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Abstract: The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR),
essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are
the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem
worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists
such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to
the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by
suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of
G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades.
An increasing number of experimental studies have unraveled molecular properties and mechanisms
of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the
MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a
peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a
presumably active-state conformation compared to the structure of the inactive state, we here briefly
summarize the current understanding and key players involved in the MC4R switching process
between different activity states. Finally, these perspectives highlight the complexity and plasticity in
MC4R signaling regulation and identify gaps in our current knowledge.

Keywords: G protein-coupled receptor; melanocortin receptors; melanocortin-4 receptor;
signal transduction

1. The Melanocortin-4 Receptor

The G protein-coupled receptor (GPCR)-linked modular and plastic signaling system is one
of the main signaling pathways in eukaryotes and evolved early in eukaryotic evolution [1,2].
These membrane-spanning receptors and respective interaction partners are associated with most
physiological processes, such as regulation of tissue development, body growth, memory development,
reproduction, behavior, or senses such as taste or vision [3]. The relevance of approximately 830 human
GPCRs [4] is based on their proven or, in the case of the still orphan receptors, suspected key roles in
signal transduction from the extracellular side to the intracellular interior induced by a huge variety of
stimuli [5]. Receptor stimulants (agonists) can be, e.g., odors, diverse metabolites, ions, mechanical
forces, peptides, nucleotides, light, amines, or even large glycoproteins [6]. Receptor stimulation by
agonistic ligands results in the stabilization of an active-state conformation with an increased capacity
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for intracellular coupling and activation of, e.g., G proteins or arrestins [7]. GPCR/G protein interaction
triggers activation of second messenger signaling pathways regulating downstream events such as ion
channel activity or gene expression [8,9].

Malfunctions of approximately 100 GPCRs are associated with different human diseases [10],
including viral infections, cancer, infertility, inflammation, as well as metabolic and neurological
disorders [11–16]. The pathogenic triggers at GPCRs vary from hormonal dysregulation, virus
infections, or interactions with auto-antibodies, as well as mutations. This fact, along with their key
role in cell signaling, explains why approximately ~35% of FDA-approved drugs target GPCRs [17].

GPCRs share a common structural architecture consisting of an extracellular N-terminus (Nt), an
intracellular C-terminus (Ct), seven transmembrane helices (TMHs) connected via three intracellular
(ILs), and three extracellular loops (ELs). Currently, over 300 GPCR structures from more than 70 unique
receptors were determined by protein X-ray crystallography or by cryo-electron microscopy (cryo-EM),
including different conformations or substates (inactive and active states) and receptor complexes with
G proteins, arrestins, or peptides derived from both, respectively [18–20]. Such structural information,
although far from being complete for the full set of GPCR families and classes, is an indispensable
source of information for scientific studies related to cell physiology, molecular biology, pharmacology,
and medicine [7,20].

A milestone in melanocortin-4 receptor (MC4R) research was the recently published crystal
structure in an inactive state, with a resolution of 2.75 Å [21]. This 3D structure provides insights into
the general structure of the inactive MC4R, as well as binding details of an antagonistic peptide ligand
(SHU9119 [22]), which is supposedly mediated or supported by calcium ions. The MC4R belongs to
class A GPCRs and is one of five melanocortin receptor subtypes (MC1-5R) [23–25]. It is involved in
regulating various physiological processes, including energy homeostasis, cardiovascular function,
glucose/lipid homeostasis, and sexual functions [25,26]. MC4R activation results in decreased food
intake and increased energy expenditure, hence decreased body weight [27]. In the cardiovascular
system, MC4R activation increases heart rate and blood pressure, whereas MC4R deficiency causes
dilated cardiomyopathy in mice [28]. MC4R also promotes glucose homeostasis, independent of its
action on the body weight, providing additional therapeutic benefit (reviewed in [25]). The involvement
of MC4R in regulating reproduction has resulted in an FDA-approved drug for treating hypoactive
sexual desire disorder in women [29]. More recently, MC4R has been shown to be involved in regulating
glucagon-like peptide-1 and peptide YY secretion from enteroendocrine L cells [30], modulating serum
insulin levels [31], and liver and limb regeneration [32,33].

Agonist action (e.g., by α-melanocyte-stimulating hormone (α-MSH)) in the MC4R induces an
appetite-reducing effect [34], in contrast to the inverse agonist ligand agouti-related peptide (AgRP)
with appetite-enhancing effect [35,36]. This endogenous counter-regulation mechanism at the ligand
level is of specific interest, since other endogenous inverse agonists have not been described for
GPCRs so far, with the exception of agouti-signaling protein for the MC1R [24] and the inverse
agonistic molecule retinal permanently bound in rhodopsin [37]. An important interrelated MC4R
characteristic is relatively high constitutive (basal) Gs-mediated adenylate cyclase activation [38],
which can be increased further by agonist binding. Moreover, other signaling pathways associated
with Gq, Gi, or arrestin activation by MC4R are also known [25,39]. Importantly, several external
factors are involved in the signaling regulation of the MC4R and were identified in recent years, such
as homo- and hetero-oligomerization [40,41], the interacting melanocortin-2 receptor accessory protein
2 (MRAP2) [42–44], or the endogenous ligand lipocalin-2 produced by osteoblast in bone [45].

To date, MC4R gene mutations inactivating the MC4R for signaling (loss of function) are the
most frequent monogenic cause of obesity [46]. This is also of importance because obesity is related
to different comorbidities, such as type 2 diabetes mellitus or cardiovascular disease [47]. To date,
approximately 165 missense mutations in 129 different residues have been reported [48]. Several
of these pathogenic MC4R mutations have been observed to cause biased signaling through the
MC4R by forcing preference for a specific signaling pathway [39,49–52] (reviewed in [35]). Moreover,
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a newly developed MC4R ligand causing biased signaling, setmelanotide, was applied successfully in
anti-obesity treatment [39]. While a huge amount of specific synthetic or peptidic ligands, including
setmelanotide [53–56], bivalent ligands [57–60], and many others [61–63], have been designed, there is
a tremendous medical as well as socioeconomic interest in the development of functionally optimized
(tailor-made for specific signaling pathways) MC4R ligands reasoned by an increasing prevalence of
human obesity worldwide [64].

