
 

 

 

 

 

Human Cytomegalovirus (HCMV)-based 

Therapeutic Cancer Vaccines 

 

 

Inaugural-Dissertation 

 

to obtain the academic degree 

Doctor rerum naturalium (Dr. rer. nat.) 

Submitted to  

The Department of Biology, Chemistry, Pharmacy 

of  

Freie Universität Berlin 

 

by  

Mohammed Omar Abdelaziz Yassen 

From Cairo, Egypt 

2020 



 

 

1st Reviewer: Prof. Dr. Günther Schönrich, Institute of Virology, Charité Universitätsmedizin 

Berlin, Berlin.  

2nd Reviewer: Prof. Dr. Rupert Mutzel, Institute for Biology – Microbiology, Freie Universität 

Berlin, Berlin. 

 

 

 

date of defense: 29.06.2020 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

"The important thing is not to stop questioning. Curiosity has its 

own reason for existing." 

Albert Einstein 

 

 

 

 

 

 

 



 

Table of contents 

List of abbreviation……………………...…………………………………………………..……………………………………….i 

List of figures……………………………………………………………………………………………………...……………..……..iv 

List of tables…………………………………………………………………………………………………...…………………..……vi 

1. Introduction…………………………………………………………………………..………………………………………..….…1 

1.1 Betaherpesvirinae…………………………………….……………………………………………………...…………….…….1 

1.2 Human Cytomegalovirus (HCMV)…………………………..……………………………………..….…………….1 

1.2.1 General features of HCMV ……………………………….………………….………………….…….………………2 

1.2.1.1 HCMV structure………………………….………….………………………………………………………………………2 

1.2.1.2 HCMV genome…………………………………………………………………..………………….…………….….……..3 

1.2.2 Host defense controlling HCMV infection…….………………………………...………………………………..5 

1.2.2.1 Adaptive immune response …………………..……………………...………………….…….……….………………5 

1.2.2.1.1 Cell-mediated immunity…………………..………………..……...………………….…….……….……………….5 

1.2.2.1.2 Humoral adaptive immunity………………………………….……………………...…………………….…….…6 

1.2.2.2 Innate immune response…………………….……………………………………………………………...……………7 

1.2.3 HCMV and memory inflation……………………………………………………….….…………………………….9 

1.2.3.1 Features of inflationary memory T cells……………………………………………….………………………10 

1.2.3.2 Factors involved in memory inflation………………………………………..…………….…………………...10 

1.2.3.2.1 Antigen presentation…………………….….……………………………………………….….……………………10 

1.2.3.2.2 Repetitive antigen exposure ……………………...……………………………….………….…………………..11 



1.2.3.2.3 Cytokines and co-stimulatory molecules……………………………………..………….……………...…11 

1.2.4 CMV-based vaccines……………………….…………………………………………………………….………………11 

1.2.4.1 Recombinant CMV vectors against infectious diseases…………...……………………….………….11 

1.2.4.2 CMV-based vaccines for cancer therapy…………………………………………………...…………………12 

1.2.4.2.1 CMV-based vaccines for prostate cancer therapy ………………………………...…………………...12 

1.2.4.2.2 CMV-based vaccines for melanoma treatment ………………………………….……….……………..12 

1.3 Human papillomavirus (HPV)-induced cancer………………………..……………….……….…………..13 

1.3.1 HPV epidemiology…………………………………………………………….……………….………….………………13 

1.3.2 General features of HPV………………………………………………………..……………………………………...14 

1.4 Glioblastoma multiforme (GBM)…………………………………………………………………..………………..16 

1.4.1 Incidence of GBM…………………………………………………………………………………..….…………………..17 

1.4.2 Pathology of GBM………………………….……….………………………………………….……………………….…17 

1.4.3 Standard GBM treatment strategies……………………………………………………………………..……..18 

1.4.4 GBM-induced immunosuppression ………………….……………….…………...…………………………....18  

1.4.5 HCMV infection of GBM cells……………………………………………...………………………….………...…18 

1.5 Project outline…………………………………………………………….…………….............................................................20 

1.5.1 Objectives………………………………………………………………………………………………………….……...……20 

1.5.2 Technical approach……………………………………………………………….………………………….………..….21 

2. Materials and Methods………………………………………………………………………...……………………………22 

2.1 Material………………………………………………………………………………………………...…………….………….…22 

2.1.1 Primary cells, established cell lines and bacterial strains…………………………..….………….22 



2.1.1.1 Primary cells…………………….………………………………………………………………….…………....22 

2.1.1.2 Cell lines …………………..…………………………………………………………………………………..…..22 

2.1.1.3 Bacteria……………………………………………………………………………………….………….…………………....23 

2.1.2 Viruses and BACs…………………………………………………………………………..….………………………….23 

2.1.2.1 Viruses………………………………………………………………………..……………………….…………………….…23 

2.1.2.1 BACs……………………………………………………………………………………………...…….………………………24 

2.1.3 Chemicals and Reagents……………………………………………………………………….……………………...25 

2.1.4 Consumables and Equipment…………………………………………………………………….………………..27 

2.1.4.1 Consumables……………………………………………………………………….…………………………….…………27 

2.1.4.2 Equipment…………………………………………………………………………………………...……………….………28 

2.1.5 Buffers and Gels………………………………………………………………......………………………………….…….30 

2.1.5.1 DNA electrophoresis and electroporation buffers……………………………….…………..…………..30 

2.1.5.2 Plasmid and BAC DNA preparation buffer………………………………………..…………….………....31 

2.1.6 Media preparation and composition……………………………………………………...………….……...…31 

2.1.6.1 Media and supplements for propagation of bacteria (E. coli)……………………...……….……..31 

2.1.6.2 Media and supplements for cultivation of mammalian cells………………………..……………...32 

2.1.6.2.1 Supplements……………………………………………………………………………………………….…………..…32 

2.1.6.2.2 Cell culture media and buffers…………….……………………………..…………………….……………….32 

2.1.7 Kits…………………………………………………………………………….…………………………………….……………..33 

2.1.8 Enzymes……………………………………………………………..……………………………………….……………….…34 

2.1.9 Antibodies and peptides…………………………………………………………………………….…………...…….34 



2.1.9.1 Antibodies………………………………………………………………………...………………………….………………34 

2.1.9.2 Peptides………………………………………………………………….…………………………………….………..……..34 

2.1.10 Plasmids and vectors…………………………………………..……………………………………….……………...35 

2.1.11 Primers………………………………………………………………………….……………………………….…………….36 

2.1.12 Software…………………………………………………………………………………………………………….…………38 

2.2 Methods…………………………………………………………………...……………………………………………….……….39 

2.2.1 Standard molecular biology method……………………………………………...……………….……………39 

2.2.1.1 Polymerase chain reaction (PCR)…………………………………………………………..…………….…….....39 

2.2.1.2 Gel electrophoresis…………………………………………………………….……………………………….……...…39 

2.2.1.3 DNA isolation and purification………………………………………...…………………………….…………….40  

2.2.1.4 DNA digestion………………………………………………………………………………………………….…………..40 

2.2.1.5 DNA de-phosphorylation…………………………………………………………………………………….……….40 

2.2.1.6 DNA gel extraction…………………………………………………………………………………………….…..…….40 

2.2.1.7 DNA ligation……………………………………………………………………………………….……….…………...….41 

2.2.1.8 Determination of DNA concentration by spectrophotometry…………………………….…....……41 

2.2.1.9 Colony PCR…………………………………………………………………………….………………….………………..41 

2.2.1.10 RNA isolation and reverse transcriptase PCR (RT-PCR)……………………………...…...………41 

2.2.2 Microbiological Methods………………………………………………………………………………….………..…41 

2.2.2.1 Bacterial culture……………………………………………………………………….…………………….………...….41 

2.2.2.2 Preparation of bacterial stocks for long term storage……………………………………..….…………42 

2.2.2.3 Transformation of chemically competent E. coli…………………………………………….……………42 



2.2.2.4 DNA isolation from bacteria (Miniprep, Midiprep, and BAC Maxiprep) ...……………...…42 

2.2.2.5 Synthesis of consensus fused HPV16 E6/E7…………………...…….………………………...……………43 

2.2.2.6 Two-step Red-mediated recombination (En passant mutagenesis) …….……………...………...43 

2.2.3 Cell culture methods……………………………………………………………………………………….……………..46 

2.2.3.1 Cells thawing and culture………………………………………………………………………………….………….46 

2.2.3.2 cells feeding and medium change…………………………………………………………………..………...…..46 

2.2.3.3 Cells passaging…………………………………………………………………………………………………….……….47 

2.2.3.4 Cryopreservation of cells………………………………………………………..…………..………………….….….47 

2.2.3.5 Isolation of Peripheral Blood Mononuclear Cells (PBMC)……………………………..…………...48 

2.2.3.6 Cells counting…………………………………………………………………………………………………….………...48 

2.2.3.7 Surface expression of HLA-A2 molecules………………………………….………………………..………49 

2.2.4 Virological methods…………………………………….……………………………………………………………..…49 

2.2.4.1 Stable mammalian cells transfect ion by electroporation…………….………………………………..49 

2.2.4.2 HCMV reconstitution from BACs……………………………………………………….………………..…….50 

2.2.4.3 HCMV stock generation………………………………………………………………….…………………………..50 

2.2.4.4 HCMV infection of cells……………………………………….…………………………………………...………..50 

2.2.4.5 HCMV titration and growth kinetics……………………………………………………...….……………...…51 

2.2.4.6 HLA ligandome analysis…………………………….…………..……………………………...…………………....51 

2.2.5 HPV oncoprotein assay………………………………….………………………………………..…………………….51 

2.2.5.1 HPV16-encoded E7 protein assay……………………………………………………….…………………...….51 

2.2.5.2 HPV16-encoded E6 protein assay…………………………………………….……………….……………….…52 



2.2.6 Functional T cell assay……………………………………………………………………………..….……………..….52 

2.2.6.1 Generation of TCR expression vectors…………………………….…………………………..……………….53 

2.2.6.2 TCR gene transfer………………………………………………….……………………………………….……….……53 

2.2.6.3 Functional assays using transduced PBMCs……………………………………………….….…………….53 

2.2.6.4 Functional assays using transduced Jurkat cells……………………….…………………………..……....54 

2.2.6.5 Acid wash of MHC-I associated peptides……………………………………………………….…………….54 

3. Results……………………………………………………………………………..…………………………………………………..55 

3.1 Deletion of MHC-I downregulating genes from HCMV…………………………………….…...…….55 

3.1.1 Deletion of MHC-I downregulating genes from HCMV genome (Merlin strain)….....55 

3.1.2 Deletion of MHC-I downregulating genes from HCMV (TB40-BAC4)………….….……..57 

3.2 Infection of GBM cell lines by HCMV…………………………………………..……………………….……….58 

3.3 Construction of HCMV-based vaccines……………………………………………….………….………..……61 

