

LST and NDVI in the literature (Brunel 1989; Mostovoy et al. 2006). In view of this,

a univariate linear regression analysis with the MODIS LST as the independent (or

explanatory) and Tair or NDVI as the dependent (or response) variable was applied

to analyse LST–Tair and also LST–NDVI relationships, respectively. The correlation

coefficient, r, is reported as a quantitative measure to evaluate the strength of the

agreement between them in the analysis. Significance levels (p values) are addressed

in the results to explain how unlikely the given r values would occur if no relationship

between the explanatory and response variables did exist, where the smaller the p
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level, the more significant the relationship. Moreover, in order to investigate the LST

relationship with air temperature at 2 m height (T2mDay/T2mNight), statistical parameters

such as correlation coefficient (r), mean value, mean absolute error (MAE), and root

mean square deviation (RMSD) were calculated for six LU/LC types from 2007 to

2013.

3.3 Relationships between NDVI and LST

Fractional vegetation cover depicts the amount and nature of vegetation cover and

also quantises the proportions of vegetation and ground visible to a sensor. The dier-

ences in radiative temperature between the vegetation canopy and the ground aect the

measurement of LST (Sandholt, Rasmussen, and Andersen 2002). For areas without

vegetation, LST measurements typically represent the radiometric temperatures of

sunlit surfaces, such as bare soil. As the amount of vegetation cover increases, the

radiative temperature recorded by a sensor more closely approximates the tempera-

tures of green leaves and the canopy temperature at spectral vegetation maximum or

complete canopy cover (Goward, Xue, and Czajkowski 2002). LST measurements

are also subject to the influence of the lower atmosphere and the temperature dier-

ence between the vegetation canopy and the soil background (Friedl 2002). Thermal

responses of vegetation can also be highly dependent on the biophysical properties

of the vegetation itself (Quattrochi and Ridd 1998). Some internal properties, such as

thermal conductivity, heat capacity, and inertia, play significant roles in controlling the

temperature of a body at equilibrium with its neighbourhood (Campbell 2002). These

thermal properties dier with moisture content and soil type (Sandholt, Rasmussen, and

Andersen 2002). As a result of relatively low thermal inertia, bare, dry, and low-density

soils have been linked to the highest LST (Carnahan and Larson 1990). Soil emissivity

is a function of soil density and moisture (Larson and Carnahan 1997). Therefore, for

areas characterized by low vegetation cover, surface thermal properties can strongly

aect LST, through the thermal processes of convection, radiation, and conduction.

Moreover, the relationship between LST and vegetation indices, such as NDVI, has

been investigated.

3.4 Results and discussion

3.4.1 Seasonal variation of the LST and NDVI relationship

In order to better understand the relationship between LST and NDVI over dierent LU/

LC types, the thermal environment and green space signature of each LU/LC type must

be considered. To achieve this goal, the mean values of LST and NDVI over different

LU/ LC were compared. Figure 3.2(a,b) gives information about mean LST and NDVI

values based on dierent LU/LC types between 2007 and 2013 for spring season in

Berlin, respectively. As shown in Figure 2.2, the industrial, green urban area, and

airport LUs show the highest mean LST values. These LUs include more impervious
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surfaces primarily associated with transportation (street, highway, and parking lots)

and a large amount of anthropogenic heat. This anthropogenic heat is less significant

for industrial LU as they are also surrounded by vegetation cover. In contrast, the

highest mean NDVI values can be seen in needle leaf trees, agriculture, and forest

LUs. Spatial variation of NDVI is not only related to the amount of vegetation, but also

aected by solar radiation availability, topography, slope, and other factors. Greater

vegetation cover causes comparatively higher rates of ET and favours latent over

sensible heat exchange between the surface and the atmosphere (Wilson et al. 2003).

As Figure 3(b) shows, the mean ET value (free water evaporation) in all seasons

for six LU/LC types depicted higher rates of ET for forest, agriculture, and needle

leaf trees. The lowest mean LST, however, is neither in evergreen needle leaf trees

(except in one case) nor in agriculture LUs. One reason could be that these areas are

spread throughout urban areas and are highly aected by the UHI and ambient LU/LC

types. Forest areas are far from the urban centre, with a low influence from the UHI

eect and relatively homogeneous land surface material, leading to a low mean LST.

This is primarily attributed to the fact that even during the conditions when maximum

temperatures occur, forests are able to access water with their deep root systems and

continue transpiration. A greater proportion of incoming solar radiation is partitioned to

latent heat flux as a result of transpiring vegetation, thereby cooling the canopy surface

temperature. Additionally, forests have deep, complex canopies that promote cooling

through turbulent exchange. Overall, by considering and comparing each LU/LC type

within each class, Figure 3 demonstrates a direct negative relationship between LST

and NDVI values. It shows that a higher NDVI is related to lower LST values. However,

difficulties still exist in the interpretation of the relationship between LST and NDVI.

These results do not provide enough information to cover and analyse every aspect

of this relationship because the NDVI measurements depend on the visible and near

infrared reflectance from the plant canopy, reflectance of the same spectra from the

soil, and the atmospheric reflectance and are subject to the impact of observational

errors (Yang, Yang, and Merchant 1997). Plant species, soil background, leaf area,

and shade can all contribute to NDVI variability (Jasinski 1990). The relationship

between NDVI and other measures of vegetation abundance is known to be non-linear

(Asrar et al. 1984; Small 2001; Small and Lu 2006). Moreover, these results may

suggest that percent of vegetation or percent of tree canopies are better predictors

of LST than NDVI (Tayyebi and Jenerette 2016; Zhou, Wang, and Cadenasso 2017).

In order to better understand the seasonal variation of NDVI and LST over different

LU/LC, a correlation analysis is carried out. As shown in Table 3.2, the correlation

between LST and NDVI varies with the seasons and time of day. In general, during

summer, the negative correlations between NDVI and LSTDay are much stronger than

those between NDVI and LSTNight because vegetation cover has a key influence

on maximum surface temperature (e.g. leaves, for example, are considerably more

efficient at shedding absorbed energy than the soil surface, even when not transpiring.

They also have a significantly cooler surface temperature than bare soil). Moreover,

in winter, the correlation between NDVI and LST for some LU/LC such as industrial

is as same as needle leaf trees, forest, and agriculture due to the fact that the NDVI

values in winter were almost less (which indicated that there was very little actively
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Figure 3.2: Each of the bars in this figure shows the mean LST and NDVI values

in subplots(a) and (b)respectively, for each individual weather station in

Berlin during 2007-2013.

photosynthesizing vegetation during this period). Consequently, plants play much less

important role in regulating LST during winter, and variation in LST mostly is related

to non-vegetated surfaces (i.e. impervious surfaces) in urban areas in that season

(Yuan and Bauer 2007). In addition, during all seasons except summer, the positive

correlations between NDVI and LSTDay/Night are observed for all LC types. This is

in good agreement with the results in North America in the study of Kaufmann et al.

(2003).

Table 3.2: Correlation coefficient between LSTMax/Min-NDVI during different season

and LU/LC

Corr(LSTMax/Min-NDVI)

LC/LU Winter Spring Summer Fall

Green urban area 0.15/0.19 0.10/0.13 -0.48/-0.33 0.65/0.46

Industrial 0.52/0.40 0.44/0.62 -0.12/0.20 0.66/0.51

Forest 0.11/0.10 0.53/0.56 0.29/0.14 0.45/0.43

Evergreen needleleaf trees 0.34/0.35 0.55/0.53 0.19/0.17 0.63/0.49

Airport 0.46/0.41 0.48/0.54 -0.46/-0.18 0.56/0.46

Agriculture 0.49/0.40 0.50/0.59 -0.37/-0.20 0.70/0.50
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Figure 3.3: (a)Variation of slope between NDVI and LST and (b)mean ET values during

different seasons for all LU/LC types.

3.4.2 The effects of LU/LC on the relationship between LST and

NDVI

In order to investigate the influence of LU/LC types on the relationship between LST

and NDVI, a regression analysis was utilized for each season and LU/LC. A number

of studies have explored the relationship between LST and NDVI. Weng, Lu, and

Schering (2004) used seven LU/LC types (industrial land, commercial, residential,

cropland, grassland, pasture, forest, and water) at dierent scales; all the results

showed a noticeable inverse correlation. Lo, Quattrochi, and Luvall (1997) used high-

resolution thermal infrared imagery, revealing a strong negative correlation between

NDVI and the radiant temperature of residential, agricultural, and vacant/transitional

LC types in Huntsville, indicating that the irradiance of an LC type is greatly influenced

by the amount of vegetation present. Sobrino and Raissouni (2000) used the inverse

relationship between NDVI and radiant surface temperature measurements collected

in multi-temporal Advanced Very High Resolution Radiometer (AVHRR) imagery to

characterize LC dynamics in Morocco. In order to test the quantitative relations of

NDVI to LST, the regression analysis in Equation (1) was considered for each LU/LC

type and the results are shown in Table 3.3.

LSTDay and LSTNight are the daytime and night-time LST, respectively. a and b are

regression coefficients. One of the goals of this work is to understand the eect

vegetation (NDVI) has on LST. Regression analysis results reveal that there is an

inverse correlation between LST and NDVI values for the dierent LU/LCs. Table 3.3

shows that the NDVI–LST slope is highly dependent on the arrangement of the natural
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and artificial physical features of an area. There is a negative slope for areas with

sparse vegetation cover, such as industrial, airports, and urban areas. For closed

vegetation canopies such as agricultural areas, needle leaf trees areas, and forests,

the slope is positive. It can be concluded that in some areas with greater vegetation

cover (greater NDVI), a higher rate of ET is expected, causing an increase in latent

heat exchange between the land surface and atmosphere. For this reason, the daily

free water evaporation value (Fitzpatrick and Stern 1966) was calculated for each

LU/LC type and then the mean ET value was calculated for each season. This is shown

in Figure 3.3(b). As expected, a higher ET rate is in needle leaf trees, forest, and

agriculture areas, in spring and summer, because shedding of leaves from deciduous

trees in winter greatly reduces the canopy ET (latent heat flux) and thus reduces the

capacity of trees in regulating surface temperature due to latent heat exchange. In

addition, the cooler air temperature in winter also would greatly reduce the ET of plants.

As shown in Figure 3.3(a), the LST–NDVI slope varies with the seasons. A noticeable

decrease in slope occurs from spring to summer, especially for dense vegetation areas;

this reduction is less clear in sparse vegetation areas such as airports. As expected,

the highest slope is observed in needle leaf trees, forest, and agriculture areas during

warm seasons. In contrast, the lowest slope is seen in industrial, airport, and urban

areas. During the cold seasons, the highest slope is seen in needle leaf trees areas.

Moreover, the results indicate that the slope is related to moisture availability (Nemani

and Running 1989; Carlson, Gillies, and Perry 1994; Gillies, Kustas, and Humes

1997; Goetz 1997; Palmer 1968), canopy resistance indication vegetation stress, or

soil water stress. They also show that greater NDVI can cause higher rates of ET

and increase the latent heat exchange between the land surface and atmosphere.

Therefore, a decrease in slope occurs in summer, and a notable increase in slope

is seen from summer to autumn. To further investigate the influence of LU/LC on

the relationship between LST and NDVI, a regression analysis was applied for each

season during daytime and night-time for each individual station as shown in Table

3.1. Figure 3.4 show that daytime regression coefficient are higher than night-time

during cold months. The variation of regression coefficient is more noticeable during

warm months due to the duration of heat waves and the solar radiation (Zhou et al.

2014). The solar radiation that appears is the most dominant driver for the LST–NDVI

relationship at the beginning and end of growing seasons (from spring to summer). A

regression analysis of the NDVI–LST relationship during day- and night-time in different

seasons is shown in Table 3.4. The regression coefficient indicate that increases in

NDVI cause lower LSTDay in spring, summer, and autumn. During the warm months

from spring to summer, the regression coefficient indicate that the cooling eect of

vegetation is stronger during daytime than night-time (Sun and Kafatos 2007). Overall,

the regression coefficient varies from cold seasons to warm seasons during day- and

night-time. The coefficient for all LU/LC mimics almost the same pattern among cold

months during day- and night-time. To understand how the relationship between NDVI

and LST varies over different seasons, a scatter plot of 7 years (2007–2013) from

winter to autumn over different LU/LC is shown in Figure 5. X and Y axes depict the

NDVI and LST, respectively. As shown in Figure 5, the relationship between LST and

NDVI is strongly affected by season. The negative relationship is observed in spring
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(growing season), except in airport areas. This is similarly to the study of Kaufmann

et al. (2003). To sum up, this study found that the relationship between LST and

NDVI depends on seasonal changes and time of day. The correlation and regression

coefficient from NDVI to LST are positive in cold seasons. The negative relationship

is found in warm seasons.

Table 3.3: Linear regression equation and correlation coefficients for the relationship

between NDVI and LST by LU/LC types

Land use type Regression functions r Mean-NDVI

Green urban area LST=9.06NDVI+14 0.57 0.63

Industrial LST=-5.9NDVI+23.86 -0.26 0.67

Airport LST=8.17NDVI+20.50 0.48 0.45

everegreen needleleaf tree LST=18.82NDVI+23.57 0.55 0.71

Forest LST=11.32NDVI+22.48 0.53 0.69

Agriculture LST=13.10NDVI+12.75 0.50 0.63

Table 3.4: Linear regression coefficients A in Equation LSTMax/Min=a*NDVI+b during

different seasons by LU/LC

Regression slopeMax/Min with NDVI

LC/LU Winter Spring Summer Fall

Green urban area 10.36/6.92 -6.70/-2.08 -3.04/-0.13 3.22/3.39

Industrial 6.72/1.58 -5.91/-3.23 -8.06/1.04 -1.12/-0.84

Forest 6.45/5.61 11.32/10.27 7.06/6.04 7.35/4.76

Evergreen needleleaf trees 21.20/16.47 18.82/13.39 5.26/3.28 13.67/6.86

Airport 4.06/4.98 -6.92/-2.54 -7.39/-1 3.23/1.15

Agriculture 11.79/7.06 13.10/12.87 -12.65/-4.12 16.37/8.77
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Figure 3.4: (a)Variation of slope between NDVI and LST for each meteorological sta-

tion during all seasons are shown in subplot(a)in winter, (b)in spring,(c)sum-

mer, and (d) in autumn, respectively.

Figure 3.5: The 7 years scatter plots of LST-NDVI between 2007 and 2013 during

different seasons and LU/LC axes depict the NDVI and LST, respectively.
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3.4.3 LST relationship with air temperature at 2 m above ground

The standard meteorological Tair is measured in a shelter at 2 m height (Jin and

Dickinson 2010). It is an important descriptor of terrestrial environmental conditions

across the Earth (Peón, Carmen, and Javier 2014) and one of the most widely used

climatic variables in global change studies. It plays an important role in multiple

biological and physical processes among the hydrosphere, atmosphere, and biosphere

(Stisen et al. 2007; Shamir and Georgakakos 2014; Benali et al. 2012). Monitoring

and understanding the trends of Tair and LST are crucial in the study of regional and

global climate change (Yoo et al. 2011). Some studies show that LST is usually higher

than T2m during daytime, while the opposite occurs at night-time (Cresswell et al.

1999; Benali et al.2012). Therefore, observation time is a key factor which has impact

on the relationship between LST and T2m. Tables 3.5 – 3.8 show the relationship

between LST and air temperature (T2mDay,2mNight) which is included some statistical

parameters such as correlation coefficient, mean value, MAE, and RMSD for six LU/LC

types from 2007 to 2013. A simple linear relationship is considered between LST

and T2m. A univariate linear regression analysis was applied, with the MODIS LST

as the independent (or explanatory)and T2m as the dependent (or response) variable,

to investigate the relationship between LST and T2m. The correlation coefficient, r,

is considered as a quantitative measure to evaluate the strength of the agreement

between LST and T2m time series in different LU/LC. As shown in Tables 3.5–3.8 and

Figure 3.6, the results are as follows:

1 The relationship between MODIS LST of daytime and night-time (LSTDay and

LSTNight), with T2mDay and T2mNight, was estimated. As shown in Figure 3.6 and

Tables 3.5–3.8, the correlation between LST and T2m is smaller during the day

(0.42 ≤ r ≤ 0.81, p = 0.0001) than during the night (0.46 ≤ r ≤ 0.86, p = 0.0001)

during warm seasons (Zhang and Shen 2011; Benali et al.2012). The dierence

(RMSD) between them is greater during the day than at night, as solar radiation

does not aect the thermal infrared signal during the night (Vancutsem et al. 2010).

The difference between LST and T2m in the presence of radiation depends on

the surface energy balance. In every season, a higher correlation between LST

and T2m was observed in forest areas, as the remotely sensed LST represents

the tree canopy temperature, which is closely correlated to air temperature. The

daytime correlation coefficient is higher during cold seasons (0.77 ≤ r ≤ 0.89) than

in warm seasons (0.57 ≤ r ≤ 0.81), due to higher turbulence between land surface

and atmosphere in the summer months (in comparison to winter months with

lower incoming solar radiation) (Zhang and Seidel 2011). Moreover, for all LU/LC

types during cold seasons, a closer correlation was observed during daytime

(0.77 ≤ r ≤ 0.89) than night-time (0.47 ≤ r ≤ 0.86), while a reverse relationship

was obtained for warm seasons. This is because the correlation is mainly driven

by the radiative cooling at night, as radiative heating during daytime in the cold

seasons is relatively small (Pérez Díaz et al.2015). It must be noted that only

clear sky days with high radiative cooling were considered. LST was selected

as an indicator for radiative cooling. In contrast, for all LU/LC types during

warm seasons, a higher agreement was observed during night-time (0.46 ≤ r
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≤ 0.86) than daytime (0.42 ≤ r ≤ 0.81), due to the higher solar radiation in daytime.

2 As shown in Tables 3.5–3.8, LST is lower than T2m in most cases, during daytime

and in cold seasons. In warm seasons, a reverse relationship is observed for all

LU/LC types. Generally, during night-time, and depending on the LU/LC, LST is

either close or lower than T2m (Haashemi et al. 2016).

3 For all seasons, as expected, higher dierences between T2mDay and LSTDay are

observed in industrial, urban areas, and airports, respectively. The areas cov-

ered by vegetation, bush, trees such as forest, agriculture, and needle leaf trees

show lower differences between T2mDay and LSTDay because dense vegetation

can reduce the amount of heat stored in the soil and surface structures through

transpiration. We are unable make conclusions on which LU/LC types have the

highest RMSD. This results warrant further research on the cooling effectiveness

of vegetation/trees and spatial configuration of trees in the study area.

4 These results show that LC types, seasons, and time of day help to create an

undulating temperature surface across dierent LU/LC types and influence the

relationship between LST and air temperature. Further investigation is needed

to examine this relationship.

3.5 Summary and conclusions

This study investigates both LST–NDVI and LST–T2m relationships over different LU/LC

over Berlin, during different seasons at day and night. In the analysis of different LU/LC

types, the results indicate that different LU/LC types have significantly different effects

on LST and NDVI as measured by the MODIS in Berlin. The results reveal that NDVI

values are dependent on seasonal variations. Furthermore, the correlation analysis

between NDVI and LST for different seasons show that this relationship depends on

the season, time of day, and LU/LC type. The results depict an inverse correlation

between LST and NDVI over every LU/LC type. In order to evaluate the influence

of LU/LC, a regression analysis between LST and NDVI was utilized and multiple

comparisons were made. By considering the slope of regression function for different

LU/LC and seasons, it was found that the regression coefficient is dependent on LU/LC

type. This means that the NDVI–LST slope is highly dependent on the arrangement

of the vegetation type, natural features, rate of ET from surface, and artificial physical

features of an area. There is a negative slope for sparse vegetation covers such

as industrial, airports, and urban area, but for closed vegetation canopies such as

agriculture and needle-leaf trees areas, the slope is positive. The comparisons of mean

LST and NDVI values by individual pairings of LU/LC types were made in the research

area. The mean LST and NDVI within every LU/LC show a clear negative correlation
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between LST and NDVI. In certain LU/LC type, it is observed that the relationship

between LST and NDVI is varied. This reveals that the LST is affected mainly by the

land surface materials and has a close relationship with the abundance of vegetation

and the effect to its surrounding. The strength of relationships between LU/LC variables

(e.g. NDVI and vegetation fraction) and LST, however, varies significantly from study

to study due to the different measurement of variables and units of analyses (Huang,

Guan and Ji 2012; Li et al. 2011). A statistical analysis was applied to determine the

variation of the LST–T2m relationship during day- and night-time, for different seasons

and LU/LCs. It was found that in most cases, during daytime and in cold seasons,

LST is lower than T2m, while in warm seasons, a reverse relationship is observed

for all LU/LC types. Generally, for all seasons during night-time, LST is lower than

T2m. Moreover, higher difference between T2mNight and LSTDay are observed among

industrial, urban area, airports, and areas covered by vegetation, bush, and trees

(such as forest, agriculture, and needle leaf trees). These results indicate that LU/LC

types, seasons, and temporal variation influence this relationship. A linear regression

analysis, with the MODIS LST as the independent and T2m as the dependent variable,

was applied to analyse this relationship seasonally. The results reveal that LSTDay

and LSTNight are significantly correlated (p=0.0001) with T2mDay and T2mNight. The

correlation between LSTDay and T2mDay is higher during cold seasons (0.77 ≤ r ≤ 0.89)

than in warm seasons (0.57 ≤ r ≤ 0.81). Moreover, for all LU/LC types during cold

seasons, a higher agreement was observed during daytime (0.77 ≤ r ≤ 0.89) than night-

time (0.47 ≤ r ≤ 0.86), while a reverse relationship was obtained for warm seasons. In

addition, it would be interesting to examine whether and how the size of the analytical

unit may affect the observed relationships between LST–NDVI and LST and Tair in

future research, considering the inhomogeneity of land surface characteristics within

a grid box.