In this review, we briefly describe current knowledge on the structural properties and involved
factors related to MC4R signal transduction. This summary is supported by structural models of
active-state ligand/MC4R/effector complexes (Figure 1) in comparison to recent insights from the
inactive MC4R/antagonist complex structure [21]. We aimed to highlight this receptor as part of a
molecular machinery where several intrinsic and external factors regulate signaling.
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Figure 1. Scheme of MC4R interrelations. The figure reflects functional-structural aspects related to
MC4R signal transduction. Middle: Potential interaction of an MC4R dimer with a heterotrimeric G
protein (surface representation). (A) represents the binding of AgRP, (B) the binding of α-MSH, and (C)
the potential binding of sodium. (D) indicates an association with other proteins such as Kir channels
and (E) arrestin binding with the MC4R. (F) The recently described crystal structure of the MC4R in the
inactive state is bound to a peptide antagonist (SHU9119).

2. Specific Features in the MC4R Sequence and Structure Linked with Functionalities

In addition to the above mentioned common structural GPCR features, such as seven TMHs
and their connecting loops, which are confirmed by the recently solved inactive-state structure of the
MC4R [21], the MC4R is also characterized by amino acids in particular sequence regions that are
responsible for specific peculiarities in the protein structure. In the following sections, we will discuss
and highlight structural features related to functional properties, and will also specify open questions
and current gaps in knowledge.



Int. J. Mol. Sci. 2020, 21, 5728 4 of 29

2.1. A Presumed Role of the MC4R N-terminus in Regulating Permanent Basal Activity and the Inhibitory
Effect of AgRP

Previous studies [65] suggested that the MC4R is one of the few known GPCRs [66,67] where
the N-terminus has a fundamental impact on signaling regulation by acting as an intramolecular
(tethered/bound) ligand. The general mechanism of a tethered ligand is suspected not only for
the MC4R but also for GPR83 [68], glycoprotein hormone receptors (GPHRs) [69–71], S1P2R [72],
LGR7 [73], α1D-adrenoceptor [74], adhesion GPCRs (aGPCR) [75], or protease-activated receptors
(PARs) [76]. Tethered ligands can permanently activate the receptor to a certain degree compared to
full ligand-stimulated activity, as suggested for the MC4R, or they can be silent in the basal state and
be activated by enzymatic clipping, as shown for the PARs [76]. Of note, for GPHRs, it was proposed
that intramolecular inverse agonism mediated by the N-terminus on the transmembrane domain [77]
can be interconverted by TSH binding into intramolecular agonism [70], or that a specific extracellular
region acts as a tethered ligand that becomes activated by hormone-ligand binding [69]. Moreover,
a recent study on GPR52 showed that its EL2 occupies the orthosteric binding pocket, acting as a
“built-in agonist”, conferring an intrinsically high basal activity to this receptor [78]. Such a scenario
for basal activity regulation is excluded for the MC4R, reasoned by a very short EL2 structure (see
section below, Figure 2 and inactive-state MC4R crystal structure [21]).

For the MC4R, a specific part of the MC4R N-terminus was proposed to be embedded between
the TMHs and ELs, acting as an intramolecular tethered (partial) agonist on the MC4R by permitting
high basal signaling activity [65,79]. The minimal “activating 14HLWNRS19 sequence” (human MC4R
motif sequence (Figure 2); underlined are the most mutation-sensitive amino acids) is supposed to
interact intramolecularly with the amino acid residues of the TM helical bundle (e.g., F201, W258, and
F262) [79] (Figure 3). Notwithstanding, conservation of the MC4R N-termini between positions 14
and 19 (human MC4R numbering) among orthologous receptors is high; however, several significant
variations can be observed in different animal species, such as birds (motif HFWMHS), fish (Y/FRNHS)
or reptiles (H/XF/XWNHS/T) (bold letters indicate residues deviating from the human sequence,
see also Supplemental material in [48]). Assuming a conserved mechanism of signaling regulation
in vertebrates and, therefore, also for the presumed relationship between this sequence motif and
maintenance of the MC4R basal activity, the question arises of how such deviations may impact basal
receptor activity of diverse animal branches and its impact on AgRP action. Indeed, we showed
recently that fish MC4Rs have several-fold higher basal activities than human MC4R, when assayed in
the same experiments [26,80–82].
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Figure 2. Sequence alignment of the MC4R and homologous MCRs in comparison to bovine rhodopsin (bOPSD), the β2-adrenergic receptor (ADRB2), and the
sphingosine 1-phosphate receptor 1 (S1PR1). This comparison visualizes predicted structural dimensions of each MC4R part, also assigned according to the recently
solved MC4R inactive-state structure (PDB ID: 6W25) [21], such as the helices or loops (IL, intracellular loops; ELs, extracellular loops; TMH, transmembrane
helices). Highly conserved positions, according to the unifying Ballesteros and Weinstein numbering scheme for class A GPCRs [83], are indicated by respective
numbers. This alignment was visualized using the BioEdit software [84]. Specific background colors indicating conservation (Blossum62 matrix) and reflecting
biophysical properties of the amino acid side chains as follows: black—proline, blue—positively charged, cyan/green—aromatic and hydrophobic, green—hydrophobic,
red—negatively charged, gray—hydrophilic, dark-red—cysteine, and magenta—histidine.
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Figure 3. Presumed MC4R active-state models. (A) Independent of various details, this receptor
shows structural features that are common for GPCRs such as seven transmembrane helices (H1–7)
and corresponding connection loops (extracellular loops, EL1-3, and intracellular loops, IL1-3), the
additional membrane surface helix H8 as well as the N-terminus (Nt) and C-terminus (Ct). As recently
proposed [39], α-MSH may bind into a crevice between EL1, EL2 and EL3 and transitions to the
transmembrane helices. A disulfide bridge (yellow sticks) in the EL3 has also been proposed for the
MC2R [85]. (B) The second MC4R model variant is intended to show how parts of the N-terminus
(magenta, sticks) might interact as intramolecular ligands, which should lead to a permanent basal
signaling activity as previously proposed [65,79]. Details of this interaction [79] are shown in (B1)
(labeled side chains, green for MC4R, magenta for the N-terminus). In addition, a second previously
proposed disulfide bridge in the extracellular region should be located between the N-terminus (C40)
and the EL3 (C279), whereby alanine mutations of these two cysteines have no impact on MC4R
functionalities [86]. In the solved inactive-state crystal structure of MC4R [21], no disulfide bridge
between C40 and C279 can be observed, only between C271 and C277 in EL3. (C) It would also
be hypothetically conceivable that in an MC4R homodimer (see oligomerization section below), the
N-termini between the two individual monomers transinteract from one to the other, respectively,
in contrast to a monomeric receptor constellation (cis activation (B1)).

