Chapter 1

Finding molecular characteristics
of disease

— molecular patient classification —

Synopsis: In this chapter I review state of the art charac-
terization of disease using high dimensional genomic data.
It contains a description of statistical learning techniques,
applied to the clinical setting of deriving a signature for pa-
tient diagnosis. I introduce basic concepts and present ex-
ample algorithms, pointing out the crucial role of regular-
ization techniques. I focus on microarray specific aspects,
including gene selection and the evaluation of a signature’s
performance.

1.1 Motivation

In clinical gene expression studies tissue samples are examined using microarray tech-
nology. Classification of patients is a powerful tool for diagnosis of disease, assessment
of risk group and selection of treatment [130, 152]. From a statistical point of view, the
major characteristic of microarray studies is that the number of genes is orders of mag-
nitude larger than the number of patients. When blindly applying out-of-the-box clas-
sification algorithms, a model rather adapts to noise in the data than to the molecular
characteristics of disease. It is a challenge to find a molecular characterization of disease
that can be generalized from a study cohort to the entire disease population.

In the following we provide an overview of state of the art derivation of rules for molec-
ular diagnosis. We describe statistical learning techniques, starting with fundamental
concepts; we present example algorithms and highlight characteristics arising from the
nature of microarray data. We also deal with the topic of assessing the predictive perfor-
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mance of a classification rule, a subject of relevance in clinical studies but until recently
often neglected in microarray analyses [6, 99, 129, 150].

1.2 Supervised classification of patients

Molecular diagnosis based on gene expression data is the most widely used approach in
clinical microarray studies. The data consists of gene expression profiles of n patients.
In addition, each patient has an attributed class label. The label reflects a clinical phe-
notype. Phenotypes can include previously defined disease entities as in the leukemia
study of Yeoh et al. [157], risk groups like in the breast cancer studies of van’t Veer et
al. [147], or disease outcome as in the breast cancer study of West et al. [151]. The objec-
tive is to learn expression signatures that allow to predict the correct clinical phenotype
for new patients.

It is important that the class labels must not be derived from the expression profiles
themselves. This requirement embeds molecular diagnosis into the field of supervised
machine learning and defines the difference to unsupervised class finding problems.
There are many more genes on the arrays than patients in the study and gene-to-sample
ratios typically are in the hundreds. This is the main difficulty faced in the supervised
approaches. A large number of machine learning algorithms are available to overcome
this problem and in the following we will summarize some basic ideas.

1.2.1 Notation

We measure p genes on n patients, with typically p > n. The data from each microarray
is represented by a profile xD eRPandi=1,...,n. The corresponding label, which
encodes one of K clinical phenotypes, is denoted by y; € £ ={1,...,K}, y€ Z". The
profiles are arranged as rows in a matrix X € R”*?. The two quantities (X, y) are called a
data set 2 that holds all data of a study in pairs of observations {(x'"), y,)}.

It is often useful to assume a data-generating distribution F(X,Y) onR” x . F(X,Y) is
the joint distribution of expression profiles and associated clinical phenotypes. Patients
might be be modeled as independent samples {(x, y,)} drawn from F. In the following
capitalized quantities refer to random variables (e.g. X and Y), whereas realizations are
set in lower case (as in x and V).

1.2.2 Concepts for inferring a classification rule
In the supervised setting, one is concerned with inferring a classification rule from a

given data set 9. As the classification problems we consider primarily are medical di-
agnoses, we use the terms diagnostic signature and classification rule interchangeably.
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Such a rule or signature assigns one of a collection £ of labels to an observation, or pa-
tient, x. That s, it is a function ¢ : R” — £". The objective is to derive a well generalizing
classification rule, a rule that assigns the correct labels not only to the patients in 9, but
also in future clinical practice.

Loss andrisk To define a measure of generalizability for a classification rule, we need
to distinguish between the performance on the samples in the study and the expected
performance in clinical practice. First, we define a loss function [ to quantify the loss of
diagnosing profile x to have label c(x), given the true label is y:

I(x,c(x),y):RP x & x & — [0,00) . (1.1)

A simple loss function is the 0/1 loss function, which assigns a loss of one to each mis-
classified sample. Let us now define the risk of a signature as

R{c] :ﬂEl(X,c(X),Y):fl(x,c(x),y) drX,Yy) , (1.2)

which measures the expected loss of a diagnostic signature. It is the performance of the
signature in clinical practice. Since we have no access to the population we do not know
F and cannot calculate the risk explicitly. But we have access to the patients in the study.
To approximate R, we define the empirical risk :

Ricl = f I(x,c(x),y) dE(X,Y) :%Zl(x(i),C(x(i)),yi) : (1.3)
i

where F is the empirical distribution function which puts weight 1/7 on each observed
data point. In the context of a microarray study, the empirical risk for the 0/1 loss func-
tion is the error rate of the signature on patients in the study. It can be calculated from
the data.