3.3.1 Optimized HCMV-based vaccines expressing fused HPV16 E6/E7 protein…….......…...59 

3.3.1.1 Construction of HCMV-based vaccines with E6/E7 expression under control of 

endogenous or exogenous promoter…………………………...……………………………...……………………………..59 

3.3.1.2 Growth kinetics of HCMV-based vaccines expressing E6/E7 protein…………………....62 

3.3.1.3 Expression of E6 and E7 proteins by HCMV-based vaccines………………………….…………...63 

3.3.1.3.1 Transcription analysis of E6 and E7 genes using RT-PCR………………………………….…….63 

3.3.1.3.2 Expression analysis of E6 and E7 proteins……………………….…………………………………….…65 

3.3.1.3.2.1 Detection of HPV16 E6 protein……………………………………………………………….……………..64 



3.3.1.3.2.2 Expression analysis of HPV16 E7protein……………………………………………….…………...…67 

3.3.2 Optimized HCMV-based vaccines expressing HPV16 E6-derived peptide…….………..66 

3.3.2.1 Construction of HCMV-based vaccines with C-terminus fusion of HPV16 E6-derived 

peptide……………………………………………………………………………………………………………………………………...66 

3.3.2.2 Growth kinetics of HCMV-based vaccines C-terminus fusion of HPV16 E6-derived 

peptide……………………………………………………………………………………………………………………………………...69 

3.3.3 Immunopeptidome analysis of HCMV-based vaccines………………………………...………………...70 

3.3.4 Immunological assays……………………………………………………..………………………….…………………72 

3.3.4.1 IFN-γ release in response to E6 and pp65 peptide for Fi301 infected with HCMV-based 

vaccines…………………………………………………………………………………………………...…………………………….....72 

3.3.4.2 Stimulation of transduced Jurkat cell with specific TCRs……………….……………………..….…74 

3.3.4.2.1 Detection of NF-κB activation upon Jurkat cell line stimulation ……………......…………..…74 

3.3.4.2.2 Detection of NFAT activation upon Jurkat cell line stimulation……………………………....77 

3.3.4.2.3 A novel HCMV-encoded immune evasion mechanisms that blocks MHC class I 

presentation……………………………………………………………………………………………………………………………...79 

4. Discussion…………………...…………………………………………………...………………….……………………………….81 

4.1 Optimization of HCMV for vaccine vector construction……………….…………………...………....81 

4.1.1 RL13 and UL128 mutations are crucial for HCMV reconstitution and virus 

propagation in fibroblasts…………………………………………………………..………………………………………....81 

4.1.2 Deletion of HCMV-encoded MHC-I downregulating genes improves antigen 

presentation…………………………………...………………………………………………………....…………………………….82 



4.2 Construction of HCMV-based vaccine against HPV16-induced cancer…..…………….....…83 

4.2.1 HCMV-based vaccine expressing E6/E7 protein cannot present peptides derived 

from E6/E7 …………………….………………………………………………………………...……………………………….…….83 

4.2.2 HCMV-based vaccines expressing E6 peptide fused to viral protein stimulate E6-

specific T cells……………………………………………………………….………………………………………………………...86 

4.3 GBM infection by HCMV could be a promising therapeutic option ……………...………….…86 

4.3.1 Virotherapy can be a novel approach for GBM treatment.……………………………………......87 

4.3.2 GBM infection by HCMV produces cell-associated virus rather than free virion........87 

4.3.3 HCMV-based vaccines expressing E6 peptide fused to viral protein render GBM 

susceptible for recognition and attack by T cells………………………………………..……………...…………88 

5. Summary………………………..……………………………………………………………………………...…….……………...90  

6. Zusammenfassung…………………………………………………………………………………………………………..….92 

7. References………………………………………………………………………………………………….....……………………..94 

8. Publications and presentation………………………………………………………………………………………....109 

9.  Acknowledgements………………………………………………………..…………………………………………..…….110 

10. Selbständigkeitserklärung………………………………………………………...…………………………………..111 

 



i 
 

List of abbreviations 

AIDS Acquired immune deficiency syndrome 

amp Ampicillin  

AP Antarctic phosphatase 

APC Antigen-presenting cell 

ATP Adenosine triphosphate 

BAC Bacterial artificial chromosome 

cam chloramphenicol 

CBTRUS Central Brain Tumor Registry of the United States 

cDNA Complementary DNA 

CMV   Cytomegalovirus 

CNS Central nervous system 

CPE Cytopathic effect 

CTL Cytotoxic CD8 T lymphocyte 

DCs Dendritic cells 

DNA Deoxyribonucleic acid 

ds Double strand 

E. coli  Escherichia coli 

EF-1 Human elongation factor-1 alpha 

E-genes Early genes 

EGFP Enhanced GFP 

ELISA Enzyme-linked immunosorbent assay 

ER Endoplasmic reticulum 

FBS or FCS   Fetal Bovine Serum (FBS) or fetal calf serum 

GALV Gibbon ape leukemia virus 

GBM Glioblastoma multiforme 

GFP Green-fluorescent protein 

gH Glycoprotein H 

gL Glycoprotein L 

gO Glycoprotein O 

HC2 Hybrid capture 2 

HCMV Human cytomegalovirus 

HHV Human herpes virus 

hIL Human interleukins 



ii 
 

HLA Human leukocyte antigen 

HPV Human papillomavirus 

IE Immediate early 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

kan kanamycin 

kbp Kilo base pair 

LB  Luria-Bertani 

LCR Long control region 

L-genes late genes 

MCMV Murine cytomegalovirus 

MDSC Myeloid‐derived suppressor cells 

MGMT Methylguanine‐DNA methyltransferase 

MHC Major histocompatibility complex 

MLV Murine leukemia virus 

MOI Multiplicity of infection 

MRI Magnetic resonance imaging  

MVP Microvascular proliferation 

NFAT Nuclear factor of activated T-cells 

NF-κB nuclear factor 'kappa-light-chain-enhancer' of activated B-cells  

ng   Nanogram 

NK Natural killer cells 

ORF Open reading frame 

p.i.  Post infection 

PBMCs Peripheral blood mononuclear cells 

PBS Phosphate buffered saline 

pCMV Mammalian expression vector with CMV promoter 

PCR Polymerase chain reaction 

PD-1 Programmed cell death protein 1 

PDL-1 Programmed death-ligand 1 

pp Phosphoprotein 

pRb Retinoblastoma protein 

PSA Prostate-Specific Antigen 



iii 
 

psm positive selection marker 

RFLP Restriction fragment length polymorphism 

RhCMV Rhesus macaque CMV 

RNA Ribonucleic acid 

rpm Revolutions per minute 

RT Room temperature 

RT-PCR Reverse Transcriptase PCR 

SIV Simian Immunodeficiency Virus 

STING stimulator of interferon genes 

TAE    Tris acetic acid EDTA 

TAP Transporter associated with antigen processing 

TB Mycobacterium tuberculosis 

TCR T cell receptor 

TCT ThinPrep cytological test 

TE  Tris-EDTA 

TGF Tumor growth factor 

TNF-α Tumour Necrosis Factor alpha 

TRP Tyrosinase-related-protein 

UL Unique long 

US Unique short 

VZV Varicella zoster virus  

WB Western blot 

WHO World Health Organization 

WT Wild type 

ZEBOV Zaire Ebola virus 

 

 

 

 

 



iv 
 

List of figures 

Figure 1. Schematic illustration of HCMV…………………….…………………………………...……...………..…2 

Figure 2. Schematic diagram of HCMV genome…………………….…………………………...………………...3 

Figure 3. Schematic diagram of Inflationary T cells……………….…...………………………………………9 

Figure 4. Representation of the percentage of HPV-associated cancers. ………….……………………..…14 

Figure 5. Schematic illustration of high-risk HPV genome ……………………………….....……………….…...15 

Figure 6: Mechanism of action of HPV16-encoded oncogenes …...……………………………………...……...16 

Figure 7. Magnetic resonance imaging (MRI) of brain……..……………………………………...………....19 

Figure 8. Schematic representation of the two step Red-mediated recombination 

procedure……………………………………………………………………………………………………….……………………….45 

Figure 9. RFLP patterns for RCMV1161 HCMV mutants with MHC-I downregulating 

genes deletion…………...…………………………………………………………………..………………....……………………....56 

Figure 10. Reconstitution of Merlin HCMV (RCMV1161)……………………………….…………….…56 

Figure 11. Deletion of US11 gene from HCMV TB40-BAC4………….……………………..…..…….….57 

Figure 12. Characteristics of RVTB40ΔUS11 mutant…………………..……………………..…………...…58 

Figure 13. Permissiveness of GBM to RV-TB40-BACKL7-SE-EGFP HCMV………………….58 

Figure 14. RV-TB40-BACKL7-SE-EGFP HCMV detection in the supernatant of the 

infected GBM cell.………………………………………………………………………………………………………...………...59 

Figure 15. Construction of HCMV-based vaccines expressing the E6/E7 protein…….……....61 

Figure 16. Confirmatory PCR for HCMV-based vaccine expressing the E6/E7 protein.…62 



v 
 

Figure17. Growth curve kinetics of E6/E7 expressing vaccines…………………………..………….….63 

Figure 18. RT-PCR for HCMV-based vaccines expressing E6/E7 protein…………………..........64 

Figure 19. OncoE6 Cervical Test for HPV16 E6 detection…………………..…………………...……...….65 

Figure 20. Quantification of HPV16 E7 protein expression by ELISA………………….…………...66 

Figure 21. Construction of HCMV-based vaccines expressing E6-drived peptide..…….........68 

Figure 22. PCR for HCMV-based vaccine expressing E6-drived peptide…………………..……69 

Figure 23. Growth curve kinetics of HCMV-based vaccines C-terminus fusion of HPV16 

E6-derived peptide…………………..………………………...………………………………………………………..……….…70 

Figure 24. Overview of the identified peptides upon HCMV-based vaccine infection……...71 

Figure 25. Release of IFN- by TCR transduced PBMCs after stimulation with infected 

cells….............................................................................................................................................................................................................74 

Figure 26. NF-B-driven EGFP expression in reporter cell lines stimulated by infected 

GBM cell....................................................................................................................................................................................................76 

Figure 27. NFAT-driven EGFP expression in reporter cell lines stimulated by infected 

GBM cell………………………………………………………………………….……………………………………………………...78 

Figure 28.  Block of MHC-I presentation induced by immune evasions-deficient 

HCMV……………………………………………………………………………………………..……………………………………..80 

 