Inverse agonist activity of AgRP on the MC4R was suggested to be attributed to the inhibition of
the N-terminus-mediated permanent constitutive activation of the receptor [79]. How exactly AgRP
interacts or competes with an already bound N-terminus and/or simultaneously interacts with the TMH
bundle, as previously presumed [87,88], and how α-MSH binds into a region that partially overlaps
with the putative binding site for the N-terminus (Figure 3B,B1) is unclear but can be definitively
answered by a full-length MC4R structure bound with AgRP or α-MSH.

Importantly, the amino acid sequence in the recently published MC4R structure [21] was modified
to improve protein stability to obtain sufficient amounts of protein in a crystallizable conformation
(introduction of thermostabilizing mutations, the N-terminus of the receptor truncated from amino
acid positions 1 to 15, and insertion of a fusion protein into ICL3). Unfortunately, this resulted in a
structure in which insights into the potential contribution of the core unit (residues 14–19) as part
of a potential intramolecular ligand [65,79] are lacking. Moreover, of the five MCR subtypes, only
MC4R exposes such an “activating 14HLWNRS19” N-terminal sequence motif (Figure 2), which would
exclude a similar mechanism for other MCR subtypes, yet they share endogenous ligands, such as
α-MSH or AgRP (MC3R).
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Another assumption should be that in case of an MC4R homodimer arrangement [40,41,89,90],
the N-terminus between the two monomers of the homodimer should cross-interact (Figure 3C).
Interestingly, transactivation has indeed been shown for the MC4R [91], while a contribution of the
N-terminus to this mechanism has not yet been studied. Finally, in a recent protein docking study based
on advanced molecular dynamics simulations on the MC4R and a small antagonistic molecule [92],
the N-terminus of the MC4R was predicted to contribute to a multistep binding mechanism. However,
despite several indications of a potential impact of the extracellular N-terminus on MC4R signal
transduction, the definitive role of this part is not yet fully understood and requires further experimental
studies for clarification.

2.2. Basal (Constitutive, Ligand-Independent) Signaling Activity

In terms of the proposed role of the N-terminus in regulating basal activity, an important question
to be raised here concerns the current state of information available on the regulation of this feature for
the MC4R. Principally, high basal activity has a physiological significance not only for the MC4R [25]
but also for other GPCRs, e.g., the opioid receptors [93]. Basal activity of GPCRs can be particularly
modified by several factors, such as the pH, receptor variants, the level of receptor cell surface
expression, or interaction with specific ions [94,95]. As described above, for the MC4R, increased
basal activity has been suggested by the action of an intramolecular agonist [65,79] but recently,
an alternative mechanism of basal activity regulation in the MC4R by interaction with divalent ions
was published [96]. In particular, zinc ions cause activation of the cAMP pathway in the MC4R,
whereby copper reduces MC4R activity to below normal basal signaling levels [96]. Hence, the authors
concluded that zinc causes a certain level of permanent MC4R signaling activity as an external factor,
which would be a prerequisite for an inverse agonistic effect of AgRP. The effect of zinc ions as agonists
(positive allosteric modulators) in the MC4R has been previously reported [97]. However, it remains
unclear how this finding on basal activity regulation of the MC4R by ions correlates or interferes
with the presumed intramolecular agonistic binding and effect of the N-terminus [65,79]. It is also
possible that zinc ion binding to the MC4R releases constraining interactions that maintain the MC4R
in inactive conformation to increase basal signaling. Further studies on cation regulation of MC4R
might be very fertile.

The MC4R has been shown to interact with both MRAP1 and MRAP2 [43,44,98], and this interaction
can affect MC4R expression on the cell surface, ligand binding, and basal and agonist-stimulated
signaling, with the exact effect different in different species (reviewed in [42,99]). For example, MRAP1
enhances the maturation of human MC4R [100]. The interaction between MRAP2 and the MC4R
as a heteromer has a functional effect on ligand binding preferences, with the MC4R becoming
highly sensitive to adrenocorticotropin (ACTH) binding, which favors a direct structural interaction
between the two proteins [44] and a mutual impact on their functionalities. MRAP1 also increase
the basal activity of human MC4R [101]. In other animals, different functional effects are observed.
For example, in a teleost, MRAP2 co-expression leads to decreased basal and agonist-stimulated
Gs-cAMP signaling but increased basal ERK1/2 signaling [81]. There are further known examples of
GPCRs that are functionally and structurally associated with non-GPCR proteins, with some serving as
receptor-specific molecular chaperones [102,103], such as the calcitonin gene-related peptide (CGRP)
receptor, which is a heterodimer of the calcitonin receptor-like receptor (CLR) class B GPCR [104] and
a type 1 transmembrane domain protein, the receptor activity-modifying protein 1 (RAMP1) [105].
RAMPs play an essential role in the presentation of CLR on the cell surface. In addition, RAMPs, which
have a structured N-terminal extracellular domain (ECD) with approximately 100 amino acids, a single
transmembrane domain and a short intracellular C-terminus, can allosterically influence the signaling
activity of class B GPCRs [106,107]. The question to be addressed here is whether the RAMP-class
B-GPCR interaction mechanism is somehow similar to that of MRAP2–MC4R.