Bayes classifier and Bayes error  Before we explain how to build diagnostic signatures
in practice we introduce a purely theoretical construct: The best thinkable signature,
also called the Bayes classifier. While it cannot be built in practice it is helpful for the
development of the theory. Assume we know what is called the posterior densities of F,
i.e. P(Y = k|X = x). Then the Bayes classifier is defined as:

c*(x) =argmaxP(Y = k| X =x) . (1.4)
ke x

Its error is called the Bayes error . The Bayes error can be different from zero, which
means that it is impossible to construct a molecular signature that never fails. This
is not necessarily a matter of insufficient bioinformatics expertise, but can be an in-
trinsic property of the disease population F. If the same expression profiles can occur
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under different clinical phenotypes, it is obvious that false classifications cannot be en-
tirely ruled out. The Bayes classifier can be derived theoretically from the risk defined
in Equation (1.2): Take the 0/1 loss, i.e. I(x,c(x),y) = l(c(x) # y), where [ denotes the
indicator function. That is, I(c(x) # y) = 1 if c(x) # y and zero for correct predictions.
Minimizing the risk at some x € R” is equivalent to minimizing the probability of future
misclassifications at this point. This, in turn, is the same as always assigning the most
probable class. That is precisely the statement of Equation (1.4). The Bayes classifier is
a purely theoretical construct, but it might be approximated based on study data.

Minimal empirical risk and maximum likelihood In this paragraph we introduce a
general principle for inferring a signature from a given data set. We start by assuming
a specific structure of the data generating distribution F, modeling the dependency of
Y on X via a link function gg, indexed by parameters (. For binary y we only need to
model P(Y =1|gp(X)), as probabilities need to sum to one. An example for a link func-
tion is the logistic function discussed later on. In general we can define the likelihood of
the observed y; and x as:

n . .
P@2Igp) =[] P(Y =yilx =xP, gpP(Xx =x) . (1.5)
i

Maximization of the above quantity with respect to £ is assumed to yield a suitable gg.
This is the same as taking the log, dropping g-independent terms and minimizing the
negative log-likelihood:

Zilgl=-) log(P(Y =y;1X=x",g) . (1.6)
i

This, in turn, is equivalent to minimizing the empirical risk defined in equation (1.3)
over f§ choosing the loss function to be I = —log P(Y|gs(X)). It is not possible to con-
versely interpret every loss function in terms of a probability P(Y|gs(X)) .

Regularized risk and priors  As mentioned before, the main challenge in microarray
based diagnosis is the large number of genes on the array compared to the few patients
in the study. In this section we demonstrate mathematical implications of this situa-
tion.

In the last paragraph we have seen that minimizing the empirical risk over a family of
functions f indexed by a parameter  can be equivalent to the maximum likelihood
approach. This suggests that minimizing the empirical risk over a class of candidate
signatures €, i.e. ¢ := argmin .., R[c] is a suitable approach to infer a classifier. This ap-
proach can lead to ill posed problems, where the optimum is not uniquely defined. For
high dimensional microarray data, this is the case even for simple signature classes €.
An example is linear discriminant analysis, which will be discussed in Section 1.2.3.

As a simplified illustration imagine a study where two patients, each representative of a
certain phenotype, are selected. Then the mRNA abundance of two genes is measured.
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Figure 1.1: Linear separation with as many genes
as patients. In this toy example, the solid square and

///////// the circle represent patients from two different dis-
@ / ease types. They can be separated linearly in several
*
.

ways; two separating signatures are shown. The ques-
tion mark represents a patient with unknown diagno-

7 sis. Both signatures yield conflicting predictions. The
é/// data alone does not suggest that one of the signatures
N / is better than the other, it does not define a unique di-
% agnosis. This situation occurs if the number of genes

gene 1 is larger than or equal to the number of patients. This
is always the case in microarray studies.

gene 2

gene 2

Further on, we want to construct a linear signature that can discriminate between the
two classes. This is the same problem as finding a straight line between two points (each
representing a patient) in a plane. The candidate signatures in € now correspond to all
possible straight lines. There is no unique solution minimizing the empirical risk with
the 0/1 loss function, see Figure 1.1. Next, think about a third point which inciden-
tally does not lie on the line going through the first two points. Imagine it represents
a new patient with unknown diagnosis. It is always possible to linearly separate the
first two points such that the new one lies on the same side as either one of them. The
two training patients do not contain sufficient information to diagnose the third patient
uniquely. We are in this situation whenever the number of genes is larger than or equal
to the number of patients. Due to the large number of genes on the chip this problem is
inherent in microarray studies.

A way to deal with such ill posed problems are regularization approaches [46, 47, 142].
In our example above this can correspond to finding the straight line which separates
the two points and which has maximal distance to both of them. This strategy is im-
plemented in support vector machines, a classification algorithm discussed in the next
section. Regularization results in the minimization of the regularized risk functional

Rlcl:= Rlc] +AQlc] (1.7)

where Q is called regularization operator and penalizes the complexity of signatures.
The parameter A determines a trade off between performance on the study data (R[c])
and complexity of the classifier (Q[c]).