Table 3.5: Statistical parameter between LSTDay/Night and T2mDay/2mNight

Winter

LU/LC r Mean (T) Mean(LST) MAE RMSD

Green urban area 0.77/0.61 4.54/-0.90 3.39/-4.40 2.63/3.64 3.45/5.11

Industrial 0.79/0.55 4.31/-0.27 2.73/-4.68 2.64/4.67 3.56/6.15

Forest 0.89/0.46 5.83/-1.26 6.33/-2.81 1.78/3.01 2.30/4.72

Airport 0.81/0.61 3.94/-0.45 3.66/-4.62 2.43/4.36 3.08/5.59

Agriculture 0.86/0.62 4.83/-2.34 2.84/-4.90 2.50/3.33 3.20/4.90

Needle leaf trees 0.79/0.59 4.64/-0.54 3.93/-3.32 2.73/3.33 3.53/4.76
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Table 3.6: Statistical parameter between LSTDay/Night and T2mDay/2mNight

Fall

LU/LC r Mean (T) Mean(LST) MAE RMSD

Green urban area 0.81/0.70 13.53/5.94 12.28/4.01 2.27/2.41 2.99/3.38

Industrial 0.79/0.56 13.22/6.14 11.46/3.29 2.65/3.55 3.49/4.50

Forest 0.83/0.62 14.57/5.40 15.15/5.93 1.73/1.99 2.29/2.78

Airport 0.85/0.68 12.88/5.97 12.63/3.32 1.85/3.02 2.52/3.80

Agriculture 0.86/0.63 13.88/4.36 11.18/3.07 2.95/2.41 3.69/3.39

Needle leaf trees 0.86/0.73 14.42/6.84 13.03/5.08 2.29/2.30 2.89/3.12

Table 3.7: Statistical parameter between LSTDay/Night and T2mDay/2mNight

Spring

LU/LC r Mean (T) Mean(LST) MAE RMSD

Green urban area 0.57/0.71 20.60/9.93 22.16/7.93 3.79/2.72 4.86/3.77

Industrial 0.66/0.65 21.42/10.52 20.29/7.41 3.16/3.75 4.12/4.71

Forest 0.81/0.86 20.73/7.74 25.50/9.84 4.97/2.56 5.62/3.01

Airport 0.72/0.76 19.48/9.90 23.36/7.48 4.48/3.01 5.27/3.75

Agriculture 0.71/0.81 22.07/7.69 20.17/6.97 3.12/1.99 4.16/2.64

Needle leaf trees 0.69/0.80 21.26/10.52 23.81/9.18 3.84/2.22 4.76/2.88

Table 3.8: Statistical parameter between LSTDay/Night and T2mDay/2mNight

Summer

LU/LC r Mean (T) Mean(LST) MAE RMSD

Green urban area 0.51/0.50 25.18/15.64 25.53/13.87 3.41/2.51 4.44/3.57

Industrial 0.47/0.46 26.08/16.47 24.42/13.21 3.78/3.80 4.85/4.72

Forest 0.70/0.74 25.20/13.71 28.52/15.80 3.90/2.48 4.71/2.86

Airport 0.69/0.63 23.98/15.48 26.81/13.38 3.64/2.67 4.47/3.32

Agriculture 0.42/0.66 25.81/13.54 24.55/12.68 3.89/2.05 4.86/2.61

Needle leaf trees 0.60/0.67 26.12/16.45 27.13/14.86 3.17/2.27 4.03/2.91
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Figure 3.6: The plots of correlation coefficient between LST and T2mDay/2mNight during

different seasons over different LU/LC during day and night-time are shown

in subplots (a) and (b), respectively.
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4 Estimation of the Near-surface Air

Temperature during the Day and

Night-time from MODIS in Berlin, Germany

4.1 Introduction

The standard meteorological Tair is measured in a shelter at 2m height (Brunel 1989;

Jin and Dickinson (2010). It is an important indicator of terrestrial environmental

conditions across the earth (Prihodko and Goward (1997); Peón et al. 2014) and

one of the most widely used climatic variables in global change studies. It plays an

important role in multiple biological and physical processes among the hydrosphere,

atmosphere and biosphere (Stisen et al. 2007; Shamir et al. 2014; Benali et al. 2012).

Regarding ecosystem, it influences the distribution of plant species (Cabrera 2002)

and affects the dynamics of the soil–plant–water system (Chartzoulakis and Psarras

2005; Zavala 2004), being included in evapotranspiration models (Allen et al. 2006;

Carlson et al. 1995) as well as hydrological models (Purkey et al. 2007; Yates et

al. 2005). At the individual level, temperature affects plant growth and net primary

productivity since photosynthetic and respiration rates depend on it. Moreover, Tair
plays a critical role in vegetation distributions, phenology, and growth (Benavides

et al. 2007; Stahl et al. 2006). The maximum temperature also shows significant

relationship with the occurrence of wildfire on hot and sunny days (Aldersley et al.,

2011; Litschert et al., 2012). Therefore, detailed knowledge of the spatial variability

of air temperature is of interest for many research and management. In addition, Tair
plays an important role in energy balance and is a key input in various environmental

models and applications, such as crop evapotranspiration estimation (De Bruin et al.

2010), distributed hydrology (Gao et al. 2014) and climate change models (Lofgren et

al. 2011). Moreover, the importance of temperature in urban area are related to heat

stress and human health. Meteorological measurements provide accurate discrete

Tair information for specific locations but have limited ability to describe its spatial

heterogeneity over large areas (Benali et al., 2012; Willmott and Robeson 1995).

The non-uniform spatial distribution of weather station locations within most networks

and the complexity of the land surface conditions and patterns make it a challenge

to get spatial-continuous Tair data. However, weather stations are usually sparsely

distributed in mountainous regions, especially in high-elevation areas, and thus may

not optimally represent all environments (Rolland 2003). Given the large spatial

heterogeneity of Tair in complex terrain (Holden et al., 2011), it is difficult to accurately

characterize the distribution of Tair over mountainous areas (Carrega 1995). Different

interpolation methods have been used to generate spatially continuous Tair from point

station measurements (Benavides et al., 2007; Dodson and Marks 1997; Duhan et al.,

2013; Kurtzman and Kadmon 1999; Stahl et al., 2006). However, the performance of

interpolation methods is highly dependent on the spatial density and distribution of

weather stations (Chan and Paelinckx 2008; Vogt et al., 1997), which is not considered
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satisfactory in mountainous areas. Satellite remote sensing observations from global

imaging sensors, such as the Advanced Very High-Resolution Radiometer (AVHRR)

and Moderate Resolution Imaging Spectroradiometer (MODIS), represent a potentially

valuable alternative to characterize spatially-detailed Tair patterns across large areas.

A split window technique was applied to AVHRR (Pinheiro et al. 2006), MODIS (Wan

et al., 2002), and Meteosat (Atitar and Sobrino, 2009) thermal data to estimate Land

Surface Temperature (LST). The science-grade quality of the LST data collected by

MODIS has proven valuable for monitoring land surface dynamics over large areas

(Benali et al., 2012, Mostovoy et al., 2006, Lin et al., 2012). The earth’s surface is

heated by solar radiation, while the atmosphere is mainly heated from the ground

up through long-wave infrared radiation (Frederick et al., 2006). The relationship

between Land Surface Temperature and Tair may vary with time and location, because

the land surface energy balance is a complex phenomenon that depends on multiple

factors (e.g., cloud cover, surface roughness, wind speed and soil moisture), whereas

some of them (e.g., wind speed) are usually not available from satellite (Goward et al.,

1997; Prince et al., 1998; Stisen et al., 2007). An accurate estimation of Tair and the

mapping of its spatial distribution are useful for predicting ecological consequences

of climate change. For example, climate warming will lead to higher temperatures

and an increase of extreme weather conditions, which are associated with changes

in wildfire regime (Westerling et al., 2006; Chen et al., 2011; Manzo-Delgado et al.,

2009), forest biomass distribution (Reich et al., 2014) and crop yield (Ruane et al.,

2014; Rosenzweig et al., 2014). The demand for accurate spatial Tair data over a

large scale has continued to rise (Oyler et al., 2015; Beier et al., 2012). However, the

spatial distribution of the weather stations in many parts of the world, is often limited

which restricts the use of Tair measurements over a large spatial domain (Vancutsem

et al., 2010). LST, but on the other hand, is measured in a global extent with significant

higher spatial coverage (Jin and Dickinson, 2010). The US National Research Council

and the Intergovernmental Panel on Climate Change (IPCC) expressed the need

for long-term remotely sensed LST data in global warming studies to overcome the

limits of conventional surface Tair measurements (IPCC 2007, Jin 2004). Remote

sensing data has great potential to estimate spatial-temporal patterns of Tair which

can further our knowledge, on both the climate and terrestrial biological processes

at regional and global scales (Benaliet al., 2012). Monitoring and understanding the

trends of Tair and LST are crucial in the study of regional and global climate changes

(Yoo et al., 2011). LST can be monitored and modelled from multiple daily satellite

observations, such as the MODIS LST. Studies have shown that LST can be used

for linear regression estimates of daily minimum and maximum Tair on a local scale

(Mostovoy et al., 2006; Vancutsem et al., 2010; Zhang et al., 2011a; Yoo et al., 2011;

Evrendilek et al., 2012; Benali et al., 2012; Zhu et al., 2013). Cresswell et al. (1999)

found an over and underestimation of Tair during the day and at night, respectively, from

Meteosat LST observations. They attempted to correct these errors and produce a

proxy of Tair by applying a solar zenith angle correction on the Meteosat geostationary

observations. They achieved an accuracy of 3°C for over 70% of the Meteosat

temperatures. Similarly, Jin and Dickinson (2010) have studied the differences in the

diurnal cycles of LST and Tair over a single site. Some studies (Florio et al., 2004) have
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used several statistical approaches that combined a simple AVHRR Spilt-Window

Technique(SWT) with ground meteorological station measurements in the prediction

of Tair. Other studies (Wloczyk et al., 2011) have used the Landsat LST data to derive

Tair. They have attempted to assign the satellite-derived Tair to a certain height above

the ground and have investigated the possibility of a simple correction for reference

height. They also considered the link between Tair spatial pattern and the window-size

of the Landsat LST pixels. Xu et al. (2012) used four empirical regression models to

estimate the relationship between Tair measurements and the MODIS-Aqua LST and

found different relationships between the two different LC types in their study. They

also assessed the effect of the MODIS LST window-size on the agreement between

the two variables and found that spatial averaging over multiple pixels improves the

accuracy of Tair estimates. Zaksek and Schroedter-Homscheidt (2009) reviewed the

types of methods commonly used to estimate Tair based on LST, dividing them into

three distinct groups which are explained in the introduction chapter but most of the

previous researches have focused on daily estimations or instantaneous Tair. The TVX

method has been widely used for Tair estimation. Czajkowski et al. (2000) estimated

Tavg for a weekly period with associated RMSE between 1.72 and 3.48°C and R2=0.64.

Stisen et al. (2007) and Prihodko and Goward (1997) estimated Tair with RMSE higher

than 2.5°C and R2 between 0.64 and 0.86. Cresswell et al. (1999) used a statistical

method to derive instantaneous Tair with an associated RMSE below 3°C for more

than 70% of the sampled data. Zaksek and Schroedter-Homscheidt (2009) used

a more sophisticated method, which was based on the energy balance to estimate

instantaneous Tair with an RMSE of 2°C. Vancutsem et al. (2010) used 1 km MODIS

data to estimate weekly Tmin and Tmax. They reported correlations between LST and

Tmin ranging from 0.01 to 0.96 for several stations and Tmax was estimated with an

R2=0.92 and RMSE=1.83°C. Moreover, in previous studies, several variables were

employed to estimate air temperature. For example, the variables used by Benali et

al. (2012) included LST, Julian Day, elevation, and the distance to coast. Benali et al.

(2012) used both weekly daytime LST data (LSTday) and night-time LST data (LSTnight)

to estimate the average, maximum and minimum weekly temperature. They found that

there was a higher correlation between average weekly temperature and averaged

weekly LSTnight, which indicates the potential of LSTnight in estimating averaged weekly

temperature. The variables used by Kim and Han (2013) included LST, NDVI, altitude,

and solar zenith angle. The variables used by Cristóbal, Ninyerola and Pons (2008)

included LST, NDVI, and albedo. The variables used by Zakšek and Schroedter-

Homscheidt (2009) included LST, NDVI, solar zenith, albedo, solar radiation, and

altitude. After comprehensive consideration of these variables, twelve variables were

selected as the predictors for the modelling of air temperature during the day and night-

time: LST, NDVI, Julian day, latitude, longitude, Emissivity31, Emissivity32, altitude,

albedo, wind speed, wind direction and air pressure. First, this research presents the

comparison of state-of-the-art remote sensing-based LST data from MODIS with Tair
for the six LC/LU. Within this study, we compared the relationship between Tair and the

Four LST products of MODIS over Berlin. In the other word, the aim of this research is

to analyse the agreement between LST from MODIS Terra and Aqua and Tair for the

period of 2007 to 2013 based on different land cover classes, and then to investigate
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the spatial variability of LST and Tair relationship by applying a varying window size

on the MODIS LST grid based on different land cover classes. The comparison is

done by using statistical parameters such as the correlation coefficient, the slope

and the intercept with the y-axis of the regression line, mean bias error (MBE), and

normalized mean bias also known as bias. The MBE is calculated by the difference

between LST and Tair divided by the amount of observed time steps. If the MBE is

positive, the LST detects warmer temperatures than the measured Tair, and vice versa

(Hachem et al., 2012). Secondly, the main objective of this study was to develop a

simplified parametrization model for estimating Tair during the day and night-time from

MODIS LST products and auxiliary data over Berlin for different land cover types, using

Adaptive neuro fuzzy system (ANFIS), artificial neural network (ANN) and support

vector machine (SVR). The accuracy of these models were assessed by a comparison

of the observed air temperature data from weather stations and the cross validation

(CV) approach, in order to find the best model with high accuracy during the day and

night-time. The errors associated with Tair estimation based on remote sensing data

are often large and strongly limit its applicability (e.g. Czajkowski et al., 2000; Vazquez

et al., 1997; Vogt et al., 1997). One of the objectives of this work is to provide Tair
estimations with an accuracy, which will potentiate the future applications. Moreover,

tuning the hyper parameters of some models like SVR and ANN were investigated.

To select the hyper parameters of SVR, Simulated Annealing (SA) was applied and

a multiple-layer feed-forward (MLF) neural networks with three layers and different

nodes in hidden layers are used with Levenberg–Marquardt back-propagation (LM-

BP) in order to achieve higher accuracy in the estimation of Tair during the day and

night-time over six LC/LU.

4.2 Methods

4.2.1 The Relationship between Observed Tair and the Four LST

Products over Berlin

The influence of the time of observation on the estimation of Tair has been studied and

discussed in several studies, which resulted in different conclusions. Benali et al.(2012)

stated that the use of both aqua LSTday and LSTnight could improve the estimation of

Tday and Tnight( Tday and Tnight are not the maximum and minimum temperature of a

day and night-time) respectively, because the MODIS Aqua overpass time is closer

to the time of both Tday and Tnight than Terra’s. In contrast, Zhu et al. (2013)showed

that both terra LSTday and LSTnight were better than aqua LSTday and LSTnight for Tair
estimations in Xiangride River basin of China. In another study, Mostovoy et al. (2006)

found that the difference between the satellite overpass (Terra and Aqua) had little

impact on the estimation accuracy of Tair.
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4.2.2 Temporal matching of Tair to LST observations

The temporal frequency of the MODIS LST L3 product is four observations per day

(Terra passes over the equator at approximately 10:30 am, 10:30 pm each day, Aqua

satellite passes over the equator at approximately 1:30 pm and 1:30 am) in cloud free

conditions, which are derived from a composite of several MODIS overpasses with

different view angles (Wan 1999; Zhu et al., 2013). Depending on the local longitude

(which results in changes in the sensor’s viewing angle) and latitude, the local solar

observation times at each pixel can vary up to 120 minutes or more over a repeating

cycle (16 days) of the MODIS twin sensors (Figure 4.1). Other than that, overpass

times do not follow a regular period during the day and over the sensor’s repeat cycle.

On the other hand, Tair data from the weather stations are provided at an hourly and

by the minute frequency in Berlin in standard time (MEZ and UTC). This complicates

the matching of the MODIS observation times with Tair time-series. To overcome this

issue, for those stations that are in minute temporal resolution, we only need to convert

from MEZ to UTC, but for other stations that are in hourly temporal resolution, a linear

equation was considered for the synchronizing of Tair with LST form HDF file. For the

creation of a data set using during the day and night-time for each LC/LU separately,

we need to consider the overpass time of MODIS over Berlin. Another point is that

the data has a significant number of missing points due to clouds in our study area,

therefore, in order to increase the maximum of usable observations, as did Alcantara

et al. (2013) in his research, the Terra and Aqua data were considered. As shown in

figure 4.1, the LST day from Terra and aqua in descending and ascending orbit were

considered as a daytime series, respectively and only Terra in ascending orbit was

considered as night-time series because of higher correlation which was observed

between LST and Tair in this time.

4.2.3 Day/Night analysis

Apart from spatial variations, the observation time can affect the relationship between

LST and Tair time-series. To identify any variability in LST and Tair relationship in a

diurnal basis, time-series of both variables were separated, based on the MODIS

overpass times to produce four series over a single pixel window from MODIS-Terra

and MODIS-Aqua day and night overpasses (four in total) were used in this analysis.

4.2.4 Statistical methods

A simple linear relationship is often assumed between LST and Tair in literature (Brunel

1989; Mostovoy et al., 2006). In view of this, a univariate linear regression analysis

with the MODIS LST as the independent (or explanatory) and Tair as the dependent

variable was applied to analyse LST and Tair relationship. The correlation coefficient,

r, is considered as a quantitative measure to evaluate the strength of the agreement

between LST and Tair time series in different steps of the analysis. Significance levels
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(p-values) are reported in the results to express how unlikely the given r values would

occur if no relationship between the explanatory and response variables did exist.

The smaller the p-level is, the more significant the relationship. Moreover, two other

statistical measurements such as RMSD and Normalized mean Bias (Bias), were

considered as following:

Normalizedmeanbias =
∑n

i=1(M − O)∑n
i=1(O) (4.1)

Where n is the numbers of data, M is LST value and O is the temperature.

4.3 Theory and Methodology

In this section, a brief overview of SVR, Simulated annealing (SA), ANN and ANFIS

will be discussed. In addition, the theoretical concepts for selecting input parameters

were explained.

4.3.1 Support Vector Regression

Support vector machine (SVM) is a very promising artificial intelligence method applied

extensively for solving the classification problems. Support Vector Regression (SVR)

method is derived from the SVM, which is a powerful technique to solve a non-linear

regression problem, but it has received less attention, due to the fact that SVR algorithm

is sensitive to users’ defined free parameters. The involved hyper parameters of the

SVR model consist of penalty parameter C, insensitive loss function parameter ε, and
the parameter σ for kernel function. The penalty parameter C control the degree of

punishing the samples whose errors go beyond the given value. The value of ε can
enhance the generalization capability; with the increase of ε, the number of support
vectors will decrease, and the algorithmic computation complexity will also reduce.

The bandwidth σ of the kernel function has a great influence on the performance of the

learning machine. Recently, a number of new algorithms like genetic algorithm, grid

search optimizing, cross-validation and particle swarm optimization (PSO) have been

proposed for the optimization of the SVR parameters (Sartakhti et al., 2011; Ustün et

al., 2005; Wang et al., 2016; Chen and Wang (2007); Hu et al., 2010; Keerthi 2002;

Ito and Nakano (2005))but in this study, Simulated Annealing (SA) as an optimization

method, was considered because inappropriate parameters in SVR can lead to over-

fitting or under fitting problems and they greatly influence the regression accuracy

and computation complexity of SVR(Schölkopf and Smola 1998). The RBF was

applied in the study, which has the ability to universally approximate any distribution

in the feature space. With an appropriate parameter, RBF usually provides a better

estimation performance. Moreover, the basic SVR concept is concisely described

in the research of Cristianini and Taylor 2000; Smola and Schölkopf 2004; Ito and

Nakano 2005; Keerthi 2002).
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4.3.2 Simulated Annealing Optimization Method

Simulated annealing is a local search algorithm capable of escaping from local optima.