Basal activity is an important pharmacological property of a particular GPCR; either increased
(constitutively active mutant) or decreased basal activity can cause human diseases [108]. In general,
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the occurrence or non-occurrence of basal activity of a particular GPCR is likely associated with
the linked biological background, particularly in terms of a permanent physiological function, as is,
for example, known for the mammalian thyrotropin receptor vs. the homologous follitropin receptor
(time/development-dependent activity) [109]. Basal activity may facilitate further activation by the
ligand, e.g., an increased affinity for the agonist and lowering the intramolecular energy barrier to
overcome the inactive receptor state towards receptor activation [94]. For example, lutropin receptor
has higher basal activity and is more prone to mutation-induced constitutive activation than follitropin
receptor [110]. Of note, for viral chemokine receptors, a more active basal state is associated with
promiscuous G protein signaling through a broader set of activated G protein subtypes compared to
human receptor orthologues [111]. For the MC4R, the basal activity is related to the fine-tuned up and
down signal regulation by the agonistα-MSH and the inverse agonist AgRP, respectively. Dysfunctional
basal signaling has been identified in naturally occurring mutations in the MC4R identified from obese
patients [65]. It is important to note that AgRP is described as a biased ligand, which reduces basal
Gs activation of the MC4R but also activates ERK1/2-mediated signaling [35,112–114]. This indicates
a very specific role of basal activity in this receptor–ligand–effector constellation by combining a
physiological relevance of permanent signaling activity (anorexigenic effect) with distinct effector
activation mechanisms for anorexigenic effects by AgRP [38].

Another important aspect is that constitutive MC4R activity inhibits L-type voltage-gated calcium
channels (CaV), specifically subtypes CaV1.2/1.3 and CaV2.1 [115]. Additionally, agonist-dependent
inhibition of CaV2.2 and basal cAMP signaling MC4R activity was shown to differentially impact
these CaV subtypes through Gs and Gi/o pathways [115]. Remarkably, the inactive MC4R, regarding
its inability to induce cAMP generation (via Gs activation), is proposed to couple and activate the
ion channel Kir7.1 [116]. This indicates a G protein (Gs)-independent mechanism of the MC4R to
regulate ion channel activity [21], presumably by direct interaction between MC4R and Kir channels.
Such heteromer interactions are known for GPCRs and ion channels (e.g., [117]), or GPCRs and
functionally related 12-helix substrate transporters [118]. These interactions should enable a rapid and
direct mutual transfer of information between functionally related proteins of different superfamilies.
Given that the MC4R is known to activate different intracellular signaling pathways depending
on ligands [35,39,49,51,113], future studies should investigate in detail how MC4R functionalities
(signaling pathways and ligand binding properties) are modulated by accessory proteins, such as ion
channels or MRAPs [42–44].

2.3. The Short Second Extracellular Loop Has A Strong Impact on MC4R Functional Properties

In contrast to most of the other class A GPCRs, the MC4R EL2 has been reported to only consist of
three to four amino acids (e.g., [48]), which has been recently confirmed by the inactive MC4R crystal
structure [21] (Figures 2 and 4). Usually, in class A GPCRs, the EL2 comprises ~10–30 amino acids and
is located centrally above the transmembrane helical bundle. The EL2 in class A and class B GPCRs is
important for ligand binding and signaling regulation [119–125]. A highly conserved disulfide bridge
among different classes of GPCRs between the EL2 and TMH3 (conservation of a cysteine in TMH3 at
position 3.25 in class A GPCRs is ~88%) is an essential structural feature and constrains the EL2 in
its spatial allocation embedded between EL1 and EL3. However, in addition to the MC4R without
cysteines in EL2 and TMH3, there are only a few other GPCRs without a disulfide bridge between EL2
and TMH3, e.g., S1P1R, GPR82, GPR139, or GPR142 and GPR146. While many mutagenesis studies on
these particular cysteines in EL2 and/or TMH3 of GPCRs result in non-functional (not expressed on the
cell surface) proteins (e.g., [126,127]), it is remarkable that all MCR subtypes and the other examples
mentioned above do not require such a structural feature.
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Figure 4. The crystal structure of the MC4R in an inactive state bound with the antagonist SHU9119 [21].
(A) The structure shows a number of important details of the MC4R, such as an unkinked helix 5.
Instead of a highly conserved proline in class A GPCRs, a methionine is located at the corresponding
position 5.50 (deep green). The NP7.50xxY motif in helix 7 (the numbers 5.50 and 7.50 are used according
to the unifying numbering scheme for amino acids in the transmembrane helices of class A GPCRs
proposed by Ballesteros and Weinstein [83]), which is highly conserved in class A GPCR, is a less
conserved DPxxY motif in the MCR subtypes. However, in the crystallized MC4R structure, D7.49
has been mutated to an asparagine (NP7.50xxY) motif. The peptidic antagonist SHU9119 (cyan) binds
between the EL2 and several helix-loop transitions. (B) SHU9119 binding is characterized by hydrogen
bonds (lack dotted lines) to hydrophilic amino acid residues (red sticks) and backbone atoms in TMH
2–4 and the EL2. Further participating residues in TMH6 and TMH7 are hydrophobic and aromatic
(green sticks). Experimental studies combined with electron densities (resolution of the crystal structure
is 2.75 Å) between D122, D126, and E100 indicating calcium binding in this region, which is also
associated with ligand binding. (C) The empty ligand binding pocket (inner surface, gray) reflects
the dimension of this crevice, which is large in the MCRs compared to other GPCRs due to the very
short EL2.

As a result of the very short EL2 in the MC4R and other MCR subtypes, the inner volume of a
crevice between the ELs and transitions to the helices is broader compared to GPCRs with a longer EL2.
This crevice (Figure 4C) is known as the preferred ligand binding region in class A GPCRs, at least
also for allosteric modulators (e.g., [128]). The enlarged extracellular crevice of the MCRs should open
the possibility for interactions with large hormone-ligands, such as AgRP or bind the N-terminus
intramolecularly, as previously suggested [65,79]. In addition, the recently published MC4R crystal
structure in an inactive state [21] revealed that a peptide ligand and divalent calcium ion could be
bound simultaneously in this extracellular cavity (Figure 4), which is so far unique for GPCRs.

Another interesting feature observed in the new MC4R crystal structure is the direct interaction
between SHU9119 and S188 in the EL2 through a hydrogen bond [21]. In agreement with other
GPCR examples, this supports a fundamental role of the EL2 for MC4R function, in particular for
peptide ligand binding. It remains unknown whether this interaction between the EL2 and the
antagonist SHU9119 is also relevant for agonistic ligand binding; however, it should be important for
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the distinction between agonistic and antagonistic ligand action. Similarly, atomic details of binding of
other small-molecule agonists (such as THIQ, [129]) and antagonists (such as ML00253764, [130]) to
the MC4R remain to be elucidated. Of special interest is the observation of orthosteric vs. allosteric
binding of these small-molecule ligands to MC4R of different species [26,114,131]; the molecular basis
of this differential binding and signaling effect remains to be investigated.