 

 

 



vi 
 

List of Tables 

Table 1. HCMV-encoded genes involved in host immune evasion………………………..……………....8 

Table 2. List of primary cells…………………………………………………………………………………..……………..22 

Table 3. List of cell lines………………………………………………………………..……………………………………….22 

Table 4. List of bacterial strains………………………………...………...………………………………………………..23 

Table 5. List of HCMV viruses………………………………………………………….…......……………………………24 

Table 6. List of HCMV BACs………………………………...………………………………..….………………………...24 

Table 7. List of chemicals………………………………………...………………………….………..………………………...26 

Table 8. List of consumables…………………………………….…………………………………..………………………..27 

Table 9. List of consumables equipment…………………………………………...………...………………………..28 

Table 10. List of DNA electrophoresis and electroporation buffers……………..…………...……….30 

Table 11. List of plasmid and BAC DNA preparation buffers. ………………..…………………...…….31 

Table 12. List of media and supplements for propagation of bacteria (E. coli)…………………..……31 

Table 13. List of media supplements ………………………………………………………….....…………………….32 

Table 14. List of cell culture media and buffers…………………………………………………….…..…………32 

Table 15. List of kits……………………………………................................................…………………………………………33 

Table 16. List of enzymes…………………………………..………………………………….…….……...…………………34 

Table 17. List of antibodies……………………………………..…………….………………………………………………34 

Table 18. List of peptides……………………………………………………….……………………..…….…………………34 



vii 
 

Table 19. List of plasmids and vectors…………………………………………………………..………………..…...35 

Table 20. List of primers……………………………………………………….…….………….…………….……………….36 

Table 21. List of software……………………………………………….……….………………………………….………....38 

Table 22. Immunopeptidomic analysis of HCMV-based vaccines of infected Fi301 

cells………………………………………………………………………………………………………………………………………….71 

 

 

 

 

 

 



1. Introduction 

1 
 

1. Introduction 

Herpesviruses are widespread and can infect both human and animals. The family 

Herpesviridae is subdivided into one unassigned genus and three subfamilies: 

Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae based on virus structure, 

host range and the capability to establish latency in the infected cells [1]. Although viruses of 

the family Herpesviridae can cause primary lytic infection in the infected host, lifelong latency 

is common in the infection caused by these viruses [2].  

1.1 Betaherpesvirinae 

Members of this subfamily share common characteristics:  a narrow cell spectrum of infection, 

relatively slow replication and they establish latency at the hematopoietic progenitor cells and 

monocytes [1]. Human cytomegalovirus (HCMV) and roseolovirus subtypes (HHV-6A, HHV-

6B, and HHV-7) are the main members of the human Betaherpesvirinae subfamily. Although 

infection by roseoloviruses is always asymptomatic in healthy adults, they constitute an 

important health concern in neonates and infants. Moreover, roseoloviruses cause severe 

diseases such as encephalitis in immunosuppressed patients. [3-6]. HHV-6 can be a risk factor 

for multiple sclerosis and other neuroinflammatory conditions [7]. Importantly, HCMV is a 

very common pathogen worldwide with infection prevalence depends on socio-economic 

parameters. In developed countries, HCMV has a seroprevalence of 50-70%  [8, 9]. 

1.2 Human Cytomegalovirus (HCMV) 

Cytomegaloviruses (CMVs) are highly species-specific [1]. HCMV can be transmitted through 

saliva, blood transfusions, sexual contact, transplants, breast milk and across the placenta [10]. 

HCMV has the ability to infect a variety of different host cells including fibroblasts, epithelial 

and endothelial cells, monocytes, hepatocytes, smooth muscle cells, macrophages and neuronal 

cells [11, 12]. Although HCMV infection is usually asymptotic in healthy individuals [13],  it  

has serious life threatening complications such as retinitis, encephalitis, pneumonia, nephritis 

or gastroenteritis in immunosuppressed people, especially acquired immune deficiency 

syndrome (AIDS) or transplant patients [12, 14]. Moreover,  HCMV is one of the major causes 

for graft rejection in kidney transplant recipients [15].  
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1.2.1 General features of HCMV  

1.2.1.1 HCMV structure  

HCMV is one of largest viruses with a diameter of 150 to 200 nm and shares the highly 

characteristic herpesviruses structure [1, 16]. HCMV virion is composed of DNA, 

nucleocapsid, a proteinaceous matrix and a lipid bilayer [1, 17] (Figure 1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic illustration of HCMV. HCMV has a relatively large genome of approximately 

230 kbp located in the nucleocapsid which is embedded in the protein-rich matrix. The outer layer is a 

lipid envelope which contains the viral entry glycoproteins. Modified from John Paul Tomtishen III, 

2012 [18]. 

 

The mature infectious HCMV virion contains a double-stranded linear DNA core, which is 

located in an icosahedral nucleocapsid (90 to 130 nm in diameter), enveloped by a 

proteinaceous matrix (the tegument) [1, 16]. The tegument is an electron-dense matrix, which 

consists of a protein mixture of up to twenty components. The viral protein pp65 represents the 

main tegument component and it has immunodominant properties which drive the major 

immune-specific responses [18, 19]. The pp65 protein has several roles, mainly it promotes the 

development of virions and assembly of virus particles into the tegument [18].  Moreover, it 

facilitates the viral evasion of the host innate and adaptive immune compartments [20, 21]. 

Another important tegument protein is pp71, which regulates the expression of immediate early 

proteins [18]. 

The envelope of HCMV consists of a double lipid membrane, in which several highly conserved 

glycoproteins are incorporated such as gB, gH and gL [22]. These glycoproteins allow receptor 

binding, adsorption and penetration [23]. Furthermore, they are major antigens for the induction 
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of virus neutralizing antibodies [24, 25]. The glycoprotein gB has a role as virus fusogen, which 

is triggered by gH/gL complexes [26-28]. The glycoproteins gH and gL form a trimer complex 

with gO (gH/gL/gO) which facilitates virus entry into all cell types while a pentamer complex 

of gH/gL with other viral proteins (gH/gL/UL128/UL130/UL131) is required for entry into 

epithelial and endothelial cells but is dispensable for infection of fibroblasts [29-35].  

1.2.1.2 HCMV genome 

HCMV has one of the largest genomes of all herpesviruses. Nevertheless, HCMV has a typical 

herpesvirus genome structure with unique long (UL), unique short (US), and repeat regions. 

Since each long and short region can be oriented in either direction, four genome isomers are 

produced during replication (Class E genome) (Figure 2). The UL and US regions are both 

flanked by a pair of inverted repeats; terminal repeat long/internal repeat long (TRL/IRL) and 

internal repeat short/terminal repeat short (IRS/TRS) (Figure 2) [1, 36]. 

Figure 2. Schematic diagram of HCMV genome. The US and UL regions can be arranged in different 

ways resulting in four different isomers. Modified from  Fields Virology, 2013 [1].  

The laboratory HCMV strain AD169 genome is composed of 229354 bp which encodes 208 

open reading frames (ORFs) of 100 or more amino acids [37]. These ORFs are numbered 

sequentially according to their location within the unique (US and UL) and the repeated regions 

[37, 38]. In contrast to the laboratory strain AD169, additional ORFs have been identified and 

characterized in strain TB40/E and other clinical strains of HCMV [39-41]. HCMV strain 
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AD169 has been extensively passaged in cell culture, and has lost a large number of genes in 

the UL/b' region of the genome, as well as elsewhere in the genome [39, 40].  

Genomic and proteomic analysis has shown that HCMV shares more than 40 ORFs with high 

homology to proteins encoded by alpha- and gamma- herpesviruses which provides an evidence 

of a common origin of the three subfamilies [1]. About 25% of HCMV ORFs encode proteins 

involved in viral DNA metabolism and replication, while the other 75% are involved in the 

maturation, structural organization of virions and other viral-mediated functions and 

pathogenesis such as immune evasion [1, 38]. The ORFs-encoded proteins in UL regions are 

mainly involved in DNA replication and repair or in virion structure. They are grouped in seven 

conserved gene blocks (A–G) which are also found in other herpesviruses genomes, however, 

they exist in a different order in the alpha- and gamma- herpesviruses. On the other hand, the 

US ORFs or other ORFs encoded within the repeated regions of the HCMV genome are less 

well conserved compared to other herpesviruses [37, 42]. Analysis of wild type strains and 

genetically modified viruses encoding mutations of different ORFs showed that more than 50 

ORFs-encoding proteins are not essential for viral replication in vitro. However, these ORFs-

encode proteins involved in viral growth in vivo , pathogenesis, and evasion of  the host immune 

system [38, 43]. 

Like other herpesviruses, HCMV can establish lytic infection and latency with intermittent 

reactivation and shedding of infectious virions. HCMV has three overlapping phases in the 

productive lytic infection cycles. In these phases, HCMV replicates and infectious virions are 

eventually released from the infected cells. These phases are immediate-early (IE) (the first two 

hours) in which CD8+ T lymphocytes (CTLs) are directed against IE-1 transcription factor, 

however that can be selectively blocked  by kinase activity of tegument protein pp65 [21, 44], 

delayed early (E) phase (the first 24 hours) and the late (L) phase (after 24 hours) [45]. HCMV 

IE gene products are required to initiate the expression of E genes. Consequently, The proteins 

of the E phase are then needed for the expression of L genes [46]. 

During HCMV latency, the virus stays dormant within the host cell without replication. HCMV 

reactivation from latency can cause severe multi-organ damage in congenitally infected 

newborns and individuals with deficient immune system such as organ transplant patients [47-

51]. The factors responsible for the persistence of viral genome in infected cells during latency 

and switching between latency and lytic infection are still elusive [52].  
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1.2.2 Host defense and HCMV-encoded immune evasion 

An intact adaptive immune response is required to control HCMV replication during primary 

infection and reactivation. However, the innate immunity contributes to host defense against 

HCMV and adaptive immunity priming [14].  

In order to establish latency, HCMV has evolved numerous intriguing strategies to subvert the 

host immune defense and prevent its elimination from the human cells [53, 54]. More than 40 

HCMV gene products are recognized to have a role in modulating the host immune response 

following the viral infection [54]. As virus clearance is mainly dependant on cell-mediated 

immunity, which is mediated by CTLs and natural killer (NK) cells [55], HCMV encodes a set 

of proteins to efficiently escape from both cell types [54].  

1.2.2.1 Adaptive immune response 

1.2.2.1.1 Cell-mediated immunity 

The viral antigens are normally processed and presented by major histocompatibility complex 

(MHC) class I (MHC-I) molecules on the surface of infected cells [56]. The classical MHC-I 

molecules are also expressed as human leukocyte antigen (HLA -A, -B and -C alleles) [57]. 