Its ease of implementation and convergence properties and its use of hill climbing

moves to escape local optima have made it a popular technique over the past two

decades. Survey articles that provide a good overview of simulated annealing’s

theoretical development and domains of application include (Eglese 1990; Fleischer

1995; Henderson et al., 2003; Koulamas et al., 1994; Romeo et al., 1991; Anily and

Federgruen (1987); Suman and Kumar (2006); Abramson et al., 1999; Ben-Ameur

2004; Aarts and Korst (1989); van Laarhoven and Aarts (1988); Aarts and Lenstra

(1997)). This study proposed SA-based approach for parameter tuning in the SVR.

For convenience, the SVR model with SA is referred to as a SA-SVR method. The

idea is to find the parameters that minimize the generalization error of the algorithm at

hand. This error can be estimated on some data which has not been used for learning.

To achieve this aim, the three basic decision variables as mentioned before must be

tuned in proper manner. We propose here a methodology for automatically tuning

multiple parameters for the SVR. The process of SA-SVR algorithm approach is briefly

summarized as follows:

Algorithm: Simulated Annealing Algorithm:

1 Step 1:

Solution space X

Object function F

Neighbourhood structure N

2 Step 2:

Current = An initial solution, among all possible state (X)

S-optimal=Current

T0=INFINITY

T=T0

Iteration=MAX-Iter

Epoch=1

Select temperature reduction function alpha, 0.8 ≤ alpha ≤ 0.99

3 Step 3: Repeat

Next= randomly selected from N (Current)

4F = F (Next) – F (Current)

If 4F > 0 Then

Current = Next
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Else

r=rand(0, 1)

if r < e( −4F
T

) Then Current=Next

Until Epoch <= Iteration

T = alpha ∗ T

If F [Current] < F [ S-optimal] Then S-optimal =Current

Until stop condition is met

4 Step 4: Return S-optimal as an approximation to the global minimum solution

The proposed parameter values of SA-SVR approach were set as follows: Iteration =

200, T0 was set to a sufficiently large number, while the set of hyper parameters are

initialized in the given range as following:C ∈ [0, 10000] , σ2 ∈ [0, 2] , and ε ∈ [0, 0.0001].
Where optimization method (SA) is to seek the global optimal solutions. The best

solution among these possible solutions is then selected as the optimal solution in the

SA-SVR. According to research of Ustün and Melssen (2005), the general range of C,

σ2, and ε has been considered.

4.3.3 Adaptive Neuro-Fuzzy Inference System

An ANFIS is a combination of an adaptive ANN and a fuzzy inference system (FIS).

The parameters of the FIS are determined by the neural network learning algorithms.

Since this system is based on the FIS, reflecting amazing knowledge, an important

aspect is that the system should be always interpretable in terms of fuzzy IF-THEN

rules (Abraham. 2005). ANFIS can approximate any real continuous function on a

compact set of parameters to any degree of accuracy (Jang et al., 1997; Jang and

Shing (1991, 1993)). ANFIS identifies a set of parameters through a hybrid learning

rule combining back propagation gradient descent error digestion and a least-squared

error method. There are mainly two approaches for fuzzy inference systems, namely

the approaches of Mamdani (Mamdani and Assilian, 1975) and Sugeno (Sugeno and

Tanaka 1992; Takagi and Sugeno, 1985). The differences between the two approaches

arise from the consequent part where Mamdani’s approach uses fuzzy membership

functions, while linear or constant functions are used in Sugeno’s approach. The

neuro-fuzzy model used in this study implements the Sugeno’s fuzzy approach with

input variables and air temperature values as output variable. More information about

ANFIS theory, can be found in the study of Jang (1993) and Jang et al., (1997). Here,

ANFIS was considered as a universal estimator (Jang, Sun and Mizutani 1997).

Forough Marzban, Estimation of near-surface Air temperature during day and

night-time from MODIS over Different LC/LU Using machine learning methods in

Berlin, 2020

41



4 Estimation of the Near-surface Air Temperature during the Day and Night-time from

MODIS in Berlin, Germany

4.3.4 Artificial Neural Network

Artificial neural network models are universal approximations with the ability to gener-

alize through learning non-linear relationships between provided variables of input(s)

and output(s) (Hájek and Olej 2012). ANN are organized and interconnected collec-

tions of processing units (neurons or nodes), whose operation is analogue to a neural

structure (Müller and Fill (2003)). ANN extract its computational power from its solid

parallel distribution structure and ability to learn/generalize, allowing the resolution of

complex propositions in many known areas (Haykin 2001). ANN execution is inspired

on the human brain (Haykin 2001) and has been used in many applications with

success. In agreement with Galvão et al. (1999), by the reason of its non-linear

structure, the ANN can acquire more complex data characteristics, which are not

always possible using traditional statistical techniques (Maier et al., 2010; Razavi and

Tolson 2011). ANN is a robust computational technique which is primarily used for

pattern recognition, classification, and prediction (Bose and Liang, 1996; Haykin 1999;

Panchal et al., 2011). The use of ANNs in meteorological applications includes the

prediction of ozone concentration, sulfur dioxide concentration, tornadoes, storms,

solar radiation, carbon dioxide, pollutants, and monsoon rainfall (Gardner and Dorling

1998), monthly and year precipitation levels (Bodri and Cermak 2000), tide charts

(Steidley et al., 2005), wave heights (Wedge et al., 2005), flash floods (Luk et al.,

2000), and air temperature (Jain et al., 2003; Smith et al., 2006; Maqsood et al., 2004;

Abdel-Aal 2004), estimation of dew point temperature (Mittal and Zhang 2003; Shank

et al., 2008). Bilgili and Sahin (2010) used ANN for predicting long-term monthly tem-

perature and rainfall in Turkey. Kisi and Shiri (2011) introduced new hybrid wavelet-AI

models for precipitation forecasting. Smith et al. (2005) developed an enhanced ANN

for air temperature prediction by including information on seasonality and modifying

parameters of an existing ANN model.

4.3.4.1 Determining hidden node

Many researchers put their best effort in analysing the solution to the problem that

how many neurons are kept in hidden layers in order to get the best results (Rivals I.

and Personnaz L. 2000; F. Fnaiech.et al., 2001; Kortmann-Unbehauen 1988; Onoda

1995; Md.Islam and Murase (2001); Asthana and Bhujade (2011); Kazuhiro Shinike

2010; Doukim et al., 2010; Yuan et al., 2003; Wu and Hong 2010; Panchal et al., 2011;

Hunter et al., 2012; Shuxiang et al., 2008; Ke and Liu (2008)), but unfortunately no

one succeeded in finding the optimal formula for calculating the number of neurons

that the neural network training time can be reduced and also accuracy in determining

the target output can be increased. Usually some rule-of-thumb methods are used for

determining the number of neurons in the hidden nodes.

I The number of hidden layer neurons are 2/3 (or 70% to 90%) of the size of the

input layered. If this is insufficient then the number of output layer neurons can be

added later on (Boger and Guterman 1997).
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I The number of hidden layer neurons should be less than twice of the number of

neurons in input layer (Berry and Linoff 1997).

I The size of the hidden layer neurons is between the input layer size and the output

layer size (Blum 1992).

But the above three methods are not considered to be always true because not only

the input layer and the output layer decide the size of the hidden layer neurons, but also

the complexity of the activation function applied on the neurons, the neural network

architecture, the training algorithm, and most important the training samples of the

database on which the neural network is designed to execute. In this work, we decided

to use the cross-validating approach in the 3-layers MLP in the following simulations,

in order to select the number of hidden nodes in the second layer. The 3-layer MLP

with an input layer, one hidden layer with non-linear transfer functions and an output

layer with linear transfer functions and Back Propagation (BP as training algorithm) is

considered. Moreover, in order to have a configuration that minimizes the RMSE in

the test phase while keeping an eye on over fitting and the train set error.

4.3.5 Theoretical concepts for selecting input parameters

Physical processes control the spatial and temporal variation in temperature. LST is a

function of incoming solar radiation, cooling factor by wind, land cover, temperature

inversion and other effects at some regions in space and time. The temperature

patterns differ between day and night-time while during the night-time temperature

patterns are mainly determined by air humidity, land cover and proximity to water

bodies and/or soil moisture (van Leeuwen et al., 2011). In urban and industrial areas,

temperature is often locally higher due to heat emissions from industrial activities

or heating (see e.g. Cheval and Dumitrescu 2009). Moreover, near-surface air

temperature is driven more by land surface temperature than by direct solar radiation

(Zaksek and Schroedter-Homscheidt 2009), which making LST an important variable

for estimating Tair. Other parameters, such as vegetation cover, soil moisture, solar

radiation, and albedo also have some influence on air temperature. In previous

studies, several variables were employed to estimate air temperature. For example,

Kim and Han (2013)applied LST, NDVI, altitude, and solar zenith angle. The variables

used by Cristóbal, Ninyerola, and Pons (2008) included LST, NDVI, and albedo.

Benali et al. (2012) used LST, Julian Day, elevation, and distance to coast. The

variables used by Zakšek and Schroedter-Homscheidt (2009) included LST, NDVI,

solar zenith, albedo, solar radiation, and altitude. After comprehensive consideration

of these variables, twelve variables were selected as the predictors for modelling

air temperature: LST, NDVI, latitude, longitude, altitude, albedo, wind speed, wind

direction, emissivity31, emissivity32, relative humidity and Julian day. The reasons for

selecting these variables as input to our model for estimating the air temperature are

summarized as follows:
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I The latitude, longitude and elevation were selected as an input parameter to model

because the incoming solar radiation can be globally derived as a function of this

factors. Moreover, latitude, longitudes and elevation are always the underlying

effect relative to temperature (Zhao and Cheng, 2005, Samanta, et al., 2012, Stahl

et al., 2006.

I Emissivity is important, because all objects at temperatures above absolute zero

emit thermal radiation. However, for any particular wavelength and temperature the

amount of thermal radiation emitted depends on the emissivity of the object’s surface.

Emissivity is defined as the ratio of the energy radiated from a material’s surface to

that radiated from a black-body (a perfect emitter) at the same temperature and

wavelength and under the same viewing conditions. The emissivity of a surface

depends not only on the material but also on the nature of the surface. The

emissivity also depends on the temperature of the surface as well as wavelength

and angle. Knowledge of surface emissivity is important both for accurate non-

contact temperature measurement and for heat transfer calculations. Moreover,

Surface emissivity is a measure of inherent efficiency of the surface in converting

heat energy into radiant energy above the surface (Sobrino et al., 2001). Therefore,

land surface emissivity is critical for determining the thermal radiation of the land

surface (Caselles et al., 1995). The emissivity of a surface is controlled by some

factors such as water content, chemical composition, structure, roughness, and

the observation conditions (i.e. wavelength, pixel resolution and observation angle)

(Snyder et al., 1998). For these reasons, in our study, due to considering six

different LC/LU, the land surface emissivity also considered as an input parameter.

I LST is the radiative temperature of the land surface (Ghent et al., 2010)which

is influenced by albedo, vegetation cover and soil moisture (Land Surface Tem-

perature | Copernicus Global Land Service). The surface can include snow and

ice, bare soil, grass, or the roofs of buildings (Land Surface Temperature: Global

Maps, 2016. Available on-line). Near-surface air temperature is a measurement

of the average kinetic energy of the air near the surface of the Earth (Near Sur-

face Air Temperature—GES DISC-Goddard Earth Sciences Data and Information

Services Center, 2016). Usually LST is measured by remote sensing whereas air

temperature is measured 1–2 m above the ground. Near-surface air temperature

is a consequence of complex effects of the turbulent heat transports produced by

nearby heated surfaces (Unger, et al., 2009). The advantage of using MODIS LST

is that, they account for small differences in temperature that are due to different

land cover, moisture content which cannot model with constant physical parameters

such as elevation, latitude, longitudes.

I The Julian day is proxies for the fraction of solar energy absorption during the day

and emission during the night, influencing the diurnal amplitude of Tair throughout

the year. The Julian day included the information of vegetation cover changes with

seasons.

I The NDVI and Albedo reflect the seasonal variation of land cover.
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I The Relative humidity (RH) is the ratio of the partial pressure of water vapour to

the equilibrium vapor pressure of water at a given temperature. Relative humidity

depends on temperature and the pressure of the system of interest. It requires

less water vapour to attain high relative humidity at low temperatures; more water

vapour is required to attain high relative humidity in warm or hot air. (Perry, R.H.

and Green, D.W, Perry’s Chemical Engineers’ Handbook, McGraw-Hill).

I Moreover, Seasonal variation in some parameters such as relative humidity, wind

speed, wind direction and air pressure contribute to explaining seasonal variation

air temperature over six LC/LU.

I The MODIS LST can be used to improve spatial prediction of ground-measured

values.

4.3.6 Assess predictive performance of models

In a real application, cross-validation is a model assessment technique (Allen 1974;

Stone 1974; Geisser 1975) used to evaluate a machine learning algorithm’s perfor-

mance in making predictions on new datasets which has not been trained on. This

is done by partitioning a dataset and using a subset to train the algorithm and the

remaining data for testing. Because cross-validation does not use all of the data to

build a model, it is a commonly used method to prevent over fitting during training.

Each round of cross-validation involves, randomly partitioning the original dataset into

a training set and a testing set. The training set is then used to train a supervised

learning algorithm and the testing set is used to evaluate its performance. This process

is repeated several times and the average cross-validation error is used as a perfor-

mance indicator (Hastie et al., 2009; Yang 2007b). Common CV techniques include,

k-fold, holdout, leave-out, repeated random sub-sampling, Stratify, Substituting. In

this work, we apply K-fold CV (with k=4) techniques, to test how well our model can

be trained by some data and then to estimate the data it hasn’t seen before and then

to select the best model.

4.3.7 Data normalization

Before computing, data of both input and output variables were normalized. In this

study, data of all variables used were normalized into the range [0,1] with:

Xnorm = (X i − Xmin)
(Xmax − Xmin)

(4.2)

where Xnorm is the normalized value, Xi is the original value, and Xmax and Xmin are

the maximum and minimum values out of the sample of Xi. This was due to the

eliminating influence of different dimensions of data and to the avoidance of overflows

of the model during calculations, as a result of very large or small weights towards
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a maximization of model parsimony with considering computational effort. After the

computation, output values were transformed back to the real prediction data.

4.3.8 Model calibration and validation

Cross-validation was used to evaluate the generalizability of a model for estimating the

air temperature with the LST data. The observations were randomly divided into two

parts. 70% of the observations were used for model calibration, and the rest were used

as test dataset for model validation. The accuracy of the estimated air temperature

obtained from three estimating models, ANFIS, NN and SA-SVR, have been assessed

by a set of statistic measures, including: Root Mean-square Error (RMSE), coefficient

of determination R-squared (R2), Mean Bias Error (MBE) and Mean Absolute Error

(MAE), respectively. The RMSE (was mainly used in the development process of

the model and represents residual errors, which gives a global perspective of the

differences between the observed and estimated values (Sousa et al. 2007; Zheng

et al. 2013; Willmott et al. 2005). The RMSD is calculated similarly to RMSE. This

goodness of fit criteria are expressed as following equations:

R =
∑M

i=1(Oi − O)(S i − S)√∑M
i=1(Oi − O)2

√∑M
i=1(S i − S)2

(4.3)

MBE = 1
M

M∑
i=1

(Oi − S i) (4.4)

MAE = 1
M

M∑
i=1

|(Oi − S i) (4.5)

RMSE =

√√√√ 1
M

M∑
i=1

(Oi − S i)2 (4.6)

where, M is the total number of the observation data, O and S are the average of the

observed and estimated T2m, and Oi and Si are the observed and estimated T2m of the

ith data, respectively. In addition, graphical goodness-of-fit criteria such as quantile-

quantile (Q-Q) diagram, bar plot of RMSE in train and test phases were applied for the

comprehensive evaluation of simulation results. Although, the R2 criteria is a measure

of goodness-of-fit of the model and higher values are indicative that the predictive

model fits the data in a better way. By definition, R2 is the proportional measure of

variance of one variable that can be predicted from the other variable. Thus, ideally

the values of R2 to approach one is always desirable. However, a high R2 tells you

that the curve came very close to the points, but in reality, it does not always indicate

the model quality (Maddala 2001). In order to have a reliable statistical comparison

between the models, both the MAE and RMSE can be used together to ascertain the
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variation in errors in a given set of estimation. It should be noted that in MAE, all the

individual errors have equal weight on the average, making it a linear score, but the

RMSE has a quadratic error rule, where the errors are squared before being averaged.

As a result, a relatively high weight is given to large errors. This could be useful when

large errors are undesirable in a statistical model (Chai and Draxler (2014); Armstrong

2002).

4.4 Results and discussion

4.4.1 MODIS LST versus Tair time-series over a single pixel

Before analysing the effects of MODIS window size, the daily variability of LST and Tair
relationship was examined by using separate LST series (over 1x1 window) (Diurnal

differences). In this section, LST series used in this analysis is a composite time series

which includes four daily LST observations (except for cloudy days) from both the

MODIS Terra and Aqua day and night overpasses (approximately at 1:30, 10:30, 13:30,

22:30) supplied in the LST L3 product. The comparison between MODIS LST data

and the Tair observations shows that LSTday and LSTnight from both Terra and Aqua,

with the mean relative bias above and under zero tended to overestimate Tday and

underestimate Tnight according to Tables(4.3 - 4.5)respectively which is in agreement

with Cresswell et al. (1999) result. As shown in the table, a higher relative RMSD

and bias values were seen for the Aqua LSTdaytime than the Terra LSTdaytime which

might be given to the fact that more solar radiation has been received at the time of

the Aqua MODIS overpass later in the day. Considering the scatter-plots of LSTnight
and Tnight from Aqua for the industrial LC type, has higher scattering than daytime

observations which are more spread around the 1:1 line (fig.4.5). This indicates the

urban heat island (UHI) phenomena with RMSD=4.21°C. Both Aqua and Terra LSTnight
underestimated the Tnight as well except for forest. Moreover, according to RMSD from

Tables(4.3-4.5) and MODIS LST from Terra, a higher RMSDs is found for industrial and

airport LC types during night time which indicates the UHI phenomena (with RMSD=

4.57°C and 4.32°C respectively). Moreover Tables(4.1-4.3) show that, correlations

between the MODIS LST from Terra data are generally stronger from the daytime

series compared with those from the night series, except for needle leaf trees. The

needle leaf tree type showed more complex correlation patterns from day and night

observations. The possible reason for this, is that the values of LST recorded by

MODIS observation on this particular LC type is not exactly a representative of the skin

temperature of the soil, but rather affected by the temperature near the top of the trees

(canopy temperature). In addition, LST and Tair are correlated to a certain degree,

with some drawbacks depending on factors, such as land cover type (Jin et al., 2010,

Mildrexler et al., 2011). In general, figures (4.2-4.7) show that the time-series of the

MODIS LST over six LU/ LC classes were correlated individually during the day and

night-time. They are highly correlated with R2 > 0.80. Moreover, figures (4.3-4.7)show

that, during the warm months the LSTday is higher than Tday due to strong radiation,
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while as expected during the cold months LSTday is lower than Tday for almost all

LC/LU. Moreover, almost for all LC/LU, the LSTnight is close to Tnight. As due to long

wave, radiation from surface LST and Tair at night are closer. Both the Terra and Aqua

LST products were compared with the ground-based Tair as shown in the figure (4.8)

and (4.9), the night-time LST datasets (MODnight and MYDnight) and the observed Tair
are more linearly concentrated along the fitting line than the daytime datasets. Strong

correlations were observed between the night-time LST and Tnight with minimal bias

(0.81< R2 <0.89, RMSE < 4.80 and MBE < 2.91°C). Specifically, the MYDnight tends

to be more accurate for the estimation of Tair with lower intercepts, smaller RMSD

and MBE than MODnight. For Tday, the MYDday had good agreement than MODday

with lower intercept. This is most likely because the Aqua overpass time (1:30 the

time when maximum temperature was recorded). However, LST from Aqua and Terra

seems to be best for estimation of Tday among the LST products. To sum up, the

relationship between LST and Tair may vary with time and location because the land

surface energy balance is a complex phenomenon that depends on multiple factors

(e.g., cloud cover, surface roughness, wind speed and soil moisture). In addition, the

LST and Tair are different in principle. The satellite remotely sensed LST is a measure

of the surface radiation. LST was calculated from the emissivity’s surface, which is

sensitive to LC, especially during daytime and another reason is the heat capacity

or specific heat of LC. However, the specific heat varies significantly from one LC to

another. The variation of the difference between LSTday and Tday may be due to the

different heat capacities or specific heats of LC types. The heat capacity changes

with temperature, which may result in different relations at the different times even

over the same LC. Our results showed that the MODIS LST correlates best with Tair
measurement during the daytime. To some extent, this outcome was contradictory to

the other works in the literature (e.g., Zhang et al., 2011a; Benali et al., 2012) where

they have reported a stronger correlation at night-time compared to daytime. It must

be noted, though, that Benali et al. (2012) used MODIS-Terra but not MODIS-Aqua

observations. Variations in the MODIS, overpasses time in its 16-day repeated cycle

which enabled us to reconstruct the diurnal LST profile over a 7-year period. Although,

many studies have shown a higher agreement between LST and Tair at night (Zhang

et al. 2011a; Benali et al. 2012), this is not the case for all hours of the day or night.