2.4. Structural Specificities of the MCRs in the Transmembrane Region

Class A GPCRs share conservation of specific amino acids or amino acid motifs in the
transmembrane region [83,132,133], which are required for correct protein folding, stability, and
function. They participate in signal transduction as “micro-switches” (amino acid residues, such
as D2.50, R3.50, W6.48), or motifs (“micro-domains”), such as NP7.50xxY, CWxP6.50, E(D)R3.50Y or
Y5.58(x)7K(R)5.66) [134,135]. The micro-switch residues are interrelated with each other in a network of
interactions, also under the participation of water molecules and ions [136–138].

In addition to the above described missing EL2–TMH3 disulfide bridge, the MCRs are further
characterized by two deviations from these common class A GPCR amino acids. First, a proline
(P5.50) is highly conserved in class A GPCRs (~80%) and supports a kink and bulge within helix 5.
Proline distorts the regular helix geometry due to steric conflicts with the preceding residue and the
loss of internal backbone hydrogen bond typical in a α-helix. These proline-generated kinks can be
functionally important because they create structural weaknesses, thereby facilitating helix-associated
movements required for interaction with intracellular partners [139,140]. As a result, most TMH5 (and
other TMHs with a proline) in class A GPCR are not regularly (straight) formed, and amino acid side
chains are slightly rotated around the helical axis [141]. In the MC4R, a methionine (human MC4R
Met204 (Figure 4)) instead of a proline at position 5.50 causes a more regular α-helix conformation
of TMH5, as is now confirmed by the recently published inactive-state MC4R structure [21]. Further
examples of GPCR crystal structures without proline in TMH5 are, for instance, the S1PR1 (PDB ID:
3V2W [142]), the P2Y12 receptor (PDB ID: 4NTJ [143]), the cannabinoid receptors (PDB IDs: 5ZTY,
5TGZ [144,145]), or the lysophosphatidic acid receptor 1 (LPAR1, PDB ID: 4Z34 [146]). A regular
and non-kinked conformation of TMH5 should be of particular importance, because the orientation
of certain amino acid side chains in the TMH5 region to the transmembrane core depends on this
structural property and, therefore, they participate in the ligand binding region of the MC4R.

Second, the highly conserved class A GPCR amino acid motif NP7.50xxY in TMH7 is a DPxxY
motif in the MC4R (Figure 2). Of note, almost 20% of class A GPCRs, with the exception of olfactory
class A GPCRs, are characterized by an aspartate at position 7.49 instead of the more conserved
asparagine; however, it remains unclear what structural or functional consequences are associated
with this deviation [136]. Based on mutagenesis and signaling studies (e.g., [147]) or previously solved
receptor structures [148], the amino acid at position 7.49 (Asn or Asp) was deliberated as contributing to
the binding of positively charged sodium ions in an interaction network between water molecules and
the highly conserved negatively charged aspartate at position 2.50 in TMH2 (Figure 5). An interaction
with a monovalent sodium cation should be a common mechanism of allosteric modulation of GPCRs,
which appears to be specifically associated with the maintenance of an inactive state (e.g., [148–151]),
the orientation of TMH7 and receptor dynamics [138], implying regulation of transitions between
different receptor activity states [136,148]. Interestingly, in active-state GPCR structures, no sodium
ions have been observed at this site. Sodium ion exchange with the cytosol could be a key step in the
activation of several GPCRs [152].

Of note, in the inactive-state MC4R structure [21], the endogenous aspartate at position 7.49 was
mutated with asparagine to achieve higher thermostability (Figure 4). Therefore, this structure cannot
be used to gain deeper insights into the endogenous sodium binding site of MCRs linked with the
DP7.50xxY motif.
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Figure 5. The putative sodium binding site with two aspartates in the MC4R. Sequence specificity of
MCRs is a negatively charged aspartate in the DPxxY motif of transmembrane helix (H) seven, whereas
in most class A GPCRs, an asparagine (NPxxY) is usually present. The MC4R aspartate in TMH7 could
affect the ion binding properties of the MC4R, including the H-bond network with water molecules or
the exact spatial location of the cation. In addition to the two aspartates located in TMH2 and TMH7,
further amino acids, such as those from helix 3 (e.g., S136), are involved in the formation of the sodium
binding site.

2.5. Ion Binding Sites in the MC4R

The negatively charged aspartate at position 7.49 in the MC4R described above (Figures 2 and 5),
in contrast to an uncharged asparagine, should lead to a modified sodium binding site in terms of
binding capacity and cation affinity [136]. For the hMC4R, previous mutagenesis studies showed that
the D298A mutation (D7.49A) does not significantly affect ligand binding but has impaired signaling
capacity [153]. However, it was shown that there is no difference in the WT and D7.49N mutant in either
ligand binding (to α-MSH or AgRP) or signaling (basal or ligand-stimulated) [154]. The substitution of
D7.49N and an additional four other amino acid substitutions and C- and N-terminal truncations in
the MC4R construct used for crystallization leads to a significant increase in melting temperature [21],
suggesting that D7.49N might have some structural effect. Of note, a double aspartate constellation
(D2.50/D7.49), as observed in MCRs and, e.g., in the P2Y12 [155], was suggested to potentially bind
divalent cations [136], which is an interesting note with respect to previous reports on the impact of
calcium [156,157] and a recent publication on zinc and copper binding in the MC4R [96]. Both zinc and
copper ions in the presence of calcium are presumed to be negative allosteric modulators of ligand
binding; however, calcium is required for high-affinity ligand binding.