CMV-specific CTLs recognizing peptides loaded on MHC-I molecules play a crucial role in 

antiviral-immune responses and recovery from primary CMV infection [53, 54]. In animals, 

suppression of CTLs causes reactivation and dissemination of latent CMV infection [58]. 

Specific CTLs against structural and non-structural viral proteins were identified in HCMV 

infections [59]. HCMV-specific CTLs for pp65 or IE1 showed higher proliferation than those 

specific for gB or other viral envelope proteins. These findings suggest pp65 and IE1 are the 

main targets for the CTL-mediated immune response [60-62]. However, It has been 

demonstrated that HCMV can interfere with antigen presentation by MHC-I molecules which 

stimulates specific CTLs [53]. Till now, HCMV is known to encode four immune evasion 

protein (US2, US3, US6 and US11) which are implicated in evading MHC-I antigen 

presentation [54]. The assembly of MHC-I molecules with peptides requires the interaction of 

a multi-protein complex in the endoplasmic reticulum (ER). Tapasin protein forms a protein 

complex through interaction with both the transporter associated with antigen processing (TAP) 

and MHC- I molecules, this interaction is required for peptide loading [63]. US3 retains MHC-

I molecules within the ER by inhibiting the interaction of tapasin with TAP [64, 65]. 

Additionally, US6 inhibits binding of ATP by TAP1 which is required for peptide transport. 
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US6 associates with TAP which results in stabilization of a confirmation in TAP1 and therefore 

inhibits ATP binding and peptide translocation [66]. Moreover, HCMV encodes two other 

proteins that facilitate MHC-I heavy chain proteasomal degradation in HCMV-infected cells. 

US2 and US11 cause newly synthesized MHC-I molecules to be ubiquitinated which results in 

their degradation by the proteasome [67, 68]. Other cellular proteins such as Derlin-1 and 

SEL1L are essentially required for US11-mediated MHC-I degradation, while signal peptide 

peptidase is critical for US2 function [69-71].  

On the other hand, CD4+ T cells play a key role in initiating and sustaining the viral-specific 

immunity through priming CTL-specific immunity and guiding the naïve B cells to become 

plasma cells that are able to secrete viral specific antibodies [72-74]. The investigation of 

lymphocyte proliferation in HCMV-seropositive but immunocompetent adults showed a high 

frequency of CD4+ T cells that are specific for MHC class II (MHC-II)-presented viral peptides 

derived from HCMV proteins such as gB, gH, pp65, and IE proteins [75]. Moreover, CD4+ T 

cells are important for the suppression of CMV lytic infection [76, 77]. In MCMV infection, 

CD4+ T cells  play an important role in controlling primary infection in long term CTL-depleted 

mice [78]. In healthy HCMV-infected children, prolonged HCMV salivary shedding was 

associated with persistent deficiency of HCMV-specific CD4+ T cells immunity [79]. In order 

to subvert CD4+ T cells-mediated immune response, HCMV US2-encoded protein plays 

another role in immune evasion by downregulating MHC-II molecules. US2 targets the HLA-

DR- and HLA-DM-α chains for cellular degradation and therefore blocks antigen presentation 

to CD4+ T cells [80, 81]. 

1.2.2.1.2 Humoral adaptive immunity 

Neutralizing antibodies play the main role for vaccine-induced protection against viral 

infections [82]. HCMV-infected immunocompetent individuals show high level of HCMV-

specific immunoglobulin (Ig)M antibodies upon primary infection which lasts for 3–4 months. 

After a few weeks, HCMV-specific IgG antibodies develop and persist for lifelong and the main 

protective antibody was found to be against viral gB [83]. In animals, the gB-specific antibodies 

could protect mice and guinea pig from lethal CMV challenges [84, 85].  

Several studies have been performed to evaluate the ability of gB administration to drive a 

strong and protective antibody response in humans [84, 86]. Nevertheless, the administration 

of gB-expressing ALVAC vaccines showed limited protective response as they failed to 
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produce high protective antibodies titre that react with the surface of the virion and infected 

cells. Thus, there is yet no approved protective HCMV vaccine. [87]. Anti-gH antibodies also 

have a potent and complement-independent neutralizing activity [88, 89]. Other viral proteins 

such as pp65 (UL83), and pp150 (UL32) can also drive strong and long lasting antibody 

responses [90]. Other HCMV vaccine trials demonstrated that several viral proteins are 

recognized by humoral immunity and a protective response could be derived by the 

administration of attenuated HCMV strain Towne or passive immunisation with high-titer anti-

HCMV immunoglobulins [87].  

1.2.2.2 Innate immune response 

The NK cells play an important role together with CTLs for host defense with memory-like 

immune responses [91]. In mouse models, NK cells play a crucial role in MCMV clearance 

[92, 93]. Moreover, adoptive transfer of NK cells can protect mice against MCMV infection 

[94]. In humans, the importance of NK cells in the control of HCMV infection has been 

observed in NK cells-deficient patients [95-97]. However, HCMV encodes several proteins that 

block NK-mediated immune defense [95].  

HLA-E is a non classical MHC-I molecule which is expressed in variety of cells including 

monocytes and macrophages and it plays an important role in controlling NK cells function. 

HLA-E binds to NK receptor (CD94/NKG2A) resulting in inhibition of NK-mediated immunity 

[98-100]. The signal sequence of HCMV UL40 gene product is a canonical ligand for HLA-E 

and negatively regulates NK cells [101]. Moreover, HCMV-encoded UL141 protein 

downregulates the NK-activating ligand CD155, which results in further suppression of NK-

mediated immunity [102]. Furthermore, the HCMV UL18 gene encodes a protein homolog to 

MHC-I which impairs NK-mediated cell lysis [103]. 

Taken together, there are numerous HCMV-encoded proteins that interfere with antiviral innate 

and immune and adaptive immune responses in addition to those mentioned in the previous 

paragraphs. The gene product of HCMV UL83 (pp65) inhibits the proteasomal processing of 

the immunogenic HCMV IE1 protein by phosphorylation [21, 54]. Moreover, the tegument 

UL82 protein (pp71) and US9 protein impair the antiviral immune response through inhibition 

of stimulator of interferon genes (STING) signaling [104, 105]. Additionally, HCMV encodes 

a homolog of human Interleukin-10 (hIL-10), which has a potent immunoregulatory function 

[106-108]. HCMV UL111A generates two isoforms of viral IL-10 by alternative splicing. One 
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of these proteins (cmvIL-10) is 175 amino acids long and expressed during the late phase of 

lytic infection. The second isoform, which is called LAcmvIL-10, is shorter (139 amino acids) 

and expressed not only during lytic infection but also during latency [109, 110]. Similar to 

HCMV, the rhesus macaque CMV (RhCMV) UL111A also encodes viral IL-10 whereas 

MCMV lacks an IL-10 homolog [111]. cmvIL-10 mediates immune suppression of several 

effector immune cells and downregulates MHC-I and MHC-II in infected individuals [112]. 

Importantly, it interferes with dendritic cell (DC) function [108, 110, 113]. The main HCMV 

gene products involved in immune evasion are summarized in Table 1. 

HCMV gene product Mechanism of immune evasion References 

US2, US3, US6 and 

US11 

MHC-I downregulation and evasion of CTL-

mediated immunity. 

[53, 54, 

114] 

US2 and IE1  MHC-II downregulation and evasion of CD4+ T 

cells-mediated immunity. 

[80] 

US18 and US20 Evasion of NK-mediated immunity. [115] 

UL18 MHC-I homolog and evasion of NK cells. [53] 

UL16 NK cells function impairment. [80] 

UL40 Evasion of NK cells. [95] 

UL83 (pp65) Inhibition of IE1 proteasomal processing and 

inhibition of antiviral gene expression. 

[21, 54] 

IE2 Overexpression of anti-apoptotic FLIP protein.  [21, 80] 

UL82 (pp71) Inhibition of interferon-mediated immunity.  [104] 

UL111A (cmvIL-10) IL-10 homolog, modulation of MHC-I and MHC-

II molecules and impairment of DC function.  

[108, 110, 

112, 113, 

116, 117] 

UL141 Downregulation of CD155. [53, 102] 

miR-UL112 Escape from NK-mediated immunity. [118] 

UL141- UL144 Inhibition NK-activating ligands. [53, 119] 

UL142 Suppression of NK- and CTL-mediated immunity. [80] 

Table 1. HCMV-encoded genes involved in immune evasion.   
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1.2.3 HCMV and memory inflation 

Upon viral infection, specific T cells expand and proliferate in order to eliminate the infection. 

After viral clearance, only small population of specific T cells remain in blood and other 

compartments such as the bone marrow as memory T cells, the rest are eliminated by apoptosis 

[120]. However, during latent CMV infection in animals such as MCMV-infected mice, 

specific T cells recognizing CMV epitopes expand and proliferate and remain at high frequency 

with effector-memory phenotype [121-123]. It is hypothesized that during establishing 

persistent infection in healthy individuals, HCMV-specific CTLs are primed and boosted 

overtime by repetitive reactivation of HCMV which had been observed in cross-sectional 

studies [124-126]. However, memory inflation has not been proven yet in humans due to limited 

longitudinal studies [125]. The percentage of CMV-specific CTLs expand with time until 

becoming extraordinary large, with a size about 20% of total CTLs [123, 126-128]. 

Interestingly, these CTLs remain functional, non-exhausted and can even occupy up to 50% of 

the total memory compartment. They are maintained during the lifetime of the infected 

individual. Moreover, they show restricted contraction following priming with sustained 

“effector-memory” phenotype. This unique phenomenon is termed as memory inflation (Figure 

3) [123, 129-131]. In murine models, there was slight inflationary CD4+ T cells response post 

MCMV infection [132]. In humans, primary HCMV infection could also drive inflationary 

CD4+ T cells response in infected individuals [133]. 

  

Figure 3. Schematic diagram of Inflationary CTLs. During CMV infection inflationary CTLs expand 

and proliferate to form a pool of memory T cells. Modified from O’Hara et.al , 2012 [130]. 
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1.2.3.1 Features of inflationary memory T cells 

Inflationary CTLs are characterized by an effector memory phenotype, in contrast to non-

inflationary T cells which typically have a central memory phenotype [130, 134]. Lymph node 

homing markers such as CD62L and CCR7 are expressed at a low level on inflationary memory 

CTLs [128]. Moreover, they express low levels of co-stimulatory receptors such as CD27 and 

CD28, but high level of inhibitory receptors such as CD85j which is a negative regulatory 

receptor that associated with aging of CTLs [122, 134-136]. Interestingly, they do not express 

inhibitory receptor PD-1, this feature may prevent the exhaustion of inflationary memory T 

cells  [128, 137].  