During some hours of the night the LST-Tair relationship is weaker than some hours

during the day. These differences could be understood, as not only being the time of

observation, but also geographical location affecting the relationship between LST

product and Tair and therefore, affecting the accuracy estimation of Tair based on LST

products.

4.4.2 Multiple LST window size

The relationship between the observed Tnight – Tday and LST is not limited to a single

pixel, because the temperature of the near-surface air mass in a given area, is

influenced by many factors such as energy exchanges with the land surface over

a larger area. On the other hand, the Tair is impressed by both the local radiation
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budget and air advection from the surrounding areas, thus, for better understanding

of the spatial variability in LST-Tair relationship, a spatial window with a varying size

is examined to discover the optimal spatial extent over which LST agrees best with

the Tair measurements. To describe the effects of LST window-size on the LST and

Tair relationship better, firstly, the time-series of LST from a single pixel (1x1 window

size) overlapping each weather station were retrieved from the MODIS LST grid and

then the LST of 3x3, 5x5, 7x7, 9x9, 11x11, 13x13 and 15x15 pixels were generated,

respectively. Secondly, to determine the proper spatial window size for estimating air

temperature, correlation coefficient analysis was made for different LC/LU. As shown

in figure (4.10), the correlations were improved very slightly when the window size

was increased from 1 to 3 pixels for daytime. The highest correlation values were

achieved with 3x3 window for all LC/LU during the daytime and at the 1x1 during the

night-time. Significance levels of all correlations were found to be at ∝= 0.01 which
can be interpreted from p-values (all p-values <0.01). According to these results,

the window size was selected for all LC/LU prior to model development for day and

night-time data set.

4.4.3 Discussion

Three different methods namely SA-SVR, ANN and ANFIS were employed to estimate

Tair during the day and night-time in Berlin by using the twelve variables as predictors.

The performance of the three models was assessed using cross-validation with k=4

fold over different LC/LU during the day and night-time. All samples from each LC/LU

were used in turn as the validation data set to test the model, while the remaining

samples were used as the training data set to fit the model. RMSE, R2, MBE and

MAE were calculated from the measured and estimated Tair values to assess model

performance. As shown in tables (4.4-4.9), ANN model with three layers structure,

has higher adjusted R2 value ranged from 0.93 to 0.97, RMSE ranged from 1.83°C

to 2.53°C and MAE ranged from 1.53°C to 1.94°C in test phases for all LC/LU for

estimating Tday. The results showed that all models have similar capability in the

training phase for estimating Tnight but the ANN has a higher adjusted R2 which ranged

from 0.89 to 0.93, RMSE and ranged from 2.13°C to 2.35°C and also MAE ranged

from 1.54°C to 1.84°C values in the test phase in comparison to ANFIS and SA-SVR.

The bar plots of RMSE for the three methods on testing data for each LC/LU are shown

in figures (4.11) to (4.13), respectively. As shown in Tables(4.3-4.8)and figures(4.11)

to (4.13), the three models SA-SVR, ANFIS and ANN have satisfactory been able to

capture the relationship between the process variables. The bar plots depicted the

performance of the ANN model on the testing data which was better than those of

ANFIS and SA-SVR models for the whole of LC/LU during the day and night-time, but

again we applied a CV approach to assess the model’s performance in the test phase

for the three mentioned models. As can be seen from figure 4.14 (b), the SA-SVR and

ANN models are more robust and stable than ANFIS model regarding their SD values

(ranged from 0.03 to 0.08) during the day and night-time and we can say that, these

two models are more reliable than the ANFIS model. Moreover, in order to find the
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optimum number of neurons in hidden layer, various numbers of neurons are used

in the MLP and the optimum number of hidden neurons is determined using the CV

approach to get the configuration that minimizes the RMSE in the test phase. Figure

4.14 (a) shows that after a certain number of hidden neurons are added, the model

will start over fitting our data and give bad estimates on the test set. This indicates

that over fitting starts to occur when the number of neurons is greater than 30, and

in this point the model has lowest RMSE, and obviously we can conclude that the

optimal number of hidden neurons should be 30, but if we consider the error bar which

is the indicator of standard deviation, the less variation was observed at point 40,

and then we can say that the model is more stable at this point as compared to point

30 (which is the number of neurons). Moreover, figure 4.15 shows Q-Q diagram of

SA-SVR (left), ANFIS (middle) and ANN (right) models. Q-Q diagrams are often used

to determine whether the model could extract the behaviour of the observed data

(Chambers et al., 1983). As shown in figure 4.15, the models cannot estimate the

high temperature for all LC/LU during the day and night-time. The weak performance

of all models at high temperature are a consequence of a small numbers of data in

these temperatures, and this is also highly related to the study area condition (Berlin)

which has a short summer and has only a few numbers of high temperatures. In these

cases, the learning algorithm of the three mentioned models have the tendency to

underestimate the temperature. Therefore, the generalization of these models for the

high temperature is reduced.

4.4.4 Conclusions

In this study, the comparison between the LST and Tair observations were done. The

comparison shows that LSTday and LSTnight from both Terra and Aqua, with the mean

relative bias above and under zero tended to overestimate Tday and underestimate

Tnight respectively. In addition, a higher relative RMSD and bias values were seen for

the Aqua LSTdaytime than the Terra LSTdaytimewhich might be given the fact that more

solar radiation has been received at the time of the Aqua MODIS overpass later in the

day. The scatter-plots of LSTnight and Tnight from Aqua for industrial LC/LU has higher

scattering than daytime observations which are more spread around the 1:1 line figure

(4.4). This indicates UHI phenomena with RMSD =4.21°C. Moreover, according to

RMSD from Tables(4.1-4.3) and MODIS LST from Terra, a higher RMSDs is found

for industrial and airport LC/LU types during the night-time which indicated the UHI

phenomena (with RMSD= 4.57°C and 4.32°C respectively). The results show that,

the correlations between the MODIS LST from Terra data are generally stronger from

the daytime series compared with those from the night-time series except for needle

leaf trees. The needle leaf tree type showed a more complex correlation pattern

from day and night observations. The reason is that the values of LST recorded by

MODIS observation on this particular LC type is not exactly a representative of the

skin temperature of the soil, but rather affected by the temperature near the top of the

trees. In general, the results showed that the time-series of the MODIS LST over six

LC/LU classes were correlated individually during the day and night-time. They are
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highly correlated with r > 0.80. Moreover, for almost all LC/LU, the LSTnight is close to

Tnight. Overall, the relationship between LST and Tair is varied with time and location

because the land surface energy balance is a complex phenomenon that depends on

multiple factors (e.g., cloud cover, surface roughness, wind speed and soil moisture).

In the other words, The LST–Tair relationship is mainly controlled by the surface energy

balance, but it also depends on factors that are closely linked to energy processes

(Prince et al., 1998; Zhang et al., 2015). Moreover, in this chapter, the air temperature

during the day and night-time in the period from 2007 to 2013 was estimated for the

Berlin area over six LC/LU, using 1 km Aqua and Terra/MODIS data. The correlation

coefficient between observed Tair and remotely sensed LST shows an increasing

trend, with a spatial window size increasing from 1 km × 1 km to 3 km × 3 km, and

subsequently decreasing slightly at window sizes larger than 3 km × 3 km for the

daytime, but for the night-time this correlation coefficient between observed Tair and

LST showed a decreasing trend, with spatial window size from 1 km × 1 km to 13 km ×

13 km, and subsequently decreasing slightly at window sizes larger than 1 km × 1 km

. These window sizes were therefore used to spatially average five satellite-derived

environmental variables, (NDVI, Albedo, Emissivity31 and Emissivity32) which were

used as predictors of Tair in the three models. In addition, a difficult task with ANN

involves choosing the hidden nodes’ number. Here, the ANN with one layer was used

and the hidden nodes’ number was determined using error and trials. For the ANFIS

model, Gaussian membership function (MF) and 250 iterations were used. Different

number of membership functions were tested and the best of which gave the minimum

RMSE and was selected, which was 4 MFs for each variable. For the adjustment, the

parameter in SVR model, the simulated annealing was applied. The ANN, ANFIs and

SA-SVR models are compared in the test phase based on Tables(4.4-4.9). The ANN

model, among the six LC/LU during the day and night-time performed better than the

two other models with RMSE which ranged from 1.83°C to 2.53°C and from 2.13°C to

2.35°C during the day and night-time, respectively. The RMSE of SA-SVR model is

ranged from 2.07 to 2.79°C during the day and night-time over six LC/LU and also the

highest RMSE was observed in the ANFIS model with a range from 2.64°C to 3.70°C

during the day and night-time over six LC/LU. These results indicated that the ANN

model out performs the SA-SVR and ANFIS models for almost whole LC/LU during

the day and night-time but based on figure (4.14) and the cross-validation results,

the SA-SVR and ANN models out performs the ANFIS model. Moreover, the results

showed that there was a high similarity between the training and testing tables, which

demonstrates that the over-fitting has not been occurred in the SA-SVR, ANFIS and

ANN. The Q-Q diagram of SA-SVR, ANFIS and ANN shows that all three models

slightly tended to underestimate and overestimate the extreme and low temperature for

all LC/LU during the day and night-time. The weak performance in the extreme and low

temperature are a consequence of a small numbers of data in these temperatures. In

these cases, the generalization of thesemodels reduces for estimating the high and low

temperature. In addition, despite moderate to high correlations between LST and Tair,

LST cannot be directly used for estimating air temperature due to the large difference in

MBE (Tables(4.1-4.3)), while by applying some additional parameters, in three models

(Tables 4.4-4.9), It can be seen that the MBE was reduced notably, in all LC/LU during
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day and night-time. Moreover, prediction of long-term monthly air temperature using

ANFIS and ANN had been done in the study of Kisi and Shiri (2014). They applied

station latitude, longitude and altitude values as input variable to predict the long-term

monthly temperature values. They found that the ANN models generally performed

better than the ANFIS model in the test period. The ANN models generally performed

better than the ANFIS model in the test period and they found that for the ANN model,

the maximum and minimum determination coefficient values were between 0.921 and

0.995. The maximum and minimum determination coefficient values were found as

0.99 and 0.876 for the ANFIS model in different stations. Testing results of the ANN

and ANFIS models in the study of Kisi and Shiri (2014) show the RMSE values range

from 0.1.53 to 4.20°C and 1.18°C to 9.25°C for each station, respectively. Furthermore,

in the study of Xu. et al. (2014), they applied spatially averaged values of LST, NDVI,

modified normalized difference water index (MNDWI), latitude, longitude, distance to

ocean, altitude, albedo and solar radiation as predictors of Tair in linear regression

and random forest models for estimating Tair in summer periods from 2003 to 2012.

In their study, prior to model development, they also investigated the window size

effect on the relationship between LST and Tair. The Cross-validation results of their

study show that the random forest model (MAE = 2.02°C, R2 = 0.74) outperforms the

linear regression model (MAE = 2.41°C, R2 = 0.64) and the distribution of residuals

from the random forest model slightly overestimates Tair, with a mean residual value

of 0.09°C. To sum up, in our study, instead of estimation monthly air temperature

and only using the geographical input data, we estimate air temperature during day

and night. Moreover, different parameters such as NDVI, Albedo, relative humidity,

wind speed, wind direction and Julian day have been taking into consideration, which

are representative of seasonal changes. The satisfactory results suggested that this

modelling approach is appropriate for estimating air temperature in Berlin over six

different LC/LU. In addition, the results indicate that MODIS time series of LST can be

successfully combined with ground measurements of temperature to produce accurate

and more detailed predications of temperature during day and night time. Although

the air temperature estimated from satellites tends to be higher than ground-based

measurement, the use of satellite remote sensing data can help to overcome the

spatial problem of estimating Tair particularly in areas with low station density using

satellite-based land surface temperature estimation and ground-based relationship

between LST and air temperature. To reduce the biases in satellite-estimated air

temperature, it can be effective to use retrieval method based on land surface heat

budget (e.g. Kato and Yamaguchi, 2005) in future work.
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Table 4.1: Statistical analyses between MODIS LST products and Tair observation from

automatic meteorological stations. MODday, MODnight , MYDday and MYDnight

are representative of MOD11A1 LSTday, MOD11A1 LSTnight, MYD11A1

LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for urban

and industrial LCT.

Dataset Urban Industrial

R2 RMSD MBE Bias R2 RMSD MBE Bias

MODday,Tday 0.88 3.72 0.256 0.015 0.86 3.69 -0.585 -0.035

MODnight,Tnight 0.87 3.63 -1.896 -0.212 0.80 4.57 -2.651 0.288

MYDday,Tday 0.87 4.22 1.574 0.093 0.86 3.81 0.239 0.013

MYDnight,Tnight 0.88 2.94 -1.500 -0.217 0.80 4.21 -2.553 -0.356

Table 4.2: Statistical analyses between MODIS LST products and Tair observation from

automatic meteorological stations. MODday, MODnight, MYDday and MYDnight

are representative of MOD11A1 LSTday, MOD11A1 LSTnight, MYD11A1

LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for agricul-

ture and needle leaf trees LCT

Dataset Agriculture Needleleaftrees

R2 RMSD MBE Bias R2 RMSD MBE Bias

MODday,Tday 0.91 2.89 -1.420 -0.084 0.85 4.21 0.490 0.028

MODnight,Tnight 0.85 3.23 -0.820 -0.117 0.87 3.61 -1.935 -0.204

MYDday,Tday 0.92 3.05 -0.222 -0.012 0.83 4.41 1.111 0.060

MYDnight,Tnight 0.85 2.83 -0.431 -0.090 0.87 3.15 -1.590 -0.213

Table 4.3: Statistical analyses between MODIS LST products and Tair observation from

automatic meteorological stations. MODday, MODnight, MYDday and MYDnight

are representative of MOD11A1 LSTday, MOD11A1 LSTnight, MYD11A1

LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for Airport

and Forest LCT

Dataset Airport Forest

R2 RMSD MBE Bias R2 RMSD MBE Bias

MODDday,Tday 0.90 3.99 1.656 0.100 0.89 4.43 2.460 0.132

MODnight,Tnight 0.86 4.32 -2.925 -0.313 0.83 3.69 0.734 0.089

MYDday,Tday 0.89 4.80 2.721 0.158 0.88 4.82 3.543 0.178

MYDnight,Tnight 0.86 3.71 -2.413 -0.329 0.88 2.85 1.157 0.181
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Table 4.4: statistic indices between estimated Tday values obtained by SA-SVR and

measured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 2.62 2 0.13 0.92

Forest 2.31 1.84 0.06 0.91

Industrial 2.79 2.12 0.09 0.91

Urban 2.46 1.89 0.13 0.92

Airport 2.41 1.87 0.02 0.92

Needleleaf trees 2.42 1.85 0.09 0.93

Table 4.5: statistic indices between estimated Tnight values obtained by SA-SVR and

measured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 2.62 1.87 0.26 0.88

Forest 2.42 1.67 0.20 0.88

Industrial 2.54 1.84 0.16 0.89

Urban 2.56 1.87 0.16 0.89

Airport 2.07 1.49 0.16 0.92

Needleleaf trees 2.28 1.61 0.18 0.91

Table 4.6: statistic indices between estimated Tday values obtained by ANFIS and

measured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 2.85 2.21 0.12 0.91

Forest 2.64 2.08 0.69 0.90

Industrial 3.70 2.78 0.17 0.88

Urban 2.74 2.03 0.35 0.90

Airport 2.75 2.08 0.36 0.90

Needleleaf trees 2.64 2.06 0.24 0.90

Table 4.7: statistic indices between estimated Tnight values obtained by ANFIS and

measured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 3.15 2.40 -0.06 0.84

Forest 1.98 1.45 -0.04 0.92

Industrial 2.68 1.91 0.19 0.88

Urban 2.38 1.72 -0.18 0.90

Airport 2.33 1.69 -0.16 0.90

Needleleaf trees 2.28 1.65 0.50 0.92

54
Forough Marzban, Estimation of near-surface Air temperature during day and

night-time from MODIS over Different LC/LU Using machine learning methods in

Berlin, 2020



4 Estimation of the Near-surface Air Temperature during the Day and Night-time from

MODIS in Berlin, Germany

Table 4.8: statistic indices between estimated Tday values obtained by ANN and mea-

sured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 2.28 1.82 0.05 0.97

Forest 1.83 1.54 -0.29 0.97

Industrial 2.53 1.94 -0.102 0.93

Urban 2.13 1.62 -0.07 0.97

Airport 2.14 1.69 -0.06 0.95

Needleleaf trees 2.08 1.57 0.14 0.95

Table 4.9: statistic indices between estimated Tnight values obtained by ANN and

measured value from meteorological station over six LCT in test phase.

LCT RMSE MAE MBE R2

Agriculture 2.15 1.59 0.16 0.90

Forest 2.15 1.54 -0.01 0.89

Industrial 2.34 1.73 0.03 0.91

Urban 2.35 1.81 -0.06 0.93

Airport 2.35 1.84 0.10 0.92

Needleleaf trees 2.13 1.55 0.06 0.92
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Figure 4.1: Average viewing times (local solar) and overpass nodes (shown as labels

and arrows), maximum variations from the mean observation times (in hour

shown by lower and upper caps of whiskers), median times (middle line),

lower (25th) and upper (75th) quartiles of all observation times (lower and

upper edges of boxes) of four overpasses of MODIS (on-board Terra and

Aqua, two overpasses each) over the study area of 7 years (2007 to 2013).

The mean local solar observation time of each overpass is subtracted from

the series (scaled to zero) but is labelled on each box.
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Figure 4.2: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night-time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

airport LCT with P-value<0.01.
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Figure 4.3: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night-time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

forest LCT with P-value<0.01.
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Figure 4.4: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night-time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

agriculture LCT with P-value<0.01.
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Figure 4.5: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

industrial LCT with P-value<0.01.
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Figure 4.6: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night-time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

needle leaf trees LCT with P-value <0.01.
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Figure 4.7: Correlations between LST and Tair time-series separated based on ap-

proximate overpass times of MODIS-Aqua, where each scatter-plot shows

MODIS-Aqua daytime (right-up) and MODIS-Aqua night time (right-down)

and also MODIS-Aqua day and night-time observations (left up and down

plots) plotted against Tair measurements at the corresponding times for

urban LCT with P-value<0.01.
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Figure 4.8: Scatter plots between observed Tair (Tday and Tnight) and LST from Four

MODIS products (MODday,MODnight, MYDday, MYDnight) which are repre-

sented for three different LC/LU. Ts is land surface temperature.

Figure 4.9: Scatter plots between observed Tair (Tday and Tnight)and LST from Four

MODIS products (MODday,MODnight, MYDday, MYDnight) which are repre-

sented for three different LC/LU. Ts is land surface temperature.
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Figure 4.10: Variation of the correlation coefficient between Tday, Tnight and LST with

the varying spatial window size over six LCT.
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Figure 4.11: Bar plot of estimated T2m versus measured temperature during day and

night-time using SA-SVR, ANFIS and NN for (a) urban and (b) Needle

leaf trees LCT.
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Figure 4.12: Bar plot of estimated T2m versus measured temperature during day and

night-time using SA-SVR, ANFIS and NN for (a) Industrial and (b) Airport

LCT.
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Figure 4.13: Bar plot of estimated T2m versus measured temperature during day and

night-time using SA-SVR, ANFIS and NN for (a) Agriculture and (b) Forest

LCT.
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Figure 4.14: These two sub-plots show the effect of K-fold cross validation (with k=4)

in three models. In sub-plot (a) x and y-axes show the average of cross

validation error (RMSE) and number of nodes in hidden layer in test-

ing phase respectively. In sub-plot (b), x and y-axes show the type of

model and the average of cross validation error (RMSE)in three models

respectively.
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Figure 4.15: Q-Q diagram of estimated T2m versus measured temperature during

daytime for Industrial LCT using SA-SVR, ANFIS and ANN in testing

phase.
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5.1 Introduction

Nowadays, due to data abundance in datasets, development of algorithms are needed

for discovering meaningful information. Depending on the data mining tasks, data

models are made in the areas of clustering, regression and classification. For two

main reasons, the pre-processing of the datasets must be done:

I Dimension reduction in dataset in order to achieve more effective analysis

I Adaptation of the dataset to best fit the selected analysis method.