Introducing a regularization term can also be motivated from the following perspective:
In the paragraph about maximum likelihood we assumed a dependency g between the
two random variables X and Y. Expressing prior beliefs about g in a prior distribution
P(g), an application of Bayes’ rule leads to
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1
P(gl2)=P(2|g) P(g) ——— . (1.8)
posterior likelihood prior

The posterior represents the probability of a model g, given the data. Usually g corre-
sponds to a certain diagnostic signature. The g* that maximizes the posterior is a rea-
sonable choice to yield a classifier, since it best explains the data at hand and matches
prior beliefs. The classifier corresponding to g* is called maximum aposteriori or MAP
estimate. Finding the MAP estimate is equivalent to minimizing a regularized risk, as
can be seen by the following argument. The posterior is proportional to the likelihood
times the prior. The likelihood is, as discussed before, the probability of the data given
the model. We have also seen that maximizing the likelihood can be viewed as min-
imizing a suitable empirical risk. The regularization now comes via the prior. It puts
more weight onto models g that we deem more likely than others, without having seen
the data. This can resolve ambiguities where the likelihood alone is undecided. We
can see the equivalence as follows: Ignore the last factor in Equation (1.8), since it
does not depend on g. Then recall Equation (1.5), set I = —logP(Y|g(X)) and choose
AQ[gl = —log P(g) in Equation (1.7).

1.2.3 Supervised classification algorithms

Having introduced basic concepts and terminology of supervised machine learning, we
now present a collection of classification algorithms commonly used with microarray
data. It is important to distinguish between a diagnostic signature ¢ and a learning al-
gorithm L. A signature takes expression profiles as an input and returns class labels as
an output. A learning algorithm is used to build signatures. It takes training data as an
input and returns signatures as an output. To review notation, L is a set of rules how to
generate a signature ¢, given data 2 consisting of n independent samples from F(X, Y),
i.e. L: 92— ¢. We will discuss gene selection based methods, penalized logistic regres-
sion, and support vector machines as well as bagging and boosting. Several of these
algorithms build linear signatures.

Discriminant analysis and feature selection  Discriminant analysis can be motivated
by modeling the data generating distribution F in a parametric way: P(X,Y) = P(X =
x|Y =k)P(Y =k) := fr(x)m. We further assume that the f; are Gaussian densities:

1 1
fe® = 2aZel 2 exp[— S (x—p) T (- pry)] (1.9)

IR N
log fimk log|2m 2| Z—Ex DIP ¢

1
+xTZ;1pk—§p£Z;1pk+logﬂk . (1.10)
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For the unknown parameters unbiased estimates for mean and covariance (i, 2¢) can
be employed [115]. The priors 7} can be estimated by the relative class sizes 7y :=
ny/n. This yields estimates fk and the Bayes classifier can be approximated via ¢(x) =
argmax;.. fefie. The classification boundary between any two classes i and j is de-
fined as

{x: P(Y=ilX=x)=P(Y=jlX=x)} .

That is, at the points on the classification boundary the posterior probability to belong
to either class is the same. Assume equal covariance matrices in Equations (1.9) and
(1.10). This case is called the homoscedastic case. Then the first two terms in (1.10) are
the same for all classes k, and the classification boundaries are linear in x. This method
is termed linear discriminant analysis (LDA). If the X} are assumed different between
the phenotypes (heteroscedastic case), the decision boundaries are quadratic. Then the
method is called quadratic discriminant analysis (QDA). In case the covariances are as-
sumed to be diagonal, i.e. £ = diag(o;,...,0kp) =: diag(o), the corresponding name
is diagonal discriminant analysis (DDA) . Consequently, the assumption of equal diag-
onal covariance matrices leads to diagonal linear discriminant analysis (DLDA).

Deriving the signature requires the inversion of the estimated covariance matrices. For
QDA this leads to the constraints n; = p + 1, where the n; denote the class sizes, and for
LDAto n = p+K. In other words, QDA and LDA require more patients than genes on the
chip, which in our setting is unrealistic. For DDA the estimates 2 are always invertible
and it can be applied to expression data directly. Only with the help of gene selection
LDA and QDA become applicable to microarray data. Gene selection has to be done
prior to the estimation of model parameters. From the entire set of genes only a small
number of genes is selected, and then discriminant analysis is applied using only the
selected subset of genes. Also the performance of DLDA can be improved using gene
selection [37]. A popular method equipping a variant of DLDA with gene selection was
proposed by Tibshirani et al. [139]. We discuss it now in some detail, as it will be used to
derive signatures in Chapter 2.

