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1 Introduction

This dissertation consists of three papers sharing the objective to analyze how machine

learning (ML) methods can be useful to economists and econometricians in their pursuit

to understand causal mechanisms operating in the economy.1 Such causal knowledge

is essential when designing policies that help achieve societal goals. ML techniques are

increasingly applied in and adapted to practical policy settings. These settings share the

types of endogeneity problems that make actionable inference from data di�cult with

the domains that economics is occupied with. Thus, there are many potential synergies

between ML and economics that are surfacing on both the academic and policy-making

agendas. In the context of this dissertation, it is useful to make a distinction between

two points of interchange between the two �elds. First, ML can be used to improve or

extend widely-used identi�cation techniques in economics and, second, insights into causal

modeling from the ML community can be introduced as novel routes to identi�cation in

economics. The �rst paper of this dissertation falls in the former, the second and third

paper in the latter category. I brie�y introduce each in turn.

As machine learning methods excel at prediction tasks, much of the existing work

leverages this comparative advantage by either focusing on problems where a superior

prediction in itself is the objective (see Kleinberg et al., 2015) or where it serves as one

brick within a broader methodology. The latter is addressed here. Many techniques for

causal identi�cation in observational studies have an element of pure prediction. For ex-

ample, the superior predictive power of ML techniques can be employed in the �rst stage

of an instrumental variable regression (Hartford et al., 2016) or to estimate propensity

scores (Cannas and Arpino, 2019). Furthermore, regularization and systematic model se-

lection are gaining prominence in e.g. models for demand estimation and, more generally,

structural econometrics (Bajari et al., 2015). Systematic model selection is particularly

1The exact scope of the term `machine learning' is contentious. I use the term liberally denoting
all work on modeling data originating in the ML community, while acknowledging that many `machine
learning algorithms' are well-known and widely-used in economics; after all, ML textbooks often start with
a description of ordinary least squares regression. Whether the reader wants to categorize the literature
that I draw upon in this work as `machine learning,' `computer science,' `statistics,' or `philosophy' should
not distract from the contributions that go beyond these semantics.

1



Introduction 2

important in machine learning because over�tting is a common pitfall due to the �exi-

bility of the employed models, most evidently seen in deep neural networks (Goodfellow

et al., 2016). Though a priori unrelated to causal inference, Athey and Imbens (2016)

combine one such �exible modeling technique, the random forest (Breiman, 2001), with

the dominant conceptualization of causality in economics, namely the potential outcomes

framework (Rubin, 2005). They show how random forests are used for estimating het-

erogeneity of causal treatment e�ects in a data-driven manner. In the �rst paper of this

dissertation, we adapt the causal forest methodology proposed by Athey et al. (2019) to

estimate heterogeneous treatment e�ects in di�erence-in-di�erences studies and analyze

heterogeneous e�ects on wage growth of the 2015 introduction of the statutory minimum

wage in Germany.

The starting point for the second and third paper of this dissertation is the second point

of interchange. There is a tendency to argue that ML techniques are about �prediction

and prediction only" (Agrawal et al., 2017). See also Mullainathan and Spiess (2017)

who state that �machine learning revolves around the problem of prediction" (p. 88).

However, above and beyond the idea that superior prediction can be useful in causal

inference problems, developments in the ML community question this dictum: Techniques

to model causal relations and to identify them from observational data are emerging (for

a survey see Peters et al., 2017).

The literature on causality in the computer science community is pioneered by Pearl

(2009, the �rst edition of which was published in 2000), whose conceptualization is com-

monly referred to as the `graphical approach' to causality. I follow this nomenclature.

Pearl's work, along with the literature it spawned, is only paid scant attention by eco-

nomics. However, with the increased interest in applications of machine learning in eco-

nomics that Athey and Imbens (2016) epitomizes, interest in the work on causality origi-

nating in the computer science community seems to be surging as well. Guido Imbens, who

widely contributed to (and argues for) the rivaling potential outcomes framework, states

that Pearl's graphical approach to causality �has not had as much impact in economics

as it should have" (Imbens, 2019, pp. 1). This constitutes a change in attitude relative

to earlier claims that �economists have not felt that graphical models have much to o�er

them" (Imbens, 2014b, p. 376). An insightful overview of how the two approaches can

bene�t from an appreciation of each other's strengths is given in Bareinboim and Paul

(2019). In the graphical approach to causality, causal relations are represented in struc-

tural equation models, which are accompanied by graphical representations of the causal

links. Such representations are closely linked to the notion of structural invariance or the

autonomous nature of causal relations that is due to Frisch, Haavelmo and fellow Cowles

Commission members (Haavelmo, 1944, see Appendix 4.10.6 for more details).
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A central tenet of causal machine learning is that the observed joint distribution of

a number of random variables contains causal information in the form of such invariance

properties. This causal information can be exploited by appropriate statistical techniques.

In that sense, the causal machine learning literature o�ers novel pathways to causal under-

standing that are not yet exploited in economics. The originality of the second and third

paper lies in exploring the potential of these novel pathways: In the second paper, a test

for reverse causality that relies on the insight that imposing functional form assumptions

can help identify the causal direction between two observed variables is suggested. In the

third paper, a test for instrument validity is proposed, relying both on the notion that

causal relations are autonomous and on a method to quantify to which extent an observed

statistical relation describes autonomous, i.e. causal, mechanisms, which is introduced by

Janzing and Schölkopf (2018).



2 The GermanMinimumWage andWage

Growth: Heterogeneous Treatment Ef-

fects using Causal Forests

This chapter is based on joint work with Carsten Schröder, see Burauel and Schröder (2019). We thank

participants at the SOEP User Conference 2018, the 34th Annual Congress of the European Economic

Association 2019, the 6th PhD Workshop in Empirical Economics at Potsdam University, and the SOEP

Applied Panel Analysis Brownbag Seminar for their comments.

2.1 Introduction

A broad economic literature seeks to understand how public policies change socio-economic

outcomes. Standard micro-econometric workhorses to analyze such policy changes are

di�erence-in-di�erences and regression discontinuity designs. To better understand e�ect

heterogeneities, i.e. di�erences in policy-induced changes by population subgroups, ei-

ther models are estimated by subgroup, or incorporate interactions between treatment

and subgroup dummies. Both approaches incur problems of multiple hypothesis testing:

as the number of subgroups increases, the likelihood of erroneous inferences increases.

While statistical approaches to address multiple testing problems exist (e.g. Bonferroni or

Benjamini-Hochberg adjustments) and pre-analysis plans may help narrow the number of

potentially relevant subgroups, such plans are selective. Usually, they focus on a relatively

small number of groups, such that unexpected heterogeneities across groups that are de-

termined by more complex interactions of covariates remain unobserved. Speci�cally, we

show how previously found heterogeneities can turn out to be spurious when interactions

of covariates with the treatment indicator are taken into account.

The causal forest approach provides an alternative statistical framework. It allows

an evaluation of heterogeneous treatment e�ects for randomized control trials without

the need to specify pre-analysis plans (Athey and Imbens, 2016). A regression tree is

4



Heterogeneous Treatment E�ects of the German Minimum Wage 5

a popular machine learning algorithm that systematically splits the covariate space into

recursively smaller subsets and estimates the value of an individual's outcome Yi as the

mean outcome of those Yj with similar covariates. The estimation involves a parameter

that penalizes model complexity. Since this parameter and the structure of the tree are

estimated on independent subsamples, over�tting is avoided. Athey and Imbens (2016)

modify such regression trees to optimize for di�erences in treatment e�ects rather than to

maximize the mean squared predictive error. This paper relies upon the �exible moment-

based implementation provided by Athey et al. (2019). This paper relies upon Athey et al.

(2019), which is an extended and �exible moment-based implementation of the original

idea in Athey and Imbens (2016).

A fruitful area of application is the evaluation of the e�ects of minimum wages. Ef-

fect heterogeneities � for instance with respect to employment, working hours, and wage

changes � are expected in this context because of productivity di�erentials across groups

of employees and between regions or the ease with which an employer can track hourly

productivity. For instance, Ahlfeldt et al. (2018) analyze spatial heterogeneity of wage

convergence in a di�erence-in-di�erences setting using the 2015 German minimum wage

introduction as the institutional background. Bonin et al. (2018) use variation in regional

treatment intensity to identify a decline in marginal employment that is larger in regions

with high treatment intensity. In contrast, a decline in regular employment is not found.

Burauel et al. (2020) (which we henceforth refer to as B20) analyze heterogeneity in e�ects

on hourly wage growth for marginal and regularly employed as well as for East and West

Germany. Overall, the credibility of approaches that rely on ex ante de�nitions of spe-

ci�c subgroups is challenged by the multitude of possible sub-populations and interaction

e�ects of the grouping variables. We complement such approaches by adapting causal

forests to infer heterogeneity in treatment e�ects without an ex ante group categorization

in di�erence-in-di�erence settings. This allows an assessment of whether previously ob-

served heterogeneities are spurious and instead result from more complex interactions of

covariates.

Germany's 2015 minimum wage introduction at EUR 8.50 serves as our institutional

background. The case of Germany is particularly interesting because the introduction was

a high-impact labor-market intervention: almost all employees are eligible and the mini-

mum wage has a considerable bite (more than 10% of all eligible employees earned less than

it in the year prior to its introduction). By using the same data and treatment-control-

group design as a previous study, B20, we assess to what extent the e�ect heterogeneities

reported therein are driven by more complex underlying interactions of covariates. We

analyze heterogeneity in treatment e�ects associated with pre-reform characteristics and

employment situation of the eligible workers.
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B20 implement a di�erential trend-adjusted di�erence-in-di�erences design (DTADD).

In their setting, the inter-temporal changes in wages of a treatment group are compared

with the changes for a control group. Employees with wages below the minimum wage

in 2014 form the treatment group. De�ning a control group is not straightforward since

the minimum wage applies to all employees in principle. The authors address this issue

by de�ning employees with wages slightly above the minimum wage as control group.

Spillover e�ects are a challenge to this route to identi�cation since employees earning

slightly above the minimum wage cannot serve as control if their wages are indirectly

a�ected by the introduction of the minimum wage. That both employees and employers

might have a motivation to keep the wage structure constant thereby leading employers to

increase wages also for employees earning above EUR 8.50 is a potential reason for such

spillover e�ects. Though there is empirical evidence for such e�ects in the US (Brochu et

al., 2015; Neumark and Wascher, 2004), no such e�ects can be discerned in the context of

the 2015 minimum wage introduction in Germany (Caliendo et al., 2019). To avoid lagged

responses to the reform in the �rst months of 2015, the authors use wage growth over two

years, namely between 2014 and 2016, as the main outcome variable. The authors �nd

an intention-to-treat (ITT) e�ect of 6.5 percentage points of additional growth in hourly

wages that can be causally attributed to the minimum wage introduction.1 Regression by

subgroups suggest larger treatment e�ect for marginally relative to full-time employed as

well as for residents in East relative to West Germany. It is subject of the study to check

whether these results are spurious in the sense that they vanish after taking interactions

of other covariates into account.

We �rst replicate these estimations and then adapt the forest methodology proposed by

Athey et al. (2019) to study the extent of e�ect heterogeneities, paying particular attention

to the above reported heterogeneities across types of employment and regions of residence.

In sum, the forest methodology reveals substantial e�ect heterogeneities: subgroup-speci�c

conditional intention-to-treat e�ects (CITEs) range from about 1.5 percentage points to

about 13 percentage points. The nature of this heterogeneity is determined by complex

interdependencies of employer-employee characteristics, including �rm size, nature of the

employment contract, skill degree of the occupation etc. Our analysis reveals that pre-

viously reported higher treatment e�ects in East Germany turn out to be spurious after

interactions of employer-employee characteristics are taken into account, while higher ITT

for marginally employed do not.

Our �ne-grained information on CITEs is most interesting to policy makers as it can,

1They estimate an ITT, not an average treatment e�ect (ATE), since there is non-compliance; a consid-
erable part of the eligible population does not earn the minimum wage even after its o�cial introduction
(Burauel et al., 2018).
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for instance, be used to investigate whether those groups of employees whose wages were

lowest before the reform experienced the highest wage increases. Our analyses show that

this goal was only partially achieved and that not all eligible groups receive a lawful wage

following the minimum wage introduction.

The article is structured as follows. Section 2.2 provides some background on the

minimum wage reform in Germany and the data we use. Section 2.3 explains the causal

forest methodology and how we adapt it to the study at hand. Section 2.4 provides the

results. Section 4.9 concludes.

2.2 Application to evaluation of the minimum wage re-

form

2.2.1 Data and descriptive statistics

We use data from the German Socio-economic Panel (SOEP). The SOEP is a panel study

surveying about �fteen thousand households every year. It provides information on a wide

variety of socio-economic variables such as household composition, income, job character-

istics, education, life satisfaction etc., see Goebel et al. (2018). Most importantly for our

purposes, it provides detailed information on agreed working hours (weekly) and gross

earnings (monthly), thus enabling us to derive the core variable of our analysis: agreed

hourly wages. This wage concepts di�ers from actual hourly wages, which is not subject

of this study. Thus, we refer to agreed hourly wages as hourly wages.

The SOEP consists of several subsamples that, together and weighted, represent the

entire population of Germany. In a typical year of our observation period, SOEP includes

about 16,000 employed individuals. To ensure comparability, we replicate the sample re-

striction employed in B20.2 We exclude employees from the sample who are either not

eligible for the minimum wage or work in sectors where sector-speci�c minimum wages

existed prior to the reform. In this paper, we primarily utilize the longitudinal sample, fo-

cusing on the period around the reform (2010-2016). Because the SOEP �eld work mostly

takes place in the �rst half of a year and previous studies report delays in implementation

(see, for example, Caliendo et al., 2017), we study wage changes between two consecutive

years, e.g. between 2014 and 2016. Therefore, individuals that are not observed in t + 2

are dropped from the sample in survey year t. Individuals that lose their job between t

and t+ 2 are dropped from the sample since their hourly wages are unde�ned despite the

fact that such job losses might be attributable to the minimum wage introduction. As

2See B20 for further details on the sample selection.
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a natural consequence, our results pertain to those workers who stay employed. In any

case, such e�ects will be small, since there is only weak evidence for employment e�ects

in the short-run (Caliendo et al., 2018; Bonin et al., 2018; Bossler and Gerner, 2016) and

the number of individuals dropped due to job loss are small. Furthermore, due to item

non-response, we do not have access to critical information such as job characteristics in

t+ 2 for some individuals. Consequently, these are dropped from the sample. The sample

restrictions applied throughout the paper are summarized in Table 2.1. In sum, only part

of the cross-sectional sample ful�lls these requirements and we lose roughly a third of ob-

servations by moving from cross-section to panel setting. This raises concerns about the

representativeness of the panel sample, which we refute in Table 2.7 in Appendix 2.6.3 by

showing that descriptive statistics of important variables remain largely unchanged when

moving from the cross-section to the panel sample.

Table 2.1: Working Sample Size

2012 2013 2014 2015 2016 Total
Employed 16,155 18,199 16,066 15,822 14,895 81,137
Hourly wage unde�ned -3,734 -4,236 -3,392 -3,553 -3,445 -18,360
Exempt from minimum wage or -2,522 -2,904 -2,458 -2,727 -2,447 -13,058
has sector-speci�c minimum wage
Cross-Sectional Sample 9,899 11,059 10,216 9,542 9,003 49,719
Not observed in t+ 2 -3,341 -4,026 -3,336 -/- -/- -29,248
Job loss -62 -51 -75 -/- -/- -188
Missing information -363 -279 -330 -/- -/- -972
2-Year Panel Sample 6,133 6,703 6,475 -/- -/- 19,311

Source: SOEP v33 2012-2016, own calculations.

2.2.2 De�nition of objective variables and descriptive statistics

SOEP respondents are asked about individual monthly gross earnings (wgross), agreed

(hc) and actual weekly working hours. Following B20, We focus on agreed hourly wages,

de�ned as gross monthly income divided by agreed working hours per month (which is

calculated as 4.33 (weeks in a month) times observed weekly working hours).

Monthly earnings include payments for overtime work. Therefore, if overtime work

is not compensated through work time adjustment and paid out, agreed hourly wages

exceed the e�ective wages of the employed. That earnings do not include special payments

such as holiday payments or pro�t bonuses works in the opposite direction, although it

should be noted that such bonuses are typically paid out at the higher end of the earnings

distribution. Against this background, our wage concept should be viewed as conservative.

Table 2.2 shows average monthly gross wages, average agreed weekly working hours, as

well as the average of hourly wages. In the pre-reform period, annual growth of monthly
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earnings is about 1%. In 2015, when the minimum wage is introduced, earnings grow by

about 4%, between 2015 and 2016 again by about 1%. Annual growth of hourly wages is

below 1% prior to the reform, almost 4% between 2014 and 2015 and about 1% between

2015 and 2016. Average working hours hardly di�er over time.

Since our aim is to analyze the extent of treatment e�ect heterogeneity across employee

groups, Table 2.3 lists for several groups the shares below and above the minimum wage.

The groups are distinguished by gender, geographic location (East and West Germany),

migration background, and work arrangement (full-, part-time, marginally employed).

Altogether, about 14.5% of the eligible population received less than the minimum

wage prior to the reform. This share declines but does not vanish with the introduction

of the minimum wage, suggesting considerable non compliance issues (for a more detailed

discussion see B20). In 2016, the share of non-compliance amounts to about 10%.

There is considerable heterogeneity in group composition: In the low-wage group, there

is a strong over-representation of employees which are female (about 71%, compared to 30%

male in 2014), are resident in East Germany (about 32%, relative to 68% in West Germany

in 2014), have a migration background (about 16%, relative to 85% withouth migrational

background in 2014), and work as part-timers (about 16% in 2014) or marginally employed

(about 38% in 2014). We de�ne all individuals who do not indicate `German' as their

nationality as having a migrational background. Part-time employed are those individuals

whose weekly working hours reach a maximum of thirty hours. Marginally employed are

those individuals whose monthly gross income is a maximum of EUR 450. Full- and

part-time employed are also socially-insured.

Another way of visualizing this heterogeneity are Pen's Parades (Pen, 1971). These are

constructed by ranking all individuals according to their agreed hourly wage and plotting

their agreed hourly wage as a function of their wage percentiles. We show such Pen's

Table 2.2: Descriptive Statistics of the Working Sample

2012 2013 2014 2015 2016
Monthly gross earnings [EUR] 2651.22 2674.80 2703.05 2818.06 2846.49

(1539.18) (1582.59) (1639.14) (1684.00) (1685.27)
Weekly working hours 34.38 34.29 33.75 34.03 33.98

(9.71) (9.56) (9.96) (9.78) (9.77)
Agreed hourly wages [EUR] 17.32 17.48 17.88 18.54 18.74

(8.54) (8.76) (9.06) (9.25) (9.24)
Observations 9899 11059 10216 9542 9003

Note: Own calculations based on cross-sectional sample. Weighted by cross-sectional weights. Standard
errors in parentheses. Source: SOEP v33 2012-2016.
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Table 2.3: Composition of the sample below and above minimum wage.

2014 2015 2016
< MW ≥ MW < MW ≥ MW < MW ≥ MW

Female 70.5 46.5 70.0 47.2 69.2 47.7
Male 29.5 53.5 30.0 52.8 30.8 52.3
East 32.2 17.7 27.0 18.0 26.4 17.8
West 67.8 82.3 73.0 82.0 73.6 82.2
Migration background 16.2 8.6 15.5 9.2 19.4 9.6
No migration background 83.8 91.4 84.5 90.8 80.6 90.4
Full-time 46.5 80.4 47.5 80.6 45.5 80.7
Part-time 15.6 15.9 17.2 15.7 19.0 15.3
Marginally employed 37.8 3.7 35.4 3.7 35.6 4.0
Observations 1184 9032 846 8696 710 8293

Note: MW denotes minimum wage. All estimates based on agreed working hours, cross-sectional sample.
Weighted by cross-sectional weights Source: SOEP v33 2014-2016, own calculations.

Parades for regularly employed and marginally employed employees in Figure 2.1. Several

observations are noteworthy. The Pen's Parade for regular employees is much steeper than

it is for the marginally employed. Among the marginally employed, a much larger fraction

was remunerated below the EUR 8.50 before (roughly 60%) as well as after (roughly 40%)

the introduction of the minimum wage. Importantly, the wage increase experienced by the

marginally employed from 2014 to 2016 (i.e. from the dotted to the black line) is much

larger than that by the regularly employed. To what extent such a startling di�erence
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Figure 2.1: Pen's Parades. These Pen's Parades show the level of agreed hourly
wages as a function of the percentile in the agreed wage distribution. The left panel
shows Pen's Parades for socially-insured or regularly employed workers, the right panel
for marginally employed workers. Red horizontal line indicates the level of the minimum
wage of EUR 8.50. Grey line: 2012, dotted line: 2014, black line: 2016. Source: own
calculations, SOEPv33, 2012-2016
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is causally explained by the minimum wage introduction and whether there are similar

di�erences across other subgroups and combinations of subgroups is the subject of the

causal tree methodology.

2.3 Methodology

To understand e�ect heterogeneities of the minimum-wage introduction, we �rst estimate

the overall e�ect of the reform on hourly wages. The estimation relies on a standard

di�erence-in-di�erences (DiD) setting, with the treatment group being employees whose

wages were below the minimum wage in 2014 and the control group being employees whose

wages were slightly above. Next, we derive e�ects by di�erent subgroups using the forest

methodology.

2.3.1 Step 1: Estimating the average intention-to-treat e�ect

Di�erence-in-di�erences approaches rely on a common trend assumption that demands

the dependent variable to have similar trends in treated and control groups absent the

treatment. As shown in B20, the validity of this assumption cannot be taken for granted in

the present context since hourly wage trends of treatment and control groups di�er already

prior to reform. More, speci�cally, people at the lower end of the wage distribution tend

to have larger yearly wage increases than those at the higher end of the wage distribution

regardless of the introduction of the minimum wage. Hence, following Stewart (2004) and

B20, we employ a di�erential trend adjusted DiD estimator (DTADD), assuming that the

di�erences in wage growth dynamics between treated and control groups remain constant

over time. Thus, the treatment e�ect δ on wage growth ∆yit is identi�ed by

[E(∆ytit=2014)− E(∆ytit=2012)]︸ ︷︷ ︸
factual

− [E(∆ycit=2014)− E(∆ycit=2012)]︸ ︷︷ ︸
counterfactual

where superscripts t and c denote treated and control groups respectively and ∆yit =

log
(
yit+2

yit

)
× 100 is wage growth between t and t+ 2.3

The DTADD approach relies on three di�erencing steps. First, we calculate the log

di�erence in wages in each group (treated or control) in pre- and post-treatment periods;

i.e. we calculate ∆yit for each group. Second, we take di�erences between group-speci�c

changes in wage dynamics in the period before (2012 to 2014) and after the minimum-wage

introduction (2014-2016) (E(∆ytit=2014) − E(∆ytit=2012) and E(∆ycit=2014) − E(∆ycit=2012)

3As indicated in Section 2.2, we study wage growth over two years to abstract from possible delays in
implementation.
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respectively). Third, we take di�erences between treatment (`factual') and control group

(`counterfactual').

The pooled OLS regression model that we use to implement this identi�cation strategy

takes the form,

∆yit = β0 + δ(Wit1t=2014) + δ0(Wit1t=2012) + β1Wit + β21t + β3Zit + εit, (2.1)

with wage growth between t and t + 2 as dependent variable, t ∈ {2010, 2012, 2014}
denoting the time periods, and εit an individual error term.

The term Wit,

Wit =





0, if yit ∈ [8.50, 10]

1, if yit < 8.50,
(2.2)

distinguishes observations of the treatment and control group, while 1t denotes time dum-

mies for 2012 and 2014. The vector Zit contains a list of socio-economic characteristics:

age, gender, marital status, migration status, level of education, presence of kids below

age 16 in the household, East/West, as well as several job characteristics (type of contract

(full-time, part-time, marginally employed), dummy for a temporary contract, size and

sector of the �rm; dummies indicating whether the employee changed jobs, sectors or �rm

size, moved into a job that is not eligible for the minimum wage, changed to or from a

temporary contract). The coe�cient δ is the treatment e�ect of interest, while δ0 is the

placebo treatment e�ect, which should not be signi�cantly di�erent from zero.

B20 estimate the model in eq. (2.1) for the full sample and then re-estimate the model

for employees distinguished along two dimensions: employment status and region of res-

idence. Their evidence suggests larger treatment e�ects for marginally employed and

residents in East Germany. In Section 2.4.2, we assess whether these di�erences are at-

tributable to the above-mentioned dimensions or whether there are more complex patterns,

i.e. interactions of several covariates, that actually drive the di�erences.

The DTADD strategy has higher data requirements compared to a regular DiD ap-

proach as we need to compute the di�erence in wage dynamics between control and treated

groups prior to the reform. The pooled OLS framework e�ectively treats individuals ob-

served in di�erent time periods as independent observations, which might create bias as

it implies neglecting individual-speci�c e�ects. While poolability can be tested, the time-

varying de�nition of the treatment dummy Wit in combination with the identi�cation

design precludes the use of a regression design with individual-speci�c �xed e�ects in any

case. We relegate the detailed discussion of the reasons to Appendix 2.6.6 since the pa-

per at hand takes the identi�cation strategy proposed in B20 as given. As our main aim

is to study treatment heterogeneity in the setting of B20, we stick to the pooled OLS
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framework.

2.3.2 Step 2: Estimating e�ect heterogeneities

Equation (2.1) does not account for potential heterogeneity of the treatment e�ect since

interactions between the treatment dummy and covariates as well as high-order interac-

tions of covariates, which would capture the heterogeneity, are not included as additional

terms in the model. As discussed, the number of interaction terms would become pro-

hibitively large due to the large number of potential subgroups. Subsequently, we are

interested in heterogeneity of treatment e�ects across groups that are implicitly de�ned

by a set of variables X that is only partly overlapping with W. Under the assumption

that the high-order interactions of X with the treatment indicator are uncorrelated with

any of the control variables in (2.1), their e�ect, i.e. the heterogeneity of the treatment

e�ect, is captured by the sum of residuals, ε̂it, and intention-to-treat e�ect.

Thus, a suitable outcome for the random forest is composed of two parts: i) the

estimated average intention-to-treat e�ect; and ii) the residuals of (2.1), which represent

variation in hourly wage growth rates purged of a) the time trend between pre- and post-

treatment periods; b) the di�erences between the treatment and control groups prior to

intervention; as well as c) those e�ects that can be attributed to the control variables Zit:

forest outcome variable: ∆̃yit := ε̂it + δ̂(WTit). (2.3)

A discussion of the main assumption follows. If the omitted interactions are correlated

with any of the control covariates in (2.1), the coe�cients on these control covariates will

capture some of the e�ect of the interactions; in other words, the interaction e�ect will

then not be captured by the sum of error term and intention-to-treat e�ect. Therefore, to

the extent that the interactions of X with the treatment indicator are correlated with any

of the included independent variables in (2.1), we will get a biased estimate of the amount

of heterogeneity. Two important observations follow. First, except for the East/West,

marginal employment contract and �rm size dummies, the variables we subject to the

heterogeneity analysis are di�erent from the control variables (see Section 2.4). Therefore,

for the vast majority of variables we do not run into the mechanical problem that the

control variables capture some e�ect of the omitted interaction variables simply by their

virtue of being composed of the same control variables. Second, the intention-to-treat

e�ect δ will capture some of the e�ect of the interactions with the treatment dummy due

to them being correlated by de�nition. For this reason, we include the intention-to-treat

e�ect in the calculation of the forest outcome variable.

Subsequently, we feed ∆̃yit to the causal forest algorithm to understand treatment
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e�ect heterogeneity by the groups implicitly de�ned by covariates X. We regard ∆̃yit

`as if observed' although it is based on estimated quantities. This should lead to an

understatement of standard errors for the results that follow. Properly accounting for

the uncertainty about ∆̃yit in the causal forest step needs to be addressed in future work.

There is a countervailing e�ect at play also. The treatment e�ect δ in eq. (2.1) is estimated

on a sample that includes all eligible workers. The fact that this is a heterogeneous group

is the motivation of the study at hand. A direct consequence of such heterogeneity is that

δ will be estimated imprecisely relative to estimates that are based on more homogeneous

samples that include only individuals enjoying a large treatment e�ect. Since this is

e�ectively what the causal forest methodology does, the standard errors of group-speci�c

treatment e�ects tend to be lower than the standard error for δ in eq. (2.1).

Athey and Imbens (2016) �rst proposed to use regression trees to study heterogeneity

in randomized controlled trials (RCTs). Athey et al. (2019) recast this initial idea in

the framework of generalized random forests (GRFs), the backbone of our analysis. The

switch from `trees' to `forests' is not merely semantic. A forest consists of many trees; each

characterized a di�erent order and subset of the variables based on which the successive

splits are made. Consequently, the group each given individual is allocated to will not be

the same across all trees. The calculation of consistent variance estimates is based on the

variability of these tree-speci�c CITE estimates, which is similar to well-known bootstrap

procedures to estimate the variance of a given statistical quantity. The ability to estimate

consistent estimates for the variance is a main contribution of Athey et al. (2019). We

provide a short introduction to the machinery of causal forests in Appendix 2.6.1.

We begin by making some general remarks about the moment-based formulation of the

GRF methodology before describing how we are using it in the case at hand. The �exible

GRF method can estimate any quantity of interest, τ(x), identi�ed by the local moment

condition,

E[ψτ(x),ν(x)(Oi)|Xi = x] = 0. (2.4)

ψ denotes some scoring function, ν(x) an optional nuisance parameter, Oi, Xi are both

observed data, Oi being relevant to estimate τ , and Xi contains auxiliary variables. In a

standard regression problem Oi is the outcome variable Yi. In treatment e�ect estimation

Oi contains both the outcome variable and the treatment indicator. One way to approach

such an estimation is to de�ne some similarity weights ωi, which must be positive and sum

to one, measuring the importance of observation i to estimate ψ at x,

(
τ̂(x), ν̂(x)

)
= argminτ,ν

{∥∥∥∥∥
n∑

i=1

ωi(x)ψτ,ν(Oi)

∥∥∥∥∥
2

}
. (2.5)
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In a generalized random forest procedure, the estimates ωi are de�ned implicitly by a set

of b = 1, . . . , B subsampled trees: intuitively, the more often i ends up in the same �nal

leaf as the observation de�ned by x, the more important it is to estimate
(
τ̂(x), ν̂(x)

)
. In

other words, GRF estimates ωi by optimizing the moment conditions given in (2.4).

Therefore, reformulating the model of interest in this paper in the form of a moment

condition as (2.4) opens the door to using GRF to estimate heterogeneous treatment

e�ects. We follow Athey et al. (2019) and posit the random coe�cients model,

∆̃yit = αi(xi) + τi(xi)WTit + ui, (2.6)

with τ(x) = E[τi|X = xi]. Under the assumption that WTit is independent of unobserv-

ables conditionally on Xi, {τi, ui} ⊥⊥ WTit|Xi, τ(x) identi�es the conditional intention-to-

treat e�ect (CITE). τ(x) can be estimated via the generalized random forest methodology

by de�ning,

ψτ(x),α(x)(∆̃yit,WTit) :=
(
∆̃yit − τi(xi)WTit − αi(xi)

)
(

1

WTit,

)
(2.7)

which results in two moment conditions, one for the intercept and another for the random

coe�cient of interest, i.e. the conditional intention-to-treat e�ect τi(xi). To corroborate

that the conditional independence assumption is reasonable in the case at hand, it is

important to keep in mind that the set of control variables in the base model (2.1) is

extensive and, therefore, can be credibly believed to have rendered ε̂it independent of

WTit. Since ε̂it is the essential component of ∆̃yit, this, in turn, lends credibility to

the conditional independence assumption underlying the identi�cation of τi(xi) in (2.6).

