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Abstract 

Introduction 

The proteasome is a vital cell organelle, which generates the majority of antigenic 

peptides within the MHC I (major histocompatibility complex) pathway. Accordingly, a 

deeper understanding of its properties and behavior may lead to new developments in 

cancer therapy, vaccine design or the treatment of viral infections. The proteasome 

inhibitor bortezomib for example was one of the first FDA-approved drugs directly 

targeting the proteasome and is successfully used in the treatment of relapsed 

myeloma. Even though the proteasome’s structure has been examined in detail, the 

factors and conditions relevant for its cleavage behavior still remain unclear for the most 
part. 

Methods 

This work aims to deepen the understanding of the proteasome’s cleavage behavior 

using a machine learning approach: data of in vitro experiments gathered at the institute 

of biochemistry of the Charité Berlin was used as training data in order to learn a model 

classifying proteasomal cleavage products using a decision tree algorithm. The main 

advantage of the decision tree algorithm compared to other approaches like neural 

networks or support vector machines is the comprehensibility of its model: The decisions 

that make up the learned classification can be displayed in form of a tree or simple if-

then-rules with good human readability. This way a model was created, which not only 

allows the prediction of fragments created by the proteasome but also makes it possible 

to understand, which properties of the substrate are important for the model’s 

classification. 

Results 

28 different decision trees were created using various sets of training data as well as 

different sets of substrate attributes. Cross validation showed that the trees classified the 

training data correctly. The possibilities for validation with in vivo data are limited, since 

only data of CTL epitopes, which are no direct products of a proteasome’s digestion 
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process, is available. Still validation of the decision trees with CTL epitope data gave 
plausible results.  

No property or class of properties showed to be distinctly relevant for the proteasome’s 

cleavage behavior. The different decision trees classified the data using a variety of 

different properties.  
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Abstrakt 

Einleitung 

Das Proteasom ist ein lebenswichtiges Zell-Organell, das die Mehrheit anitgener Peptide 

im MHC I (major histocompatibility complex) Pathway produziert. Dementsprechend 

bietet ein genaueres Verständnis seiner Eigenschaften und seines Verhaltens das 

Potenzial für neue Entwicklungen im Bereich der Therapie maligner und viraler 

Erkrankungen, sowie beim Design neuer Vakzine. Der Proteasom-Inhibitor Bortezomib 

war beispielsweise das erste zugelassene Medikament mit dem Proteasom als direkter 

Zielstruktur und wird erfolgreich in der Therapie des multiplen Myeloms angewandt. 

Auch wenn die Struktur des Proteasoms bereits ausführlich untersucht wurde, bleiben 

die Faktoren und Bedingungen, die das Schnittverhalten des Proteasoms beeinflussen, 
nach wie vor weithin unbekannt. 

Methodik 

Das Ziel dieser Arbeit besteht in der Untersuchung des Schnittverhaltens des 

Proteasoms mit Hilfe von Methoden des Machine Learnings: Daten von in vitro 

Experimenten, die am Institut für Biochemie der Charité durchgeführt wurden, dienten 

als Trainingsdaten, um ein Modell zur Klassifikation von Schnittprodukten des 

Proteasoms zu generieren. Hierfür kam ein Decision Tree (Entscheidungsbaum) 

Algorithmus zum Einsatz. Im Gegensatz zu anderen Verfahren wie neuronalen Netzen 

oder Support Vector Machines bieten Decision Trees den Vorteil, dass die 

Entscheidungen, die zur Klassifikation im Modell führen, in Form von 

Entscheidungsbäumen oder einfachen Wenn-Dann-Regeln dargestellt werden können. 

So wurde ein Modell erstellt, das nicht nur die Vorhersage von Schnittprodukten des 

Proteasoms erlaubt, sondern es auch ermöglicht, die für die Klassifikation relevanten 

Eigenschaften des Substrats zu identifizieren. 

Ergebnisse 

28 verschiedene Decision Trees wurden mit unterschiedlichen Trainings-Datensätzen 

und verschiedenen Sätzen von möglichen Attributen erzeugt. Mittels Cross Validation 
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wurde überprüft, dass die Trainingsdaten durch die generierten Bäume korrekt 

klassifiziert wurden. Eine Validierung mit in vitro Daten ist hingegen nur eingeschränkt 

möglich, da lediglich Daten zu T-Zell-Epitopen verfügbar sind. Dabei handelt es sich 

jedoch nicht um direkte Verdauprodukte des Proteasoms. Dennoch zeigte die 
Validierung der Decision Trees mit T-Zell-Epitopdaten plausible Ergebnisse. 

Keine Eigenschaft oder Klasse von Eigenschaften des Substrats zeigte eine 

hervorstechende Bedeutung bei der Klassifikation von Schnittfragmenten. Die 

verschiedenen Decision Trees verwendeten eine Vielzahl unterschiedlicher 

Substrateigenschaften. 
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Introduction 

The proteasome is an important cell organelle, which plays a vital role in a variety of cell 

functions, including the generation of the majority of antigenic peptides within the MHC I 

(major histocompatibility complex) pathway. Various types of new medical therapies like 

epitope-based peptide vaccines and antiviral- or oncological drugs target the MHC I 

pathway or the proteasome itself. Even though these treatments show promising results 

and may improve the treatment of a wide spectrum of diseases significantly in the future, 

the majority of these new drugs have not been officially approved yet and are still being 

evaluated in clinical trials. A lot of questions regarding the processing of peptides within 

the MHC I pathway still remain open. Gaining a better understanding of the proteasome 

as an important part of the MHC I pathway can therefore proof valuable for the design of 
these new treatments mentioned before.  

In the following, the MHC I pathway will be introduced in more detail before the most 

important therapies targeting the proteasome and the MHC I pathway are discussed. 

Afterwards, the properties of the proteasome are explained in more detail and an 

overview over approaches to proteasomal cleavage site and fragment prediction is 

given.  
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MHC I pathway 

The MHC I pathway enables cells to present fragments of intracellular proteins to 

cytotoxic T cells and includes all steps from generation of protein fragments to their 

presentation on the cell surface. The process is shown in Figure 1. Cytosolic proteins 

are marked for degradation by the ubiquitin-system and then processed by the 

proteasome generating short oligopeptides. Defective ribosomal products (DRiPs) are 

an important source during this process: DRiPs are newly synthesized polypeptides 

which are degraded again within minutes due to errors in translation or defects in post-
translational folding (Schubert, Antón, et al. 2000).  

While most of the fragments are cleaved even further into single amino acids and then 

reused for the assembly of new proteins, a part is transferred to the endoplasmatic 

reticulum by TAP (transporter associated with antigen presentation) and binds to MHC 

molecules. In every human being, MHC I and MHC II molecules are encoded by three 

gene locations each, which due to the diploid chromosome set results in 6 different MHC 

molecules per class. Each MHC molecule binds a unique set of peptides with an 

average length of 8-10 amino acids (H.-G. Rammensee, Friede, and Stevanović 1995). 

Multiple findings suggest that the proteasome is responsible for generating precursor 

peptides of 3–22 residues which contain the C-terminus of the final MHC I ligand while 

their N-terminus is trimmed by cellular aminopeptidases (Peter M Kloetzel 2004; Craiu et 

al. 1997; Mo et al. 1999; Cascio et al. 2001; Serwold and Shastri 1999). The resulting 

MHC complex is transported to the cell surface by the Golgi apparatus and presented to 
cytotoxic T1-Lymphocytes. 
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Figure 1: Overview of the MHC I pathway. I: Transcription of DNA to mRNA, splicing of mRNA and 

additional interactions on mRNA level. II: Translation of mRNA by the ribosome. III: Folding and 

post-translational modifications of the newly synthesized protein. IV: Degradation of functional 

proteins, in part assisted by the ubiquitin-system. V: Degradation of defective proteins (DRiPs, 

also assisted by the ubiquitin-system) or proteins in creation by the proteasome. VI: Creation of 

peptide fragments by the proteasome. VII: Hydrolytic cleavage of peptides into amino acids by 

cytosolic peptidases. VIII: Binding of cytosolic peptides to TAP and transport into the ER. 

IX: Binding of endoplasmatic peptides to MHC I molecules and building of MHC I complexes. 

X: Hydrolysis of peptides by endoplasmatic amino-peptidases, export of fragments into the 

cytosol. XI: Vesicular transport of MHC I complexes to the cell surface by the Golgi-apparatus. 

XII: Presentation of MHC I complexes on the cell surface and binding of cytotoxic T-lymphocytes. 

Adapted from (Bulik 2011) 
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Therapies targeting the proteasome and the MHC I pathway 

The proteasome and the MHC-I pathway play an important role in various new treatment 

strategies, which are introduced in the following. 

Proteasome inhibitors in cancer therapy 

The proteasome itself is used as a target in cancer therapy. Proteasome inhibitors like 

bortezomib were first identified as drug candidates after studies showed that they induce 

apoptosis in leukemic cell lines (Shinohara et al. 1996; Imajohohmi et al. 1995). This 

effect was even observed in chemotherapy-resistant and radiation-resistant chronic 

lymphocytic leukemia cells. In addition, proteasome inhibitors have been shown to 
induce apoptosis preferentially in transformed cells (Delic et al. 1998). 

Multiple mechanisms are responsible for the effect of proteasome inhibitors: they 

repress nuclear factor-kB (NF-kB), which plays an important role in angiogenesis, cell 

invasion and oncogenesis (R. Z. Orlowski and Baldwin 2002). Furthermore, proteasome 

inhibitors induce cell cycle arrest by interfering with timely degradation of cyclins and 

other cell cycle regulatory proteins. They are also able to stabilize proapoptotic proteins 

like p53 and Bax, while reducing levels of other antiapoptotic proteins like Bcl-2 
(Rajkumar et al. 2005). 

The proteasome inhibitor bortezomib was approved for treatment of relapsed/refractory 

myeloma in patients who have progressed past at least one prior regimen after a phase 

III study showed a better response rate in comparison with dexamethasone (Richardson 

et al. 2005; Richardson et al. 2007). It is also used in combination with various 

chemotherapeutics like carboplatin, docetaxel or melphalan in order to induce chemo 

sensitivity or overcome chemo resistance (Aghajanian et al. 2005; Messersmith et al. 

2006; Berenson et al. 2006). Carfilzomib, a next generation proteasome inhibitor that 

unlike bortezomib binds to the proteasome irreversibly, was approved by the FDA in 

2012 for patients with multiple myeloma who have received two prior therapies, including 

treatment with bortezomib, after a multicenter, open-label trial had shown an improved 
progression-free survival (Siegel et al. 2012). 
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Despite the proteasome’s vital role in cellular homeostasis the toxicity of proteasome 

inhibitors proved to be manageable. Adverse events documented in the clinical trials 

include anemia, anorexia, constipation, dehydration, diarrhea, neutropenia, 

thrombocytopenia and neuropathy and have been shown to be transient and reversible. 

A better understanding of the underlying mechanisms might help to handle these effects, 

predict the efficacy or toxicity of the treatment and overcome resistance against 

proteasome inhibitors, which has especially been observed in solid tumors. 

Viral infections 

Many viruses have been reported to use different strategies in order to use the MHC I 

pathway for their own benefits.  

One example is viral immune evasion: Viruses have developed different strategies for 

down-regulation of MHC I molecules in order to reduce antigen presentation and 

therefore survive inside cells causing latent or chronic infections (Furman, Ploegh, and 

others 2002). The human cytomegalovirus for example produces the protein US2, which 

induces dislocation of MHC I molecules from the endoplasmic reticulum to the 

cytoplasm, where they are polyubiquitinated and rapidly degraded by the proteasome 

(Shamu et al. 2001; Kikkert et al. 2001). The Epstein-Barr virus nuclear antigen 1 

(EBNA1) contains Gly-Ala repeats that prevent viral protein degradation by the 

proteasome (Levitskaya et al. 1997). 

Another viral abuse mechanism, used by some enveloped RNA-viruses, is related to 

viral progeny release and viral membrane envelopment (budding). Multiple studies were 

able to show that proteasomal inhibition reduces viral progeny release and viral 
infectivity (Patnaik, Chau, and Wills 2000; Strack et al. 2000; Schubert, Ott, et al. 2000). 

Apoptosis is another process with involvement of the MHC I pathway that is abused by 

viruses in order to delay cell death during early viral infection to provide time for the 

production of high yields of progeny viruses. The tumor suppressor protein p53 plays an 

important role in this process and is therefore targeted by multiple viruses. The human 

papillomavirus for example produces protein E6, which builds a complex that targets p53 

for polyubiquitination and degradation of the proteasome (M. Barry and McFadden 
1998). 
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Vaccine design 

While traditional vaccines consist of live attenuated or inactivated microorganisms, 

recent scientific and methodological developments now allow the creation of specific 

epitope-based vaccines, which open up new possibilities for the treatment of chronic 

viral diseases and cancer. Accordingly, a variety of vaccines for different indications is 

currently under development, including gastric cancer, HIV, Asthma, HCV, type 1 

diabetes and many more (Purcell, McCluskey, and Rossjohn 2007). In order to identify 

new potential antigens, there is a great interest in the development of tools to predict 
proteasome cleavage products. 

Epitope-based vaccines offer several advantages over other forms of vaccines: They do 

not contain infectious material, they can be produced relatively easily on a large scale 

and they can be stored freeze-dried without the need of a ‘cold-chain’ for distribution. 

Drawbacks on the other hand include the need to potently stimulate T cells in order to 

elicit an immunological response. Epitope-based vaccines also need to be tailored for a 

given human leukocyte antigen (HLA) haplotype, which is viable however thanks to 

newer technological advances (Singh-Jasuja, Emmerich, and Rammensee 2004). 
Furthermore, in many cases the problem can be reduced to nine HLA super types.  

An alternative to creating HLA-specific vaccines is the creation of longer peptides with 

relevance for a broader range of different HLA allotypes. However, this approach relies 

on the processing of these longer peptides into shorter allele-specific peptides, which 
requires a detailed understanding of the MHC I pathway. 

A better understanding of the MHC I pathway and the proteasomal cleavage behavior 

may also prove useful for treating immunoevasive pathogens, which often evolve 

mechanisms to avoid proteolysis by the proteasome and MHC I presentation. A possible 

solution for this problem might be the fusion of the corresponding antigens to ubiquitin 

(M. A. Barry, Lai, and Johnston 1995; Levitskaya et al. 1997). 
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Properties of the Proteasome  

The proteasome is an intracellular multi-subunit protease, which is vital for cellular 

homeostasis. It is not only responsible for the removal of misfolded or malfunctioning 

proteins within the cell but also supplies the majority of antigenic peptides within the 

MHC-I pathway. Furthermore, the proteasome is involved in the cell cycle, the cell’s 

stress response, cell-differentiation and metabolic adaptation. (Schwartz and 
Ciechanover 1999) (Coux, Tanaka, and Goldberg 1996). 

Structure 

The 26S proteasome consists of the proteolytically active 20S proteasome and two 

additional 19S regulator units that are ATP-dependently attached to its sides (J. M. 
Peters et al. 1993).  

Four heptameric rings form the cylindrical structure of the 20S proteasome. While the 

outer rings, through which the substrate enters, consist of 7 α-subunits, the inner rings 

are formed by 7 β-subunits. The active sites of the proteolytically active subunits β1, β2 

and β5 are single threonines located at their amino termini (Groll et al. 1997) (Löwe et 

al. 1995). The three subunits have different preferences: β1 exhibits a caspase-like, β2 a 

trypsin-like and β5 a chemotrypsin-like activity (M. Orlowski and Wilk 2000). In the 

presence of interferon-g (IFN-g) the three subunits are replaced by the homologous 

subunits β1i, β2i and β5i which form an ‘immunoproteasome’ upon de novo assembly 
that features a different cleavage specificity (Nandi et al. 1997).  

The 19S unit is responsible for recognizing (Deveraux et al. 1994) (Young et al. 1998), 

deubiquitylating and unfolding the proteasome’s ubiquitylated substrate before it is 

translocated to the 20S proteasome (Michael H Glickman and Ciechanover 2002). It 
features a ‘base’ and a ‘lid’ multisubunit component.  

The base consists of six ATPase- and two non-ATPase subunits and binds to the 20S 

catalytic core (Michael H. Glickman et al. 1998). The ATPases have chaperone-like 

activity and help to unfold and channel the substrate into the 20S core (Braun et al. 

1999; Strickland et al. 2000; M H Glickman et al. 1999).  
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The lid component binds to the side of the base particle and consists of nine non-

ATPase subunits. Its major activity is proposed to be deubiquitylation (Verma et al. 

2002; Yao and Cohen 2002; Guterman and Glickman 2004) and its subunits exhibit high 

homology to the COP9 signalosome complex, which is an essential regulator in various 

cellular processes (Michael H. Glickman et al. 1998). Additional regulators are discussed 
in the following. 

 

Figure 2 Structure of the 26S proteasome, adapted from (P M Kloetzel 2001) 
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The immunoproteasome 

As mentioned before, the immunoproteasome is formed upon de novo assembly in 

presence of IFN-g. Compared to the assembly of the constitutive proteasome, its 

assembly is accelerated by a factor of three to four but its half-life of 21h is also 

considerably shorter than the 120h observed for the constitutive proteasome. This high 

turnover is independent of the presence of cytokines and seems to serve as a transient 
early response during the early phase of an infection (Heink et al. 2005).  

The question of how the immunoproteasome’s cleavage behavior differs from that of the 

constitutive proteasome is not easily answered:  One experiment showed, for example, 

that when HeLa cells were infected with vaccinia virus expressing the hepatitis B virus 

(HBV) core antigen, the epitope HBVcAg141-151 was only presented after stimulation with 

IFN-g (A. J. Sijts et al. 2000). This finding seems to support the assumption that the 

immunoproteasome generates a qualitatively different set of peptides. Highly sensitive 

analysis by mass spectrometry however revealed that the epitope was in fact also 

produced by the constitutive proteasome even though with greatly reduced efficiency. In 

combination with other similar observations, the immunoproteasome therefore seems to 

have a great quantitative effect on a given epitope (A. J. A. M. Sijts et al. 2000; Strehl 

and Heink 2005). Thus, effects on an immunological level become detectable after 
reaching a certain quantitative threshold. 

In the majority of other experiments, the immunoproteasome had a positive effect on 

MHC class I antigen presentation (P M Kloetzel 2001; van Hall T et al. 2000; Schwarz et 

al. 2000; Van Kaer et al. 1994). At the same time, no findings for a negative effect of the 

immunoproteasome on epitope generation exist so far. 

A large number of in vitro experiments combining mass spectrometry and high-

performance liquid-chromatography showed that the immunoproteasome changes the 

cleavage site preference and therefore the relative amount of peptides being generated. 

It has to be taken into account however that the substrate turnover of the 

immunoproteasome is accelerated and that under in vitro conditions a peptide fragment 

might be more abundant either due to increased turnover or to altered cleavage site 

preferences. Still, it could be shown that the immunoproteasome has a high cleavage 
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preference for residues that represent the correct C-terminus of an MHC class I epitope 

(Strehl and Heink 2005). In addition, it preferably generates epitope precursor peptides 

with a more extended N-terminal sequence that will facilitate TAP transport (Cascio et al. 

2001). Furthermore, the relative usage frequency of certain cleavage sites can greatly 

differ between the immunoproteasome and the constitutive proteasome depending on 
the surrounding amino acids (Strehl and Heink 2005). 

 

The regulator PA28 

Another component induced by IFN-g is the 11S regulator PA28 (Chu-Ping, Slaughter, 

and DeMartino 1992), which attaches ATP-independently to the proteasome’s outer α-

rings. Expression of PA28 is not completely IFN-g dependent however, since most 

tissues exhibit a constitutive, IFN-g-independent expression as well.   

The PA28 component consists of two subunits PA28α and PA28β, which form a ring-like 

structure (Soza et al. 1997). Binding of PA28 to the 20S core induces subtle 

conformational changes within the 20S complex that might alter the accessibility of the 
active site pockets or their binding affinity (Sun et al. 2002). 

PA28 enhances the presentation of multiple viral antigens even in the absence of 

immunosubunits by increasing substrate affinity or the release of peptide product without 

changing the maximal activity of the enzyme complex (Stohwasser et al. 2000). In 

contrast to the immunoproteasome, PA28 seems to affect the generation of only a minor 
fraction of epitopes, considerably fewer studies for PA28 exist however. 

While PA28 does not seem to induce new cleavage specificities, it enhances the usage 

frequency of certain preferred or minor cleavage sites (Sun et al. 2002). Similar to the 

immunoproteasome, it also greatly accelerates substrate turnover (Strehl and Heink 
2005). 

There is no experimental evidence that would suggest an additive or cooperative effect 
of PA28 and the immunoproteasome. 
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Gating 

The N-terminal tails of the 20S α-subunits project into the proteasome’s gate blocking 

access to the catalytic cavity in the absence of regulatory particles (Groll et al. 1997). 

When binding to the proteasome, PA28 causes the tails of the α-subunits to flip into the 
hollow core of the PA28 body. 

While the opening width of the gate does not affect the proteasome’s processing rate, 

which is determined by substrate binding to the 19S regulator (Thrower et al. 2000), it 

facilitates substrate entry and product exit through the otherwise closed gate, therefore 

decreasing the retention time of the substrate intermediates within the catalytic chamber 
(Stohwasser et al. 2000).  

Initially it was suggested that an open conformation could result in the release of longer 

N-terminally extended peptides which were assumed to be more suitable for antigen 

presentation. However binding of the 19S regulator opens the gate completely as well 

and proteasomes formed by the 19S regulator and PA28 (so called hybrid proteasomes) 

show the same cleavage activity as the 26S proteasome (Kopp, Dahlmann, and Kuehn 

2001; Hendil, Khan, and Tanaka 1998). The effect of PA28 on cleavage behavior seems 
therefore not to be the result of the open gate conformation. 

Additional in vitro methods like the addition of low levels of sodium dodecyl sulfate 
(SDS) are also effective in opening the gate (Coux, Tanaka, and Goldberg 1996). 

Peptide processing 

The substrate’s protein chains are unfolded and transported into the proteasome’s core 

by the 19S regulator. Some findings also indicate that a partial re-folding of the substrate 

takes place within the core (Sharon et al. 2006). Detailed information about the spatial 

processes taking place within the proteasome is still lacking. 

Multiple findings indicate that the sequence environment of the P1 residue affects the 

efficiency of epitope generation: Small amino acids like glycine or alanine at the P1’ 

position increase the cleavage probability while other amino acids decrease it 

(Ossendorp et al. 1996; Beekman et al. 2000; Del Val et al. 1991). The positions P4-P7 
affect proteasomal cleavage as well (A K Nussbaum et al. 1998). 
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Furthermore it was shown that proline residues within the substrate improve the 
cleavage efficiency (Shimbara et al. 1998). 

Even though various cleavage site preferences exist, the proteasome exhibits a high 

degree of flexibility. Within a protein, almost every amino acid residue can serve as a 

cleavage site although cleavage efficiency varies due to the flanking residues (Beekman 
et al. 2000). 

While the proteasome generates the C-terminus anchor residues of MHC class I 

epitopes as mentioned before, correct C-terminal cleavage site usage proves to be less 

robust than one might expect: Mutations resulting in substitution of only one amino acid 

flanking the correct C-terminal cleavage site can reduce epitope-generation significantly 

as was shown for epitopes of Moloney murine leukemia virus (MuLV), p53 and the 

immunodominant hepatitis C virus (HCV) (Beekman et al. 2000; Theobald et al. 1998; 
Seifert et al. 2004).  
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Approaches to cleavage site and fragment prediction 

First attempts to model the proteasome’s cleavage behavior were solely structure-

based. Early findings had suggested that the distance between the active sites acted as 

a molecular ruler that determined the product length (Wenzel et al. 1994). In fact, the 

distance between neighboring active sites corresponds to the length of an octa- or 

nonapeptide in extended conformation (Löwe et al. 1995). Additional experiments 

however showed size variations that are difficult to explain by an exclusively geometry-

based ruler (Kisselev, Akopian, and Goldberg 1998;  a K. Nussbaum et al. 1998; Dolenc, 

Seemüller, and Baumeister 1998). Furthermore, it was observed that proteasomes with 

different numbers of active sites generated peptides with a very similar length 
distribution ( a K. Nussbaum et al. 1998).  

Subsequent models for fragment prediction therefore favor a sequence-based approach. 

In general, these approaches can be used to predict either cleavage sites or fragments. 