Inflationary memory CTLs remain proliferative and able to secrete effector cytokines such as 

IFN-γ and TNF-α and maintain cytotoxicity [138]. Moreover, they can respond to CMV 

reactivation or ex vivo stimulation [123]. This unique functional feature is characteristic for 

CMV-specific inflationary memory CTLs, while in cancer patients T cells are exhausted and 

are not capable of mediating cytotoxicity [137, 139]. Inflationary CMV-specific CTLs show 

restriction in T cell receptor (TCR) diversity which suggests that T cell populations have higher 

affinity to preferentially selected CMV epitopes which maintain their clonal selection and 

dominance [140, 141].  

1.2.3.2 Factors involved in memory inflation 

Although the main mechanisms explaining this phenomenon remain mysterious, some factors 

involved in memory inflation of CMV-specific CTLs will be here discussed [128].  

1.2.3.2.1 Antigen presentation 

It was suggested that viral antigen presentation by infected cells, which are accessible to the 

blood supply and CTLs, is one of the primary factors to drive memory inflation for MCMV  

[142].  Although HCMV harbors several genes involved in host immune evasion including 

those that downregulate MHC-I molecules (see Section 1.2.2), antigen processing and 

presentation by MHC-I is crucial for driving memory inflation that may be primed due to cross-

presentation by DCs [143-146]. Studies on MCMV showed that this inflationary response was 

facilitated  through antigen presentation by non-hematopoietic cells in the lymph nodes during 

the latent MCMV infection. These expanded CTLs subsequently move to peripheral tissues, 

where they terminally differentiate and eventually accumulate [147].  
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1.2.3.2.2 Repetitive antigen exposure 

Repetitive antigen exposure is essential to establish memory inflation response. Murine models 

showed that the MCMV-specific CTLs failed to divide when transferred from MCMV-infected 

mice to uninfected ones [128]. Moreover, a low infective dose of MCMV curbed the 

proliferation and accumulation of inflationary CTLs [148]. 

1.2.3.2.3 Cytokines and co-stimulatory molecules 

It has been shown that secreted cytokines and co-stimulatory molecules play an important role 

in developing inflationary memory responses for CMV [149]. For example, the co-stimulatory 

4-1BB and OX40 molecules are expressed on CMV-specific CTLs after activation and they 

play a role in MCMV-driven memory inflation [150, 151]. Murine models showed also that the 

MCMV-driven memory inflation is dependent on autocrine secretion of interleukins such as 

IL-2 [152, 153].  In addition, it was suggested that other cytokines such IL-15 play a role in 

potentiation of CTL proliferation and driving inflationary memory responses for CMV [154]. 

1.2.4 CMV-based vaccines 

Interestingly, HCMV is able to superinfect individuals who were previously infected with 

another HCMV strain [155]. This fact is a major advantage of HCMV-based vaccines which 

makes them capable of infecting both HCMV-seronegative and seropositive individuals [156, 

157].  Moreover, the inflationary memory CTLs are not exhausted and can respond efficiently 

to antigen-presenting cells as previously described (see Section 1.2.3).  

It was demonstrated that recombinat CMV-based vaccines can drive robust T cell stimulation 

and proliferation against heterogenous antigens which were encoded in CMV vectors with 

mediating therapeutic and prophylactic responses [158-162]. 

1.2.4.1 Recombinant CMV vectors against infectious diseases 

Several studies have investigated prophylactic and therapeutic CMV-based vaccines against 

different infectious diseases such as simian immunodeficiency virus (SIV) [163, 164], 

Mycobacterium tuberculosis (TB) [161, 165] and Zaire ebolavirus (ZEBOV) [166].  

It is still unclear how CMV-based vaccines mediate their prophylactic and therapeutic effects. 

In some studies these effects were mediated by T cells, which were reported in CMV-based 
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vaccines against  SIV in macaques and ZEBOV in mice [163, 166]. However, it could be also 

mediated by strong antibody-driven response which was previously shown in CMV-based 

vaccines against Ebola infection in macaques [162]. 

1.2.4.2 CMV-based vaccines for cancer therapy 

Noncommunicable diseases are responsible for the majority of natural deaths, accounting for 

about 86% of deaths in Europe [167]. Cancers are becoming increasingly prevalent and are 

expected to be the leading cause of death in the 21st century [168]. In 2015, there were more 

than 17 million incident cancer cases worldwide and about 8.7 million deaths due to cancer 

[169].  

The successful use of CMV-based vaccines against infectious diseases was expanded to 

develop CMV-based vaccines against cancer such as prostate cancer, melanoma and HPV-

induced canecr which could generate a pool of tumor specific CTLs that mediate anti-tumor 

prophylactic and therapeutic responses [170].  

1.2.4.2.1 CMV-based vaccines for prostate cancer therapy 

MCMV has been successfully used to generate a CMV-based vaccine encoding human 

prostate-specific antigen (PSA) to treat prostate cancer in mouse models. The recombinant 

MCMV expressing MHC-I-restricted human PSA epitope was able to drive inflationary CTLs 

responses against PSA in a mouse model. More than 85% of the immunized mice showed total 

clearance of PSA-expressing tumors [171]. 

1.2.4.2.2 CMV-based vaccines for melanoma treatment 

A single dose of recombinant MCMV expressing unmodified melanoma antigen tyrosinase-

related-protein (TRP)-2 showed prophylactic response and significant reduction of tumors in a 

melanoma mouse model [172]. Interestingly, this immune response was independent of CTLs, 

instead tumor-specific antibodies were involved in this anti-melanoma response [173] 

In another model using a MCMV-based vaccine expressing the melanoma antigen gp100, a 

tumor-associated self antigen, the vaccine failed to drive CTL tumor-specific responses. 

However,  recombinant MCMV vaccine expressing a modified gp100 antigen that was mutated 

for higher MHC-I affinity could induce tumor-specific CTL cytotoxicity when used as a 

prophylactic and therapeutic vaccine in a mouse model [174, 175].   
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1.3 Human papillomavirus (HPV)-induced cancer 

HPV is one of most common sexually transmitted diseases worldwide [176]. HPV causes 

transient infection that can develop into cancer [177]. A prophylactic vaccine has been 

generated with a high efficiency against high risk HPV strains such HPV16 and 18 [178]. HPV 

infection is usually cleared by the immune system in the immunocompetent, although the 

infected individuals remain at risk of developing lifelong infection which can progress to cancer 

[179, 180]. 

1.3.1 HPV epidemiology 

It has been demonstrated that more than 7-8% of all human cancers are associated with HPV 

[181]. Approximately 530,000 women develop cervical cancer worldwide each year with HPV 

being associated with more than 99% of these cases [182, 183]. In Europe, more than 58,000 

women are annually diagnosed with cervical cancer and more than 24,000 cases die because of 

this disease every year [184]. In the United States, more than 26,000 individuals were diagnosed 

with HPV-associated cancer per year between the years 2004 and 2008 [185]. Moreover, about 

4100 women die annually in the United States due to cervical cancer caused by HPV with the 

genotype HPV16 being the most implicated [186]. In addition to cervical cancer, HPV is 

implicated in anal, vulvar, vaginal and oropharyngeal carcinomas (Figure 4) [187].   
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Figure 4. Representation of the percentage of HPV-associated cancers. Modified from Brianti et 

al., 2017 [177].  
 

1.3.2 General features of HPV 

HPV can infect epithelial cells resulting in transformation and tumor development due to the 

HPV-encoded oncoproteins [177]. HPV has an icosahedral capsid and harbours a double-

stranded circular DNA with about 8 kb genome size [188]. HPV encodes early genes (E-genes) 

involved in replication, transcription and transformation while late genes (L-genes) play a key 

role in capsid formation. HPV also harbors regulatory long control region (LCR) and a 

noncoding region [189]. Late HPV genes include the L1 and L2 genes that encode the proteins 

building the HPV capsid. The HPV capsid contains 72 pentameric capsomeres, each of them 

composed of five L1 and L2 proteins. HPV assembles in the nucleus of the infected cells with 

incorporation of L1 and L2 into virus-like particles [179, 190, 191].  

The HPV-encoded E6 and E7 are the main conserved oncogenes and can integrate into the 

genome of infected cells [192]. This step is crucial towards alteration of cell cycle regulation, 

telomerase maintenance and blocking of tumor suppressor pathways which results in malignant 

transformation and cancer initiation [193]. The transformed epithelial cells process and present 

epitopes of both E6 and E7 proteins [194]. High-risk HPVs are of different genus (Alpha, Beta 

and Mu) (Figure 5).  However, the members of the α-genus have been extensively studied due 

to their high prevalence including HPV16 and 18 genotypes, which account for over than 70% 

of cervical cancers [177, 195, 196].  
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Figure 5. Schematic illustration of high-risk HPV genome. HPV encodes late structural genes 

(orange), early genes (green) and oncogenes (red). Modified from Doorbar et al., 2015 [195]. 

High-risk HPV-encoded E6 consists of 158 amino acids. E6 promotes cancer initiation and 

proliferation by interacting with the tumor suppressor p53 protein which is mediated by a 

trimeric complex formation of E6, p53 and ubiquitination enzyme E6-AP [192]. This 

interaction blocks the action of p53, which leads cell growth and tumor formation [197, 198]. 

Additionally, HPV16-encoded E7 binds with high affinity to cellular retinoblastoma protein 

(pRb). The Rb protein has a negative cell-cycle regulatory function in the G1/S as well as G2/M 

transitions [192]. The Rb protein mediates its function by binding to E2F-family transcription 

factors, which in turn represses the expression of enzyme genes involved in cell replication. E7 

protein binds to specific region of Rb protein called pocket domains. These pocket domains of 

Rb protein are the functional domains for the protein-mediated tumor suppressor function. The 

binding of E7 with Rb protein alters the Rb-E2F interaction and consequently resulting in E2F 

release in the active form. The transcriptionally active form of E2F stimulates cell division and 

replication which promotes cancer formation in the HPV-infected organs (Figure 6) [199-201].   
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Figure 6. Mechanism of action of HPV16-encoded oncoproteins. HPV16-encoded E6 and E7 interact 

with p53 and Rb proteins, respectively, which leads to initiation and progression of cancer in HPV-

infected cells. Modified from Yim and Park, 2005 [192].  