We employ the GRF methodology of Athey et al. (2019) since it also provides variance

estimates corresponding to each �nal CITE estimate, which we will rely on in the next

subsection to test for statistical signi�cance of the estimated CITEs. The identifying

assumption in the DTADD approach is that existing di�erences in wage growth dynamics

between treated and control group remain constant absent the treatment. Equally strong

business cycles over the years 2012-2014 and 2014-2016 indicate that such di�erences

are likely to have remained constant.4 Another threat to this identi�cation are spillover

e�ects, which cannot be discerned in the case at hand (see above). In the estimation of

heterogeneous treatment e�ects, we assume that assumptions of equally strong business

cycles or absence of spillover e�ects (see above) hold within each subgroup identi�ed by the

causal forest. Moreover, the fact that our results are robust to the inclusion of high-order

4B20 point out that GDP growth amounted to 5.8% in 2012-2014 and 5.7% in 2014-2016.
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interactions of X in eq. (2.1) provides evidence that di�erences in wage growth dynamics

in groups de�ned by such interactions have been su�ciently controlled for, see Section

2.4.4.

It is worth noting that the conditioning set Xi in the conditional independence as-

sumption only includes contemporaneous realizations of the covariates. Therefore, issues

that were to arise when conditioning on post-treatment variables can be neglected.

Other approaches to evaluate treatment e�ect heterogeneity include k -nearest neigh-

bour or kernel estimation procedures (Crump et al., 2008). Such methods work well with

a small number of covariates, but performance is reduced when number of covariates in-

creases or interactions among covariates becomes important (Wager and Athey, 2015).

Since the objective of this study is to �nd heterogeneous e�ects among groups character-

ized by a combination of covariates we can leverage the comparative strengths of causal

trees. A study on heterogeneous employment e�ects by Wang et al. (2019) is close in spirit

to our approach since it uses a C-lasso technique, another data-driven approach, to reveal

the number of groups with di�erent e�ects.

2.3.3 Empirical illustration

In this subsection, we illustrate how the causal forest methodology splits the intention-

to-treat e�ect into ever �ner-grained subgroups. For the purpose of illustration, we focus

on a small subset of three control variables: a dummy for marginal employment (x1),

�rm size (x2), and skill degree (x3). We proceed iteratively by �rst estimating the causal

forest as described in Section 2.3.2 with x = (x1), then with x = (x1, x2), and �nally

with x = (x1, x2, x3). Thus, through these consecutive steps, we distinguish between, �rst,

those employees in marginal and those in regular employment (full- or part-time); second,

between those in marginal employment at a large �rm, those in marginal employment at

a small �rm, those in regular employment at a large �rm, and those regularly employed at

a small �rm; and third, between those in marginal employment at a large �rm with a low

skill degree, those in marginal employment at a large �rm with a high skill degree, etc.

Figure 2.2 illustrates the iterative process by means of a Sankey diagram. Moving down

to the bottom of the �gure, which represents the estimate of the intention-to-treat e�ect

of 6.5 percentage points, we illustrate the successive splits along x1, x2, x3. The horizontal

position of each node (i.e. group de�ned by the corresponding covariates) represents the

level of the CITE, more right-ward nodes representing larger CITEs. The width of each

edge is proportional to the number of observations of the sending node that are assigned

to the receiving node. The color of each edge represents the level of the CITE in the

receiving node. Therefore, the more diverse the color spectrum leaving a given node, the
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Figure 2.2: Structure of a Causal Tree. This Figure illustrates how the causal forest
splits the intention-to-treat e�ect (on the top of the graph) into treatment e�ects speci�c to
ever more �ne-grained groups. The edges' color is calibrated based on treatment e�ect levels
in the receiving layer (from yellow = high to violet = low). Therefore, the diversity of colors
leaving a particular node indicates how heterogeneous the group actually is. Since this graph
serves to illustrate what type of interactions the causal forest methodology helps uncover,
we present labels only for selected groups. See main text for additional information.

more heterogeneous that node is. In order to keep the illustration as simple, we only label

nodes relevant for the ensuing discussion.

The topmost layer of the Sankey diagram provides the estimated intention-to-treat
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e�ect of 6.5 percentage points. On the �rst layor, the causal forest splits treated individuals

in regular employed (�ow to the left, i.e. smaller CITE) and marginally employed (�ow

to the right, i.e. larger CITE). The second layer splits along the �rm size dummy. Being

employed in a small �rm is associated with a larger CITE. Interestingly, the positive

e�ect of being marginally employed is almost completely o�-set by the negative e�ect

of being employed at a large �rm. Vice versa, the negative e�ect of being regularly

employed is o�-set by being employed at a small �rm. As a result, these two groups

(marginally employed at a large �rm, and regularly employed at a small �rm) have almost

indistinguishable CITEs. The third layer splits along skill degree.5 Low skill levels tend to

be associated with larger CITEs. This is seen, for instance, in the nodes emanating from

the regularly employed at a large �rm (leftmost node on the third layer); the resulting

nodes on the fourth, bottom layer represent individuals with skill degree of three, two,

and one respectively moving from low (left) to high CITE (right). We can also observe

an unexpected break in this pattern in the nodes emanating from the node representing

the regularly-employed at a large �rm on the third layer. When this subgroup is further

split by skill degree, it is not the lowest skill degree individuals who are associated with

the largest CITE but those with an intermediate skill degree level, which move all the

way to the right at an estimated CITE of 15.4. The subgroup with the lowest skill level

is associated with an estimated CITE of merely 8.5. In other words, although low skill

degree is associated with the largest CITEs among individuals employed regularly at a

large �rm, this is not the case for individuals employed regularly at small �rms. It is these

complex interactions that the causal forest methodology enables us to detect.

A natural objection to these types of calculation is that the number of individuals

represented in each group decreases substantially down the tree. Therefore, it is important

to keep in mind that the GRF methodology produces consistent variance estimates for each

CITE estimate that capture the statistical uncertainty due to low numbers of observations.

With this note, we conclude the illustrative example and move to the presentation of the

heterogeneity results when using the whole list of covariates X.

2.4 Results

Guided by previous labor-market research, we consider the following covariate set, X, for

constructing subgroups:

5It seems as if there are only three edges emanating at the level of the third split, which seems to be
at odds with the skill degree variable having �ve levels. Do note that the higher skill levels are relatively
rare (especially among the marginally employed) and some of the resulting narrow �ows happen to lie
just below wider edges and, therefore, are not visible.
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• Firm size: small vs. non-small �rms

• Educational attainment according to the 8-level ISCED code

1 Primary education

2 Lower secondary education

3 Upper secondary education

4 Post-secondary non-tertiary education

5 Short-cycle tertiary education

6 Bachelor's or equivalent level

7 Master's or equivalent level

8 Doctoral or equivalent level

• Residence: East and West Germany

• Skill degree of occupation:

1 Untrained blue-collar worker / untrained white-collar worker

2 Semi-trained blue-collar worker / trained white-collar

3 Trained blue-collar worker / quali�ed professional

4 Foreman / highly-quali�ed professional

5 Master Craftsman / managerial position

• Blue- or white-collar worker

• Degree of autonomy in job ([0] none to [5] high autonomy)

• Marginal vs. non-marginal (regular) employment.

These covariates de�ne 4,320 potential subgroups. The number of groups actually

represented in the data is 248. First, we give an overview of the results (Section 2.4.1),

then we go into detail as to how our results compare to a traditional heterogeneity analysis

(Section 2.4.2), relate them to pre-reform gaps to the minimum wage prior to the reform

(Section 2.4.3), and describe the robustness check we implement (Section 2.4.4).



Heterogeneous Treatment E�ects of the German Minimum Wage 20

DTADD
intention-to-treat effect

0.000

0.025

0.050

0.075

0.100

2.5 5.0 7.5 10.0 12.5

Conditional Intention-to-Treat Effects

P
ro

po
rt

io
n

Figure 2.3: Histogram of CITEs. This �gure shows a histogram of the estimated con-
ditional intention-to-treat e�ects. The red vertical line indicates the level of the intention-
to-treat e�ect from the DTADD model.

2.4.1 Treatment e�ect heterogeneity: An overview

Table 2.4 reproduces the results from the DTADDmodel proposed in B20 with an intention-

to-treat e�ect of 6.5 percentage points which we now set out to decompose into subgroup-

speci�c e�ects. The causal forest implements 208 splits that lead to su�ciently di�erent

CITEs in the resulting subgroups. The arithmetic mean of these 208 CITE estimates

weighted by the number of observations in each group amounts to an intention-to-treat

e�ect of 6.6 percentage points, which is close to the average DTADD e�ect. Note that

the common trend assumption, which underlies the identi�cation strategy in the DTADD

model (as discussed in B20), is more likely to hold in the various subgroups under study

here since these are more homogeneous, i.e. more likely to show similar wage growth

dynamics, than the whole sample.

Table 2.5 provides the treatment e�ects for the 16 groups with at least 10 observa-

tions.6 Groups are provided in decreasing order of estimated e�ect sizes. The treatment

e�ects of the 16 groups vary considerably � from 1.2 percentage points to 12.7 percentage

points � suggesting remarkable heterogeneity hidden behind the intention-to-treat e�ect.

Employees with the following set of characteristics experience the largest CITE of 12.7

percentage points: trained white-collar marginally-employed workers in a small �rm in

West Germany with short-cycle tertiary education undertaking semi-autonomous work.

On the lower end of the spectrum, with a CITE of 1.2 percentage points, you �nd trained

6Table 2.8 in the Appendix contains the treatment e�ect estimates for groups with at least 3 observa-
tions.
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Table 2.4: Regression results for the DTADD base model.

DTADD
Treatment indicator 13.002∗∗∗

(1.966)

Causal e�ect 6.493∗∗

(2.720)

Placebo e�ect 1.591
(2.762)

Observations 2,874
R2 0.105
Adjusted R2 0.096
Residual Std. Error 29.607 (df = 2844)
F Statistic 11.507∗∗∗ (df = 29; 2844)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

blue-collar workers employed regularly in a large �rm in West Germany with short-cycle

tertiary education undertaking semi-autonomous work.

Table 2.5: This table shows the conditional intention-to-treat e�ects (τ̂(x)) for all ter-
minal leaves the causal forest, subject to the restriction that the group contains at least 10
observations. Underlying model for Step 1 of our methodology is the basic DTADD model,
eq. (2.1).
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1 11 12.7 1.01 1 1 2 3 5 0 1

2 15 12.2 0.88 0 1 2 4 5 1 0

3 14 10.9 0.89 1 1 2 4 5 0 0

4 12 10.8 1.01 1 1 1 4 5 0 0

5 11 10.0 1.20 1 1 3 5 5 0 0

6 13 9.9 0.87 0 1 3 4 5 1 1

7 10 9.4 1.06 1 1 1 4 4 0 0

8 12 7.1 0.98 0 0 2 3 4 0 1

9 10 6.6 1.07 0 0 2 3 5 1 1
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Table 2.5: This table shows the conditional average treatment e�ec (continued)
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10 12 6.5 1.11 0 1 3 5 5 1 0

11 16 6.5 0.96 0 0 2 4 5 1 0

12 10 6.0 1.15 0 1 2 4 5 0 0

13 14 3.4 0.74 0 0 3 4 5 1 1

14 15 2.3 1.08 0 1 3 5 5 0 0

15 16 2.2 0.70 0 0 1 4 5 0 0

16 12 1.2 0.95 0 0 3 5 5 0 0

Note: Own calculations, based on SOEP v33 2010-2016.

In the absence of any interaction e�ects, one would expect individuals who share a

given characteristic to cluster around a speci�c CITE and not to spread across the whole

spectrum of CITEs. For example, if white-collar work were to have a purely uniform posi-

tive e�ect (i.e. without any interaction e�ects) on the CITE, then all groups of individuals

in white-collar work would cluster at the upper end of the CITE distribution (i.e. in the

upper lines of Table 2.5). This, however, is not the case. On the contrary, the CITE for

white-collar workers ranges from 12.7 percentage points (line 1) to 3.5 percentage points

(line 13) depending on other characteristics. Figure 2.3 shows a histogram of the esti-

mated CITEs. Such a wide range is suggestive that interactions between the covariates

are important determinants for the size of the CITE.

An important question pertains to the statistical signi�cance of the observed treatment

heterogeneity. To investigate this matter, we conduct pairwise t-tests for mean equality

(with the conservative Bonferroni correction). The results of these tests are in Table 2.6,

which shows that the pairwise test of the bottom four groups with the top six groups are

all statistically signi�cant. We discuss these comparisons in detail now.
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Table 2.6: This table corresponds to the results in Table 2.5. It shows results for t-tests
for mean di�erences in the treatment e�ects of the groups speci�ed in column and row. A
'1' indicates that the null hypothesis of mean equality is rejected at Bonferroni-corrected
level of 0.05. Underlying model for Step 1 of our methodology is the basic DTADD model,
eq. (2.1).
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.
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Marginally employed dummy (ME) 1
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ME SF TW DA I E WC

1. 1. 2. 3. 5. 0. 1 0
0. 1. 2. 4. 5. 1. 0 0 0
1. 1. 2. 4. 5. 0. 0 0 0 0
1. 1. 1. 4. 5. 0. 0 0 0 0 0
1. 1. 3. 5. 5. 0. 0 0 0 0 0 0

0. 1. 3. 4. 5. 1. 1 0 0 0 0 0 0
1. 1. 1. 4. 4. 0. 0 0 0 0 0 0 0 0
0. 0. 2. 3. 4. 0. 1 0 0 0 0 0 0 0 0
0. 0. 2. 3. 5. 1. 1 0 0 0 0 0 0 0 0 0
0. 1. 3. 5. 5. 1. 0 0 0 0 0 0 0 0 0 0 0

0. 0. 2. 4. 5. 1. 0 1 1 0 0 0 0 0 0 0 0 0
0. 1. 2. 4. 5. 0. 0 1 0 0 0 0 0 0 0 0 0 0 0
0. 0. 3. 4. 5. 1. 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0. 1. 3. 5. 5. 0. 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0. 0. 1. 4. 5. 0. 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0. 0. 3. 5. 5. 0. 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Note:

ME: Marginally employed dummy, SF: Small Firm Size dummy, TW: Type of work, DA: Degree of autonomy,
I: ISCED, E: East dummy, WC: White collar job dummy; Own calculations, based on SOEP v33 2012-2016.

2.4.2 Unfolding uni-dimensional e�ect heterogeneities

B20 estimate equation (2.1) for the full sample and by two subgroups. They �nd larger

treatment e�ect for marginally employed (15.5 percentage points, p < 0.05 for the null hy-

pothesis of a zero e�ect), relative to full-time employed (7.8 percentage points, p < 0.05);

and East Germans (8.1 percentage points, p < 0.05) relative to West Germans (4.9 per-

centage points, p > 0.1). Subsequently, we pay speci�c attention to these comparisons and

check to what extent these observed di�erences are robust to adding interactions between

the marginal employment and the East Germany dummy, respectively. For instance, al-

though it seems that there is a large gap in treatment e�ect between workers in East and

West Germany, those employed in either the East or the West with a certain skill degree

might actually have very similar treatment e�ects.

We �nd con�rming evidence for the previously reported larger treatment e�ects for

marginally employed. Depending on other covariates, the treatment e�ect for marginally-
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employed varies between 9.4 and 12.7 percentage points. The CITE for regularly-employed

typically lies below 7.1 percentage points. Therefore, marginal employment is associated

with higher treatment e�ects regardless of the value of other covariates. The larger e�ect

for marginally employed reported by B20 does not hide important interaction e�ects.

We �nd little evidence for the existence of a particularly strong treatment e�ect for

employees resident in East Germany. Instead, we document large CITEs for certain groups

of employees in both East and West. For instance, among the regularly employed quali�ed

professionals (this title is determined jointly by the white-collar and skill degree dummies)

with a relatively high educational level and degree of autonomy who are living in the

East, those working at a small �rm have a CITE of 9.9 percentage points, whereas those

working at a large �rm only of 3.4 percentage points (lines 6 and 13 respectively). The

location of residence, thus, interacts with, e.g., �rm size in a way that produces di�erences

in the CITE of roughly six percentage points. This observation is part of a more general

pattern: employees working in small �rms do not generally enjoy a larger CITE since

those working in small �rms with a regular position have a below-average CITE. These

observations show that the intention-to-treat e�ect estimated with traditional methods

is hiding complex interaction e�ects that, once accounted for, reveal a large spectrum of

conditional intention-to-treat e�ects.

This is important information to a policy-maker who might be interested to com-

plement the minimum wage with other measures for those groups of workers who have

bene�ted least from the introduction. E.g. active labour market policies might then be

made available contingent on individual characteristics that identify those groups at the

lower end of the CITE spectrum such as those individuals working in small �rms with a

regular position.

Moreover, a policy-maker interested in increasing the compliance with the minimum

wage law where it shows the lowest e�ects might mistakenly focus their resources on West

Germany if basing their decisions on a uni-dimensional heterogeneity analysis. If such a

policy-maker were to rely on the heterogeneity analysis presented here, they could target

non-compliance investigations more precisely, thereby maximizing impact and minimizing

resources to monitor non-compliance.

2.4.3 Contrasting e�ect heterogeneities with pre-reform wage gaps

Ex ante, one would expect that, with the introduction of the minimum wage, the treatment

e�ect of those employees would be largest whose wages were previously furthest below the

threshold. Figure 2.4 shows a scatter plot of group-speci�c CITEs and group-speci�c gaps

to the minimum wage level (de�ned as the negative relative distance to EUR 8.50) prior
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to reform. The �gure conveys several interesting results: First, the pre-reform wage gap

is only a few percentage points for some groups, for others almost 50 percent. Second, for

groups with relatively small gaps, the e�ects triggered by the minimum wage frequently

exceed the increase that would have been necessary to raise them above the wage threshold

(even when disregarding the regular wage growth that takes place independently of the

minimum wage introduction).
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Figure 2.4: CITEs as a function of gap to minimum wage. This Figure shows
CITE as a function of the relative gap to the minimum wage prior to reform (i.e. `-
10' translates to 10% below minimum wage prior to reform). A large gap is generally
associated with a large CITE. The group with both the largest CITE and largest gap is
marginally-employed at small �rms (denoted with green triangles).

The opposite result is observed for those groups where the gap was particularly large,

say less than -40%. In fact, the e�ects for these groups vary between about 8 and 12

percentage points, far below the level needed to push these groups above the threshold

(again, in the absence of regular wage growth). This is an indication that there are

problems in enforcing the minimum wage, especially for those with particularly low wages
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before the reform. On the upside, one can discern a generally negative correlation between

the wage gap and the level of CITE: those groups that are furthest away from the threshold

prior to reform experience the largest CITEs. Such information can also help the policy-

maker envisioned in the previous paragraph to direct resources to monitor non-compliance

to those subgroups who are furthest away from the minimum wage prior to reform yet do

not hava a large CITE.

Note that it is possible to include the distance to the minimum wage prior to reform in

X and check directly for heterogeneous e�ects w.r.t. that distance. We opt not do that in

the study at hand to keep comparability with previously reported results in B20. However,

including that distance directly is certainly worthwhile analyzing in future research since

it would also address the issue of varying treatment intensities for workers at varying

distances from the minimum wage prior to the reform.

2.4.4 Robustness check

In the main body, the forest outcome variable is composed of an average and an individual-

level treatment e�ect derived from the OLS regression (DTADD model in eq. (2.1))

(see Section 2.3.2). We implement the following procedure to check the robustness of

our �ndings. We follow the DTADD speci�cation, as detailed above, but include all

possible four-way interactions of the variables in X as additional explanatory variables.

This precludes the objection that instead of implicitly capturing heterogeneous treatment

e�ects, the εit in eq. (2.3) in fact measures di�erences in average outcomes regardless of

treatment status. The results remain constant upon introducing the four-way interactions

in the DTADD model.

2.5 Conclusion

Analyzing the heterogeneity of treatment e�ects in both observational or randomized

controlled studies is di�cult as the number of potential subgroups increases, since either

one quickly runs into multiple testing problems or is liable to the criticism of hand-picking

groups that ex post show di�erences in treatment e�ects. The method proposed here,

an adaptation of Athey et al. (2019) applied to a di�erence-in-di�erences setting, distills

heterogeneity in a data-driven manner, thus obviating these problems.

Applying the proposed method to heterogeneities in treatment e�ects induced by the

introduction of the statutory minimum wage in Germany in 2015 reveals that the struc-

ture of heterogeneity is determined by complex interactions of covariates. An ex ante

speci�cation of subgroups precludes controlling for complex interactions due to the multi-
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tude of possible subgroups and consequent multiple testing problems. Using a data-driven

approach enables the researcher to detect spurious heterogeneities that vanish as soon as

complex interactions are controlled for. For instance, residing in East Germany interacts

with other employer-employee characteristics such that deducing a larger treatment ef-

fect of the minimum wage introduction in the East, though in a narrow sense true, is a

misleading representation of reality.

Obtaining such �ne-grained estimates of treatment e�ects for a given reform are rele-

vant to the policy-maker for a number of reasons. First, to understand the e�cacy of a

policy it is important to assess if those groups that were intended to bene�t most actually

bene�t most. Secondly, and building on the �rst reason, the results indicate which groups

of workers, respectively their employers, should be subject to stricter control mechanisms

to increase compliance.
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2.6 Appendix

2.6.1 From regression trees to causal forests

As a courtesy to the reader, we provide a short introduction to the causal forests. We

start by reviewing regression trees before moving to their adaptation to estimate causal

e�ects. This subsection does not contain new results.

Regression trees

Following Athey and Imbens (2016), denote with Π ∈ P a partitioning of the covariate

space, with #(Π) the number of elements in the partition each of which is called ` ∈ Π and

π : S→ P a function that maps a sample S ∈ S to a partition Π ∈ P. In the upper panel

of Figure 1 we illustrate a partition of a two-dimensional covariate space: Π = {X1 ≤
t1 ∧X2 ≤ t2}, {X1 ≤ t1 ∧X2 > t2}, {X1 ≤ t3}, {X1 > t3 ∧X2 ≤ t4}, {X1 > t3 ∧X2 > t4}.

A basic tree algorithm estimates the individual outcome variable Yi as the mean Y of

observations that are similar with respect to their covariates. Its objective is to maximize

the negative expectation of the mean squared error (MSEµ):

MSEµ(Ste,Str, π(Str)) :=
1

#(Ste)
∑

i∈Ste

(
(Yi − µ̂(Xi,Str, π(Str)))2 − Y 2

i

)
(2.8)

and the estimate for the conditional mean in each leaf is given by

µ̂(x,S,Π) :=
1

#(i ∈ S : Xi ∈ `(x; Π))

∑

i∈S:Xi∈`(x;Π)

Yi. (2.9)

Note that (1) can be written as

MSEµ(Ste,Str, π(Str))

=
1

#(Ste)
∑

i∈Ste

(
µ̂2(Xi,Str, π(Str))− 2Yiµ̂(Xi,Str, π(Str))

)

=
1

#(Ste)
∑

i∈Ste

(
µ̂2(Xi,Str, π(Str))

)

− 2

#(Ste)
∑

i∈Ste

(
µ̂(Xi,Ste, π(Str))µ̂(Xi,Str, π(Str))

)

(2.10)

since µ̂ is the same for all individuals within one leaf.

In order to avoid over�tting, the overall sample S is split into a training sample Str,
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which is used to estimate the tree and leaf means, a cross-validation sample Scv which

is used to choose a complexity penalty, and a test sample Ste, which is used to evaluate

out-of-sample performance. The CART algorithm is implemented in a two-step process:

�rst, it recursively partitions the covariate space of the training sample by maximizing

−MSEµ(Str,Str,Π) for each splitting decision until a minimum number of observations in

each leaf or a speci�ed tree depth is reached. That means that the algorithm has decided

that by �rst splitting the covariate space into {X1 ≤ t1} and {X1 > t1}, it achieves

the lowest MSE at that level. Second, to avoid over�tting it then chooses a complexity

penalty parameter based on the cross-validation sample (Breiman et al., 1984). We do

not go further into detail here and rather focus on the adjustments made by Athey and

Imbens (2016) to estimate heterogeneity of treatment e�ects.7

Causal trees

The central modi�cation of Athey and Imbens (2016) is to replace the leaf means by

treatment e�ect estimates. Thereby they leverage the power of the underlying algorithm

to estimate heterogeneous treatment e�ects.

We follow the potential outcomes model or Rubin causal model (Rubin, 1974) and pos-

tulate two potential outcomes for each individual i: (Yi(Wi = 0), Yi(Wi = 1)) where Wi ∈
{0, 1} is a binary treatment indicator. We assume unconfoundednessWi ⊥⊥ (Yi(0), Yi(1))|X.

De�ne the conditional intention-to-treat e�ect (CITE) as τ(Xi) = E[Yi(1)−Yi(0)|Xi]. The

problem is that we can only observe either Yi(0) or Yi(1) for any individual. The key to

overcoming this problem is re-de�ning the outcome variable such that it is equal to the

CITE in expectation:

τ(y,Π) = E[Yi(1)− Yi(0)|Xi ∈ `(x,Π)]

= E[Yi(1)|Xi ∈ `(x,Π)]− E[Yi(0)|Xi ∈ `(x,Π)]

: = µ(W = 1, x,S,Π)− µ(W = 0, x,S,Π)

(2.11)

We can now replace these population quantities by sample estimates. The subsample

SW=1 refers to the treated observations for which Wi = 1 and SW=0 refer to the untreated

7Athey and Imbens (2016) propose an `honest' splitting rule in which they use one sample to estimate
the splits and another to estimate leaf means. The honest criterion penalizes small leaf size only if it
results in a higher within-leaf MSE. This enables a more granular estimation of heterogeneous treatment
e�ects; for illustrative purposes, however, we stick to the conventional splitting rule here. However, in the
actual analysis we also implement such an honest splitting rule.



Heterogeneous Treatment E�ects of the German Minimum Wage 30

observations for which Wi = 0. Rede�ne the average leaf outcome depending on W as

µ̂(w, x,SW=w,Π) :=
1

#(i ∈ SW=w : Xi ∈ `(x; Π))

∑

i∈SW=w:Xi∈`(x;Π)

Yi. (2.12)

Consequently, we have

τ̂(x,S,Π) := µ̂(W = 1, x,SW=1,Π)− µ̂(W = 0, x,SW=0,Π). (2.13)

Now we can transform the tree objective from leaf means to leaf treatment e�ects by

replacing the µ̂ in (3) with τ̂ from (6):

MSEτ (Ste,Str, π(Str))

:=
1

#(Ste)
∑

i∈Ste

(
τ̂ 2(Xi,Str, π(Str))

)

− 2

#(Ste)
∑

i∈Ste

(
τ̂(Xi,Ste, π(Str))τ̂(Xi,Str, π(Str))

)
(2.14)

Wager and Athey (2015) provide inferential theory for causal trees, which rests on

the re-estimation of a causal tree on a number of random subsamples and averaging their

predictions. The result of this multitude of trees resulting from such subsampling is

called a random forest, in the causal setting they are termed causal forests. How do they

proceed? Random forests combine regression trees with bootstrap aggregation. Let us

brie�y address each in turn. Regression trees recursively partition the covariate space

by maximizing some criterion (e.g. mean squared prediction error) until some stopping

criterion is met (Hastie et al., 2009). Trees typically show low bias yet high variance

properties. This shortcoming is addressed by exploiting the fact that the variance of the

average of B correlated random variables (think, prediction of a regression tree) is given

by σ2
overall = ρσ2 + 1−ρ

B
σ2 meaning one can decrease σ2

overall by increasing B while ideally

keeping the correlation ρ as small as possible. This is achieved by re-estimating the tree

B times but restricting the set of variables considered at each split to be a �nite subset of

the complete set of covariates in order to decrease ρ.

Athey et al. (2019) have further developed the theory laid out in Wager and Athey

(2015), reformulate it in terms of moment conditions and provide an e�cient implemen-

tation, which we use in our paper.
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2.6.2 t-tests for the di�erence in mean treatment e�ects

The t-test used to investigate whether there are statistically signi�cant di�erences between

the group-speci�c treatment e�ects are implemented as follows.

Let τ̂g be a group-speci�c estimate of the treatment e�ect, ng the number of observa-

tions in that group, σ2
g the variance (as estimated by the GRF). Using these ingredients,

we calculate a t-statistic based on a Welch-Satterthwaite approximation of the degrees of

freedom. The null hypothesis of the test is H0 : τj = τg. The Bonferroni correction is

implemented by requiring a p-value of 0.05
#oftests

for a test to be declared rejected at the 5%

level.