Moreover, dataset size reduction can be done in one of the two ways:

I Feature set reduction

I Sample set reduction

The focus of this chapter is on feature reduction which is an important issue in data

mining, because a model over-fitting is consequence of a high number of parameters

in a dataset, comparable to or higher than the number of samples, which in turn cause

to poor results on the validation datasets. Furthermore, building a model from datasets

with many parameters is needed more computational time (Korn et al., 2011). All

this reasons motivate researchers to make an effort to work on different methods for

feature set reduction. (Korn et al., 2011).The reduction is done via:

I Feature selection

I Feature extraction

Feature extraction methods transform the original features into a new feature set

which are made from the original one that depend on their combinations, with the goal

of discovering more important information in the new set (such as Linear Discrimi-

nant Analysis (LDA), Multidimensional Scaling, and Principal Component Analysis

(PCA)(Tang et al. 2014). The new feature set can be reduced by considerings charac-

teristics such as dataset variance coverage. In this work, we focus on feature selection

and provide an overview of the existing methods that are available for handling several

different classes of problems. Generally, a feature is usually categorized as:

I Strongly relevant

I Weakly relevant, but not redundant-irrelevant

I Irrelevant
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I Redundant (Yu and H. Liu 2004, Alelyani et al., 2013

In order to have an optimal feature subset, a strongly relevant feature is always essen-

tial. Depend on specific conditions, the weakly relevant feature may be considered but

Irrelevant features are not essential to take into consideration. Redundant features are

those that are weakly relevant but can be completely used as an alternative to a set of

other features such that the target is not disturbed at all. The goal of feature selection

is to find a feature subset including of only relevant features in order to maximize

relevance and minimize redundancy(Yu and H. Liu 2004). The main objective of this

research is doing feature selection for estimating Tair during day and night time over

different LC/LU using both Terra and Aqua MODIS LST products (daytime and night-

time) and auxiliary data from 2007–2013. Two input variable selection methods were

applied because predictor selection is an essential step in environmental, biological,

industrial and climatological applications. Feature Selection helps in understanding

data, reducing computation requirement, reducing the effect of curse of dimensionality

and improving the predictor performance. Through input variable selection to elimi-

nate the irrelevant or redundant variables, a suitable subset of variables is identified.

Meanwhile, the complexity of the model structure is simplified and the computational

efficiency is improved. This work describes the procedures of the input variable selec-

tion for estimating of Tair during day and night-time from MODIS over six LC/LU types in

order to figure out which parameters, among 12 candidate parameters can described

the relationship between LST and Tair and has important effect on their relationship.

Therefore, the brute-force search or exhaustive search (ES) and greedy best first

search using artificial neural network (ANN) were applied in this study. In addition,

there are several research’s which estimated Tair using statistic approaches. Daily

minimum and maximum air temperature are estimated in the research of Shen and

Leptoukh.,2011 which considered the central and eastern Eurasia as their case study.

They had reached out to the accuracy of 2.4–3.2°C and 3.0°C (MAE) for minimum

and maximum air temperature respectively. Tair estimation was done by Vancutsem

et al.2010 on Africa and the accuracy of their model was 2.1–2.76°C (RMSE). In the

study of Xu et al., maximum temperature was estimated for Western Canada with

accuracy of 2.02 (MAE). Zeng et al.2015 was also used the statical approach for

estimating the maximum and minimum air temperature on Corn Belt over U.S and

their model was achieved the accuracy of 2.15–4.27°C and 1.75–5.13°C (RMSE) for

daily minimum and maximum air temperature respectively. Zhu et al.2013 applied

the TVX method for estimating the daily minimum and maximum air temperature on

Xiangride River Basin of China region and the accuracy of 2.97 and 3.79°C (RMSE)

were achieved by them for minimum and maximum air temperature respectively. The

M5 model tree method was applied by Emamifar et al.2016 on the south-west of Iran

and they estimated the daily mean air temperature with the accuracy of 2.3°C (RMSE).

However, most of these studies have only used LST daytime and LST night-time solely

for Tair maximum and Tair minimum estimation. In a recent study (Zeng et al 2015),

both LST night-time and daytime were used for Tair maximum and for Tair maximum

estimation.

Zaksek and Schroedter-Homscheidt (Zaksek et al. 2009) in their research have found
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that Tair is driven more by LST than by direct solar radiation, meaning that LST is

the key variable for Tair estimation. We have collected 12 variables, including LST,

emissivity31, emissivity32, Albedo, NDVI, altitude, relative humidity, latitude, wind

speed, wind direction, air pressure and Julian day, as the potential variables for Tair
estimation with reference to previous works (Vancutsem et al. 2010, Benali et al.

2012, zeng et al. 2015, Zhang et al. 2011, Jang and Viau 2004). Moreover, Elevation,

latitude were take into account for considering the variability of climatic conditions

between different regions. The Julian day and NDVI were considered because, it

reflects seasonal variation in air temperature. However, the whole process of the

feature subset selection is consists of four basic steps: 1) to generate the subset, 2) to

evaluate the subset, 3) to consider a stopping criterion, and 4) to validate the results

(Liu and Yu 2005). Dependent on the state space search method, the feature subset

will be generated. After that each generated feature subset will be evaluated using

an evaluation criterion in step 2. After repeating the steps 1 and 2 for depending on

the stopping criterion, the best feature subset will be selected, then this subset will be

validated on an unseen dataset. In order to assess, rank the feature, select the best

model through many candidate model, and find a subset of variables which improves

the overall prediction performance several criterion, such as: Root mean squared

error (RMSE), Bayesian information criterion (BIC), Akaike information Criteria (AIC)

and adjusted R-squared are considered.

5.2 Materials and Methods

5.2.1 Classification of feature selection methods

Feature selection methods can be categorized mainly into filters, wrappers, embedded,

and hybrid methods (Hoque et al., 2014, Tang et al., 2014).

A. Filter Methods
Filter methods are generally used as a preprocessing step. Filter methods can be

categorized into two categories: Univariate filter methods and multivariate filter

methods.The univariate filter methods are the type of methods where individual

features are ranked according to specific criteria and The selection of features

is independent of any machine learning algorithms. Different types of ranking

criteria which can be used for univariate filter methods have been enlisted below:

I Information gain

I Fisher score

I Variance threshold

I Chi-square test

I Correlation coefficient
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The redundant features may be selected by the univariate filter methods, because

the relationship between individual features is not considered while making

decisions and it is one of drawback of this methods but univariate filter methods

are ideal for removing constant and quasi-constant features from the data. While

the multivariate filter methods are capable of removing redundant features from

the data since because the mutual relationship between the features are taken

into account. Moreover, multivariate filter methods can be used to remove

duplicate and correlated features from the data. However, depends on tasks, the

filters are also classified into: classification, regression or clustering, because

not all the filter features can be used for all classes of data mining tasks. While

there are many filter methods but common search strategies are described

briefly in the studies of Hoque et al. 2014,. Liu and Motoda 1998, Bradley and

Mangasarian 1998, Liu and H. Motoda 1998, Maldonado et al.2014, Tang et al.

2014, Kim et al. 2002, Cortizo and Giraldez 2006, Alelyani et al. 2013, Liu et

al. 2014, Benoît et al. 2013, Alelyani et al. 2013, Guyon and Elisseeff, 2003,

Sandri and Zuccolotto 2006).

B. Wrapper Methods
In the wrappers method, feature subsets is considered by the quality of the

performance on a modelling algorithm, which is taken as a black box evaluator.

Therefore, a wrapper will evaluate subsets based on the classifier performance

for classification tasks (e.g. Naïve Bayes or SVM) (Bradley and Mangasarian,

1998; Maldonado et al., 2014), while for clustering, a wrapper will assess subsets

based on the performance of a clustering algorithm (e.g. K-means) (Kim et al.,

2002). For each subset, the evaluation is repeated, and the subset generation is

dependent on the search strategy, in the same way as with filters method. Due to

dependency on the resource demands of the modelling algorithm, wrappers are

much slower than filters in finding adequately good subsets. The feature subsets

are also biased towards the modelling algorithm on which they were evaluated

(even when using cross-validation). Therefore, for a reliable generalization

error estimate, it is necessary that both an independent validation sample and

another modelling algorithm are used after the final subset is found. On the

other hand, it has been empirically proven that wrappers obtain subsets with

better performance than filters because the subsets are evaluated using a real

modelling algorithm. Some common examples of wrapper methods are forward

feature selection, backward feature elimination, recursive feature elimination, etc.

Practically any combination of search strategy and modelling algorithm can be

used as a wrapper, but wrappers are only feasible for greedy search strategies

and fast modelling algorithms such as Naïve Bayes (Cortizo and Giraldez, 2006),

linear SVM (Liu et al., 2014), and Extreme Learning Machines (Benoit et al.,

2013).

C. Greedy Forward Search
The greedy forward selection starts with one variable in the model. In each

iteration, the variable will be added then the the classifier is evaluated with the
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new variable. The new variable is only kept if there is a notable increase in

performance and improves the model’s accuracy (Guyon and Elisseeff, 2003).

D. Exhaustive Search
In this chapter, a brute force approach is explored as decsriebed in (Guyon

and Elisseeff, 2003). This means that go through all possible combination of

parameters extensively in order to find which possible combination of features

gives the best result. In this study, the 12 features are considered, therefore,

there are 212 = 4096 different possibilities. Every single possible combination of
a dataset were taken into account for selecting the best candidate model through

the 4096-possible state.

E. Embedded and Hybrid Methods
In embedded methods, the feature selection is performed during the modelling

algorithm’s execution. Therefore, these methods are embedded either as its

normal or extended functionality, in the algorithm. Common embedded methods

are involved different types of decision tree algorithms: CART, random forest

(Sandri and Zuccolotto, 2006), C4.5, but also other algorithms (e.g. multinomial

logistic regression and its variants (Cawley et al., 2007). Some embedded meth-

ods perform feature weighting based on regularization models with objective

functions that minimize fitting errors and, at the same time, force the feature

coefficients to be small or to be exact zero. These methods are either based on

Lasso (Ma and Huang, 2008) or Elastic Net (Zou and Hastie, 2005) which usually

work with linear classifiers (SVM or others) and have penalties to features that do

not contribute to the model. Hybrid methods were proposed to combine the best

properties of filters and wrappers. First of all, in order to reduce the feature space

dimension space, a filter method is used possibly providing several candidate

subsets (Das, 2001). Then, a wrapper is applied to find the best candidate

subset. Hybrid methods usually achieve high accuracy that is characteristic

to wrappers and high efficiency characteristic to filters. While practically any

combination of filter and wrapper can be used for constructing the hybrid method-

ology, several interesting methodologies were recently proposed, such as: fuzzy

random forest-based feature selection (Cadenas et al., 2013), hybrid ant colony

optimization (Ali and Shahzad, 2012), hybrid genetic algorithms (Oh et al., 2004)

, or mixed gravitational search algorithm (Sarafrazi and Nezamabadi-pour, 2013).

5.2.2 Model Selection Criteria

In this chapter, a full brute force approach and greedy best first search were explored

for six LC/LU during day and night time with ANN approximation. After that, we

somehow choose a pool of candidate models with different subset size of the features

from our original search space, some questions are arising such as:
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A. Fist Question:
How we can the select the best model among this alternative model which

somehow, in case of Exhaustive Search algorithm, they look like a nested

model?

B. Second Question:
Can we choose the best model only with lowest RMSE and AIC or BIC values

and how much is it reliable?

D. Third Question:
How we can find the most important features?

These questions will be answered in sections.

5.2.2.1 AIC Overview

Before engaging in the construction of a model either a linear regression or any gener-

alized linear model, we must accept that there are no true models, indeed, models only

approximate reality. The question then is to find which model would best approximate

reality with the given data. Basically,what we are trying to do is to have a model

which minimizing the loss of information. Kullback and Leibler (1951) investigated

such issues and they developed a measure, which is well known to the Kullback-

Leibler information. The Kullback-Leibler information represent the information lost

when approximating reality (i.e., a good model minimizes the loss of information). A

few decades later, Akaike (Kullback and Leibler, 1951; Akaike,1974; Burnham and

Anderson, 2001) proposed using Kullback-Leibler information for model selection.

They established a relationship between the maximum likelihood, which is an estima-

tion method used in many statistical analyses, and the Kullback-Leibler information.

In essence,they developed an information criterion to estimate the Kullback-Leibler

information, Akaike’s information criterion (AIC), which is expressed as following:

AIC = −2(loglikelihood) + 2k (5.1)

Where K is the number of estimated parameters included in the model. The log-

likelihood of the model reflects the overall fit of the model (smaller values indicate

worse fit). For normally distributed errors where arbitrary constants have been deleted,

the AIC with the following equation can be considered in cases where analyses are

based on more conventional least squares regression

AIC = log
SSE

T
+ 2m

T
(5.2)

Where SSE = ∑T
i=1(yi − ŷi)2 and T is the sample size. where yi is the ith value of

the variable to be predicted, and ŷ is the predicted value of yi. It is important to

note that, in the count of parameters (m) the estimation of variance must be taken

into account. The goodness-of-fit of the model to the data will be measured by the

first part in equation (5.2) but the second part is considered as a penalty for model
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over-parametrization and over-fitting. The optimal subset will be selected when AIC

is minimized. The first term of equation will be smaller as the model becomes more

complex, but the second term will be larger(Min et al.,2001). The AIC penalizes for

the additional parameters. Therefore, AIC selects a model that fits well but has a

minimum number of parameters.In case of small sample sizes (i.e., n/m < 40), the

second-order AICC can be applied:

AIC = log
SSE

T
+ 2m

T − m − 1 (5.3)

Where T is the sample size. As sample size increases, the last term of the AICC

approaches zero, and the AICC tends to lead the same conclusions as the AIC

(Burnham and Anderson. 2002, Burnham et al., 2011).

Comparing Models

For comparison of model, two measures associated with the AIC such as the delta AIC

and Akaike weights can be considered. These are easy to compute and interpret, as

calculations remain the same regardless of whether the AIC or AICC is used. The delta

AIC (4i), is a measure of each model relative to the best model, which is calculated
as:

DeltaAIC = 4i = AIC i − minAIC (5.4)

Where AIC i is the AIC value for model i, and min AIC is the AIC value of the best

model. As a rule of thumb, a 4i < 2 suggests substantial evidence for the model,
values between 3 and 7 indicate that the model has considerably less support, whereas

a 4i > 10 indicates that the model is very unlikely (Burnham and Anderson, 2002 and

2004). Akaike weights (wi) provide another measure of the strength of evidence for
each model, and represent the ratio of delta AIC values for each model relative to the

whole set of R candidate models:

AICweight = wi =
exp(−1

2 4 i)∑R
r=1 exp(1

2 4 r)
(5.5)

In fact, we are simply changing the scale of the 4i to compare them on a scale of 1

(i.e. so that the sum of the wi equals 1). The interpretation of Akaike weights (wi) is

straightforward and they indicate the probability that the model is the best among the

whole set of candidate models. For example, an Akaike weight of 0.75 for a model,

says that given the data, it has a 75% chance of being the best one among those

considered in the set of candidate models (Symonds and Moussalli, 2011; Link and

Barker, 2006; Grueber et al., 2011). In addition, one can compare the Akaike weights

of the « best » model and competing models to determine to what extent it is better

than another. These are termed evidence ratios and are calculated as:

Evidence − ratio = ERi = wj

wi

= 1.375 (5.6)
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Where model j is compared against model i. For instance, an evidence ratio of would

indicate that model j is only 1.375 more likely than model i to be the best, given the

set of R candidate models and the data. This suggests that the rank of model j might

change if we were to take a series of independent samples of identical size (Burnham

and Anderson, 2002). Moreover, there is also possibility to compare the evidence

ration of the best model with another alternative model as following:

Evidence − ratio = ERi = wbest

wi

(5.7)

Where wbest is the weight of the best model and wi is the weight of the other individual

models. The weight, wi is considered the weight of evidence in favour of a model

being the actual best model for given data, given that one of the models must be

the best model. Note that the weights of all models summed together is equals one.

The evidence ratios, ERi, is the relative likelihood of pair of models, representing the

evidence about fitted models as to which is better in an information criteria sense. In

addition, If the primary objective of modelling is to evaluate the relative importance

of many potential predictor variables (Relative variable importance), then summing

Akaike model weights across all models that include that variable can be a useful

approach (Burnham and Anderson, 2002). In other words, there would be a high

degree of uncertainty regarding the best model. Akaike weights are also useful to

give a measure of the relative importance of a variable: one simply sums the wi of

the models including the variable and compares it to those that do not. However, a

better approach is to obtain a model-averaged estimate for the variable across all

models. The greatest strength of the AIC is its potential in model selection (i.e. variable

selection), because it is independent of the order in which models are computed. In

the case, where there are many models ranked highly based on the AIC, we can

incorporate model uncertainty to obtain robust and precise estimates, and confidence

intervals. Moreover, AIC may not be the best criterion for a specific case because

often leads to a model with unnecessarily large number of parameters(Gooijer and

Kumar, 1992).

5.2.2.2 Bayesian Information Criteria

The Bayesian information criterion (BIC), was proposed by Schwarz (1978). The

difference between the BIC and the AIC is the greater penalty imposed for the number

of additional parameters by the BIC. Burnham and Anderson provide theoretical

arguments in favour of the AIC, particularly the AICC over the BIC (Burnham and

Anderson, 2002). Moreover, in the case of multivariate regression analysis, Yang

explains why AIC is better than BIC in model selection (Yang, 2005). The BIC is

computed as follows:

BIC = log(SSE) + mlog(T )
T

(5.8)

there is similarity between Eq.(5.8) and Eq.(5.3) because both equations are composed

of two parts but the difference is in the penalty term. For model complexity, BIC consider
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bigger penalty than AIC. It means that, using of the BIC criteria in model selection

could lead in a model whose number of variable is no bigger than that chosen by

AIC. Schwarz (1978) and Riassanen (1978) had developed Eq. (5.8). A consistent

estimate of the order of auto regressive model is given by BIC. Hence, BIC is often

applied in real applications for model selection rather than AIC because it is a more

reliable criterion. Regarding the proper penalty term both AIC and BIC, there are

some discussions. The linear function of the number of parameters in the penalty

term is argumentative issue (De Gooijer et al., 1985). De Gooijer and Kumar 1992

and Granger (Granger, 1993) had proposed, one extensions to these criteria which

can be seen in equation (5.9):

BIC = log(SSE) + mdlog(T )
T

(5.9)

Where d is a constant but for non-linear model usually is set to d > 1.

5.3 Results and discussion

Artificial neural networks (ANN) was considered as a universal approximation due

to strong ability to represent complex, non-linear behaviour in comparison to more

conventional modelling techniques. In recent year, many researchers had applied

ANNs for environmental modelling. Finardi et al., 2008, 2008; Pires et al., 2008;

Al-Alawi et al., 2008; Ionescu and Candau, 2007; Dutot et al., 2007; Sousa et al.,

2007 had used ANNs for real-time forecasting of air quality. Glesias et al., 2007;

Shanmuganathan et al., 2006, Maier and Dandy, 2000, Maier, 2006 had used ANNs

in ecological modelling and remote sensing. Modelling and control of waste water

processes, water quality forecasting within rivers and and distribution systems using

ANNs are investigated by Raduly et al., 2007; Machon et al., 2007, Alp and Cigizoglu,

2007, Serodes et al., 2001; Rodriguez and Serodes, 1999, Maier and Dandy, 2000;

Dawson and Wilby, 2001; Bowden, 2003; Kingston, 2006. However, the selection

of an appropriate set of input variables during ANN development is important for

obtaining high-quality models. In this research, two methods of variable selection

namely exhaustive search and greedy best first search are applied. Moreover, the

AIC, BIC, RMSE and theil’s adjusted R2 are considered as model selection criteria.