It is important to note that predicting cleavage sites only does not allow to infer the 
actually occurring peptide fragments as illustrated in Figure 3. 

 

Figure 3: Predicting cleavage sites (A,' B', C', D') does not allow making definite predictions about 

the resulting fragments. The figure shows three possible sets of fragments that can be inferred 

from the four cleavage sites given. 
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In many experiments the number of fragments actually found differs significantly from 

the number of fragments theoretically possible by the cleavage sites detected. For 

example, in a digestion experiment with the yeast 20S proteasome and enolase 1 

conducted by (A K Nussbaum et al. 1998), the cleavage sites detected would allow for a 

total of 81 fragments with a length between 9 and 11 amino acids. However only 18 
fragments featuring this length were actually detected. 

The majority of approaches, which are described in the following, predict cleavage sites 
only. 

FragPredict: Statistical analysis and kinetic model for fragment prediction  

MAPPP (MHC I antigenic peptide processing prediction) combines proteasome 

cleavage with MHC binding prediction. The part responsible for cleavage prediction is 

called FragPredict and consists of two algorithms: The first one identifies potential 

cleavage sites based on a statistical analysis of cleavage-determining amino acid motifs 

present around the scissile bond (Holzhütter, Frömmel, and Kloetzel 1999). The results 

serve as input for the second algorithm which provides predictions of major proteolytic 

fragments based on a kinetic model describing the time-dependent digestion of smaller 
peptide substrates (Holzhütter and Kloetzel 2000). 

PAProC: Stochastic algorithm for cleavage site prediction 

PAProC uses a stochastic hill climbing algorithm which inspects ten critical amino acid 

positions in order to predict cleavage sites based on cleavage data obtained in vitro 

(Kuttler et al. 2000; A. K. Nussbaum et al. 2001). The model assumes that the amino 

acids at the P1 and P1’ positions have the highest impact on the cleavage probability 

and learns affinity parameters for the amino acids at each position, which are 

independent from the state of the other positions. 

NetChop: Cleavage site prediction using a neural network 

NetChop uses a neural network for fragment prediction (Keşmir et al. 2002) (Nielsen et 

al. 2005). The network is trained using MHC I class ligands generated by the human 

proteasome as opposed to the in vitro datasets used in the previous approaches. As not 
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all fragments generated by the proteasome bind to MHC molecules however, MHC I 
class ligands represent only a subset of all cleavage products.  

Comparison of FragPredict, PAProC and NetChop 

Saxová et al. evaluated the three approaches mentioned before by measuring their 

ability to predict the C-terminal of a set of MHC class I ligands obtained from the 

SYFPEITHI database (Saxová et al. 2003; H. Rammensee et al. 1999). In their 

comparison, NetChop performed best even when applied to in vitro data, mainly 

because non-cleavage sites were predicted better than by the other two algorithms. In 

addition, as mentioned before, NetChop is the only approach trained with MHC class I 

ligand data. Table 1 and Table 2 show the performance of all three algorithms as 
measured by Saxová et al.  

However, the fact that Saxová et al penalized the prediction of cleavage sites within a 

MHC class I ligand is arguable, because a cleavage site might not be used for every 

fragment being generated. Cleavage sites could be used in different combinations 
resulting in various fragments (also see Figure 3 for a more detailed explanation). 

Method N Sensitivity (%) Specifity (%) CC 

PAProC 217 45.6 30.0 -0.25 
FragPredict 231 83.5 16.5 0.00 
NetChop 1.0 231 39.8 46.3 -0.14 
NetChop 2.0 231 73.6 42.4 0.16 
Table 1: Performance of PAProc, FragPredict and NetChop on MHC class I ligands. Saxová et al. 

found NetChop to predict the C-terminal best of the algorithms examined. N: number of natural 

MHC ligands tested (less for PAProC because it requires a flanking region). CC: Correlation score 

that measures the algorithm’s positive and negative performance as described in the paper. From 

(Saxová et al. 2003) 

Method Sensitivity (%) Specifity (%) CC 

PAProC 46.4 64.7 0.10 
FragPredict 72.1 41.4 0.12 
NetChop 1.0 34.4 91.4 0.31 
NetChop 2.0 57.4 76.4 0.32 
Table 2: Performance of PAProC, FragPredict and NetChop on in vitro data. Saxová et al found 

NetChop to predict the C-terminal best of the algorithms examined. CC: Correlation score that 

measures the algorithm’s positive and negative performance as described in the paper. From 

(Saxová et al. 2003) 



 24 

Kinetic analysis of time-dependent product formation 

Another approach quantifies cleavage rates using a kinetic proteasome model that 

incorporates the time-dependent changes of the amount of the peptides generated (B. 

Peters et al. 2002). The model incorporates a procession rate, which depends on the 

peptide length and a cleavage probability for each potential cleavage site. Model 

parameters are estimated for in vitro experiments of two different peptides by quantifying 

the intensity of the MS signals measured using experimental calibration curves and 

theoretically determined linear scaling functions. However, the model is mainly intended 

to examine differences between the cleavage behavior of the constitutive and 

immunoproteasome and provides evidence for an increased procession rate and some 
alterations of cleavage probabilities for a couple of restricted cleavage sites. 

ProteaSMM: A scoring matrix for cleavage site prediction 

Another approach models the whole MHC class I pathway including MHC binding and 

TAP transport based on in vitro digests of whole proteins (Tenzer et al. 2005). The 

method responsible for proteasomal cleavage prediction is named ProteaSMM and 

works with scoring matrices that assign scores to each amino acid located in a 10-

residue window around the scissile bond. The cleavage probability of a specific site is 

determined by adding the score values of the surrounding amino acids. Different scoring 

matrices for the constitutive and immunoproteasome based on different training data are 

provided. The authors compare the prediction quality of their method with FragPredict, 

PAProC and NetChop using a custom set of in vitro data. For this dataset, ProteaSMM 

clearly outperforms the other methods. Interestingly, the immunoproteasome-specific 

scoring matrix outperforms the scoring matrix of the constitutive proteasome even on 

test data derived from constitutive proteasomes. In another comparison of the complete 

MHC class I pathway model with NetChop 2.0 using MHC I ligand data, the authors 
show that both methods reach the same level of prediction quality.  
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Pcleavage: Support vector machine for cleavage site prediction 

Pcleavage uses a support vector machine trained with in vitro and MHC I ligand data for 

cleavage site prediction (Bhasin and Raghava 2005). The authors evaluated the 

prediction quality and found it to be comparable with that of NetChop. Like the neural 

network used in NetChop however, the support vector machine allows for no insight on 
which properties of the test data have an impact on the classification. 

ProteaMAlg: Proteasome modeling algorithm 

ProteaMAlg describes the proteasome’s degradation dynamics using a system of 

ordinary differential equations (Mishto et al. 2008). The model considers processes like 

uptake and release of fragments into/from the proteasome as well as proteolytic 

cleavage of peptides inside the proteasome. In addition, the amino acid at each position 

of the substrate is incorporated in the model using substrate-specific cleavage strengths 

which can be determined either experimentally or using PAProc, NetChop or a similar 

prediction algorithm. The authors find that prediction of peptides is not possible with their 

or other existing statistical models. They can only describe the production of observed 

fragments from a specific substrate by fitting the model parameters to the observed 

data. New substrates provide entirely new parameter values. It could be shown however 

that both the substrate length and the amino acid composition affect the substrate 

cleavage strength and the overall substrate degradation rate. It was also shown that the 
generation of double cleavage products is favored in presence of PA28. 

Scoring function for fragments 

Another approach by Ginodi et al. assigns a score for the probability of a fragment to be 

generated by the proteasome instead of predicting cleavage sites (Ginodi et al. 2008). 

The scoring functions, which are distinct for the constitutive and immunoproteasome, 

assign a position-specific score to each amino acid within a given peptide as well as the 

flanking amino acids at its C- and N-terminus. The score values are learned from in vitro 

data using a simulated annealing process. Thus the probability that a given peptide is 

produced during cleavage is described as a linear combination of each amino acid’s 
effect within the peptide and its flanking region. 
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Validation with multiple datasets including naturally processed epitopes taken from the 

SYFPEITHI database showed a specificity and sensitivity of over 70%. Depending on 

the training data, results were even better. Therefore, the authors find their algorithm to 

perform significantly better than all the approaches evaluated by Saxová et al., even 

though a direct comparison is admitted to be difficult, since the other methods predict 
cleavage sites instead of fragments. 
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Mass spectrometry 

The foundation of any prediction algorithm is the experimental data available for training 

and/or evaluation purposes. The data used in this work was obtained in in-vitro digestion 

experiments. The digestion products were identified using mass spectrometry. The 

general process is depicted in Figure 4. 

 

Figure 4: General process of in-vitro digestion experiments, which supplied the training data for 

this work. Proteins are digested by the proteasome and separated by high performance liquid 

chromatography. Peptide masses are measured and individual isolated peptides are subjected to 

MS-MS. The measured fragment ions combined with the peptide mass are used for peptide 

identification through the database of possible fragments. Picture adapted from (Kolker, Higdon, 

and Hogan 2006). 
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Mass spectrometry has become the standard method for analysing peptides over the 

past 20 years. Mass spectrometers measure ions and make measurements of mass-to-

charge. There are two most commonly used ionization methods: electrospray ionization 

(ESI) and matrix-assisted laser desorption ionization (MALDI). Structural information 

about peptides can be obtained by fragmentation of peptides in two consecutive MS-
measurements (MS-MS, or tandem MS).  

The measured MS-MS spectra are usually analyzed using database search programs, 

which compare the observed MS-MS spectra with all candidate peptide MS-MS spectra 

that can occur according to the initial substrate. A key challenge for data analysis is to 

distinguish correct peptide identifications from incorrect ones. Accepting each database 

search result as correct would lead to a an abundance of false positives (Keller et al. 

2002). Therefore, minimum score thresholds are usually used to reduce the number of 

positive identifications. Various confounding factors like noise, instrument under-

sampling or low abundance signal suppression also need to be taken into consideration 
when trying to identify actually occurring peptides. 

A database search-program used in this work, called Mass Spectrometry FileAnalyzer 

(further explained in the following chapter), also takes the substrate’s time-dependent 
degradation into account in order to improve the reliability of its results. 
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Goals of this work 

Considering the introductory remarks, this work tries to contribute to the greater goal of 

gaining a deeper understanding of the proteasome’s cleavage behavior by: 

1. Developing an improved approach for prediction of the proteasome’s cleavage 

products using statistical methods, which requires 

2. Establishing a suitable database created from digestion experiments conducted 

at the institute of biochemistry of the Charité Berlin. This in turn requires 

3. Validating the software “FileAnalyzer” created by the Holzhütter working group, 
which was used to analyze the experiments’ MS-data. 
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Methods 

Dataset 

Working groups under supervision of Prof. Kloetzel and Prof. Holzhütter of the institute 

of biochemistry of the Charité Berlin conducted a variety of experiments concerned with 

proteasome digestion between 2000 and 2011. The results of these experiments served 

as training data for the work of this thesis. Overall, there was data of experiments with 

63 different substrates available. A complete list of all experiments included and their 
most important properties can be found in Appendix 1. 

During the experiments, peptides were incubated with proteasomes of varying cell lines. 

The digestion products were separated using HPLC and then analyzed by mass 

spectrometry (MS). The MS raw data obtained was analyzed using two different 

methods: software-assisted manual evaluation and a fully automated approach using a 

software called “Mass Spectrometry File Analyzer” created by Dr. Andrean Goede of the 
institute of biochemistry of the Charité Berlin.  

Internal instead of publicly available data was used because of its integrity and 

consistency: All experiments had been conducted in a homogeneous setting, with the 
same methods (MS, HPLC) and were well documented.  

Software assisted manual evaluation 

During software-assisted manual evaluation members of the Kloetzel working group 

analyzed and validated the raw mass spectrometry data using the MS Bioworks 

software suite, creating cleavage maps for each experiment containing all fragments 

detected with a high level of certainty (usually between 20 and 30), which was ensured 
by crosschecking the MS-data at multiple time points and iterations. 

One cleavage map usually incorporated data of multiple mass spectrometry 

measurements, sometimes even of multiple experiment iterations (e.g. with and without 

an activator like PA28) and listed the fragments detected without any ranking. See Table 

3 for a sample cleavage map.  



 

Ion 
signal       Idx RT 

MW 
monoiso.   MS/MS           5       10       15       20       25     29 

(monoiso., m/z)     min Da         T R P I L S P L T K G I L G F V F T L T V P S E R G L Q R 
                                                                                

det calc D z     det calc D   RT                                                           
                    min                                                           
473,3 473,3 0 1 26-29 21,8 472,2 472,3 -0,1 2 22.1                                                           
472,1 471,3 0.8 2 4-12 23,6 942,2 940,6 1,8 2 23.8                                                           
966,1 966,6 - 0.5 1 11-19 23,8 965,1 965,6 -0,5 3                                                             
572,1 571,8 +0.3 2 20-29 24,4 1142,2 1141,6 0,6 2 24.7                                                           
429,8 429,7 +0.1 2 20-27 26 857,5 857,5 0 2 25.9                                                           
679,1 678,9 +0.2 2 18-29 26,2 1356,1 1355,8 0,3 2 26.5                                                           
537,1 536,8 +0.3 2 18-27 27,4 1072,2 1071,6 0,6 2 29.0                                                           
563,6 563,4 +0.2 2 1-10 27,5 1125,3 1124,7 0,6 2 27.9                                                           
300,4 300,2 +0.2 2 1-5 27,9 598,7 598,4 0,3 2 27.9                                                           
575 574,8 +0.2 2 16-25 28,3 1148 1147,6 0,4 2 28.4                                                           

802,1 801,9 +0.2 2 16-29 28,6 1602,3 1601,9 0,3 2 28.9                                                           
479,1 479,3 -0.2 1 16-19 29,1 478,1 478,3 -0,2 2 29.3                                                           
648,5 648,4 +0.1 2 1-12 29,5 1295 1294,8 0,2 2 29.6                                                           
660 659,9 +0.1 2 16-27 29,6 1317,9 1317,7 0,2 2 29.7                                                           

506,2 506,3 +0.1 1 11-15 30,2 505,2 505,3 -0,1 2 30.4                                                           
517,1 516,8 +0.3 2 6-15 30,7 1032,1 1031,6 0,5 2 30.9                                                           
807,2 807 +0.2 2 1-15 31,5 1612,3 1612 0,3 2 32.0                                                           
640,1 639,9 +0.2 2 6-17 33 1278,2 1277,7 0,5 2 33.1                                                           
930,3 930,1 +0.2 2 1-17 33,9 1858,5 1858,1 0,4 2 34.2                                                           

Table 3: Sample cleavage map created via software assisted manual evaluation (some additional information was left out for better 
readability). On the right top the substrate is shown (TRPILSPLTKGILGFVFTLTVPSERGLQR), below the fragments detected are displayed 
as blue blocks.
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Fully automated approach with “Mass Spectrometry File Analyzer” 

The mass spectrometry data was also analyzed using a custom software solution 

created by Dr. Andrean Goede named “Mass Spectrometry File Analyzer” (see Figure 5 

and Figure 6 for sample screenshots). All mass spectrometry raw-data-files available for 

each individual experiment-iteration were analyzed separately and a list of fragments 

detected ranked by a probability score was obtained for each file.  

While the manually created cleavage maps only listed fragments that were found with a 

high level of certainty, which was ensured by validating their occurrence in multiple mass 

spectrometry files, the Mass Spectrometry File Analyzer detected fragments with a 

higher level of sensitivity at the expense of specificity.  

 

Figure 5: Screenshot from the "Mass Spectrometry File Analyzer" used for analysing MS raw data. 
In this screen the substrate sequence was entered in the upper textbox. Multiple mass 
spectrometry raw files of an experiment were selected and are shown at the bottom. 
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Figure 6: Fragment list retrieved from Mass Spectrometry File Analyzer. The list is sorted by a 
probability score, which is displayed next to the fragment’s sequence.  

Ensuring a distinct dataset 

In order to prevent biased results caused by a culmination of similar substrates, a 

distinct dataset was built by filtering out similar peptides using the basic local alignment 

search tool (BLAST) provided by the National Library of Medicine (Johnson et al. 2008). 

Table 4 shows the settings used for the DELTA-BLAST algorithm. Each experiment was 

aligned with all other experiments of the dataset. All alignments with an Expect value 

below 1e-04 and a query cover above 80% were considered. The Expect value reflects 

the probability of a detected similarity to be random, while the query cover accounts for 

the portion of matching amino acids relative to the whole peptide.  

In order to obtain the distinct dataset, the alignment with the largest query cover was 

selected and its experiment was removed from the dataset. If there were multiple 

alignments with the same query cover, the experiment with the most alignments to all 

other experiments was removed. This process was repeated until no more alignments 

above the threshold remained. The resulting distinct dataset contains 48 experiments 

(see Appendix 1 for a detailed list of all experiments). 
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Setting Value 
Max target sequences 100 
Short queries Enabled 
Expect threshold 10 
Word size 3 
Max matches in a query range 0 
Matrix BLOSUM62 
Gap Costs Existence: 11 Extension: 1 
Compositional adjustments Conditional compositional score matrix adjustment 
Table 4: BLAST settings used to identify similar sequences 

 

Dataset subsets 

During decision tree generation, various subsets of the training data were used. Table 5 

shows an overview of these subsets. 

Name Description # Fragments Fragments 
detected 

CMap Data of all manually created 
cleavage maps 

26131 1826 (7%) 

CMap* Data of all manually created 
cleavage maps for the set of distinct 
experiments (see above) 

20838 1349 (6%) 

FileAn Data of all analyses performed with 
the Mass Spectrometry File 
Analyzer 

124906 52049 (42%) 

FileAn* Data of all analyses performed with 
the Mass Spectrometry File 
Analyzer for the set of distinct 
experiments (see above) 

103858   43522 (42%) 

Table 5: Training data subsets used for decision tree generation. # Fragments: Overall number of 
fragments that could theoretically be derived from the substrates is included in the subset. 
Fragments detected: Actual number of fragments that were detected either by manual evaluation 
(in case of CMap) or by the File Analyzer (in case of FIleAn) 
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Decision tree 

Pattern recognition and empirical learning from examples is a common task in today’s 

biomedical sciences. While the majority of the algorithms used in the field provide very 

good and reliable results in most scenarios, many of them lack the possibility to easily 

read and understand the decisions that are relevant in order to obtain the resulting 

classification. 

Decision tree learning as introduced by Quinlan (J. R. Quinlan 1986) in the form of the 

ID3 algorithm is a method of machine learning which allows to visualize the learned 

discrete-valued function as a tree or a set of if-then-rules, both with good human 

readability. It is one of the most widely used methods for inductive inference and is 

robust to noise while searching a completely expressive hypothesis space.  

The main motivation for using decision trees in this work was the possibility to create a 

model, which does not work like a black box but whose rules and decisions are 

comprehensible. The goal was not to just model the training data as well as possible but 

also to identify relevant substrate properties which determine the cleavage process, thus 

gaining more insight into the inner workings of the proteasome. 

Algorithm 

The algorithm performs a top-down greedy search through the space of possible 

decision trees, evaluating at each step which attribute separates the training data best 

using a criterion that usually measures the expected reduction in entropy but may vary 

depending on the actual implementation. 

Multiple variations and refinements of the decision tree learning algorithm exist, e.g.  

C4.5 (J R Quinlan 1993), GID3 (Cheng et al. 1988) or ASSISTANT (Cestnik, 

Kononenko, and Bratko 1987). The general approach for tree induction is mostly the 

same in all variants and is shown in Table 6. In this work an implementation of C4.5 with 

the gain ratio criterion and pruning as described in (J R Quinlan 1993) was used.  
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C4.5 (examples, targetAttribute, attributes) 
examples: training data used to induce the tree 
targetAttribute: attribute whose value is to be predicted by the tree 
attributes: Set of attributes to be examined by the algorithm for classification 
Returns a decision tree that classifies the given examples into the values of 
targetAttribute using the attributes supplied. 
 

 
§ Create a Root node for the tree 
§ If all examples have the same value v of targetAttribute, return the single-node 

tree Root with label = v 
§ If attributes is empty, return the single-node tree Root with label = most common 

value of targetAttribute in examples 
§ Otherwise begin 

§ A = the attribute with the highest gain ratio 
§ Set decision attribute of Root = A 
§ For each possible value ai of A 

§ Add a new tree branch below Root corresponding to the test A = ai 
§ examplesai = subset of examples that have value ai for A 
§ If examplesai is empty 

§ Then below this new branch add a new leaf node with 
label = most common value of targetAttribute in examples 

§ Else below this new branch add subtree 
C4.5(examplesai, targetAttribute, attributes – {A}) 

§ Return Root 
 
Table 6: Summary of the decision tree algorithm C4.5. After tree induction, the tree is pruned in an 
additional step in order to avoid overfitting 

 

Gain ratio criterion 

In order to select the attribute that best classifies the training data in each step the 

original ID3 algorithm makes use of the information entropy: 

!"#$%&' ( = 	 −&,	-%./&,
,	∈1

 

where S is a set of samples, C the target classification and pc the proportion of S 

belonging to the target class c.  
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Using the entropy measure, the gain criterion can be defined as follows: 

234" (, 6 = !"#$%&' ( 	−	
(7
(
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where Values(A) is the set of all possible values of attribute A and Sv the subset of 

samples in S, which have the attribute value v (Sv = { s ∈ S | A(s) = v }). ID3 selects the 

attribute with the highest information gain in each recursive step.  

However, the gain criterion has a strong bias in favor of attributes with many attribute 

values. An extreme example would be a patient identification number in a medical 

diagnosis task. Since each subset would only contain a single case, Entropy(Sv) would 

become 0 for all subsets and Gain(S, A) would reach its maximum. While perfectly 

classifying the example data, this division would be rather useless regarding its 

predicting value. In order to rectify this bias, Quinlan introduced the gain ratio criterion in 

C4.5: 

234"	$3#4% (, 6 =
234" (, 6
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Handling continuous attributes 

An approach for handling continuous attribute values within decision trees was first 

introduced by Paterson and Niblett (Paterson and Niblett 1982): The samples in the 

examples set S are first sorted by their values of attribute A to be considered. These 

values {v1, v2 … vn} can then be split into two subsets {v1 …. vi} and {vi+1 … vn} by a 

single threshold value lying between vi and vi+1. There are thus only n – 1 possible splits 

on A, which can be examined with linear costs because the list of values is sorted. In 

C4.5, the threshold value is usually set to vi.  
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Pruning 

Since the decision tree is grown until it fits the training data as well as possible, the 

danger of overfitting the data is relatively high. Therefore, the decision tree is pruned 

after its creation in an additional step. A node in the tree is pruned by removing the 

node’s subtree and making it a leaf node with the most common classification of all 

samples associated with the node. The approach used in C4.5 is called reduced error 

pruning: Starting from the bottom of the tree, each non-leaf node is examined. If 

replacing the node’s subtree results in a lower predicted error rate, the node is pruned 

accordingly.  

A node’s error rate is estimated using the upper limit of the binomial proportion 

confidence interval U(E, N): 

B !,C = 	& 	± 	E	
F

G
	&	(1 −	&)	  

where N is the number of training samples covered by a leaf, E the number of wrongly 

assigned samples within the leaf, & the proportion of successes in a Bernoulli trial 

process and z the 1 −	F
/
	I percentile of a standard normal distribution (C4.5 uses a 25% 

confidence level). 

The error rate of a non-leaf node is given by the sum of predicted error of its child nodes. 

A major advantage of C4.5’s reduced error pruning approach is that no part of the 

training data needs to be reserved for error estimation because the error is estimated 

heuristically. Figure 7 illustrates the process with a simplified example. 
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Figure 7: Simplified example for error pruning. The tree on the left has three leaf nodes, the first 
two of them (green) classifying a fragment as being products of the proteasome. The estimated 
error in the parent node is 3.273. If the three nodes are replaced by a single leaf node, the 
estimated error is only 2.512 (node on the right), thus pruning is performed on this node. Adapted 
from (J R Quinlan 1993). 

 

Classification 

A decision tree maps its input data to a discrete classification, which is associated with a 

probability score. Predicting multiple cleavage sites within a peptide is a rather 

unsuitable task for a decision tree, since the learned function is injective and could 

therefore only classify a single cleavage site at a time. Multiple cleavage sites would 

have to be modeled using multiple trees or using other workarounds. A binary 

classification of whole fragments into the classes “generated by the proteasome” and 

“not generated by the proteasome” however, is very well suited for a decision tree and 

results in a score for each fragment reflecting the probability of the fragment being 

created by the proteasome. 