This suggestion is substantiated by the MC4R crystal structure complex and accompanying
experiments [21], which revealed the direct involvement of a calcium ion in SHU9119 binding at
the extracellular binding crevice (Figure 4). Of note, direct structural detection of calcium ions in
the extracellular region by, e.g., single-wavelength X-ray diffraction (SAD) phase determination on
protein crystals with a resolution higher than 2.75 Å, will be required [21]. Native SAD determination
depends crucially on the accurate detection of the weak anomalous scattering signal of light atoms,
such as calcium and magnesium present in the crystallized sample [158]. Consequently, any divalent
cation could be principally bound at the supposed extracellular calcium binding site but also a highly
coordinated water molecule. However, in addition to previously reported calcium binding at the
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MC4R [156,157], radio-ligand binding experiments with 125I-NDP-MSH and competitive binding
experiments with α-MSH confirmed the effects of Ca2+ on agonist binding to the MC4R. In contrast,
calcium has no impact on AgRP binding. Further evidence for the supposed calcium binding was
provided by investigations of the thermal stability of the MC4R as a complex with various MC4R
ligands, such as SHU9119, NDP-MSH, α-MSH, and AgRP, in response to Ca2+, Mg2+, and Zn2+

ions [21]. Only Ca2+ ions increase the thermal stability of MC4R-SHU9119 or MC4R-NDP-MSH.
Our homology model of an active MC4R conformation (Figure 6) suggests that parallel to E100

(TMH2), D122, and D126 (TMH3), which were presumed by the recent crystal structure to interact with
calcium [21], several other residues, such as aspartates, histidines, and cysteines in the N-terminus or
the ELs, should be arranged in specific clusters capable of interacting with positively charged cations
(Figure 6).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 29 
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Figure 6. Potential extracellular cation binding sites at the MC4R. In addition to the above-described
sodium binding sites between TMH2, -3, and -7 (Figure 5) and the detected calcium binding site close
to the extracellular part (Figure 4) [21], several additional extracellular amino acids (negatively charged
as Asp and Glu, or His and Cys as zinc binding motifs) should contribute to copper, calcium, or zinc
ion binding as indicated in the model.

Regarding the binding of different ions to GPCRs, it was recently shown that sodium ions
enhance an inactive adenosine 2A receptor (A2AR) conformation [159], thereby retaining an “ionic
lock”, while divalent cations, such as Ca2+ and Mg2+, shift the equilibrium towards an active-state
conformation. In the same study, positive allosteric effects of divalent cations were shown to be more
pronounced with agonist and a G protein-derived peptide. A strong impact of Mg2+ ion on receptor
functionalities was also found for the oxytocin receptor (OXTR), whereby Mg2+ ion impedes ligand
binding [160]. Moreover, in addition to Ca2+ binding in the calcium-sensing receptor (CaSR, class C
GPCRs) with multiple ion binding sites [161], structurally significant calcium binding was also found
in the N-terminal domain (subdomain “low-density lipoprotein” of the leucine-rich repeat containing
GPCR 7 (LGR7 or relaxin binding receptor 1 (RXFP1)) [162].

In summary, ion binding in GPCRs generally appears to be of crucial importance for the stabilization
of certain conformations and activity states. Furthermore, the MC4R interacts with various ions,
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such as Na+, Ca2+, Zn2+, or Cu2+, and such interactions are likely to be involved in regulating basal
signaling activity, ligand binding, and activity state switching processes. A deeper understanding
of these interactions will be important in the future from a structural as well as physiological and
pharmacological perspective.

2.6. Peptidic Ligand Binding at the MC4R

Of the five MCRs, MC2R is only activated by ACTH, whereas the other four MCRs can be
activated by both α- and β-MSHs, and γ-MSH preferentially binds to the MC3R [25,163–166]. Of the
two endogenous antagonists, agouti antagonizes MC1R, although when expressed ubiquitously,
it can also antagonize MC4R [167]. AgRP is an antagonist for the MC3R and MC4R [168]. MSH
binding induces receptor structure modifications, thereby enabling intracellular recruitment of arrestins
and G proteins such as Gs, Gi/o, Gq/11, and G12/13 [39,169,170], which subsequently leads to
stimulation or inhibition of intracellular effectors, e.g., cAMP accumulation [171] or extracellular
regulated kinases 1/2 (ERK1/2) [113,169,172]. Although AgRP is an inverse agonist at the canonical
Gs-cAMP pathway [173,174], it can serve as an agonist in other signaling pathways, including
activating Gi/o-protein [169], arrestin-mediated internalization [175], coupling to potassium channel
Kir7.1 [116], and activation of ERK1/2 [112–114]. The structural basis of this biased signaling is presently
not understood.

Synthetic cyclic MSH derivatives [22,176], such as setmelanotide [53–56] or bremelanotide (also
termed PT-141, Vyleesi, Rekynda; a cyclic heptapeptide derivative of MSH [29] that has been approved
for the treatment of female hypoactive sexual desire disorder [29,177–179]), and multivalent [59,60] as
well as non-peptidic MC4R ligands [63,180], were developed for pharmacological treatment options
using the MC4R as a target. Notably, different MC4R ligands may be associated with differentially
initiated signaling pathways, as already shown for setmelanotide, which varies from α-MSH in its
signaling profile [39]. This observation requires common and unique mechanisms associated with
MC4R ligand binding and the associated set of signaling pathways. Unfortunately, most studies on
MC4R ligands, including bivalent ligands, lack comprehensive data on signal profiling, making it
difficult to gain deeper insight into their differentiation at the molecular and structural level or to
accurately determine the links between in vitro and in vivo effects.

As already suggested in previous studies on ligand/MC4R contacts [25,63,181] and a recent study
on the linear peptide α-MSH vs. the biased cyclic MSH derivative setmelanotide [39], a high number
of intermolecular contacts between amino acid residues at the transmembrane region (TMHs 2–7) and
ELs 2/3 are involved in α-MSH binding (Figure 7). The putative key interactions between agonistic
ligands and MCRs are formed by the specific ligand core motif “HFRW” and different receptor residues,
such as the receptor aspartates D122, D126, residues with aromatic ring systems (F261 and F284), H264,
or hydrophobic amino acids, such as L265 and L288. This is likely common for agonistic MC4R ligand
peptides. Specificities in the signaling profile, as observed for setmelanotide [39], in contrast to the
linear MSH, can be attributed to the cyclic structure in comparison to the linear MSH peptide, and
particular ligand differences in the amino acid composition and resulting receptor contacts. However,
these predicted differences need to be deciphered more precisely under experimental conditions to
also understand deeper causalities between specific ligand binding and biased signaling at the MCRs.