In the case of LDA diagnosis consists of classifying a new sample to the class k with the
nearest group centroid p; (modulo the influence of the priors 7). Distance is mea-
sured terms of the Mahalanobis distance , i.e. ¢(x) = argming , (x — ﬂk)Tﬁ_l(x —[y) .
Tibshirani et al. [139] restrict Z to be diagonal. Additionally it is pointed out, that the
estimate of the mean might be obscured by noise present in the data. Therefore Tibshi-
rani et al. advocate the use of a denoised or shrunken centroid for each group k in the
distance calculation. That is

argmin(x — fi;) Is—1(x- i) +logdy
kex (1.11)
ﬂk ﬂ+Ak(5)

c(x)
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where £ = diag(¢) and 1/, is the pooled within class standard deviation of class k for
gene I plus a fudge factor s that reduces the effect of nearly constant genes. fi is the usual
estimate for the overall mean. The vector Ay extracts only genes in which the mean of
group k strongly differs from the overall mean, namely:

(Aw)i =sgn(fe — fu); |Gy — )il — mi(si +9) 6,

where mys; estimates the standard error of (fi; — ft); and |x|+ = x for x > 0 and zero
otherwise. That is, each component of fi; is shrunken towards the overall mean in units
of the (fudged) standard error. Additionally to the classification function this approach
can yield an estimate of the posterior class probability P(Y = k|X = x) by the fk (x) and
an application of Bayes’ rule. The value for the gene selection parameter ¢ is obtained
by cross validation, which we discuss in Section 1.2.4. A link between this approach and
classical linear models is discussed in Huang et al. [66]. Other types of discriminant
analysis have been applied to gene expression data as well. For an overview as well as a
comparison with other methods see [37, 87].

Penalized Logistic regression  In our discussion above we modeled the data generat-
ing distribution explicitly via the class conditional probabilities fi = P(X|Y = k). This
is also called generative modeling [79]. Now we take a discriminative approach. That is,
we explicitly specify the dependency structure g we discussed in the paragraph about
maximum likelihood. Here we choose the logistic link function

exp[ﬁ,fx]

—_— 1.12
Zf.(exp[ﬁ;frx] (112)

P(Y = kigp(X)) =

with identifiability constraints. The classification rule corresponding to this model im-
itates the Bayes classifier: ¢(x) = argmax;, , P(Y = k| X = xﬁ ). To identify the param-
eters ff; we use the maximum likelihood approach discussed before. If we focus on
the two class problem with y; € {+1}, Equation (1.12) reduces to p:= P(Y =1|X =x) =
1/(1 +exp(—pTx)) and P(Y = —1|X = x) = 1 —p. The likelihood of the class labels can be
modeled via independent biased coin flips:

n . noo1
2=[1P¥=ylx=xD,p=]p" 1 -ppii-tl (1.13)
i=1 i=1

where we have dropped P(X = X) as it does not depend on . Nowf can be obtained
as the minimizer of the negative log-likelihood, i.e. p = argming —logZ. The depen-
dence of £ on  is through p and the minimization can be done directly or via an iter-
ated least squares procedure. Note that this is equivalent to minimizing the empirical
risk with a loss function chosen as I = —log[1 + exp(yB’ x)], the logistic loss function.
Due to the high number of genes on the arrays the optimum of equation (1.13) is not
unique. As a solution a regularized risk (see Equation (1.7)) can be minimized choosing
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an appropriate regularization term. Common choices are the L;- and the L,-penalty,
where Q[c] = | BlI3 and Q[c] = || Bll5, respectively. The Lp-penalty is usually combined
with gene selection techniques [43, 161], while the L;-penalty automatically produces
sparse solutions. That is, only few genes contribute to the posterior [119, 126]. For the
minimization Roth [119] utilizes an iterative least squares procedure extending an algo-
rithm of Osborne et al. [105], while Shevade et al. [126] use a Gauss—Seidel method. Kim
et al. [83] propose a gradient descent algorithm for problems of this form.

A related approach is that of West et al. [151] and Spang et al. [133], who model P(Y =
11X = x) = ®(x” ) via the probit regression model . Here ® denotes the cumulative den-
sity function of the standard normal distribution. But in contrast to what corresponds
to a maximum aposteriori estimate in the approaches before, a full Bayesian analysis is
employed and the posterior distribution of all model parameters is sampled. Regular-
ization is achieved via the introduction of hierarchical normal priors.

Support vector classification  Assume a classification problem with only two possi-
ble clinical phenotypes, i.e y; € {+1}. Then support vector machines [123, 148, 149] fit
a maximal (soft) margin hyperplane between the two classes. The margin of a hyper-
plane refers to the distance of the point closest to it. In high dimensional problems
there are always several perfectly separating hyperplanes (the maximum likelihood ap-
proach leads to an ill posed problem). But there is only one separating hyperplane with
maximal distance to the nearest training points of either class (regularization).

This concept is typically combined with the kernel trick to allow for flexible non-linear
classification boundaries. The kernel trick is applicable to classification algorithms that
can be expressed in terms of inner products of the inputs x¥ who reside in what is called
the input space . This is the case for the maximum margin separating hyperplane. The
inner products x” x are then substituted by a kernel function k(x, x"), which corresponds
to a feature map ¢ that maps the profiles from the input space into a feature space #:

p: R — F

1.14
= oW (1.14)

This results in the original algorithm being now carried out in /£ and leads to non-linear
decision boundaries in the input space.