Amino	Acid	at	P1

Alanine Valine

N	=	6
E	=	0

U25%(0,	6)	= 0.206

N	=	1
E	=	0

U25%(0,	1)	=	0.750

N	=	16
E	=		0

Estimated	Error	=	
6	x	0.206 +	9	x	0.143 +	1	x	0.750 =	3.273

N	=	16
E	=		1

U25%(1,	16)	=	
16	x	0.157	=	2.512

Leucine

N	=	9
E	=	0

U25%(0,	9)	= 0.143
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Attributes selected for decision tree creation 

The hypothesis space searched by the decision tree algorithm is defined by the 

attributes that describe the training data. Selecting promising attributes is therefore 

critical and a variety of attribute sets, which is described in the following, was used in 

this study. Both positional constraints and physicochemical properties of the individual 

amino acids play an important role during substrate binding to the proteasome’s active 

sites as illustrated in Figure 8. 

 

 

Figure 8: Conolly Surface Representation of the 
proteasome’s β5c and β5i active sites in the presence of a 
substrate (in this case the epoxyketone inhibitor PR-957). 
Surface colors indicate positive and negative electrostatic 
potentials contoured from 50 kT/e (intense blue) to 50 kT/e 
(intense red). Thr1 is colored in white, and the substrate is 
highlighted in yellow. Reprinted from Cell, volume 148, 
issue 4, (Huber et al. 2012), with permission from Elsevier 

 

 

Amino acid index database 

The amino acid index database (AAIndex) contains a wide collection of published 

physicochemical and biological properties of amino acids (Nakai, Kidera, and Kanehisa 

1988; Tomii and Kanehisa 1996; Shuichi Kawashima, Ogata, and Kanehisa 1999; S 

Kawashima and Kanehisa 2000). Currently it includes 544 different attributes. All of 

these attributes were used for decision tree creation.  

In order to reduce the calculation duration for some decision trees and to avoid 

overfitting due to an abundance of properties, the attributes of the amino acid index 

database were also clustered using a maximum linkage cluster algorithm. Each attribute 

within the amino acid index database is defined by a vector of 20 values. The Pearson 

product-moment correlation coefficient was used as a distance measure between two 

vectors: 
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$(J, ') =
JK −	J	 'K −	'	

L
KMF

JK −	J / 'K −	' /L
KMF

L
KMF

 

with  J = 	 F
L
	 JK

L
KMF  and ' = 	 F

L
	 JK

L
KMF  and x and y being distinct attribute vectors of the 

amino acid index database.  

A cluster c is defined as a set of attribute vectors: N = 	 J, ', E  and the maximum linkage 

between two clusters is given by 

O3J4OPOQ4"R3.S NF, N/ = max $(J,F, J,/) |	J,F 	∈ NF 	∧ 	J,/ 	∈ N/ 

The algorithm was started with n = 544 clusters, each containing a single attribute 

vector. The two clusters with minimum maximumLinkage were determined and merged 

until the target count of ten clusters was reached. For each cluster, the attribute vector 

with minimum distance to all other vectors of the cluster was selected as representative: 

$S&$SYS"#3#4ZS N = 	J	|	J	[	N	 ∧ 	 $(J, NK)

,

KMF

= 	O4" 

Tomii et al. describe the same approach for clustering, however they define six logical 

clusters: alpha and turn propensities, beta propensity, composition, hydrophobicity, 

physicochemical properties and other properties (Tomii and Kanehisa 1996). Because 

six clusters did not seem to provide a sufficient selection of attributes to choose from for 

the decision tree algorithm, ten clusters were created for this work instead. 

Table 7 shows an overview of the 10 clusters created for tree generation. A complete list 

of the clusters including all entries from the amino acid index database can be found in 

Appendix 2. 
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Cluster Name Cluster Representative Number of Attributes included 
Representative Description 
 
Cluster 1 WERD780103 79 

Influence of water on protein structure. An analysis of the preferences of amino acid 
residues for the inside or outside and for specific conformations in a protein molecule 

Cluster 2 KHAG800101 67 
The Kerr effect of amino acids in water 
Cluster 3 AURR980118 58 
Helix capping 
Cluster 4 RACS820102 31 
Differential geometry and polymer conformation. 4. Conformational and nucleation 
properties of individual amino acids 
Cluster 5 TANS770108 66 
Statistical mechanical treatment of protein conformation. 5. A multiphasic model for 
specific-sequence copolymers of amino acids 
Cluster 6 YUTK870104 80 
Dependence of conformational stability on hydrophobicity of the amino acid residue in a 
series of variant proteins substituted at a unique position of tryptophan synthase alpha 
subunit 
Cluster 7 RICJ880102 29 

Amino acid preferences for specific locations at the ends of alpha helices 

Cluster 8 QIAN880117 50 

Predicting the secondary structure of globular proteins using neural network models 

Cluster 9 QIAN880138 44 
Predicting the secondary structure of globular proteins using neural network models 
Cluster 10 KLEP840101 40 
Prediction of protein function from sequence properties: Discriminant analysis of a data 
base 
 544 

Table 7: AAIndex database clusters created for tree generation 
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Aggregated fragment attributes versus specific position attributes 

Many of the eligible attributes (like hydrophobicity, mass or polarity) are properties of the 

single amino acids comprising the fragments. There are different possibilities for 

evaluating these attributes, which were both examined in this work.  

Considering only specific positions 

Only specific positions within the fragment can be considered, which seems promising, 

since various findings indicate that certain positions (like P1 or P4-P7) within the 

proteasome’s substrate are especially relevant during the cleavage process (Ossendorp 

et al. 1996; Beekman et al. 2000; Del Val et al. 1991; A K Nussbaum et al. 1998). Since 

a fragment can result from a single or two consecutive cuts, the cleavage sites are 

distinguished by naming the site closer to the N-terminus the “tail” site as illustrated in 

Figure 9. An attribute’s median value was used for positions that were not available in a 

fragment (e.g. P1 of a head-fragment). 

 

Figure 9: Naming conventions used for cleavage sites and amino acid positions 

 

Calculating a summed value for the whole fragment 

Alternatively, it is also possible to calculate a summed value by adding the attribute 

values of all amino acids comprising the fragment. Figure 10 shows an example 

evaluating the amino acids’ hydrophobicity index (as described in (Argos, Rao, and 

Hargrave 1982)) of the fragment “ARN”: When only considering the P1 position of the 

P3 P2 P1 P1‘ P2‘ P3‘ P4‘

A R N D C Q E G H I
P3 P2 P1 P1‘ P2‘ P3‘P4

N1terminus

“Tail”?cleavage?site

cleavage?site
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tail cut, we obtain the hydrophobicity index of asparagine (N), which is 0.06. Calculating 

the summed value for the fragment, we obtain a value of 1.27 (hydrophobicity index of 

alanine, arginine and asparagine combined). It is important to note that by adding up the 

values of all amino acids within the fragment, the fragment’s length is inherently 

contained in all attribute values and a short fragment containing amino acids with a high 

hydrophobicity might produce similar values like longer fragments with amino acids 

featuring a lower hydrophobicity. Still, this approach seems more promising than 

calculating the mean value of all amino acids within a fragment or similar, since this 

would result in similar values for a very short and a very long fragment as long as both 

consisted of amino acids with a similar hydrophobicity.  

 

 

Figure 10: Evaluating the hydrophobicity index of the amino acids within a sample fragment: We 
can either consider amino acids at specific positions only or build a sum of all values together 

 

A R N
0.61 0.60 0.06

1.27

P3 P2 P1
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Attribute sets used for decision tree generation 

Table 8 shows the attribute sets used for decision tree generation. 

Name Description 
AaCodesP1-P7 Amino acid one letter codes at positions P1/P1’ to 

P7/P7’ (head and tail cleavage site). In addition, the 
length of the fragment in amino acids was added as an 
attribute 

AAIndexPm-Pn Contains an attribute for each position Pm/Pm’ to 
Pn/Pn’ (head/tail) and each property in the AAIndex 
database 

AAIndexFragment Contains an attribute for each property in the AAIndex 
database returning the fragment’s summed property 
value as described above 

[set]# The corresponding attribute set containing only the 
cluster representative properties of AAIndex as 
described above 

Table 8: Attribute sets used for decision tree generation 
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Results 

Software development 

For decision tree creation and additional statistical computations an interactive web-

based software-application was implemented, whose architecture is shortly presented in 

the following. 

Database 

The Microsoft Excel-based manual cleavage maps as well as the output of the Mass 

Spectrometry FileAnalyzer were imported into a SQL-based relational database. Its 

database diagram is shown in Figure 11. Each experiment is stored in the “Experiment” 

table, which stores the experiment’s date, the protein-sequence and some additional 

information. The experiments were usually conducted multiple times with multiple 

measurements taking place. While these measurings were evaluated together in order 

to obtain a single manual cleavage map, the FileAnalyzer analyzed each measuring 

separately. Both the manual cleavage maps and the FileAnalyzer results are stored in 

the “Analysis” table, where the “AnalysisTypeId” marks the origin of the corresponding 

list. The fragments of an analysis are stored in the “Fragment” table. The relational 

database allows for a flexible analysis of the dataset even for future questions. 

In order to improve performance of the decision tree algorithm the data was also copied 

into a non-SQL database (using the MongoDB database runtime), which allowed quicker 

retrieval of certain data required during tree generation. The data of the amino acid 

index database (AAIndex), the corresponding clusters, data of the SYFPEITHI-database 

and the generated trees themselves were also stored in this database. Figure 12 shows 

all catalogs used in the non-SQL database. 
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Figure 11: Entity-Relationship-Model of the database used in the implementation. An experiment 
was usually conducted involving multiple mass spectrometry measurements. These measurings 
were evaluated together in order to obtain a single manual cleavage map. Within the FileAnalyzer, 
each measuring was evaluated separately. Both the manual cleavage maps and the FileAnalyzer 
fragment lists are stored within the Analysis table (the field “AnalysisTypeId” marks their type).  
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Figure 12: Schema of catalogs used in the non-SQL database. This database was used for the 
decision tree algorithm because it allowed for faster data retrieval and storage. The decision trees 
generated were saved in the tree catalog. Experiment data was stored in the Experiment and 
Analysis catalog. Data from the amino acid index database and the clusters created were stored in 
AAIndexEntry and AAIndexEntry1Cluster. General data about the amino acids was stored in 
AminoAcid, data from the SYFPEITHI database used for tree validation was stored in 
SyfpeithiEntry. 
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Interactive program 

An interactive, web-based program was implemented, which allowed decision tree 

generation with varying parameters. The general architecture and frameworks used are 

shown in Figure 13. The main algorithm used for decision tree generation was 

implemented in JavaScript and is therefore exclusively running on the client computers. 

After retrieval of all necessary data from the server, which usually requires less than a 

minute, the actual tree generation is performed without any further server interaction on 

the corresponding client. Only after being finished, the resulting tree is send to the 

server and stored in the database again. This approach allowed for parallelized 

computation of multiple trees at once without major performance tradeoffs. Because the 

algorithm only requires one processor thread, even parallelized computation on a single 

client computer was possible with an average multicore client computer using a 

multithreaded web browser like Google Chrome. 

 

Figure 13: Architecture used for implementation of the interactive program. Components running 
on the server are shown in dark. The algorithm used for decision tree generation was completely 
implemented in JavaScript and was exclusively running on the client, which allowed for 
distributed computation on multiple client computers at once. 

 

Figure 14 shows the dialog used for decision tree generation, which allows selecting 

different sets of training data as well as various settings for the decision tree algorithm. 
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Figure 14: Dialog used for decision tree generation. The dialog allows selection of the dataset, 
proteasome type, attribute set as well as some other settings for the algorithm 

 

Figure 15 shows another screenshot in which a decision tree is displayed. Once 

generated, a decision tree can be loaded within seconds and can be explored 

interactively by clicking its nodes. Each node displays information about the number of 

fragments as well as the current probability of a fragment being cut by the proteasome. 

In addition, the program also shows the results of cross validation either in table or in 

ROC curve form. 

Additional parts of the program allow for generation of various statistics and analyses, 

which were also used in this work. 
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Figure 15: Decision tree within the program. Child nodes can be clicked and are expanded with an 
animation. Each node shows the number of fragments (n) and the probability of a fragment being 
created by the proteasome (p). Each level's nodes are sorted by probability p. 

 

Validation of fragment lists created with the Mass 

Spectrometry File Analyzer 

In order to validate the list of fragments retrieved using the Mass Spectrometry File 

Analyzer and to ensure it included the fragments with the highest level of certainty as 

listed in the corresponding manual cleavage map, receiver operating characteristics 

were computed using the manually created cleavage maps as reference: A fragment 

was counted as true positive (TP) if it occurred in the manual cleavage map, otherwise 

as false positive (FP). A receiver operating characteristic (ROC) was plotted for each 

fragment list obtained from the FileAnalyzer by sorting the list by its probability score and 

calculating the false positive and true positive rates. The area under the curve (AUC) 

was used as a quality measure for the File Analyzer’s fragment list: the AUC value 
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becomes highest when all fragments of the manual cleavage map were ranked on top of 

the File Analyzer list. Figure 16 shows a ROC curve for a sample experiment.  

 

Figure 16: Receiver-operating-characteristic for the File Analyzer fragment list of experiment 
Kloe686 (AUC 0.92). The fragment list was sorted by the fragments’ probability score. A fragment 
was counted as true positive if it was also listed in the corresponding manually created cleavage 
map, otherwise it was counted as false positive. The ROC curve was plotted with the false and true 
positive rates. The area under the curve (AUC) reaches its maximum if all fragments listed in the 
manually created cleavage map are listed on top of the fragment list. 

A combined ROC-curve was created by merging all lists obtained from the Mass 

Spectrometry FileAnalyzer into an overall list and sorting the fragments again by their 

probability score. The AUC value for this combined ROC-curve was 0.74 (standard 

deviation from the AUC of all single ROC-curves: 0.12). The combined ROC-curve is 

shown in Figure 17. 

As mentioned before, the Mass Spectrometry FileAnalyzer was less restrictive and 

usually detected more fragments than the ones listed in the manually created cleavage 

maps. However, from the steep rise of most of the ROC-curves we can deduce that the 

majority of fragments listed in the manually created cleavage maps was also ranked 

high in the lists obtained from the Mass Spectrometry FileAnalyzer. 
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Figure 17: Combined receiver-operating-characteristic of all fragment lists obtained from the Mass 
Spectrometry File Analyzer (AUC 0.74). All fragment lists were merged into a combined list, whose 
fragments was sorted by the probability score computed by FileAnalyzer.  
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Properties of the training dataset 

In the beginning, some general properties of the training dataset were evaluated in order 

to identify potential candidates for attributes. The following statistics include all 

fragments listed by either the manually created cleavage maps or by the Mass 

Spectrometry FileAnalyzer.  

Distribution of amino acids 

Table 9 shows the absolute and relative occurrence of amino acids in the peptides used 

as substrate for the experiments of the training data set. 

Code	 Name	

Occurrence	in	training	
data	

Occurrence	in	
vertebrates*			

Difference	
relative	

occurrence	absolute	 relative	 relative	
A	 Alanine	 121	 6.9	 7.4	 -0.5	
C	 Cysteine	 24	 1.4	 3.3	 -1.9	
D	 Aspartic	acid	 54	 3.1	 5.9	 -2.8	
E	 Glutamic	acid	 74	 4.2	 5.8	 -1.6	
F	 Phenylalanine	 66	 3.8	 4.0	 -0.2	
G	 Glycine	 149	 8.5	 7.4	 1.1	
H	 Histidine	 42	 2.4	 2.9	 -0.5	
I	 Isoleucine	 86	 4.9	 3.8	 1.1	
K	 Lysine	 81	 4.6	 7.2	 -2.6	
L	 Leucine	 187	 10.7	 7.6	 3.1	
M	 Methionine	 50	 2.9	 1.8	 1.1	
N	 Asparagine	 81	 4.6	 4.4	 0.2	
P	 Proline	 104	 5.9	 5.0	 0.9	
Q	 Glutamine	 63	 3.6	 3.7	 -0.1	
R	 Arginine	 109	 6.2	 4.2	 2.0	
S	 Serine	 127	 7.3	 8.1	 -0.8	
T	 Threonine	 107	 6.1	 6.2	 -0.1	
V	 Valine	 130	 7.4	 6.8	 0.6	
W	 Tryptophan	 28	 1.6	 1.3	 0.3	
Y	 Tyrosine	 67	 3.8	 3.3	 0.5	

Table 9: Absolute and relative amino acid occurrence in the training dataset compared to relative 
observed occurrence in vertebrates (*source: (Dyer 1971)) 
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P1/P1’ pairs 

Table 10 and Table 11 show a matrix of all P1/P1’ pairs (including P1/P1’ tail) listed in 

the manual and the FileAnalyzer cleavage maps. The values shown in the matrix reflect 

the relative cut frequency and were computed by dividing the number of P1/P1’ sites by 

their overall occurrence within the training data: The sequence “AA” in Table 10, for 

example, occurred 12 times in the training data. 326 fragments originated from a cut 

between two alanine amino acids, which results in a value of 326 / 12 = 27.2. Values 

above or below the standard deviation were marked. In both matrices, a glutamine at the 

P1’ position seems to yield a higher cut frequency in multiple cases.   

 



 

	
A C D E F G H I K L M N P Q R S T V W Y 

A 27.2 25.5 34.8 27.2 29.0 29.1 36.3 24.7 27.5 28.3 30.2 22.0 39.1 25.8 34.0 24.7 30.1 29.8 17.5 28.0 
C 

 
27.0 27.0  22.3 44.0 

 
29.0 26.0 

 
23.0 25.0 30.0 23.0 29.5 26.0 26.0 

  
27.5 

D 32.7 
 

25.0  24.7 34.8 30.0 26.0 36.7 30.0 23.0 38.3 25.4 31.0 29.5 24.4 35.5 44.5 
 

33.8 
E 23.3 29.0 41.7 26.3 37.0 27.5 29.0 25.5 33.8 32.6 23.0 24.5 27.0 27.8 28.8 28.3 30.5 25.6 18.7 28.0 
F 36.3 29.0 25.0 21.0 25.0 23.7 23.0 21.5 35.3 26.3 24.0 

 
35.5 62.0 38.0 31.5 27.1 30.2 

  G 33.8 28.0 25.3 27.3 31.8 32.4 24.6 25.3 25.3 25.0 33.6 34.3 25.0 29.0 25.1 27.3 28.0 32.0 33.0 37.7 
H 30.0 22.0   23.3 32.7 

 
23.5 

 
30.0  33.7 23.5 32.0 24.0 25.5 29.0 27.0  29.0 

I 27.5 
 

44.0 28.0 30.7 24.8 22.0 22.3 32.0 25.8  29.8 29.7 61.0 29.0 23.5 23.3 30.8  23.3 
K 28.8 19.0 26.5 29.0 21.0 25.5 25.8 22.0 21.2 29.3 40.5 48.0 26.0 

 
25.8 25.0 28.3 23.0  28.5 

L 31.5 26.5 32.3 29.8 32.0 24.9 24.0 25.8 28.0 25.9 35.8 26.3 31.4 29.9 38.3 32.5 28.4 29.6  22.0 
M 

  
34.8 35.2 37.0 39.0 

 
31.0 30.0 26.2 25.0 44.5 34.2 26.0 25.0 25.5 22.0 30.5  24.3 

N 34.0 27.0 29.5 
 

44.0 30.0 27.0 33.7 23.8 34.5 34.5 34.3 25.1 60.0 21.3 35.4 24.3 33.7  35.3 
P 23.2  

 
26.3 39.0 24.9 30.5 27.2 23.0 37.1 35.2 31.0 29.2 25.5 26.5 27.9 23.5 27.3 24.5 35.0 

Q 26.0  32.8 27.0 
 

33.8 24.0 22.0 29.0 26.8 42.5 34.5 27.0 60.0 29.3 29.0 22.5 31.1 38.3 28.7 
R 28.4  29.0 29.5 24.2 32.4 32.7 28.0 23.3 28.8 26.0 36.8 28.6 23.6 35.6 31.8 29.0 29.8 24.7 

 S 32.0  30.0 31.6 26.7 27.0 26.0 22.0 28.0 30.0 
 

37.3 27.7 26.8 26.4 43.7 28.6 29.2 32.0 21.3 
T 24.3 43.0 29.5 25.2 25.0 29.7 27.5 36.3 22.7 31.7 28.3 33.8 26.0 21.5 25.0 23.7 26.7 25.7 32.0 27.0 
V 25.0 24.7 26.5 

 
28.8 29.3 27.0 32.6 27.8 31.4 34.8 30.3 32.7 45.3 30.2 25.4 28.5 27.0 28.3 27.7 

W 27.0 
  

36.0 
 

28.5  31.3 29.0 22.5 24.0 17.5 33.0 31.0 13.0 31.0 20.3 
  

35.0 
Y 30.0 28.0 25.0 28.5 29.0 25.9  35.0 23.8 25.2 

 
29.0 19.7 

 
29.0 24.3 34.0 25.4 30.0 26.0 

Table 10: Cut frequency for P1/P1' pairs in the manual cleavage map dataset. Each row stands for a P1 position, while the columns show 
the corresponding P1’ position. The values shown reflect the relative cut frequency and were computed by dividing the number of P1/P1’ 
sites by their overall occurrence within the training data: The sequence “AA”, for example, occurred 12 times in the training data. 326 
fragments originated from a cut between two alanine amino acids, which results in a value of 326 / 12 = 27.2. Mean value 29.18, σ = 6.16. 
Values outside the standard deviation are marked green/red, values outside two times the standard deviation are marked even darker. If a 
pair did not occur in the test data, the field was left blank. Especially the glutamine (Q) column (P1’) shows multiple clearly elevated cut 
frequencies. 

 



 

 
A C D E F G H I K L M N P Q R S T V W Y 

A 30.5 30.3 40.5 32.8 32.2 34.0 38.2 27.8 27.3 31.3 32.1 32.0 41.0 35.3 40.7 29.2 32.2 32.4 36.5 40.5 
C 

 
29.0 37.2  23.1 48.0 

 
29.0 33.0 

 
22.5 37.5 30.8 23.2 31.7 29.0 29.6 

 
 31.2 

D 37.8 
 

33.0  29.1 37.4 32.6 27.0 40.3 33.5 27.8 41.6 30.5 35.1 34.0 33.2 39.2 44.2  40.9 
E 30.0 29.0 47.9 28.9 36.9 33.6 29.0 30.0 31.7 36.7 23.0 28.3 32.5 28.3 32.8 29.8 38.2 27.5 26.5 32.3 
F 36.7 29.5 36.5 21.0 31.3 29.9 25.0 22.7 43.3 30.5 27.7 

 
32.0 67.5 39.2 35.1 34.6 34.7   

G 37.7 29.5 30.1 32.7 35.7 33.1 28.2 30.4 31.0 27.8 35.4 32.4 29.0 33.5 29.3 32.9 37.1 34.7 37.8 39.4 
H 30.0 23.0 

  
28.1 38.4 

 
26.6 

 
40.6  40.2 26.8 29.9 29.1 35.2 40.0 34.4  30.8 

I 32.6 
 

48.7 28.5 29.4 28.0 23.3 22.4 38.5 30.9  29.1 32.0 70.5 33.0 27.3 27.0 33.7  26.0 
K 39.6 19.0 31.9 32.5 35.5 30.0 30.9 23.0 22.9 31.0 31.9 49.0 30.3 

 
28.8 25.3 34.3 27.9  34.0 

L 36.0 33.2 36.3 32.5 34.1 29.4 36.5 27.1 31.3 28.9 39.7 28.9 31.6 33.4 42.2 36.9 31.2 37.9  32.9 
M 

  
33.3 41.9 37.8 40.2 

 
47.5 34.8 29.2 30.0 47.4 34.9 26.5 26.0 34.9 22.5 33.5  28.3 

N 35.7 31.3 32.3 
 

38.3 37.8 39.0 29.8 29.1 35.8 36.2 37.3 27.6 64.5 32.1 39.1 24.5 35.4  37.9 
P 24.3  

 
33.3 38.2 29.5 30.5 31.6 23.8 38.0 36.7 33.7 34.2 25.9 30.5 31.8 28.0 32.6 27.8 36.6 

Q 29.9  35.9 28.0 
 

35.5 23.2 22.0 33.1 30.6 39.8 38.8 31.5 68.0 32.1 30.3 22.4 35.6 37.8 31.5 
R 32.8  29.7 32.7 28.5 35.0 36.2 32.2 25.4 30.0 30.3 40.0 32.5 32.1 47.4 37.9 36.1 33.6 27.4 

 S 34.7  33.1 32.5 32.8 30.1 40.0 23.7 33.0 33.7 
 

38.9 31.7 31.5 31.8 49.0 34.5 30.6 37.3 23.7 
T 29.1 47.4 31.1 32.6 26.6 36.3 35.8 35.5 29.7 34.8 30.9 35.5 27.8 27.7 29.6 26.9 31.9 31.4 38.4 36.4 
V 32.3 34.3 32.9 

 
33.0 29.9 36.8 36.6 34.3 35.9 39.9 32.5 35.7 44.8 36.5 29.0 33.8 31.5 32.2 28.2 

W 32.8 
  

39.3 
 

36.8  32.2 35.1 22.7 28.8 34.7 36.6 36.6 14.0 34.2 25.9   41.3 
Y 31.1 31.3 28.1 35.8 30.8 32.8  43.7 28.5 33.1 

 
32.6 32.3 

 
37.0 27.0 36.3 28.4 35.0 36.3 

Table 11: Cut frequency for P1/P1' pairs in the FileAnalyzer dataset. Each row stands for a P1 position, while the columns show the 
corresponding P1’ position. The values shown reflect the relative cut frequency and were computed by dividing the number of P1/P1’ sites 
by their overall occurrence within the training data: The sequence “AA”, for example, occurred 48 times in the training data. 1436 fragments 
originated from a cut between two alanine amino acids, which results in a value of 1436 / 48 = 30.5. Mean value 33.07, σ = 6.7. Values 
outside the standard deviation are marked green/red, values outside two times the standard deviation are marked even darker. If a pair did 
not occur in the test data the field was left blank. Especially the glutamine (Q) column (P1’) shows multiple clearly elevated cut frequencies. 
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Decision trees 

Decision trees were created using different subsets of the training data and different 

attributes. Figure 18 shows a sample output of the algorithm using the FileAn dataset 
and the AAIndexFragment attribute set.  