2.6.3 Further descriptive statistics

Table 2.7: Comparing Descriptive Statistics of Cross-section and Panel sample

2012 2014

cross-section panel cross-section panel

Contractual hourly wages 17.32 17.90 17.88 18.56

(8.54) (8.41) (9.06) (8.93)

Size Of Company 5.27 5.34 5.10 5.18

(1.84) (1.79) (1.84) (1.78)

ISCED 4.01 4.14 4.04 4.16

(1.73) (1.70) (1.77) (1.68)

East dummy 0.18 0.20 0.19 0.20

(0.39) (0.40) (0.39) (0.40)

Skill degree of occupation 2.62 2.71 2.59 2.73

(1.20) (1.17) (1.20) (1.14)

Blue collar worker dummy 0.28 0.25 0.26 0.24

(0.45) (0.44) (0.44) (0.42)

Degree of autonomy 2.79 2.86 2.79 2.87

(1.05) (1.01) (1.05) (1.00)

Marginally employed 0.06 0.04 0.07 0.04

(0.24) (0.19) (0.26) (0.20)

Observations 9899 6133 10216 6475

Note: Averages of respective variables. Standard errors in parentheses. Based on cross-sectional and

panel samples. Weighted by cross-sectional weights. Source: SOEP v33 2012-2016.
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By moving from cross-section to panel samples we lose roughly a third of all observations

in a given survey year, see Table 2.1. To show that this does not lead to unrepresentative

samples, we compare descriptive statistics for covariates X and agreed hourly wages in

Table 2.7 for 2012 and 2014 and for both cross-sectional and panel samples. One can

see that the descriptive statistics change only slightly indicating that a threat to the

representativeness of the sample is not warranted. Note that we use cross-sectional weights

for both the cross-section as well as panel samples since we do not account for the panel

structure of the data in the main speci�cation.
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2.6.4 Further results

Table 2.8: This table shows the conditional intention-to-treat e�ects (τ̂(x)) for all termi-
nal leaves the causal forest, subject to the the restriction that the group contains at least 3
observations. Underlying model for Step 1 of our methodology is the basic DTADD model,
eq. (2.1).
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1 4 12.9 1.28 0 1 2 3 5 1 1

2 11 12.7 1.01 1 1 2 3 5 0 1

3 8 12.2 1.11 0 1 2 3 4 0 1

4 15 12.2 0.88 0 1 2 4 5 1 0

5 7 12.1 1.27 0 1 2 3 5 0 1

6 5 11.6 1.54 1 1 2 3 4 0 1

7 5 11.0 1.45 1 1 1 3 4 0 1

8 6 11.0 1.13 0 1 1 4 5 1 0

9 14 10.9 0.89 1 1 2 4 5 0 0

10 12 10.8 1.01 1 1 1 4 5 0 0

11 3 10.4 1.92 1 1 2 4 6 0 0

12 3 10.3 1.90 0 1 1 3 4 0 1

13 5 10.0 1.51 0 1 1 3 5 0 1

14 11 10.0 1.20 1 1 3 5 5 0 0

15 13 9.9 0.87 0 1 3 4 5 1 1

16 4 9.8 1.66 1 0 1 3 5 0 1

17 4 9.8 1.76 0 1 2 4 8 1 0

18 10 9.4 1.06 1 1 1 4 4 0 0

19 3 9.1 2.18 1 0 2 3 5 0 1

20 4 9.0 1.81 1 0 1 3 4 0 1

21 7 9.0 1.53 1 0 2 4 5 0 0

22 4 8.9 1.97 1 0 3 5 5 0 0

23 3 8.7 2.33 1 1 3 5 8 0 0

24 6 8.5 2.05 0 1 3 4 5 0 1

25 7 8.5 1.57 1 0 2 3 4 0 1

26 3 8.3 2.35 1 0 1 4 6 0 0

27 4 8.1 1.83 1 0 1 4 4 0 0

28 3 8.1 1.99 0 1 2 4 8 0 0

29 3 7.4 1.97 0 0 2 3 4 1 1

30 6 7.2 1.24 0 0 1 3 5 1 1

31 3 7.1 1.96 0 0 2 3 3 0 1



Heterogeneous Treatment E�ects of the German Minimum Wage 34

Table 2.8: This table shows the conditional average treatment e�ec (continued)
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32 12 7.1 0.98 0 0 2 3 4 0 1

33 8 7.0 1.13 0 0 1 4 5 1 0

34 5 6.9 1.30 0 0 1 3 4 0 1

35 10 6.6 1.07 0 0 2 3 5 1 1

36 12 6.5 1.11 0 1 3 5 5 1 0

37 16 6.5 0.96 0 0 2 4 5 1 0

38 3 6.5 1.57 0 0 1 4 4 1 0

39 10 6.0 1.15 0 1 2 4 5 0 0

40 4 5.9 1.55 0 1 2 4 4 0 0

41 6 5.8 1.16 0 0 0 4 7 0

42 7 5.8 1.15 0 0 1 3 5 0 1

43 8 5.5 1.18 0 0 2 3 5 0 1

44 3 5.1 1.91 0 0 2 4 6 1 0

45 7 5.0 1.27 0 1 1 4 4 0 0

46 6 5.0 1.48 0 1 1 4 5 0 0

47 4 4.2 1.92 0 0 2 4 6 0 0

48 3 4.0 1.71 0 0 1 4 8 0 0

49 5 3.8 1.54 0 1 3 5 6 1 0

50 9 3.6 1.15 0 1 3 5 8 1 0

51 14 3.4 0.74 0 0 3 4 5 1 1

52 4 3.2 1.27 0 0 1 4 4 0 0

53 5 2.9 1.33 0 0 3 5 5 1 0

54 15 2.3 1.08 0 1 3 5 5 0 0

55 3 2.3 2.41 0 1 4 6 5 0 0

56 3 2.3 2.18 0 0 3 5 6 0 0

57 16 2.2 0.70 0 0 1 4 5 0 0

58 3 2.1 2.33 0 0 3 5 8 0 0

59 8 1.8 1.23 0 0 2 4 5 0 0

60 12 1.2 0.95 0 0 3 5 5 0 0

61 3 1.0 1.61 0 0 3 5 8 1 0

Note:

Own calculations, based on SOEP v33 2012-2016.

2.6.5 Robustness check

As a robustness check, we modify the DTADD speci�cation to include all possible four-way

interactions of the variables in X as additional explanatory variables. Table 2.9 shows the
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regression results of these two models and the DTADD speci�cation of the main text.

Table 2.9: Regression results of DTADD model and DTADD model with interactions

DTADD interaction DTADD

(1) (2)

Treatment indicator 13.002∗∗∗ 12.466∗∗∗

(1.966) (1.962)

Causal e�ect estimate 6.493∗∗ 6.952∗∗∗

(2.720) (2.693)

Placebo 1.591 3.004
(2.762) (2.742)

Observations 2,874 2,848
R2 0.105 0.156
Adjusted R2 0.096 0.118
Residual Std. Error 29.607 (df = 2844) 28.694 (df = 2723)
F Statistic 11.507∗∗∗ (df = 29; 2844) 4.070∗∗∗ (df = 124; 2723)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Own calculations, based on SOEP v33 2012-2016.

DTADD model with interactions of X

Ideally, we want εit in eq. (2.1) to contain only the sum of average and individual-speci�c

treatment e�ects. In order to show that εit is not prohibitively contaminated by level

changes in the dependent variable that can be explained purely by covariates X, we add

all possible four-way interactions of all variables in X to the model in eq. (2.1), then

calculate the forest outcome variable as before and implement the methodology. The

results, analogous to the main text, are reproduced here.
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Table 2.10: This table shows the conditional average treatment e�ects (τ̂(x)) for all
terminal leaves the causal forest, subject to the restriction that the group contains at least
10 observations. Underlying model for Step 1 of our methodology is the basic DTADD
model complemented with interactions of X.
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1 11 12.7 0.96 1 1 2 3 5 0 1

2 15 11.4 0.86 0 1 2 4 5 1 0

3 14 11.4 0.89 1 1 2 4 5 0 0

4 12 11.3 1.07 1 1 1 4 5 0 0

5 10 11.1 1.15 1 1 1 4 4 0 0

6 11 11.1 1.15 1 1 3 5 5 0 0

7 13 9.3 0.89 0 1 3 4 5 1 1

8 10 6.7 0.94 0 0 2 3 5 1 1

9 12 6.6 0.93 0 0 2 3 4 0 1

10 12 6.5 0.98 0 1 3 5 5 1 0

11 16 6.2 0.88 0 0 2 4 5 1 0

12 10 5.4 1.13 0 1 2 4 5 0 0

13 14 3.7 0.70 0 0 3 4 5 1 1

14 15 2.6 0.95 0 1 3 5 5 0 0

15 16 2.3 0.71 0 0 1 4 5 0 0

16 12 1.3 1.02 0 0 3 5 5 0 0

Note:

Own calculations, based on SOEP v33 2012-2016.

Discussion

Figure 2.5 shows the CITE estimates for two models (DTADD, as well as DTADD with

interactions) in a scatter plot. The x -axis denotes the DTADD estimates, the y-axis

describes CITE based on DTADD with interaction. Table 2.9 shows estimation results

of the two models. The CITE estimates with the underlying DTADD with interactions

model align very closely at the 45-degree line. This precludes the objection that instead

of implicitly capturing heterogeneous treatment e�ects, the εit in (2.3) in fact measures

di�erences in averages outcomes regardless of treatment status.
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Table 2.11: This table corresponds to the results in Table 2.10. It shows results for t-tests
for mean di�erences in the treatment e�ects of the groups speci�ed in column and row. A
'1' indicates that the null hypothesis of mean equality is rejected at Bonferroni-corrected
level of 0.05. Underlying model for Step 1 of our methodology is the basic DTADD model
complemented with interactions of X.

White collar job dummy (WC) 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0

East dummy (E) 0
.

1
.

0
.

0
.

0
.

0
.

1
.

1
.

0
.

1
.

1
.

0
.

1
.

0
.

0
.

0
.

ISCED (I) 5
.

5
.

5
.

5
.

4
.

5
.

5
.

5
.

4
.

5
.

5
.

5
.

5
.

5
.

5
.

5
.

Degree of autonomy (DA) 3
.

4
.

4
.

4
.

4
.

5
.

4
.

3
.

3
.

5
.

4
.

4
.

4
.

5
.

4
.

5
.

Type of work (TW) 2
.

2
.

2
.

1
.

1
.

3
.

3
.

2
.

2
.

3
.

2
.

2
.

3
.

3
.

1
.

3
.

Small Firm Size dummy (SF) 1
.

1
.

1
.

1
.

1
.

1
.

1
.

0
.

0
.

1
.

0
.

1
.

0
.

1
.

0
.

0
.

Marginally employed dummy (ME) 1
.

0
.

1
.

1
.

1
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

ME SF TW DA I E WC

1. 1. 2. 3. 5. 0. 1 0
0. 1. 2. 4. 5. 1. 0 0 0
1. 1. 2. 4. 5. 0. 0 0 0 0
1. 1. 1. 4. 5. 0. 0 0 0 0 0
1. 1. 1. 4. 4. 0. 0 0 0 0 0 0

1. 1. 3. 5. 5. 0. 0 0 0 0 0 0 0
0. 1. 3. 4. 5. 1. 1 0 0 0 0 0 0 0
0. 0. 2. 3. 5. 1. 1 1 0 0 0 0 0 0 0
0. 0. 2. 3. 4. 0. 1 1 0 0 0 0 0 0 0 0
0. 1. 3. 5. 5. 1. 0 1 0 0 0 0 0 0 0 0 0

0. 0. 2. 4. 5. 1. 0 1 1 1 0 0 0 0 0 0 0 0
0. 1. 2. 4. 5. 0. 0 1 0 0 0 0 0 0 0 0 0 0 0
0. 0. 3. 4. 5. 1. 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0. 1. 3. 5. 5. 0. 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0. 0. 1. 4. 5. 0. 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0. 0. 3. 5. 5. 0. 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Note:

ME: Marginally employed dummy, SF: Small Firm Size dummy, TW: Type of work, DA: Degree of autonomy,
I: ISCED, E: East dummy, WC: White collar job dummy; Own calculations, based on SOEP v33 2012-2016.
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Figure 2.5: DTADD interaction CITE vs. DTADD CITE This Figure shows
CITE estimates based on DTADD with interactions against the corresponding estimates
estimated based on the DTADD model.

2.6.6 Why individual-speci�c �xed e�ects cannot be used

We replicate eq. (2.4), that shows our identi�cation strategy, as a starting point of the

discussion:

[

G1︷ ︸︸ ︷
E(∆ytit=2014)−

G2︷ ︸︸ ︷
E(∆ytit=2012)]︸ ︷︷ ︸

factual

− [

G3︷ ︸︸ ︷
E(∆ycit=2014)−

G4︷ ︸︸ ︷
E(∆ycit=2012)]︸ ︷︷ ︸

counterfactual

,

where superscripts t and c denote treated and control groups respectively.

The employed DTADD approach relies on three di�erencing steps. First, we take

(relative) di�erence in wages in each group G1, G2, G3, and G4; i.e. we calculate ∆yit for

each group. Second, we take di�erences between group-speci�c changes in wage dynamics
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in the period before (2012 to 2014) and after the minimum-wage introduction (2014-

2016) (G1−G2 and G3−G4 respectively). Third, we take di�erences between treatment

(`factual') and control group (`counterfactual'). The second di�erence is the additional

step that renders the underlying common trend assumption credible.

The OLS regression model we use to estimate δ takes the form,

∆yit = δ(Wit1t=2014) + δ0(Wit1t=2012) + β1Wit + β21t + β3Zit + εit, (2.15)

with wage growth, ∆yit = log
(
yit+2

yit

)
× 100, as dependent variable, t ∈ {2010, 2012, 2014}

denoting the di�erenced time periods, and εit an individual error term.

To show that employing a �xed e�ects regression in this identi�cation strategy leads to

bias, let us consider the simplest version of the model, with only two time periods (2012

and 2014) and no control variables. We include �xed e�ects ηi to illustrate the problem.

∆yit = δ(Wit1t=2014) + β1Wit + β21t=2012 + β31t=2014 + ηi + εit

First, let us consider the hypothetical, since unrealistic in the application at hand, case

where each individual is categorized as either treated (subscript j) or control (subscript

k) for both periods. This implies the following four terms.

∆ytjt=2012 = β1Wjt + β21t=2012 + ηj + εjt

∆ytjt=2014 = δ(Wjt1t=2014) + β1Wjt + β31t=2014 + ηj + εjt

∆yckt=2012 = β21t=2012 + ηk + εkt

∆yckt=2014 = β31t=2014 + ηk + εkt

(2.16)

Then we have the following.

δ = [

G1︷ ︸︸ ︷
E(∆ytit=2014)−

G2︷ ︸︸ ︷
E(∆ytit=2012)]︸ ︷︷ ︸

factual

− [

G3︷ ︸︸ ︷
E(∆ycit=2014)−

G4︷ ︸︸ ︷
E(∆ycit=2012)]︸ ︷︷ ︸

counterfactual

(2.17)

=
[
[δ(Wjt1t=2014) + β1Wjt + β31t=2014 + ηj]− [β1Wjt + β21t=2012 + ηj]

]
− (2.18)

[
[β31t=2014 + ηk]− [β21t=2012 + ηk]

]
(2.19)

= δ (2.20)

The treatment e�ect is identi�ed through δ.

The DTADD approach rests on the assumption that, for both control and treatment

groups, the wage growth dynamics between 2014 and 2016 are the same as the wage
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growth dynamics between 2012 and 2014 absent the reform. If this is so, we can compare

the di�erence in wage growth dynamics in 2012 and 2014 between treatment and control

with the same di�erence in 2014-2016 to estimate the treatment e�ect. It is possible, even

likely given that wage growth is more dynamic at the lower end of the wage distribution,

that an individual who is earning below the minimum wage in 2012 (i.e. classi�ed as

treated) will earn above the minimum wage in 2014 (i.e. classi�ed as control).

More realistically, let's say we observe individuals in each of the following groups: 1)

group j: treatment group in 2012, treatment group in 2014, 2) group k: control group in

2012, control group in 2014, 3) group l: treatment group in 2012, control group in 2014

In other words, it might occur that an individual appears in group G2 for year t = 2012

and in group G3 in year t = 2014. We now illustrate that this will lead to a biased

treatment e�ect estimate.

To simplify the argument, assume that we observe one individual in each group. This

implies the following terms.

∆ytjt=2012 = β1Wjt + β21t=2012 + ηj + εjt (2.21)

∆ytjt=2014 = δ(Wjt1t=2014) + β1Wjt + β31t=2014 + ηj + εjt (2.22)

∆yckt=2012 = β21t=2012 + ηk + εkt (2.23)

∆yckt=2014 = β31t=2014 + ηk + εkt (2.24)

∆ytlt=2012 = β1Wlt + β21t=2012 + ηl + εlt (2.25)

∆yclt=2014 = β31t=2014 + ηl + εlt (2.26)

Then we have the following.

δ = [

G1︷ ︸︸ ︷
E(∆ytit=2014)−

G2︷ ︸︸ ︷
E(∆ytit=2012)]︸ ︷︷ ︸

factual

− [

G3︷ ︸︸ ︷
E(∆ycit=2014)−

G4︷ ︸︸ ︷
E(∆ycit=2012)]︸ ︷︷ ︸

counterfactual

=
[
[δ(Wjt1t=2014) + β1Wjt + β31t=2014 + ηj]− [β1Wjt + β21t=2012 +

ηj + ηl
2

]
]

−
[
[β31t=2014 +

ηk + ηl
2

]− [β21t=2012 + ηk]
]

= δ + ηj −
ηj + ηl

2
− ηk + ηl

2
+ ηk

= δ +
ηj
2
− ηl +

ηk
2

6= δ

(2.27)

Thus, if we were to include individual-speci�c �xed e�ects, part of the di�erence be-
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tween the `factual' and `counterfactual' wage dynamics would be soaked up by that indi-

vidual �xed e�ect, and would therefore bias our estimate of the treatment e�ect.



3 A Reverse Causality Test Without In-

struments

3.1 Introduction

Endogeneity is a central problem in econometric models which potentially invalidates

estimates of causal e�ects. Existing tests of endogeneity often require that a potential

solution in the form of instruments is available. Moreover, even when instruments are

available, imposed exclusion restrictions on such instruments are often controversial on

their own. We provide a test for one source of endogeneity, namely reverse causality of a

single regressor, that does not require instruments. To detect this type of endogeneity we

show that it is su�cient to impose a nonlinear model structure. We require the errors to

be additively separable but allow for heteroscedasticity w.r.t. additional control variables.

Testability of reverse causality relies on restrictions of the model under consideration.

In particular, we show that additively separable errors and nonlinearity of the true un-

derlying functional relationship implies testable restrictions. We build on Hoyer et al.

(2009), who establish that the causal direction between two variables is identi�able, while

maintaining independence between covariate and the additively separable error term. The

main contribution of this paper is to extend the framework of Hoyer et al. (2009) to the

heteroscedastic case with additional covariates and clarify the usefulness of this approach

in economic applications.

We de�ne a causal model in which Y is generated as a function of covariate X and

control variables W and a anticausal model in which X is generated as a function of co-

variate Y and control variables W. The testable restriction implies that the independence

between the error and covariate can only hold in either the causal or the anticausal model,

not both.

This testable restriction involves the unobserved true errors. In the practical algo-

rithmic implementation, we need to rely on estimates of these true errors, which has

implications for the asymptotic distribution of the test statistic. More speci�cally, the es-

42
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timated errors show a particular dependence with the covariate even if the true errors are

independent of the covariate. This dependence originates from the fact that the residuals

are estimated with a model that is itself estimated based on the covariate which we want

to test independence with. This requires us to make an additional assumption, namely

that either the causal or the anticausal model represents the true data generating process.

Given this assumption, we leverage advances on testing conditional independence based

on kernel mean embeddings, i.e. maps of probability distributions into reproducing kernel

Hilbert spaces (RKHS) (Muandet et al., 2016). We show that our procedure has high ac-

curacy in detecting the true causal direction in simulated data. Furthermore, the provide

an empirical application, which show that our test can provide suggestive evidence about

the causal link between income and work experience, which we proxy by age.

Related literature The idea that a causal link between two variables implies an inde-

pendence between the error and the cause variable, which our test ultimately rests on, has

precursors in the literature. In particular, Robert Engle et al. (1983) propose a de�nition

of an exogeneous relation in terms of conditional densities that is close in spirit to the test

idea in the paper at hand. In particular, they argue that, if a joint probability density of

two random variables Y and X factorizes as f(Y,X) = f(Y |X)f(X) and the conditional

density f(Y |X) is invariant to changes in the marginal density f(X), then X is called �su-

per exogenous� (p. 278). Statistical tests for the notion of �super exogeneity� are proposed

by Favero and Hendry (1992), Engle and Hendry (1993), and Hendry and Santos (2010).

These tests speci�cally rely on analyzing to what extent parameter values are sensitive to

interventions in the economy. Such interventions can be either natural or experimental.

The approach at hand neither relies on experimental or natural interventions nor on the

stability of parameter values. We interpret the invoked invariance to changes in terms of

independence between the true error and the covariate and derive testable implications.

This paper is also related to a strand of the literature, which make use of exogenous

variations to detect endogeneity of regressors. The idea to make use of instrumental vari-

ables to detect endogeneity was originally proposed by Hausman (1978). More recently,

Blundell and Horowitz (2007) and Breunig (2015) provide exogeneity tests using instru-

mental variables for nonparametric models with additively separable errors and Fève et al.

(2018) and Breunig (2020) for models with nonseparable errors.

3.2 Reverse causality test

We show how to test for reverse causality between two variablesX and Y in the presence of

additional covariates W where W need not be independent of the regression error. First,
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we introduce the model, discuss how the model speci�cation relates to the existing causal

discovery literature, and derive testable implications. Second, we present the conditional

independence test that is a central component of the algorithm. Third, we present the

algorithmic implementation.

3.2.1 Model and testability

The problem of identifying causal structure from non-experimental data is receiving con-

siderable attention in the nascent causal machine learning literature (Mooij et al., 2016;

Peters et al., 2017). In its bivariate form, the problem is concerned with deciding whether

a variable X is causing Y or vice versa solely based on a non-experimental joint probabil-

ity distribution of the two variables. Without making any assumptions regarding the true

underlying data-generating process, no headway is possible.1 In the following, we discuss

the assumptions we make that enable us to identify the causal direction.

Consider the following model where X is causing Y :

Y = h(X,W) + U (3.1)

where X, Y and U are scalars and W is a vector of covariates. This model is called the

`causal model' in the following. We make the following assumptions.

Note that the error U in eq. (3.1) is additively separable. We stress that, with this

assumption, we place our paper in that strand of the literature exploring identi�ability

of the causal direction by restricting the model class under consideration. This strand

can broadly be sub-divided into two approaches. First, Shimizu et al. (2006) show that

identi�cation of the causal direction is possible in a model with linear h when the error

term is non-Gaussian. See Appendix 3.6.3 for a proof of the central idea. We show that

this identi�cation result holds in our Monte Carlo simulations, yet we do not extend it

formally (see Appendix 3.6.2). Zhang and Hyvärinen (2009) weaken that assumption.

They consider a `post-nonlinear' model of the form Y = h2(h1(X) + ε) and show that the

causal direction is identi�able when h2 is invertible. Thus, nonlinear rescaling of the data

e.g. through typical log transformations of income data in economics can be taken into

account. Moreover, Mooij et al. (2011) extend the results in Hoyer et al. (2009) to cyclic

models under the assumption of Gaussian error terms.

The additive separability of the error term U precludes the dependence of marginal

1Previous work shows that the causal direction cannot be identi�ed without making further assump-
tions. Peters (2012, Proposition 2.6) proves that for every joint distribution of two variables, X and
Y , there is a model Y = h(X, ε), with X ⊥⊥ ε with h a measurable function and ε a real-valued noise
variable. The roles of X and Y can be easily interchanged showing that the joint distribution itself does
not identify the causal direction in this most general form.
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e�ects on unobservables. Therefore, we interpret the error term in a traditional sense as

measurement error of the variable of interest.

Assumption 3.2.1 (Nonlinearity). The function h(.,w) is nonlinear for each w in the

support of W.

Hoyer et al. (2009) show that nonlinearity of h can play a similar role as regards the

identi�ability of the causal direction as non-Gaussianity of U , which Shimizu et al. (2006)

rely on. They show that, if the true model is of a nonlinear form, one can infer the causal

direction without making any assumptions about the distribution of the error. Our work

is most closely related to this route of identi�cation, which we complement by considering

heteroskedasticity of the error term with respect to additional covariates W.

Assumption 3.2.2 (Heteroskedasticity). Assume

U = σ(W) ε with ε ⊥⊥ (X,W) (3.2)

for some strictly positive function σ(·).

Existing causal discovery algorithms do not take into account heteroskedastic error

structures. Assumption 3.2.2 explicitly introduces such heteroskedasticity of the error term

with respect to the control variables W. Note that Assumption 3.2.2 implies U ⊥⊥ X|W.

Given Assumptions 3.2.1 and 3.2.2 we now formulate the main theorem of this paper.

Theorem 3.2.1 (Identi�ability). Let Assumptions 3.2.1 and 3.2.2 about causal model

(3.1) be satis�ed. Then there cannot be a anticausal model,

X = h̃(Y,W) + Ũ , (3.3)

where Ũ = ε̃ σ̃(W) and ε̃ ⊥⊥ (Y,W) is ful�lled. The proof of this statement can be found

in Appendix 3.6.1.

Theorem 3.2.1 implies that if U ⊥⊥ X|W then Ũ ⊥⊥ Y |W cannot simultaneously be

true. This enables inferring the causal direction from observational data by analyzing to

what extent the independence of errors and covariates holds. The nonlinearity of h and

the additive separability of the error term, U , give the proposed test power.

In the remainder, we make an additional assumption that we require for the algorithmic

implementation, namely we require the existence of causal or anticausal model:

Assumption 3.2.3 (Existence). Assume that the data generating process satis�es the

causal model in (3.1) or the anticausal model in (3.3).
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We conclude this section with some further observations about the causal discovery lit-

erature. Next to the a priori restriction of the model class, which we follow in this paper,

there are more proposals to identify causal directionality. First, there is work relying on

information-geometric arguments: the essential idea is that the conditional distribution

of the e�ect given its cause does not contain information about the marginal distribution

of the cause (Janzing and Schölkopf, 2010). The information content is formalized using

the notion of Kolmogorov complexity, which in turn is approximated by the entropy of

underlying probability distributions. Second, there are constraint-based causal discov-

ery algorithms. These methods construct a causal model based on an exhaustive list of

statistical independencies of any two observed variables conditional on sets of the other ob-

served variables (Peters et al., 2014). One needs at least three observed variables to apply

such methods. Thus, the bivariate nature of the problem we are addressing precludes the

application of constraint-based causal discovery algorithms. Furthermore, there are score-

based methods that compare, e.g., penalized likelihoods across models and base inference

of causal direction thereon (see Nowzohour and Bühlmann, 2016, for an example).

3.2.2 Testing conditional independence

This section introduces the concept of Hilbert Space embeddings of distributions and

their use for (un)conditional independence testing of random variables. Since this notion

is not common in the econometrics literature and conditional independence testing forms

a central part of the proposed algorithm, it is pertinent to discuss the procedure in detail.

We proceed step-wise and �rst introduce important underlying concepts such as feature

maps, reproducing kernel Hilbert spaces, etc. before turning to how these constructs can

help to formulate a conditional independence test.

Feature maps

To introduce the usefulness of a feature map, consider the following problem. Terms used

loosely in this paragraph are precisely de�ned below. Imagine you want to distinguish

between two groups of subjects that you are given data about by using a linear classi�er,

i.e. a linear regression line that serves as a boundary between the two classes. If the

data looks like those in Figure 3.1(a), a linear classi�er will perform poorly since there

is no linear decision boundary that it could uncover. A solution to the problem lies in

mapping the data from two-dimensional input space to a higher-dimensional feature space

by introducing an additional feature z = x2 + y2 that complements existing features x

and y (here the map is from a two-dimensional to a three-dimensional space). In this

higher-dimensional space, there is a linear boundary that separates the two classes, see
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Figure 3.1: The rings data

3.1 Kernel methods

The central object of study in kernel methods (Schölkopf and Smola, 2001) is
the kernel function. Throughout this section, we assume that X is a compact
metric space.

Definition 3.1 (Kernel function). A symmetric function k : X × X → R is
a positive definite kernel function, or kernel, if for all n ≥ 1, x1, . . . , xn ∈ R,
and c1, . . . , cn ∈ R

n∑

i=1

cicjk(xi, xj) ≥ 0.

Each kernel k provides with a fixed feature map φk.

Definition 3.2 (Kernel representation). A function k : X × X → R is
a kernel if and only if there exists a Hilbert space H and a feature map
φk : X → H such that for all x, x′ ∈ X

k(x, x′) = 〈φk(x), φk(x
′)〉H,

We refer to φk(x) ∈ H as a kernel representation of x ∈ X .

Kernel representations often lack explicit closed forms, but we can access
them implicitly using the inner products 〈φk(x), φk(x

′)〉 computed as k(x, x′).
In general, there exists more than one feature map φk and Hilbert space H
satisfying k(x, x′) = 〈φk(x), φk(x

′)〉H, for a fixed given k. But, every kernel
k is associated to an unique Reproducing Kernel Hilbert Space (RKHS) Hk,
with corresponding unique canonical feature map k(x, ·) ∈ Hk, such that

k(x, x′) = 〈k(x, ·), k(x′, ·)〉Hk .

Figure 3.1: A non-linear classi�er. Panel (a): data can only be separated by a
nonlinear decision boundary, a linear algorithm fails. Panel (b) mapping the data to a
higher-dimensional space by introducing an additional feature z = x2 + y2 enables a linear
algorithm to separate the data, source: Lopez-Paz (2016, Figure 3.1)

Figure 3.1(b). This example is adopted from Lopez-Paz (2016).

Similarly to the linear classi�er in Figure 3.1(a) that does not succeed in distinguishing

between two classes that are separated by a nonlinear decision boundary in input space,

the (linear) covariance between two random variables does not succeed in detecting non-

linear statistical dependencies. Mapping the data from input to feature space enables the

exemplary classi�er to linearly describe the decision boundary in feature space despite it

being nonlinear in input space. Similarly, one can use the theory on reproducing kernel

Hilbert spaces (RKHS) to construct a representation of marginal and conditional probabil-

ity distributions in higher-dimensional feature space. The covariance operator between two

random variables in that feature space is then informative about nonlinear dependencies

in input space. In sum, any linear algorithm in high-dimensional feature space corresponds

to a nonlinear algorithm in input space. Crucially, inner products between feature space

representations can be estimated without knowing the exact feature representation itself

(the so-called `kernel trick'). We now turn to a formal de�nition of a RKHS and kernel

mean embedding of probability distributions.

Construction of the RKHS

To further elucidate the usefulness of RKHS representations, we proceed step-wise and

follow Schölkopf and Smola (2001) and Muandet et al. (2016) in their expositions. Since

a RKHS is a kind of Hilbert space and a Hilbert space is a vector space that possesses

an inner product, we start by spanning a vector space and de�ne an inner product on
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32 Kernels

Φ

. .
φ(x) φ(x')x x'

Figure 2.2 One instantiation of the fea-
ture map associated with a kernel is the
map (2.21), which represents each pattern
(in the picture, x or x ) by a kernel-shaped
function sitting on the pattern. In this sense,
each pattern is represented by its similar-
ity to all other patterns. In the picture, the
kernel is assumed to be bell-shaped, e.g., a
Gaussian k(x x ) exp( x x 2 (2 2)).
In the text, we describe the construction of
a dot product on the function space
such that k(x x ) Φ(x) Φ(x ) .

Substituting k(xi x j) for Ki j, we get the desired inequality.

We now show how the feature spaces in question are defined by the choice of
kernel function.

2.2.2 The Reproducing Kernel Map

Assume that k is a real-valued positive definite kernel, and a nonempty set. We
define a map from into the space of functions mapping into , denoted as

: f : , viaFeature Map

Φ :

x k( x) (2.21)

Here, Φ(x) denotes the function that assigns the value k(x x) to x , i.e.,
Φ(x)( ) k( x) (as shown in Figure 2.2).

We have thus turned each pattern into a function on the domain . In this sense,
a pattern is now represented by its similarity to all other points in the input domain

. This seems a very rich representation; nevertheless, it will turn out that the
kernel allows the computation of the dot product in this representation. Below,
we show how to construct a feature space associated with Φ, proceeding in the
following steps:

1. Turn the image of Φ into a vector space,

2. define a dot product; that is, a strictly positive definite bilinear form, and

3. show that the dot product satisfies k(x x ) Φ(x) Φ(x ) .

We begin by constructing a dot product space containing the images of the input
patterns under Φ. To this end, we first need to define a vector space. This is done
by taking linear combinations of the formVector Space

f ( )
m

∑
i 1

ik( xi) (2.22)

Here, m , i and x1 xm are arbitrary. Next, we define a dot product

Figure 3.2: Illustration of feature map Φ. Each data point x in input space is
mapped to a function φ(x) in feature space, which represents x in terms of its similarity
to all other data points. Figure credit: Schölkopf and Smola (2001, p. 32)

this space. In particular, we span the vector space as convex combination of a given

positive de�nite kernel function. This subsequently implies the `reproducing property' of

the RKHS.