5.3.1 Implementation of Input Variable Selection using Brute

Force Search-ANN

The Brute force search - ANN algorithm was run for each LC/LU dataset. The variables

were selected according some criteria like AIC, BIC and RMSE. As mentioned before,

the models are ranked by AIC, with the best approximating model being the one

with the lowest AIC value. AIC thus considers how well the model fits the data, but

models with greater numbers of fitted parameters will have higher AIC values, all other
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things being equal. In other words, models with fewer parameters will be favoured. To

illustrate with an example, we applied an analysis of feature ranking in different LC/LU

with brute force search approaches. The AIC values for every possible combination

of features were calculated for each LC/LU during day and night time. The results of

this method are only shown for urban LC/LU during daytime in Table 5.1 Moreover,

determining a reduced candidate set of models is a a complex issue as discussed in

the studies of Dochtermann and Jenkins, 2010 and Burnham et al., 2010. Moreover,

making inference based on the best approximating model alone may not be desirable

and it is one of the main purposes of calculating AIC in this study is to present a range

of models and their relative AIC scores which by comparing the different models,

we can measure how much better the best approximating model is compared to the

next best models. The simplest way of doing this is to calculate the difference (4i or

4AIC i) between the AIC value of the best model and the AIC value for each of the

other models. The Akaike weight is between 0 and 1, with the sum of Akaike weights

of all models in the candidate set being 1, and can be considered as analogous to

the probability that a given model is the best approximating model (although there

are some who disagree with this, e.g. Link and Barker, 2006; Bolker, 2008; Richards,

2005). Thus, in Table 5.1, the best model has a wi of 0.0885, which can be interpreted
as meaning that there is 8.85% chance that it really is the best approximating model

describing the data given the candidate set of models considered. With this low Akaike

weight of models which is presented in Table 5.1, we cannot be certain that this model

is the best. That is to say, there exists model selection uncertainty. Alternatively,

the Akaike weights (wi) or model weight can also be used to estimate the relative
importance of variables under consideration. This is done by summing the Akaike

weights for each model in which that variable appears. In our study, the variable Air

pressure (AP) has an Akaikeweight = 0.0883 + 0.0875 + 0.0877 = 0.2635 and so on
down the complete list of models. If a particular predictor appears in all of the top

models, then its summed Akaike weight will tend towards 1. If that predictor only

appears in the very unlikely models, its weight will tend towards zero. As with the

Akaike model weight (wi), the predictor weight can be interpreted as equivalent to
the probability that that predictor is a component of the best model. Similarly, these

summed weights can be used to rank the various predictors in terms of importance

(Burnham and Anderson, 2002, 2004). Summary of model selection procedure is

presented in Table 5.1 only for urban LC/LU and illustrated in Figure for all LC/LU

during day and night-time. The best model selected using AIC and BIC has different

results for different LC/LU during day and night-time. The summary of results is listed

for each LC/LU as follow:

A. Needle Leaf Trees
From Figure 5.1(a), the AIC and RMSE chooses nine variables as the best model,

whereas a model with four input variables is selected by the BIC during daytime.

As shown in Figure 5.2(a), for the night time the AIC and RMSE choose nine

variables as the best model, whereas a model with six input variables is selected

by the BIC for ES algorithm. Moreover, Figure 5.3(a), shows different parameters

have different relative importance weight during day and night time except LST

which its Akaike weight is almost 1. In addition, Figure 5.2(a), shows that some
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variables have same ranking during day and night time namely included LST

and WS but for other parameters like NDVI, RH and WD there is big differences

between day and night time. During daytime (WD, AP) and (RH, Emis32) have

almost the same Akaike weight but for night-time (NDVI, Lat, WD) have a same

Akaike weight. Moreover, it can be seen that the Emis31, Emis32 and Lat have

very low Akaike weight which is less than 0.2 which can be representative of

insignificant influence on the relationship between LST and T2m in this LC/LU.

B. Agriculture
From Figure 5.1(b), the AIC and RMSE chooses eight variables as the best model,

whereas a model with five input variables is selected by the BIC during daytime.

As shown in Figure 5.2(b), for the night-time the AIC, RMSE and BIC choose six,

eight and five variables as the best model, respectively. In addition, Figure 5.3(b)

shows that in general, LST and WD are the most important parameter during

day and night time which it’s Akiak weight doesn’t change too much but for other

parameters like WD, Emis31 and NDVI there is big differences between day and

night time. During daytime (RH, Alt) and (Emis31, Emis32, NDVI, WS) have a

same Akiak weight score but for night-time (AP, WD) and (Emis32, JD) have a

same Akiak weight importance. Moreover, the NDVI has very low Akiak weight

which is less than 0.2 which can be representative insignificant influence on the

relationship between LST and T2m in night-time in this LC/LU but as expected

the Akiak weight of NDVI is more than 0.7 which shows that it is a key factor

during daytime.

C. Forest
From figure 5.1(c), the AIC and RMSE choose seven variables as the best model,

whereas a model with 5 input variables is selected by the BIC during daytime.

As shown in figure 5.2(c), for the night-time the AIC, RMSE and BIC choose

six, six and three variables as the best model, respectively. In addition, figure

5.3(c), shows that in general, LST, JD, RH and Lat are the parameters which

it’s Akaike weight doesn’t change too much during day and night-time but for

other parameters like Emis31, NDVI, WD, WS and AP there is big differences

between day and night-time. During daytime (RH, JD, NDVI) and (Albedo, AP)

have a same Akaike weight but for night-time (Alt, Lat) and (NDVI, Emis32) have

a same Akaike weight importance. Moreover, during night-time, the Emis31 and

WD have very low Akaike weight which is less than 0.2 which demonstrates

that these parameters have less contribution than the other variables to the

measurement of T2m in this LC/LU but as expected the Akaike weight for NDVI

is more than 0.65 for daytime. It can be seen from Figure 5.3(a) and 5.3(c), that

the Albedo has the same Akaike weight in forest and needle leaf trees LC/LU

because these LC/LU are covered with tree.

D. Urban
From Figure 5.1(d), the AIC and RMSE choose nine variables as the best model,

whereas a model with five input variables is selected by the BIC during daytime.

As shown in Figure 5.2(d), for the night-time the AIC, RMSE and BIC choose
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eight, eight and four variables as the best model, respectively. In addition, Figure

5.3(d) shows that in general, LST is only the parameter which it’s Akaike weight

doesn’t change too much during day and night time but for other parameters,

there is big changes between day and night-time. During daytime (Alt, Lat, WD),

(AP, Emis31) and (Emis32, WS) have a same Akaike weight but for night-time

(Alt, WD) and (JD, Lat) have a same Akaike weight importance. Moreover,

during night-time, the Emis32 and WD have very low Akaike weight which is less

than 0.2 which can be representative insignificant influence on the relationship

between LST and T2m in this LC/LU.

E. Airport
From Figure 5.1(e), the AIC and RMSE choose eight variables as the best model,

whereas a model with 5 input variables is selected by the BIC during daytime.

As shown in Figure 5.2(e), for the night-time the AIC, RMSE and BIC choose six,

six and five variables as the best model, respectively. In addition, Figure 5.3(e)

shows that in general, LST, Emis32 and Lat are the only the parameters which

it’s Akaike weight doesn’t change too much during day and night time but for

some parameters, like JD, RH, WS there is big changes between day and night

time. During daytime (Alt, WS, Emis32, Albedo), (Lat, WD) and (Emis31, RH)

have a same Akaike weight but for night time (WS, Lat) and (Emis31, Emis32,

NDVI, JD) have a same Akaike weight importance. Moreover, during daytime,

Albedo, Emis32, Alt and WS are not dominant parameters for estimating T2m.

F. Industrial
From Figure 5.1(f), the AIC and RMSE choose eleven variables as the best

model, whereas a model with 7 input variables is selected by the BIC during

daytime. As shown in Figure 5.2(f), for the night-time the AIC, RMSE and BIC

choose ten, ten and seven variables as the best model, respectively. In addition,

Figure .5(f) shows that in general, LST, NDVI, RH, Emis32, WS and AP are the

parameters which it’s Akaike weight doesn’t change too much during day and

night time but for some parameters, like JD andWD there is big changes between

day and night time. During daytime (NDVI, WS), (Emis31, Albedo) and (Alt, WD)

have a same Akaike weight but for night-time (AP, RH) and (Emis31, NDVI, WS)

have a same Akaike weight importance. Moreover, during day and night-time,

Albedo, Emis31 and Emis32 are not dominant parameters for estimating T2m.

Overall, according to Tables 5.1, 5.2 and Figure 5.3, the most important parameters

for estimating the T2m over different LC/LU which it’s AIC weight importance is greater

than 0.5 are namely included LST, JD, WD and RH for day time and LST, WD, RH and

AP for night time respectively. Moreover, Figure 5.1 shows that, BIC always select

less variable compare to AIC and RMSE because BIC penalizes larger models more

heavily and so will tend to prefer smaller models in comparison to AIC. In addition,

the selection results demonstrate LST has more contribution than the other variables

to the measurement of T2m during day and night over different LC/LU. Table 5.5

and 5.6 show the final selected model during day and night time for six considered

LC/LU based on AIC and BIC criteria. It has been found that AIC and BIC criteria
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tend to select the variable with Akaike weight importance of more than 0.4 and o.5,

respectively. It means that BIC select variables which have strong and moderately

strong relationships between a predictor variable and the response variable were

associated with Akaike weight importance from 0.5 to 1. Moreover, Figure 5.1 shows

the change of AIC, BIC and RMSE score when a new variable is added. As Figures

5.1(a)–(f) shown, the AIC, BIC and RMSE scores have a decreasing trend until a new

variable were selected so that the termination criterion was reached. The variables

with minimum value in Figures 5.1(a)–(f) are the final selected variables for the six

LC/LU. In addition, it has found that the sum weight of wind speed has significant

changes during day and night time on airport LC/LU because of impervious surface of

this LC/LU in all season. Many factors influence wind speed, but the single factor that

distinguishes wind over a forest from wind over more open terrain, such as an airport,

is the presence of tree cover. The wind speed tends to decrease after sunset because

at night the surface of the Earth cools much more rapidly than does the air above the

surface. Because of this difference in cooling ability, it doesn’t take long for the ground

to become colder than the air above it. The air in close contact with the ground - say

in the lowest 300 feet of the atmosphere - then becomes colder than the air above

it. This circumstance leads to the development of what is known as a temperature

inversion. Inversions dramatically reduce the amount of mixing that occurs between

different vertical layers of the atmosphere. Therefore, once the inversion sets up (after

sunset), it is much harder for fast-moving air above the ground to mix down to the

surface, where it could appear as a gust of wind. In addition, by considering Tables

(5.1- 5.4) and Figures 5.1,5.2, 5.5 and 5.6 we found that, those parameters which

have influence on the estimation of T2m during day and night time were selected in

both algorithms. Both algorithms tend to select the parameters which their sum weight

of Akaike were greater than 0.5. Moreover, compared with the exhaustive search,

forward selection is much cheaper. However, forward selection may suffer because of

its greediness. For example, if X (1) is the best individual feature, it does not guarantee

that either X (1), X (2) or X (1), X (3) must be better than X (2), X (3). Therefore, a

forward selection algorithm may select a feature set different from that selected by

exhaustive searching. With a bad selection of the input features, the prediction may

be significantly different from the true estimation. Our experiment demonstrates that

Exhaustive Search (ES) is prohibitively time-consuming. ES is far more expensive

than the Forward Selection algorithm (FS), while it is not significantly more accurate

than FS. However, the features selected by FS may differ from the result of ES. That

is because some of the input features are not mutually independent. Referring to

figures 5.1,5.2, 5.5 and 5.6, it can be seen that the accuracy of ES and greedy best

search for whole considered LC/LU are almost the same. Moreover, it has been found

that LC/LU plays an important role in influencing the relationship between T2m and

LST. Our results showed that the effectiveness of optimal models in predicting T2m
varied in different land cover types. This variation could be introduced by the specific

heat capacities of different land covers. Air temperature mainly depended on the

heat transfer process which was strongly influenced by the local radiation budget (Lin

et al., 2016). In general, barren land has lower heat capacity than forest. Hence,

air was heated much quicker over barren land than forest. Vegetation could also
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change latent heat flux, such as enhancing or reducing transpiration (Zeng et al., 2015;

Kaufmann et al., 2003), and cool the T2m in forests (Jeong et al., 2009; Pouteau et

al., 2011; Van et al., 2013). The cooling effect was not considered in our models due

to uneven distribution of meteorological stations across different vegetation types.

The meteorological station was too scarce in some vegetation types. Thus, it was

hard to take consider of vegetation type in our models. However, land cover also

affected land surface albedo, thus, the influence of land cover on estimating Tair
was conditional and time dependent. Moreover, it has been found the sum weight

of RH in all LC/LU during night are higher that night-time the reason is the relative

humidity depends not only upon the amount of water vapour present in the air but

also on the air temperature. In fact, the relative humidity indicates how much is the

percentage of saturation of air (with water vapour) for a particular temperature. If it

is fully saturated, then the relative humidity is 100 percent. If air holds some amount

of water vapour at a particular temperature and is unsaturated, then, at a lower

temperature, the same amount of water vapour may be able to saturate it. Hence, for

the same amount of moisture content in the air, the relative humidity may be less for a

higher temperature and more for a lower temperature. Therefore, naturally the relative

humidity is less during daytime and more during night-time. Finally, in this paper we

have tried to introduce feature selection techniques. The literature on feature selection

techniques is very vast encompassing the applications of machine learning and pattern

recognition. Comparison between feature selection algorithms can only be done using

a single dataset since each underlying algorithm will behave differently for different

data. Feature selection techniques show that more information is not always good in

machine learning applications. We can apply different algorithms for the data at hand

and we can select a final feature selection algorithm. For the application at hand, a

feature selection algorithm can be selected based on the following considerations:

simplicity, stability, number of reduced features, classification accuracy, storage and

computational requirements. Overall, applying feature selection will always provide

benefits such as providing insight into the data, better classifier model, enhance

generalization and identification of irrelevant variables. For the results in this paper,

we use the classifier accuracy and the number of reduced features to compare the

feature selection techniques. We have also successfully used feature selection for

improving predictor performance.

5.3.2 Summary and Conclusion

The feature selection problem has been studied by the statistics and machine learning

communities for many years. It has received more attention recently because of

enthusiastic research in data mining. The aim is to construct a model that predict-

s/estimate well or explains the relationships in the data. Though AIC and BIC are the

two model selection criteria s, but they are not the same. The AIC can be designated

as a measure of the goodness of fit of any estimated statistical model. The BIC is a

type of model selection among a class of parametric models with different numbers of

parameters. For additional parameters, BIC penalizes free parameters more strongly
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than AIC. AIC generally tries to find unknown model that has high dimensional reality.

On the other hand, the BIC comes across only true models. It can also be said that

BIC is consistent whereas AIC. However, AIC is susceptible to over-fitting the data,

whereas BIC is susceptible to under-fitting the data. The reason is that they penalize

the free parameters differently. Though BIC is more tolerant when compared to AIC,

it shows less tolerance at higher numbers. AIC is good for making asymptotically

equivalent to cross-validation. On the contrary, the BIC is good for consistent esti-

mation (Aho et al., 2014, Bolker 2008). An advantage of brute force approach is that

all possible combinations of variables are given a chance to appear together. An

obvious disadvantage is that the computation time. Moreover, in this study, we tried to

answer, why not just use the global model? It has been argued that one should make

inference from a model with all the factors thought to be important. This approach can

be easily apply and prevent the complications of model selection. The first serious

drawback here is the lack of precision in the estimated parameters. A given data set

has only a finite amount of information; each time a parameter estimate is made, the

information left is reduced. Increasing the number of parameters eventually makes

the fitted model unstable and uninformative. The probability of finding factors that are

spurious increases. New parameters are estimated but with increasing uncertainty

phenomenon is an aspect of the Principle of Parsimony. A second serious pitfall

arises, when as is common, the global model has many parameters in it. One has to

resort to analysing the set of resultant parameter estimates, as if reduced-dimension

models to the set of (poorly estimated and correlated) global parameter estimates. It

is very demanding to do this efficiently and validly. Indeed, the proper way to proceed

is to fit the corresponding reduced models (as special cases of the global model) to

the original data and do proper multi model inference. This latter approach facilitates

understanding of the information in the data; fitting only a large global model generally

fails as a strategy for effective inference. In addition, in this chapter, we applied ES

feature selection method, which is to exhaustively evaluate all possible combinations

of the input features, and then find the best subset. Obviously, the computational

cost of exhaustive search is prohibitively high, with considerable danger of over-fitting.

Hence, people resort to greedy methods, such as forward selection. Our investigation

shows that the greediness of the feature selection algorithms greatly improves the

efficiency, while does not corrupt the correctness of the selected feature set so that

the prediction accuracy using the selected features remains satisfactory. The main

motivation for this research was to investigate the practical applicability of AIC and

BIC criteria in two different feature selection approach using supervised training of

ANN. theil’s adjusted R2 is another criteria that is applied to select the number of re-

pressors. Though the determination coefficient (R2) measures the goodness-of-fit of a

model, it almost always increases and never decreases with the number of repressors.

Therefore, if we consider R2 as model selection criteria, then it would always favour

larger number of variable. The adjusted R2 corrects the problem with an adjustment to

the degrees of freedom. The two other measurements namely sum of squared errors

(SSE) or residual variance can be used for the goodness-of-fit. It should have been

considered that minimizing the estimated residual variance is equal to maximizing R2,

therefore residual variance is redundant in cases that R2 is applied. Cameron (1993)
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debates that R2 is not an effective tool for the prevention of data mining because it will

rise on the addition of any variable whose t ratio is greater than one when entered

into the model, although R2 is used as a model selection criterion.

Figure 5.1: The sub-plots (a) to (f) shows the AIC, BIC and RMSE values for estimating

T2m for different LC/LU during daytime for the Exhaustive search algorithm.
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Table 5.1: Summary of the model selection procedure applied to the urban LC/LU using Brute force search. For each candidate

models, we reported RMSE, AIC, BIC, MAPE, MBE, MSE, Akaike weight Wi, ∆ i = AICi – min AIC, ER and R2 in

Celsius degree
Number of variables Candidate model BIC RMSE MAPE MBE MAE MSE AIC ∆i wi ER R2

1 LST 2.599 3.661 7.691 0.357 2.825 13.409 2.596 0.745 0.061 1.451 0.840

2 LST, Emis32 2.219 3.009 6.301 0.399 2.312 9.057 2.205 0.353 0.0742 1.193 0.895

3 LST, JD, Lat 2.076 2.776 5.679 0.2959 2.0897 7.706 2.045 0.193 0.080 1.101 0.911

4 LST, JD, Emis32, Lat 2.032 2.679 5.492 0.232 2.024 7.180 1.975 0.123 0.0832 1.063 0.915

5 LST, JD, RH, Alt, Lat 2.018 2.614 5.418 0.529 1.981 6.838 1.927 0.075 0.0852 1.038 0.921

6 LST, JD, Albedo, RH, Alt, WD 2.020 2.562 5.335 0.612 1.946 6.567 1.888 0.036 0.086 1.018 0.925

7 LST, JD, RH, Alt, WD, WS, AP 2.037 2.521 5.258 0.625 1.917 6.356 1.856 0.004 0.088 1.002 0.927

8 LST, JD, Emis32, NDVI, RH, Alt, WD, WS 2.095 2.520 5.304 0.605 1.935 6.354 1.857 0.005 0.088 1.002 0.928

9 LST, JD, Emis31, NDVI, Albedo, RH, Lat, WD, WS 2.015 2.512 5.280 0.593 1.927 6.314 1.851 0 0.088 1 0.927

10 LST, JD, Emis32, NDVI, Albedo, RH, Alt, Lat, WD, WS 2.237 2.525 5.244 0.619 1.912 6.377 1.862 0.010 0.088 1.005 0.926

11 LST, JD, Emis31, Emis32, NDVI, RH, Alt, Lat, WD, WS, AP 2.328 2.538 5.303 0.765 1.926 6.445 1.874 0.022 0.087 1.011 0.928

12 LST,JD,Emis31,Emis32,NDVI,Albedo,RH,Alt,Lat, WD, WS, AP 2.411 2.531 5.338 0.807 1.937 6.410 1.870 0.018 0.087 1.009 0.930
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Table 5.2: Selected models for different LC/LU based on AIC and BIC according to Brute force search algorithm during daytime

LC/LU Industrial Urban Agriculture Needle leaf Forest Airpoet

Model selection criteria AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

LST � � � � � � � � � � � �

JD � � � � � � � � � - � �

Emis31 � - - - - - - - - - � -

Emis32 � - � - - - - - - - - -

NDVI � - � - � - � - � � � �

Albedo � - - - - - � - � - - -

RH � � � � � � � - � � - -

Alt � � � � � � � � - - � -

Lat � � � � - - - - - - � �

WD � � � � � � � - � � � �

WS - - � � - - � � - � - -

AP � � - - � - � - � - � -

Total

selected parameter
11 7 9 7 7 5 9 4 7 5 8 5
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Table 5.3: Selected models for different LC/LU based on AIC and BIC according to Brute force search algorithm during night-time

LC/LU Industrial Urban Agriculture Needle leaf Forest Airport

Model selection criteria AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

LST � � � � � � � � � � � �

JD � � � � � � � � � - � �

Emis31 � - - - - - - - - - � -

Emis32 � - � - - - - - - - - -

NDVI � - � - � - � - � � � �

Albedo � - - - - - � - � - - -

RH � � � � � � � - � � - -

Alt � � � � � � � � - - � -

Lat � � � � - - - - - - � �

WD � � � � � � � - � � � �

WS - - � � - - � � - � - -

AP � � - - � - � - � - � -

Total

selected parameter
11 7 9 7 7 5 9 4 7 5 8 5
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UTable 5.4: Selected models for different LC/LU based on AIC and BIC according to Greedy best first search algorithm during

daytime

LC/LU Industrial Urban Agriculture Needel leaf Forest Airport

Model selection criteria AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

LST � � � � � � � � � � � �

JD � � � � � � � � � � � �

Emis31 - - - - - - - - - - � �

Emis32 - - - - - - - - - - - -

NDVI - - - - � � � � � � - -

Albedo - - - - - - - - � � - -

RH � � � � � � - - � � � -

Alt - - � � - - � � - - - -

Lat � � - - � � � - - - - -

WD � � � � � � � - � � � -

WS � - - - - - - - - - - -

AP � � � � � - � - � - � �

Total

selected parameter
7 6 6 6 7 6 7 4 7 6 6 4
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Table 5.5: Selected models for different LC/LU based on AIC and BIC according to Greedy best first search algorithm during

night-time

LC/LU Industrial Urban Agriculture Needel leaf Forest Airport

Model selection criteria AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

LST � � � � � � � � � � � �

JD � - � � - - � � � - - -

Emis31 - - - - � � - - - - - -

Emis32 - - - - - - - - - - - -

NDVI - - - - - - - - - - - -

RH � � � � � � � � � � � �

Alt - - � � - - � � - - - -

Lat � � - - - - - - - - � �

WD � � � - � - � - - - � -

WS - - - - � - � - � � � �

AP � � � � � � � � � � � �

Total selected parameter 6 6 6 5 6 4 7 5 5 4 6 5
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5 Feature Selection for Estimating of near Surface Air Temperature from MODIS over

Different LC/LU

Figure 5.2: The sub-plots (a) to (f) shows the AIC, BIC and RMSE values for estimat-

ing T2m for different LC/LU during night-time for the Exhaustive search

algorithm.