 

Despite highly effective prophylactic vaccines, there is no approved therapeutic vaccine that 

triggers cell-mediated immunity against HPV-induced cancer [202]. Although individuals are 

protected if they are vaccinated prior to the virus exposure, the unvaccinated population will 

remain at risk lifelong of developing cervical and other related cancers [203]. MCMV was 

utilized to generate recombinant viruses that express epitopes derived from E7 protein. These 

MCMV-based vaccines induced robust tumor-specific CTLs that were able to protect the mice 

from tumor grwoth. It was also demonstrated that fusing a single HPV E7-derived epitope to 

the C-terminal of viral proteins is crucial to generate MHC-I-restricted CTLs recognizing this 

epitope [204, 205].  

1.4 Glioblastoma multiforme (GBM) 

The glial cells play the main role in supporting and isolating neurons. Moreover, they have an 

important role in the functional signal processing of the CNS and in the maintenance of 

homeostasis and brain metabolism  [206]. Gliomas are the most common primary tumors of the 

central nervous system (CNS) [207]. The name refers to its neuroepithelial tissue of origin, the 

glial cells. The recent World Health Organization (WHO) classification updated in 2016, 

classifies gliomas into four grades according to histopathological malignancy criteria [208]. 



1. Introduction 

17 
 

The low-grade gliomas (WHO I and II) show a comparatively good cell differentiation, and 

thus a high morphological similarity with glial cells [207]. Low-grade malignant gliomas often 

have a long clinical course due to their rather slow progression [209]. A distinction is made 

between higher-grade neoplasia, so-called the high-grade gliomas (WHO III and IV). WHO III 

tumors are characterized by increased cytologic anaplastic signs with increased proliferation 

rate, diffuse infiltrative growth pattern and developing perifocal edema. Glioblastoma 

multiforme (GBM), the most common malignant tumor of glial cells, is classified as the most 

aggressive glioma (WHO IV) which shows additional malignant characteristics such as 

neoangiogenesis and tumor necrosis [210].  

GBM is one of the most aggressive cancers, with median survival of only 14-months after 

diagnosis [211-213]. The most commonly used treatment options are ineffective for GBM 

therapy, although different drug combinations have been investigated [214, 215]. Relapse 

usually occurs, which can no longer be treated and leads to death after a short time period [216, 

217]. The fact that GBM is incurable, underlines the need to develop new approaches for the 

therapy of GBM. To date, the most promising therapeutic strategies for GBM treatment are 

immunotherapy-based approaches [218].  

1.4.1 Incidence of GBM 

GBM accounts for about 16% of all CNS tumors and 54% of malignant tumors in the CNS 

[219]. Every year, there are more than 12,000 new cases diagnosed with GBM in the United 

States [220]. According to Central Brain Tumor Registry of the United States (CBTRUS) 

report, the incidence of GBM in the United States is 3.19 per 100,000 individuals. The median 

age of people with GBM is 64 years. The incidence increases with age and reaches its maximum 

at 15.27 per 100,000 in the age group 75-84 years [207, 212].  

Despite modern therapy concepts, the survival prognosis of GBM patients is severely limited 

[207, 221]. In the total population, the average 1-year survival is about 40.8%, while the 5-year 

survival is about 6.8% ,and the 10-year survival is only 0.71% [207, 222]. 

 

1.4.2 Pathology of GBM 

Recently, it has been established that GBM originates from neural stem cells within 

subventricular brain zone [223]. The diagnosis of GBM is mainly dependent on the observation 

of high cellularity, atypical glial cells and microvascular proliferation (MVP) and/or necrosis 
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[223, 224].  Although GBM is of one most of aggressive cancer types (Figure 7), it rarely 

metastasizes outside the CNS [225]. Recent studies showed synaptic and electrical integration 

among glioma and neural cells which promotes glioma progression [226]. 

1.4.3 Standard GBM treatment strategies 

The current gold standard “maximum” therapy consists of tumor resection, followed by 

combined chemo-radiotherapy. Patients treated with this regimen have a median survival time 

of about 14 months [221, 227].  GBM almost always relapses near the surgical margins and 

becomes resistant to therapy [214].  

 1.4.4 GBM-induced immunosuppression  

GBM is characterized by immunosuppression in the “cold” local tumor microenvironment 

(TME). There is high predominance of CD11b+ myeloid cells including brain‐resident 

microglia and myeloid‐derived suppressor cells (MDSC), which have immunosuppressive 

characteristics such as producing IL‐10 and tumor growth factor beta (TGF-β) [228-230]. 

Moreover, the T‐cell checkpoint molecule PD-L1 is highly expressed in patients’ GBM tissue 

[231]. Immunotherapy is one of the promising approaches for GBM therapy by converting the 

TME from “cold” to “hot” with improved immune response [232].     

Moreover, GBM tumors are also able to induce systemic immunosuppression. GBM patients 

have higher level of MDSC cells in the blood than normal individuals and have elevated serum 

levels of IL-10. Additionally, circulating monocytes show higher level of PD-L1 expression. In 

addition, circulating T cells are limited in number and impaired in function as well [233, 234]. 

The clinical use of PD-1/PD-L1 checkpoint blockades did not offer any survival advantage in 

GBM patients because GBM shows poor responses to immunotherapies that have been 

successful in more immunogenic cancers due to immunosuppressive TME [235].  

1.4.5 HCMV infection of GBM cells 

The relationship between HCMV and GBM tumors has been extensively studied. The detection 

of HCMV antigens and nucleic acid in GBM cells suggests that HCMV may be implicated in 

the tumor initiation and malignancy [236, 237], however, HCMV was not detectable in the 

surrounding tissues [236]. On the other side, HCMV has the ability to reduce the viability of 

GBM cell lines in the presence or absence of chemotherapeutic agents. Moreover, infection of 
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GBM cells with HCMV did not show any increase in resistance to chemotherapeutic drugs 

[238]. 

Interestingly, HCMV antigens of HCMV-positive GBM clinical samples were recognized and 

killed by autologous HCMV-specific CTLs [239]. This is why infecting GBM tumors with 

HCMV-based vaccines expressing several antigens, which are entirely absent in the tumors, 

may drive polyclonal CTLs and could be considered as a novel approach for GBM therapy. 

   

 

Figure 7. Magnetic resonance imaging (MRI) of brain.  (A) The image of MRI does not show any 

brain pathology. (B) The MRI scan shows a brain tumor in the posterior part of the right frontal lobe 

with an area of necrosis and surrounded by cerebral edema. Obtained from Caruso et al.,2017 [240]. 
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1.5 Project outline 

After HCMV infection, T cells with high avidity for dominant viral antigens are generated and 

maintained at high frequencies. These cells show a characteristic effector-memory phenotype 

and lack features of T cell exhaustion. This phenomenon has been called memory inflation and 

was originally discovered in animal models of CMV infection. Based on this unique feature, 

HCMV represents a promising vector for the construction of recombinant vaccines that express 

heterologous (non-HCMV) proteins that are not normally expressed by HCMV wild type (WT). 

These neoantigens can be subsequently processed and presented (neoepitope). The 

heterologous proteins should elicit an equally powerful T cell response that could then be 

exploited for vaccination against chronic infectious disease such as HIV or cancer 

immunotherapy. Although several studies were carried out in the last few years aiming to 

develop therapeutic and prophylactic vaccines based on animal CMVs, there is no published 

study yet for HCMV-based vaccines.  

1.3.1 Objectives 

HPV16-encoded E6 and E7 are the principle conserved oncogenes responsible for cell 

transformation and carcinogenesis. Despite the presence of prophylactic vaccines, there is no 

approved therapeutic vaccine for HPV-induced cancer although different strategies have been 

attempted. Moreover, we investigated the use of HCMV-based therapeutic viral vaccines to 

drive the autologous immune system for elimination of tumor cells. GBM cells are permissive 

to HCMV, thus they can be antigenic and act as a target for CTLs upon HCMV infection 

through expression and presentation of a neoepitope.  

In this study, we aimed to: 

A. Develop therapeutic HCMV-based vaccines against HPV-induced cancer and GBM 

using two different HCMV strains (Merlin and TB40/E) 

B. Investigate the functionality of HCMV-based vaccine to stimulate specific T cells in 

vitro. 

The novelty of this work is the generation of the first optimized HCMV-based cancer vaccine 

backbone. 
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1.3.2 Technical approach 

A. Construction of HCMV-based therapeutic cancer vaccines 

1- HCMV vector modification and optimization 

We aimed to knockout MHC-I downregulating genes (US2-US11) using bacterial artificial 

chromosome (BAC) technology and recombineering to generate HCMV mutants with 

impaired immune evasion.  

2- HPV antigens expression and presentation 

HPV16 E6 and E7 proteins were our target antigens. An immunogenic E6/E7 fusion protein 

without transforming activity (E6/E7) was used in this study to generate HCMV-based 

vaccines expressing E6/E7 protein as a source of T cell epitopes. Moreover, another set of 

vaccines was constructed with an E6-derived single epitope fused to HCMV proteins. 

B. In vitro functional assays of HCMV-based therapeutic vaccines 

Primary T cells as well as T cell lines specific for HCMV-encoded epitope or neoepitope 

were generated by transduction with specific TCRs. HCMV-infected fibroblasts and GBM 

cells were investigated for their ability to stimulate these specific T cells. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Primary cells, established cell lines and bacterial strains 

2.1.1.1 Primary cells are listed in Table 2 

Cells Feature Reference 

Fi301 Human embryonic fetal fibroblasts with HLA-

A2 haplotype. 

[241] 

Table 2. List of the primary cells. 

2.1.1.2 Cell lines are listed in Table 3 

Cells Feature Reference 

CaSki  Cervix cells; derived from metastatic 

site (small intestine) with HLA-A2 

haplotype. 

ATCC® CRL-1550™ 

HEK Human embryonic kidney cell line. ATCC® CRL-1573™ 

HEK293T  Human embryonic kidney derived 

from HEK cells. Transfected 

plasmid with SV40 origin of 

replication can replicate efficiently 

in HEK293T cells and maintained in 

a high copy number; which greatly 

increase the amount of recombinant 

protein or retrovirus that can be 

produced from the cells. 

ATCC® CRL-3216™ 

Jurkat E6.1 and Jurkat 76 

(J76) 

Human T cell lines derived from 

acute T cell leukemia.  

ATCC® TIB-152™ 

LN18  GBM cell line with HLA-A2 

haplotype. 

 ATCC ® CRL-2610™ 

U251 GBM cell line with HLA-A2 

haplotype. 

CVCL_4773 

https://en.wikipedia.org/wiki/Origin_of_replication
https://en.wikipedia.org/wiki/Origin_of_replication
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U343 GBM cell line with HLA-A2 

haplotype. 

ATCC® HTB-17™ 

Table 3. List of the cell lines. 