1. Generalizing the example illustrated in Figure 3.1, we consider higher-dimensional

feature representations formalized as kernel functions. The Gaussian kernel, for

instance, de�ned as

k(v, v′) := exp
(
− ‖v − v

′‖2

λ

)
. (3.4)

for arbitrary vectors v and v′ and parameter λ, can serve as a higher-dimensional

feature representation. In particular, each data point x is mapped from input space

to higher-dimensional feature space where it is represented by its distance to all

other data points, i.e. k(·, x). This step is illustrated in Figure 3.2: each data point

is richly represented by its similarity (de�ned by the kernel) to all other data points.

Formally, we de�ne a feature map Φ from input space X to the space of functions

RX :

Φ : X → RX (3.5)

x 7→ k(·, x) (3.6)

where k is a positive-de�nite kernel. A positive-de�nite kernel is a kernel with an as-

sociated kernel matrix K, which has entries Kij := k(xi, xj), that is positive-de�nite.

Thus, each data point x is represented by a theoretically in�nite-dimensional vector

or, in other words, a function k(·, x). In practice, a data point x is represented by

an n-dimensional vector where n is the number of data points in the sample.

2. The next step in constructing an RKHS is opening the vector space. Consider linear
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combinations of the feature representations of the form

f(·) =
m∑

i=1

αik(·, xi) (3.7)

for αi ∈ R and samples x1, . . . , xm of input space X where m is an integer index.

3. Given a similarly constructed function

g(·) =
m′∑

j=1

βjk(·, x′j)

with βi ∈ R and samples x′1, . . . , x
′
m′ of input space X where m′ is an integer index,

we can de�ne an inner product between f and g as

〈f, g〉 :=
m∑

i=1

m′∑

j=1

αiβjk(xi, x
′
j) (3.8)

4. Then complete the space spanned by (3.8) by adding the limit points of sequences

in the norm de�ned by ||f || :=
√
〈f, f〉, the resulting space H is called reproducing

kernel Hilbert space (RKHS).

This construction implies the `reproducing property' of the positive-de�nitive kernel

that gives rise to H:
〈k(·, x), f〉 = f(x). (3.9)

In particular,

〈k(·, x), k(·, x′)〉 = 〈Φ(x),Φ(x′)〉 = k(x, x′). (3.10)

This result shows that the inner product of possibly in�nite-dimensional feature rep-

resentations, 〈Φ(x),Φ(x′)〉, can be evaluated through the kernel k without making the

feature representation explicit (the so-called `kernel trick' in machine learning). Any algo-

rithm or other data processing technique that relies on calculating inner products between

data representations can be `kernelized,' i.e. transformed into a nonlinear algorithm by

mapping the data into a higher-dimensional spaceH. The covariance, which can be de�ned
as a dot product, falls into this category.

Instead of representing a speci�c data point by means of a feature vector, we subse-

quently intend to represent a whole probability distribution in terms of a higher-dimensional

vector. One way to think about this procedure intuitively is to note that probability dis-

tributions can be characterized uniquely by an in�nite sequence of their moments. Thus,
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the elements of the in�nite-dimensional feature vector are populated by moments of in-

creasing order when embedding such a distribution in the RKHS, which gives rise to a

unique representation of the probability distribution.

Kernel mean embedding

The kernel mean embedding extends the concept of a feature map Φ to the space of

probability distributions. The map of a probability distribution to a RKHS is de�ned as

µ : M(X )→ H (3.11)

P 7→
∫

X
k(x, ·)dP(x) (3.12)

whereM(X ) consists of all probability measures on a measurable space X and the integral

is a Bochner integral. Such a map of probability distribution P is denoted µP and contains

information on all moments of the random variable P if k(·, ·) ful�lls some mild conditions.

For a speci�c class of kernels, called characteristic kernels, the map is injective meaning

that the distance of two distributions P and Q in H is zero if and only if the distributions

are the same: ||µP − µQ|| = 0 ⇔ P = Q. Many widely-used kernels such the Gaussian,

Laplacian, Exponential, Poisson etc. are shown to be characteristic (Muandet et al., 2016,

Section 3.3.1).

So far, the theory on RKHSs and kernel mean embeddings receives scant attention in

the econometrics literature, albeit with notable exceptions. Carrasco et al. (2007) discuss

the usefulness of RKHS theory in cases where the researcher has an in�nite number of

moment conditions that they want to use e�ciently. This seemingly rare situation might

occur when the moment conditions can be expressed as a function, i.e. a vector of in�nite

length. For instance, Carrasco and Florens (2000) further generalize (already) generalized

method of moments estimators to account for in�nitely many moment conditions. To

analyze the in�nitely many moment conditions requires inverting a covariance operator.

Akin to the procedure described here, they show that the generalized inverse of such op-

erator only exists in the RKHS. Singh, Rahul; Sahani and Gretton (2019) study the use

of kernel methods in the context of instrumental variable (IV) methods. They use kernel

mean embeddings of the conditional distribution of the covariates given the instrument

to propose a nonlinear extension of linear IV implementations. Grünewälder et al. (2012)

analyze connections between kernel mean embeddings and vector-valued functions to an-

alyze Markov decision processes. Flaxman et al. (2015) use kernel mean embeddings to

analyze who cast their votes for Obama in the 2012 US presidential election.
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Cross-covariance operators and unconditional independence

In addition to mean embeddings, covariance and cross-covariance operators can be de�ned

on the RKHS (Baker, 1973; Fukumizu et al., 2004). These are essential for the formulation

of conditional independence tests. To see the connection between the expressive power of

the RKHS and the di�cult task of (nonlinear) independence testing, consider the result

of Rényi (1959), who shows that the two random variables U and X are independent if

and only if the maximal covariance is zero:

sup
f,g

Cov(f(X), g(U)) = 0⇔ X ⊥⊥ U. (3.13)

However, the space of functions that one needs to search over is too large for the result

to be of practical use. Gretton et al. (2005) address this problem and show that a RKHS

generated by a universal kernel is su�ciently large for the result to hold and su�ciently

small for search to be possible (the universality of the kernel relates to the denseness of

the RKHS into the space of bounded continuous functions).

Consider an RKHS Hx with positive de�nite kernel k : X × X → R where X is the

domain of X and corresponding feature representation φ(x) ∈ Hx. Analogously, we de�ne

a second RKHS, Hu, with kernel l : U × U → R where U is the domain of U and feature

map ψ on Hu. Now, we can de�ne the cross covariance operator CXU : Hu → Hx as

CXU : = EXU [(φ(x)− µPX )⊗ (ψ(u)− µPU )]

= EXU [φ(x)⊗ ψ(u)]− µPX ⊗ µPU

= µPXU − µPX ⊗ µPU

(3.14)

where the expectation is taken over the joint distribution of (X,U), cf. eq. (3.12).

De�ne the Hilbert-Schmidt Independence Criterion (HSIC) as the squared Hilbert-

Schmidt norm of the cross-covariance operator CXU (Gretton et al., 2007):

HSIC(PXU ,Hx,Hu) := ‖CXU‖2
HS =

∑

j

λ2
j (3.15)

where λj are all j eigenvalues of CXU .

If the product kernel k(·, ·)× l(·, ·) is a characteristic kernel on X × U , i.e. the map µ

is injective, one can show the following central result:

HSIC(PXU ,Hx,Hu) = 0⇔ X ⊥⊥ U. (3.16)

For the estimation of (3.15) and its asymptotic distribution see P�ster et al. (2018).
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For the implementation of the proposed method, a test for conditional independence

is needed. We turn to a formalization of such a test in the following. The discussion of an

unconditional independence test serves to �x ideas that continue to be relevant.

Partial cross-covariance operators and conditional independence

A natural next step to build a test for conditional independence is to rely on a char-

acterization of conditional independence in terms of a conditional cross covariance oper-

ator C(X,U)|W of (X,U) given W , i.e. an extension of the cross covariance operator in

eq. (3.14) to the case with conditioning variables. Indeed, Fukumizu et al. (2008) show

C(X,U)|W = 0⇔ X ⊥⊥ U |W . However, the distribution of that conditional cross covariance

operator under the null of conditional independence is di�cult to derive, which � so far �

precludes its use for hypothesis testing.

However, an analogy to the characterization of conditional independence for jointly

Gaussian variables in terms of vanishing partial correlation shows how to make progress.

To illustrate, �rst note that, for jointly Gaussian variables (Z1, Z2, ZW ), the conditional

independence, Z1 ⊥⊥ Z2|ZW can be characterized as the correlation between Z1|ZW and

Z2|ZW being zero. In other words, since independence and correlation coincide for jointly

Gaussian variables, one can conclude from the partial correlation between Z1 and Z2 given

ZW going to zero that Z1 ⊥⊥ Z2|ZW . Partial correlation is a linear concept de�ned by

the orthogonality of linear maps of Z1 and Z2 on the space orthogonal to ZW . It can

only characterize conditional independence for jointly Gaussian variables. This limited

applicability to jointly Gaussian variables lies in the linearity of the underlying maps.

Intuitively, one can extend the results to apply to nonlinear dependence of arbitrarily dis-

tributed random variables if such maps can be described more �exibly. We have seen how

maps of data and whole probability distributions into higher-dimensional RHKS enables

the use of linear algorithms to study non-linear relationships. This reasoning also under-

lies the following characterization of, and test for, conditional independence for arbitrarily

distributed random variables.

Throughout the remainder of this section, we consider continuous random variables

X, U and W with domains X , U and W , and with positive de�nite kernels kX , kU , and

kW de�ned on these domains. These give rise to RKHSs HX , HU and HW respectively.

We make use of the notation X̃ = (X,W ) and Ũ = (U,W ). De�ne kX̃ = kX × kW and

corresponding RKHS HX̃ .
First, consider a result due to work by Daudin (1980), who characterizes conditional

independence as partial correlation of appropriate functions in appropriate function spaces
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being zero. Consider, L2 function spaces

FX̃ := {f ∈ L2
X̃
| E[f(X̃)|W ] = 0}, (3.17)

FU := {g|g(U,W ) = g′(U)− hg′(W ), g′ ∈ L2
U} (3.18)

where, for an arbitrary Z, L2
Z denotes the space of square integrable functions of Z, hg′(W )

is a nonlinear regression function of g′(U) on W .

For any function f̃ ∈ L2
X̃
in FX̃ de�ne

f(X̃) := f̃(X̃)− hf̃ (W ), (3.19)

where hf̃ is a nonlinear regression function of f̃(X̃) on W .

With these de�nition, Daudin (1980) shows that

sup
f,g

E[f(X̃)g(Ũ)] = 0⇔ X ⊥⊥ U |W. (3.20)

The applicability of Daudin's result, similar to the one by Rényi (1959), is limited in

practice because the considered L2 space of functions does not admit a concise expression

for E[f(X̃)g(Ũ)]. Kun Zhang et al. (2011) show, similar to Gretton et al. (2005) w.r.t. eq.

(3.13) above, that restricting function classes of f and g to lie in RKHSs HX̃ and HU is

su�cient to make Daudin's result in eq. (3.20) operational in practice. Speci�cally, they

de�ne a partial cross-covariance operator as

CX̃U ·W := CX̃U − CX̃WC−1
WWCWU (3.21)

and show

KCI(PXUW ,HX̃ ,HU) := ‖CX̃U ·W‖2
HS = 0⇔ X ⊥⊥ U |W (3.22)

which is the KCI test statistic we use in the subsequent algorithmic implementation. For

the derivation of the asymptotic distribution see Kun Zhang et al. (2011) and Strobl et al.

(2019).

In sum, the idea of feature representations motivates the map of the distributions

of X and U conditional on W into higher-dimensional spaces where linear correlations

correspond to nonlinear dependencies in original space. The KCI test statistic is a central

component of the algorithm to infer causal direction presented in the following.
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3.2.3 Algorithmic implementation

Hoyer et al. (2009) and Mooij et al. (2016) discuss inference of the causal direction between

two random variables (cause and e�ect) from observational data. Peters et al. (2014)

constitutes a theoretical extension of these methods to more than two variables. The

paper at hand falls between these two strands as it accounts for more than two variables,

yet its primary concern is the causal directionality between a subset of just two of them.

The remaining variables W serve as controls.

The theory implies an independence of errors and the covariate in the causal model;

whereas, an independence between the errors and the covariate does not hold in the

anticausal model. The algorithm involves testing the independence between errors and

covariate conditional on W in both causal and anticausal model. Ideally, the test would

conclude with the following decisions: i) if independence can be rejected at a pre-speci�ed

signi�cance level in one model but not in the other, one would conclude that the latter

model represents the correct causal relation, ii) if independence is rejected in both models,

one would conclude that the relation between X and Y is confounded, and iii) if inde-

pendence cannot be rejected in either model, one would conclude that the test does not

have su�cient power to decide on the causal direction. It is not possible to implement

such a strategy in practice because the true errors are unobserved and the practitioner

has to rely on estimated errors. Speci�cally, the practitioner does not have a sample of

U := Y − h(X,W) in eq. (3.1) at their disposal and, therefore, must rely on estimated

errors Û := Y − ĥ(X,W), and the respective estimated errors of the model in eq. (3.3), to

investigate which model is correct. That these residuals are estimated and, in particular,

that they depend on the estimated ĥ, poses a challenge that we discuss now.

Mooij et al. (2016) and Hoyer et al. (2009) propose randomly splitting the available

data D = {Yi, Xi,Wi}ni=1 in training and test sets, denoted Dtr = {Yi, Xi,Wi}n/2i=1 and

Dte = {Y ′i , X ′i,W′
i}ni=(n/2)+1, respectively. Dtr is used to get an estimate ĥ of the true

regression function h. Dte is then used to get estimates ε̂′ := Y ′ − ĥ(X ′,W′) of the true

errors ε. An error in the estimated ĥ induces a dependence of ε̂′ and X ′ (conditional

on W′) even though ε and X are truly independent (conditional on W). Consequently,

conventional thresholds for the independence test tend to be too loose and would ideally

incorporate the fact that ĥ is estimated. Speci�cally, for a conventional threshold of,

say, α∗ = 0.05 the empirical rejection rate will be larger than α∗ in the causal model even

though under H0 we have that U ⊥⊥ X|W, which should lead to an empirical rejection rate

roughly equal to α∗. To achieve an empirical size of α∗, one needs to use a threshold α =

α∗×λα with 0 < λα < 1. There are no theoretical results on how to choose λα to account
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for the dependence of ε̂′ and X ′.2 However, Mooij et al. (2016) show that one can infer

the correct directionality under additional assumption that the causal or the anticausal

model exist. Therefore, the identi�ability result in Theorem 3.2.1, which states that either

causal or anticausal model, but not both, can satisfy the independence of the error with

the covariate, in combination with the existence assumption in Assumption 3.2.3, which

states that either causal or anticausal model exist, allows us to infer the directionality

with Algorithm 1.

In particular, under Assumption 3.2.3, one can infer that the model with the lower

KCI test statistic (i.e. a larger p-value of the conditional independence test) is the correct

causal model, thereby circumventing the lack of theoretical guidance about an appropriate

threshold. Making this assumption comes at a cost; namely, a procedure that relies on

comparing two test statistics can never conclude that there is not enough information in

the data to decide on the causal direction. In other words, such a procedure will never

conclude that there is a lack of power to make a decision. However, we show in subsequent

Monte Carlo simulations that the procedure almost always picks the correct causal model.

Assumption 3.2.3 is strong; yet, if one is willing to make it, the probability of inferring

the wrong direction is very low.

A comment on the sample splitting procedure follows. We compare the sample split-

ting procedure proposed above to an alternative sample splitting procedure. For sim-

plicity, we neglect the conditional nature of the applied tests in this paragraph. In this

alternative sample splitting procedure Dtr is used to estimate both h and the residu-

als ε̂ := Y − ĥ(X,W). The independence test is then implemented by using ε̂ and

Dte = {X ′i,W′
i}ni=(n/2)+1. Here, ε̂ and X ′i are draws of two independent random vari-

ables, by construction. Moreover, in this alternative approach paired sample tests cannot

be used. However, in order to �nd evidence that favours either the causal or anticausal

model, we need to rely on paired samples of the estimated residual and the covariate, in

both the causal and anticausal models. If the alternative sample splitting were used, the

estimated errors were independent of the covariate in both causal and anticausal model by

construction yielding no insight into the causal direction.

2Simulation studies, which are not replicated here, show that λα depends on the type of distribution
that the true error follows. Since there is no way for a practitioner to get a hold on that error distribution,
it is impossible to propose rules of thumb, substantiated by simulation excercises, to indicate the level of
λα as a function of observable or estimable quantities.
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Data: D = {Yi, Xi,Wi}ni=1

Output: Decision whether true causal model is X → Y or Y → X

1 Step 1: Normalize data to have mean equal to zero and variance equal to one.

2 Step 2: Randomly split data in half to form training Dtr = {Yi, Xi,Wi}n/2i=1 and

test set Dte = {Y ′i , X ′i,W′
i}ni=(n/2)+1

3 Step 3: Estimate generalized additive models (GAMs) based on Dtr
4 GAM1: Y = h(X,W) + U , call resulting estimate ĥ

5 GAM2: X = h̃(Y,W) + Ũ , call resulting estimate ˆ̃h

6 Step 4: calculate residuals based on Dte
7 Û := Y ′ − ĥ(X ′,W′), and

8
ˆ̃U := X ′ − ˆ̃h(Y ′,W′)

9 Step 5: Test conditional independence with KCI test (based on residuals from

Step 4)

10 use Û , X ′ and W′ to test U ⊥⊥ X|W with KCI test; call resulting test statistic

KCIcausal

11 use ˆ̃U , Y ′ and W′ to test Ũ ⊥⊥ Y |W with KCI test; call resulting test statistic

KCIanticausal

12 Step 6: Decide on causal direction

13 if KCIcausal < KCIanticausal then

14 accept X → Y as correct model

15 else if KCIcausal > KCIanticausal then

16 accept Y → X as correct model

17 else if KCIcausal = KCIanticausal then

18 inconclusive test

19 end

Algorithm 1: Reverse causality test

3.3 Monte Carlo simulations

In order to understand the sensitivity of the algorithm with respect to the nonlinearity of

the function relating the cause to its e�ect we introduce a parameter, τ , that controls the

strength of this nonlinearity. Furthermore, we want to understand the robustness of the

algorithm to heteroskedasticity w.r.t. a third variable W . For this purpose, we introduce

a parameter ρ, which controls the strength of the heteroskedasticity.

We simulate the following data for τ ∈ {0, 1}, ρ ∈ {0, 1}, n ∈ {500, 1000}, and 500
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Monte Carlo draws:

(X,W ) ∼ N (0, I2) (3.23)

Y = κ(X,W, τ) + U (3.24)

where U is de�ned as

U ∼ N (0, (1 + f(W ))ρ) (3.25)

and f is the density function of W .

Each ρ-τ -combination is implemented with the following speci�cations for κ(·, τ) for

each i = 1, . . . , n:

κ1(Xi,Wi, τ) = Xi + τX3
i +Wi (3.26)

κ2(Xi,Wi, τ) = Xi + τ sin(Xi + π/2) +W +W 2
i /max{W 2

1 , . . . ,W
2
n} (3.27)

To explore the robustness of our results with respect to the distribution of the error U ,

we run the simulation with errors drawn from sub- and super-Gaussian distribution by

raising the draws in (3.25) to q while keeping sign and variance. We estimate both causal

and anticausal models with a Generalized Additive Model using smoothing splines. See

Algorithm 1. The results of these Monte Carlo studies are found in Tables 3.1 and 3.2.

When the relationship between X and Y is linear, i.e. τ = 0, the algorithm randomly

chooses between the two directions. This is consistent with the theory since the causal

direction is not identi�able in the linear case. It also shows the implication of the lack

of theoretical guidance for choosing λα (see discussion above). Note that the direction is

identi�able in the linear case with a non-Gaussian error distribution, see also Appendix

3.6.2 and 3.6.3. As soon as the relation between cause and e�ect becomes non-linear,

i.e. τ 6= 0, the algorithm makes the correct decision in more than 95% of the cases. For

instance, when n = 1000, the relation between cause and e�ect is nonlinear (τ = 1) the

algorithm arrives at the correct conclusion in 98% of the Monte Carlo runs, regardless of

the level of heteroskedasticity and q. We show that the results remain robust to di�erent

error variances and q in Appendix 3.6.2.

In sum, two observations are worth stressing. First, the results show that the algorithm

has power when cause and e�ect are related non-linearly. Second, the performance of the

algorithm does not su�er from heterskedastic errors w.r.t. W . Next, we turn to an

empirical illustration of the algorithm.
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Table 3.1: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ1(X,W, τ) +U × 1 where U ∼ N (0, (1 + f(W ))ρ), where f is the probability density
function of W. U raised to q while keeping its sign and variance. The model where X is
causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.774 0.226

1.0 0.428 0.5720
1.2 0.652 0.348

0.8 0.702 0.298

1.0 0.456 0.544
0

1
1.2 0.700 0.300

0.8 0.890 0.110

1.0 0.918 0.0820
1.2 0.900 0.100

0.8 0.916 0.084

1.0 0.930 0.070

500

1

1
1.2 0.932 0.068

0.8 0.888 0.112

1.0 0.468 0.5320
1.2 0.840 0.160

0.8 0.918 0.082

1.0 0.466 0.534
0

1
1.2 0.816 0.184

0.8 0.988 0.012

1.0 0.996 0.0040
1.2 0.976 0.024

0.8 0.990 0.010

1.0 0.988 0.012

1000

1

1
1.2 0.990 0.010
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Table 3.2: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ2(X,W, τ) +U × 1 where U ∼ N (0, (1 + f(W ))ρ), where f is the probability density
function of W. U raised to q while keeping its sign and variance. The model where X is
causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.680 0.320

1.0 0.450 0.5500
1.2 0.634 0.366

0.8 0.734 0.266

1.0 0.450 0.550
0

1
1.2 0.606 0.394

0.8 0.982 0.018

1.0 0.984 0.0160
1.2 0.974 0.026

0.8 0.986 0.014

1.0 0.974 0.026

500

1

1
1.2 0.984 0.016

0.8 0.928 0.072

1.0 0.432 0.5680
1.2 0.834 0.166

0.8 0.922 0.078

1.0 0.486 0.514
0

1
1.2 0.834 0.166

0.8 1.000 0.000

1.0 0.998 0.0020
1.2 1.000 0.000

0.8 1.000 0.000

1.0 1.000 0.000

1000

1

1
1.2 0.998 0.002
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3.4 Empirical illustration

We use data from the Survey of Income and Expenditure (Einkommens- und Verbrauchsstich-

probe, EVS), which is a voluntary survey of roughly 60,000 households in Germany, to

test the proposed algorithm. We consider the following variables: income, expenditure,

highest educational attainment of the main earner, highest professional training of the

main earner, and age group of the main earner. We analyze the causal direction between

income and work experience, which we proxy by age group.

Hump-shaped income pro�les over the life-cycle are well-documented in labor eco-

nomics (Heckman et al., 2006). It is interesting to test the algorithm for a cause-e�ect

pair where the causal direction is a priori clear. Since work experience mechanically in-

creases over the life-cycle, it can be credibly assumed not to be caused by income changes.

Therefore, we analyze the directionality between income and age where age can be inter-

preted as proxy for work experience. We posit the correct causal model to be

Y = h(E,Z) + εy, (3.28)

where experience E is causing income Y . Vice versa, the anticausal model in which income

is causing work experience is given as

E = h̃(Y,Z) + εe (3.29)

where in each model Z contains all remaining covariates as control.

We aim to alleviate the problem that we are likely to omit many crucial confounding

variables by splitting the data in nq quantiles of the income distribution. At least part

of the omitted confounding factors can be assumed to be �xed within given quantiles as

they collect individuals with roughly similar life-styles etc. This argument applies more

strongly the larger the number of quantiles the income distribution is split in. On the

other hand, the larger nq the smaller the number of observations within each quantile and

the lower the power of the test to prefer the correct causal direction. Therefore, we show

results for a set of nq = {4, . . . , 20} quantiles.3 For each number of quantiles nq, we run

the test in each of these nq quantiles and plot the share of quantiles in which the algorithm

prefers either model (note that the x-axis in Figure 3.3 refers to the number of quantiles

the income distribution is split in, not the quantiles as such). For example, the bar above

nq = 5 in Figure 3.3 denotes that in 3 of the 5 quantiles, i.e. 60%, the algorithm concludes

3The KCI test, which forms an important part of the algorithm, requires the inversion of n×n matrices
where n is the number of observations. Constraints on local computing power preclude running the test
on the whole sample with roughly 60,000 observations or with nq = {1, 2, 3}.
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that experience is causing income. Regardless of nq, the test always favours the model

where work experience, proxied by age, is causing income in at least 50% of quantiles.

Since income is one of the potential causes in this application, splitting the distribu-

tions into quantiles of income has the drawback that the variation in income that the

algorithm can use within each quantile is mechanically reduced as nq increases. Therefore,

we replicate the analysis by splitting the data into quantiles of the expenditure distribu-

tion and controlling for income as one of the control variables in Z. The results can be

seen in Figure 3.4. The algorithm now favours the causal model in more than 75% of the

quantiles for most nq.

In sum, this application documents that our algorithm gives economically meaningful

results in empirical applications.
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Does experience cause income or vice versa?

Figure 3.3: This Figure shows the results of the empirical application of Algorithm 1 to
the question whether work experience is causing income or vice versa. The x-axis shows
the number of quantiles that the income distribution is split in (not to be mistaken with the
quantiles as such). The stacked bars show the shares of the respective number of quantiles
the algorithm decides the causal or anticausal model is the correct model.
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Figure 3.4: This Figure shows the results of the empirical application of Algorithm 1 to
the question whether work experience is causing income or vice versa. The x-axis shows
the number of quantiles that the expenditure distribution is split in (not to be mistaken
with the quantiles as such). The stacked bars show the shares of the respective number of
quantiles the algorithm decides the causal or anticausal model is the correct model.

3.5 Conclusion

Endogeneity is a common threat to causal identi�cation in econometric models. Reverse

causality is one source of such endogeneity. We build on work done by Hoyer et al. (2009)

and Mooij et al. (2016) who have shown that the causal direction between two variables

X and Y is identi�able in models with additively separable error terms and nonlinear

function forms. We extend their results by allowing for additional control covariates W

and heteroskedasticity w.r.t. them.

An empirical application underscores the feasibility of the proposed algorithm. We

analyze the causal link between income and work experience, as proxied by age, and

show that our procedure provides suggestive evidence that the true causal direction is

from work experience to income. Though substantively not surprising precisely because

income mechanically cannot causally in�uence work experience, it is encouraging that our

algorithm can distinguish between the causal directions without resorting to instruments

or other sources of exogenous variation.

A central problem that must be addressed in future research is how to adjust the critical

values of the involved conditional independence tests, i.e. how to choose λα. Achieving
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progress in this direction will make Assumption 3.2.3 unnecessary and would increase the

usefulness of the provided test.
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3.6 Appendix

3.6.1 Irreversibility proof

The goal is to infer from observational data whether the model in eq. (3.1) or its anticausal

version,

X = h̃(Y,W) + ε̃σ̃(W)︸ ︷︷ ︸
Ũ

with ε̃ ⊥⊥ (Y,W), (3.30)

is the correct causal model.

Proof of Theorem 3.2.1. We prove that the anticausal model with independence as-

sumption, ε̃ ⊥⊥ (Y,W), does not exist in general, if the causal model ful�lls the corre-

sponding independence assumption ε ⊥⊥ (Y,W). We complement Hoyer et al. (2009) by

showing that irreversibility can be proven in the presence of errors that are heteroskedastic

w.r.t. a set of additional covariates W.

Step 1. Referring to model (3.30), we derive an expression for the conditional density of

X|Y,W:

P (X ≤ x|Y = y,W = w) = P (h̃(Y,W) + ε̃σ̃(W) ≤ x|Y = y,W = w)

= P

(
ε̃ ≤ x− h̃(Y,W)

σ̃(W)
|Y = y,W = w

)

= P

(
ε̃ ≤ x− h̃(y,w)

σ̃(w)

)
(3.31)

where the last step uses the independence assumption ε̃ ⊥⊥ (Y,W). Thus, we conclude

fX|Y,W(x|y,w) = fε̃

(
x− h̃(y,w)

σ̃(w)

)
. (3.32)

Assuming that the anticausal model (3.30) does indeed exist, we can express the joint

density of x and y conditional on w as

fX,Y |W(x, y|w) = fε̃

(
x− h̃(y,w)

σ̃(w)

)
fY |W(y|w). (3.33)
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We de�ne ν̃ := log fε̃, η := log fY |W and

π(x, y,w) : = log f(x, y|w)

= η(y,w) + ν̃

(
x− h̃(y,w)

σ̃(w)

)
.

(3.34)

Taking partial derivatives yields

∂2π(x, y,w)

∂x∂y
= −ν̃ ′′

(
x− h̃(y,w)

σ̃(w)

)
h̃′(y,w)

σ̃(w)2
(3.35)

and

∂2π(x, y,w)

∂x2
= ν̃ ′′

(
x− h̃(y,w)

σ̃(w)

)
1

σ̃(w)2
. (3.36)

which, in turn, results in

∂2π(x,y,w)
∂x2

∂2π(x,y,w)
∂x∂y

= − 1

h̃′(y,w)
. (3.37)

Therefore, taking the derivative of the ratio (3.37) w.r.t. x, we conclude

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
= 0. (3.38)

Step 2. Now, we derive similar restrictions for the causal model, (3.1).

First, we derive an expression for the conditional density of Y |X,W. Similar to (3.31),

we can write

P (Y ≤ y|X = x,W = w) = P (h(X,W ) + εσ(W) < y|X = x,W = w)

= P

(
ε ≤ y − h(x,w)

σ(w)

)
(3.39)

which uses the independence assumption ε ⊥⊥ (X,W). This lets us conclude

fY |X,W(y|x,w) = fε

(
y − h(x,w)

σ(w)

)
. (3.40)
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Therefore, the conditional density of X, Y |W can be expressed as

fX,Y |W(x, y|w) = fε

(
y − h(x,w)

σ(w)

)
fX|W(x|w) (3.41)

with fX|W and fε probability densities on R.

We de�ne ν := log fε, ξ := log fX|W and

π(x, y,w) : = log fX,Y |W(x, y|w)

= ξ(x,w) + ν
(y − h(x,w)

σ(w)

)
.

(3.42)

Taking partial derivatives, we conclude

∂2π(x, y,w)

∂x2
=
h′2(x,w)

σ(w)2
ν ′′
(
y − h(x,w)

σ(w)

)
− h′′(x,w)

σ(w)
ν ′
(
y − h(x,w)

σ(w)

)
+ ξ′′(x,w)

=: φ1(x, y,w) + ξ′′(x,w)

(3.43)

and

∂2π(x, y,w)

∂x∂y
= −ν ′′

(
y − h(x,w)

σ(w)

)
h′(x,w)

σ(w)2

=: φ2(x, y,w).