Moreover, the cyclic peptidic ligand SHU9119, which is bound in the crystal structure of the
inactive state of the MC4R (Figure 4, [21]), reveals specific hydrogen bonds with receptor amino acids
in TM2 (T101), TM3 (e.g., N123), EL2 (S188), and TM6 (H264). According to the crystal structure, these
interactions are highly important for ligand formation and action. It will be interesting to examine
the impact of these interactions for agonistic ligands and to finally discriminate between specific and
common agonistic and antagonistic interactions at the molecular level. For example, the MC1R has
a tyrosine instead of the MC4R serine 188 (Figure 7A). Serine 188 of MC4R forms a hydrogen bond
network with the backbone amide of W7 and with the side chain to R6 of SHU9119 [21]. The much
larger tyrosine of the MC1R likely does not interact with SHU9119 W7 as observed for the MC4R
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S188 and, remarkably, SHU9119 is a partial agonist on the MC1R [22,182]. Moreover, a previous
report [183] identified residue L133 in TMH3 of MC4R (Figure 4B) as crucial for SHU9119 mediated
effects. The single substitution of L133 to methionine did convert SHU9119 from an antagonist to
an agonist. In contrast, substitution of M128 in the MC1R to leucine, the homologous residue 133 of
hMC4R, displays a reduction in SHU9119 binding affinity and potency [183]. L133, together with L129
and I197 (TMH5), covers the bottom part of the SHU9119 binding pocket, and even the side chain of
L133 is 3.6 Å in distance to the SHU9119 Nal side chain (Figure 7C). Detailed studies exploring how
this L-M exchange transfers the antagonistic effect of SHU9119 to the opposite, together with observed
interactions in EL2, will be of high pharmacological importance.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 15 of 29 
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Figure 7. Binding site comparison between the MC4R bound with SHU9119 and the MC1R, and
α-MSH in complex with the MC4R. (A) The MC4R (light-magenta backbone) binds SHU9119 into a
cavity between the extracellular loops (ELs) and the transmembrane helices (H). Visualized are amino
acids covering the ligand binding site (lines). Sticks (labeled) represent residues in the binding site
that vary compared to the MC1R. These four different amino acids are also shown for the MC1R (blue)
at a superimposed MC1R model based on the MC4R crystal structure. Specifically, the difference in
corresponding MC4R S188 and MC1R Y183 is likely highly important for SHU9119 binding, because
this ligand interacts with the side chain of S188 that should differ in the MC1R with a tyrosine at this
position. In contrast to an antagonistic effect of SHU9119 on the MC4R, this ligand activates the MC1R.
(B) Because all peptidic MCR ligands share a core motif essential for recognition by the receptor (see
also C), few essential interactions observed for SHU9119 in the complex crystal structure with the MC4R
may also be involved in MSH binding, e.g., (α-MSH/receptor) H6/T101 and R8/D126. Using these
interactions as constraints for α-MSH docking into the MC4R, W9, in particular, may be differentially
located in the receptor compared to W7 of SHU9119. This is essentially caused by the large and bulky
aromatic D-Nal (D-Naphtylalanine) in SHU9119 instead of the F7 in α-MSH, which leads to differences
in the orientation of the tryptophan. (C) This sequence comparison highlights the similarities and
distinct features of MC4R ligands. Of note, the chemical difference between SHU9119 (antagonist) and
melanotan II (agonist) is located at a single position (red, D-Nal vs. D-Phe), leading to the opposite
ligand effect (Nle: norleucine).
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Of further note, the antagonist SHU9119 differs from the agonist melanotan II by a single amino
acid, as depicted in Figure 7C. The D-Phe of melanotan II in the central core of the ligand is D-Nal
(Naphtylalanine) in SHU9119. This difference leads to opposite functional effects. By using the new
MC4R crystal structure and principle ligand (SHU9119) orientation as a template for α-MSH docking
(Figure 7B), details of the putative MSH ligand binding site and participating receptor amino acids
can be investigated. According to this model, one major difference between SHU9119 and α-MSH is
the orientation of Trp in the central core motif, which is strongly dependent on the F7 (α-MSH) or the
D-Nal (SHU9119), respectively. The tryptophan in α-MSH can enter the central region between the
helices deeper towards W258 in TMH6, which is not feasible for the corresponding Trp in SHU9119
because the large and bulky D-Nal is a sterical barrier.

Although there are overlapping binding sites between agonist and the inverse agonist AgRP as
evidenced by AgRP displacement of radiolabeled NDP-MSH in binding experiments, the contacts of
AgRP to the MC4R are likely more widely distributed across different receptor parts, including distinct
TMHs, the ELs, and the N-terminus [48]. Several supposed AgRP-specific interactions to the receptor
(as, e.g., (AgRP/MC4R amino acid denotation): F116/F284, Y109/Y268, Y118/Y35, or R120/D189) may
not be relevant for agonistic ligand binding. They help to explain the antagonistic and, especially, the
inverse agonistic effect of AgRP, because these contacts should act as constraints, keeping the MC4R in
an inactive conformation, at least for certain signaling pathways [113].

Concerning the antagonistic effect of AgRP, an alternative scenario was previously assumed [79],
whereby the inverse agonist activity of AgRP on the MC4R should be attributed to inhibition of
permanent (basal) activation mediated by the N-terminus. How this mechanism is analogous to
the experimentally proven direct AgRP/MC4R interaction between the negatively charged receptor
amino acid residues E100, D122, and/or D126 in the central part of the receptor TMD and R111 in
the conserved and activity related AgRP 111RFF113 motif [153,184–186] has not yet been clarified. The
fact that calcium ions do not affect AgRP binding in contrast to other MC4R ligands [21] is of interest,
clearly indicating differences between MC4R ligands and the relationship to ion binding.