Cross-validation 

In order to measure the quality of a decision tree’s classification, a score was 

determined using cross validation and a receiver-operating-characteristic. The algorithm, 

which is explained in more detail in Table 12, uses the following approach: The tree’s 

training data was randomly split into ten groups of the same size. Nine of these groups 

were used as training data in order to build a decision tree. Each fragment of the 

remaining group was applied to the tree created, resulting in a probability value for the 

fragment being created by the proteasome. All fragments of the validation group were 

ordered by the probability value and added to a receiver-operating-characteristic. The 

area under the curve (AUC) was calculated to evaluate the tree’s performance. The final 

tree was generated using all data, its quality described by the average AUC of all ten 
receiver-operating-characteristics computed during cross-validation. 
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CalculateTreeAUC(groupCount, examples, targetAttribute, attributes) 
groupCount: number of groups that should be created for cross validation (a value of 10 
was used in this work) 
examples: training data used to induce the tree 
targetAttribute: attribute whose value is to be predicted by the tree 
attributes: Set of attributes to be examined by the algorithm for classification 
 
Returns the average area under the curve (AUC) of all trees created during cross 
validation. Uses C4.5 for tree creation (see Table 6) 
 

 
§ summedAUC = 0 
§ groups = Randomly split examples into groupCount groups of the same size 
§ For each group in groups 

§ trainingData = examples – group 
§ tree = C4.5(trainingData, targetAttribute, attributes) 
§ For each fragment in group 

§ fragment.score = tree.classifyFragment(fragment) 
§ sortedFragments = order fragments by score (descending, highest score 

first) 
§ roc = createROC(sortedFragments) 
§ summedAUC = summedAUC + calculateAUC(roc) 

§ return summedAUC / groupCount 
Table 12: Algorithm used to calculate a decision tree's average AUC value. The average AUC value 
was used as a score in order to measure the tree's classification quality. The final decision tree 
was created after cross validation using all data available. 

 

Figure 19 shows a sample ROC curve of a single cross validation step performed when 
creating the tree shown in Figure 18. 

A comprehensive list of all trees generated and their average area under the curve 

(AUC) values determined by cross validation is displayed in Table 13. In all cases, trees 

based on the FileAn dataset showed a higher average AUC value, which can be 

explained by the very restrictive selection of fragments in the CMap dataset (usually 

containing only 20-40 fragments): The very small number of positive samples is 
obviously harder to separate from the negative samples using the attributes provided. 
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Figure 18: Sample output of the algorithm (dataset: FileAn, attribute set: AAIndexFragment) 

 

Figure 19: Sample ROC-curve created during cross validation of the tree shown in Figure 18 
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Attribute Set Dataset Average AUC 
AACodesP1-P7  CMap 0.58 
AACodesP1-P7  CMap* 0.57 
AACodesP1-P7  FileAn 0.75 
AACodesP1-P7  FileAn* 0.76 
AAIndexP1 CMap 0.64 
AAIndexP1 CMap* 0.62 
AAIndexP1 FileAn 0.78 
AAIndexP1 FileAn* 0.78 
AAIndexP1# CMap 0.64 
AAIndexP1# CMap* 0.62 
AAIndexP1# FileAn 0.78 
AAIndexP1# FileAn* 0.79 
AAIndexP1-P7 CMap 0.65 
AAIndexP1-P7 CMap* 0.65 
AAIndexP1-P7 FileAn 0.82 
AAIndexP1-P7 FileAn* 0.82 
AAIndexP1-P7# CMap 0.63 
AAIndexP1-P7# CMap* 0.62 
AAIndexP1-P7# FileAn 0.82 
AAIndexP1-P7# FileAn* 0.82 
AAIndexFragment CMap 0.60 
AAIndexFragment CMap* 0.57 
AAIndexFragment FileAn 0.82 
AAIndexFragment FileAn* 0.83 
AAIndexFragment# CMap 0.50 
AAIndexFragment# CMap* 0.50 
AAIndexFragment# FileAn 0.69 
AAIndexFragment# FileAn* 0.70 
Table 13: List of all 28 decision trees created 
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Fitting of training data 

In addition to the average AUC value, we can also examine how well a tree fits the 

training data by looking at the true positive rate (TPR), true negative rate (TN), false 

positive rate (FPR) and false negative rate (FNR). It is especially interesting to see down 

to which node level we have to traverse the tree until we reach good rate values: If there 

are only a few important attributes, which decide if a fragment is created by the 

proteasome or not, these attributes should have been found by the tree and be 

associated with a node on top of the tree. We should therefore be able to observe a fast 

improvement of the TPR and TNR with each node level. However, if it takes many node 

levels until we reach a good TPR and TNR, this might indicate that there are no specific 

attributes relevant for the classification. 

Figure 20 shows the TPR, TNR, FPR and FNR by node level for a selection of trees. 

Every tree has a TPR of 0 and a TNR of 1 at node level 1. This is due to the fact that all 

the datasets include more negative than positive samples. A tree with only one node 

therefore selects the classification of the majority of samples. The deeper we move 

down the tree, the more attributes were used in order to separate the positive from the 
negative samples, which usually leads to an increasing TPR.  

While the trees created with the AACodesP1-P7 and AAIndexFragment attribute sets 

and the FileAn/FileAn* datasets showed a rather quick increase of the TPR, the 

remaining trees featured a rather slow increase, often requiring 10 node levels until 

reaching a TPR above 0.5. The trees for the attribute set AAIndexFragment# and the 

CMap dataset were not able to classify the training data correctly. Apparently, ten 

different attributes do not suffice in order to separate the small set of fragments detected 

in CMap from the remaining fragments. 
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Tree 1 
AACodesP1-P7, FileAn 

 

 

Tree 2 
AAIndexFragment, FileAn 

 

 
 
 

Tree 3 
AAIndexP1, CMap 

 

 

 
 

Tree 4 
AAIndexP1-P7, FileAn  
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Tree 5 

AAIndexFragment, CMap 
 

 

Tree 6 
AAIndexFragment#, CMap 

 

 
 

Figure 20: True positive rate (TPR), false positive rate (FPR), true negative rate (TNR) and false 
negative rate (FNR) (y-axis) by node level (x-axis) for selected trees. On node level 1, each tree 
features a TPR of 0 because the majority of samples in all datasets was negative. Trees 1 and 2: 
These trees show a rather fast increase of the TPR indicating the attributes associated with the 
first node levels are especially important. Trees 3-5: The trees shown here exemplify the majority 
of trees; in most cases the TPR is increasing steadily but slowly, which points to no attribute 
being of special importance. Bottom row: this tree is not able to classify the training data most 
likely due to the small share of positive samples in the CMap dataset and only ten attributes being 
supplied by the AAIndexFragment# attribute set
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Most relevant attributes 

In each recursive step the decision tree algorithm selects the attribute, which minimizes 

the information entropy, using the gain ratio criterion. Put differently, the algorithm 

selects the attribute that separates the current’s node’s data best into the different 

classifications. Thus the higher an attribute’s position in a tree, the more relevant it is for 

a general decision about the question if a fragment is created by the proteasome. 

Admittedly, this thinking is a little simplified since a greedy algorithm was used, which is 

prone to running into local minima. Still, looking at the attributes of the first tree levels 

seems interesting. In the following, an overview is given of which attributes have been 
selected first by the decision tree algorithm. 

Amino Acid Letter Codes 

As discussed in the section before, the trees trained with the CMap datasets only 

achieved a true positive rate of 0.3. It can therefore be assumed that the fragments 

listed in the manually created cleavage maps cannot be separated from the remaining 

fragments by just looking at the amino acid letter codes at positions P1-P7. However, 

both trees (CMap and CMap*) selected the attribute “P1” as first attribute, which 

correlates with the importance of the P1 cleavage site as described in various sources 
(Ossendorp et al. 1996; Beekman et al. 2000; Del Val et al. 1991). 

The trees trained with the FileAn and FileAn* datasets reach a better true positive rate of 

almost 0.7. Both select the attribute “Fragment Length” as first attribute. In multiple 

branches of both trees, a certainty of over 90% for a fragment being created by the 
proteasome is reached within 3 steps (see Figure 21 for an example). 

Table 14 shows the first two levels of the AACodesP1-P7 tree trained with the FileAn 

dataset. For fragment lengths between 5 and 25 amino acids, P1 was selected as 

second attribute.  

The results of the AACodesP1-P7 (FileAn*) tree were very similar and are therefore not 

described to the same extent as those of AACodesP1-P7 (FileAn). 



 

 

Figure 21: Decision tree with attribute set AACodesP1-P7 and FileAn dataset. Each level’s nodes are sorted by their probability. In the first 
branch, a certainty of up to 0.81 (81%) is reached after three steps only. The red rectangle is referenced in Table 14. 

 

 

 

 

 

 

 



 

Fragment length < 5 (n = 23653, p = 0.10) 

P3 tail A C D E F G H I K L M N P Q R S T V W Y X 

n 1566 300 787 1082 915 1870 538 1003 901 2515 616 969 1442 848 1232 1662 1570 1774 440 848 775 
p 0.08 0.08 0.10 0.11 0.11 0.07 0.12 0.08 0.09 0.14 0.09 0.08 0.08 0.10 0.13 0.09 0.12 0.12 0.17 0.09 0 
Fragment length >= 5 and < 10 amino acids (n = 33079, p = 0.43) 

P1 A C D E F G H I K L M N P Q R S T V W Y X 

n 2377 392 1046 1337 1291 2326 768 1266 1076 3511 901 1384 1889 1237 1741 2424 2180 2619 524 1119 1670 
p 0.43 0.46 0.58 0.34 0.47 0.40 0.44 0.33 0.36 0.46 0.40 0.40 0.33 0.39 0.46 0.42 0.42 0.45 0.40 0.48 0.63 

Fragment length >= 10 and < 15 amino acids (n = 28585, p = 0.59) 

P1 A C D E F G H I K L M N P Q R S T V W Y X 

n 2270 294 1062 1241 1112 1769 740 1043 987 2813 793 969 1692 866 1473 2184 1847 2035 516 1013 1866 
p 0.58 0.56 0.81 0.52 0.58 0.54 0.64 0.48 0.58 0.60 0.52 0.54 0.51 0.53 0.56 0.56 0.61 0.55 0.60 0.65 0.74 

Fragment length >= 15 and < 20 amino acids (n = 19734, p = 0.55) 

P1 A C D E F G H I K L M N P Q R S T V W Y X 

n 1571 249 809 820 612 1252 451 800 758 1886 496 570 1237 511 992 1577 1200 1094 350 726 1773 
p 0.52 0.49 0.73 0.56 0.62 0.52 0.56 0.47 0.55 0.56 0.39 0.43 0.47 0.47 0.51 0.54 0.57 0.54 0.42 0.55 0.69 

Fragment length >= 20 and < 25 amino acids (n = 10970, p = 0.45) 

P1 A C D E F G H I K L M N P Q R S T V W Y X 

n 947 167 283 460 376 606 223 437 419 841 303 321 722 238 438 887 600 640 229 317 1516 
p 0.42 0.63 0.57 0.48 0.50 0.39 0.51 0.32 0.41 0.40 0.24 0.34 0.43 0.30 0.37 0.47 0.39 0.39 0.28 0.48 0.69 

Fragment length >= 25 and < 30 amino acids (n = 5257, p = 0.40) 

P7 A C D E F G H I K L M N P Q R S T V W Y X 

n 73 35 72 64 73 108 21 71 32 154 27 128 14 53 36 60 128 81 32 10 3985 
p 0.16 0 0.13 0.36 0.18 0.14 0.14 0.06 0.28 0.30 0.04 0.13 0.14 0.21 0.08 0.27 0.12 0.11 0.16 0 0.48 
Fragment length >= 30 (n = 3628, p = 0.22) 

P1' tail A C D E F G H I K L M N P Q R S T V W Y X 

n 166 0 206 108 156 182 14 49 50 386 113 257 164 104 205 217 30 364 0 169 688 
p 0.30 0 0.13 0.26 0.06 0.12 0.29 0.31 0.32 0.05 0.12 0.09 0.04 0.30 0.26 0.09 0.20 0.10 0 0.11 0.57 

Table 14: Level 1 and 2 of tree AACodesP1-P7, FileAn. n: number of fragments included in node, p: probability of a fragment being created 
by the proteasome (values > 0.5 highlighted). X: No amino acid at corresponding position. The red rectangle is referenced in Figure 21. 
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AAIndex Attributes 

The trees created with the AAIndex attribute sets are rather complex, since they include 

a multitude of different attributes and each attribute can be used in multiple sub trees. 

Furthermore, there are 24 trees created with AAIndex attributes. This multitude of results 

needs to be condensed into summaries, which can then be searched for patterns.  

In the following tables, the AAIndex attribute clusters are color-coded. An attribute 

belonging to a certain cluster is shown in its corresponding cluster’s color. A legend of 

the color codes is given in Table 15. The colors have been chosen arbitrarily, similar 

colors do not describe a similarity between individual clusters. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 

Table 15: Color coding used for the 10 clusters of AAIndex attributes. The colors have been 
chosen arbitrarily, similar colors do not suggest a similarity between individual clusters. 

 

First Levels of decision trees 

Table 16 shows a matrix of all trees and the attributes used within their first three node 

levels. The occurrence of each cluster in the matrix is summarized Figure 22. While the 

matrix does not reveal a very noticeable pattern, it can still be seen that cluster 6 

(representative attribute: ‘Dependence of conformational stability on hydrophobicity of 

the amino acid residue in a series of variant proteins substituted at a unique position of 

tryptophan synthase alpha subunit’) occurs three to four-times as often as other clusters.  

 

 

 



 

Attribute Set Dataset Level 1 Level 2.1 Level 2.2 Level 3 (2.1) Level 3 (2.1) Level 3 (2.2) Level 3 (2.2) 

AAIndexP1 CMap CORJ870108 
P1 

QIAN880133 
P1 

QIAN880116 
P1 tail 

FASG890101 
P1 

ZIMJ680102 
P1' tail 

ROSM880103 
P1' tail 

RICJ880113 
P1' tail 

AAIndexP1 CMap* CORJ870108 
P1 

CORJ870107 
P1 

QIAN880116 
P1 tail 

KARP850101 
P1 tail 

RICJ880114 
P1' tail 

TANS770107 
P1' tail 

RICJ880113 
P1' tail 

AAIndexP1# CMap Cluster 1  
P1 

Cluster 8  
P1 

Cluster 8  
P1 tail 

Cluster 2 
P1 

Cluster 6  
P1' tail 

Cluster 9 
P1 

Cluster 8  
P1' tail 

AAIndexP1# CMap* Cluster 1 
P1 

Cluster 6  
P1 

Cluster 9 
P1 tail 

Cluster 5  
P1 

Cluster 9 
P1 

Cluster 9 
P1 

Cluster 6  
P1' tail 

AAIndexP1 FileAn RADA880105 
P1' tail 

RADA880104 
P1' tail 

TANS770106 
P1' 

BASU050103 
P1 tail 

KIMC930101 
P1 tail 

RACS820107 
P1 

KUHL950101 
P1 

AAIndexP1 FileAn* KRIW790101 
P1 

VHEG790101 
P1 

KHAG800101 
P1' 

FASG890101 
P1 

PONP800104 
P1' 

GEOR030107 
P1' tail 

ISOY800104 
P1' tail 

AAIndexP1# FileAn Cluster 6  
P1 

Cluster 1  
P1 

Cluster 6  
P1' 

Cluster 2  
P1 

Cluster 8  
P1 

Cluster 9 
P1 

Cluster 8  
P1 

AAIndexP1# FileAn* Cluster 6  
P1 

Cluster 1 
P1 

Cluster 6  
P1' 

Custer 2 
P1 

Cluster 8  
P1 

Cluster 9 
P1 

Cluster 7  
P1' 

AAIndexP1-P7 CMap CORJ870108 
P1 

QIAN880133 
P1 

QIAN880116 
P1 tail 

FASG890101 
P1 

ZIMJ680102 
P1' tail 

BULH740102 
P3 

RACS820113 
P2' tail 

AAIndexP1-P7 CMap* CORJ870108 
P1 

CORJ870107 
P1 

QIAN880116 
P1 tail 

KARP850101 
P1 tail 

RICJ880114 
P1' tail 

FINA910101 
P3 

RICJ880113 
P1' tail 

AAIndexP1-P7# CMap Cluster 1  
P1 

Cluster 8  
P1 

Cluster 1  
P3 

Cluster 2  
P1 

Cluster 7  
P6 

Cluster 6  
P1 

Cluster 6  
P4 

AAIndexP1-P7# CMap* Cluster 1  
P1 

Cluster 6  
P1 

Cluster 9 
P1 tail 

Cluster 5  
P1 

Cluster 9 
P1 

Cluster 9 
P1 

Cluster 6  
P1' tail 

AAIndexP1-P7 FileAn RADA880105 
P1' tail 

RADA880104 
P1' tail 

TANS770105 
P6 tail 

RICJ880112 
P4 tail 

TANS770106 
P7 tail 

NAKH920106 
P1 tail 

GEOR030102 
P3 tail 

AAIndexP1-P7 FileAn* RACS820107 
P5 tail 

ISOY800107 
P4' tail 

WILM950104 
P6 tail 

CHOP780206 
P4 tail 

RACS820106 
P3 tail 

WOLS870103 
P5 tail 

PARS000102 
P4 tail 

AAIndexP1-P7# FileAn Cluster 4 
P2 

Cluster 6  
P6 

Cluster 4 
P7 tail 

Cluster 6  
P1 

Cluster 3  
P1 

Cluster 3  
P5' 

Cluster 4 
P6' tail 

AAIndexP1-P7# FileAn* Cluster 4 
P2 

Cluster 6  
P6 

Cluster 4 
P7 tail 

Cluster 6  
P1 

Cluster 3 
P1 

Cluster 6  
P6 tail 

Cluster 4 
P6' tail 

AAIndexFragment CMap ZHOH040101 WERD780103 GRAR740103 TAKK010101 MEEJ800101 NAKH900105 WILM950101 
AAIndexFragment CMap* ZHOH040102 WERD780103 WOLS870103 TAKK010101 MEEJ800101 GUYH850104  
AAIndexFragment# CMap Cluster 3 Cluster 1 Cluster 4 Cluster 6  Cluster 5  Cluster 9 Cluster 8  
AAIndexFragment# CMap* Cluster 3 Cluster 1 Cluster 4 Cluster 7 Cluster 9 Cluster 5   
AAIndexFragment FileAn FASG760101 OOBM850103 OOBM770105 QIAN880104 VASM830101 OOBM850102 KIMC930101 
AAIndexFragment FileAn* FASG760101 WILM950104 OOBM770105 OOBM850103 NAKH900106 PALJ810113 KIMC930101 
AAIndexFragment# FileAn Cluster 3 Cluster 6  Cluster 4 Cluster 10 Cluster 1 Cluster 5 Cluster 6  
AAIndexFragment# FileAn* Cluster 3 Cluster 1 Cluster 4 Cluster 10 Cluster 10 Cluster 5 Cluster 6  

Table 16: AAIndex attributes used in the first three levels of all trees generated. Attributes are color-coded according to the clusters they belong to. 
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Figure 22: Cluster occurrence in the first three levels of all trees generated with the AAIndex 
attribute set (also see Table 16). Most attributes occurring within the first three levels belong to 
cluster 6, while only five attributes from cluster 7 are used. Even though the frequency of the 
clusters in between varies, no other cluster sticks out in particular. 