(3.44)

In the following derivations we omit the arguments (x,w) for ξ, and (x, y,w) for φ1

and φ2. The ratio of eqs. (3.43) and (3.44) is given by

∂2π
∂x2

∂2π
∂x∂y

=
φ1(x, y,w) + ξ′′(x,w)

φ2(x, y, w)
(3.45)

which we derive w.r.t. x to conclude

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=
ξ′′′

φ2

− ξ′′φ′2
φ2

2

+
φ′1φ2 − φ1φ

′
2

φ2
2

. (3.46)

If a anticausal model exists, we know that (3.46) must equal zero (from (3.38), which is

derived from the anticausal model). By setting (3.46) equal to zero and given h, ν, we ob-

tain for each �xed y and w, which we denote ȳ and w̄, respectively, a linear inhomogenous
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di�erential equation for ξ:

ξ′′′(x, w̄) = ξ′′(x, w̄)G(x, ȳ, w̄) +H(x, ȳ, w̄). (3.47)

where G(x, y,w) =
φ′2
φ2

and H(x, y,w) =
φ1φ′2−φ′1φ2

φ2
. De�ning z := ξ′′, we have

∂z(x, w̄)

∂x
= z(x, w̄)G(x, ȳ, w̄) +H(x, ȳ, w̄). (3.48)

Finally, given such a solution for z(x, w̄) exists, it is given by

z(x, w̄) = z(x0, w̄)e
∫ x
x0
G(x̃,ȳ,w̄)dx̃

+

∫ x

x0

e
∫ x
x̂ G(x̃,ȳ,w̄)dx̃H(x̂, ȳ, w̄)dx̂ (3.49)

Thus, �the set of all functions satisfying linear inhomogenous di�erential [eq. (3.47)] is

a 3-dimensional a�ne space: Once we have �xed ξ(x0), ξ′(x0), ξ′′(x0) for some arbitrary

x0, ξ is completely determined. Given �xed f and ν, the set of all ξ admitting a anticausal

model is contained in this subspace.� (Hoyer et al., 2009, after Theorem 1)

More intuitively, it is shown that causal and anticausal models can only exist simul-

taneously under speci�c circumstances. In fact, if the joint distribution of X and Y is

to allow for both a causal and a anticausal model, we show that the causal model has to

satisfy di�erential equation (3.47). This is a requirement that a generic causal model does

not ful�ll. What exactly do speci�c and generic refer to? The solutions of the di�erential

equation restrict the log density ofX to lie in a (speci�c) three-dimensional space, although

a priori the (generic) space of possible log marginal densities of X is in�nite-dimensional.

3.6.2 Further simulation results

In this section, we provide further simulation results. In particular, we replicate the

simulations discussed in the main part for di�erent variances of U . These results are

found in Tables 3.3 to 3.6.

The fact that the algorithm rejects the anticausal model despite the functional rela-

tionship between cause and e�ect being linear (τ = 0) when the error distribution is either

sub- or super-Gaussian (q ∈ {0.8, 1.2}) re�ects the identi�ability results of Shimizu et al.

(2006, see also Appendix 3.6.3).
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Table 3.3: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ1(X,W, τ)+U×1.1 where U ∼ N (0, (1+f(W ))ρ), where f is the probability density
function of W. U raised to q while keeping its sign and variance. The model where X is
causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.800 0.200

1.0 0.474 0.5260
1.2 0.698 0.302

0.8 0.792 0.208

1.0 0.468 0.532
0

1
1.2 0.708 0.292

0.8 0.948 0.052

1.0 0.930 0.0700
1.2 0.958 0.042

0.8 0.940 0.060

1.0 0.930 0.070

500

1

1
1.2 0.938 0.062

0.8 0.936 0.064

1.0 0.434 0.5660
1.2 0.846 0.154

0.8 0.934 0.066

1.0 0.458 0.542
0

1
1.2 0.866 0.134

0.8 0.996 0.004

1.0 0.990 0.0100
1.2 0.988 0.012

0.8 0.990 0.010

1.0 0.996 0.004

1000

1

1
1.2 0.990 0.010
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Table 3.4: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ2(X,W, τ)+U×1.1 where U ∼ N (0, (1+f(W ))ρ), where f is the probability density
function of W. U raised to q while keeping its sign and variance. The model where X is
causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.756 0.244

1.0 0.428 0.5720
1.2 0.672 0.328

0.8 0.750 0.250

1.0 0.476 0.524
0

1
1.2 0.688 0.312

0.8 0.972 0.028

1.0 0.954 0.0460
1.2 0.962 0.038

0.8 0.960 0.040

1.0 0.968 0.032

500

1

1
1.2 0.948 0.052

0.8 0.942 0.058

1.0 0.424 0.5760
1.2 0.838 0.162

0.8 0.936 0.064

1.0 0.426 0.574
0

1
1.2 0.872 0.128

0.8 0.998 0.002

1.0 0.998 0.0020
1.2 1.000 0.000

0.8 1.000 0.000

1.0 0.998 0.002

1000

1

1
1.2 1.000 0.000
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Table 3.5: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ1(X,W, τ) + U × 0.89 where U ∼ N (0, (1 + f(W ))ρ), where f is the probability
density function of W. U raised to q while keeping its sign and variance. The model where
X is causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.700 0.300

1.0 0.398 0.6020
1.2 0.654 0.346

0.8 0.748 0.252

1.0 0.426 0.574
0

1
1.2 0.680 0.320

0.8 0.910 0.090

1.0 0.916 0.0840
1.2 0.886 0.114

0.8 0.934 0.066

1.0 0.912 0.088

500

1

1
1.2 0.866 0.134

0.8 0.908 0.092

1.0 0.406 0.5940
1.2 0.814 0.186

0.8 0.884 0.116

1.0 0.472 0.528
0

1
1.2 0.818 0.182

0.8 0.980 0.020

1.0 0.984 0.0160
1.2 0.964 0.036

0.8 0.998 0.002

1.0 0.988 0.012

1000

1

1
1.2 0.984 0.016
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Table 3.6: This Table shows Monte Carlo results of the procedure to infer the causal
direction between two variables described in Algorithm 1. Underlying data is simulated as
Y = κ2(X,W, τ) + U × 0.89 where U ∼ N (0, (1 + f(W ))ρ), where f is the probability
density function of W. U raised to q while keeping its sign and variance. The model where
X is causing Y is the correct model. 500 Monte Carlo runs.

share of decision

n τ ρ q correct false

0.8 0.720 0.280

1.0 0.444 0.5560
1.2 0.644 0.356

0.8 0.740 0.260

1.0 0.414 0.586
0

1
1.2 0.642 0.358

0.8 0.986 0.014

1.0 0.996 0.0040
1.2 0.994 0.006

0.8 0.990 0.010

1.0 0.990 0.010

500

1

1
1.2 0.996 0.004

0.8 0.876 0.124

1.0 0.394 0.6060
1.2 0.824 0.176

0.8 0.904 0.096

1.0 0.406 0.594
0

1
1.2 0.824 0.176

0.8 1.000 0.000

1.0 1.000 0.0000
1.2 1.000 0.000

0.8 1.000 0.000

1.0 1.000 0.000

1000

1

1
1.2 1.000 0.000
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3.6.3 Linear Models with Additive Non-Gaussian Noise

Shimizu et al. (2006) prove the following theorem (in its multivariate form).

Theorem 3.6.1. Assume joint distribution f(X, Y ) admits the linear model

Y = αX + ε with ε ⊥⊥ X, (3.50)

then there exists β and a random variable ε̃ such that

X = βY + ε̃ with ε̃ ⊥⊥ Y (3.51)

if and only if ε and X are Gaussian.

The proof of Theorem 3.6.1 relies on the following results.

Lemma 3.6.2. Take A and B two independent variables, assume B to be nondetermin-

istic. Then B 6⊥⊥ B + A (Peters, 2008).

Furthermore, we rely on a characterization of Gaussian distributions due to Darmois

(1953), Skitovich (1954), and Skitovich (1962) who independently show the following re-

sult.

Theorem 3.6.3. Let X1, . . . , Xd be independent, non-degenerate random variables. If

there are nonvanishing coe�cients (∀i, ai 6= 0 6= bi), a1, . . . , ad, and b1, . . . , bd, such that

the two linear combinations

l1 = a1X1 + · · ·+ adXd

l2 = b1X1 + · · ·+ bdXd

(3.52)

are independent, then each Xi is normally distributed.

We proceed with the proof of Theorem 3.6.1 (cf. Peters et al., 2017, Appendix C.1).

Proof. (⇒) If X and ε are normally distributed

β :=
Cov(X, Y )

Cov(Y, Y )
=

αV ar(X)

α2V ar(X) + V ar(ε)
. (3.53)

De�ne ε̃ := X − βY . ε̃ and Y are uncorrelated by construction and, since they are jointly

Gaussian, it follows that they are independent.

(⇐) Assume that

Y = αX + ε, and

ε̃ = (1− αβ)X − βε
(3.54)
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are independent. Make a case distinction.

1. (1− αβ) 6= 0, and β 6= 0

Since Y ⊥⊥ ε̃ by assumption, Theorem 3.6.3 implies that X ⊥⊥ ε in the case at hand,

cf. eq (3.54). Therefore, fX,Y (x, y) is bivariate Gaussian.

2. β = 0

This implies X ⊥⊥ αX + ε, cf. eq (3.54), which contradicts Lemma 3.6.2.

3. 1− αβ = 0

This implies −βε ⊥⊥ αX + ε ⊥⊥, and thus ε ⊥⊥ αX + ε which contradicts Lemma

3.6.2.

This completes the proof.

Therefore, it is su�cient that ε or X is non-Gaussian for the causal direction to be

identi�able (Shimizu et al., 2006).



4 Structural Autonomy and Instrument

Validity

This chapter is single-authored, see Burauel (2020). I thank Uri Shalit, Max Schäfer, Johannes König,

and participants at the Association for the Advancement of Arti�cial Intelligence 2019 Spring Symposium

`Beyond Curve Fitting � Causation, Counterfactuals and Imagination-Based AI', the 2019 Barcelona GSE

Summer Forum `Machine Learning for Economics' workshop, and the DIW SOEP Applied Panel Analysis

Brownbag Seminar for their comments.

4.1 Introduction

Concerns about unobserved confounding, which can invalidate estimates of causal e�ects,

are widespread in non-experimental studies in economics and beyond. To estimate a causal

e�ect in spite of such problems, a common solution is to resort to instrumental variable (IV)

approaches. Researchers often rely on institutional knowledge or a policy change to justify

the strong assumptions that an IV must ful�ll to identify the sought causal e�ect. Such

justi�cations are seldom rigorously data-driven and often controversial. For instance, in a

study on the causal e�ect of economic development on democracy, Acemoglu et al. (2008)

use changes in past savings rates to instrument for income. They argue that, �it seems

plausible to expect that changes in the savings rate over periods of �ve to ten years should

have no direct e�ect on the culture of democracy, the structure of political institutions,

or the nature of political con�ict within society� (p. 822). That plausability argument

is augmented by controlling for a number of additional covariates and checking whether

the coe�cient of interest changes. Yet, this is shown to be an uninformative procedure in

observational studies (Oster, 2019).1 This underscores the necessity to develop and make

accessible statistical tests that can falsify critical IV assumptions.

Such assumptions are di�cult to evaluate since they involve unobservable quantities.

Nevertheless, the assumed causal structure in IV models implies testable constraints on

1The authors employ an overidenti�cation test, which assumes validity of at least one instrument and,
therefore, is rather mute.

74



Structural Autonomy and Instrument Validity 75

the outcome distributions of four groups of individuals de�ned by two observed quantities,

treatment status and instrument assignment. These are described by Balke and Pearl

(1997) and leveraged �rst by Kitagawa (2015) to propose a test for instrument validity.

Kitagawa (2015) writes that these testable implications are �optimal,� in the sense that

�any other feature of the data distribution cannot contribute to screening out invalid

instruments� (p. 2048). This paper provides a test that can detect invalid instruments

that does not rely on Balke and Pearl's testable implications and, therefore, shows that

other features of the data distribution do contain evidence to identify invalid instruments.

I argue that an instrumental variable that violates either the exclusion restriction or the

exchangeability assumption (such instruments are, henceforth, called invalid; vice versa,

an instrument ful�lling both these assumptions is called valid) implies a biased treatment

e�ect estimate. My approach builds on testing whether the instrument induces a biased

treatment e�ect estimate to infer whether the instrument is invalid. In particular, I build

on work by Janzing and Schölkopf (2018, JS henceforth), who show how to measure the

extent to which an observed statistical relationship in multivariate linear models is due to

confounding or genuine causation. Whereas Kitagawa (2015) relies on restrictions of the

outcome distribution of groups implied by the interaction of treatment and instrument

variables to test IV validity, my test relies on the genericity of the estimated parameter

vector w.r.t. the covariance matrix of independent variables. By applying the methodol-

ogy laid out in JS to the problem of testing IV validity, this paper constitutes a bridge

between the surging literature on causal modeling in the machine learning community and

traditional econometric problems (see Peters et al., 2017, for an overview of the former).

I apply the proposed test to data by Card (1995) to show its feasiblity in practice.

The paper is structured as follows. In Section 4.2, I provide an overview of the litera-

ture. In Section 4.3, I discuss the Principle of Independent Mechanisms that underlies the

methodology to measure degree of confounding in multivariate linear models proposed by

Janzing and Schölkopf (2018), which I also introduce on an intuitive level. This paper, in

turn, uses that methodology in the construction of an instrument validity test. In Section

4.4, I describe the IV model to be analyzed, discuss assumptions and links to the potential

outcomes framework. In Section 4.5, I present the test for instrument validity. In Section

4.6, I present results of Monte Carlo simulations. In Section 4.7, I provide an empirical

application. In Section 4.8, I discuss limitations and future extensions. Finally, in Section

4.9, I conclude. The Appendix provides, inter alia, a detailed discussion of Janzing and

Schölkopf (2018) (Appendix 4.10.1) and a discussion of the historic origins of the Principle

of Independent Mechanisms (Appendix 4.10.6).
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4.2 The literature

The Sargan (1958)-Hansen (1982) J-test for overidentifying restrictions arguably spawned

the substantial literature on speci�cation testing in instrumental variable (IV) models.

The J-test can be used to test instrument validity when there are more instruments than

endogenous regressors. Conditional on the assumption that at least one instrument is

valid, the test can help decide whether all instruments are valid. However, the test is not

able to detect a situation in which all instruments are invalid.

A more recent strand of the literature proposes nonparametric tests for exogeneity

in mean regressions. For example, Blundell and Horowitz (2007) propose a test for ex-

ogeneity in nonparametric regression analysis that does not rely on non-parametric IV

estimation (which often su�ers from slow convergence that, in turn, results in low power

of such tests). Two related papers that both study nonparametric IV models are Breunig

(2015) and Gagliardini and Scaillet (2017). The former uses series estimators to propose

a test for instrument exogeneity and the latter employ a Tikhonov Regularized estima-

tor of the functional parameter to minimize the distance criterion corresponding to the

moment conditions. Breunig (2020) extends these results to nonparametric quantile re-

gression with nonseparable structural disturbances. In broad terms, what unites many of

these papers is their reliance on testing whether the moment conditions implied by the in-

strumental variable model are ful�lled. By analyzing higher-order moments as well, these

models can resort to overidentifying restrictions even when there is only one instrument

per endogenous variable.

Although diverse methods to test the exclusion restriction in overidenti�ed IV models

are proposed, those for just-identi�ed models prove more elusive. Kitagawa (2015) is the

study closest to this paper as it is the �rst to propose a test for instrument validity in just

identi�ed models with a binary treatment and a binary instrument.

Kitagawa (2015) proposes testing the joint validity of the exclusion restriction, random

assignment of instrument, and the absence of de�ers (instrument monotonicity) by resort-

ing to testable implications derived by Balke and Pearl (1997) and Heckman and Vytlacil

(2005). These imply constraints on the outcome distributions of groups de�ned by the

interaction of their observed treatment and instrument status (denoted Ti and Zi respec-

tively). In particular, if the outcome distributions of individuals with Zi = 1, Ti = 0 and

Zi = 0, Ti = 0 or those of individuals with Zi = 1, Ti = 1 and Zi = 0, Ti = 1 intersect,

instrument validity is violated. More speci�cally, among treated individuals, the outcome

density of those who have received the instrument (Zi = 1) should lie above that of those

who have not (Zi = 0). Conversely, among control individuals, the outcome density of

those who have received the instrument (Zi = 1) should lie below that of those who have
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not (Zi = 0). Huber and Mellace (2015) and Mouri�é and Wan (2017) provide closely

related extensions to Kitagawa (2015). The former propose a similar test that relies on

mean potential outcomes rather than their distributions. Mouri�é and Wan (2017) build

on Kitagawa (2015) by representing his test in terms of moment inequalities conditional

on additional covariates.

The test proposed in this paper builds on a strand of the literature on the identi�ca-

tion of causal signals in non-experimental data. The underlying idea, which goes back to

Haavelmo (1944), is that invariance structures in observed data justify statements about

the underlying causal structure of the system under study. The idea that invariant struc-

tures are informative about causal structure is formalized from an information-geometric

perspective as the Principle of Independent Mechanisms (PIM) (Janzing et al., 2012; Pe-

ters et al., 2017). Janzing and Schölkopf (2018) show that traces of violations of PIM can

be discerned in the spectral measures of variance-covariance matrices in the presence of

unobserved confounding. In this paper, I show how this reasoning can be employed to

analyze instrument validity.

Thus, the main contribution of this paper is to develop a novel testing approach that

relies neither on moment restrictions nor on the potential outcomes framework. Instead,

my approach is based on the decomposition of the spectral measure of the covariates'

covariance matrix induced by the corresponding parameter vector. Since the present work

is based on the Principle of Independent Mechanisms, it adds to the growing literature

using this principle as a powerful concept to guide causal identi�cation (Peters et al., 2016;

Besserve et al., 2017; Besserve et al., 2018).

4.3 The Janzing-Schölkopf Methodology

4.3.1 The Principle of Independent Mechanisms and Generic Ori-

entation

The Principle of Independent Mechanisms (PIM) underlies many contributions to causal

inference from the machine learning community (for an overview see Schölkopf, 2019).2

It also serves as the basis for the test proposed in this paper. The notion goes back to

Haavelmo and Frisch, who identi�ed the search for and analysis of `autonomous relations'

as the ultimate goal of econometrics (see Appendix 4.10.6 for a brief historical overview).

Despite considering it an important guiding principle, they did not employ the notion of

autonomy as an empirical identi�cation technique as such. In fact, Frisch and Haavelmo

2In its bivariate incarnation, the principle is referred to as Independence between Cause and Mechanism
(ICM), see Appendix 4.10.6 for an illustration.
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Figure 4.1: Graphical representation of the IV model under study. T represents the bi-
nary treatment variable of interest. The red arrow from Z to Y indicates how the exclusion
restriction can be violated by Z's direct e�ect on Y . The double-edged arrow between U
and Z indicates how the exchangeability assumption can be violated when there is an un-
observed confounder in�uencing both Z and Y . If either of the two arrows is present, the
instrument is endogeneous and the treatment e�ect, τ , cannot be estimated consistently.
The proposed test investigates whether either of the two arrows is present.

argued that the autonomous nature of mechanisms cannot be identi�ed empirically but

must be motivated by (economic) theory. Although not all issues that preclude its use as

an identi�cation tool have been resolved, some important advances have been made in the

�rst two decades of the twenty-�rst century. The proposal by Janzing and Schölkopf (2018)

to estimate the degree of confounding in multivariate linear models, which is motivated

by the notion of autonomy, is an example of this progress.

To illustrate the idea, consider a set of random variables {V1, . . . , Vn} whose causal

relations can be represented in a directed acyclic graph (DAG) and an accompanying

structural equation model (Pearl, 2009). The joint probability distribution that is consis-

tent with the causal structure given in the DAG can be factorized as

P (V1, . . . , Vn) =
n∏

j=1

P (Vj|Pa(Vj)) (4.1)

where Pa(Vj), the parents of Vj, denotes the set of random variables that causally in�uence

Vj. Naturally, there are many other types of factorizations of the joint distribution:

P (V1, . . . , Vn) =
n∏

j=1

P (Vj|Vj+1, . . . , Vn). (4.2)

However, only the conditionals in eq. (4.1) are independent of each other (in a sense

made precise below) and, therefore, represent causal mechanisms that translate causes
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(or parents, Pa(Vj)) into their e�ects (children, Vj). Causes that do not have parents in

the model under investigation appear as marginal distributions in this formulation. Using

algorithmic information theory, Janzing and Schölkopf (2010) and Lemeire and Janzing

(2013) show that the conditionals on the right-hand-side are algorithmically independent

of each other if the DAG represents the causal structure. Intuitively, knowing about one of

the mechanisms does not provide any information about other mechanisms. In this sense

each of the mechanisms operates independently of the others. Since the formal deduction of

the mechanism's algorithmic independence relies on the theoretical notion of Kolmogorov

complexity that is uncomputable, it is not obvious how to conceive of the independence

of mechanisms in practice. Thus, the algorithmic independence of mechanisms amounts

less to a precise recipe for uncovering autonomous relations in observational data than to

a rigorous guiding principle to design algorithms that do.

To make the notion of `independent mechanisms' practically relevant, what precisely is

meant by `independence' must be de�ned in a way that allows data-driven quanti�cation.

Janzing and Schölkopf (2018) propose such a feasible interpretation of the Principle of

Independent Mechanisms. Moreover, they show a way to measure the degree of violation

of PIM in observational data. This degree of violation is a measure of confounding in

multivariate linear models. I spend the rest of this section discussing their notion of

independence and how they can infer a measure of confounding. Though this is not

an exhaustive discussion, the technical details are provided in Appendix 4.10.1, which

reproduces the arguments in JS as a courtesy to the reader.

To illustrate the proposal by Janzing and Schölkopf (2018), consider an illustrative

multivariate linear model Y = Xβ+ε and suppose that there is no unobserved confounding

such that multidimensional X is causing Y and the least-squares estimate of β is unbiased.

β is the crucial parameter representing the `mechanism' that translates the causes X into

e�ect Y . The causes, in turn, are represented by the covariance matrix of the right-hand-

side variables ΣXX. Independence between β and ΣXX amounts to β lying in a generic

orientation with respect to ΣXX. To give a counterexample, a vector aligning with the

�rst eigenvector of ΣXX would not lie in a generic orientation with respect to ΣXX.

To recap, what the PIM implies on an intuitive level is that the mechanism translating

cause into e�ect, represented by the true parameter vector, and the input to the mech-

anism or cause, represented by ΣXX, should be `independent'. JS make the concept of

`independence' operational by arguing that, if PIM is ful�lled, the true parameter vector

should lie in generic orientation with respect to the eigenspace spanned by the eigenvectors

of the covariates' covariance matrix, ΣXX. In technical terms, such genericity is de�ned

by the equivalence of two spectral measures: the spectral measure of ΣXX induced by the

true parameter vector (which results from weighting the eigenvalues of ΣXX by that true
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parameter vector) should be equal to the (unweighted) tracial spectral measure of ΣXX.

Technical details are presented in Appendix 4.10.1.

0.00

0.05

0.10

80 90 100

angles

de
ns

ity

confounded unconfounded

Figure 4.2: Illustration of genericity of vectors. This Figure shows density plots of
the angles between the least-squares parameter vector of both confounded and unconfounded
models with each of the d eigenvectors of the covariance matrix of the covariates. In the
unconfounded model, the least-squares parameter vector should lie in generic orientation
with respect to (the eigenspace spanned by the) eigenvectors of the covariance matrix of
the covariates. Genericity of two vectors can be understood as their dot product being
zero or their angle being 90 degrees. Thus, as expected, the distribution of angles in the
unconfounded case clusters around 90 degrees. Crucially, in the confounded case, the
distribution of angles is considerably wider. Thus, a trace of confounding is re�ected in
the less generic angles of the confounded parameter vector w.r.t. the eigenvectors; their
distribution is characterized by a more frequent divergence from the generic angle of 90
degrees. This illustrates the type of confounding signal that Janzing and Schölkopf (2018)
leverage in their methodology. Details on the simulation setting is found in Appendix
4.10.7; here I set d = 100, and n = 50000.

I now provide a graphical illustration of the traces that a violation of PIM leaves in

purely observational data. I simulate data from a confounded and an unconfounded model,

then compute the estimated parameter vector in each case (see Appendix 4.10.7 for details

on the simulation). In the unconfounded case, the estimated parameter vector represents

genuine causes and is not biased due to unobserved confounding. Following JS, that true

parameter vector should lie in generic orientation w.r.t. the eigenvectors of the covariance

matrix. Two vectors lie in generic orientation w.r.t. each other if their dot product is

zero (or the angle they span is ninety degrees). At �rst glance orthogonality seems like a
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speci�c, not generic, relation between any two vectors. However, it is important to note

that such genericity is a high-dimensional phenomenon: the angle between two randomly

drawn vectors approaches ninety degrees as the their dimensionality increases (see e.g.

Gorban and Tyukin, 2018). This is also why the asymptotic results in JS rely on the

dimensionality of the covariate space going to in�nity. Intuitively, two generic vectors do

not share any information since they are pointing in two orthogonal directions.

Therefore, I compute the angle between the estimated parameter vector and each of the

eigenvectors of the normalized covariance matrix of the covariates for both the confounded

and unconfounded setting.3 For both settings, I simulate data for d = 100 dimensions and

n = 50000 observations. Then, I plot the resulting distribution of angles between d

eigenvectors and the least-squares estimate β̂. Figure 4.2 plots these distributions for one

draw of the data; Figure 4.9 in Appendix 4.10.7 plots the same information for 100 draws of

the data. The distribution of angles for both settings centers around ninety degrees, which

is not surprising given our simulation setting. Crucially, one can see that the distribution

of angles is more widespread for the confounded setting. Consequently, in the presence

of confounding the estimated parameter vector lies in a less generic direction w.r.t. the

eigenvectors of the covariance matrix. This deviation from genericity is what Janzing and

Schölkopf (2018) exploit to measure the degree of confounding. Although the modeling

assumptions underlying both this graphical depiction as well as the JS methodology in

general are idealized, they do provide useful insight into the elusive nature of unobserved

confounding (see also Section 4.8).

4.3.2 Estimating the degree of confounding

I have presented an intuitive understanding that the orientation of a parameter vector

w.r.t. the eigenspaces of the corresponding ΣXX contains a confounding signal. JS propose

a method to measure deviations from the generic orientation to estimate the degree of

confounding in multivariate linear models. Technically, generic orientation is instantiated

as the equivalence of two spectral measures of ΣXX: �rst, the unweighted spectral measure

(called tracial spectral measure and denoted µTrΣXX
), and second, the spectral measure

weighted by a vector such as a parameter vector β (called vector-induced spectral measure

3For the purpose of illustration, I depart slightly from JS here. I compute the genericity of the estimated
parameter vector for every eigenvector in isolation. However, JS postulate a generic orientation w.r.t. the
eigenspace spanned by the collection of eigenvectors. In other words, they jointly consider the whole set
of eigenvector-eigenvalue pairs. Technically, they consider the distribution of eigenvalues weighted by the
estimated parameter vector. See Appendix 4.10.1.
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denoted µΣXX,β)
4:

generic orientation of β w.r.t. ΣXX ⇔ µTrΣXX
' µΣXX,β. (4.3)

Ideally, one would check whether the spectral measure induced by the estimated pa-

rameter vector is equivalent to that induced by the true parameter vector. However, the

latter is not estimable from observed data. Nevertheless, the equivalence of the tracial

spectral measure and that induced by the true parameter vector makes it possible to com-

pare the spectral measure induced by the estimated, and possibly biased, vector to the

estimable tracial spectral measure to infer a degree of confounding.

The crucial result in JS is that the computable spectral measure induced by the esti-

mated (and possibly biased) parameter vector µΣXX,β̂
can be decomposed into one part

that is due to confounding and a second part that represents genuine causation. More

speci�cally, µΣXX,β̂
can be decomposed into the spectral measure induced by the true pa-

rameter vector and that induced by the bias of the estimated parameter vector from the

true parameter vector. The relative sizes of these two components de�ne the degree of

confounding κ:

µΣXX,β̂
' (1− κ) µΣXX,β + κ µΣXX,(β̂−β). (4.4)

κ ranges from 0 (no confounding) to 1 (observed statistical relation is fully due to

confounding). Without confounding,

µΣXX,β̂
' µΣXX,β ' µTrΣXX

, (4.5)

i.e. β̂ is generically oriented.

Still, µΣXX,β and µΣXX,(β̂−β) are uncomputable since they involve the unknown true

β. However, the computable µΣXX,β̂
can be parameterized by a two-parametric family

of probability measures. The algorithm proposed by JS �nds those two parameter values

that minimize the distance between the two-parametric estimate and the observed spectral

measure induced by the estimated (and possibly) biased parameter vector. One of the

parameters is κ.

In the remainder of this paper, I take their method as given and show how it can

be employed as a workhorse in testing instrument validity. A detailed description of the

procedure to estimate the confounding strength κ is available in Appendix 4.10.1.

4I use ' in this and the following expressions in this subsection to indicate that the following statements
are not precise in the sense that I do not explicitly state the types of and rates of convergence as well as
conditions for convergence. See Appendix 4.10.1 for details.
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4.4 Model and assumptions

Building on Angrist et al. (1996), I consider the following latent index model,

Y = Xβ + τT + εY (4.6)

T ∗ = XβT + αZ + εT (4.7)

with T =





1 if T ∗ > 0

0 if T ∗ ≤ 0.
(4.8)

X represents a set of d covariates, T the binary treatment indicator, and Z a binary

instrument. β and βT are d-dimensional vectors and α a one-dimensional vector of coe�-

cients. τ is the causal e�ect of interest. εY and εT are unobserved structural errors. Y is

the outcome variable of interest. The di�erence between the model considered here and

Angrist et al. (1996) is the presence of covariates X.

Though I am considering a binary instrument in the paper at hand, I do not require

it in the theoretical development of the test, i.e. it can also be applied to in settings with

continuous instruments.

In this structural model, the object of interest is the true causal parameter τ . In

structural models, such parameters are also referred to as deep parameters, i.e. those

that are policy-invariant. Since the JS methodology e�ectively measures the degree of

autonomy of observed statistical relations, it is natural to theoretically embed the proposed

instrument validity test in a structural model framework such as eqs. (4.6)-(4.8).

The endogeneity problem is caused by a potential dependence of the structural error

terms. If Cov(εY , εT ) 6= 0, then Cov(T, εY ) 6= 0 and, consequently, T is not exogenous and

a naive estimate of τ will be biased. An instrumental variable Z that ful�lls the following

assumptions identi�es τ and can be used to estimate it consistently.

Assumption 4.4.1. The instrument Z correlates neither with εY nor with εT :

Cov(Z, εY ) = 0 and Cov(Z, εT ) = 0. (4.9)

Assumption 4.4.2. The instrument Z correlates with T :

Cov(Z, T ) 6= 0. (4.10)

With these assumptions I can provide a de�nition of IV validity:
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De�nition 4.4.1. A variable Z is called a valid instrumental variable if if ful�lls Assump-

tions 4.4.1 and 4.4.2. Vice versa, an invalid instrumental variable does not ful�ll either

Assumption 4.4.1 or 4.4.2.

Under Assumptions 4.4.1 and 4.4.2, the instrumental variable can be used to estimate

τ consistently, for instance by two-stage least squares (see Wooldridge, 2002). The un-

derlying idea of the method detailed in Section 4.5 is to evaluate instrument validity by

checking whether, after instrumenting T with Z, the estimated τ is still biased. If it is,

the instrument is invalid. Before turning to a description of the test idea, I compare the

structural model approach to the potential outcomes framework.