2.1.1.3 Bacteria 

Laboratory strains of Escherichia coli (E. coli) were grown in Luria-Bertani (LB) medium (see 

Section 2.1.6.1) or plated on LB agar plates. The LB media and agar were sterilized by 

autoclaving. LB agar was supplemented with the appropriate antibiotics and poured into 10 cm 

diameter Petri dishes. Different antibiotics were used in this project, for example: ampicillin 

(amp) (100 µg/ml), kanamycin (kan) (50 µg/ml), and chloramphenicol (cam) (20 µg/ml). 

Bacteria were plated on LB agar by streaking with a wire loop and incubated overnight inverted 

at 32 oC or 37 oC. Single colonies were inoculated in sterile liquid LB medium supplemented 

with the appropriate antibiotics. Liquid cultures were incubated at 32 oC or 37 oC overnight in 

the bacterial incubator with shaking at 220 rpm.  Bacterial strains are listed in Table 4 

Name of bacteria Feature Reference 

GS1783 DH10B λcI857∆(cro-bioA)<>araC-P BAD, 

ISceI 

[242] 

NEB 10-beta E. coli A competent E. coli is a derivative of the 

popular DH10B. It is T1 phage resistant and 

endonuclease I (endA1) -deficient for high- 

quality plasmid preparations. 

New England Biolabs, 

Frankfurt, Germany  

Cat No. C3019H and 

C3019I 

Table 4. List of bacterial strains.  

2.1.2 Viruses and BACs 

2.1.2.1 Viruses 

HCMV viruses used in this project are listed in Table 5 
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Virus name Feature Reference 

TB40/E HCMV strain TB40/E was derived from throat wash of 

a bone marrow transplant recipient by propagation for 

5 passages in fibroblasts and 22 passages in endothelial 

cells. 

[243] 

RV-TB40-BACKL7-

SE-EGFP 

An enhanced green fluorescent protein (EGFP)-

expressing virus derived from TB40/E. The EGFP gene 

under the control of the viral major IE 

promoter/enhancer with a poly(A) site was introduced 

at an ectopic position downstream of US34A.  

[244] 

Table 5. List of HCMV viruses. 

2.1.2.1 BACs 

All modified HCMV and BACs used in this study are listed in Table 6 

BAC 

 

Derived virus Features Reference 

RCMV1161-BAC  HCMV BAC of Merlin strain with 

repaired RL13 and UL128 regions. 

It encodes an IRES-EGFP 

expression cassette which was 

inserted immediately downstream 

from UL122 (IE2). 

[245] 

TB40-BAC4  HCMV BAC of TB40/E strain. 

The mini-F sequence is replacing 

the region US2-US6. 

[243] 

Merlin1161∆US2-

BAC 

Merlin1161∆US2 RCMV1161 BAC with US2 

deletion. 

This work 

Merlin1161∆US2∆3-

BAC 

Merlin1161∆US2∆

3 

RCMV1161 BAC with US2-3 

deletion. 

This work 

Merlin1161∆US2∆3 

∆6-BAC 

Merlin1161∆US2∆

3∆6 

RCMV1161 BAC with US2-3-6 

deletion. 

This work 
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Merlin1161∆US2∆3

∆6∆11-BAC 

Merlin1161∆US2∆

3∆6∆11 

RCMV1161 BAC with US2-3-6-

11 deletion. 

This work 

RVTB40ΔUS11-

BAC RVTB40ΔUS11 

TB40-BAC4 with US11 deletion. This work 

RVTB40E6/E7intoU

S11-BAC 

RVTB40_E6/E7int

oUS11 

RVTB40ΔUS11 with E6/E7 

protein expressed under the control 

of US11 promoter. 

This work 

RVTB40ΔUS11_EF

-1E6/E7-BAC 

RVTB40ΔUS11_E

F-1E6/E7 

RVTB40ΔUS11 with E6/E7 

protein expressed und the control 

of exogenous EF-1 promoter. 

This work 

RVTB40ΔUS11_E6/

E7intoUL111A-

BAC 

RVTB40ΔUS11_E

6/E7intoUL111A 

RVTB40ΔUS11 with E6/E7 

protein expressed und the control 

of UL111A(vIL-10) promoter. 

This work 

RVTB40ΔUS11_E6/

E7intoUL83-BAC  

RVTB40ΔUS11_E

6/E7intoUL83 

RVTB40ΔUS11 with E6/E7 

sequence replaced UL83 (pp65). 

This work 

RVTB40ΔUS11_E6

peptideIE1-BAC 

RVTB40ΔUS11_E

6peptideIE1  

RVTB40ΔUS11 with HPV16 E6-

derived peptide fused to C-

terminus of UL123 (IE1). 

This work 

RVTB40ΔUS11_E6

peptideUL83-BAC  

RVTB40ΔUS11_E

6peptideUL83 

RVTB40ΔUS11 with HPV16 E6-

derived fused to C-terminus of 

UL83 (pp65). 

This work 

RVTB40ΔUS11_E6/

E7intoUL83_E6pept

ideIE1-BAC  

 

RVTB40ΔUS11_E

6/E7intoUL83_E6p

eptideIE1 

RVTB40ΔUS11_E6/E7intoUL83

with HPV16 E6-derived fused to 

C-terminus of UL123 (IE1). 

This work 

Table 6. List of HCMV BACs.  

2.1.3 Chemicals and Reagents 

Chemicals and Reagents are listed in Table 7 
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Product Supplier 

100bp DNA ladder Thermo Fisher Scientific, Braunschweig, 

Germany 

1kb DNA ladder 

Thermo Fisher Scientific, Braunschweig, 

Germany 

1kb DNA ladder GeneSTA Geneall, Seoul, South Korea 

Acetic acid (CH3COOH) VWR International, Darmstadt, Germany 

Agar-Agar (pure) Carl Roth, Karlsruhe, Germany 

Agarose-Standard Roti® grade Carl Roth, Karlsruhe, Germany 

Ammonium chloride Sigma-Aldrich, Steinheim, Germany 

Ampicillin sodium salt Carl Roth, Karlsruhe, Germany 

Bovine serum albumin (BSA) HyClone, South Logan, USA  

Bromophenol blue (C19H10Br4O5S) Sigma-Aldrich, Steinheim, Germany  

Chloramphenicol Carl Roth, Karlsruhe, Germany 

Citric acid Sigma-Aldrich, Steinheim, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Steinheim, Germany  

EDTA (ethylenediaminetetraacetic) Applichem, Darmstadt, Germany 

Ethanol absolute Applichem, Darmstadt, Germany 

Ethidium bromide 1% Carl Roth, Karlsruhe, Germany 

FACS clean BD, San Jose, USA 

FACS rinse BD, San Jose, USA 

G418 (Geneticin) 

Thermo Fisher Scientific, Braunschweig, 

Germany 

Glycerol Applichem, Darmstadt, Germany 

Human interleukin 2 (hIL-2)  Peprotech, Rocky Hill, NJ, USA 

Hydrochloric acid (37% HCl) Carl Roth, Karlsruhe, Germany 

Ionomycin Sigma-Aldrich, Steinheim, Germany  

Isopropyl alcohol (2-propanol) AppliChem, Darmstadt, Germany 

Kanamycin sulphate Carl Roth, Karlsruhe, Germany 

L-(+)- arabinose Sigma-Aldrich, Steinheim, Germany  

Lipofectamine 2000 Invitrogen, Karlsruhe, Germany 

Methanol VWR International, Darmstadt, Germany 

Opti-MEM I Invitrogen, Karlsruhe, Germany 
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Phorbol myristate acetate Sigma-Aldrich, Steinheim, Germany  

Phosphate buffered saline (PBS) Santa Cruz Biotechnology, Heidelberg, 

Germany 

Polyethylenimine, Linear, MW 25,000 (PEI) Polysciences, Eppelheim, Germany 

Potassium acetate (KCH3CO2) Applichem, Darmstadt, Germany 

RNase A Sigma-Aldrich, Steinheim, Germany 

Roti®-Sep 1077 human Carl Roth, Karlsruhe, Germany 

Sodium acetate Applichem, Darmstadt, Germany 

Sodium chloride (NaCl) Applichem, Darmstadt, Germany 

Sodium hydroxide pellets, extra pure  Applichem, Darmstadt, Germany 

Sodium pyruvate  Biochrom AG, Berlin, Germany 

Tris Applichem, Darmstadt, Germany 

Tris-EDTA (TE) Sigma-Aldrich, Steinheim, Germany 

Trypan blue, 0.4% solution  Lonza, Cologne, Germany 

Trypsin/EDTA 0.05% 

Gibco, Thermo Fisher Scientific, 

Braunschweig, Germany 

Tryptone Carl Roth, Karlsruhe, Germany 

Water molecular biology grade Applichem, Darmstadt, Germany 

Yeast extract Carl Roth, Karlsruhe, Germany 

Table 7. List of chemicals and reagents. 

2.1.4 Consumables and equipment 

2.1.4.1. Consumables are listed in Table 8 

Consumables Supplier 

0.2 ml thin-walled PCR tube Applied Biosystems, Darmstadt, Germany 

BD Falcon 12 x 75 mm Tubes  BD, San Jose, USA 

Cell culture dish 50, 100 and 150 mm Sarstedt, Nümbrecht, Germany 

Cell culture plates Sarstedt, Nümbrecht, Germany 

Cell scraper Sarstedt, Nümbrecht, Germany 

Cell–culture flasks (T–25, T–75, and T-175) Sarstedt, Nümbrecht, Germany 

Cryotubes 1.8 ml Sarstedt, Nümbrecht, Germany 
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Electroporation sterile cuvettes, 1 mm and 

2mm    

Biodeal, Markkleeberg, Germany 

 

Eppendorf tubes (1.5, 2ml) Sarstedt, Nümbrecht, Germany 

Falcon bacterial tubes (13ml) Sarstedt, Nümbrecht, Germany 

Falcon tubes (15 ml, 50 ml) BD, San Jose, USA 

Parafilm® M Bems, Neenah, Germany 

Pasteur pipette Sarstedt, Nümbrecht, Germany 

Petri dishes Sarstedt, Nümbrecht, Germany 

Pipette tips (1000, 200, 100 and 10) VWR International, Darmstadt, Germany 

Retronectin-coated plates Takara Bio, Otsu, Japan 

Sterile Pipettes (5, 10, 25 ml) Sarstedt, Nümbrecht, Germany 

Table 8. List of consumables. 