 

Attribute overall information gain 

The matrix shown in Table 17 shows each tree’s attributes with the highest overall 

information gain (oGain), which was calculated by adding up the information gain in 

every node the attribute occurred in, while accounting for the number of fragments in 
the training data affected by the node: 

!"#$% #&&'$()&*, &'** = 	 %!.*. 0'#12*%&3
&'#$%$%14#&#

5678	∈	:678;
	"#$%(%!.*) 

where Nodes = { tree.nodes |  node.attribute = attribute}. 
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Attribute Set Dataset 1. 2. 3. 4. 5. 6. 7. 8. 
AAIndexP1 CMap FASG890101 

P1' tail 
FASG890101 

P1' 
FASG890101 

P1 tail 
FASG890101 

P1 
CORJ870108 

P1 
WOEC730101 

P1' tail 
QIAN880133 

P1 
ENGD860101 

P1 

AAIndexP1 CMap* FASG890101 
P1' 

CORJ870107 
P1 

FASG890101 
P1 

CORJ870108 
P1 

FASG890101 
P1 tail 

FASG890101 
P1' tail 

ENGD860101 
P1' 

ENGD860101 
P1 tail 

AAIndexP1# CMap Cluster 2 
P1' tail 

Cluster 1 
P1' 

Cluster 1 
P1' tail 

Cluster 2 
P1 

Cluster 5  
P1 

Cluster 1 
P1 tail 

Cluster 2 
P1' 

Cluster 2 
P1 tail 

AAIndexP1# CMap* Cluster 1 
P1' 

Cluster 1 
P1 tail 

Cluster 1 
P1' tail 

Cluster 2 
P1' tail 

Cluster 5  
 P1 

Cluster 3 
P1' 

Cluster 2 
P1 

Cluster 2 
P1' 

AAIndexP1 FileAn FASG890101 
P1 tail 

FASG890101 
P1' tail 

FASG890101 
P1' 

FASG890101 
P1 

ENGD860101 
P1' 

ENGD860101 
P1' tail 

ENGD860101 
P1 tail 

ENGD860101 
P1 

AAIndexP1 FileAn* FASG890101 
P1 tail 

FASG890101 
P1' tail 

FASG890101 
P1' 

FASG890101 
P1 

ENGD860101 
P1 tail 

ENGD860101 
P1' tail 

ENGD860101 
P1' 

ENGD860101 
P1 

AAIndexP1# FileAn Cluster 1 
P1 tail 

Cluster 1 
P1' tail 

Cluster 2 
P1' tail 

Cluster 1 
P1' 

Cluster 2 
P1 tail 

Cluster 5  
P1 tail 

Cluster 1 
P1 

Cluster 5  
P1' tail 

AAIndexP1# FileAn* Cluster 1 
P1' tail 

Cluster 1 
P1' 

Cluster 1 
P1 tail 

Cluster 2 
P1 tail 

Cluster 2 
P1' tail 

Cluster 2 
P1 

Cluster 1 
P1 

Cluster 2 
P1' 

AAIndexP1-P7 CMap CORJ870108 
P1 

WOEC730101 
P1' tail 

QIAN880133 
P1 

ZIMJ680102 
P1' tail 

FASG890101 
P7' tail 

FASG890101 
P1 

FASG890101 
P7 tail 

QIAN880133 
P1 tail 

AAIndexP1-P7 CMap* CORJ870107 
P1 

CORJ870108 
P1 

RICJ880115 
P1' tail 

RICJ880114 
P1' tail 

CORJ870102 
P1' tail 

PTIO830101 
P1 tail 

QIAN880116 
P1 tail 

ZHOH040103 
P1 tail 

AAIndexP1-P7# CMap Cluster 1 
P1 

Cluster 1 
P7 tail 

Cluster 5  
P1 

Cluster 1 
P7' tail 

Cluster 8  
P1 

Cluster 2 
P1 

Cluster 1 
P7' 

Cluster 6 
P1 tail 

AAIndexP1-P7# CMap* Cluster 5  
P1 

Cluster 1 
P1 

Cluster 6 
P1 

Cluster 5  
P1' tail 

Cluster 1 
P7' tail 

Cluster 1 
P7 tail 

Cluster 1 
P7' 

Cluster 6 
P1' tail 

AAIndexP1-P7 FileAn FASG890101
P7' tail 

FASG890101 
P7' 

FASG890101 
P7 tail 

FASG890101 
P7 

FASG890101 
P6' 

FASG890101 
P6' tail 

FASG890101 
P6 tail 

FASG890101 
P6 

AAIndexP1-P7 FileAn* FASG890101 
P7' tail 

FASG890101 
P7 tail 

FASG890101 
P7' 

FASG890101 
P7 

FASG890101 
P6' 

FASG890101 
P6' tail 

FASG890101 
P6 tail 

FASG890101 
P5' 

AAIndexP1-P7# FileAn Cluster 1  
P7' tail 

Cluster 1  
P7 tail 

Cluster 1  
P7' 

Cluster 1  
P7 

Cluster 1  
P6 tail 

Cluster 1  
P6' tail 

Cluster 1  
P6' 

Cluster 1  
P5' 

AAIndexP1-P7# FileAn* Cluster 1  
P7' tail 

Cluster 1  
P7 tail 

Cluster 1  
P7' 

Cluster 1  
P7 

Cluster 1  
P6' 

Cluster 1  
P6 tail 

Cluster 1  
P6' tail 

Cluster 1  
P5 tail 

AAIndexFragment CMap ZHOH040101 FASG890101 ENGD860101 WERD780103 QIAN880125 SNEP660102 MIYS990105 SNEP660103 
AAIndexFragment CMap* ZHOH040102 FASG890101 ENGD860101 WERD780103 ROBB760109 SNEP660104 MIYS990105 SUYM030101 
AAIndexFragment# CMap Cluster 7 Cluster 8 Cluster 4 Cluster 10 Cluster 9 Cluster 3 Cluster 6 Cluster 2 
AAIndexFragment# CMap* Cluster 5  Cluster 2 Cluster 4 Cluster 6 Cluster 8 Cluster 10 Cluster 3 Cluster 1 
AAIndexFragment FileAn FASG760101 FASG890101 ENGD860101 CORJ870107 OOBM770105 MIYS990105 OOBM850103 MIYS990104 
AAIndexFragment FileAn* FASG760101 FASG890101 ENGD860101 MIYS990105 CORJ870107 WILM950104 OOBM770105 OOBM850103 
AAIndexFragment# FileAn Cluster 5  Cluster 2 Cluster 9 Cluster 3 Cluster 1 Cluster 7 Cluster 8 Cluster 10 
AAIndexFragment# FileAn* Cluster 7 Cluster 3 Cluster 8 Cluster 6 Cluster 10 Cluster 4 Cluster 9 Cluster 2 

Table 17: Attributes with highest overall information gain (oGain) in each tree (top eight attributes). Attributes are color-coded according to the clusters 
they belong to. 



 72 

 

Figure 23: Cluster occurrence of the top eight attributes with the highest information gain in all 
decision trees generated with an AAIndex based attribute set (also see ). 

 

As can be seen, Cluster 6 loses its distinctive role when sorting the attributes by their 

information gain. While the trees created with the AAIndexP1-P7 attribute set stand out 

because of their consistent occurrence of the same attribute/cluster within all of the top 

eight attributes, the results are not conclusive: While in the unclustered version 

(AAIndexP1-P7), cluster 4 plays the most important role, cluster 1 is chosen in the 

clustered version (AAIndexP1-P7#).  

In summary, the trees created with AAIndex-based attributes show rather inconclusive 

results: Even though some of the clusters stand out, they do not do so consistently in all 

trees and/or both types of analyses (attributes sorted by nodes vs. attributes sorted by 
oGain). 
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Tree validation with data of an enolase digestion experiment 

Data of an enolase digestion experiment (A K Nussbaum et al. 1998) was applied to the 

decision trees and receiving operator characteristics were calculated to measure the 
trees’ prediction quality.  

Table 18 shows how the trees performed predicting the fragments of the experiment. In 

summary, the results are rather unsatisfactory. The majority of trees achieve an area 

under the curve near to 0.5. The best performing tree (AACodesP1-P7, FileAn*) reaches 

an AUC of 0.64. There are multiple explanations for these poor results: First, all 

substrates in the training data were significantly shorter (average: 55 amino acids) 

compared to the enolase substrate (437 amino acids). Furthermore, in proportion to the 

long substrate, only a very small number of cleavage products (81) was detected in the 

enolase experiment. The training data used in this work featured a far bigger ratio of true 

positives, especially within the FileAn datasets. This might lead to the decision trees 
exhibiting a high rate of false positives when applied to the enolase experiment data. 
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Attribute-Set Dataset AUC TP TN FP FN 
AACodesP1-P7 CMap 0.50 2 93229 1958 79 
AACodesP1-P7 Cmap* 0.49 1 91860 3327 80 
AACodesP1-P7 FileAn 0.64 29 87855 7332 52 
AACodesP1-P7 FileAn* 0.64 29 88534 6653 52 
AAIndexP1 CMap 0.48 5 84417 10770 76 
AAIndexP1 CMap* 0.47 5 83688 11499 76 
AAIndexP1 FileAn 0.52 32 61639 33548 49 
AAIndexP1 FileAn* 0.55 32 64583 30604 49 
AAIndexP1# CMap 0.48 5 85775 9412 76 
AAIndexP1# CMap* 0.47 5 83536 11651 76 
AAIndexP1# FileAn 0.55 34 61047 34140 47 
AAIndexP1# FileAn* 0.53 32 62560 32627 49 
AAIndexP1-P7 CMap 0.45 1 84844 10343 80 
AAIndexP1-P7 CMap* 0.47 5 82741 12446 76 
AAIndexP1-P7 FileAn 0.47 32 51572 43615 49 
AAIndexP1-P7 FileAn* 0.39 22 47772 47415 59 
AAIndexP1-P7# CMap 0.42 4 74914 20273 77 
AAIndexP1-P7# CMap* 0.49 5 85979 9208 76 
AAIndexP1-P7# FileAn 0.46 27 54841 40346 54 
AAIndexP1-P7# FileAn* 0.52 27 60116 35071 54 
AAIndexFragment CMap* 0.29 9 40676 54511 72 
AAIndexFragment CMap 0.36 10 54302 40885 71 
AAIndexFragment FileAn* 0.36 38 28863 66324 43 
AAIndexFragment FileAn 0.37 29 38608 56579 52 
AAIndexFragment# CMap* 0.21 0 40684 54503 81 
AAIndexFragment# CMap 0.34 0 64155 31032 81 
AAIndexFragment# FileAn* 0.22 43 22892 72295 38 
AAIndexFragment# FileAn 0.19 29 24639 70548 52 

Table 18: Results of validation with data of an enolase digestion experiment. The area under the 
curve (AUC) is near to 0.5 for most of the trees, which reflects a poor prediction performance. The 
best performing trees (marked green) reach an AUC of 0.64. The trees without any true positive hit 
(AAIndexFragment#, CMap) had already shown poor results during cross validation as discussed 
before. 

 

Tree validation with MHC I ligand data 

In order to validate the quality of prediction achieved by each individual decision tree, all 

4026 MHC-I ligands (HLA-A, HLA-B and HLA-C) contained in the SYFPEITHI database 

(at date 05/11/2015) were applied to the trees (H. Rammensee et al. 1999).  

Using MHC-I ligand data for evaluating proteasome prediction algorithms is common but 

nevertheless not an optimal solution, because MHC ligands are the result of a process 



 75 

that involves more steps than only proteasomal digestion, like TAP-transport or N-

terminal nibbling. Only testing the MHC ligands themselves is therefore not sufficient: 

We also need to test fragments with the same C-terminus that are longer than the 

ligand. Furthermore, since the trees were trained with in vitro data, we cannot rule out 

that the trees are more likely to predict smaller fragments, since fragments that might 

have continued their way in the MHC I pathway under in vivo conditions might have 

been cleaved further under in vitro conditions.  

When evaluating the MHC ligand data, all smaller and larger fragments with the same C-

terminus were therefore also tested.  

Table 19 shows the results of the tests with MHC I ligand data obtained from the 

SYFPEITHI database. “Any fragment found” shows, if for a given MHC ligand a decision 

tree found at least one smaller/larger fragment or the ligand itself, while “exact or larger 

found” shows for each MHC ligand if the ligand itself or at least one larger fragment was 

found. The following columns show how many of the MHC I ligands, smaller and larger 

fragments were found in total. 

Even though the “exact or larger found” rate is not very specific, since in most cases it 

includes a multitude of fragments, it reflects the only definite conclusion that can be 

drawn from MHC ligand data: if a decision tree is not able to detect an MHC I ligand or 

an N-terminally extended version of the ligand, this is a strong indication for a poor 

prediction performance of the tree. With values of 21.8% and 16.1% the first two trees 

(AACodesP1-P7, trained with the CMap dataset) fall into this category. The remaining 

trees show a good detection rate of 80% and above. The trees trained with the FileAn 

dataset even show a rate above 90%, which can be explained by the larger share of 
positive samples in this dataset.  

 



 

    Any fragment found Exact or larger found Smaller found Exact found Larger found 
Attribute Set Dataset found missed % found missed % found missed % found missed % found missed % 
AACodesP1-P7 CMap 941 3085 23.4 876 3150 21.8 308 33158 0.9 81 3945 2.0 10785 1280115 0.8 
AACodesP1-P7 CMap* 700 3326 17.4 650 3376 16.1 310 33156 0.9 74 3952 1.8 9971 1280929 0.8 
AACodesP1-P7 FileAn 3903 123 96.9 3875 151 96.2 4716 28750 14.1 1328 2698 33.0 74714 1216186 5.8 
AACodesP1-P7 FileAn* 3880 146 96.4 3840 186 95.4 5465 28001 16.3 1406 2620 34.9 61899 1229001 4.8 
AAIndex1 P1 CMap 3454 572 85.8 3368 658 83.7 1318 32148 3.9 346 3680 8.6 54074 1236826 4.2 
AAIndex1 P1 CMap* 3511 515 87.2 3438 588 85.4 1494 31972 4.5 336 3690 8.3 56711 1234189 4.4 
AAIndex1 P1# CMap 3379 647 83.9 3297 729 81.9 1631 31835 4.9 363 3663 9.0 61632 1229268 4.8 
AAIndex1 P1# CMap* 3477 549 86.4 3393 633 84.3 1461 32005 4.4 314 3712 7.8 59293 1231607 4.6 
AAIndex1 P1 FileAn 4020 6 99.9 3974 52 98.7 10612 22854 31.7 1432 2594 35.6 404048 886852 31.3 
AAIndex1 P1 FileAn* 4016 10 99.8 3977 49 98.8 10437 23029 31.2 1392 2634 34.6 411485 879415 31.9 
AAIndex1 P1# FileAn 4006 20 99.5 3957 69 98.3 10461 23005 31.3 1414 2612 35.1 405274 885626 31.4 
AAIndex1 P1# FileAn* 4015 11 99.7 3973 53 98.7 10218 23248 30.5 1342 2684 33.3 395812 895088 30.7 
AAIndex1 P1-P7 CMap 3328 698 82.7 3232 794 80.3 1515 31951 4.5 355 3671 8.8 61608 1229292 4.8 
AAIndex1 P1-P7 CMap* 3324 702 82.6 3233 793 80.3 1486 31980 4.4 345 3681 8.6 57917 1232983 4.5 
AAIndex1 P1-P7# CMap 3267 759 81.1 3172 854 78.8 1814 31652 5.4 325 3701 8.1 77420 1213480 6.0 
AAIndex1 P1-P7# CMap* 3353 673 83.3 3265 761 81.1 1661 31805 5.0 326 3700 8.1 71874 1219026 5.6 
AAIndex1 P1-P7 FileAn 4025 1 99.9 3997 29 99.3 9247 24219 27.6 1294 2732 32.1 387025 903875 30.0 
AAIndex1 P1-P7 FileAn* 4022 4 99.9 3978 48 98.8 9268 24198 27.7 1191 2835 29.6 387642 903258 30.0 
AAIndex1 P1-P7# FileAn 3990 36 99.1 3942 84 97.9 9376 24090 28.0 1354 2672 33.6 412366 878534 31.9 
AAIndex1 P1-P7# FileAn* 3978 48 98.8 3927 99 97.5 9005 24461 26.9 1219 2807 30.3 380388 910512 29.5 
AAIndex1 Fragment CMap 3907 119 97.0 3847 179 95.6 1782 31684 5.3 594 3432 14.8 994847 296053 77.1 
AAIndex1 Fragment CMap* 3893 133 96.7 3828 198 95.1 1873 31593 5.6 579 3447 14.4 938969 351931 72.7 
AAIndex1 Fragment# CMap 3609 417 89.6 3596 430 89.3 70 33396 0.2 0 4026 0.0 1036448 254452 80.3 
AAIndex1 Fragment# CMap* 3496 530 86.8 3495 531 86.8 29 33437 0.1 4 4022 0.1 1043148 247752 80.8 
AAIndex1 Fragment FileAn 4018 8 99.8 3978 48 98.8 7451 26015 22.3 2021 2005 50.2 807361 483539 62.5 
AAIndex1 Fragment FileAn* 4017 9 99.8 3985 41 99.0 7237 26229 21.6 1988 2038 49.4 1190483 100417 92.2 
AAIndex1 Fragment# FileAn 4006 20 99.5 3998 28 99.3 4660 28806 13.9 2752 1274 68.4 1204390 86510 93.3 
AAIndex1 Fragment# FileAn* 4017 9 99.8 4012 14 99.7 7289 26177 21.8 3377 649 83.9 795462 495438 61.6 

Table 19: Result of decision tree validation using SYFPEITHI MHC I ligand data. “Any fragment found”: The MHC ligand itself, a cleave product of the 
ligand (smaller), or a larger fragment containing the ligand was detected as a proteasome product by the decision tree. “Exact or larger found”, 
“Smaller found”, “Exact found” and “Larger found” accordingly. Especially the “Exact or larger found” category is of interest, since the proteasome 
produces cleavage products that are usually longer than the final MHC I ligand due to N-terminal nibbling. The first two trees show a poor prediction 
performance for the MHC I ligand data: Only 21.8%/16.1% of the ligands or a longer precursor fragment are predicted (marked red). The remaining trees 
show a good prediction performance however. 
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Comparing the decision trees with other prediction methods 

Comparing the decision trees’ performance with the results of other prediction methods, 

especially the ones presented in the introduction chapter, is difficult because most other 

methods predict cleavage sites instead of fragments. Therefore, it would have been 

especially interesting to compare the decision trees’ performance with the algorithm 

developed by Ginodi et al., which predicts fragments as well (Ginodi et al. 2008). 

However, neither the test data set used in the publication, nor the algorithm’s 
implementation was available at the time of writing.  

Therefore, the decision trees were evaluated against the dataset of CTL epitopes used 

by Saxova et al. for their comparison of NetChop, FragPredict and PAProC (Saxová et 

al. 2003). Since NetChop and PAProC predict cleavage sites, the authors define the 
following classifications in order to compare the algorithms: 

• True positive (TP): if the prediction at the C-terminal, Pc, is above the algorithm’s 

threshold. 

• False negative (FN): if Pc is below the threshold. 

• True negative (TN): if no cleavages are predicted within the epitope (excluding 

the C-terminal residue) or if the predicted cleavage sites within the epitope are 

less likely than at the C-terminal (i.e. less than Pc and the threshold). 

• False positive (FP): if there is at least one predicted cleavage site within the 
epitope which is more likely than at the C-terminal (i.e. higher than Pc)  

These classifications do not really fit for a fragment prediction method like the decision 

trees, however: even if a decision tree would predict a fragment that would imply 

cleavage within a CTL-epitope, this is not relevant as long as the tree also predicts the 

epitope, too, or an N-terminally extended fragment. The definitions for true negatives 
and false positives therefore do not apply.  

Thus it was only examined how many epitopes in the validation dataset were detected 

by each decision tree. The results are shown in Table 20. It is also shown how the 

prediction rate improves when fragments extended at the N-terminus are included. The 

best performing tree predicts 84% of the CTL-epitopes exactly. It is not possible 
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however to put this rate into perspective by measuring the tree’s specificity, given CTL 

epitope data, because the trees do not predict CTL epitopes but cleavage products of 

the proteasome. Since most cleavage products are not forwarded to the MHC I pathway, 

predicting a fragment that is not compatible with any CTL epitope does not necessarily 
imply a mistake by the algorithm. 

This might also pose a problem in Saxova et al.’s original comparison, who found 

NetChop to be the best performing algorithm of the three examined. This algorithm, 
however, is also the only one, which was trained with CTL epitope data. 

 



 

Tree N	+	0	 N	+	1	 N	+	2	 N	+	3	 N	+	4	 N	+	5	 N	+	6	 N	+	7	 N	+	8	 N	+	9	 N	+	10	

AACodesP1-P7 CMap 5	(0,02)	 8	(0,03)	 10	(0,04)	 13	(0,06)	 13	(0,06)	 16	(0,07)	 18	(0,08)	 18	(0,08)	 20	(0,09)	 20	(0,09)	 23	(0,10)	

AACodesP1-P7 CMap* 3	(0,01)	 6	(0,03)	 8	(0,03)	 13	(0,06)	 13	(0,06)	 13	(0,06)	 15	(0,06)	 15	(0,06)	 17	(0,07)	 17	(0,07)	 26	(0,11)	

AACodesP1-P7 FileAn 77	(0,33)	 120	(0,52)	 128	(0,55)	 129	(0,56)	 132	(0,57)	 145	(0,63)	 156	(0,68)	 158	(0,68)	 158	(0,68)	 158	(0,68)	 160	(0,69)	

AACodesP1-P7 FileAn* 79	(0,34)	 126	(0,55)	 132	(0,57)	 135	(0,58)	 137	(0,59)	 150	(0,65)	 169	(0,73)	 171	(0,74)	 171	(0,74)	 172	(0,74)	 174	(0,75)	

AAIndex1 P1 CMap 7	(0,03)	 14	(0,06)	 19	(0,08)	 23	(0,10)	 24	(0,10)	 26	(0,11)	 26	(0,11)	 32	(0,14)	 38	(0,16)	 44	(0,19)	 89	(0,39)	

AAIndex1 P1 CMap* 7	(0,03)	 20	(0,09)	 25	(0,11)	 34	(0,15)	 41	(0,18)	 44	(0,19)	 48	(0,21)	 53	(0,23)	 56	(0,24)	 60	(0,26)	 101	(0,44)	

AAIndex1 P1# CMap 9	(0,04)	 15	(0,06)	 19	(0,08)	 26	(0,11)	 30	(0,13)	 37	(0,16)	 41	(0,18)	 43	(0,19)	 45	(0,19)	 48	(0,21)	 86	(0,37)	

AAIndex1 P1# CMap* 15	(0,06)	 25	(0,11)	 32	(0,14)	 35	(0,15)	 45	(0,19)	 52	(0,23)	 54	(0,23)	 55	(0,24)	 59	(0,26)	 64	(0,28)	 105	(0,45)	

AAIndex1 P1 FileAn 68	(0,29)	 108	(0,47)	 134	(0,58)	 152	(0,66)	 181	(0,78)	 190	(0,82)	 192	(0,83)	 200	(0,87)	 204	(0,88)	 210	(0,91)	 216	(0,94)	

AAIndex1 P1 FileAn* 77	(0,33)	 112	(0,48)	 144	(0,62)	 159	(0,69)	 171	(0,74)	 184	(0,80)	 190	(0,82)	 196	(0,85)	 199	(0,86)	 204	(0,88)	 213	(0,92)	

AAIndex1 P1# FileAn 61	(0,26)	 105	(0,45)	 137	(0,59)	 149	(0,65)	 171	(0,74)	 182	(0,79)	 185	(0,80)	 194	(0,84)	 199	(0,86)	 201	(0,87)	 209	(0,90)	

AAIndex1 P1# FileAn* 77	(0,33)	 108	(0,47)	 143	(0,62)	 156	(0,68)	 171	(0,74)	 189	(0,82)	 195	(0,84)	 200	(0,87)	 206	(0,89)	 209	(0,90)	 212	(0,92)	

AAIndex1 P1-P7 CMap 23	(0,10)	 34	(0,15)	 36	(0,16)	 41	(0,18)	 46	(0,20)	 50	(0,22)	 54	(0,23)	 62	(0,27)	 65	(0,28)	 71	(0,31)	 98	(0,42)	

AAIndex1 P1-P7 CMap* 16	(0,07)	 26	(0,11)	 29	(0,13)	 30	(0,13)	 39	(0,17)	 40	(0,17)	 47	(0,20)	 52	(0,23)	 53	(0,23)	 56	(0,24)	 91	(0,39)	

AAIndex1 P1-P7# CMap 14	(0,06)	 19	(0,08)	 26	(0,11)	 31	(0,13)	 49	(0,21)	 54	(0,23)	 59	(0,26)	 69	(0,30)	 73	(0,32)	 86	(0,37)	 106	(0,46)	

AAIndex1 P1-P7# CMap* 22	(0,10)	 38	(0,16)	 43	(0,19)	 52	(0,23)	 59	(0,26)	 66	(0,29)	 73	(0,32)	 77	(0,33)	 83	(0,36)	 86	(0,37)	 100	(0,43)	

AAIndex1 P1-P7 FileAn 76	(0,33)	 112	(0,48)	 136	(0,59)	 161	(0,70)	 175	(0,76)	 192	(0,83)	 205	(0,89)	 209	(0,90)	 213	(0,92)	 219	(0,95)	 227	(0,98)	

AAIndex1 P1-P7 FileAn* 57	(0,25)	 105	(0,45)	 138	(0,60)	 152	(0,66)	 173	(0,75)	 188	(0,81)	 193	(0,84)	 202	(0,87)	 207	(0,90)	 212	(0,92)	 217	(0,94)	

AAIndex1 P1-P7# FileAn 62	(0,27)	 97	(0,42)	 119	(0,52)	 140	(0,61)	 155	(0,67)	 174	(0,75)	 185	(0,80)	 191	(0,83)	 195	(0,84)	 203	(0,88)	 207	(0,90)	

AAIndex1 P1-P7# FileAn* 57	(0,25)	 96	(0,42)	 121	(0,52)	 140	(0,61)	 151	(0,65)	 163	(0,71)	 173	(0,75)	 181	(0,78)	 189	(0,82)	 191	(0,83)	 196	(0,85)	

AAIndex1 Fragment CMap 27	(0,12)	 44	(0,19)	 59	(0,26)	 76	(0,33)	 89	(0,39)	 93	(0,40)	 103	(0,45)	 111	(0,48)	 117	(0,51)	 119	(0,52)	 123	(0,53)	

AAIndex1 Fragment CMap* 29	(0,13)	 59	(0,26)	 74	(0,32)	 85	(0,37)	 95	(0,41)	 104	(0,45)	 112	(0,48)	 123	(0,53)	 133	(0,58)	 143	(0,62)	 148	(0,64)	

AAIndex1 Fragment# CMap 0	(0,00)	 0	(0,00)	 1	(0,00)	 1	(0,00)	 1	(0,00)	 1	(0,00)	 1	(0,00)	 2	(0,01)	 2	(0,01)	 4	(0,02)	 4	(0,02)	

AAIndex1 Fragment# CMap* 0	(0,00)	 0	(0,00)	 0	(0,00)	 1	(0,00)	 2	(0,01)	 4	(0,02)	 5	(0,02)	 5	(0,02)	 5	(0,02)	 5	(0,02)	 6	(0,03)	

AAIndex1 Fragment FileAn 102	(0,44)	 149	(0,65)	 171	(0,74)	 197	(0,85)	 202	(0,87)	 207	(0,90)	 211	(0,91)	 213	(0,92)	 217	(0,94)	 218	(0,94)	 219	(0,95)	

AAIndex1 Fragment FileAn* 106	(0,46)	 146	(0,63)	 168	(0,73)	 184	(0,80)	 198	(0,86)	 206	(0,89)	 208	(0,90)	 212	(0,92)	 213	(0,92)	 213	(0,92)	 218	(0,94)	

AAIndex1 Fragment# FileAn 156	(0,68)	 185	(0,80)	 202	(0,87)	 211	(0,91)	 214	(0,93)	 218	(0,94)	 219	(0,95)	 219	(0,95)	 219	(0,95)	 221	(0,96)	 221	(0,96)	

AAIndex1 Fragment# FileAn* 193	(0,84)	 202	(0,87)	 211	(0,91)	 218	(0,94)	 221	(0,96)	 222	(0,96)	 223	(0,97)	 224	(0,97)	 224	(0,97)	 225	(0,97)	 225	(0,97)	

Table 20: Results for tree validation with the data set of Saxová et al. (Saxová et al. 2003). The matrix shows how many epitopes with length N were 
detected by each tree (percentage of all epitopes given in brackets). Since the proteasome's cleavage products are trimmed at the N-terminus it was 
also examined how the prediction improves, if extended fragments (N + x) are included. The detection rates of succeeding columns are added up, i. e. 
the column N + 1 counts all detections of the epitope itself or the epitope extended by one amino acid. 
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Discussion 

Summary 

In order to gain a deeper understanding of the proteasome’s cleavage behavior, a model 

for prediction of its cleavage products was developed in this work. The decision tree 

algorithm was selected as approach for fragment prediction because it allows insight into 

the decision process that leads to its final classification.  