After applying the kernel trick, a class of linear functions in feature space is given by
F ={f(x) = Z;f‘a,-k(x,x(”) + bla;, b € R}. The associated diagnostic signatures read
c(x) = sgn f(x). Finding the maximum margin hyperplane is the same as minimizing
a regularized risk. The loss function employed is called soft margin loss and the reg-
ularization term is || f1|%, := «”Ka. Here K is the kernel matrix and K;; = k(x?,x\/)).
Regularization is essential to counter the additional flexibility acquired by the kernel
trick. In summary:

A

fx) = argmin{Zmax(O, 1-yi f(xD) + 5 aTKa} ) (1.15)

feF i
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In this formulation separability of the two classes is not required and margin violations
are allowed. The trade-off between margin violations and margin size (measured as
I f II;) is reflected by the regularization parameter A. Support vector classification, in
combination with various gene selection methods, has been applied to microarray data
[51, 111] and compared favorably [22, 87, 94]. A SVM-specific wrapper method (see be-
low) for feature selection is presented in Guyon et al. [59]. The generalization to more
than two classes is not straight-forward and different methods are compared in Hsu et
al. [64].

Bagging Bagging [19] is a method of aggregating weak classifiers via bootstrapping
the data at hand. A weak classifier is a classifier of limited complexity and weak per-
formance. Bagging stands for bootstrap aggregating and works as follows: M boot-
strap samples are drawn from the data 2. A bootstrap sample from 2 is an iid sample
{(x@, yi)};.’f1 of size np from the empirical distribution function of the data, which puts
weight 1/7n onto each observation. Then a simple learning algorithm is trained on each
bootstrap sample minimizing the empirical risk. This results in a set of weak classifiers
{6m}%:1. In the end all weak classifiers ¢, are averaged to obtain a final strong signature:
C(x) = argmax;, Z%Zl l¢,,x)=k- The class k which most of the ¢,, agree on gets chosen. If
the weak classifiers produce estimates of the class conditional probabilities, these can
be averaged instead [62].

Random forests [20] constitute an application of this concept. There weak classifiers
are classification trees [21], grown using only a random subset of genes. The forest of
trees (weak signatures) is then averaged over the bootstrap samples. Random forests
are applied to gene expression data e.g. by Gunther et al. [57] and Diaz-Uriarte et al.
[40].

Boosting Another method falling into the category of aggregated classifiers is boost-
ing. The algorithm Adaboost was introduced by Freund et al. [48]. Several weak sig-
natures c;, are combined to form an aggregate classifier. Hastie et al. [62] present Ad-
aboost as an forward stage-wise additive modeling approach. The empirical risk is min-
imized choosing the exponential loss function l(x,c(x),y) = exp(-yc(x)) for y € {£1}.
Basically, the classifier c(x) is viewed as an expansion in the weak c;;,, namely c(x) =
sgn (Zﬁw Bmcm(x)). But in contrast to bagging, the different c,, are not independently
fit to bootsErap samples. Rather, given coefficients {,Bi};?:ll and classifiers {éi};’l‘ll, the
next pair (8, Cy) is determined to optimally supplement the previous ones in terms
of minimizing the empirical risk. This results in an iterative optimization strategy. The

complexity of the classifiers can be regulated by the number of iterations allowed.

Dettling et al. [32] apply this procedure to microarray data. As weak signatures deci-
sion stumps are used, i.e. classification trees with only two terminal nodes. They use
the LogitBoost algorithm of Friedman et al. [49]. There the exponential loss function of
Adaboost is exchanged for the logistic loss function introduced earlier. As feature selec-
tion a non parametric filter method [106] is employed. A combination of bagging and
boosting is presented in Dettling et al. [31] in the context of gene expression analysis.

10
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Both methods, bagging and boosting, are also discussed in Tan et al. [136]. Zhang et
al. [158, 159] also apply classification trees in the context of gene expression.

Gene selection

Combining classification algorithms with a gene selection procedure is common prac-
tice in microarray based diagnosis. It is done for two reasons. First and most impor-
tantly, gene selection reduces model complexity and in many cases impacts the predic-
tive performance of the signature [37]. Here model complexity refers to the flexibility of
the decision boundaries. Methods like linear discriminant analysis are not applicable
at all without gene selection. Other methods, like nearest shrunken centroids [138] or
L,—penalized regression techniques, implicitly reduce the number of genes involved in
the signatures. Secondly, the reduction of genes leads to a smaller and hence cheaper
design of diagnostic chips or marker panels [77].