Comparison to the potential outcomes framework. I will now brie�y discuss stan-

dard IV assumptions in the potential outcomes framework (PO), which is popularized in

its modern form by Rubin (1974) and Holland (1986) and widely-used in empirical prac-

tice. I draw comparisons to the structural framework. Ultimately, the goal is to compare

my test to the one proposed by Kitagawa (2015), who relies on the PO framework. There-

fore, it is important to show that the two frameworks can be shown to estimate the same

object of interest, namely τ , under certain assumptions.

Unlike the structural approach, the potential outcomes framework relies on positing

a set of individual-speci�c potential outcomes as a function of instrument and treatment

assignment: each individual i has potential outcomes Yi(Z,T) where Z and T are vectors

of potential instrument and treatment assignments. Some of these are by de�nition not

observable.

A major argument in favour of the PO framework is the intuitive interpretation of cru-

cial IV assumptions since they are not formulated in terms of unobserved structural error

terms. Speci�cally, Assumption 4.4.1 can be disentangled into the exclusion restriction

and the random assignment of treatment or exchangeability assumption (Angrist et al.,

1996). The exclusion restriction,

Y (Z,T) = Y (Z′,T) ∀ Z, Z′, T, (4.11)

states that the instrument Z must only have an in�uence on Y through its e�ect on

T and not directly. This assumption is re�ected in the absence of Z in eq. (4.6) and

Cov(Z, εY ) = 0 in Assumption 4.4.1.

The exchangeability assumption

Pr(Z = c) = Pr(Z = c′), (4.12)
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where c and c′ are vectors of instrument assignments, states that instrument assignment

is random. It is re�ected in Cov(Z, εT ) = 0 in Assumption 4.4.1.

The PO assumption corresponding closely to Assumption 4.4.2 is that Z needs to have

some e�ect on the probability of treatment,

E(Di(Ti = 1)−Di(Ti = 0)) 6= 0. (4.13)

Furthermore, monotonicity must be assumed. The monotonicity assumption

Di(Zi = 1) ≥ Di(Zi = 0) (4.14)

states that there are no individuals who would opt to take the treatment (Ti = 1) if they

are not induced to do so (Zi = 0) but would choose not to take the treatment (Ti = 0)

if induced to do so (Zi = 1); there are no so-called de�ers. There is no direct equivalent

of this assumption in the structural framework. However, the assumption is implicitly

ful�lled because α is not individual-speci�c in eq. (4.7).5

In the PO framework, the causal e�ect is de�ned as the di�erence in potential outcomes:

τPO := E(Yi(Ti = 1)− Yi(Ti = 0)). (4.15)

In an IV setting, this treatment e�ect is identi�ed for the subgroup of compliers, i.e. those

individuals who can be induced (Zi = 1) to take the treatment (Ti = 1) and who would

not take the treatment (Ti = 0) if not induced (Zi = 0), and is called the local average

treatment e�ect (LATE).

The potential outcomes Yi(Ti) are implicitly de�ned in a structural model such as in

eqs. (4.6)-(4.8) if one supposes that the potential outcome is a linear function of the

treatment and control covariates (see also Imbens, 2014a). I make this assumption to

compare the structural and the PO framework.

Assumption 4.4.3. The potential outcome Yi(Ti) is a linear function of treatment and

control variables:

E(Yi(Ti)|Xi) = Xiβ + τTi. (4.16)

Furthermore, I make explicit the following assumption that is implicit in eq. (4.6):

Assumption 4.4.4. The treatment e�ect τ is constant.

Under these additional assumptions, the treatment e�ect as it is typically de�ned in

5In addition, the stable unit treatment value assumption (SUTVA) must be ful�lled. I can take this
for granted for the purposes at hand and do not discuss it further.
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the potential outcomes framework coincides with the deep parameter τ :

τPO = E(Yi(Ti = 1)− Yi(Ti = 0))

= (Xβ + τ)− (Xβ)

= τ.

Making Assumptions 4.4.3 and 4.4.4 enables me to compare my approach to existing

IV validity tests that are based on the PO framework. Moreover, Angrist et al. (1996)

state that �pooling [the exclusion restriction and exchangeability assumption] into the

single assumption of zero correlation between instruments and disturbances [Assumption

4.4.1] has led to confusion about the essence of the identifying assumptions and hinders

assessment and communication of the plausibility of the underlying model� (p. 450).

Following this argument, I introduce violations of IV validity in the form of violations

of exclusion restriction and exchangeability assumption in the Monte Carlo studies that

follow. This facilitates the interpretability of these violations.

4.5 Test for Instrument Validity

In this section, I describe the test for instrument validity in a step-by-step manner.

4.5.1 Reduced form model and connection to Janzing Schölkopf

It is useful to reformulate the model in eqs. (4.6)-(4.8) in its reduced form to explicitly

show how Janzing and Schölkopf (2018) can be applied to the problem of instrument

validity. Following Wooldridge (2002), the treatment variable T is instrumented by two-

stage least squares with the instrument Z. I call the instrumented treatment variable T̂ .

Then, the resulting reduced form is

Y = {X, Tinstrumented}
(
β

τ

)
+ cu+ ε (4.17)

{X, Tinstrumented} = E + u
(
b bτ

)
(4.18)

where {X, Tinstrumented} denotes a matrix of control variables X and the instrumented

treatment variable, which we will also refer to as T̂ in the following. β is a d-dimensional

parameter vector, τ the true causal e�ect of interest. ε is a reduced form error. u is an

unobserved confounder, which in�uences Y when c 6= 0 and {X, T̂} when
(
b bτ

)
6=

0. Like Janzing and Schölkopf (2018), I use u to parameterize confounding in this
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model. E = {X∗, T̂ ∗} represents hypothetical unconfounded versions of X and T̂ . Con-

founding is introduced by adding u
(
b bτ

)
. Speci�cally, each element of the vector

(
b bτ

)
=
(
b1 . . . bd bτ

)
parameterizes the confounding of the corresponding dimen-

sion of {X, T̂}, e.g. X1 = E1 + ub1.

The level of confounding that JS make it possible to estimate is de�ned as

κ :=

∥∥∥∥∥cΣ
−1

XT̂

(
b

bτ

)∥∥∥∥∥

2

∥∥∥∥∥

(
β

τ

)∥∥∥∥∥

2

+

∥∥∥∥∥cΣ
−1

XT̂

(
b

bτ

)∥∥∥∥∥

2 (4.19)

where ΣXT̂ is the covariance matrix of {X, T̂} and cΣ−1

XT̂

(
b

bτ

)
=

(
β̂ − β
τ̂ − τ

)
, i.e. the

deviation of the least-squares parameter vector

(
β̂

τ̂

)
from its true values

(
β

τ

)
. Therefore,

κ is the deviation of

(
β̂

τ̂

)
from

(
β

τ

)
relative to the sum of squared length of

(
β̂

τ̂

)
. See

Appendix 4.10.1 for a discussion of this methodology, and in particular eq. (4.53) for a

motivation of that interpretation of κ.

By quantifying the average bias of the estimated parameter vectors from their true

values, κ gives an overall degree of confounding of the whole model. However, I am inter-

ested in the bias of τ̂ . Therefore, building on JS, I propose a way to estimate confounding

of a single parameter. I do this by estimating a counterfactual degree of confounding κs
that would be obtained if T̂ were unconfounded. Then, I compare this counterfactual to

the actual degree of confounding observed. The following description of the algorithm I

propose shows how I leverage JS to achieve that.

4.5.2 Test Procedure

The test procedure is succinctly described in Algorithm 2. In the following main text I

provide a description that focuses on the intuition behind the procedure.

1. Normalize the data such that all variables have the same mean and variance as the

treatment indicator T .

2. Instrument T with Z using two-stage least squares. Call the instrumented treatment

variable T̂ .
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3. Generate a synthetic variable Ts that has the same covariance structure to X as does

T̂ , i.e. Ts satis�es

Cov(X, Ts) = Cov(X, T̂ ).

See Algorithm 3 for details on how to construct Ts.6

4. Estimate κs := κ({X, Ts};Y ) following JS.7

Ts is a synthetically generated variable that does not have a causal e�ect on Y and is,

conditionally on X, uncorrelated with the unobserved error while having the same co-

variance structure to X as T̂ . Intuitively, κs measures the counterfactual overall degree

of confounding of the model that would be obtained if the instrument were valid and T̂

unconfounded. Thus, κs is an important component to which the actual degree of con-

founding that is estimated in the following step can be compared to evaluate instrument

validity.

5. Estimate κi := κ({X, T̂};Y ) following JS.

6. Calculate δ := κi − κs.

Intuitively, if κi is larger than κs, i.e. δ > 0, instrumenting leads to a level of con-

founding of the model that is larger than would be obtained if the instrument were valid.

Therefore, δ > 0 is evidence for an invalid instrument.

7. To incorporate uncertainty about these metrics in the subsequent decision, bootstrap

over steps 3-6 above. For each bootstrap sample b ∈ {1, . . . , B} calculate

δb = κi − κs (4.20)

8. Calculate the share of samples with δb ≤ 0,

δ1B =
1

B

B∑

b=1

1(κi,b ≤ κs,b), (4.21)

δ1B can be interpreted as a pseudo-p-value for the hypothesis

H0 : (the instrument is valid)⇒ κi ≤ κs (4.22)

6I thank participants at CrossValidated for insightful discussions on how to generate such a variable
Ts. Algorithm 3 is based on the answer by whuber to be found at https://tinyurl.com/syntheticT.

7I use the code provided by Janzing and Schölkopf to estimate κ.

https://tinyurl.com/syntheticT
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against the alternative

H1 : κi > κs ⇒ (the instrument is invalid). (4.23)

For a proof of the statements (the instrument is valid) ⇒ κi ≤ κs and κi > κs ⇒
(the instrument is invalid) see proof of Theorem 4.10.1 and Corollary 4.10.1.1 in Appendix

4.10.2

9. Finally, I propose the following decision rule:

ψδ(α) = 1(δ1B ≤ α) =





1 =⇒ reject H0

0 =⇒ do not reject H0

(4.24)

that depends on threshold parameter α, which controls the trade-o� of committing

Type I and Type II errors.

There is a caveat to the way the synthetic Ts is generated. Ts is uncorrelated with the

structural error conditional on X and not causally related to Y . In other words, the true

causal e�ect of Ts is equal to zero. Therefore, κs measures the degree of confounding that

would be obtained if the instrument were valid and τ = 0. However, this caveat does not

a�ect the validity of Theorem 4.10.1.
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Data: sample of the outcome variable, control covariates, treatment indicator,

and instrumental variable D = {Yi,Xi, Ti, Zi}ni=1

Input: data D, threshold value α, number of bootstraps B

Output: pseudo-p-value and rejection decision ψ(α) for the hypothesis

H0 : Z is a valid instrument

1 Normalize data such that all variables have mean zero and variance equal to

V ar(T )

2 Implement two-stage least squares IV approach: regress Z on {X, T} and call

resulting parameter vector βIV , calculate prediction T̂ = {X, T}βIV
3 for b = 1 to B do

4 Draw a bootstrap sample Db of size n with replacement

5 Generate synthetic variable Ts based on Db by following Algorithm 3

6 Estimate κs := κ({X, Ts};Y ) based on Db following JS

7 Estimate κi := κ({X, T̂};Y ) based on Db following JS

8 Calculate δb = κi − κs
9 end

10 Calculate the pseudo-p-value

p =
1

B

B∑

b=1

1(δb ≤ 0)

11 Decide whether to reject H0: ψ(α) = 1(p ≤ α)

Algorithm 2: Test for instrument validity
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Data: n× d matrix of covariates X,

n× 1 vector of instrumented treatment T̂

Output: a random variable Ts with Cov(X, Ts) = Cov(X, T̂ )

1 De�ne ρ :=
(
Cov(X1, T̂ ) . . . Cov(Xd, T̂ )

)>

2 Draw W ∼ N (0, 1).

3 Regress W on X and compute residuals: η̂ := W −X(X′X)−1X′W

4 Compute the singular value decomposition of X:

X = U Σ V>

where the diagonal elements {σj}dj=1 of Σ are the singular values of X, U

contains the left-singular vectors, V contains the right-singular vectors

5 Compute Xdual := (n− 1)×U× diag(1/σj)×V> where 1/σj is replaced with

zero if σj = 0

6 Compute s :=
√

1−ρ>×Cov(Xdual,Xdual)×ρ
V ar(η̂)

7 Compute Ts := Xdual × ρ+ s× η̂
Algorithm 3: Generate synthetic Ts

4.6 Monte Carlo Simulation

I consider the model in eqs. (4.6)-(4.8). To analyze the e�ectiveness of the instrument

validity test, I generate data according to the following recipe.

This simulation setting extends the one proposed by Huber and Mellace (2015) in that

it considers covariates in addition to the treatment variable of primary interest. First,

I present the simulation to study violations of the exclusion restriction, followed by the

simulation to study violations of the exchangeability assumption.

Throughout, ‖a‖ denotes the L2 norm of the d-dimensional vector a =




a1

...

ad


:

‖a‖ :=
( d∑

i=1

a2
i

)1/2

.
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4.6.1 Simulation Regime 1: Violation of exclusion restriction

Let n-dimensional vectors of disturbances, εY and εT , be drawn from

(
εY

εT

)
∼ N

((
0

0

)
,

(
1 ω3

ω3 1

))
, (4.25)

and the instrument, Z, be generated by

Z ∼ Bernoulli(0.5). (4.26)

The set of covariates is generated by �rst drawing d − 1 eigenvalues from a uniform

distribution:

λi ∼ U(0.5, 1.5) (4.27)

which then populate the diagonal of a (d − 1) × (d − 1) matrix Λ. Then draw a random

orthonormal matrix O of dimension (d− 1) and set

Σ = OΛO> (4.28)

and draw Xtemp from a multivariate normal distribution

Xtemp ∼ N (0,Σ). (4.29)

Draw a random d-dimensional vector

βc,temp ∼ N (0, 1) (4.30)

and, to keep the variance of Y for various dimensions d comparable, normalize βc =

βc,temp/ ‖βc,temp‖ . With these ingredients set

X = Xtemp + εY β
′
c. (4.31)

To induce dependence of the treatment on the set of covariates, �rst draw the d-

dimensional vector βT,temp populated with draws from a N (0, 1),

βT,temp ∼ N (0, 1) (4.32)

and set βT =
(
βT,temp

)
/
∥∥∥
(
βT,temp

)∥∥∥ to keep the relative in�uence of X on T constant

regardless of the number of covariates d.
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Further, generate treatment, T , as

T = 1
(
Xβ′T + ω2Z + εT > T ′

)
. (4.33)

where T ′ is the mean of Xβ′T + εT and 1 is the indicator function.

To simulate the outcome variable, �rst generate a random d-dimensional vector

βtemp ∼ N (0, 1). (4.34)

To keep the variance of Y constant regardless of the number of covariates d, set β =(
βtemp

)
/
∥∥∥
(
βtemp

)∥∥∥.
The true coe�cient of the treatment variable is set to

τ = 1.

Finally, generate outcome Y as

Y = Xβ′ + ω1Z + τT + εY . (4.35)

4.6.2 Simulation Regime 2: Violation of exchangeability assump-

tion

For the simulations to test whether the algorithm can detect endogeneity of the instrument

stemming from a violation of the exchangeability assumption, I replace (4.26) with

Z = 1(εZ + ω1εY > 0) (4.36)

where εZ is drawn from a standard Gaussian. Thus, ω1 controls the degree of violation of

the exchangeability assumption. Finally, I replace (4.35) with

Y = X
β′temp

‖βtemp‖
+ τT + εY . (4.37)

4.6.3 Parameter constellations

An overview of the interpretation of the parameters is provided:

• ω1: endogeneity of the instrument, Z

• ω2: relevance of the instrument, Z
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• ω3: endogeneity of treatment, T

Next, I use Z to instrument T . Following Adams et al. (2009), I implement the IV

strategy by �rst estimating a linear probability model (LPM) of T on {X, Z}. Second,

use the predicted T̂ in the second stage to estimate β̂IV = (X>IVXIV )−1X>IV Y where

XIV := {X, T̂}.
To show the empirical performance of the proposed test, I implement Monte Carlo

simulations for each combination of the following parameters: number of observations:

n ∈ {500, 1000}, number of covariates: d ∈ {10, 20} (one endogenous treatment variable:

T , along with d − 1 exogenous variables: X1, . . . , Xd−1), degree of the endogeneity of

T : ω3 = 0.5, degree of the relevance of the instrument: ω2 ∈ {0.3, 0.6} degree of the

endogeneity of the instrument, Z: ω1 ∈ {0, 0.1, 0.2, 0.4, 0.5}. Moreover, the following

parameters are �xed: number of bootstrap samples B = 200, number of Monte Carlo

drawsM = 500. In Appendix 4.10.4 I show simulation results for ω3 = {0.25, 0.75}, which
are not discussed in the main body of the paper.

I also report the average di�erence between the κs over all boostrap draws:

δB =
1

B

B∑

b=1

(κi,b − κs,b). (4.38)

4.6.4 Results of Monte Carlo Study

I begin the discussion with Simulation Regime 1, i.e. simulated violations of the exclusion

restriction. Figure 4.3 shows the evolution of the average over 300 Monte Carlo runs of

pseudo-p-value and δB as a function of the degree of endogeneity of the instrument (ω1).

Both measures are increasing with endogeneity, which shows that they are picking up the

confoundedness signal in the data. The empirical rejection rate based on the pseudo-p-

value (ψ(α)) with α = 0.05 increases as a function of the instrument endogeneity. The null

hypothesis of instrument validity is rejected more and more often as the level of endogeneity

is increasing. For combinations of large d and large n, the empirical rejection probability

moves up from close to 0 to e�ectively 1 as endogeneity is introduced. Generally, both a

larger d and a larger n improve the performance of the test; however, given d, increasing n

improves performance by more than increasing d given n. Considering that the asymptotic

results in JS require d → ∞, I show Monte Carlo results for relatively small d and still

achieve good performance.

In order to evaluate the trade-o� between making type I and type II errors I calculate

the area under the ROC curve (AUC) and plot it as a function of the endogeneity of the

instrument, Figure 4.4 (see Appendix 4.10.5 for details on the calculation). It is noteworthy
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Figure 4.3: Simulation results: pseudo-p-values, δB, and empirical rejection
rate as a function of ω1. This �gure shows averages over all M Monte Carlo draws of
the p-value, δB, and the empirical rejection probability (based on the p-value with threshold
parameter α = 0.05) as a function of the degree of instrument endogeneity where the source
of confounding is a violation of the exclusion restriction, by number of covariates d
and number of observations n. δB rises sharply with the degree of confounding, the p-value
goes down as the degree of confounding increases. Consequently, the empirical rejection
probabilities increase as the degree of confounding increases indicating that, if the degree
of condounding is su�ciently high, the test rejects the null of instrument validity in all
Monte Carlo draws.

that the AUC levels tend to be larger for a lower value of the degree of relevance of Z

(ω2). A larger ω2 is implicitly accompanied by a larger complier rate. Huber and Mellace

(2015) underscore that �the absence of compliers maximizes the asymptotic power to

�nd violations in IV validity� (p. 404); the superior performance of the algorithm as ω2

decreases mirrors this result. I assume a constant treatment e�ect in the present setting

and, thus, speaking of compliers, always-takers, etc. is not precise. Nevertheless, as ω2

increases Z contains less and less additional variation that can be leveraged in the IV

implementation or in the validity test. In the extreme, Z and T collapse to one variable
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Figure 4.4: Simulation results: AUC curves. This Figure shows the area under the
ROC curve (AUC) as a function of the degree of instrument endogeneity where the source
of confounding is a violation of the exclusion restriction, for various combinations
of number of covariates, d, and number of observations, n, by instrument relevance degree
(ω2, horizontal). The underlying test statistic is the pseudo-p-value. The test achieves
high AUC levels of close to the perfect score of 1 for large n and d. Under a low ω2 the
test performance increases.

and the instrumented T does not contain any di�erent information than T . In other words,

the instrument cannot extract the experimental variation of T (that part of the variation

that is unrelated to the unobserved error) when ω2 is too large. Nevertheless, even for

large ω2, the proposed test performs well with AUC levels ranging from 0.6 (low degree of

endogeneity of instrument) to 0.9 (high degree of endogeneity).

In Simulation Regime 2 I analyze whether the algorithm can also detect an invalid

instrument when its invalidity stems from the fact that the exchangeability assumption is

violated. The results are presented in Appendix 4.10.4. Figures 4.6 and 4.7 report results

for Simulation Regime 2 in the same form as previous �gures for Simulation Regime 1.

The performance of the test is similar.
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Table 4.1: For combinations of number of observations n, number of covariates d, con-
founding degree of instrument ω1 this Table shows the area under the ROC curve (AUC),
the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical rejection
probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.3, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.702 0.114 0.046 0.006

0.2 0.892 0.273 0.322 0.006

0.3 0.971 0.422 0.704 0.006

0.4 0.991 0.516 0.908 0.006
10

0.5 0.998 0.595 0.980 0.006

0.1 0.712 0.098 0.050 0.002

0.2 0.942 0.286 0.352 0.002

0.3 0.990 0.404 0.744 0.002

0.4 0.997 0.510 0.970 0.002

500

20

0.5 0.998 0.572 0.992 0.002

0.1 0.740 0.117 0.146 0.022

0.2 0.931 0.330 0.566 0.022

0.3 0.986 0.476 0.868 0.022

0.4 0.997 0.596 0.980 0.022
10

0.5 0.999 0.642 0.998 0.022

0.1 0.738 0.107 0.130 0.018

0.2 0.953 0.318 0.620 0.018

0.3 0.988 0.463 0.912 0.018

0.4 0.999 0.554 0.992 0.018

1000

20

0.5 1.000 0.621 1.000 0.018
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Table 4.2: For combinations of number of observations n, number of covariates d, con-
founding degree of instrument ω1 this Table shows the area under the ROC curve (AUC),
the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical rejection
probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.575 0.026 0.080 0.018

0.2 0.778 0.128 0.264 0.018

0.3 0.874 0.221 0.458 0.018

0.4 0.959 0.353 0.722 0.018
10

0.5 0.976 0.436 0.832 0.018

0.1 0.653 0.034 0.072 0.012

0.2 0.833 0.135 0.274 0.012

0.3 0.929 0.234 0.546 0.012

0.4 0.981 0.340 0.790 0.012

500

20

0.5 0.991 0.430 0.920 0.012

0.1 0.653 0.035 0.156 0.042

0.2 0.792 0.127 0.374 0.042

0.3 0.888 0.224 0.556 0.042

0.4 0.950 0.354 0.784 0.042
10

0.5 0.982 0.446 0.888 0.042

0.1 0.686 0.040 0.190 0.042

0.2 0.865 0.136 0.430 0.042

0.3 0.945 0.250 0.706 0.042

0.4 0.978 0.345 0.878 0.042

1000

20

0.5 0.991 0.440 0.970 0.042
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4.6.5 Comparison of Performance to Kitagawa (2015)

I compare the performance of my instrument validity test to the one proposed by Kitagawa

(2015). Note that these two tests rely on two entirely di�erent approaches: the former on

the genericity of estimated parameter vectors w.r.t. the covariance matrix of independent

variables, the latter on restrictions on the outcome distribution of subsets of the data

implied by the interaction of instrument and treatment assignment.

Tables 4.3 and 4.4, for ω2 = 0.3 and ω2 = 0.6 respectively, show comparisons of AUC

levels for the test proposed in this paper (`mine') and the one proposed by Kitagawa

(2015). The AUC levels for my approach always lie above those corresponding to Kita-

gawa's approach. Especially for low levels of ω1 my approach outperforms Kitagawa's.

Theoretically, I diverge from Kitagawa (2015) by assuming constant treatment e�ects.

Nevertheless, my simulation approach implicitly generates compliers, always-takers, and

never-takers, whose respective outcome distributions are essential for Kitagawa (2015).

I do not compare my approach to the one proposed by Huber and Mellace (2015) since

their implementation requires the sample mean of T given Z = 1 to be larger than the

sample mean of T given Z = 0. If this is not the case, the bounds for the quantile function

they use lie outside the interval [0,1]. In my simulation, this need not always be the case,

especially when ω2 = 0. Therefore, I compare my approach with Kitagawa's work.

4.7 Empirical application

I follow Kitagawa (2015) and Huber and Mellace (2015) and apply the proposed test

to the IV study by Card (1995). Card proposes the proximity to a four-year college as

an instrument of educational attainment to estimate returns to schooling, measured by

log of weekly earnings. Card himself casts doubt on the validity of college proximity as

an instrument as there might be factors such as family preferences or local labor market

conditions that are be related to both the proximity to a college and the outcome variable.

However, the instrument is likely to be valid, so his argument, in subsamples de�ned by

the following set of covariates {S} := {ethnicity dummy, father's educational level, living

in South dummy for 1966 and 1976, urban residence dummy for 1966 and 1976}. Unlike,
the tests proposed by Kitagawa (2015) and Huber and Mellace (2015), my test requires

the inclusion of covariates by construction. Therefore, to evaluate Card's argument on the

validity of his instrument, I run my test three times: �rst, I include the full set of covariates

which includes, beyond {S}, information on IQ levels, the knowledge of the world score,

availability of a library card in the household head's childhood home, marital status, labor

market experience, etc. Call this set of additional covariates {R}. Second, I include only
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Table 4.3: For combinations of number of observations (n), number of covariates (d),
confounding degree of instrument ω1 this table shows the area under the ROC curve (AUC)
for my approach and Kitagawa (2015). ω2 = 0.3, ω3 = 0.5, V ar(εY ) = V ar(εT ) = 1

AUC

n d ω1 mine Kitagawa

0.1 0.702 0.495

0.2 0.892 0.530

0.3 0.971 0.580

0.4 0.991 0.613
10

0.5 0.998 0.733

0.1 0.712 0.501

0.2 0.942 0.520

0.3 0.990 0.570

0.4 0.997 0.628

500

20

0.5 0.998 0.689

0.1 0.740 0.481

0.2 0.931 0.540

0.3 0.986 0.586

0.4 0.997 0.711
10

0.5 0.999 0.792

0.1 0.738 0.512

0.2 0.953 0.526

0.3 0.988 0.614

0.4 0.999 0.712

1000

20

0.5 1.000 0.795
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Table 4.4: For combinations of number of observations (n), number of covariates (d),
confounding degree of instrument ω1 this table shows the area under the ROC curve (AUC)
for my approach and Kitagawa (2015). ω2 = 0.6, ω3 = 0.5, V ar(εY ) = V ar(εT ) = 1

AUC

n d ω1 mine Kitagawa

0.1 0.575 0.499

0.2 0.778 0.511

0.3 0.874 0.548

0.4 0.959 0.592
10

0.5 0.976 0.651

0.1 0.653 0.498

0.2 0.833 0.510

0.3 0.929 0.526

0.4 0.981 0.565

500

20

0.5 0.991 0.631

0.1 0.653 0.517

0.2 0.792 0.519

0.3 0.888 0.569

0.4 0.950 0.625
10

0.5 0.982 0.698

0.1 0.686 0.497

0.2 0.865 0.537

0.3 0.945 0.576

0.4 0.978 0.605

1000

20

0.5 0.991 0.715
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Table 4.5: Results of empirical application to Card (1995). This Table shows
results of the empirical application, based on Card (1995). {S} denotes the set of covari-
ates implicitly de�ning the subgroups in which the instrument is valid according to Card.
{R} contains all remaining covariates (for details see main text). Consistent with Card's
argument, the null hypothesis of instrument validity cannot be rejected when all covariates
are included; see column {R, S}. Similarly, when only the six covariates {S} are included
the instrument validity can also not be rejected; see column {S}. Dropping all variables
{S} and keeping only those in {R}, the test rejects instrument validity.

test results for di�erent sets of covariates

{R, S} {S} {R}
pseudo-p-value 0.18 0.29 0.00

no. of covariates 29 6 23
no. of observations 3612 3612 3612

variables {S}. In these �rst two cases, I expect the test not to reject instrument validity

since I am controlling for those variables {S} that render the instrument valid according

to Card. Third, I include only variables {R} and exclude variables {S}. In the third run,

I expect the test to reject the null hypothesis of instrument validity if Card's argument

holds.

The results in Table 4.5 show that the test does not reject the null of instrument

validity if I control for variables {S}. On the contrary, once {S} is left out of the set of
covariates, the test rejects instrument validity. This is consistent with Card's reasoning

and the results of Kitagawa (2015) and Huber and Mellace (2015). The latter approaches

are based on an IV model with heterogeneous e�ects whereas my approach relies on the

assumption of a constant τ .

These results show that the proposed test is able to detect information on the validity

of the instrument solely based on the spectra of the covariates induced by the estimated

parameter vectors.

4.8 Discussion

In this section, I discuss limitations and future extensions of the proposed method.

Distribution of pseudo-p-values under H0 and type I error control. I call the

quantity in eq. (4.21) a pseudo-p-value and not a p-value because it does not have a

uniform distribution under H0. Rather, the following is the case. As d → ∞, κi ≈ κs

under H0 because both Ts and T̂ are unconfounded and have the same covariance structure

with X (see also Appendix 4.10.2). Therefore, it is subject to chance whether κi > κs
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(i.e. δ > 0) or κi < κs (i.e. δ < 0). Thus, the pseudo-p-value, which is the share of

δ ≤ 0 across B bootstrap draws, will converge to 0.5; in expectation δ1B = 0.5 under H0.

One can see this behavior of δ1B in Figure 4.3 where the pseudo-p-value curve converges to

0.5 for a valid instrument (`endogeneity of instrument = 0') for large d and n. As d and

n increase, and κi as well as κs are more and more precisely estimated, more and more

mass of the pseudo-p-value distribution will lie above 0.5. Therefore, although I cannot

guarantee that the empirical size of the test converges to its nominal size, this behavior of

the pseudo-p-values implies that the empirical size of the test will not exceed the nominal

size.

This argument remains informal. It will be subject of further research to investigate

whether an alternative speci�cation of δ1B or its transformation guided by the insight that

it converges to 0.5 under H0 can guarantee a uniform distribution under H0.

Robustness of κ to rescaling of the data. An important limitation of the algorithm

proposed by JS is that the estimated κ is, in theory, not robust to rescaling of the data

as this introduces a dependence between the covariance matrix of the covariates and the

parameter vector. For instance, consider income as one of many independent variables.

Its rescaling to logarithms changes both the covariance structure of independent variables

and the parameter vector, whose independence drives the method proposed by JS. The

authors acknowledge this, yet claim and show in simulations that the estimated κ is robust

to rescaling of the data in practice.8 However, the proposed test relies on a comparison of

two κs, which is useful beyond the fact that such a comparison allows focusing on the bias

of one covariate: Both κs are in�uenced by rescaling in the same fashion, which one can

therefore expect to leave the sign of their di�erences, i.e. δ, una�ected. In Appendix 4.10.3

I document the robustness of the proposed algorithm to typical data transformations: the

observed AUC levels are insensitive to rescaling of the data and the pseudo-p-values of the

validity test on untransformed and transformed data show a correlation coe�cient that

exceeds 0.95.