A new database of in vitro training data for the model was compiled from existing 

experimental data from the institute of biochemistry at the Charité Berlin. Two datasets 

were created for training: a more restrictive, manually validated one (CMap) and one 

containing a larger number of proteasomal cleavage products, detected by the software 

“FileAnalyzer” (FileAn). The validity of the FileAnalyzer data was verified using the 

manually validated data as reference.  

Different sets of attributes were used for decision tree induction. The amino acid index 

database served as a source for the majority of these attributes. 

Cross-validation of the decision trees 

Cross validation was used in order to evaluate the trees’ ability to classify the training 

data. With an average AUC between 0.57 and 0.83, true positive rates mostly above 0.7 

and true negative rates above 0.8, most of the trees performed well in this task. In 

general, trees trained with the FileAn dataset showed better results. This might be 

explained by the CMap dataset being too restrictive and therefore providing a very small 

number of positive samples, which could not be separated as good from the negative 

ones using the attributes provided. The problem gets especially noticeable at the two 

trees trained with CMap using the Amino Acid Letter Codes attribute set, which only 

reach a true positive rate of 0.3. 
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Relevance of amino acid attributes and positions 

Amino acid letter codes 

Decision trees generated with the amino acid letter code attribute set performed well 

only when trained with the FileAn dataset. In these trees, the attributes “fragment length” 

and “P1” were selected first. Attributes selected at the third level, however, varied and 

seemed primarily to be selected because they fit the training data best.  

At the position P1, aspartic acid (D) especially stands out as an indicator for a fragment 

being cleaved by the proteasome with a probability up to 0.8. This finding fits the results 

of Tenzer et al. (Tenzer et al. 2005), who reported a high score for aspartic acid in their 

scoring matrix for the constitutive proteasome, a similar importance of lysine (L) as 

described by Tenzer et al. as well could, however, not be confirmed by the tree. 

AAIndex attributes 

All decision trees generated with a set of attributes derived from the amino acid index 

database performed rather well fitting the training data. Trees trained with the FileAn 

dataset consistently showed higher average AUC values and true positive/negative 

rates. A big hope of this study did not come true, however: No attribute or cluster of 

attributes with unambiguously high relevance for the proteasomal cleavage process 

could be identified. There is no clear dominance of one or a few cluster colors in Table 

16 or Table 17. There are multiple possible explanations for these unclear results: 1. 

The wrong set of attributes was used (this matter is discussed in more detail in the 

following section) 2. The factors relevant for the cleavage process are too complex to be 

revealed as a sequence of a few decisions 3. In the unclustered attribute sets, too many 

attributes were provided and so an overfitting of the training data occurred, hiding the 

actually relevant types. 4. The clustered attribute sets provided too few attributes or hid 

the relevant attributes within their corresponding clusters. 

Validation with MHC I ligand data 

As described before in the “Methods”-section, validation of the decision trees using 

MHC I ligand data is more a compromise for lack of any better suited data for validation. 
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All decision trees except for AACodesP1-P7 (CMap/CMap*) were able to identify more 

than 80% of MHC I ligands or at least one N-terminally extended fragment. This finding 

serves as a sanity check for the implementation and confirms that the in vitro training 

data is to a certain extend also applicable to in vivo data.  

The MHC I pathway still remains complex and its substrate is modified in multiple steps 

and ways, including N-terminal nibbling (Kisselev et al. 1999) or, for example, CTL 

epitopes, which originated from the fusion of two segments located at either end of the 

antigen, resulting in an epitope that cannot be identified within the original substrate 

(Hanada, Yewdell, and Yang 2004).  

Potential sources of error 

In the following, problems and restrictions of this work are identified and discussed. 

Mass spectrometry and data set 

The training data used in this study was obtained from in vitro experiments that were 

analyzed with mass spectrometry. A peptide’s properties affect its detection by mass 

spectrometry, which itself may lead to biased results. Especially small fragments may 

not be detected reliably by mass spectrometry. Within the last ten years, the quality and 

resolution of mass spectrometry instruments has improved significantly, making 

scientists realize that a considerable amount of peptides has been missed in past 

experiments.  

In vitro data 

The training data originates from in vitro experiments, which must be taken into 

consideration when trying to draw conclusions regarding the in vivo process. Under in 

vitro conditions there is an abundance of substrate, which is processed by the 

proteasome. Its cleavage products remain available as substrate for further digestions 

and are neither removed by cytosolic peptidases nor transported away by TAP.  

In vivo data, on the other hand, does not allow an isolated examination of the 

proteasome. The CTL epitope data available is the result of the MHC I pathway, a far 

more complex process including multiple steps and systems. This makes validation of a 
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model learned from in vitro data virtually impossible, because subsequent modifications 

to the in vivo cleavage products after they have left the proteasome cannot be identified. 

Validation with other in vitro data available, as performed with the enolase digestion 

data, showed another problem: Even though the training dataset used was adequately 

large, especially compared to the data of similar publications, the training data itself may 

still bias the model. The experiments, which provided the data, mainly focused on 

oligopeptides with a length of about 50 amino acids. For really universal deductions a far 

greater dataset would be required. 

Attribute sets 

While the evaluation of all amino acid properties described in the amino acid index 

database seemed promising, the lack of unambiguous results indicates that the attribute 

sets used were not able to reveal a certain logic behind the proteasomal cleavage 

process. There are two possible explanations: 

1. The correct logic was identified by one of the trees while all other trees do not 

describe the correct logic. The correct solution is therefore hidden amidst the 

wrong ones and cannot be identified. 

2. The attribute sets used did not contain the information relevant to the decision 

process. In this case, additional experiments might provide clearer results. For 

example, further candidates of attribute sets could include spatial information 

about the substrate and its position relative to the catalytic sites during the 

cleavage process. 

Limitations of sequence-based methods 

All models created in this work are sequence-based only, meaning that they only rely on 

the substrate’s sequence and the properties of its amino acid sequence irrespective of 

the peptides’ steric conformations. While various methods for in silico docking 

experiments exist, their benefit for this work would at least be questionable: the 

shortness of the oligopeptides examined allows these molecules to change their 

conformation rather freely. 
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Blending different proteasome types 

The training data contained experiments with proteasomes of different cell lines (T2, T27 

etc.) and different states (constitutive proteasome, immunoproteasome, PA28), which 

are not differentiated in the model in order to keep the data base large enough. 

However, a cell may use different proteasomes at the same time, which means the 

model can still represent a biological reality (Brooks et al. 2000). 
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Appendix 

Dataset used for decision tree learning 

The training data was collected between 2000 and 2011 by working groups under 

supervision of Prof. Kloetzel and Prof. Holzhütter of the institute of biochemistry of the 

Charité Berlin. The following table shows the peptide sequence of each experiment (with 

the C-terminus on the left) and the number of fragments found by manual evaluation (as 

described in “Methods”) at the first line. The following lines show the number of 

fragments found by automated evaluation using the FileAnalyzer tool and the area under 

the curve (AUC) of the receiver-operating-characteristic referring to the manually 

generated cleavage map (as described in “Methods”). Experiments belonging to the 

distinct dataset are displayed in black, all other experiments in gray. 

Identifier	 Peptide	sequence	
Mass	Spectrometry	Raw	file	

Cell	Line	 Fragments	
found	

AUC	

E-L	 ALLALLAALCPASRALEEKKGNYVVTDHGS	 		 40	 		
091124_E-L_T2.txt	 T2	 53	 0.59	

091124_E-L_T27.txt	 T27	 46	 0.63	

091208_E-L_LCL.txt	 Unspecified	 137	 0.83	

091208_E-L_LCL_40ul.txt	 Unspecified	 64	 0.77	

E_L.txt	 Unspecified	 151	 0.83	

ETV6-AML1-L	 MVSVSPPEEHAMPIGRIAECILGMNPSRDV	 		 29	 		
091.txt	 Unspecified	 86	 0.88	

091112_ETV6_T27.txt	 T27	 3	 0.51	

091208_ETV-6_LCL.txt	 Unspecified	 88	 0.82	

HepB	 AYRPPNAPILSTLPETTVVRRRGRSPRRRTPS	 		 2	 		
011112_H.txt	 Unspecified	 460	 0.59	

011112_HA.txt	 Unspecified	 314	 0.61	

011112_HB.txt	 Unspecified	 212	 0.59	

011112_HC.txt	 Unspecified	 230	 0.32	

011112_HD.txt	 Unspecified	 383	 0.34	

011112_HE.txt	 Unspecified	 238	 0.48	

Kloe110	 TGSTAVPYGSFKHVDTRLQ	 		 20	 		
030326_Kloe110.txt	 Unspecified	 181	 0.88	

030326_Kloe110_Hela+Inf.txt	 Unspecified	 137	 0.86	

030326_Kloe110_Hela.txt	 Unspecified	 134	 0.81	

030326_Kloe110_TriMel.txt	 Unspecified	 148	 0.84	

Kloe111	 ELSWEDYLETGSTAVPYGSFKHVDTRLQNGFAPGMKL	 		 44	 		
030326_Kloe111.txt	 Unspecified	 502	 0.89	

030326_Kloe111_Hela+Inf.txt	 Unspecified	 360	 0.78	

030326_Kloe111_Hela.txt	 Unspecified	 319	 0.71	

030326_Kloe111_Trimel.txt	 Unspecified	 478	 0.83	

Kloe184	 ALEGFDKADGTLDSQVMSLHNLVHSFLNG	 		 52	 		
0110xx_Kloe184_10.txt	 Unspecified	 534	 0.66	

0110xx_Kloe184_11.txt	 Unspecified	 358	 0.60	

0110xx_Kloe184_12.txt	 Unspecified	 544	 0.59	

0110xx_Kloe184_7.txt	 Unspecified	 394	 0.63	

0110xx_Kloe184_8.txt	 Unspecified	 589	 0.65	
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0110xx_Kloe184_9.txt	 Unspecified	 419	 0.72	

0110xx_Kloe184.txt	 Unspecified	 472	 0.74	

100216_Kloe184_LcL.txt	 Unspecified	 168	 0.87	

Kloe208	 ETVCDSLDDYNHLVTLCNGTYEGLLRR	 		 27	 		
020516_Kloe208_10.txt	 Unspecified	 314	 0.60	

020516_Kloe208_11.txt	 Unspecified	 387	 0.60	

020516_Kloe208_12.txt	 Unspecified	 336	 0.57	

020516_Kloe208_1.txt	 Unspecified	 477	 0.60	

020516_Kloe208_7.txt	 Unspecified	 454	 0.72	

020516_Kloe208_8.txt	 Unspecified	 396	 0.60	

020516_Kloe208_9.txt	 Unspecified	 399	 0.71	

020516_Kloe208.txt	 Unspecified	 543	 0.69	

Kloe208_Deca.txt	 Unspecified	 472	 0.73	

Kloe208_LCQ.txt	 Unspecified	 411	 0.72	

Kloe256	 TRPILSPLTKGILGFVFTLTVPSERGLQR	 		 19	 		
020702_KLoe256_C_single.txt	 Unspecified	 149	 0.72	

040923_Kloe256_NA.txt	 Unspecified	 47	 0.55	

040923_Kloe256_NB.txt	 Unspecified	 60	 0.62	

040923_Kloe256_NC.txt	 Unspecified	 262	 0.62	

040923_Kloe256_ND.txt	 Unspecified	 310	 0.57	

040923_Kloe256_NE.txt	 Unspecified	 6	 0.52	

040923_Kloe256_NF.txt	 Unspecified	 6	 0.49	

040923_Kloe256_N_1.txt	 Unspecified	 297	 0.62	

040923_Kloe256_N_2.txt	 Unspecified	 33	 0.57	

Kloe258	 PSQGKGRGLSLSRFSWGAEGQRPGFGYG	 		 35	 		
030616_Kloe258_GB.txt	 Unspecified	 195	 0.70	

030820_Kloe258_GA.txt	 Unspecified	 203	 0.66	

030820_Kloe258_GB.txt	 Unspecified	 273	 0.70	

030820_Kloe258_GC.txt	 Unspecified	 291	 0.67	

100316_Kloe258_LcL.txt	 Unspecified	 251	 0.78	

1003xx_Kloe258_LCL_24h_60ul.txt	 Unspecified	 153	 0.70	

100527_Kloe258_HBX.txt	 Unspecified	 221	 0.75	

Kloe260	 TESPSFSAGDNPPVLFSSDFRISGAPEKYESERR	 		 23	 		
030820_Kloe258_BA.txt	 Unspecified	 461	 0.51	

030820_Kloe258_BB.txt	 Unspecified	 442	 0.49	

040831_Kloe260_BC.txt	 Unspecified	 513	 0.51	

040831_Kloe260_BD.txt	 Unspecified	 444	 0.49	

Kloe272	 SRALVVTHTYLEPGPVTAQVVLQAAIPLTS	 		 41	 		
030326_Kloe272_Hela+Inf.txt	 Unspecified	 301	 0.75	

030326_Kloe272_Hela.txt	 Unspecified	 258	 0.60	

030326_Kloe272_TriMel.txt	 Unspecified	 278	 0.64	

030727_Kloe272_T2.txt	 T2	 484	 0.70	

030727_Kloe272_T2_27.txt	 T2	 446	 0.84	

100603_Kloe272_IE.txt	 Unspecified	 260	 0.71	

100603_Kloe272_IF.txt	 Unspecified	 210	 0.70	

Kloe308	 GSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSI	 		 21	 		
030727_Kloe308_T2.txt	 T2	 188	 0.79	

030727_Kloe308_T2_27.txt	 T2	 203	 0.83	

1003xx_Kloe308_LCL_24h_60ul.txt	 Unspecified	 107	 0.66	

100603_Kloe308_IC.txt	 Unspecified	 386	 0.67	

100603_Kloe308_ID.txt	 Unspecified	 369	 0.68	

Kloe310	 AHSSSAFTITDQVPFSVSVSQLRALDGGNK	 		 29	 		
030727_Kloe310_T2.txt	 T2	 192	 0.54	

030727_Kloe310_T2_27.txt	 T2	 233	 0.73	

041118_Kloe310_T2+PA28.txt	 T2	 211	 0.53	

041118_Kloe310_T2_27+PA28.txt	 T2	 218	 0.74	

041118_Kloe310_T2_27.txt	 T2	 225	 0.70	

041118_Kloe310_T2.txt	 T2	 196	 0.59	

090914_Kloe310_LCL.txt	 Unspecified	 375	 0.66	

090914_Kloe310_T27.txt	 T27	 81	 0.79	

090914_Kloe310_T2.txt	 T2	 73	 0.67	

100527_Kloe310_HF.txt	 Unspecified	 413	 0.62	

Kloe334	 YYKDAASNSANRQDFTQDPGKFTE	 		 20	 		
040728_Kloe334_20S+PA28.txt	 20S	 305	 0.69	



 97 

040728_Kloe334_20S.txt	 20S	 302	 0.65	

040728_Kloe334_i20S+PA28.txt	 i20S	 341	 0.66	

040728_Kloe334_i20S.txt	 i20S	 268	 0.58	

Kloe336	 VYNAGMGVGVGNLTIFPHQWINLRTNNSATIVMPYTNSVPMDN
MFR	

		 21	 		

040505_Kloe336_20S.txt	 20S	 100	 0.52	

040505_Kloe336_i20S.txt	 i20S	 118	 0.51	

Kloe337	 HQWINLRTNNSATIVMPYTNSVPMDNMFRHNNVTLMVIPFVPLD
Y	

		 18	 		

031203_Kloe337_i20S.txt	 i20S	 116	 0.72	

031218_Kloe337.txt	 Unspecified	 375	 0.75	

040505_Kloe337_20S.txt	 20S	 278	 0.84	

040505_Kloe337_i20S.txt	 i20S	 287	 0.76	

Kloe371	 PLELSEKNFQLNQDKMNFSTLRNIQGLFAPLKLQMEFKAVQQVQRL
PFLSSSNLSLDVLRGN	

		 50	 		

040221_Kloe371_20S.txt	 20S	 847	 0.70	

040221_Kloe371_i20S.txt	 i20S	 609	 0.80	

Kloe392	 QRVYNAGMGVGVGNLTIFPHQWINL	 		 20	 		
041222_Kloe392_T2+PA28.txt	 T2	 47	 0.76	

041222_Kloe392_T2.txt	 T2	 45	 0.53	

041222_Kloe392_T2_27+PA28.txt	 T2	 36	 0.66	

041222_Kloe392_T2_27.txt	 T2	 60	 0.63	

Kloe393	 VMPYTNSVPMDNMFRHNNVTLMVIPFVPLDY	 		 52	 		
080410_Kloe393_T2.txt	 T2	 148	 0.68	

080410_Kloe393_T27.txt	 T27	 127	 0.67	

080410_Kloe393_T27_PA28.txt	 T27	 220	 0.58	

080410_Kloe393_T2_PA28.txt	 T2	 228	 0.57	

Kloe394	 ATIEQSAPSQSDQEQLFSNVQYFAHYCRKY	 		 31	 		
080410_Kloe394_T2.txt	 T2	 92	 0.71	

080410_Kloe394_T27.txt	 T27	 88	 0.71	

080410_Kloe394_T27_PA28.txt	 T27	 198	 0.61	

080410_Kloe394_T2_PA28.txt	 T2	 209	 0.59	

Kloe396	 AKGKSRLIEASSLNDSVAMRQTFGNL	 		 22	 		
041222_Kloe396_T2+PA28.txt	 T2	 36	 0.70	

041222_Kloe396_T2.txt	 T2	 45	 0.87	

041222_Kloe396_T2_27+PA28.txt	 T2	 39	 0.77	

041222_Kloe396_T2_27.txt	 T2	 39	 0.70	

Kloe400	 AMMKRNSSRVKTEYGEFTMLGIYDRWAV	 		 22	 		
051130_Kloe400_T2.txt	 T2	 69	 0.86	

051130_Kloe400_T2_27.txt	 T2	 87	 0.91	

051130_Kloe400_T2_27_single.txt	 T2	 351	 0.77	

051130_Kloe400_T2_single.txt	 T2	 279	 0.87	

070618_Kloe400_T2.txt	 T2	 72	 0.71	

070618_Kloe400_T27.txt	 T27	 60	 0.74	

Kloe409	 RPILSPLTKGILGFVFTLTVPSERGLQR	 		 31	 		
050523_Kloe409_T27.txt	 T27	 287	 0.69	

050523_Kloe409_T2.txt	 T2	 248	 0.78	

051115_Kloe409_T2.txt	 T2	 286	 0.78	

051115_Kloe409_T27.txt	 T27	 338	 0.85	

1003xx_Kloe409.txt	 Unspecified	 311	 0.80	

Kloe426	 EVSGLEQLESIINFEKLTEWTS	 		 14	 		
070510_Kloe426_LCQ_MEC_TET.txt	 Unspecified	 54	 0.75	

070510_Kloe426_LCQ_T27.txt	 T27	 29	 0.66	

070510_Kloe426_LCQ_T2.txt	 T2	 35	 0.73	

070510_Kloe426_MEC.txt	 Unspecified	 4	 0.52	

070510_Kloe426_MEC_TET.txt	 Unspecified	 5	 0.52	

070510_Kloe426_T27.txt	 T27	 2	 0.53	

070510_Kloe426_T2.txt	 T2	 2	 0.53	

Kloe427	 KDSTRTQINKVVRFDKLPGFGD	 		 16	 		
070302_Kloe427_T2.txt	 T2	 108	 0.79	

070302_Kloe427_T27.txt	 T27	 109	 0.83	

Kloe451	 CMKVFAQYILGADPLRVCSPSVDDLRA	 		 26	 		
051220_Kloe451_T2.txt	 T2	 165	 0.76	

051220_Kloe451_T2_27.txt	 T2	 135	 0.82	
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Kloe453	 SEFCRVLCCYVLEETSVMLAKRPLITKPE	 		 31	 		
051220_Kloe453_T2.txt	 T2	 65	 0.76	

051220_Kloe453_T2_27.txt	 T2	 96	 0.75	

Kloe478	 KRWIILGLNKIVRMYSPVSILD	 		 36	 		
060707_Kloe478_T2.txt	 T2	 111	 0.84	

060707_Kloe478_T27.txt	 T27	 104	 0.86	

Kloe480	 KRWIILGLNKIVRMYSPVSILDIRQGP	 		 32	 		
060619_Kloe480_T27.txt	 T27	 5	 0.49	

060627_Kloe480_T2.txt	 T2	 91	 0.79	

060627_Kloe480_T27.txt	 T27	 97	 0.81	

Kloe497	 GKNATGMEVGWYRSPFSRVVHLYRNGKDQDAEQA	 		 44	 		
070126_Kloe497_MH.txt	 Unspecified	 141	 0.55	

070126_Kloe497_MM.txt	 Unspecified	 114	 0.58	

070126_MH_MOG_1.txt	 Unspecified	 430	 0.77	

070126_MM_MOG_2.txt	 Unspecified	 448	 0.73	

Kloe582	 LSRKVAELVHFLLLKYRAR	 		 27	 		
090914_Kloe582_T27.txt	 T27	 79	 0.79	

090914_Kloe582_T2.txt	 T2	 65	 0.76	

Kloe585	 VSRQLRTKAWNRQLYPEWTEAQR	 		 35	 		
0805xx_Kloe585_T27_A.txt	 T27	 357	 0.82	

0805xx_Kloe585_T27_A_single.txt	 T27	 533	 0.78	

0805xx_Kloe585_T2_A.txt	 T2	 314	 0.77	

0806xx_Kloe585_EB.txt	 Unspecified	 342	 0.72	

0806xx_Kloe585_HA.txt	 Unspecified	 340	 0.68	

Kloe614	 RRSGAAGAAVKGVGTMVMELIRMIKRGVNDRNF	 		 40	 		
0811xx_Kloe614_Milz.txt	 Unspecified	 359	 0.52	

0811xx_Kloe614_Muskel.txt	 Unspecified	 372	 0.57	

Kloe649	 AVNPGLLEVTSYKLKHI	 		 9	 		
090728_Kloe649_LCQ_T2.txt	 T2	 167	 0.92	

090728_Kloe649_LCQ_T27.txt	 T27	 167	 0.96	

090728_Kloe649_T2.txt	 T2	 58	 0.99	

090728_Kloe649_T27.txt	 T27	 65	 0.99	

Kloe652	 QLYPEWRTKAWNR	 		 8	 		
090903_Kloe652_AB.txt	 Unspecified	 13	 0.85	

Kloe686	 NTYASKRGCSPRVKPQHISTHFLPRFK	 		 26	 		
100216_Kloe686_LcL.txt	 Unspecified	 167	 0.92	