Feature selection has a strong impact on the predictive performance of a signature. For
this reason it can not be considered to be a preprocessing step independent of the con-
struction of the signature. It is an essential part of the signature building algorithm.
There is an important difference between building a signature based on 10 genes and
building a signature that depends on only 10 genes that, however, were chosen from a
pool of 30,000 genes. The first is a low dimensional model and can be specified by 10
parameters. The second (in principle) still involves 30,000 parameters, although 29,990
of them were constrained to be zero. The important point is, that it was not agreed
which of them should be zero before the data was considered. The importance of not
separating gene selection from the signature building process becomes more apparent
in Section 1.2.4.

Filter approaches When feature selection is performed independently of the learning
algorithm, this is called a filter approach [78]. Straight-forward implementations uni-
variately screen for genes, optimizing a score reflecting correlation with the class labels.
Popular choices are the r—statistic, the (non parametric) Wilcoxon rank sum statistic,
the absolute difference of the group means divided by the sum of the estimated stan-
dard deviations [55] or the F-statistic in the multiclass case. More sophisticated are
filter approaches (heuristically) searching for an optimal subset of informative genes
[15, 60]. Jager et al. [76] and Ding et al. [35] additionally minimize the redundancy of the
selected gene set.

Wrapper approaches If the learning algorithm is taken into account while looking for
informative genes, this is called a wrapper method [78]; the feature selection procedure
is “wrapped around” the learning algorithm. Either single features or subsets of features
are sought that maximize a performance score of the learning algorithm, e.g. the esti-
mated misclassification error. This is a generic procedure and does not depend on the
specific learning algorithm employed. Looking for optimal feature subsets is a combi-
natorial problem and heuristics like forward selection and backward elimination can be

11
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employed [78].

A prototypical example is recursive feature elimination (RFE) [59], taking a generaliza-
tion bound as a performance score [110]. This concept, in turn, has been applied to
gene expression data by Cho et al. [28]. Another approach is to use the penalty term in
the regularized risk to ensure sparse solutions (few genes contribute), as it is the case
for Ly—penalized logistic regression. Shevade et al. [126] use this property together with
cross validation (see next section) to simultaneously select and assess the relevance of
genes. Such methods are also called embedded methods [58].

1.2.4 Adaptive model selection and validation

This section covers two important steps in microarray based diagnosis: Adaptive model
selection and the validation of the predictive performance of a molecular signature.
While these are two different tasks, the methodologies in use are similar.

Adaptive model selection

The algorithms discussed in the previous section can all be linked to minimizing the
empirical or the regularized risk (with an appropriate choice of the loss function) over
a class € of candidate signatures. For instance, in the case of penalized logistic regres-
sion the signatures depend on the parametric form of P(Y|X) (the right hand side of
Equation (1.12)) and are parametrized by the . For kernel classifiers, € corresponds
to signatures that can be written in the form f(x) = sgn (Zf a;k(x,x") + b) with a; and
b € R. Depending on how rich this class of signatures is, the learning algorithm is able to
implement more or less flexible boundaries between the K phenotypes. For microarray
data, the typical situation is that even simple signature classes, such as hyperplanes, are
extremely rich due to the high dimensionality of the profiles x'”'. For simplicity, we will
refer to the richness of the set of candidate signatures as the complexity of a diagnostic
model.

Bias variance trade-off When dealing with complex diagnostic models not the em-
pirical risk needs to be optimized but the regularized risk in Equation (1.7). This allows
for controlling complexity. The regularization term introduces a complexity penalty,
effectively restricting the complexity of the derived diagnostic signature ¢. The regular-
ization parameter A quantifies the trade-off between model fit and model complexity.
See also Figure 1.2. With little regularization the algorithm can fit very flexible decision
boundaries to the data. This results in few misclassifications on the data from patients
in the study. Nevertheless, it can have poor predictive performance in clinical prac-
tice. The reason is, that the algorithm not only fits population properties (as desired),
but also reflects noise resulting from patient sampling. This is referred to as overfitting.
When the regularization term dominates Equation (1.7), the resulting signatures might
be too restricted. Then we have poor performance on both, the study patients and in
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1.2 Supervised classification of patients

Figure 1.2: The bias variance trade-

— test set off. Schematic picture to illustrate
--- training set

the trade-off between bias and vari-
ance (see text). The x-axis codes for
model complexity and the y-axis for
error rates. The dashed line displays
the training error, the solid line the
test error. Low complexity models pro-
duce high test errors (underfitting, low
variance, high bias) and so do highly
complex models (overfitting, high vari-
ance, low bias).

increasing error rate -

increasing complexity —

future clinical practice. This is called underfitting. The problem described above is also
known as the bias variance trade-off. Regularization introduces a bias into the estima-
tion of model parameters, while at the same time reducing the sample variance. Sample
variance here refers to ¢ varying with different cohorts drawn from the same disease
population.

Choosing a trade-offvia the hold out The regularized risk is a general example of how
learning algorithms can implement a tuning parameter (in this case 1) that allows for
balancing over- and underfitting. Further instances are the number of genes included
after the variable selection process, or the amount of shrinkage in the nearest shrunken
centroid method.