8An interesting insight in this context is due to Holmes and Caiola (2018). A given regression techniques
should ful�ll certain properties to be useful. Two such properties are scale invariance (it should not matter
whether data is measured in centimeters or inches) and rotational invariance (it should not matter `from
which angle you are looking at the data'). As an example, ordinary least-squares is scale-invariant but
not rotationally invariant; Principal Component Analysis is rotationally invariant but not scale-invariant.
Holmes and Caiola derive the incompatibility of these two criteria. For this reason, it might not seem
surprising that the JS methodology, which relies on some limited type of rotational invariance, is not scale-
invariant. Note that JS assume rotational invariance of the prior on the structural parameter vectors;
they do not assume rotational invariance of the model itself.
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Idealized modeling assumptions in Janzing and Schölkopf (2018). The JS method-

ology relies on a number of results on the limiting distribution of spectral measures in high

dimensions. In particular, they consider a sequence of symmetric matrices Σd×d whose dis-

tribution of eigenvalues (spectral measure) converges weakly to some probability measure

µ∞ as d increases. Wishart matrices provide a common theoretical starting point to ana-

lyze such asymptotic properties. A Wishart matrix M is de�ned as M = n−1X>X where

X is a n × p matrix with each column containing n independent samples from a real-

valued random variable. Marchenko and Pastur (1967) show that the spectral measure

of a Wishart matrix converges to an asymptotic distribution, which is a crucial result

underlying the JS methodology (see also Götze and Tikhomirov, 2004).

The modeling assumptions that JS impose on the multivariate linear model to show

the decomposability of the spectral measure induced by the potentially biased parameter

vector are strong. Yet, it can be useful to impose constraints on a given model to obtain

information about an unobserved quantity of interest. In the case at hand the unobserved

quantity of interest is relation between the unobserved structural errors in�uencing both

outcome and treatment � a quantity that is both notoriously di�cult to characterize and of

paramount importance in observational causal e�ect studies. The attempt to quantify this

crucial quantity, albeit at the cost of idealized modeling assumptions, may be informative.

In the paper at hand, the informational content gained is the evidence on instrument

validity.

To give another example in which idealized assumptions enable the researcher to char-

acterize some unobserved quantity, consider the work done by Oster (2019) to assess the

robustness of an estimated treatment e�ect to unobserved confounding. To assess the

severity of an unobserved confounder problem, researchers commonly check how sensi-

tive the treatment parameter of interest is to the inclusion of the observed controls (e.g.

Lacetera et al., 2012; Acemoglu et al., 2008). That observed confounders and their relation-

ship to the treatment are informative about the relation between unobserved confounders

and the treatment is the underlying, sometimes implicit, assumption of this procedure.

Oster (2019) shows that evaluating robustness to unobserved confounders by observing

coe�cient movements alone is insu�cient. Rather, it is important to take into account

reactions by both the coe�cient and the coe�cient of determination, R2, to the selective

inclusion of observed confounders. Under the assumption that the relationship between

unobserved confounders and treatment can be fully recovered from the relationship be-

tween observed confounders and the treatment, Oster (2019) shows how to bound the true

treatment e�ect. Full recoverability in this work and the modelling assumptions in JS are

both idealized assumptions that nevertheless yield important insights.

The crucial modeling assumption in JS is that the structural model parameters are
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drawn from a rotation-invariant prior distribution, namely from a sphere with �xed radius.

In contrast, the uninformative prior in Bayesian linear regression analysis is uniform.

Despite the fact that JS require only a rotationally invariant prior on the structural model

parameter and not a rotationally invariant model itself, it is worth highlighting that even

the latter are invoked in econometrics (see e.g. Andrews et al., 2006).

Accounting for heterogeneous coe�cients. Heterogeneity in e�ect sizes across in-

dividuals is a common notion in economics: for instance, the causal e�ect of a policy

intervention, such as the introduction of a statutory minimum wage on wage growth,

might di�er among individuals with di�erent educational levels or employers. In other

words, the e�ect size might depend on covariates. At �rst glance, such heterogeneity

seems incompatible with the PIM or the Independence between Cause and Mechanism,

which, after all, postulates an independence between the true causal parameter vector and

the covariates representing the causes. In this respect, it is worthwhile to analyze random

coe�cient models as the workhorse of heterogeneity analysis in economics.

Typically, heterogeneity is modeled with random coe�cient models such as Yi = βixi+

εi with individual-speci�c slope parameters βi. These usually come with constant mean

and variance assumptions on the distribution of βi: βi = β + αi where E(αi) = 0 ,

E(αiα
′
i) = Λ, some covariance matrix (Hsiao and Pesaran, 2008; Swamy, 1970). β is

the average e�ect.9 Thus, the notion of independence underlying PIM and ICM can be

understood as the independence between the covariates and the average e�ect β. Future

work will analyze to what extent the JS methodology can be adapted to such cases. In

any case, there is no inherent contradiction between PIM and heterogeneous e�ects as

modeled by random coe�cient models.

Parameter η. As indicated in Section (4.3) and Appendix 4.10.1, the JS methodol-

ogy estimates a degree of confounding by minimizing the distance between an empirical

vector-induced spectral measure and a two-parametric probability measure. One of the

parameters is κ, the degree of confounding. The second parameter, η, measures the ex-

planatory power of the unobserved error u for the covariates {X, T̂} in eq. (4.18). η is

introduced to distinguish between cases where a rescaling of

(
b

bτ

)
and c in eqs. (4.17)

and (4.18) leads to the same κ, see the discussion above eq. (4.54) in Appendix 4.10.1.

A given κ can be consistent with a range of ηs. In the paper at hand, I do not take this

ambiguity into account. This implies that I abstract from whether a given level of bias

9See also Hoderlein et al. (2010), who assume that β is independent of x to analyze a non-parametric
random coe�cient model.
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in the estimated parameter vector originates from, on the one hand, a high explanatory

power of u for Y and a low explanatory power of u for {X, T̂} or, on the other hand, a

low explanatory power of u for Y and a high explanatory power of u for {X, T̂}.

Alternatives to bootstrapping to assess uncertainty. Algorithm 2 assesses the sta-

tistical uncertainty about κ by calculating it for B bootstrap values. This procedure does

not take into account the statistical uncertainty that underlies the estimation of the pa-

rameter vector per se. The standard errors associated with each parameter estimate might

be used in an alternative strategy to assess the uncertainty about κ. More speci�cally, one

might calculate a series of κs for di�erent draws from the distribution of the estimated

parameter vector. Given the centrality of the estimated parameter vector to estimate the

degree of confounding in the JS methodology, this seems a worthwhile strategy to pursue.

It will be subject of future research.

Measuring relative validity of the instrumented vs. original treatment variable.

While it is straightforward to build a test on a comparison of κ1 = κ(X, T ;Y ) and κ2 =

κ(X, T̂ ;Y ), it is not desirable for the objective of this paper. Such a comparison would

merely yield information about whether instrumenting makes T̂ less confounded than T .

However, the question of whether a comparison of κ1 and κ2 in combination with the

corresponding observed, yet biased, treatment e�ect estimates enables an extrapolation to

the unbiased, yet unobserved, τ is subject of ongoing research.

4.9 Conclusion

Since the justi�cation of IV assumptions is in practice seldom statistically-grounded and of-

ten relies on controversial context-speci�c arguments, it is pertinent to provide statistically-

grounded methods to evaluate IV validity empirically. The proposed method leverages

statistical traces of confounding, measured with the methodology laid out in Janzing and

Schölkopf (2018), to test whether a potential instrument is valid. As such, it provides

a novel way to test IV validity. It relies on Schölkopf and Janzing's insight that, under

idealized assumptions, the spectral measure of the covariance matrix of the independent

variables in a multivariate linear model that is induced by the estimated parameter vector

can be decomposed into a causal part and a confounded part, which then yields information

on the degree of confounding.

Extensive Monte Carlo studies show that the proposed method has high accuracy.

Its AUC levels reach from around 0.7 when the number of observations, covariates, and

the degree of endogeneity of the instrument is low to levels close to 1 when the number
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of observations and covariates increases. In addition, I document the feasibility of the

proposed test in an empirical application. I show that the test can reproduce the argument

on instrument validity made by Card (1995) in spite of the likely violation of idealized

modeling assumptions that underlie the estimation of the degree of confounding, which,

in turn, underlies the test procedure.

In contrast to the few existing methods to test for instrument validity, my test relies

neither on the Potential Outcomes framework nor on higher-order moment restrictions.

Therefore, it constitutes a novel approach to evaluating IV validity that can be applied to

IV applications in structural equation models. Despite di�erent theoretical approaches, I

compare the performance of my test to the one proposed by Kitagawa (2015). My test

performs favorably.
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4.10 Appendix

4.10.1 Quantifying the degree of confounding

Janzing and Schölkopf (2018) propose a method to estimate the degree to which an ob-

served statistical relationship between a multidimensional set of covariates, X, and an

outcome variable Y is due to the causal in�uence of X on Y or due to an unobserved

confounder in�uencing both X and Y . In multivariate linear models, they point out that

the spectral measure of the covariance matrix of the independent variables, ΣXX, induced

by the parameter vector di�ers depending on whether there is confounding or not. More

precisely, the confounded-parameter-induced spectral measure of ΣXX can be decomposed

into parts: one that is due to the genuine causal in�uence and a second that is due to the

confounding in�uence.

As a courtesy to the reader, I reproduce their method here; this section does not

contain new results. Compared to JS, I have slightly changed the order of presentation as

well as some notation to ensure consistency with the main body of this paper.

The set-up

Consider the following linear structural equation model:

X = bu+ E (4.39)

Y = X>a + cu> + ε (4.40)

where Y is the n × 1 outcome vector, a is the d × 1 causal parameter vector of interest.

X is a d × n matrix of covariates. The confounder u is a 1 × n vector. b is a d × 1

parameter vector. E is a d×n matrix of zero-mean errors drawn independently from u. ε

is a n× 1 vector of errors. c is a scalar. Without loss of generality, u is assumed to have

unit variance.

By regressing Y on X, I obtain the biased parameter vector

â := Σ−1
XXΣXY , (4.41)

where Σ denotes covariance matrices. Generally, I am interested in the structural parame-

ter vector a which represents genuine causal in�uence. To illustrate, the relation between
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a and â consider

ΣXY = Cov(X, Y ) = Cov(bu+ E,X>a + cu> + ε)

= (ΣEE + bb>)a + cb

ΣXX = Cov(X,X) = Cov(bu+ E,bu+ E)

= ΣEE + bb>,

and therefore

â = a + (ΣEE + bb>)−1cb = a + cΣ−1
XXb. (4.42)

Genericity assumptions

The idea underlying this method is the Independence between Cause and Mechanism

(ICM) postulate (Peters et al., 2017), which states that the causal mechanism, represented

by the conditional distribution of e�ect, Y , given cause, X, f(Y |X), is independent of the

marginal distribution of the cause, f(X). The ICM postulate is discussed in Appendix

4.10.6.

To understand what the ICM amounts to in the case at hand, note that the crucial

determinant for f(X) is ΣXX, likewise the crucial determinant for f(Y |X) is a. Therefore,

Janzing and Schölkopf (2018) postulate that a lies in `generic orientation' relative to ΣXX.

For instance, since a is chosen independently of X, and, thus, also the covariance matrix

ΣXX, a is not likely to be aligned with its �rst principal component.10 I next discuss what

the concept of `generic orientation' amounts to.

In order to make the notion of `generic orientation' precise, some de�nitions are needed.

First of all, assuming that all eigenvalues of a matrix are di�erent from each other (i.e. the

matrix is non-degenerate), each such symmetric d×dmatrix A has a unique decomposition

A =
d∑

j=1

λjφjφ
>
j (4.43)

where λj denotes the eigenvalues and φj the corresponding normalized eigenvectors.

The renormalized trace is de�ned to be

τ(A) :=
1

d
tr(A) (4.44)

(note that the τ in this notation is unrelated to the treatment e�ect that it denotes in the

main body of the paper).

10To be precise, for the structural model in (4.39), the argument involves a generic orientation of a and
the eigenspaces of ΣXX.
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De�nition 4.10.1. (tracial spectral measure) Let A be a real symmetric matrix with

non-degenerate spectrum. The tracial spectral measure of A is de�ned as the uniform

distribution over its eigenvalues λ1, . . . , λd:

µTrA :=
1

d

d∑

j=1

δλj (4.45)

where δλj denotes the point measure on λj.

The tracial measure is a property of a matrix. The vector-induced spectral mea-

sure complements the tracial measure by accounting for its relation to an arbitrary d-

dimensional vector.

De�nition 4.10.2 (vector-induced spectral measure). Given a symmetric d × d matrix

A with associated eigenvalues λj and corresponding eigenvectors φj, the spectral measure

induced by an arbitrary vector v ∈ Rd is given by

µA,v =
d∑

j=1

(
v>φj

)2
δλj (4.46)

where δλj denotes the point measure on λj.

Intuitively, µA,v describes the squared length of components of a vector projected

onto the eigenspace of ΣXX. Note that the vector-induced spectral measure of a matrix

can be represented by two vectors: one which represents the support of the spectral

measure, i.e. a list of the eigenvalues in decreasing magnitude and a second composed of

weights corresponding to the eigenvalues. For tracial spectral measures the weight vector

is w = (1/d, . . . , 1/d) representing the uniform weight of the eigenvalues.

Given these de�nitions, the precise meaning of `generic orientation' is formalized in the

following postulate.

Postulate 1: generic orientation of vectors. Given the structural model in eq.

(4.39) and a large d, one can de�ne `generic orientation' as:

1. Vector a has generic orientation relative to ΣXX in the sense that

µΣXX,a ≈ µTrΣXX
||a||2 (4.47)

2. Vector b has generic orientation relative to ΣEE in the sense that

µΣEE,b ≈ µTrΣEE
||b||2. (4.48)
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3. Vector a is generic relative to b and ΣEE in the sense that

µΣXX,a+cΣ−1
XXb ≈ µΣXX,a + µΣXX,cΣ

−1
XXb. (4.49)

Intuitively, (4.47) states that `decomposing a into eigenvectors of ΣXX yields weights that

are close to being uniformly spread over the spectrum.' (4.48) captures a similar statement

for b and ΣEE: the weights of b are uniformly distributed across the spectrum of ΣEE.

Eq. (4.49) contains a crucial ingredient for the ability to detect confounding: the

â-induced spectral measure (left-hand-side of (4.49), recall â = a + cΣ−1
XXb) can be de-

composed into one part due to the causal vector a (�rst summand) and a second part due

to the confounding (second summand).

Quantifying confounding

Two indicators for confounding strength are proposed: i) a correlative, and ii) a structural

indicator.

De�nition 4.10.3 (correlative strength of confounding). The correlative strength of con-

founding gives the degree to which the confounder contributes to the covariance between

X and T .

γ :=
‖ΣXZ‖2

‖ΣXT‖2 + ‖ΣXZ‖2 (4.50)

The following indicator for confounding strength, which measures the deviation of the

estimable â from the genuine causal parameter a, is proposed

De�nition 4.10.4. (structural strength of confounding)

κJS :=

∥∥Σ−1
XXΣXu

∥∥2

∥∥Σ−1
XXΣXY

∥∥2
+
∥∥Σ−1

XXΣXu

∥∥2 =

∥∥cΣ−1
XXb

∥∥2

‖a‖2 +
∥∥cΣ−1

XXb
∥∥2 , (4.51)

κJS ∈ [0, 1]. (4.52)

Note that from (4.49) and a normalizing condition

µA,v(R) = ‖v‖2

(eq. (10) in (Janzing and Schölkopf, 2018)), one knows ‖â‖2 ≈ ‖a‖2 +
∥∥cΣ−1

XXb
∥∥2
. There-

fore, one can rewrite κ as

κ ≈
∥∥cΣ−1

XXb
∥∥2

‖â‖2 =
‖â− a‖2

‖â‖2 . (4.53)
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In words, κ is the share of the in�uence of u on X of the overall strength of the association

between Y and X. Another interpretation: κ is the deviation of â from a relative to the

sum of squared lengths of â.

Note that the contribution of u to the covariance between X and Y is determined by

the product cb. As a consequence, rescaling c by some factor and b by its inverse leaves

γ una�ected. Similarly, (a more sophisticated) rescaling of c and b leaves κ una�ected.

The regimes with (i) large c and small b and with (ii) small c and large b can be thought

of as two extremes on a continuum where knowing the value of u (i) hardly reduces

the uncertainty about X or (ii) signi�cantly reduces the uncertainty about X. To capture

these di�erent regimes, JS propose an additional parameter that measures the explanatory

power of u for X,

η := tr(ΣXX − tr(ΣXX|u)) = tr(ΣXX)− tr(ΣEE) = ‖b‖2 . (4.54)

Estimating confounding

The vector-induced spectral measure of ΣXX w.r.t. â can be approximated by a normal-

ized two parametric probability measure, νκ,η, which decomposes into a causal part and

a confounding part. The relative share of causal and confounding parts in that decompo-

sition is given by κ. The algorithm proceeds by �nding the normalized measure closest

to (computable) µΣXX,â. The parameter constellation that minimizes the distance tells us

the relative confounding strength.

How do JS do that? They show that µΣXX,â asymptotically depends on four parameters

(two of which, ΣXX and â, can be estimated). Based on this insight, they formalize a two-

parametric family of probability measures νκ,η such that it converges to µΣXX,â up to a

normalizing factor with high probability as the dimensionality of X increases:

1

‖â‖2µΣXX,â − νκ,η → 0 (weakly in probability) (4.55)

where

νκ,η := (1− κ) νcausal + κ νconfoundedη . (4.56)

I inspect each part in turn.

1. νcausal is the hypothetical spectral measure that would be obtained in the absence of

confounding. Following (4.47), it is de�ned as

νcausal := µTrΣXX
(4.57)
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since, in the absence of confounding, the spectral measure induced by a should be

equivalent to the tracial spectral measure of ΣXX (up to a normalizing factor).

2. To de�ne the corresponding confounding part, JS propose an approximation to the

spectral measure of ΣXX induced by the vector Σ−1
XXb. Recall that b has generic

orientation relative to ΣEE, see eq. (4.48). However, both b as well as ΣEE are

unknown. These two unknowns correspond to two steps that are important for

constructing this approximation.

(a) The eigen decomposition of ΣEE reads QMEQ
−1 whereME := diag(λE1 , . . . , λ

E
d )

with λE1 > · · · > λEd eigenvalues of ΣEE. Although b is unknown, one does know

that it is generic relative to ΣEE. Therefore, I can replace b with a vector that

is `particularly generic', namely g := (1, . . . , 1)>/
√
d, which satis�es

µME ,g = µTrME
.

Therefore, one can approximate the spectral measure of ΣXX induced by the

vector Σ−1
XXb by spectral measure of ME + ηgg> induced by (ME + ηgg>)

√
ηg.

This construction is still not feasible as ME, which contains the eigenvalues of

ΣEE, is unobserved.

(b) JS resort to a result stating that spectral measures are close in high dimensions:

µTrΣXX
≈ µTrΣEE

,

see their Lemma 4. Therefore, one can approximateME withMX = diag(λX1 , . . . , λ
X
d )

and λX1 > · · · > λXd eigenvalues of ΣXX.

Putting these two steps together, JS de�ne a rank-one perturbation of MX as

T := MX + ηgg>,

compute the spectral measure of T induced by vector T−1g, and de�ne

νconfoundedη :=
1

‖T−1g‖2µT,T−1g. (4.58)

Algorithmic implementation

The algorithm �nds κ by taking that element in νκ,η that is closest to µΣXX,â. Since

eq (4.55) only asserts weak convergence in probability, computing l1 or l2 distance is
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inappropriate. Therefore, JS propose smoothing the spectral measures using a Gaussian

kernel.

Thus the di�erence between vectors w and w′ is given by

D(w,w′) := ‖K(w − w′)‖1 (4.59)

with

K(λi, λj) := exp
(
− (λi − λj)2

2σ2

)

Finally, the algorithm �nds the κ that minimizes D(w,wκ,η) where w is the weight

vector corresponding to the (computable) spectral measure µΣXX,â and wκ,η is the weight

vector corresponding to the νκ,η.

4.10.2 Proofs: Relation between δ and IV validity

First, I recall the de�nition of a valid IV.

De�nition 4.10.5. A variable Z is called a valid instrumental variable if if ful�lls As-

sumptions 4.4.1 and 4.4.2. Vice versa, an invalid instrumental variable does not ful�ll

either Assumption 4.4.1 or 4.4.2.

For convenience, I reproduce the reduced form model that forms the starting ground

for the test in Section 4.5:

Y = {X, T̂}
(
β

τ

)
+ cu+ ε (4.60)

{X, T̂} = E + u
(
b bτ

)
(4.61)

Each element of the vector b =
(
b1 . . . bd bτ

)
parameterizes the confounding of

the corresponding dimension of {X, T̂}, e.g. X1 = E1 + ub1. If Z is a valid IV, the

instrumented treatment variable T̂ is unconfounded, and bτ = 0.

Note that

δ = κi − κs ≤ 0⇔ κi
κs
≤ 1,

which will simplify the proof. For convenience, I reproduce the de�nition of κi and κs here
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and introduce some placeholders.

κs =

c̄s︷ ︸︸ ︷∥∥∥∥∥csΣ
−1
XTs

(
b

bTs

)∥∥∥∥∥

2

∥∥∥∥∥

(
a

aTs

)∥∥∥∥∥

2

︸ ︷︷ ︸
ās

+

∥∥∥∥∥csΣ
−1
XTs

(
b

bTs

)∥∥∥∥∥

2 (4.62)

κi =

c̄τ︷ ︸︸ ︷∥∥∥∥∥cΣ
−1

XT̂

(
b

bT̂

)∥∥∥∥∥

2

∥∥∥∥∥

(
a

τ

)∥∥∥∥∥

2

︸ ︷︷ ︸
āτ

+

∥∥∥∥∥cΣ
−1

XT̂

(
b

bT̂

)∥∥∥∥∥

2 (4.63)

Note that aTs = bTs = 0 since I draw Ts independently of Y and the structural error

εY . By virtue of how Ts is generated, ΣXTs = ΣXT̂ . By replacing T̂ with Ts the relation

between Y and u does not change and, therefore, cs = c.

Theorem 4.10.1. If the instrumental variable is valid, δ ≤ 0.

Proof. If the instrumental variable is valid, bT̂ = 0. Then,

κi
κs

=

∥∥∥∥∥

(
a

aTs

)∥∥∥∥∥

2

+ ‖c̄‖2

∥∥∥∥∥

(
a

τ

)∥∥∥∥∥

2

+ ‖c̄‖2

≤ 1 (4.64)

where c̄ = cΣ−1

XT̂

(
b

bT̂

)
= cΣ−1

XTs

(
b

bTs

)
because neither c̄τ nor c̄s contain τ or aTs , which

are the only quantities that di�er between κs and κi if the IV is valid. The last inequality

is due to the fact that aTs = 0 by construction. Therefore, it follows

IV valid⇒ δ ≤ 0.

Corollary 4.10.1.1. If δ > 0, instrumental variable is invalid.
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Proof. From Theorem 4.10.1 I have

IV valid⇒ δ ≤ 0.

Therefore, by contrapositive,

δ > 0⇒ IV invalid.

Thus, the proposed test evaluates the null hypothesis H0 : IV valid

4.10.3 Robustness to rescaling

As discussed, a drawback of the JS methodology to estimate a degree of confounding is

that it is theoretically not robust to rescaling of the data as this introduces a dependence

of the parameter vector and the covariance matrix of the covariates.

I adjust the data generating process slightly in order to be able to use logarithmic

transfromations. In particular, I transform X, as de�ned in (4.31), by

X := X−min(min(X), 0) + 1(min(X) < 0) (4.65)

and I replace Y as de�ned in eq. (4.35) by

Y := Y −min(min(Y ), 0) + 1(min(Y ) < 0) (4.66)

where 1 is the indicator function, which equals 1 if the condition in brackets is ful�lled.

I then implement the following three data transformations:

1. X1 := log(X1), and X2 := X2
2

2. Y := log(Y ), X1 := log(X1), and X2 := X2
2

3. Y := log(Y ), X1 := log(X1), and X2 := log(X2)

For the original data and for each of the three transformations, I implement the al-

gorithm described in the main text and compare the pseudo-p-values that result. First,

I show scatter plots of pseudo-p-values for each data transformation against those of the

original data. For each data transformation, the pseudo-p-values correlate almost per-

fectly with those from the original data. Second, I show AUC levels for the original as

well as the three data transformations in Table 4.6. The AUC levels are not sensitive to

data transformations.
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Table 4.6: For combinations of number of observations (n), number of covariates (d),
confounding degree of instrument (ω1) this table shows the area under the ROC curve
(AUC) for the original model and three transformations speci�ed in the main text. ω2 =
0.3, ω3 = 0.5, V ar(εY ) = V ar(εT ) = 1.

AUC

transformed models

n d ω1 original 1 2 3

0.1 0.691 0.691 0.657 0.661

0.2 0.889 0.883 0.867 0.866

0.3 0.972 0.971 0.959 0.957

0.4 0.994 0.993 0.988 0.989
10

0.5 0.999 0.999 0.998 0.998

0.1 0.733 0.733 0.697 0.697

0.2 0.925 0.926 0.902 0.900

0.3 0.986 0.986 0.983 0.979

0.4 0.999 0.998 0.997 0.997

500

20

0.5 1.000 1.000 1.000 1.000

0.1 0.729 0.722 0.719 0.712

0.2 0.929 0.926 0.912 0.912

0.3 0.981 0.979 0.976 0.976

0.4 0.996 0.995 0.993 0.993
10

0.5 1.000 0.999 0.998 0.998

0.1 0.811 0.808 0.801 0.802

0.2 0.967 0.966 0.956 0.957

0.3 0.996 0.996 0.995 0.995

0.4 1.000 1.000 1.000 1.000

1000

20

0.5 1.000 1.000 1.000 1.000
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Figure 4.5: Scatter plot of pseudo-p-values. This Figure shows scatter plots of
pseudo-p-values estimated based on transformed data against pseudo-p-values estimated
based on the original data. Each panel corresponds to one transformation of the data.
The p-values remain largely invariant with each scatter plot displaying a correlation larger
than 0.95. This is evidence for the robustness of the proposed test for instrument validity
with respect to rescaling of the data. n = 1000, d = 20, ω1 = 0.3, ω2 = 0.3, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1

4.10.4 Further results

Further results for Simulation Regime 1

In this section I provide further simulation results for Simulation Regime 1: Violation of

the exclusion restriction to show robustness of the results for di�erent variances of εT and

εY , see Tables 4.7 to 4.11. In addition, I provide results for di�erent levels of treatment

endogeneity ω3, see Tables 4.12 and 4.13.

Simulation Regime 2: Violation of Exchangeability Assumption

Figures 4.6 and 4.7 show results for the simulations for the violation of the exchangeability

assumption, see Section 4.6.2. The test performs well also for this violation. Note that the

degree of endogeneity of the instrument is not directly comparable to Simulation Regime

1 since ω1 enters the simulation inside an indicator function for Simulation Regime 2.



Structural Autonomy and Instrument Validity 119

Table 4.7: For combinations of number of observations n, number of covariates d, con-
founding degree of instrument ω1 this Table shows the area under the ROC curve (AUC),
the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical rejection
probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 0.5, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.674 0.056 0.144 0.036

0.2 0.817 0.137 0.278 0.036

0.3 0.916 0.270 0.530 0.036

0.4 0.969 0.399 0.758 0.036
10

0.5 0.980 0.472 0.864 0.036

0.1 0.721 0.047 0.104 0.014

0.2 0.889 0.164 0.338 0.014

0.3 0.964 0.289 0.634 0.014

0.4 0.988 0.392 0.824 0.014

500

20

0.5 0.997 0.493 0.950 0.014

0.1 0.679 0.048 0.200 0.074

0.2 0.813 0.146 0.426 0.074

0.3 0.914 0.270 0.664 0.074

0.4 0.961 0.406 0.842 0.074
10

0.5 0.981 0.496 0.952 0.074

0.1 0.740 0.044 0.182 0.020

0.2 0.913 0.180 0.558 0.020

0.3 0.974 0.316 0.812 0.020

0.4 0.989 0.406 0.928 0.020

1000

20

0.5 0.994 0.498 0.968 0.020
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Table 4.8: For combinations of number of observations n, number of covariates d, con-
founding degree of instrument ω1 this Table shows the area under the ROC curve (AUC),
the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical rejection
probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.575 0.026 0.080 0.018

0.2 0.778 0.128 0.264 0.018

0.3 0.874 0.221 0.458 0.018

0.4 0.959 0.353 0.722 0.018
10

0.5 0.976 0.436 0.832 0.018

0.1 0.653 0.034 0.072 0.012

0.2 0.833 0.135 0.274 0.012

0.3 0.929 0.234 0.546 0.012

0.4 0.981 0.340 0.790 0.012

500

20

0.5 0.991 0.430 0.920 0.012

0.1 0.653 0.035 0.156 0.042

0.2 0.792 0.127 0.374 0.042

0.3 0.888 0.224 0.556 0.042

0.4 0.950 0.354 0.784 0.042
10

0.5 0.982 0.446 0.888 0.042

0.1 0.686 0.040 0.190 0.042

0.2 0.865 0.136 0.430 0.042

0.3 0.945 0.250 0.706 0.042

0.4 0.978 0.345 0.878 0.042

1000

20

0.5 0.991 0.440 0.970 0.042
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Table 4.9: For combinations of number of observations n, number of covariates d, con-
founding degree of instrument ω1 this Table shows the area under the ROC curve (AUC),
the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical rejection
probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1.5, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.610 0.046 0.104 0.016

0.2 0.766 0.129 0.274 0.016

0.3 0.866 0.223 0.488 0.016

0.4 0.934 0.326 0.700 0.016
10

0.5 0.960 0.393 0.806 0.016

0.1 0.643 0.038 0.072 0.012

0.2 0.818 0.128 0.302 0.012

0.3 0.915 0.217 0.550 0.012

0.4 0.974 0.310 0.770 0.012

500

20

0.5 0.983 0.372 0.888 0.012

0.1 0.610 0.039 0.182 0.064

0.2 0.774 0.134 0.408 0.064

0.3 0.873 0.233 0.594 0.064

0.4 0.938 0.322 0.768 0.064
10

0.5 0.962 0.395 0.850 0.064

0.1 0.691 0.039 0.226 0.024

0.2 0.832 0.111 0.424 0.024

0.3 0.933 0.218 0.702 0.024

0.4 0.981 0.302 0.876 0.024

1000

20

0.5 0.994 0.380 0.966 0.024
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Table 4.10: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.3, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 0.5, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.731 0.113 0.076 0.008

0.2 0.925 0.324 0.400 0.008

0.3 0.987 0.488 0.802 0.008

0.4 0.998 0.597 0.960 0.008
10

0.5 1.000 0.656 0.996 0.008

0.1 0.802 0.118 0.048 0.006

0.2 0.958 0.312 0.358 0.006

0.3 0.996 0.488 0.844 0.006

0.4 0.999 0.584 0.974 0.006

500

20

0.5 1.000 0.640 1.000 0.006

0.1 0.782 0.148 0.210 0.018

0.2 0.952 0.357 0.624 0.018

0.3 0.995 0.547 0.942 0.018

0.4 1.000 0.649 0.996 0.018
10

0.5 1.000 0.699 0.996 0.018

0.1 0.835 0.152 0.200 0.010

0.2 0.981 0.370 0.682 0.010

0.3 0.998 0.546 0.966 0.010

0.4 0.999 0.628 0.998 0.010

1000

20

0.5 0.999 0.684 1.000 0.010
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Table 4.11: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.3, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1.5, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.670 0.100 0.058 0.014

0.2 0.870 0.250 0.312 0.014

0.3 0.956 0.367 0.666 0.014

0.4 0.978 0.454 0.840 0.014
10

0.5 0.996 0.529 0.952 0.014

0.1 0.699 0.100 0.062 0.010

0.2 0.900 0.217 0.266 0.010

0.3 0.977 0.357 0.704 0.010

0.4 0.993 0.420 0.928 0.010

500

20

0.5 0.995 0.486 0.970 0.010

0.1 0.700 0.104 0.168 0.006

0.2 0.919 0.293 0.540 0.006

0.3 0.967 0.419 0.818 0.006

0.4 0.995 0.515 0.942 0.006
10

0.5 0.998 0.577 0.988 0.006

0.1 0.745 0.110 0.148 0.008

0.2 0.951 0.280 0.578 0.008

0.3 0.994 0.411 0.924 0.008

0.4 0.998 0.476 0.986 0.008

1000

20

0.5 0.999 0.550 0.998 0.008
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Table 4.12: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.25,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.25 0.839 0.206 0.426 0.024
10

0.50 0.979 0.443 0.856 0.024

0.25 0.912 0.217 0.524 0.026500
20

0.50 0.995 0.464 0.956 0.026

0.25 0.844 0.201 0.562 0.062
10

0.50 0.982 0.467 0.910 0.062

0.25 0.903 0.215 0.664 0.0541000
20

0.50 0.993 0.465 0.988 0.054

Table 4.13: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 1: violation of exclusion restriction. ω2 = 0.6, ω3 = 0.75,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.25 0.853 0.177 0.342 0.010
10

0.50 0.986 0.414 0.814 0.010

0.25 0.894 0.162 0.316 0.010500
20

0.50 0.996 0.411 0.932 0.010

0.25 0.870 0.186 0.482 0.032
10

0.50 0.986 0.420 0.880 0.032

0.25 0.919 0.174 0.522 0.0141000
20

0.50 0.997 0.427 0.966 0.014
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Figure 4.6: This Figure shows the pseudo-p-value, δB, and the empirical rejection prob-
ability (based on the pseudo-p-value with threshold parameter α = 0.05) as a function of
the degree of instrument endogeneity where the source of confounding is a violation of
the exchangeability assumption, by number of covariates, (d, horizontal), and number
of observations (n, vertical). δB rises (less sharply than in the case where the exclusion
restriction is violated) with the degree of confounding, as does the pseudo-p-value. Conse-
quently, the empirical rejection probabilities go down to zero indicating that, if the degree
of condounding is su�ciently high, the test does not reject the null of endogeneity.
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Figure 4.7: AUC curves for violations of the exchangeability assumption. This
Figure shows the area under the ROC curve (AUC) as a function of the degree of instru-
ment endogeneity where the source of confounding is a violation of the exchangeability
assumption, for various combinations of number of covariates, d, and number of obser-
vations, n. Underlying test statistic is the pseudo-p-value. The test achieves high AUC
levels of close to the perfect score of 1 for large n and d.