Figure 5.5: The sub-plots (a) to (f) shows the AIC, BIC and RMSE values for estimating

Tair for different LC/LU during daytime for the greedy best search algorithm.
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Figure 5.3: Akaike weight importance for estimating Tair for different LC/LU are presented in sub-plots (a) to (f) during day and

night-time for the Exhaustive search algorithm.
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Figure 5.4: Akaike weight importance for estimating Tair for different LC/LU are presented in sub plots (a) to (f) during day and

night-time for the greedy best first search algorithm.
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5 Feature Selection for Estimating of near Surface Air Temperature from MODIS over

Different LC/LU

Figure 5.6: The sub-plots (a) to (f) shows the AIC, BIC and RMSE values for estimat-

ing Tair for different LC/LU during night-time for the greedy best search

algorithm.
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6 Conclusion

6 Conclusion

This study presents a comprehensive investigation of the following questions using

Satellite data and ground based measurement for six different LC/LU over Berlin for

considered year 2007-2013:

Question 1)
Investigation the relationship between Tair and Land surface temperature (LST)

seasonally during day and night time over six land cover types (LCT), if the land

cover type can affect the relationship between land surface temperature and air

temperature.

Question 2)
Investigation the relationship between Tair and the normalized difference vegeta-

tion index (NDVI) seasonally during day and night time over six LCT, if NDVI has

different effects on nocturnal and daily air temperatures and how is this effect in

different land cover types.

Question 3)
To explore the Spatio-temporal variability of LST and Tair relationship: the rela-

tionship between remotely sensed LST and Tair, is strongly influenced by the

local surface heat fluxes, is analysed by overlaying a spatial window of varying

size on the MODIS LST grid.

Question 4)
To investigate the relationship between observed Tair and the four LST Products

over Berlin.

Question 5)
What is the best method to estimate air temperature from remote sensed land

surface temperature and how can we find the best estimator?

Question 6)
To rank the features base on using the Greedy Best-First Search and Brute-force

search in order to find the optimal subset of feature which are influence the

relationship between LST and Tair during day and night for different LC/LU and

to explore the advantage and disadvantage of using different type of selection

criteria such as RMSE, R2, BIC, and AIC.

Question 7)
Why not just use the global model?

Question 8)
How can we select the best approximate model and evaluate it?

Forough Marzban, Estimation of near-surface Air temperature during day and

night-time from MODIS over Different LC/LU Using machine learning methods in

Berlin, 2020
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6 Conclusion

6.1 Result

This section answers the main questions 1 and 2 presented previously in the intro-

duction chapter of the thesis. This study investigates both LST–NDVI and LST–T2m
relationships over different LU/LC over Berlin, during different seasons at day and

night. In the analysis of different LU/LC types, the results indicate that different LU/LC

types have significantly different effects on LST and NDVI as measured by the MODIS

in Berlin. The correlation analysis between NDVI and LST for different seasons shows

that this relationship depends on the season, time of day, and LU/LC type. The results

depict an inverse correlation between LST and NDVI over every LU/LC type.

Moreover, in order to evaluate the influence of LU/LC, a regression analysis between

LST and NDVI was utilized and multiple comparisons were made. By considering the

slope of regression function for different LU/LC and seasons, it was found that the

regression coefficient is dependent on LU/LC type. This means that the NDVI–LST

slope is highly dependent on the arrangement of the vegetation type, natural features,

rate of ET from surface, and artificial physical features of an area. There is a negative

slope for sparse vegetation covers such as industrial, airports, and urban area, but for

closed vegetation canopies such as agriculture and needle-leaf trees areas, the slope

is positive.

Next to it, the comparisons of mean LST and NDVI values by individual pairings of

LU/LC types were made in the research area. The mean LST and NDVI within every

LU/LC show a clear negative correlation between LST and NDVI. In certain LU/LC

types, it is observed that the relationship between LST and NDVI is varied. This

reveals that the LST is affected mainly by the land surface materials and has a close

relationship with the abundance of vegetation and the effect to its surrounding.

The strength of relationships between LU/LC variables (e.g. NDVI and vegetation

fraction) and LST, however, varies significantly from study to study due to the different

measurement of variables and units of analyses (Huang, Guan and Ji 2012; Li et al.

2011).

A statistical analysis was applied to determine the variation of the LST–T2m relationship

during day- and night-time, for different seasons over six different LU/LC types. It

was found that in most cases, during daytime and in cold seasons, LST is lower than

T2m, while in warm seasons, a reverse relationship is observed for all LU/LC types.

Generally, for all seasons during night-time, LST is lower than T2m. Moreover, higher

differences between T2mNight and LSTDay are observed among industrial, urban area,

airports, and areas covered by vegetation, bush, and trees (such as forest, agriculture,

and needle leaf trees). These results indicate that LU/LC types, seasons, and temporal

variation influence this relationship. A linear regression analysis, with the MODIS LST

as the independent and T2m as the dependent variable, was applied to analyse this

relationship seasonally.

The results reveal that LSTDay and LSTNight are significantly correlated (p = 0.0001)

with T2mDay and T2mNight. The correlation between LSTDay and T2mDay is higher during

cold seasons (0.77 ≤ r ≤ 0.89) than in warm seasons (0.57 ≤ r ≤ 0.81). Moreover,

for all LU/LC types during cold seasons, a higher agreement was observed during

daytime (0.77 ≤ r ≤ 0.89) than night-time (0.47 ≤ r ≤ 0.86), while a reverse relationship
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6 Conclusion

was obtained for warm seasons.

In addition, it would be interesting to examine whether and how the size of the analyti-

cal unit may affect the observed relationships between LST–NDVI and LST and Tair in

future research, considering the inhomogeneity of land surface characteristics within

a grid box. In this research, we used the time series of MODIS NDVI between 2007

and 2013. To better understand how well this time series correlates with LST but we

recommend to use AVHRR 16-day normalized difference vegetation index composite

for compare it with MODIS NDVI. The idea behind this is to take advantage of the

maximum temporal overlap between both archives from 2007 to 2013 to test how well

is the time series and then we can rely on the underlying time series. The following

lines answer the main questions 3, 4 and 5 presented previously. It was shown in

Chapter 3 that the MODIS LST product needs a careful pre-processing for detection of

cloud-contaminated values and the outliers. Such pre-processing helped to improve

the correlation between the MODIS LST and Tair measurements. With respect to these

results, in chapter 4, at attempts has been done to estimate Tair based on the MODIS

LST product over six LC/LU class. The main question here is, how the LST product

can be used to estimate Tair on the immediate proximity of the weather station or over

a larger area. To answer this question, this chapter investigates the spatial variability

of LST-Tair relationship by applying a sliding window of varying size over the MODIS

LST grid. But before analyzing the effects of MODIS window size, the daily variability

of LST and Tair relationship was examined by using separate LST series (over 1x1

window). LST series used in this analysis is a composite time series which includes

four daily LST observations (except for cloudy days) from both the MODIS Terra and

Aqua day and night overpasses (approximately at 1:30, 10:30, 13:30, 22:30) supplied

in the LST L3 product.

The comparison between MODIS LST data and the Tair observations shows that

LSTday and LSTnight from both Terra and Aqua, with the mean relative bias above

and under zero tended to overestimate Tday and underestimate Tnight respectively as

Cresswell et al. (1999) found the same result. As shown in the table, a higher relative

RMSD and bias values were seen for the Aqua LSTdaytime than the Terra LSTdaytime
which might be given to the fact that more solar radiation has been received at the time

of the Aqua MODIS overpass later in the day. Considering the scatter-plots of LSTnight
and Tnight from Aqua for the industrial LC type, has higher scattering than daytime

observations which are more spread around the 1:1 line (Fig.4.5). This indicates the

urban heat island (UHI) phenomena with RMSD=4.21°C.

Both Aqua and Terra LSTnight underestimated the Tnight as well except for forest. More-

over, according to RMSD from Tables(4.1-4.3) and MODIS LST from Terra, a higher

RMSDs is found for industrial and airport LC types during night time which indicates

the UHI phenomena (with RMSD= 4.57°C and 4.32°C respectively). Moreover Ta-

bles(4.1-4.3 show that, correlations between the MODIS LST from Terra data are

generally stronger from the daytime series compared with those from the night series,

except for needle leaf trees. The needle leaf tree type showed more complex correla-

tion patterns from day and night observations. The possible reason for this, is that

the values of LST recorded by MODIS observation on this particular LC type is not

exactly a representative of the skin temperature of the soil, but rather affected by the
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temperature near the top of the trees (canopy temperature). In addition, LST and Tair
are correlated to a certain degree, with some drawbacks depending on factors, such

as land cover type (Jin et al., 2010, Mildrexler et al., 2011).

In general, figures 4.2- 4.7 show that the time-series of the MODIS LST over six LU/LC

classes were correlated individually during the day and night-time. They are highly

correlated with R2 > 0.80. Moreover, figures 4.2- 4.7 show that, during the warm

months the LSTday is higher than Tday due to strong radiation, while as expected during

the cold months LSTday is lower than Tday for almost all LC/LU. Moreover, almost for

all LC/LU, the LSTnight is close to Tnight. As due to long wave, radiation from surface

LST and Tair at night are closer.

Both the Terra and Aqua LST products were compared with the ground-based Tair as

shown in the figure 4.8 and 4.9, the night-time LST datasets (MODnight and MYDnight)

and the observed Tair are more linearly concentrated along the fitting line than the

daytime datasets. Strong correlations were observed between the night-time LST and

Tnight with minimal bias (0.81< R
2 <0.89, RMSE< 4.80 and MBE < 2.91°C). Specifically,

the MYDnight tends to be more accurate for the estimation of Tair with lower intercepts,

smaller RMSD and MBE than MODnight. For Tday, the MYDday had good agreement

than MODday with lower intercept. This is most likely because the Aqua overpass time

(1:30 the time when maximum temperature was recorded). However, LST from Aqua

and Terra seems to be best for estimation of Tday among the LST products.

To sum up, the relationship between LST and Tair may vary with time and location

because the land surface energy balance is a complex phenomenon that depends on

multiple factors (e.g., cloud cover, surface roughness, wind speed and soil moisture

(Prince et al., 1998; Zhang et al., 2015). In addition, the LST and Tair are different in

principle. The satellite remotely sensed LST is a measure of the surface radiation.

LST was calculated from the emissivity’s surface, which is sensitive to LC, especially

during daytime and another reason could be the heat capacity or specific heat of LC.

However, the specific heat varies significantly from one LC to another. The variation

of the difference between LSTday and Tday may be due to the different heat capacities

or specific heats of LC types. The heat capacity changes with temperature, which

may result in different relations at the different times even over the same LC.

Our results showed that the MODIS LST correlates best, with Tair measurement during

the daytime. To some extent, this outcome was contradictory to the other works in the

literature (e.g., Zhang et al., 2011a; Benali et al., 2012) where they have achieved a

stronger correlation at night-time compared to daytime. It must be noted, though, that

Benali et al. (2012) used MODIS-Terra but not MODIS-Aqua observations. Variations

in the MODIS, overpasses time in its 16-day repeated cycle which enabled us to

reconstruct the diurnal LST profile over a 7-year period. Although, many studies have

shown a higher agreement between LST and Tair at night (Zhang et al. 2011a; Benali

et al. 2012), this is not the case for all hours of the day or night. During some hours of

the night the LST- Tair relationship is weaker than some hours during the day. These

differences could be because of time of observation and geographical location that

affecting the relationship between LST product and Tair and therefore, affecting the

accuracy estimation of Tair based on LST products.

The relationship between the observed Tnight–Tday and LST is not limited to a single
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pixel, due to the fact that the temperature of the near-surface air mass in a given area,

is influenced by many factors such as energy exchanges with the land surface over a

larger area. On the other hand, the Tair is impressed by both the local radiation budget

and air advection from the surrounding areas. Therefore, for better understanding

of the spatial variability in LST- Tair relationship, a spatial window with a varying size

is examined to discover the optimal spatial extent over which LST agrees best with

the Tair measurements. To describe the effects of LST window-size on the LST and

Tair relationship better, firstly, the time-series of LST from a single pixel (1x1 window

size) overlapping each weather station were retrieved from the MODIS LST grid and

then the LST of 3x3, 5x5, 7x7, 9x9, 11x11, 13x13 and 15x15 pixels were generated,

respectively. Secondly, to determine the proper spatial window size for estimating air

temperature, correlation coefficient analysis was made for different LC/LU. As shown

in figure 4.10, the correlations were improved very slightly when the window size was

increased from 1 to 3 pixels for daytime. The highest correlation values were achieved

with 3x3 window for all LC/LU during the daytime and at the 1x1 during the night-time.

Significance levels of all correlations were found to be at which can be interpreted

from p-values (all p-values <0.01). According to these results, the window size was

selected for all LC/LU prior to model development for day and night-time data set.

Moreover, three different methods namely SA-SVR, ANN and ANFIS were employed

to estimate Tair during the day and night-time in Berlin using twelve variables as predic-

tors. The performance of the three models was assessed using cross-validation with

k=4 fold over different LC/LU during the day and night-time in order to shows whether

the methods generalize well or not (Reunanen, 2003). All samples from each LC/LU

were used in turn as the validation data set to test the model, while the remaining

samples were used as the training data set to fit the model. RMSE, R2, MBE and

MAE were calculated from the measured and estimated Tair values to assess model

performance. As shown in Tables(4.4-4.9, ANN model with three layers structure,

has higher adjusted R2 value ranged from 0.93 to 0.97, RMSE ranged from 1.83°C

to 2.53°C and MAE ranged from 1.53°C to 1.94°C in test phases for all LC/LU for

estimating Tday. The results showed that all models have similar capability in the

training phase for estimating Tnight but the ANN has a higher adjusted R2 which ranged

from 0.89 to 0.93, RMSE and ranged from 2.13°C to 2.35°C and also MAE ranged

from 1.54°C to 1.84°C values in the test phase in comparison to ANFIS and SA-SVR.

The bar plots of RMSE for the three methods on testing data for each LC/LU are

shown in Fig 4.11-4.13, respectively. The bar plots depicted the performance of the

NN model on the test data which was better than ANFIS and SA-SVR models for all

LC/LU during day and night-time. As can be seen from figure 4.14 (b), the SA-SVR

and NN models are more robust and stable than ANFIS model regarding their SD

values (ranged from 0.03 to 0.08) during the day and night-time and we can say that,

these two models are more reliable than the ANFIS model. Moreover, figure 4.15

shows Q-Q diagram of SA-SVR (left), ANFIS (middle) and ANN (right) models. Q-Q

diagrams are often used to determine whether the model could extract the behaviour

of the observed data (Chambers et al., 1983). As shown in figure 4.15, the models

cannot estimate the high temperature for all LC/LU during the day and night-time. The

weak performance of all models at high temperature are a consequence of a small
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number of data in these temperatures, and this is also highly related to the study area

condition (Berlin) which has a short summer and then has only a few numbers of high

temperatures. In these cases, the learning algorithm of the three mentioned models

have the tendency to underestimate the temperature. Therefore, the generalization of

these models for the high temperature is reduced.

In addition, despite moderate to high correlations between LST and Tair, LST cannot

be directly used for estimating air temperature due to the large difference in MBE

(4.1-4.3), while by applying some additional parameters, in three models (Tables

(4.4-4.9), It can be seen that the MBE was notably reduced, in all LC/LU during day

and night-time.

Furthermore, prediction of long-term monthly air temperature using ANFIS and ANN

had been done in the study of Kisi and Shiri (2014). They applied station latitude,

longitude and altitude values as input variable to predict the long-term monthly tem-

perature values. They found that the ANN models generally performed better than the

ANFIS model in the test period and the determination coefficient of 0.921 and 0.995

were achieved by them for estimating maximum and minimum air temperature using

the ANN model in different stations which were higher than ANFIS model. the results

of the ANN and ANFIS models in the study of Kisi and Shiri (2014) show the RMSE

values range from 1.53 to 4.20°C and 1.18°C to 9.25°C for each station, respectively.

Moreover, in the study of Xu et al., (2014), they applied spatially averaged values of

LST, NDVI, modified normalized difference water index (MNDWI), latitude, longitude,

distance to ocean, altitude, albedo and solar radiation as predictors of Tair in linear

regression and random forest models for estimating Tair in summer periods from 2003

to 2012. In their study, prior to model development, they also investigated the window

size effect on the relationship between LST and Tair. The cross-validation results of

their study show that the random forest model (MAE = 2.02°C, R2 = 0.74) outperforms

the linear regression model (MAE = 2.41°C, R2 = 0.64) and the distribution of residuals

from the random forest model slightly overestimates Tair, with a mean residual value

of 0.09°C.

Finally, in our study, instead of estimation monthly air temperature and only using the

geographical input data, we estimate air temperature during day and night. Moreover,

different parameters such as NDVI, Albedo, relative humidity, wind speed, wind direc-

tion and Julian day have been taking into consideration, which are representative of

seasonal changes. The satisfactory results suggested that this modelling approach is

appropriate for estimating air temperature in Berlin over six different LC/LU. In addition,

the results indicate that MODIS time series of LST can be successfully combined

with ground measurements of temperature to produce accurate and more detailed

predications of temperature during day and night time (Hengl et al., 2012). Although

the air temperature estimated from satellites tends to be higher than ground-based

measurement, the use of satellite remote sensing data can help to overcome the

spatial problem of estimating Tair particularly in areas with low station density using

satellite-based land surface temperature estimation and ground-based relationship

between LST and air temperature. To reduce the biases in satellite-estimated air

temperature, it can be effective to use retrieval method based on land surface heat

budget (e.g. Kato and Yamaguchi, 2005) in future work.
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The main questions 6, 7 and 8 are answer as follow: There have been number of

studies focusing on the feature selection problem which are done by statistics and

machine learning communities for many years. It has received more attention recently

because of enthusiastic research in data mining. The aim is to construct a model

that predicts/estimate well or explains the relationships in the data. Therefore, the

motivation behind this research was to formulate a more efficient means of correctly

selecting input variables using ANN models of environmental processes.

In this section, the exhaustive search and forward selection are considered for finding

the best candidate model which can estimate the Tair, during day and night time for

six different LC/LU. Some criteria like RMSE, R2, AIC and BIC are considered for

model selection. The AIC can be termed as a measure of the goodness of fit of

any estimated statistical model. The AIC method provides a general measure of the

trade-off between information gain and the complexity introduced to the modelling

domain by the addition of input variables. This criterion lends itself to clear and simple

interpretation and is expected to provide consistent and reliable selection for any data

set. The BIC is a type of model selection among a class of parametric models with

different numbers of parameters.

we applied ES feature selection method, which is to exhaustively evaluate all possible

combinations of the input features, and then find the best subset. Obviously, the

computational cos of exhaustive search is prohibitively high, with considerable danger

of over-fitting. Hence, people resort to greedy methods, such as forward selection.