MDC-20	 FFLTPHRHRVSAINNYAQKLCTFSFL	 		 47	 		
110207_MDC20_LA.txt	 Unspecified	 188	 0.77	

110207_MDC20_LC.txt	 Unspecified	 226	 0.78	

110210_MDC20_MA.txt	 Unspecified	 216	 0.80	

MDC-22	 LPKMDSVVYDFLKCMVYNIP	 		 23	 		
110411_MDC22_TB.txt	 Unspecified	 60	 0.78	

110411_MDC22_TD.txt	 Unspecified	 62	 0.80	

110411_MDC22_TF.txt	 Unspecified	 47	 0.71	

110530_MDC22_Lcl.txt	 Unspecified	 56	 0.84	

110530_MDC22_T2.txt	 T2	 63	 0.84	

110530_MDC22_T27.txt	 T27	 38	 0.77	

NOR1	 RWLLLGLNPLVGGGRLYSPTSILG	 		 41	 		
060808_NOR1_T2.txt	 T2	 77	 0.80	

060808_NOR1_T27.txt	 T27	 87	 0.82	

NOR10	 RLIYATRQLQRFAVNPGLLIT	 		 27	 		
060808_NOR10_T27.txt	 T27	 101	 0.78	

060808_NOR10_T2.txt	 T2	 112	 0.82	

070424_T27_NOR10.txt	 T27	 88	 0.89	

070424_T2_NOR10.txt	 T2	 90	 0.84	

070905_T27_NOR10.txt	 T27	 110	 0.77	

070905_T2_NOR10.txt	 T2	 107	 0.81	

NOR11	 MEPVDPRLEPWKHPGSQPKTACTNCYCK	 		 13	 		
070424_T27_NOR11.txt	 T27	 115	 0.85	

070424_T2_NOR11.txt	 T2	 104	 0.87	

070911_T27_NOR11.txt	 T27	 456	 0.84	

070911_T2_NOR11.txt	 T2	 191	 0.84	

NOR12	 FVIHRLEPWLHPGSQHITASTN	 		 35	 		
070621_NOR12_T2.txt	 T2	 101	 0.87	
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070621_NOR12_T27.txt	 T27	 105	 0.83	

0706xx_Nor12_T27.txt	 T27	 38	 0.74	

0706xx_Nor12_T2.txt	 T2	 56	 0.82	

NOR13	 ALSEGATPQDLNTMLNTVGGHQAAMQML	 		 12	 		
070621_NOR13_T2.txt	 T2	 32	 0.64	

070621_NOR13_T27.txt	 T27	 36	 0.68	

0706xx_Nor13_T27.txt	 T27	 21	 0.78	

0706xx_Nor13_T2.txt	 T2	 22	 0.78	

NOR14	 YKLKHIVWASRELERFAVNPGLLEVTSEGC	 		 55	 		
070703_NOR14_T2.txt	 T2	 159	 0.76	

070703_NOR14_T27.txt	 T27	 115	 0.67	

070911_T2_NOR14.txt	 T2	 178	 0.75	

090701_NOR14_T27.txt	 T27	 226	 0.69	

090914_NOR14_T27.txt	 T27	 104	 0.69	

090914_NOR14_T2.txt	 T2	 117	 0.71	

091119_NOR14_Lcl.txt	 Unspecified	 67	 0.62	

NOR15	 CFHCQVCFITKGLGISYGRKKRR	 		 8	 		
070703_T27_NOR15.txt	 T27	 77	 0.91	

070703_T2_NOR15.txt	 T2	 81	 0.80	

070904_T27_NOR15.txt	 T27	 110	 0.68	

070904_T2_NOR15.txt	 T2	 86	 0.68	

NOR2	 PEVIPMFSALSEGATPQDLNTMLNTVGGH	 		 32	 		
060808_NOR2_T2.txt	 T2	 65	 0.73	

060808_NOR2_T27.txt	 T27	 45	 0.69	

090728_NOR2_T27.txt	 T27	 332	 0.73	

090728_NOR2_T2.txt	 T2	 329	 0.70	

NOR3	 NNPPIPVGEIYKRWIILGLNKIV	 		 30	 		
060808_NOR3_T2.txt	 T2	 79	 0.85	

060808_NOR3_T27.txt	 T27	 81	 0.86	

NOR4	 RALGPAATLQTPWTASLGVG	 		 33	 		
061128_HeLa_NOR4.txt	 Unspecified	 60	 0.82	

061128_T27_NOR4.txt	 T27	 49	 0.79	

061128_T2_NOR4.txt	 T2	 108	 0.83	

070308_T27_NOR4.txt	 T27	 72	 0.87	

070308_T2_NOR4.txt	 T2	 63	 0.84	

NOR41	 STAGLYVLFLTKGLSISYLGKK	 		 27	 		
071016_T27_NOR41.txt	 T27	 90	 0.78	

071016_T2_NOR41.txt	 T2	 77	 0.81	

NOR42	 CFHSQVSFITKGLGISYGRKKRR	 		 23	 		
071016_T27_NOR42.txt	 T27	 101	 0.72	

071016_T2_NOR42.txt	 T2	 68	 0.68	

NOR5	 RAIPIPAGTLLSGGGRAIYKRWAILG	 		 33	 		
070308_NOR5_T2.txt	 T2	 151	 0.76	

070308_T27_NOR5.txt	 T27	 126	 0.78	

NOR6	 KALGPAATLEEMMTACQGVGGPGH	 		 18	 		
070308_T27_NOR6.txt	 T27	 40	 0.68	

070308_T2_NOR6.txt	 T2	 22	 0.70	

NOR8	 YAIPQALNTLLNTVGGHQAA	 		 19	 		
070424_T27_NOR8.txt	 T27	 65	 0.85	

070424_T2_NOR8.txt	 T2	 53	 0.79	

070703_T27_NOR8.txt	 T27	 77	 0.82	

070703_T2_NOR8.txt	 T2	 53	 0.87	

070904_T27_NOR8.txt	 T27	 71	 0.79	

070904_T2_NOR8.txt	 T2	 71	 0.71	

NOR9	 YVLFLTKGLSISYLGKK	 		 30	 		
070424_T27_NOR9.txt	 T27	 52	 0.77	

070424_T2_NOR9.txt	 T2	 74	 0.87	

070911_T27_NOR9.txt	 T27	 99	 0.89	

070911_T2_NOR9.txt	 T2	 101	 0.90	

pp89	 RLMYDMYPHFMPTNLGPSEKRVWMS	 		 35	 		
061019_Kloe1_PC.txt	 Unspecified	 48	 0.60	

061019_Kloe1_RC.txt	 Unspecified	 33	 0.59	

080108_Kloe1_T2.txt	 T2	 211	 0.82	

080108_Kloe1_T27.txt	 T27	 188	 0.73	
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100527_Kloe1_HC.txt	 Unspecified	 275	 0.72	

100527_Kloe1_HD.txt	 Unspecified	 310	 0.74	

Sei102	 VFTWPPWQAGILARNLVPMVATVQGQNLKYGEF	 		 18	 		
050523_Sei102_T27.txt	 T27	 435	 0.75	

050523_Sei102_T2.txt	 T2	 403	 0.71	

051031_Sei102_T2.txt	 T2	 386	 0.55	

051031_Sei102_T27.txt	 T27	 306	 0.61	

060126_Sei102_T2_27.txt	 T2	 63	 0.90	

060126_Sei102_T2.txt	 T2	 38	 0.70	

060712_Sei102_T2_27.txt	 T2	 121	 0.78	

060712_Sei102_T2.txt	 T2	 87	 0.54	

Sei104	 AELELAENREILKEPVHGVYYDPSKDLIAE	 		 10	 		
050523_Sei104_T2.txt	 T2	 364	 0.86	

050523_Sei104_T27.txt	 T27	 354	 0.85	

0602xx_Sei104_T27.txt	 T27	 188	 0.88	

0602xx_Sei104_T2.txt	 T2	 132	 0.73	

Sei164	 ISSIFSRIGDPALNMENITSGL	 		 14	 		
091001_Sei164_T2.txt	 T2	 28	 0.78	

091001_Sei164_T27.txt	 T27	 33	 0.89	

Sei5	 VIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYA	 		 93	 		
080915_Sei5_20S_human.txt	 20S	 486	 0.60	

080915_Sei5_20S_mouse.txt	 20S	 465	 0.61	

080915_Sei5_20S_rat.txt	 20S	 541	 0.68	

Sei52	 VIDTLTCGFADAMGYIPLVGAPLGGAARALAHGVRVLEDGVNYA	 		 57	 		
030206_Sei52_T2.txt	 T2	 235	 0.75	

030206_Sei52_T27.txt	 T27	 178	 0.55	

030206_Sei5_T27.txt	 T27	 208	 0.53	

030206_Sei5_T2.txt	 T2	 254	 0.69	

Sei96	 KGHGHSYTTAEELAGIGILTVILGVL	 		 11	 		
041208_Sei-96_gamma.txt	 Unspecified	 236	 0.66	

041208_Sei-96_K0.txt	 Unspecified	 277	 0.86	

Sei97	 KGHGHSYTTAEEAAGIGILTVILGVL	 		 25	 		
041208_Sei-97_gamma.txt	 Unspecified	 299	 0.79	

041208_Sei-97_K0.txt	 Unspecified	 280	 0.76	

0501xx_Sei-97_gamma.txt	 Unspecified	 106	 0.70	

0501xx_Sei-97_K0.txt	 Unspecified	 119	 0.66	

Ste5	 AYISSVAYGRQVYLKLSTNSHSTKVKA	 		 44	 		
100603_Ste5_IA.txt	 Unspecified	 452	 0.65	

100603_Ste5_IB.txt	 Unspecified	 457	 0.67	

Appendix 1: Dataset used for decision tree learning 

 

Amino acid index database clusters 

Cluster representative shown first in bold text. 

Cluster 1 
WERD780103 Influence of water on protein structure. An analysis of the preferences of   amino acid residues for 

the inside or outside and for specific conformations    in a protein molecule 
MIYS990103 Self-consistent estimation of inter-residue protein contact energies based on   an equilibrium mixture 

approximation of residues 

WOLS870101 Principal property values for six non-natural amino acids and their   application to a structure-activity 
relationship for oxytocin peptide    analogues 

WOLS870102 Principal property values for six non-natural amino acids and their   application to a structure-activity 
relationship for oxytocin peptide    analogues 

AURR980104 Helix capping 

AVBF000103 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

JANJ780103 Conformation of amino acid side-chains in proteins 
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ROBB760101 Conformational properties of amino acid residues in globular proteins 

RICJ880107 Amino acid preferences for specific locations at the ends of alpha helices 

CHOP780209 Prediction of the secondary structure of proteins from their amino acid   sequence 

VASM830101 Computed conformational states of the 20 naturally occurring amino acid   residues and of the prototype 
residue alpha-aminobutyric acid 

NAKH920107 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

TANS770106 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

PONP800108 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

MITS020101 Amphiphilicity index of polar amino acids as an aid in the characterization   of amino acid preference at 
membrane-water interfaces 

CHOP780214 Prediction of the secondary structure of proteins from their amino acid   sequence 

RICJ880116 Amino acid preferences for specific locations at the ends of alpha helices 

YUTK870102 Dependence of conformational stability on hydrophobicity of the amino acid   residue in a series of variant 
proteins substituted at a unique position of    tryptophan synthase alpha subunit 

MUNV940102 Intrinsic secondary structure propensities of the amino acids, using   statistical phi-psi matrices: comparison 
with experimental scales 

KARP850103 Prediction of chain flexibility in proteins 

WILM950104 Physicochemical basis of amino acid hydrophobicity scales: evaluation of four   new scales of amino acid 
hydrophobicity coefficients derived from RP-HPLC of    peptides 

ANDN920101 Peptide/protein structure analysis using the chemical shift index method:   upfield alpha-CH values reveal 
dynamic helices and aL sites 

PARS000101 Protein thermal stability: insights from atomic displacement parameters (B   values) 

RACS820110 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

ROSM880102 Hydrophilicity of polar amino acid side-chains is markedly reduced by   flanking peptide bonds 

HUTJ700103 Heat capacities, absolute entropies, and entropies of formation of amino   acids and related compounds 

MEIH800101 Empirical studies of hydrophobicity. 1. Effect of protein size on the   hydrophobic behavior of amino acids 

DESM900102 A critical evaluation of the hydropathy profile of membrane proteins 

TSAJ990101 The packing density in proteins: standard radii and volumes 

QIAN880133 Predicting the secondary structure of globular proteins using neural network   models 

RACS820103 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

AURR980107 Helix capping 

PALJ810102 Protein secondary structure 

ROBB790101 Refined models for computer simulation of protein folding: Applications to   the study of conserved 
secondary structure and flexible hinge points during    the folding of pancreatic trypsin inhibitor 

MONM990201 Turns in transmembrane helices: determination of the minimal length of a   "helical hairpin" and derivation 
of a fine-grained turn propensity scale 

WILM950103 Physicochemical basis of amino acid hydrophobicity scales: evaluation of four   new scales of amino acid 
hydrophobicity coefficients derived from RP-HPLC of    peptides 

PONJ960101 Deviations from standard atomic volumes as a quality measure for protein   crystal structures 

GOLD730101 Contribution of the free energy of mixing of hydrophobic side chains to the   stability of the tertiary structure 

ROBB760109 Conformational properties of amino acid residues in globular proteins 

DAYM780101 Composition of proteins 

QIAN880122 Predicting the secondary structure of globular proteins using neural network   models 

ZIMJ680103 The characterization of amino acid sequences in proteins by statistical   methods 

AVBF000102 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

GUYH850101 Amino acid side-chain partition energies and distribution of residues in   soluble proteins 

RACS820104 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

GEIM800110 Amino acid preferences for secondary structure vary with protein class 

OOBM850105 Optimization of amino acid parameters for correspondence of sequence to   tertiary structures of proteuins 

CHOP780205 Prediction of the secondary structure of proteins from their amino acid   sequence 

NAKH900111 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

NAGK730101 Local analysis of the mechanism of protein folding. I. Prediction of helices,   loops, and beta-structures from 
primary structure 

BASU050103 Principal eigenvector of contact matrices and hydrophobicity profiles in   prote 

QIAN880106 Predicting the secondary structure of globular proteins using neural network   models 

RADA880101 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

MUNV940103 Intrinsic secondary structure propensities of the amino acids, using   statistical phi-psi matrices: comparison 
with experimental scales 

KUMS000103 Factors enhancing protein thermostability 

PONP800107 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

QIAN880109 Predicting the secondary structure of globular proteins using neural network   models 

ZIMJ680101 The characterization of amino acid sequences in proteins by statistical   methods 

DAWD720101   
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KRIW710101 Local interactions as structure determinant for globular proteins 

ROSG850102 Hydrophobicity of amino acid residues in globular proteins 

LIFS790103 Antiparallel and parallel beta-strands differ in amino acid residue   preference 

ARGP820103 Structural prediction of membrane-bound proteins 

HUTJ700102 Heat capacities, absolute entropies, and entropies of formation of amino   acids and related compounds 

LIFS790102 Antiparallel and parallel beta-strands differ in amino acid residue   preference 

NAKH920103 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

MEEJ800102 Prediction of peptide retention times in high-pressure liquid chromatography   on the basis of amino acid 
composition 

QIAN880107 Predicting the secondary structure of globular proteins using neural network   models 

QIAN880132 Predicting the secondary structure of globular proteins using neural network   models 

FAUJ830101 Hydrophobic parameters pi of amino-acid side chains from the partitioning of   N-acetyl-amino-acid amides 

LEVM760102 A simplified representation of protein conformations for rapid simulation of   protein folfing 

QIAN880103 Predicting the secondary structure of globular proteins using neural network   models 

CORJ870108 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

PALJ810112 Protein secondary structure 

QIAN880126 Predicting the secondary structure of globular proteins using neural network   models 

WERD780103 Influence of water on protein structure. An analysis of the preferences of   amino acid residues for the 
inside or outside and for specific conformations    in a protein molecule 

BUNA790101 1H-nmr parameters of the common amino acid residues measured in aqueous   solutions of the linear 
tetrapeptides H-Gly-Gly-X-L-Ala-OH 

WEBA780101 Genetic code correlations: Amino acids and their anticodon nucleotides 

ISOY800108 Characterization of multiple bends in proteins 

GUYH850105 Amino acid side-chain partition energies and distribution of residues in   soluble proteins 

Cluster 2 
KHAG800101 The Kerr effect of amino acids in water 
MEIH800102 Empirical studies of hydrophobicity. 1. Effect of protein size on the   hydrophobic behavior of amino acids 

NAKH920102 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

AURR980113 Helix capping 

LIFS790101 Antiparallel and parallel beta-strands differ in amino acid residue   preference 

GEIM800109 Amino acid preferences for secondary structure vary with protein class 

NAKH900108 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

BEGF750103 Une methode statistique simple de prediction des conformations proteiques 

CHAM820102 The structural dependence of amino acid hydrophobicity parameters 

CHOC750101 Structural invariants in protein folding 

FAUJ880110 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

GRAR740102 Amino acid difference formula to help explain protein evolution 

MUNV940101 Intrinsic secondary structure propensities of the amino acids, using   statistical phi-psi matrices: comparison 
with experimental scales 

ROSM880104 Hydrophilicity of Polar Amino Acid Side-chains is Markedly Reduced by   Flanking Peptide Bonds 

FINA910102 Physical reasons for secondary structure stability: alpha-helices in short   peptides 

FAUJ880112 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

CEDJ970101 Relation between amino acid composition and cellular location of proteins 

AVBF000101 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

QIAN880113 Predicting the secondary structure of globular proteins using neural network   models 

WARP780101 A survey of amino acid side-chain interactions in 21 proteins 

CORJ870105 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

NADH010105 Prediction of protein surface accessibility with information theory 

PALJ810111 Protein secondary structure 

TANS770101 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

CHAM830107 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

RICJ880117 Amino acid preferences for specific locations at the ends of alpha helices 

CHOP780201 Prediction of the secondary structure of proteins from their amino acid   sequence 

CORJ870101 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

MEEJ810102 Factors affecting retention and resolution of peptides in high-performance   liquid chromatography 

FAUJ880105 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

RICJ880110 Amino acid preferences for specific locations at the ends of alpha helices 

QIAN880134 Predicting the secondary structure of globular proteins using neural network   models 

QIAN880124 Predicting the secondary structure of globular proteins using neural network   models 

WOLR790101 Water, protein folding, and the genetic code 

FAUJ880104 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

SWER830101 Correlation of sequence hydrophobicities measures similarity in   three-dimensional protein structure 

NADH010101 Prediction of protein surface accessibility with information theory 
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FAUJ880107 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

AURR980114 Helix capping 

PALJ810103 Protein secondary structure 

QIAN880116 Predicting the secondary structure of globular proteins using neural network   models 

NAKH900112 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

HARY940101 Volume changes on protein folding 

MAXF760106 Status of empirical methods for the prediction of protein backbone topography 

PALJ810113 Protein secondary structure 

CIDH920105 Hydrophobicity and structural classes in proteins 

COHE430101   

KHAG800101 The Kerr effect of amino acids in water 

KRIW790102 Local interactions as a structure determinant for protein molecules: II 

BUNA790103 1H-nmr parameters of the common amino acid residues measured in aqueous   solutions of the linear 
tetrapeptides H-Gly-Gly-X-L-Ala-OH 

CHAM830106 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

CHOP780215 Prediction of the secondary structure of proteins from their amino acid   sequence 

RACS820101 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

PALJ810110 Protein secondary structure 

AURR980116 Helix capping 

NAGK730103 Local analysis of the mechanism of protein folding. I. Prediction of helices,   loops, and beta-structures from 
primary structure 

NAKH900101 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

QIAN880118 Predicting the secondary structure of globular proteins using neural network   models 

ZHOH040102 Quantifying the effect of burial of amino acid residues on protein stability 

JANJ790102 Surface and inside volumes in globular proteins 

ONEK900102 A thermodynamic scale for the helix-forming tendencies of the commonly   occurring amino acids 

CORJ870104 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

QIAN880104 Predicting the secondary structure of globular proteins using neural network   models 

ZASB820101 Measurement of relative hydrophobicity of amino acid side-chains by partition   in an aqueous two-phase 
polymeric system: Hydrophobicity scale for non-polar    and ionogenic side-chains 

FASG760102   

YANJ020101 GEM: a Gaussian Evolutionary Method for predicting protein side-chain   conformations 

RICJ880103 Amino acid preferences for specific locations at the ends of alpha helices 

AURR980119 Helix capping 

Cluster 3 
AURR980118 Helix capping 
PONP930101 Hydrophobic characteristics of folded proteins 

EISD860103 Solvation energy in protein folding and binding 

FINA770101 Theory of protein molecule self-organization. II. A comparison of calculated   thermodynamic parameters of 
local secondary structures with experiments 

GEOR030102 An analysis of protein domain linkers: their classification and role in   protein folding 

NOZY710101 The solubility of amino acids and two glycine peptides in aqueous ethanol and   dioxane solutions 

ROBB760108 Conformational properties of amino acid residues in globular proteins 

CHOP780204 Prediction of the secondary structure of proteins from their amino acid   sequence 

FUKS010111 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

CHAM830101 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

GEOR030101 An analysis of protein domain linkers: their classification and role in   protein folding 

MEIH800103 Empirical studies of hydrophobicity. 1. Effect of protein size on the   hydrophobic behavior of amino acids 

RADA880103 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

VINM940102 Accuracy of protein flexibility predictions 

NAKH900107 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

PALJ810108 Protein secondary structure 

OLSK800101 Internal residue criteria for predicting three-dimensional protein structures 

JOND920102 The rapid generation of mutation data matrices from protein sequences 

QIAN880112 Predicting the secondary structure of globular proteins using neural network   models 

MUNV940105 Intrinsic secondary structure propensities of the amino acids, using   statistical phi-psi matrices: comparison 
with experimental scales 

KIDA850101 Statistical Analysis of the Physical Properties of the 20 Naturally Occuring   Amino Acids 

SUEM840102 Helix-coil stability constants for the naturally occurring amino acids in   water. 22. Histidine parameters from 
random    poly{(hydroxybutyl)glutamine-co-L-histidine} 

KANM800104 Local hydrophobicity stabilizes secondary structures in proteins 

AURR980111 Helix capping 

OOBM770103 An analysis of non-bonded energy of proteins 

ISOY800103 Characterization of multiple bends in proteins 
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BROC820101 The isolation of peptides by high-performance liquid chromatography using   predicted elution positions 

JUKT750101 Amino acid composition of proteins: Selection against the genetic code 

ROBB760102 Conformational properties of amino acid residues in globular proteins 

AURR980118 Helix capping 

ROSM880105 Hydrophilicity of Polar Amino Acid Side-chains is Markedly Reduced by   Flanking Peptide Bonds 

MCMT640101   

SNEP660101 Relations between chemical structure and biological activity in peptides 

GEIM800106 Amino acid preferences for secondary structure vary with protein class 

RACS820107 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

RADA880107 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

KARP850102 Prediction of chain flexibility in proteins 

AURR980115 Helix capping 

OOBM850104 Optimization of amino acid parameters for correspondence of sequence to   tertiary structures of proteuins 

VASM830103 Computed conformational states of the 20 naturally occurring amino acid   residues and of the prototype 
residue alpha-aminobutyric acid 

BURA740102 Analysis of conformations of amino acid residues and prediction of backbone   topography in proteins 

PRAM820101 Shape and surface features of globular proteins 

RADA880108 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

QIAN880119 Predicting the secondary structure of globular proteins using neural network   models 

GEOR030106 An analysis of protein domain linkers: their classification and role in   protein folding 

WOLR810101 Affinties of amino acid side chains for solvent water 

FODM020101 Occurrence, conformational features and amino acid propensities for the   pi-helix 

PALJ810116 Protein secondary structure 

QIAN880127 Predicting the secondary structure of globular proteins using neural network   models 

PARJ860101 New hydrophilicity scale derived from high-performance liquid chromatography   peptide retention data: 
Correlation of predicted surface residues with    antigencity and x-ray-derived accessible sites 

AURR980120 Helix capping 

KOEP990102 Structure-based conformational preferences of amino acids 

QIAN880108 Predicting the secondary structure of globular proteins using neural network   models 

QIAN880123 Predicting the secondary structure of globular proteins using neural network   models 