4.10.5 ROC curves

ROC curves are an insightful way to evaluate the performance of a binary classi�er (valid

vs. invalid instrument, in the case at hand) that plots the share of true positive (TP)

decisions as a function of the share of false positive (FP) decisions. Thereby, it shows the

trade-o� between Type I and 1 − Type II errors of the test, i.e. rejecting H0 although

it is true and rejecting H0 when it is indeed false. The curve is traced out by varying a

threshold parameter α. The false positive rate is calculated as the share of false positive

decisions, i.e. rejections of H0, across M Monte Carlo draws in which H0 is in fact true

(i.e. the instrument valid). Similarly, the true positive rate is calculated as the share of

true positive decisions across all Monte Carlo draws in which H0 is actually false (i.e. the
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Table 4.14: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 2: violation of exchangeability assumption. ω2 = 0.3, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.606 0.059 0.052 0.004

0.2 0.769 0.160 0.184 0.004

0.3 0.858 0.236 0.348 0.004

0.4 0.926 0.337 0.616 0.004
10

0.5 0.944 0.380 0.704 0.004

0.1 0.636 0.066 0.040 0.004

0.2 0.802 0.154 0.164 0.004

0.3 0.921 0.244 0.372 0.004

0.4 0.956 0.318 0.632 0.004

500

20

0.5 0.976 0.365 0.764 0.004

0.1 0.621 0.056 0.108 0.016

0.2 0.817 0.184 0.362 0.016

0.3 0.900 0.265 0.564 0.016

0.4 0.916 0.317 0.662 0.016
10

0.5 0.960 0.383 0.796 0.016

0.1 0.637 0.051 0.086 0.014

0.2 0.843 0.162 0.334 0.014

0.3 0.934 0.277 0.690 0.014

0.4 0.973 0.334 0.800 0.014

1000

20

0.5 0.991 0.387 0.888 0.014
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Table 4.15: For combinations of number of observations n, number of covariates d,
confounding degree of instrument ω1 this Table shows the area under the ROC curve
(AUC), the average of δ1B over all M = 500 Monte Carlo draws δ̄1B, the empirical re-
jection probability for α = 0.05 as well as the empirical rejection rate under H0, i.e. when
ω1 = 0. Simulation Regime 2: violation of exchangeability assumption. ω2 = 0.6, ω3 = 0.5,
V ar(εY ) = V ar(εT ) = 1, B = 200.

n d ω1 AUC δ̄1B erp erp under H0

0.1 0.564 0.020 0.074 0.030

0.2 0.664 0.054 0.134 0.030

0.3 0.747 0.111 0.274 0.030

0.4 0.820 0.173 0.406 0.030
10

0.5 0.861 0.212 0.504 0.030

0.1 0.576 0.011 0.052 0.018

0.2 0.699 0.060 0.174 0.018

0.3 0.811 0.128 0.340 0.018

0.4 0.890 0.183 0.476 0.018

500

20

0.5 0.916 0.220 0.592 0.018

0.1 0.593 0.013 0.126 0.060

0.2 0.691 0.054 0.232 0.060

0.3 0.809 0.127 0.400 0.060

0.4 0.855 0.177 0.516 0.060
10

0.5 0.903 0.219 0.588 0.060

0.1 0.601 0.012 0.136 0.048

0.2 0.728 0.059 0.262 0.048

0.3 0.829 0.121 0.460 0.048

0.4 0.878 0.180 0.600 0.048

1000

20

0.5 0.919 0.216 0.714 0.048
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instrument invalid):

FP(α) =
1

M

M∑

m=1

ψδ,m(α) when ω1 6= 0

TP(α) =
1

M

M∑

m=1

ψδ,m(α) when ω1 = 0.

(4.67)

The ROC curve plots the TP rate as a function of the FP rate. The further the curve

lies above the forty-�ve degree line, the better the test. The area under the ROC curve

(AUC) is a measure for the accuracy of the test and ranges between 0.5 (useless classi�er

that does just as well as chance) and 1 (perfect accuracy).

4.10.6 Historical antecedents of the Principle of Independent Mech-

anisms

Since the algorithm proposed in Janzing and Schölkopf (2018) is justi�ed by the Principle

of Independent Mechanisms, which is called Independence between Cause and Mechanism

in its bivariate version, it is instructive to have a brief look at the historical origins of this

concept in econometrics.

A central problem in econometrics lies in identifying underlying economic relationships

from observable data that are generated by these relationships. Pioneers of econometrics

such as Frisch and Haavelmo worked on this problem in the mid-twentieth century and

proposed important concepts of `autonomy' and `con�uent relationships' in this context.

`Con�uent' relations describe regularities that can be passively observed from the data.

Autonomous relations, on the other hand, are those that are invariant to changes elsewhere

in the system under study. Frisch et al. (1938) preface a memorandum introducing this

work by stating that, �for any economic relation[] [. . . ] I may ask: How autonomous is it?

This question is extremely important. In one sense it is the most basic question one may

raise in all sorts of econometric work� (p. 1). Haavelmo resorts to a mechanical analogy to

illustrate the concept: if a man did not know anything about automobiles, and he wanted

to understand how they work, we should not advise him to spend time and e�ort in

measuring [the relationship between the pressure on the gas pedal and the corresponding

speed]. Why? Because (1) such a relation leaves the whole inner mechanism of a car in

complete mystery, and (2) such a relation might break down at any time, as soon as there

is some disorder or change in any working part of the car. We say that such a relation

has very little autonomy, because its existence depends upon the simultaneous ful�lment

of a great many other relations, some of which are of a transitory nature. On the other
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hand, the general laws of thermodynamics, the dynamics of friction, etc., etc., are highly

autonomous relations with respect to the automobile mechanism, because these relations

describe the functioning of some parts of the mechanism irrespective of what happens in

some other parts� (Haavelmo, 1944, pp. 27).11 In addition to being more stable and more

comprehensible, autonomous relations are essential for devising policy recommendations

that rely on pinpointing those structures that remain invariant after a policy has changed.

It is instructive to look at the problem in a bivariate, linear setting to understand both

why it is di�cult to establish causal relations from observational data and how progress

may nevertheless be achieved. Consider a system of two variables X and Y :

Y = θX + εy

X = εx
(4.68)

where θ is a parameter, εy, εx are independent Gaussian noise variables. Simon (1953)

argues that there is an implicit causal order in such a system because one needs to know

X in order to know Y , yet one does not need to know Y to know about X. However, one

can write a statistically equivalent model with completely reversed order as

X = δY + ωx

Y = ωy
(4.69)

where the parameters in the second system are calibrated such that the errors, ω3 and

ω2, in system (4.69) are also independent: δ = θV ar(εx)
θ2V ar(εx)+V ar(εy)

, ωy = εy + θεx, ωx =

(1−δθ)εx−δεy (Hoover, 2008). In such a bivariate linear Gaussian setting, systems (4.68)

and (4.69) cannot be distinguished based on observational data alone without making

further assumptions.

This observational equivalence of the system where X is causing Y and the system

where Y is causing X is the root of the identi�cation problem. The structural approach to

causality represented by Frisch and Haavelmo at the Cowles Commission argues that this

undecidability can only be resolved by means of substantive (economic) theory. Though

generally sympathetic to the Cowles Commission's conceptualization of causality, Simon

(1953) proposes a di�erent approach to resolving the issue. He argues that one can deduce

the causal direction by detecting invariance of conditional distributions analyzing either

controlled or natural experiments without relying on economic theory.12 Namely, imagine

11Haavelmo credits Frisch (1938) for coining the term `autonomy.'
12Since instrumental variables are basically packaged natural experiments, much of the progress made

under the umbrella of the credibility revolution in empirical economics is, in spirit, wedded to Simon's
approach sketched out here (see Hoover, 2008).
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an experiment that would alter the marginal distribution of X without altering the con-

ditional distribution of Y |X. These alterations are only possible in a system de�ned by

eqs. (4.68): altering the marginal distribution of X amounts to changing V ar(εx). This

does not translate into a change in the conditional distribution of Y |X. If, on the other

hand, the observations were guided by the system in eqs. (4.69), the change in V ar(εx)

would in�uence ωy and the distribution of Y |X in turn. Therefore, one can deduce that

X is causing Y .13

Thus, the idea of autonomous relations relates to the invariability of causal relations

upon intervening on the cause. To give another example, the underlying causal structure

between `smoking' and `lung cancer' does not change upon varying the number of cigarettes

smoked. This is precisely why we expect to be able to change lung cancer incidence after

intervening on smoking habits.14

Still, it seems that observational equivalence cannot be resolved by analyzing just a

single data set. For Simon's approach to work, one would need two samples of the joint

distribution of X and Y : one before and one after a (natural) experiment to analyze invari-

ant structures. However, recent work that has been done largely outside of econometrics

shows that progress is possible.15

Causal thinking is receiving increasing interest in the machine learning community

(Peters et al., 2017). Early work on how to estimate causal parameters includes Pearl

(2009) and Spirtes et al. (2000). Building on this seminal work, there are a number of

proposals for how to resolve the aforementioned observational equivalence problem (Mooij

et al., 2016; Shimizu et al., 2006; Hoyer et al., 2009). Building on the invariance princi-

ple expounded on by early Cowles Commission researchers, the overarching idea in this

literature is that the causal structure of a system is composed of invariant mechanisms

that do not inform or in�uence one another, and that are, therefore, mutually indepen-

dent. Such a collection of invariant structural relations give rise to the independence of

the conditional distribution of the e�ect given the cause and the marginal distribution of

13Simon's approach is also re�ected in later work by Leamer, who de�nes exogeneity as follows: �If the
observed conditional distribution of the variable y given a set of variables x is invariant under any mod-
i�cation of the system selected from a speci�ed family of modi�cations that alter the process generating
x, then the variables x are said to be exogenous to y.� Leamer (1985, p. 262)

14This example is taken from Illari and Russo (2014, Section 10.3.2).
15It is worth mentioning a relevant argument due to Simon (1962) in this context. Simon discusses

the �architecture of complexity� by �rst observing that there are two broad types of complexity: those
that are characterized by a hierarchical structure and those that are not. He goes on to argue that
hierarchical systems evolve more quickly than non-hierarchical ones and, therefore, are more common.
The hierarchical structure of a complex system implies the possibility to characterize it as a collection
of (nearly-)decomposable sub-structures. This (near-)decomposability, in turn, implies that intra-sub-
structure mechanisms can be analyzed independently from other sub-structures � which is reminiscent
of the Principle of Independent Mechanisms. Even in the presence of feedback or cyclical behavior,
independence of sub-structures can be maintained by under mild conditions.
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the cause: f(e�ect|cause) ⊥⊥ f(cause). Since the conditional distribution f(e�ect|cause)
represents the causal mechanism, this independence is generally referred to as the Inde-

pendence between Cause and Mechanism (ICM) (Peters et al., 2017). In other words, the

ICM introduces a `causal asymmetry' in the statistically symmetric factorization of the

joint distribution of cause and e�ect:

f(cause, e�ect) = f(cause|e�ect)f(e�ect) (4.70)

= f(e�ect|cause)︸ ︷︷ ︸
`mechanism'

f(cause). (4.71)

Although statistically symmetric, the invariance of the causal process induces an indepen-

dence between the mechanism and cause distributions in eqs. (4.71), which there is no

reason to expect as well in the `anticausal' direction, eqs. (4.70).16

This claim can be visualized with an example from Hoyer et al. (2009). Underlying

16An application of this reasoning in economics is found in Hoover (1990). He considers a setting in
which money supply M causes price level P :

P = aM + ε with ε ∼ N (0, σ2
ε)

M = b+ ρ with ρ ∼ N (0, σ2
ρ)

with reduced form equations
P = ab+ aρ+ ε andM = b+ ρ.

The joint distribution can be partitioned in two ways: f(M,P ) = f(M |P )f(P ) = f(P |M)f(M). These
distributions can be calculated more explicitly:

f(P |M) = N (aM, σ2
ε)

f(M) = N (b, σ2
ρ)

f(M |P ) = N
(
aσ2

ρP + bσ2
ε

a2σ2
ρ + σ2

ε

,
σ2
εσ

2
ρ

a2σ2
ρ + σ2

ε

)

f(P ) = N (ab, a2σ2
ρ + σ2

ε)

Now consider two changes to the system. First, the conduct of monetary policy changes, which means
that either b or σ2

ρ changes. As a consequence, notice that f(M |P ) and f(M), as well as f(P ), change, but
crucially that f(P |M) stays invariant, i.e. in the (`causally directed') factorization f(P |M)f(M) only the
latter component is a�ected, whereas in the (`anticausal') factorization f(M |P )f(P ) both components
are a�ected. Second, the price setting procedure changes, which means that either a or σ2

ε changes.
As a consequence, f(M), f(M |P ), and f(P ) change, but f(P |M) remains invariant. In the (`causally
directed') factorization f(P |M)f(M) only the �rst component is a�ected, whereas in the (`anticausal')
factorization f(M |P )f(P ), again, both components are a�ected. As Hoover concludes, the �[causal]
partition f(P |M)f(M) is clearly more stable to Ill-de�ned interventions than the [anticausal] partition
f(M |P )f(P ).� The idea of a more stable partition in the causal direction links nicely with causal discovery
methods based on complexity of the conditional distributions put forward by a.o. Peters and Bühlmann
(2014) (for more references consult Mooij et al., 2016, p. 3). Those methods are based on the observation
that the factorization of the joint distribution in the causal direction, p(e�ect|cause)p(cause), yields models
of lower total complexity (as for instance de�ned as Kolmogorov complexity). Note that the juxtaposition
of causal and anticausal directions is described in the work of Schölkopf et al. (2012).
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Figure 4.8: Illustration of the Independence between Cause and Mechanism
postulate. Panel a) shows the joint density p(x, y). The horizontal and vertical lines
indicate the levels of the conditioning variables. Panels b) and c) show the conditional
densities p(y|x) and p(x|y), respectively. One can see by visual inspection that the shape of
the conditional distribution p(y|x) is invariant to the choice of x. However, the conditional
distribution p(x|y) does have a di�erent shape depending on y. Following the modularity
reasoning, this provides evidence for x causing y. Figure adapted from Hoyer et al. (2009).

this example is the generative model

y = x+ x3 + ε (4.72)

where x causes y, x and the error ε are independent following a Gaussian N (0; 0.52).

This exercise allows one to obtain a visual intuition as to how causal identi�cation by

invariance works. As seen in the previous paragraph, the invariance argument rests on

the independence between conditional distributions and purported causes. In particular,

we expect an independence between the conditional distribution p(e�ect|cause) and the

marginal p(cause). Since we know the causal model that has generated the data for this

example (x → y), we can check whether we see this independence relation exists in the

simulated data. For this purpose, we visualize the joint distribution p(x, y), as well as

conditional distributions p(x|y) and p(y|x) in Figure 4.8. The shape of the conditional

distribution p(x|y) varies with y, which casts doubt on the hypothesis that y → x. The

shape of p(y|x) is invariant to changes in the conditioning variable x, a feature that quali�es

x as cause of y.

This concept closely resembles the de�nition of `super-exogeneity' of Robert Engle et

al. (1983). They de�ne a variable z to be super-exogenous if its joint density with y fac-

torizes as f(y, z|λ) = f(y|z, λ1)f(z|λ2) and the conditional density f(y|z, λ1) is invariant

to changes in the marginal density f(z|λ2) where λ, λ1, and λ2 are parameters.
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4.10.7 Simulation for the illustration of PIM

The illustration in Figures 4.2 and 4.9 is based on the following simulation.

First, construct a covariance matrix Σ as follows. Draw d+ 1 eigenvalues

λ ∼ U(0.5, 1.5)

which populate the diagonal of a matrix V . Then I draw a random orthogonal matrix L

and set Σ = V LV >. I multiply each element in the last row and last column of Σ by 5

to induce more unexplained variation in Y . For the unconfounded case, I replace the last

row and last column of Σ with zeroes but leave the (d+ 1, d+ 1) entry untouched:

confounded: Sc = Σd+1×d+1

unconfounded: Su =

(
Σ(1:d)×(1:d) 0

0 σd+1×d+1

)
(4.73)

I simulate data by drawing the structural error term εY and X from a jointly normal

distribution (
X

εY

)
∼ N (0, Si) (4.74)

where i ∈ {c, u}.
Next, draw the d-dimensional true parameter vector

β ∼ N (0, diag(1))

and divide each element of β by d0.5 (to keep the variance of Y comparable for di�erent

d).

Finally, set

Y = Xβ + εY . (4.75)

We estimate β̂ by OLS.
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Figure 4.9: Illustration of genericity of causal parameter vectors. This Figure
shows density plots of the angles between the least-squares parameter vector of both con-
founded and unconfounded models with each of the d eigenvectors of the covariance matrix
of the covariates. In the unconfounded model, the least-squares parameter vector should
lie in generic orientation with respect to (the eigenspace spanned by the) eigenvectors of
the covariance matrix of the covariates. Genericity of two vectors can be understood as
their dot product being zero, or their angle being 90 degrees. As expected, therefore, the
distribution of angles in the unconfounded case clusters around 90 degrees. Crucially, in
the confounded case, the distribution of angles is considerable wider. A trace of confound-
ing is thus re�ected in the less generic angles of the confounded parameter vector w.r.t.
the eigenvectors; their distribution is characterized by a more frequent divergence from the
generic angle of 90 degrees. This illustrates the type of confounding signal that JS leverage
in their methodology. The Figure shows angle distributions for 100 simulation runs with
d = 100, and n = 50000, the respective means are depicted with black lines, solid for the
confounded and dashed for the unconfounded case.



5 Conclusion

The synergies between machine learning and, more generally, computer science and eco-

nomics in the �eld of causal inference are wide-ranging. This dissertation focuses on two

points of contact between the two �elds. First, traditional machine learning algorithms

can be used to complement econometric techniques for causal identi�cation. Second, in-

sights into causal modeling from the computer science community can be employed in

economics.

The �rst paper falls into the former category. Carsten Schröder and I adapt the causal

forest methodology proposed by Athey et al. (2019) to a di�erence-in-di�erences setting

and analyze to what extent e�ect heterogeneities of the 2015 introduction of the minimum

wage in Germany can be discerned in a data-driven manner. The Socio-economic panel

(SOEP) serves as empirical basis. Two contributions are made. First, we show how the

causal forest methodology can be applied in di�erence-in-di�erences settings. Second, we

show that previously documented e�ect heterogeneities can be explained by interactions

of other covariates. These interactions de�ne subgroups of the population according to

the level of treatment e�ect in a �ne-grained manner. Such information is useful for

policy-makers who wish to target measures complementary to the minimum wage or direct

controls for non-compliance to least-bene�ting groups.

Ultimately, the second and third paper are applications of Haavelmo's concept of the

autonomy of causal relations (Haavelmo, 1944). Though useful as an intuitive guide as to

what characterizes a causal relation and implicitly used to motivate existing techniques for

causal inference, it has hitherto not been employed as an empirical tool for identi�cation

of causal relations eo ipso.

The second paper relies on a strand in the computer science literature that uses func-

tional form restrictions to infer the causal direction between two random variables (Peters

et al., 2014). Existing work shows that in models characterized by additively separable

error terms and a nonlinear relation between cause and e�ect, the mechanism linking

cause and e�ect is `independent' of the cause. This implies an independence between

the error term and the covariate. Christoph Breunig and I show how such reasoning can

be used to address problems of reverse causality as one source of endogeneity, which is

136
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a central problem in econometric models that potentially invalidates estimates of causal

e�ects. Existing tests of endogeneity often require that a potential solution in the form

of instruments is available (see extensive body of work initiated by Hausman, 1978). In

situations in which instruments are not available, a test that does not require them is

needed. This paper presents a test for reverse causality of a single regressor without re-

quiring instruments. The mean independence assumption is moved beyond and the error is

required to be independent of the regressor, thus allowing us to infer the causal direction

between the variables at hand. Advances on testing independence of random variables

based on kernel-based procedures are leveraged. The contribution is twofold. First, we

extend existing research from the computer science community on the identi�ability of

the causal direction by addressing heteroskedastic error structures and the presence of

additional control variables. Second, we provide a test for reverse causality that does not

rely on instruments.

While the second paper leverages the implications of structural autonomy in the bivari-

ate case, the third paper does so in the multivariate case. Speci�cally, it builds on Janzing

and Schölkopf (2018), who propose a method to estimate an overall degree of confounding

in multivariate linear models. Given the often controversial identifying assumptions in

instrumental variable models, whose justi�cation is rarely statistically-grounded, such a

method is a valuable addition to the empirical economics toolkit. I make two contributions.

First, I address the limitation of Janzing and Schölkopf (2018) of providing an overall de-

gree of confounding for the whole model and provide a way to use their method to estimate

a degree of confounding of a single covariate in multivariate linear models. Second, I show

how this method can be employed to test for instrument validity in instrumental variable

models and provide an empirical application.

Thus, this dissertation contributes to the nascent literature on using ML techniques

to answer questions in economics. A particular focus is on the potential of methods for

causal identi�cation developing in the ML community that have hitherto received scant

attention in economics.
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7 Summary

This dissertation consists of three papers sharing the objective to analyze how machine

learning methods can be useful to economists and econometricians in their pursuit to un-

derstand causal mechanisms operating in the economy. Such causal knowledge is essential

when designing policies that help achieve societal goals. ML techniques are increasingly

applied in and adapted to practical policy settings. These are characterized by the same

type of endogeneity problems that make actionable inference from data di�cult and that

economists are occupied with. Thus, there are many potential synergies between ML and

economics that are surfacing on both the academic and policy-making agendas. Contri-

butions to two points of interchange between the two �elds are made. First, ML can be

used to improve or extend widely-used identi�cation techniques in economics and, second,

insights into causal modeling from the ML community can be introduced as novel routes

to identi�cation in economics. The �rst paper of this dissertation falls in the former, the

second and third paper in the latter category.

In the �rst paper of this dissertation, we adapt the causal forest methodology pro-

posed by Athey et al. (2019) to estimate heterogeneous treatment e�ects in di�erence-in-

di�erences studies and analyze heterogeneous e�ects on wage growth of the 2015 introduc-

tion of the statutory minimum wage in Germany. Two contributions are made. First, we

show how the causal forest methodology can be applied in di�erence-in-di�erences settings.

Second, we show that previously documented e�ect heterogeneities can be explained by

interactions of other covariates.

The starting point for the second and third paper of this dissertation is the second point

of interchange. There is a tendency to argue ML techniques' strength is their superior

predictive capacity. However, above and beyond the idea that superior prediction can

be useful in causal inference problems, developments in the ML community question this

dictum: Techniques to model causal relations and to identify them from observational

data are emerging (for a survey see Peters et al., 2017).

A central tenet of causal machine learning is that the observed joint distribution of a

number of random variables contains causal information in the form of invariance proper-

ties. This causal information can be exploited by appropriate statistical techniques, even

xvii
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in the absence of quasi-experimental techniques. In that sense, the causal machine learn-

ing literature o�ers novel pathways to causal understanding that are not yet exploited in

economics. The originality of the second and third paper lies in exploring the potential of

these novel pathways.

In the second paper, we propose a test for reverse causality that relies on the insight that

making functional form assumptions can help identify the causal direction between two

observed variables. Two contributions are made. First, we extend existing research from

the computer science community on the identi�ability of the causal direction by addressing

heteroskedastic error structures and the presence of additional control variables. Second,

we provide a test for reverse causality that does not rely on instruments.

In the third paper, I propose a test for instrument validity, which relies on a method

proposed by Janzing and Schölkopf (2018) to quantify confounding in multivariate linear

models. Given the often controversial identifying assumptions in instrumental variable

models, whose justi�cation is rarely statistically-grounded, such a method is a valuable

addition to the empirical economics toolkit. Two contributions are made. First, I address

the limitation of Janzing and Schölkopf (2018) of providing an overall degree of confound-

ing for the whole model and provide a way to use their method to estimate a degree of

confounding of a single covariate in multivariate linear models. Second, I show how this

method can be employed to test for instrument validity in instrumental variable models

and provide an empirical application.



8 Zusammenfassung

Die Synergien zwischen auf der einen Seite den Feldern des Machine Learning (ML) und

der Informatik und auf der anderen Seite der Ökonomie sind weitreichend. Diese Disser-

tation befasst sich mit zwei Überschneidungspunkten zwischen diesen Feldern. Erstens

können ML Methoden traditionelle ökonometrische Verfahren zur Kausalinferenz komple-

mentieren. Zweitens können Erkenntnisgewinne in die Modellierung und Identi�kation

kausaler Zusammenhänge aus der ML Literatur in die Ökonomie eingeführt werden.

Das erste Papier fällt in erstere Kategorie. Carsten Schröder und ich adaptieren die

Kausalwälder Methodik von Athey et al. (2019) für ein Di�erenzen-in-Di�erenzen Ansatz

und analysieren, inwieweit E�ektheterogenitäten der Mindestlohneinführung in Deutsch-

land 2015 auf Lohnwachstum in einer datengetriebenen Weise identi�ziert werden können.

Mit dieser Studie tragen wir in zweierlei Hinsicht zur Literatur bei. Erstens zeigen wir

wie die Kausalwälder Methodik in einem Di�erenz-in-Di�erenzen Ansatz verwendet wer-

den kann. Zweitens zeigen wir, wie bereits dokumentierte E�ektheterogenitäten sich als

nicht echt herausstellen, sobald komplexe Interaktionen aus zusätzlichen Variablen in das

Modell aufgenommen werden.

Der Ausgangspunkt für das zweite und dritte Papier dieser Dissertation ist der zweite

Überschneidungspunkt. Es gibt eine Tendenz ML Methoden als lediglich mächtige Vorher-

sagemodelle zu verstehen, die niemals ein Verständnis kausaler Zusammenhänge erreichen

können. Neue Entwicklungen in der ML Gemeinschaft stellen diese Aussage jedoch in

Frage. Es gibt Fortschritte bezüglich Methoden, die einem erlauben kausale Zusammen-

hänge in rein observierten, nicht experimentellen, Daten zu erkennen. Die Originalität des

zweiten und dritten Projektes besteht darin, diese neuen Entwicklungen in die Ökonomie

einzuführen.

Im zweiten Papier stellen wir einen Test für umgekehrte Kausalität als eine Quelle von

Endogenität in ökonometrischen Modellen vor. Es basiert auf der Einsicht, dass relativ

schwache Annahmen zum funktionalen Zusammenhang zweier Variablen ausreichen, um

deren kausale Richtung zu identi�zieren. Mit dieser Studie leisten wir einen zweifachen

Beitrag zur Literatur. Erstens erweitern wir theoretische Resultate aus der ML Literatur

xix
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zur Identi�zierbarkeit der kausalen Richtung zwischen zwei Variablen, indem wir zusät-

zliche Kontrollvariablen in das Modell aufnehmen und Heteroskedastizität hinsichtlich

dieser zusätzlichen Variablen erlauben. Zweitens, zeigen wir wie die Methodik für einen

Test für umgekehrte Kausalität verwendet werden kann, der keine Instrumente braucht.

Im dritten Papier, stelle ich einen Test für Instrumentenvalidität vor, der auf einer

Methodik von Janzing and Schölkopf (2018) basiert. Diese Methodik erlaubt es den

Grad, zu welchem eine observierte statistische Korrelation auf unbeobachtete Störvari-

ablen zurückzuführen ist, zu quanti�zieren. Gegeben der oft höchst umstrittenen Annah-

men, die für eine kausale Identi�zierung mit Hilfe von Instrumentalvariablen nötig sind,

und deren Rechtfertigung selten statistisch fundiert ist, ist ein solcher Test ein sinnvoller

Beitrag zum Instrumentarium in der empirischen Ökonomie. Diese Studie trägt entschei-

dend zur Literatur bei, denn erstens zeige ich wie die Methodik von Janzing und Schölkopf,

die ein Störgrad für das gesamte Modell quanti�ziert, genutzt werden kann um den Stör-

grad von einer einzelnen Variable zu quanti�zieren. Zweitens zeige ich wie die Methodik

für einen Instrumentalvariablentest genutzt werden kann und diskutiere eine empirische

Anwendung.
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