Generally, diverse ligand binding, as described above, and subsequent manifold modulated
signals at the MC4R are very complex and additionally tuned by several additional external factors.
First, a novel endogenous agonistic ligand, lipocalin-2, was recently discovered to interact with
the MC4R [45]. Second, there are specific binding kinetics in oligomeric MC4Rs [187], whereby
the interacting monomer/ligand complexes may exhibit mutual cooperativity and cross-interactions,
which have only been investigated incompletely to date [91]. Third, the co-expression of the MC4R
interacting accessory protein MRAP2 leads to an alteration in the specificity of ligand binding at
the MC4R, therefore resulting in high MC4R sensitivity for ACTH [44], which usually primarily
activates the MC2R. The direct and physiologically relevant MRAP2–MC4R interaction should be
of high importance for all studies both in vivo and in vitro, since, for example, in such heteromeric
constellations, the postulated MC4R ion binding capacities (Figure 6) or receptor–receptor oligomeric
states (Figure 8) could be strongly modified, as is the case for the above-mentioned class B GPCRs
interacting with RAMPs. The relevance of MRAP2 on diverse GPCRs as a regulatory element has
also been shown for other class A GPCRs, such as the ghrelin receptor (GHSR) [188], the orexin
receptor 1 (OX1R) [189], or the prokineticin receptor-1 (PKR1) [190], clearly indicating a more extended
physiological impact of MRAPs on class A GPCRs [42].
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Figure 8. Putative MC4R dimer or oligomer constellations with bound G protein. A: The MC4R can
represent dimers at the IL2–TMH4 interface; however, other interfaces, such as the TMH1–helix 8
interface, cannot be excluded for oligomers. In the supposed arrangement of an interface between IL2
and TMH4, for steric reasons, only one G protein molecule can likely bind (B). It remains unknown
how MC4R oligomerization affects β-arrestin binding (C) or how receptor protomers in oligomers
differ from each other in their ligand binding kinetics through mutual influence, or how they react to
simultaneously available arrestin and G protein molecules.

2.7. MC4R Assembly in Multimeric Constellations

Homo- [191] and hetero-oligomerization are widely accepted to be highly significant for GPCR
functionalities [192]. The ability to form multimeric receptor assemblies affects physiological
aspects [193–196] but is also associated with pathophysiological/pharmacological issues [197–201].
GPCR oligomerization can lead to modified ligand binding [187,202–204], G protein selectivity [205],
signaling [206–208], or cell surface expression [209,210] and internalization [211]. Allosteric or
cooperative effects between individual protomers in oligomeric receptor constellations have been
observed [212,213]. GPCR constellations could be a mixture of monomers and oligomers that
are dynamically interconverted among the various forms [214], suggesting that GPCRs exist in
a monomer/oligomer ratio at the membrane, presumably in different cases also in intracellular
compartments [215–217].

The MC4R is also known to form homo-oligomers [40,41,89] as well as heteromers with GPR7 [218]
or MC3R [59]. Further support on MC4R oligomerization is provided by studies on ligand binding
kinetics, whereby two different ligand binding sites (in two interacting protomers) in oligomeric MC4R
complexes are presumably interrelated [187]. Moreover, the two moieties of a (homo- or hetero-)
bivalent MC4R ligand [57–60,219] may bind each at a single MC4R protomer in a dimeric receptor
constellation, as shown for bivalent ligands at the oxytocin receptor dimer [220].

Unfortunately, studies on the precise formation of MC4R oligomers are almost lacking. In general,
based on previously determined crystal structures of class A GPCR oligomers and biophysical studies,
several oligomeric GPCR–protomer interfaces in oligomers have been proposed [221] or predicted ab
initio [222,223]. For example, in opsin [224–227], κ-opioid receptor (KOR [228]), and β1-adrenergic
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receptor 1 (β1-AR, [229]), the protomer interface is located at TMH1–TMH2 and helix 8. Oligomeric
contacts are also known between GPCR protomers at the region ICL2/TMH4 [230–232], between
TMH4 and TMH5 [233], or are located at TMH5–TMH6 [234–236]. The new MC4R crystal structure
(PDB ID: 6W25), which is in an inactive state, was crystallized as an artificial dimer in the crystal
packing with a head-to-tail monomer–monomer interface and, therefore, no relevant information for
homo-dimerization can be derived [21]. In conclusion, many different protomer–protomer interfaces
can be assumed for GPCRs, independent of functional relevance. The simultaneous occurrence of
more than one interface in a particular receptor oligomer is rather likely. The importance of MC4R
oligomerization was recently highlighted by a study showing transactivation between MC4R protomers
in a dimer, suggesting functionally relevant crosstalk between the receptor subunits in the oligomeric
complex [91].

In accordance with this, a previous report on MC4R showed that specific modifications in a
region between TMH3 and IL2 and TMH4 led to forced oligomer separation, presumably into receptor
monomers [90]. Not only does this indicate a distinct interface between MC4R protomers located in
this structural part (Figure 8), but surprisingly also the maximum signaling capacity (Gs activation) for
these monomerized receptor constructs was approximately doubled. This may point to differences
between the signaling properties of MC4R monomers vs. oligomers with regard to MC4R/G protein
stoichiometry, as discussed for other GPCRs [237]. In specific GPCR dimeric constellations, only
a single G protein molecule can access two activated protomers for sterical reasons (stoichiometry
2:1) (Figure 8), while monomerized receptors each couple to one G protein molecule (stoichiometry
2:2), which may lead to a doubling of signaling capacity in terms of G protein activation. In turn,
oligomerization and/or oligomer separation should also be fine-tuning elements to control signaling
levels or selectivity at the intracellular region.

3. Concluding Remarks

The MC4R is a promising target for drugs to treat obesity or sexual dysfunction. An immense
amount of information on the prevalence and dysfunctions of over 100 pathogenic MC4R mutations
is available, as well as pharmacological profiles and effects of already designed MC4R ligands.
The recently published inactive MC4R crystal structure with a bound peptidic antagonist and a Ca2+

ion [21] is an important step forward in understanding this receptor at the atomic level. However, in
view of the well-known MC4R features regarding the importance of biased signaling, basal signaling,
signal modulation by interacting partners, such as MRAP2 or oligomerization, it will be of enormous
importance to gain further structural insights into the active receptor state in complex with agonists
or with signal effectors such as G proteins or arrestins. This is highly relevant for optimizing known
MC4R ligands towards increased selectivity to certain signaling pathways, such as Gs or Gq, but also to
make the ligands more specific for individual MCR subtypes. In the future, MC4R research should also
focus on optimizing MC4R ligands that induce or avoid homo- and hetero-oligomerization to receive
higher selectivity. Finally, the information reviewed here based on currently published knowledge
points to a very complex system of factors involved in the physiologically relevant regulation of the
MC4R and homologous GPCRs. It will be a future challenge to assemble all factors and participating
proteins into a unifying and comprehensive concept of MC4R activity regulation.
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