
Thesis summary and discussion

In this thesis I presented computational methodology for exploring and communicating
molecular characteristics of disease. My primary contributions are the documentation
by value strategy and putting forward the concept of differentially coexpressed groups
of genes. Both are novel approaches, the first leading to significantly more consistent
(molecular) diagnoses and the latter complementing established exploratory analysis
tools. Data underlying the analyses were always taken from clinical gene expression
studies and generated by oligonucleotide microarrays. Each array provides a repro-
ducible image of a tissue sample at molecular resolution and reflects the mRNA abun-
dance of genes. The tissue samples we consider are connected to certain instances of
diseases (e.g. cancer types), and reflections of disease types in the data provide a char-
acterization of disease on a molecular level.

In the first chapter I provide a review of methodology currently used to predict disease
type on the basis of microarray data. The underlying assumption is that the type of dis-
ease is reflected in expression data, and the methods in use try to find the traces. The
paradigm is that of statistical learning: The measured data and the corresponding dis-
ease labels are understood as random samples of a disease population, governed by a
common distribution function. All the approaches I discuss use these example data to
infer a classification rule, i.e. instructions how to decode disease type from future mea-
surements. In case such a method works reliably, it must make use of structure present
in all data and characteristic for the type of disease it predicts. Therefore a classifica-
tion rule is also called molecular signature. In that sense, the first chapter is on state
of the art characterization of disease. There is no shortage of sophisticated algorithms
to infer molecular signatures; in all of them regularization plays a crucial role. Note
though, that virtually all regularizing methods are “generic” in the sense that they do
not reflect the specific nature of the task. We hypothesize that implementing regular-
ization additionally based on prior biological knowledge might improve methodology.
Currently, such information is rather utilized to sanity-check molecular signatures in-
ferred by more generic methods.

The second chapter deals with the communication of molecular signatures between sci-
entists. As microarray data is not measured on an absolute scale, a scale is estimated
from the study data itself. Molecular signatures derived from such preprocessed exam-
ples depend on the estimated scale. I introduce methodology for communicating, and
therefore documenting, molecular signatures. The key point is: Not only the molecular
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signature has to be documented, but also the scale inferred by preprocessing the study
data. Along these lines I provide an implementation of a scale-preserving documenta-
tion that complements two popular preprocessing schemes. This is termed documen-
tation by value, and an R-language add-on package is available (see Appendix). Eight
clinical data sets are used to demonstrate that “proper” documentation of signatures
significantly reduces the ambiguity of diagnoses as compared to standard methods. The
point of including preprocessing information in signature documentation has, to the
best of my knowledge, not been addressed before. The method I provide enables hon-
est assessment of the performance of a signature by the means of evaluation on patients
not enrolled in the signature-deriving study. Such testing is crucial to show that molec-
ular signatures bear information complementing existing markers of disease. This, in
turn, is a prerequisite for impact on clinical practice. But questions remain, for instance
about the choice of preprocessing scheme. This is difficult to answer in general and
comparisons are generally done in terms of accuracy and bias (e.g. [16, 75, 102]) in the
spirit of calibrating a delicate measuring device. With the methodology provided it is
possible to include a notion of robustness in comparisons of preprocessing schemes. I
do so by comparing the stability of diagnoses between three preprocessing schemes in
a resampling experiment (Chapter 2). Nevertheless a thorough comparison comprising
more schemes and especially a concept for relating results to other quality measures
would be of great value.

In the third chapter I provide an algorithm to explore molecular characteristics of dis-
ease. The underlying assumption is that different disease types arise due to differences
in the regulation of genes. The dcoex algorithm is designed to find groups of genes that
are under a common regulatory control in one type of disease, but this control is lost in
another type. As coregulation cannot be measured on microarrays, the algorithm looks
for groups of differentially coexpressed genes. That is, dcoex reveals groups of genes co-
expressed in one type of disease, whereas the coexpression is lost in another disease
type also part of the comparison. We were the first to suggest such an analysis strategy
[85], but the approach has been taken up by other researchers, e.g. in [108]. In an ap-
plication to childhood leukemia, I find a group of genes associated with the ubiquitin-
proteasome pathway to be deregulated in children bearing the philadelphia chromo-
some. The results are shown to be robust and comply to biological reason (Chapter 3).
As with all methods for exploratory data analysis, dcoex cannot be expected to yield
one unique result that is either correct or incorrect. It is rather like looking at data
from a new angle and adding a piece to the puzzle of molecular reflections of disease
types. Nevertheless, ruling out that results are chance artifacts in indispensable. Un-
fortunately the permutation procedure employed is slow, and an analytical description
of the score distribution under a suitable null hypothesis is greatly desirable. Also, in
the context of generating biological hypotheses, integration of additional information
seems promising. Utilizing annotations regarding the binding of known regulatory ele-
ments to promoter regions of genes comes to mind. Such data is available from in silico
sequence-based predictions, or as results of ChIP-chip experiments. Both, integration
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in the search algorithm as well as utilization for result-filtering are conceivable.

Overall, I introduced two conceptually new methods for the analysis of microarray data.
The documentation by value strategy enables the exchange of unambiguous molecu-
lar signatures in the scientific community; this facilitates the way of molecular clas-
sification into clinical practice. The concept of differential coexpression advances ex-
ploratory methodology available for microarray analysis; this improves hypothesizing
about disease mechanisms. While I discussed everything in a clinical-diagnostics set-
ting, the approaches generalize to all fields of research employing microarrays as mea-
suring devices. Concerning the reliable diagnosis of disease, algorithmic methodology
is well developed and further improvements might as well be achieved by careful study
design and advances in measuring technology. In the case of exploring molecular char-
acteristics of disease things look different. While careful planning of experiments also
plays a key role, this more comprising area provides conceptually challenging tasks that
will benefit from further methodological improvements.
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