Before we start with explaining how these parameters can be tuned, we need some more
notations: Recall that we need to build signatures from a finite data set &, drawn from
F. Let us define the empirical error rate of a signature ¢ built on 2 as:

em A 1 & A i
ey == MG £y (1.16)

where we have made the dependency of the classification rule on the regularization
parameter A explicit and [ denotes the indicator function. The empirical error rate is
equivalent to the empirical risk R when using the 0/1 loss function. The empirical error
rate is a random variable since it depends on the random sampling of patients that were
included into a study. When repeating the study with a second cohort of patients, one
obtains a different empirical error rate.

We now split the data set into a tfraining or learning set 9; and a test set ;. The training
set constitutes a (smaller) study cohort, while the test set can be used like novel patients
with unknown diagnosis. In this respect, we want little errors on the test set. To re-
duce test errors, we are even willing to pay a price in terms of some more errors on the
training set. For a fixed value of the regularization parameter, one can learn a signature
Cy := L(9; A) by applying a learning algorithm to the training data only. Subsequently
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its predictive performance can be evaluated by applying the generated signature to the
independent test data and calculating the error on the test set. The value of the regu-
larization parameter can be varied, identifying a value such that the above estimate is
minimal. That is, the learning algorithm then consists of minimizing }?reg and choosing
the regularization parameter via assessment of generalization performance. This proce-
dure is referred to as adaptive model selection, since by determining the regularization
parameter one chooses a model with approximate optimal complexity. However, differ-
ent clinical classification problems need different amounts of regularization. By using a
hold out set, model selection is adapted to the data at hand.

Using data more efficiently via cross validation Since microarray data is expensive
and scarce one can make use of the following procedure: The data set & is randomly
partitioned into Q bins {9‘7}3:1' Each one of the 9 is then used as hold out set in turn.
More formally: Let « : {1,...,n} — {1,...,Q} be a partitioning, i.e. k(i) = q for all i € 9,
iefl,...,ntand g €{1,...,Q}. Further let 6;“” = L(D\ P i); A) be a classifier trained on
D\ Dy ;) for a fixed value for A. Then we estimate the misclassification rate via

vQ ( ar._ Lo Akl
é Q[c1:=;;u(c4 D) £ y1) (1.17)

[53, 135]. This quantity estimates the expected error rate on future data. Again, one can
do this for a grid of values of the regularization parameter and an approximately optimal
value can be identified. Adaptive model selection is a part of the learning algorithm, as
it was the case with gene selection. This needs to be kept in mind when assessing the
performance of a signature.

Validation of the predictive performance of a molecular signature

After having derived a diagnostic signature one needs to estimate its expected perfor-
mance in future clinical practice. This validation step constitutes one of the most crit-
ical steps in the whole process of molecular diagnosis and several pitfalls are involved.
Estimators can be overly optimistic (biased), or they might have high sample variances.
It also makes a difference, whether one is interested in estimating the performance of
a fixed signature ¢ (which is usually the case in clinical studies), or if one is interested
in estimating the performance of the learning algorithm L that builds the signatures
(which is usually the case in methodological projects). The performance of the fixed
signature ¢ varies due to the random sampling of the test set, while the performance of
the algorithm L varies due to sampling of both, training and test set.

The two different situations correspond to two different theoretical error rates. The per-
formance of a fixed signature ¢(x) =: L(x;9), derived from a training set &, is measured
by the conditional error rate(s) or the true error:
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1.2 Supervised classification of patients

Eij[¢] = PLX;2)=jlY=1i,9) i#jeAX and

(1.18)
El¢] = PLX;2)#Y9)

The first quantity, E;j, is the probability that the signature ¢ will classify a patient from
the disease population to belong to class j even though he actually belongs to the phe-
notypical class i. The second quantity only asks for wrong classifications of ¢, no matter
which group is mistaken for what other group. These quantities are not obtainable in
practice, since the probabilities need to be calculated with respect to the unknown pop-
ulation distribution F(X,Y).

If in contrast one is interested in the performance of the learning algorithm L, the sam-
pling variability of the training set has to be taken into account. This makes the condi-
tional error rates random variables. Keeping the size of the training set fixed and taking
expectations leads to the (unconditional) error rate(s) or the expected error :

EijlL) = EgpE;j = PULX;2)=ilY=)) i#jeX and

_ (1.19)
E[L] =EgE =PLX;9)#Y)

As it was the case for the conditional error rates, these quantities depend on F and are
not accessible. Hence both rates need to be estimated using the data at hand.

Estimatingerrorrates One might assume the empirical error (equation (1.16)) can be
employed to estimate the conditional error rate. The main problem with this approach
is, that it uses the same data in 9 to train the classifier and to evaluate it later on. This
can result in highly biased error rates grossly underestimating the true error. This is
practically relevant in gene expression data analysis, since the high dimensionality of
the data makes algorithms without complexity control prone to overfitting [6, 129].