BIGC670101 On the average hydrophobicity of proteins and the relation between it and   protein structure 

NAKH920108 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

BAEK050101 Prediction of protein inter-domain linker regions by a hidden Markov model 

RICJ880105 Amino acid preferences for specific locations at the ends of alpha helices 

WERD780102 Influence of water on protein structure. An analysis of the preferences of   amino acid residues for the 
inside or outside and for specific conformations    in a protein molecule 

Cluster 4 
RACS820102 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of 

individual amino acids 
MIYS850101 Estimation of effective interresidue contact energies from protein crystal   structures: Quasi-chemical 

approximation 

RACS820102 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

CASG920101 Structure-derived Hydrophobic Potential. Hydrophobic Potential Derived from   X-ray Structures of Globular 
Proteins is able to Identify Native Folds 

FASG760101   

ROBB760110 Conformational properties of amino acid residues in globular proteins 

CORJ870102 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

CHOP780203 Prediction of the secondary structure of proteins from their amino acid   sequence 

EISD840101 Three-dimensional structure of membrane and surface proteins 

BLAM930101 Structural basis of amino acid alpha helix propensity 

ZHOH040103 Quantifying the effect of burial of amino acid residues on protein stability 

KANM800101 Local hydrophobicity stabilizes secondary structures in proteins 

ZIMJ680105 The characterization of amino acid sequences in proteins by statistical   methods 

DESM900101 A critical evaluation of the hydropathy profile of membrane proteins 

GOLD730102 Contribution of the free energy of mixing of hydrophobic side chains to the   stability of the tertiary structure 

RICJ880114 Amino acid preferences for specific locations at the ends of alpha helices 

FASG890101 Prediction of Protein Structure and the Principles of Protein Conformation 

PALJ810104 Protein secondary structure 

NAKH900106 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

LEWP710101 Folding of polypeptide chains in proteins: A proposed mechanism for folding 

FUKS010107 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 
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CIDH920101 Hydrophobicity and structural classes in proteins 

CHOP780206 Prediction of the secondary structure of proteins from their amino acid   sequence 

YUTK870101 Dependence of conformational stability on hydrophobicity of the amino acid   residue in a series of variant 
proteins substituted at a unique position of    tryptophan synthase alpha subunit 

CEDJ970104 Relation between amino acid composition and cellular location of proteins 

WILM950102 Physicochemical basis of amino acid hydrophobicity scales: evaluation of four   new scales of amino acid 
hydrophobicity coefficients derived from RP-HPLC of    peptides 

QIAN880131 Predicting the secondary structure of globular proteins using neural network   models 

CHAM810101 Protein folding and the genetic code: An alternative quantitative model 

MAXF760102 Status of empirical methods for the prediction of protein backbone topography 

SUYM030101 DomCut: Prediction of inter-domain linker regions in amino acid sequences 

JOND750102 Amino acid properties and side-chain orientation in proteins: A cross   correlation approach 

QIAN880139 Predicting the secondary structure of globular proteins using neural network   models 

Cluster 5 
TANS770108 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-

sequence copolymers of amino acids 
WOEC730101 Evolution of genetic code 

RADA880106 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

GEOR030104 An analysis of protein domain linkers: their classification and role in   protein folding 

VINM940103 Accuracy of protein flexibility predictions 

NAKH900103 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

PALJ810101 Protein secondary structure 

BULH740102 Surface tension of amino acid solutions: A hydrophobicity scale of the amino   acid residues 

FAUJ880109 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

VASM830102 Computed conformational states of the 20 naturally occurring amino acid   residues and of the prototype 
residue alpha-aminobutyric acid 

PALJ810109 Protein secondary structure 

PONP800101 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

TANS770108 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

GUOD860101 Prediction of peptide retention times in reversed-phase high-performance   liquid chromatography 

FINA910103 Physical reasons for secondary structure stability: alpha-helices in short   peptides 

LEVM780103 Conformational preferences of amino acids in globular proteins 

CHOC760104 The nature of the accessible and buried surfaces in proteins 

NAKH920101 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

GRAR740101 Amino acid difference formula to help explain protein evolution 

AURR980117 Helix capping 

RACS770102 Hydrophobicity, hydrophilicity, and the radial and orientational   distributions of residues in native proteins 

GEIM800105 Amino acid preferences for secondary structure vary with protein class 

KANM800103 Local hydrophobicity stabilizes secondary structures in proteins 

BASU050102 Principal eigenvector of contact matrices and hydrophobicity profiles in   prote 

CHOP780101 Empirical predictions of protein conformation 

AVBF000107 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

TSAJ990102 The packing density in proteins: standard radii and volumes 

KUHL950101 Atomic and residue hydrophilicity in the context of folded protein structures 

MIYS990104 Self-consistent estimation of inter-residue protein contact energies based on   an equilibrium mixture 
approximation of residues 

CHAM830108 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

VENT840101 Hydrophobicity parameters and the bitter taste of L-amino acids 

AURR980109 Helix capping 

PARS000102 Protein thermal stability: insights from atomic displacement parameters (B   values) 

RACS820114 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

JURD980101 Protein transmembrane structure: recognition and prediction by using   hydrophobicity scales through 
preference functions 

GEIM800102 Amino acid preferences for secondary structure vary with protein class 

RACS820111 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

CHOP780211 Prediction of the secondary structure of proteins from their amino acid   sequence 

NAKH920106 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

LEVM760105 A simplified representation of protein conformations for rapid simulation of   protein folfing 

GEOR030107 An analysis of protein domain linkers: their classification and role in   protein folding 

NADH010104 Prediction of protein surface accessibility with information theory 
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PRAM820102 Shape and surface features of globular proteins 

AVBF000108 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

FUKS010103 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

GEIM800101 Amino acid preferences for secondary structure vary with protein class 

VHEG790101 Trans-membrane translocation of proteins: The direct transfer model 

QIAN880120 Predicting the secondary structure of globular proteins using neural network   models 

JOND750101 Amino acid properties and side-chain orientation in proteins: A cross   correlation approach 

WERD780104 Influence of water on protein structure. An analysis of the preferences of   amino acid residues for the 
inside or outside and for specific conformations    in a protein molecule 

RICJ880109 Amino acid preferences for specific locations at the ends of alpha helices 

FUKS010109 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

CORJ870107 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

ROBB760113 Conformational properties of amino acid residues in globular proteins 

FUKS010102 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

CRAJ730102 The reverse turn as a polypeptide conformation in globular proteins 

CHOC760102 The nature of the accessible and buried surfaces in proteins 

LEVM760107 A simplified representation of protein conformations for rapid simulation of   protein folfing 

PUNT030102 A knowledge-based scale for amino acid membrane propensity 

CHOP780216 Prediction of the secondary structure of proteins from their amino acid   sequence 

EISD860102 Solvation energy in protein folding and binding 

PALJ810107 Protein secondary structure 

BULH740101 Surface tension of amino acid solutions: A hydrophobicity scale of the amino   acid residues 

TANS770102 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

JANJ790101 Surface and inside volumes in globular proteins 

TANS770109 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

ONEK900101 A thermodynamic scale for the helix-forming tendencies of the commonly   occurring amino acids 

Cluster 6 
YUTK870104 Dependence of conformational stability on hydrophobicity of the amino acid   residue in a series of 

variant proteins substituted at a unique position of    tryptophan synthase alpha subunit 
NISK800101 Prediction of the surface-interior diagram of globular proteins by an   empirical method 

RICJ880112 Amino acid preferences for specific locations at the ends of alpha helices 

AVBF000106 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

FUKS010110 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

PUNT030101 A knowledge-based scale for amino acid membrane propensity 

QIAN880128 Predicting the secondary structure of globular proteins using neural network   models 

KIMC930101 Thermodynamic beta-sheet propensities measured using a zinc-finger host   peptide 

PTIO830102 Theory of protein secondary structure and algorithm of its prediction 

CHAM820101 The structural dependence of amino acid hydrophobicity parameters 

ISOY800106 Characterization of multiple bends in proteins 

BEGF750101 Une methode statistique simple de prediction des conformations proteiques 

HOPA770101   

NAKH900102 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

OOBM850101 Optimization of amino acid parameters for correspondence of sequence to   tertiary structures of proteuins 

BIOV880102 Secondary structure prediction: combination of three different methods 

CHAM830103 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

CHAM830105 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

LEVM780104 Conformational preferences of amino acids in globular proteins 

QIAN880121 Predicting the secondary structure of globular proteins using neural network   models 

CHOP780210 Prediction of the secondary structure of proteins from their amino acid   sequence 

NAKH900104 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

GEOR030109 An analysis of protein domain linkers: their classification and role in   protein folding 

KRIW790101 Local interactions as a structure determinant for protein molecules: II 

CHOP780208 Prediction of the secondary structure of proteins from their amino acid   sequence 

PONP800105 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

LEVM760103 A simplified representation of protein conformations for rapid simulation of   protein folfing 

FUKS010112 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

ISOY800102 Characterization of multiple bends in proteins 

ROBB760103 Conformational properties of amino acid residues in globular proteins 

NAKH900110 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

TANS770105 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

FAUJ880106 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

NADH010107 Prediction of protein surface accessibility with information theory 

GEIM800103 Amino acid preferences for secondary structure vary with protein class 
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BASU050101 Principal eigenvector of contact matrices and hydrophobicity profiles in   prote 

LEVM760101 A simplified representation of protein conformations for rapid simulation of   protein folfing 

RACS820109 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

NAKH900109 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

TANS770104 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

ROSG850101 Hydrophobicity of amino acid residues in globular proteins 

CHOC760103 The nature of the accessible and buried surfaces in proteins 

AURR980110 Helix capping 

MIYS990105 Self-consistent estimation of inter-residue protein contact energies based on   an equilibrium mixture 
approximation of residues 

LEVM780106 Conformational preferences of amino acids in globular proteins 

OOBM770104 An analysis of non-bonded energy of proteins 

RADA880104 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

QIAN880130 Predicting the secondary structure of globular proteins using neural network   models 

TANS770103 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

ROBB760106 Conformational properties of amino acid residues in globular proteins 

ROBB760107 Conformational properties of amino acid residues in globular proteins 

BROC820102 The isolation of peptides by high-performance liquid chromatography using   predicted elution positions 

ROBB760111 Conformational properties of amino acid residues in globular proteins 

AURR980105 Helix capping 

HUTJ700101 Heat capacities, absolute entropies, and entropies of formation of amino   acids and related compounds 

FAUJ880113 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

JANJ780101 Conformation of amino acid side-chains in proteins 

GUYH850102 Amino acid side-chain partition energies and distribution of residues in   soluble proteins 

PRAM820103 Shape and surface features of globular proteins 

WILM950101 Physicochemical basis of amino acid hydrophobicity scales: evaluation of four   new scales of amino acid 
hydrophobicity coefficients derived from RP-HPLC of    peptides 

FAUJ880102 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

DAYM780201 A model of evolutionary change in proteins 

ISOY800107 Characterization of multiple bends in proteins 

BURA740101 Analysis of conformations of amino acid residues and prediction of backbone   topography in proteins 

BLAS910101 Development of Hydrophobicity Parameters to Analyze Proteins Which Bear Post-   or Cotranslational 
Modifications 

RADA880105 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

ZIMJ680102 The characterization of amino acid sequences in proteins by statistical   methods 

RACS770103 Hydrophobicity, hydrophilicity, and the radial and orientational   distributions of residues in native proteins 

AVBF000104 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

CHOP780207 Prediction of the secondary structure of proteins from their amino acid   sequence 

CEDJ970102 Relation between amino acid composition and cellular location of proteins 

MANP780101 Hydrophobic character of amino acid residues in globular proteins 

WOLS870103 Principal property values for six non-natural amino acids and their   application to a structure-activity 
relationship for oxytocin peptide    analogues 

KARP850101 Prediction of chain flexibility in proteins 

YUTK870104 Dependence of conformational stability on hydrophobicity of the amino acid   residue in a series of variant 
proteins substituted at a unique position of    tryptophan synthase alpha subunit 

ROBB760104 Conformational properties of amino acid residues in globular proteins 

FUKS010108 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

MAXF760105 Status of empirical methods for the prediction of protein backbone topography 

VINM940104 Accuracy of protein flexibility predictions 

CRAJ730103 The reverse turn as a polypeptide conformation in globular proteins 

OOBM850102 Optimization of amino acid parameters for correspondence of sequence to   tertiary structures of proteuins 

Cluster 7 
RICJ880102 Amino acid preferences for specific locations at the ends of alpha helices 
BIOV880101 Secondary structure prediction: combination of three different methods 

KYTJ820101 A simple method for displaying the hydropathic character of a protein 

RACS820108 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

RICJ880102 Amino acid preferences for specific locations at the ends of alpha helices 

ZHOH040101 Quantifying the effect of burial of amino acid residues on protein stability 

CIDH920103 Hydrophobicity and structural classes in proteins 

PRAM900104 The distribution of physical, chemical and conformational properties in   signal and nascent peptides 
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CHAM830102 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

LAWE840101 A simple experimental model for hydrophobic interactions in proteins 

LEVM780105 Conformational preferences of amino acids in globular proteins 

ARGP820102 Structural prediction of membrane-bound proteins 

FAUJ880103 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

CORJ870106 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

LEVM780101 Conformational preferences of amino acids in globular proteins 

NAKH900105 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

GARJ730101 Coefficients de partage d'aminoacides, nucleobases, nucleosides et   nucleotides dans un systeme solvant 
salin 

AURR980103 Helix capping 

ARGP820101 Structural prediction of membrane-bound proteins 

QIAN880136 Predicting the secondary structure of globular proteins using neural network   models 

OOBM770101 An analysis of non-bonded energy of proteins 

AURR980108 Helix capping 

KUMS000102 Factors enhancing protein thermostability 

NAGK730102 Local analysis of the mechanism of protein folding. I. Prediction of helices,   loops, and beta-structures from 
primary structure 

QIAN880101 Predicting the secondary structure of globular proteins using neural network   models 

RACS820105 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

RICJ880106 Amino acid preferences for specific locations at the ends of alpha helices 

ROBB760112 Conformational properties of amino acid residues in globular proteins 

FAUJ880108 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

FAUJ880111 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

Cluster 8 
QIAN880117 Predicting the secondary structure of globular proteins using neural network   models 
CIDH920104 Hydrophobicity and structural classes in proteins 

FASG760104   

QIAN880125 Predicting the secondary structure of globular proteins using neural network   models 

QIAN880117 Predicting the secondary structure of globular proteins using neural network   models 

MONM990101 A turn propensity scale for transmembrane helices 

TAKK010101 A new scale for side-chain contribution to protein stability based on the   empirical stability analysis of 
mutant proteins 

PALJ810115 Protein secondary structure 

NAKH900113 Distinct character in hydrophobicity of amino acid composition of   mitochondrial proteins 

AURR980106 Helix capping 

OOBM770102 An analysis of non-bonded energy of proteins 

QIAN880114 Predicting the secondary structure of globular proteins using neural network   models 

CRAJ730101 The reverse turn as a polypeptide conformation in globular proteins 

LEVM780102 Conformational preferences of amino acids in globular proteins 

PTIO830101 Theory of protein secondary structure and algorithm of its prediction 

COSI940101 Macromolecular bioactivity: is it resonant interaction between   macromolecules?--Theory and applications 

RACS820106 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

FUKS010104 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

PONP800103 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

KOEP990101 Structure-based conformational preferences of amino acids 

TANS770110 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

YUTK870103 Dependence of conformational stability on hydrophobicity of the amino acid   residue in a series of variant 
proteins substituted at a unique position of    tryptophan synthase alpha subunit 

WIMW960101 Experimentally determined hydrophobicity scale for proteins at membrane   interfaces 

GEOR030103 An analysis of protein domain linkers: their classification and role in   protein folding 

KANM800102 Local hydrophobicity stabilizes secondary structures in proteins 

MAXF760101 Status of empirical methods for the prediction of protein backbone topography 

CHOP780213 Prediction of the secondary structure of proteins from their amino acid   sequence 

GEOR030105 An analysis of protein domain linkers: their classification and role in   protein folding 

LEVM760106 A simplified representation of protein conformations for rapid simulation of   protein folfing 

AURR980101 Helix capping 

FUKS010106 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

FINA910104 Physical reasons for secondary structure stability: alpha-helices in short   peptides 

RACS770101 Hydrophobicity, hydrophilicity, and the radial and orientational   distributions of residues in native proteins 

ISOY800105 Characterization of multiple bends in proteins 

CEDJ970105 Relation between amino acid composition and cellular location of proteins 

PRAM900101 The distribution of physical, chemical and conformational properties in   signal and nascent peptides 
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QIAN880110 Predicting the secondary structure of globular proteins using neural network   models 

MIYS990102 Self-consistent estimation of inter-residue protein contact energies based on   an equilibrium mixture 
approximation of residues 

RADA880102 Comparing the polarities of the amino acids: Side-chain distribution   coefficients between the vapor phase, 
cyclohexane, 1-octanol, and neutral    aqueous solution 

GEIM800104 Amino acid preferences for secondary structure vary with protein class 

MAXF760103 Status of empirical methods for the prediction of protein backbone topography 

SUEM840101 Helix-coil stability constants for the naturally occurring amino acids in   water. 22. Histidine parameters from 
random    poly{(hydroxybutyl)glutamine-co-L-histidine} 

JANJ780102 Conformation of amino acid side-chains in proteins 

JUNJ780101 The genetic code as a periodic table 

QIAN880102 Predicting the secondary structure of globular proteins using neural network   models 

ZIMJ680104 The characterization of amino acid sequences in proteins by statistical   methods 

VINM940101 Accuracy of protein flexibility predictions 

CEDJ970103 Relation between amino acid composition and cellular location of proteins 

QIAN880135 Predicting the secondary structure of globular proteins using neural network   models 

CHOC760101 The nature of the accessible and buried surfaces in proteins 

COWR900101 Hydrophobicity indices for amino acid residues as determined by   high-performance liquid chromatography 

Cluster 9 
QIAN880138 Predicting the secondary structure of globular proteins using neural network   models 
NISK860101 Radial locations of amino acid residues in a globular protein: Correlation   with the sequence 

EISD860101 Solvation energy in protein folding and binding 

ISOY800101 Characterization of multiple bends in proteins 

ROSM880103 Hydrophilicity of polar amino acid side-chains is markedly reduced by   flanking peptide bonds 

NADH010106 Prediction of protein surface accessibility with information theory 

AVBF000109 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

GRAR740103 Amino acid difference formula to help explain protein evolution 

NAKH920105 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

ROBB760105 Conformational properties of amino acid residues in globular proteins 

BHAR880101 Positional flexibilities of amino acid residues in globular proteins 

KUMS000104 Factors enhancing protein thermostability 

ISOY800104 Characterization of multiple bends in proteins 

SIMZ760101   

FINA910101 Physical reasons for secondary structure stability: alpha-helices in short   peptides 

LEVM760104 A simplified representation of protein conformations for rapid simulation of   protein folfing 

QIAN880138 Predicting the secondary structure of globular proteins using neural network   models 

GUYH850104 Amino acid side-chain partition energies and distribution of residues in   soluble proteins 

VELV850101 Is it possible to analyze DNA and protein sequences by the method of digital   signal processing? 

NADH010103 Prediction of protein surface accessibility with information theory 

QIAN880111 Predicting the secondary structure of globular proteins using neural network   models 

RICJ880115 Amino acid preferences for specific locations at the ends of alpha helices 

GUYH850103 Amino acid side-chain partition energies and distribution of residues in   soluble proteins 

PALJ810105 Protein secondary structure 

JOND920101 The rapid generation of mutation data matrices from protein sequences 

JACR890101 The nature of the hydrophobic bonding of small peptides at the bilayer   interface: implications for the 
insertion of transbilayer helices 

PLIV810101 Partition coefficients of amino acids and hydrophobic parameters pi of their   side-chains as measured by 
thin-layer chromatography 

GEIM800107 Amino acid preferences for secondary structure vary with protein class 

NAKH920104 The amino acid composition is different between the cytoplasmic and   extracellular sides in membrane 
proteins 

GEOR030108 An analysis of protein domain linkers: their classification and role in   protein folding 

PALJ810114 Protein secondary structure 

SNEP660103 Relations between chemical structure and biological activity in peptides 

SNEP660102 Relations between chemical structure and biological activity in peptides 

SNEP660104 Relations between chemical structure and biological activity in peptides 

CORJ870103 Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic   Structures in Proteins 

CHOP780212 Prediction of the secondary structure of proteins from their amino acid   sequence 

RICJ880113 Amino acid preferences for specific locations at the ends of alpha helices 

OOBM770105 An analysis of non-bonded energy of proteins 

AURR980102 Helix capping 

GEIM800111 Amino acid preferences for secondary structure vary with protein class 

HOPT810101 Prediction of protein antigenic determinants from amino acid sequecces 

RACS820113 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 
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FAUJ880101 Amino acid side chain parameters for correlation studies in biology and   pharmacology 

PONP800104 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

PRAM900102 The distribution of physical, chemical and conformational properties in   signal and nascent peptides 

Cluster 10 
KLEP840101 Prediction of protein function from sequence properties: Discriminant   analysis of a data base 
WERD780101 Influence of water on protein structure. An analysis of the preferences of   amino acid residues for the 

inside or outside and for specific conformations    in a protein molecule 

BEGF750102 Une methode statistique simple de prediction des conformations proteiques 

KUMS000101 Factors enhancing protein thermostability 

ROSM880101 Hydrophilicity of polar amino acid side-chains is markedly reduced by   flanking peptide bonds 

MUNV940104 Intrinsic secondary structure propensities of the amino acids, using   statistical phi-psi matrices: comparison 
with experimental scales 

GEIM800108 Amino acid preferences for secondary structure vary with protein class 

NADH010102 Prediction of protein surface accessibility with information theory 

QIAN880129 Predicting the secondary structure of globular proteins using neural network   models 

RICJ880104 Amino acid preferences for specific locations at the ends of alpha helices 

CIDH920102 Hydrophobicity and structural classes in proteins 

PRAM900103 The distribution of physical, chemical and conformational properties in   signal and nascent peptides 

RICJ880101 Amino acid preferences for specific locations at the ends of alpha helices 

OOBM850103 Optimization of amino acid parameters for correspondence of sequence to   tertiary structures of proteuins 

AURR980112 Helix capping 

RACS820112 Differential geometry and polymer conformation. 4. Conformational and   nucleation properties of individual 
amino acids 

DIGM050101 A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi:   barophily in the 
physicochemical properties of amino acids and in the genetic    code 

FASG760105   

MAXF760104 Status of empirical methods for the prediction of protein backbone topography 

FASG760103   

PONP800106 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

MIYS990101 Self-consistent estimation of inter-residue protein contact energies based on   an equilibrium mixture 
approximation of residues 

MEEJ800101 Prediction of peptide retention times in high-pressure liquid chromatography   on the basis of amino acid 
composition 

QIAN880105 Predicting the secondary structure of globular proteins using neural network   models 

PONP800102 Hydrophobic packing and spatial arrangement of amino acid residues in   globular proteins 

CHAM830104 The dependence of the Chou-Fasman parameters on amino acid side chain   structure 

KLEP840101 Prediction of protein function from sequence properties: Discriminant   analysis of a data base 

MEEJ810101 Factors affecting retention and resolution of peptides in high-performance   liquid chromatography 

PALJ810106 Protein secondary structure 

FUKS010101 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

KRIW790103 Local interactions as a structure determinant for protein molecules: II 

ENGD860101 Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane   Proteins 

BUNA790102 1H-nmr parameters of the common amino acid residues measured in aqueous   solutions of the linear 
tetrapeptides H-Gly-Gly-X-L-Ala-OH 

QIAN880115 Predicting the secondary structure of globular proteins using neural network   models 

QIAN880137 Predicting the secondary structure of globular proteins using neural network   models 

TANS770107 Statistical mechanical treatment of protein conformation. 5. A multiphasic   model for specific-sequence 
copolymers of amino acids 

CHOP780202 Prediction of the secondary structure of proteins from their amino acid   sequence 

RICJ880108 Amino acid preferences for specific locations at the ends of alpha helices 

RICJ880111 Amino acid preferences for specific locations at the ends of alpha helices 

FUKS010105 Protein surface amino acid compositions distinctively differ between   thermophilic and mesophilic bacteria 

AVBF000105 Amino acid conformational preferences and solvation of polar backbone atoms   in peptides and proteins 

Appendix 2: Clustered entries of the amino acid index database. The representatives of each 
cluster are displayed in bold lettering 
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