Our investigation shows that the greediness of the feature selection algorithms greatly

improves the efficiency, while does not corrupt the correctness of the selected feature

set so that the estimation accuracy using the selected features remains satisfactory.

( According to tables 5.1, 5.2 and figure 5.3, the most important parameters for

estimating the T2m for different LC/LU which its AIC weight importance is greater than

0.5 are namely included LST, JD, WD and RH for day time and LST, WD, RH and

AP for night time respectively. Moreover, figure 5.1 shows that, BIC always select

less variable compare to AIC and RMSE because BIC penalizes larger models more

strongly and so will tend to prefer smaller models in comparison to AIC. In addition,

the selection results demonstrate LST has more contribution than the other variables

to the measurement of Tair during day and night over different LC/LU. Table 5.5

and 5.6 show the final selected model during day and night time for six considered

LC/LU based on AIC and BIC criteria. It has been found that AIC and BIC criteria

tend to select the variable with Akaike weight importance of more than 0.4 and o.5,

respectively. It means that BIC select variables which have strong and moderately

strong relationships between a predictor variable and the response variable were

associated with Akaike weight importance from 0.5 to 1(Link and Barker 2006; Bolker

2008; Richards 2005).

In addition, by considering tables 5.1-5.4 and figures 5.1, 5.2, 5.5 and 5.6, we found

that, those parameters which have impact on the estimation of T2m during day and night

time were selected in both algorithms. Both algorithms tend to select the parameters

which their sum weight of Akaike were greater than 0.5. Moreover, compared with the

exhaustive search, forward selection is much cheaper. However, forward selection

may suffer because of its greediness.
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Moreover, it has found that the sum weight of wind speed has significant changes

during day and night time on airport LC/LU because of impervious surface of this

LC/LU in all season (Lin et al., 2012). The wind speed is influenced by many factors,

but the presence of tree cover is single factor that distinguishes wind over a forest

from wind over more open terrain, such as an airport. After sunset, due to, at night

the surface of the earth cools much more rapidly than does the air above the surface,

therefore, the wind speed tends to decrease. Because of this difference in cooling

ability, it doesn’t take long for the ground to become colder than the air above it. The air

in close contact with the ground— say in the lowest 300 feet of the atmosphere — then

becomes colder than the air above it. This circumstance cause to the development

of what is known as a temperature inversion. Inversions dramatically alleviate the

amount of mixing that occurs between different vertical layers of the atmosphere.

Therefore, after sunset, when the inversion sets up, it is much harder for fast-moving

air above the ground to mix down to the surface, where it could appear as a gust of

wind.

Furthermore, it has been found the sum weight of RH in all LC/LU during night are

higher that night-time the reason is the relative humidity depends not only upon the

amount of water vapour present in the air but also on the air temperature. In fact, the

relative humidity indicates how much is the percentage of saturation of air (with water

vapour) for a given temperature. If it is fully saturated, then the relative humidity is

100 percent. If air holds some amount of water vapour at a particular temperature

and is unsaturated, then, at a lower temperature, the same amount of water vapour

may be able to saturate it. Hence, for the same amount of moisture content in the

air, the relative humidity may be less for a higher temperature and more for a lower

temperature. Therefore, naturally the relative humidity is less during daytime and

more during night-time. In addition, AIC generally tries to find unknown model that has

high dimensional reality, but the Bayesian Information Criteria comes across only true

models. It can also be said that Bayesian Information Criteria is consistent whereas

AIC. When AIC and BIC will present the danger of outfit under fit, respectively (Aho et

al., 2014, Bolker 2008). Compared to AIC and BIC, Theil’s adjusted (R2) is another

model selection criterion that is applied to select the number of repressors. Though

the determination coefficient (R2) measures the goodness-of-fit of a model, it almost

always increases and never decreases with the number of repressors (according

to the table 5.4 which is summary of the model selection procedure applied to the

urban LC/LU). Therefore, if we consider R2 as model selection criteria, then it would

always favor larger number of variables. The adjusted R2 corrects the problem with

an adjustment to the degrees of freedom. The two other measurements namely sum

of squared errors (SSE) or residual variance can be used for the goodness-of-fit. It

should have been considered that minimizing the estimated residual variance is equal

to maximizing R2, therefore residual variance is redundant in cases that R2 is applied.

Cameron (1993) debates that R2 is not an effective tool for the prevention of data

mining because it will rise on the addition of any variable whose t ratio is greater than

one when entered the model, although R2 is used as a model selection criterion.

Overall, it has been found that LC/LU has a key aspect plays on the relationship

between Tair and LST. The results show that optimal models for estimating Tair are
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highly depend on LC/LU and time (day or night time). The specific heat capacities of

different LC/LU could be a one reason for this variation. The Tair is highly depend on

the heat transfer process, which was strongly influenced by the local radiation budget

(Lin, et al 2016, Yang et al.,2017). Generally, the heat capacity is lower in barren

land than forest. Therefore, Tair was heated much faster over barren land than forest.

Vegetation could also alter latent heat flux, such as enhancing or reducing transpiration

(Zeng et al 2015, Kaufmann et al, 2003), and cool the Tair in forests (Jeong et al.,

2009, Pouteau et al., 2011, Van et al., 2013). In this study, the cooling effect was

not explicitly considered because of roughly distribution of meteorological stations

across different vegetation types. Therefore, it was difficult to consider the vegetation

type in our models. However, land cover also affected land surface albedo, thus, the

influence of land cover on estimating Tair was conditional and time dependent.

Moreover, another issue that we tried to answer in this study was, what is the pitfall

of using the global model? It has been argued that one should make inference

from a model with all the factors thought to be important (i.e., a global model). This

approach would seem to be simple and avoid the complications of model selection.

The serious drawback here is the lack of precision in the estimated parameters (Figure

5.2). A given data set has only a finite amount of information; each time a parameter

estimate is made, the information left is reduced. Increasing the number of parameters

eventually makes the fitted model unstable and uninformative. The probability of

finding factors that are spurious increases. New parameters are estimated but with

increasing uncertainty-this phenomenon is an aspect of the Principle of Parsimony.

As we can see from Figure 5.2, by adding the irrelevant additional parameter to the

model, the accuracy will be decreased.

Finally, feature selection is a process where one tries to identify the useful parameters

from among a potentially large set of possible features. The task is obviously hard, and

researchers have been tackling it already for decades. Solving the problem properly

might today be more important than ever before, because, dataset size seem to grow

faster than does the processing power of computers in many applications. In addition,

there are several advantages and reasons of performing feature selection which some

of them have been enlisted below:

1 Feature selection models with a smaller number of features have higher explain

ability and it is easy to interpret.

2 Fewer features lead to enhanced generalization which in turn reduces over-fitting.

3 Feature selection removes data redundancy.

4 Training time (consuming time) of models with fewer features is significantly lower.

5 Models with fewer features are less prone to errors.

The two feature selection techniques have been evaluated to determine their effec-

tiveness for reducing the number of dimensions in a dataset and for improving the

accuracy of estimator which uses only these features. In this chapter, we found that,

Greedy forward Search is to be a highly effective method for feature selection which

has both increased accuracy and reduced the number of dimensions for the dataset
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used. An exhaustive search was trailed experimentally, it was found to be very effec-

tive for reducing the number of dimensions, and marginally improved the accuracy

of the estimator being used regardless the time consuming of the algorithm. In the

future work, in order to have better and comprehensive understanding the relationship

between LC/LU and Tair, applying several feature selection methods would be inter-

esting in order to have deeper investigation. Next to it, we can also apply the deep

learning in order to have higher accuracy in the estimation of Tair. In this research,

the twelve features (as described in chapter 4) were used as important parameters

for estimating Tair, but in the future work, other static and non-static features such

as building fraction, building height, incoming radiation, solar zenith angle, sky view

factor, and wall area index should have considered as potential important features

which could influence the estimation accuracy as well. Next to it, in order to reduce

the over-fitting problem, combinations of different feature selection algorithm can also

be examined for the future work as described in the studies of Pohjalainen et al., 2012,

and Saeys et al., 2008.
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The Tair is an important descriptor of terrestrial environmental conditions across the

Earth and plays an important role in multiple biological and physical processes among

the hydrosphere, atmosphere, and biosphere. Monitoring and understanding the

trends of LST–NDVI and LST–T2m are crucial in the study of regional and global

climate change (Yoo et al. 2011). This study investigates both LST–NDVI and LST–T2m
relationships over dierent LU/LC over Berlin, during different seasons at day and night

with grid size (1 km * 1km). The results indicate that different LU/LC types , seasonal

variations, time of day have significantly dierent eects on LST-NDVI and LST–T2m
relationships in Berlin. It would be interesting to examine whether and how the

size of the analytical unit may aect the observed relationships between LST–NDVI

and LST and Tair in future research, considering the inhomogeneity of land surface

characteristics within a grid box.

In our study, instead of estimation monthly air temperature and using the geographical

input data, we estimate air temperature during day and night with different parameters

such as NDVI, Albedo, relative humidity, wind speed, wind direction and Julian day

which are representative of seasonal changes. The satisfactory results suggested that

this modelling approach is appropriate for estimating air temperature in Berlin over six

different LC/LU. In addition, the results indicate that MODIS time series of LST can be

successfully combined with ground measurements of temperature to produce accurate

and more detailed predications of temperature during day and night-time. Although

the air temperature estimated from satellites tends to be higher than ground-based

measurement, the use of satellite remote sensing data can help to overcome the

spatial problem of estimating Tair particularly in areas with low station density using

satellite-based land surface temperature estimation and ground-based relationship

between LST and air temperature but our suggestion, for the future work is to use

retrieval method based on land surface heat budget (e.g. Kato and Yamaguchi, 2005)

in the future work in order to reduce the biases in satellite-estimated air temperature,

which might be a solution. Next to it, we should have considered modified normalized

difference water index(MNDWI), distance to river and solar radiation as predictors

for estimating Tair(Xu. et al. (2014)) in order to have better understanding, view and

analyses regarding air estimation during winter and summer periods. In our study, we

applied support vector regression model (SVR) which has been widely used to solve

non-linear time series problems. For tuning the three parameters of a SVR, we only

applied simulated annealing algorithm but for future work, it had better to apply other

optimization algorithms such as GA(genetic algorithm), particle swarm optimization

(PSO), and Ant Colony Optimization(ACO) and make a comparison between these

optimization methods and find the best. In this study we applied two feature selection

method for estimating Tair during day and night time over different LC/LU using both

Terra and Aqua MODIS LST products and auxiliary data from 2007–2013 in order

to figure out which parameters, among 12 candidate parameters can described the

relationship between LST and Tair and has important effect on their relationship. We

should have considered other parameters such as BF(x), BH(x), Elv(x), WAI(x), LU(x)
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which are referred to building fraction, building height, elevation, wall area index

and land use of the given point in order to understand the importance and impact of

these parameters in urban and industrial area compared to other LC/LU types. Near

surface air, temperature (NSAT) is a primary descriptor of terrestrial environmental

conditions. In recent decades, many efforts have been made to develop various

methods for obtaining spatially continuous NSAT from gauge or station observations.

NSAT has significant role in energy and water exchanges between the land surface

and atmosphere (Guan et. al, 2013) and it is the most important component of

global climate change which is sensitive to local anthropogenic disturbance (Hansen

et. al, 2006). Therefore, the availability of NSAT with a high spatial resolution is

necessary for several applications such as hydrology, meteorology, and ecology (Zhu

et al.,2013, Yang et al.,2012, Ge et al.,2014, Fu et al.,2011). For decades, many

efforts have been made to obtain spatial distributions of various NSAT variables

based on the point station measurements, including annual maximum/minimum/mean

NSAT(Cristóbal et al.,2008), monthly maximum/minimum/mean NSAT (Ninyerola et

al.,2007, El Kenawy et al.,2010, Chen et al.,2015, Evrendilek et al.,2012, Bennie

et al.,2010), daily maximum/minimum/mean NSAT (Pape et al., 2009, Gholamnia

et al.,2017, Zhou et al.,2017, Good 2015, Peón et al.,2014, Sun et al.,2005), and

instantaneous NSAT (Niclos et al., 2014, GLass, 2004). These NSAT retrieval methods

can be divided into three groups: (1) spatial interpolation method (Hou et al., 2013),

(2) physical-based method (Niclos et al., 2014, Stahl et al.,2006), and (3) regression

analysis method (Cristóbal et al., 2008). Considering the high spatial autocorrelation

of NSAT, several spatial interpolation methods have been employed to generate

spatially continuous NSAT from point station measurements, including inverse distance

weighting (IDW), Spline, Kriging, and even more sophisticated methods, such as co-

Kriging and elevation-de-trended Kriging techniques (Benavides et al., 2007, Duhan

et al., 2013, Vogt et al., 1997). The performance of interpolation methods is highly

dependent on the spatial density and distribution of weather stations (Stisen et al.,

2007).

Satellite remote sensing provides the ability to extract spatially continuous information

of land surface characteristics such as LST and the vegetation index (VI), which are

closely relative to NSAT. Many reserachers tried to estimate NSAT using satellite data

(Sun et al. 2011, Niclos et al.,2014, Nieto et al., 2011, Kawashima et al., 2000). Cheng

et al. (2008), Fu et al. (2011), and Zhu et al. (2013) tried to predict NSAT based on

the simple correlation between the NSAT and LST. Multiple linear regression (MLR)

analysis using both remote sensing and geographical variables, including LST, VI,

latitude, altitude, and so on, as predictors was performed to model NSAT (Cristóbal et

al., 2008 , Ninyerola et al., 2007, Peón et al., 2014). However, a global regression

analysis may lose local details that can be significant if the relationship is spatially non-

stationary. Geographically weighted regression (GWR) is a local modelling technique

for analysing spatial analysis, and allows the regression model parameters to vary in

space (Foody et al., 2003, Peng et al., 2011). The GWRmodel was employed by Chen

et al. for estimating monthly and eight-days NSAT in China (Chen et al., 2015). Many

researches have made contributions to assess the performance of various predicting

NSAT models in different regions. Peng et al. interpolated the monthly and annual
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NSAT in the Jiangsu province, China, using the IDW, Spline, Kriging, and Co-Kriging

models, and the result proved that the Kriging model has a much higher precision

than the IDW and Spline models, and that the Co-Kriging model is slightly better than

the Kriging model (Zhao et al.,2005). GLASS et al.’s study showed that interpolation

models (i.e., the Kriging model), regardless of whether or not satellite data are included,

are consistently superior to MLR models, and the Kriging model without satellite data

performed similarly to that with satellite data under more general conditions (Hou et

al.,2013). Zhao et al. estimated the NSAT in the southern Qilian mountains, China,

in which the weather stations are sparse, and the result indicated that the accuracy

of the MLR model is higher than that of spatial interpolation models, and the Spline

model shows the worst result (Zhao et al.,2005). What can be done next in Berlin area

is to estimate near surface air temperature using spatial interpolation model based on

mesh free approximation with our proposed method which the aim is to find optimized

coefficients for BF (x), BH(x), Elv(x), WAI(x), LU(x) which are referred to building
fraction, building height, elevation, wall area index and land use of the given point,

respectively.

The reason is that in all estimator models which we applied in this study we did not

consider the impact of following factors in formation of UHI micro-climate changes.

Moreover, it might be a question why we should consider the mesh free as an approxi-

mator? The reason is in many engineering application and science area, computation

with high-dimensional data is an important issue. Many traditional numerical methods

can either not handle such problems at all, or are restricted to very special situations.

Mesh free methods are often better solution to cope with changes in the geometry of

the domain of interest than classical discretization techniques. Another advantage is

its in-dependency from mesh generation which is the most time-consuming part of

any mesh-based numerical simulation.

7.1 The Scattered Data Interpolation Problem (general

description)

In many scientific disciplines, one faces the following problem: We are given a set of

data (measurements, and locations at which these measurements were obtained),

and we want to find a general rule which allows us to deduce information about the

process we are studying also at locations different from those at which we obtained

our measurements. Thus, we are trying to find a function Pf which is a ”good” fit to

the given data. There are many ways to decide what we mean by ”good”, and the

only criterion we will consider now is that we want the function Pf to exactly match

the given measurements at the corresponding locations. This approach is called

interpolation, and if the locations at which the measurements are taken do not lie

on a uniform or regular grid, then the process is called scattered data interpolation.

To give a precise definition we assume that the measurement locations (or data are

labeld xj, j = 1, ..., N , and the corresponding measurements (or data values) are
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called yi We will use X to denote the set of data sites and assume that x ⊂ Ω or

some region, and Ω in Rs. we will restrict our discussion to scalar-valued data, where

yj ⊂ R. However, much of the following can be generalized easily to problems with
vector-valued data. Moreover, we will assume that the data are obtained by sampling

some (unknown) function at the data sites yi = f(xi), j = 1, ..., N . Our notation Pf

for the interpolating function emphasizes the connection between the interpolant and

the data function. We are now ready for a precise formulation of the scattered data

interpolation problem.

Problem 1.1 (Scattered Data Interpolation):Given data (xj, yi), j = 1, ..., N with xj ∈
Rs, yj ∈ Rs find a (continuous) function Pf such that Pf (xj) = yi, j = 1, ..., N . The

fact that we allow xj to lie in an arbitrary s-dimensional space Rs means that the

formulation of Problem 1.1 allows us to cover many different types of applications.

If s = 1 the data could, e.g., be a series of measurements taken over a certain time

period, therefore the data sites xj would correspond to given time instances. For s = 2
we can think of the data being obtained over a planar region, and so xj corresponds

to the two coordinates in the plane. A convenient and common approach to solving

the scattered data problem is to make the assumption that the function Pf is a linear

combination of certain basis functions Bk, i.e.:

Pf =
N∑

k=1
CkBk, x ∈ Rs (7.1)

Solving the interpolation problem under this assumption leads to a system of linear

equations of the form:

AC = y (7.2)

where the entries of the interpolation matrix A are given by :

Ajk = Bxj, j, k = 1, ..., N, C = [C1, ..., CN ]T , y = [y1, ..., yN ]T (7.3)

Problem 1.1 will be well-posed, i.e., a solution to the problem will exist and be unique,

if and only if the matrix A is non-singular. In the univariate setting it is well known

that one can interpolate to arbitrary data at N distinct data sites using a polynomial of

degree N − l.

7.2 Scattered Data Interpolation with more General

Polynomial Precision and description of method

Now, we can construct and modify the assumption on the form 1.1 of the solution to

the scattered data interpolation Problem 1.1 by adding certain linear polynomials to

the expansion. Hereafter Pf is considered as T (X, t) which it is assumed to be:

T (X, t) =
n∑

i=1
αiW (X, xi)T (xi, t) +

n∑
i=1

βiW (X, xi)RH(xi, t) (7.4)
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Where T is temperature at time t and location X, i = 1, ..., n is the number of obser-

vation locations. The T and RH are temperature and relative humidity at time t and

location xi, respectively. The W (X, xi) and Px are defined as follow:

T (X, t) = e−p(x)‖X−Xi‖2∑n
i=1 e−p(x)‖X−Xi‖2 (7.5)

P (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF (x)
BH(x)
ELV (x)
WAI(x)

(LU(x) = LCT1)
(LU(x) = LCT2)
(LU(x) = LCT3)
(LU(x) = LCT4)
(LU(x) = LCT5)
(LU(x) = LCT6)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(7.6)

Where BF (x), BH(x),ELV (x),WAI(x),LU(x) are referred to Building Fraction, Build-
ing Height, Elevation, Wall Area Index and Land Use of the given point, respectively.

LCTi is addressed to one of six different land use/class that are considered for this

study. The p-coefficient p1, ..., p10 must be optimized in order to get good result in our

interpolation problem. The fmin-search, function of MATLAB can be considered for

find the minimum of a scalar function of several variables starting at an initial estimate.

This is generally referred to as unconstrained non-linear optimization coming back to

the scattered data problem. By solving the following linear system, we will be able to

find the coefficients (αi, βi):

P (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W (x1, x1), ..., W (x1, xn), W (x1, x1), ..., W (x1, xn)
W (x2, x1), ..., W (x2, xn), W (x2, x1), ..., W (x2, xn)

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

W (xn, x1), ..., W (xn, xn), W (xn, x1), ..., W (xn, xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1

α2

.

.

αn

β1

β2

.

.

βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T (x1, t1)
T (x2, t1)

.

.

.

.

.

.

.

T (xn, t1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(7.7)
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Where T (Xi, ti) is referred to the temperature at given time ti and location xi. Solving

the interpolation problem under this assumption leads to a system of linear equation

of the form:

AX = y (7.8)

Where the entries of the interpolationmatrixA is given by equation 4,X = |α1, ..., αn, β1, ..., βn|T
and y = |T (x1, t1), ..., T (xn, tn)|T and then X is calculated as follow:

(AT A)+AT y = X (7.9)

Cross-validation can be used to evaluate the generalizability of a model for estimating

the air temperature.
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