A better approach is to use an independent test set. Only training data is used for gene
selection, classifier learning and adaptive model selection. The final signature ¢ is then
evaluated on an independent test set. Unfortunately this estimator can have a substan-
tial sample variance, due to the random selection of patients in the test set. This is espe-
cially the case if the test set is small. It falls in this line of thought that good performance
in small studies can be a chance artifact [103].

More effective use of the data at hand can be made via the cross validation (CV) proce-
dure introduced earlier. The leave one out version produces an estimator of the uncon-
ditional error rate with almost no bias. It is computationally more expensive than Q fold
CV and suffers from a very high sample variance. The latter is reduced for moderate Q
such as “somewhere between five and ten” [62, 84, 98]. Braga-Neto et al. [18] advise to
average over many different partitionings. No unbiased estimator of the variance of the
cross validation estimate exists, that is valid for all distributions F [11]. Cross validation
error rates naturally refer to the classification algorithm L. In each iteration a different
classifier is learned, based on (somewhat) different training data. The CV-performance
is the average of the performance of different signatures. Nevertheless, CV-performance
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can be also used as a bias corrected estimate of the conditional error rate. In fact, in ap-
plied work it is often used to validate fixed signatures that were derived by the evaluated
algorithm.

Efron et al. [42] apply bootstrap smoothing to the leave one out cross validation estimate.
The basic idea is to generate different bootstrap replicates {2 ;}Zi 1> apply leave one out
cross validation to each and then to average the results. A result of this approach is the so
called ”0.632+ estimator”. It takes into account the possibility of overfitting and reduces
the variance compared to the regular CV estimates. Ambroise et al. [6] have found it to

work well with gene expression data.

Selection bias and nested loop cross validation  As we have discussed in the previous
section, feature selection techniques are a central element in the analysis of microarray
data. In filter approaches, special care has to be taken when using cross validation: The
feature selection is part of the learning algorithm L. For this reason feature selection has
to be repeated again on each 2\ 9, that is Q times. Global gene selection before the
cross validation (which is also called incomplete cross validation or information leak )
can result in grossly over-optimistic (biased) estimates of the error rates [6]. For exam-
ple, Simon et al. [129] describe a case, where the incomplete cross validation method
and the fully cross validated method result in estimated error rates of 27% and 41%,
respectively. Similarly, assume the algorithm L contains an adaptive model selection
procedure. To get reasonable error rate estimates via CV, the selection procedure has to
be applied to every 2\ 9, separately. This leads to a cross validation step inside a cross
validation, i.e. to a nested loop cross validation [53, 122]. Applying the selection proce-
dure to the complete data can lead to biased estimation of the error and over optimistic
results. Ruschaupt et al. [122] and Wessels et al. [150] realize such a complete validation
procedure and compare various methods.

Ntzani et al. [103] and Michiels et al. [99] report that, at least in studies up to 2003, most
of the 84 considered studies lacked appropriate validation of derived signatures.

1.3 Discussion and chapter summary

We introduced concepts and methods used to address classification problems and point-
ed out characteristics relating to the classification of microarray data, such as gene se-
lection, regularization and the selection bias. Books about machine learning include
[34, 36, 62, 115, 123], where a more thorough treatment of the concepts and methodol-
ogy can be found; focused on the analysis of microarray data are [98, 134].

The methodology above was presented in the classification context. It is tempting to
interpret the genes driving the models, but this is dangerous. First, it is unclear how
the regularization term biases the selection of signature genes. While a bias is a bless-
ing from the diagnostic perspective, this is not necessarily the case from the biologi-
cal perspective: In situations where the data is ambiguous, any generic regularization
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scheme “decides” on a signature without regarding any constraints of biological plausi-
bility. Second, signatures are generally not unique. While outcome prediction for breast
cancer patients has been successful in various studies, e.g. [113, 132, 146], the respective
signatures do not overlap at all. Further on, Ein-Dor et al. [44] derived a large number of
almost equally performing signatures from a single data set. This is not too surprising
considering the following. The molecular cause of a clinical phenotype might involve
only a small set of genes. This primary event has secondary influences on other genes,
which in turn deregulate more genes and so on. In clinical microarray analysis we typ-
ically observe an avalanche of secondary or later effects, often involving thousands of
differentially expressed genes. While complicating biological interpretation of signa-
tures, such an effect does not compromise the clinical usefulness of predictors. On the
contrary, it is well conceivable that only signals enhanced through propagation lead to
a well generalizing signature.

A crucial point in clinical microarray studies is the evaluation of the predictive perfor-
mance of a signature. While nested loop cross validation can be used to derive a reason-
able error estimate, it is confined to data collected in a homogeneous study context. Es-
pecially with possibly heterogeneous disease populations, it would be of value to apply
the signatures to data external to the signature-deriving study and assess performance.
Such a type of external validation requires the communication of signatures between
scientists in different health care centers. This will be the topic of the next chapter.
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