2.1.4.2. Equipment are listed in Table 9 

Equipment Supplier 

Analytical balance (Cubis MSA) Sartorius AG, Göttingen, Germany 

Bacterial incubators Classic Line Binder, Tuttlingen, Germany 

Centrifuges 5424/ 5424 R Eppendorf AG, Hamburg, Germany 

Cloning rings  Hilgenberg GmbH, Malsfeld, Germany 

CO2 tissue culture incubator (New 

Brunswick™ Galaxy® 170 R) 

Eppendorf AG, Hamburg, Germany 

Electrophoresis Power Supply (Power 

SourceTM300V) 

VWR International, Darmstadt, Germany 

FACScalibur Flow Cytometer - 4 Colors BD, San Jose, USA 

Flexcycler Thermocycler Analytik Jena, Jena, Germany 

Fluorescence inverted microscope Carl Zeiss MicroImaging, Jena, Germany 

Freezer -20 oC Kirsch, Willstätt, Germany 

Freezer –80 oC (HERA Freeze™ HFU B 

Series) 

Thermo Fisher Scientific, Braunschweig, 

Germany 

Fume cupboards (DELTAguard) Wesemann, Wangen im Allgäu, Germany. 
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Laminar flow safety cabinet class II Bleymehl Reinraumtechnik, Inden, 

Germany 

Liquid nitrogen tank Air liquide, Düsseldorf, Germany 

Multiskan™ FC Microplate Photometer Thermo Fisher Scientific, Braunschweig, 

Germany 

Microscope (AE20) Motic, Wetzlar, Germany 

Microwave oven (R-201A) Sharp, Osaka, Japan 

Mr. Frosty™ Freezing Container  Thermo Fisher Scientific, Braunschweig, 

Germany 

Multiporator Eppendorf AG, Hamburg, Germany 

Nanodrop ND1000 PeqLab, Erlangen, Germany 

Neubauer cell counting chamber VWR International, Darmstadt, Germany 

Shaker bacterial incubator New Brunswick™ Innova, Edison, USA 

Orbital shaker (OS-10) PeqLab, Erlangen, Germany 

pH–meter (inoLab pH Level 1) Wissenschaftlich-Technische Werkstätten, 

Weilheim, Germany 

Pipetboy INTEGRA Biosciences AG, Biebertal, 

Germany 

Pipettes (single–channel, multichannel) VWR International, Darmstadt, Germany 

PTR-20 360 Degree Vertical Multi-Function 

Rotator 

Grant Bio, Shepreth, UK 

Spectrophotometer (Smart spec Plus) Bio-Rad, Feldkirchen, Germany 

Thermomixer  Eppendorf AG, Hamburg, Germany 

UV Transilluminator PeqLab, Erlangen, Germany 

Vortex Genie 2™ Bender&Hobein AG, Zurich, Switzerland 

Water bath Eppendorf AG, Hamburg, Germany 

Table 9. List of Equipment. 
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2.1.5 Buffers and Gels 

2.1.5.1 DNA electrophoresis and electroporation buffers are listed in Table 10 

Buffer Composition 

1x PBS 9.55 gm from PBS powder 

1 L millipore water 

pH 7.3 

1x TAE 

 

40 mM Tris 

1 mM Na2EDTA.2H2O                   

20 mM acetic acid 99%,  

pH 8.0 

1 % agarose gel 

 

1 gm agarose                               

100 ml of 1x TAE buffer                                  

1 µl ethidium bromide 10 mg/ml    

hypo-osmolar buffer for eukaryotic cell 

electroporation 

Eppendorf AG, Hamburg, Germany 

Iso-osmolar buffer for eukaryotic cell 

electroporation 

Eppendorf AG, Hamburg, Germany 

6x DNA loading buffer 

 

0.2% bromophenol blue 

60% glycerol 

60 mM EDTA 

Table 10. List of DNA electrophoresis and electroporation buffers.  
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2.1.5.2 Plasmid and BAC DNA preparation buffers are listed in Table 11 

Buffer Composition 

TE buffer 

 

10 mM Tris HCl pH 7 

1 mM NaEDTA   

Table 11. List of plasmid and BAC DNA preparation buffers.  

2.1.6 Media preparation and composition 

2.1.6.1 Media and supplements for propagation of bacteria (E. coli) are listed in Table 12 

Media Composition 

LB medium (1X) 10 g tryptone           

5 g yeast extract      

10 g NaCl   

millipore water to 1L 

LB agar 10 g tryptone           

5 g yeast extract      

10 g NaCl   

15 gm agar 

millipore water to 1L 

Table 12. List of media and supplements for propagation of bacteria (E. coli). 
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2.1.6.2 Media and supplements for cultivation of mammalian cells 

2.1.6.2.1 Supplements are listed in Table 13 

Name Catalog No Company 

Fetal bovine serum (FBS) 11573397 Gibco, Thermo Fisher 

Scientific, Braunschweig, 

Germany  

L-alanyl-L-Glutamine K 0302 Biochrom AG, Berlin, 

Germany 

 

Minimum Essential Medium Eagle (MEM) F 0315 Biochrom AG, Berlin, 

Germany 

RPMI 1640 F 1215 Gibco, Thermo Fisher 

Scientific, Braunschweig, 

Germany 

Gentamycin-sulfate A 2712 Biochrom AG, Berlin, 

Germany 

Table 13. List of media supplements. 

2.1.6.2.2 Cell culture media and buffers are listed in Table 14 

Cells Media 

U343 

Fi301 

HEK293T 

HEK 

LN18  

U251 

Minimum essential Medium Eagle (MEM) 

10% heat inactivated FBS (hiFBS)   

2mM L-alanyl-L-glutamine 

50 μg/ml gentamicin 
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PBMCs and Jurkat cell lines RPMI 1640 

2mM L-alanyl-L-glutamine 

10% hiFBS 

50 μg/ml gentamicin 

RBC lysis buffer 

 

NH4Cl 8.02gm 

NaHCO3 0.84gm 

Na2EDTA.2H2O 0.37gm 

millipore water to 1L 

Table 14. List of cell culture media and buffers. 

2.1.7 Kits 

Kits used in this study are listed in Table 15 

Kit Supplier 

Basic NucleofectorTM kit for Primary 

Mammalian Fibroblasts 

Lonza, Cologne, Germany 

DNase I kit Promega, Walldorf, Germany 

GeneArt Life Technologies, Darmstadt, Germany 

GeneMATRIX Basic DNA Purification kit EURx, Gdańsk, Poland 

IFN-γ ELISA kit PeproTech, Hamburg, Germany 

NucleoBond® Xtra BAC MACHEREY-NAGEL, Düren, Germany 

NucleoBond® Xtra Midi MACHEREY-NAGEL, Düren, Germany 

OncoE6 Cervical Test™ kit Arbor Vita, CA, USA 

RecomWell HPV16/18/45 ELISA kit Mikrogen GmbH, Neuried, Germany 

RNeasy Plus Mini kit Qiagen, Hilden, Germany 

SuperScript III Reverse Transcriptase Invitrogen, Karlsruhe, Germany 

Table 15. List of kits. 
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2.1.8 Enzymes 

All enzymes used in this project were purchased from New England Biolabs, Frankfurt, 

Germany and are listed in Table 16 

Antarctic phosphatase (AP) KpnI 

BamHI NotI 

DpnI Phusion DNA polymerase 

EcoRI T4 DNA Ligase 

EcoRV Taq DNA polymerase 

Table 16. List of enzymes. 

2.1.9 Antibodies and peptides 

2.1.9.1 Antibodies 

All antibodies used in this project are listed in Table 17 

Antibody Supplier 

anti-CD28 (CD28.2) BioLegend, London, UK 

anti-CD3 (OKT3) BioLegend, London, UK 

anti- HLA-A*0201 antibody clone BB7.2 BioLegend, London, UK 

Table 17. List of antibodies. 

2.1.9.2 Peptides 

All peptides used in this project are purchased from Peptides&elephants GmbH, Hennigsdorf, 

Germany and listed in Table 18 

Peptide Sequence 

CMV pp65 (495- 503) NLVPMVATV 

HPV E6 (29-38) TIHDIILECV 

Table 18. List of peptides.  
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2.1.10 Plasmids and vectors 

All plasmids and vectors used in this project are listed in Table 19 

Name Feature Reference 

GALV-env Gibbon ape leukemia virus (GALV) envelope-

encoding retroviral vector. 

[246] 

MLV-gag/pol Murine leukemia virus (MLV) gag/pol- 

encoding retroviral vector. 

MP71TCRα Retroviral vectors harboring TCR (α and β) for 

HCMV-pp65. 

[247] 

MP71TCRβ 

pcDNA3.1(+) Mammalian expression vector; Catalog 

No.V790-20. 

Invitrogen 

pcDNAE6/E7Kpn-I pcDNA3.1(+) mammalian expression vector 

harboring fused consensus sequence of E6/E7 

at Kpn-I restriction site. 

This work 

 

pEF6/V5-His A Mammalian expression vector; Catalog #V961-

20. 

Invitrogen 

pEF6E6/E7EcoRI pEF6/V5-His A mammalian expression vector 

harboring fused consensus sequence of E6/E7 

at EcoRI restriction site. 

This work 

pEPkan-S Mammalian expression vector that encodes the 

kanamycin cassette for mutagenesis. 

[242] 

pJET1.2/blunt Plasmid cloning vector for prokaryotic 

expression. 

Thermo 

Fisher 

Scientific 

pJetConE6E7 pJET1.2/blunt vector harboring fused 

consensus sequence of E6/E7. 

This work 

pMP71-PRE-E6 Retroviral vector harboring TCR (α and β) for 

HPV16 E6 with P2A linker. 

This work. 

Table 19. List of plasmids and vectors.  
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2.1.11 Primers 

All primers used in this project were designed using Vector NTI 9.1 software (Invitrogen), 

ordered and purchased from Integrated DNA Technologies (IDT, Leuven, Belgium). 

Sequencing reactions were performed by LGC Genomics GmbH, Berlin, Germany (Table 20). 

Primers Sequence (5`-3`) 

Deletion of MHC-I down regulating genes 

∆US2 F TTATTGAAACAAACCGCGATCCCGGGCGTCGGTGAAACAGCGTGT

TAGGGATAACAGGGT 

R AAGAGCGTACAGTCCACACGCTGTTTCACCGACGCCCGGGATCGC

GCCAGTGTTACAACC 

∆US3 F AGGTTTCAGGTACCAGCTGGTTCGTACCTGGGCTCCGAAGGTCCGT

AGGGATAACAGGGT 

R AGCGGAGCCGAGCAGCGGACCTTCGGAGCCCAGGTACGAACCAGC

GCCAGTGTTACAACC 

∆US6 F ACGCGCTTTTATTGAGACGATAAAACAGCAAGTGAAGAAGGAGCG

TAGGGATAACAGGGT 

R TAAGTACGTCGATATCGCTCCTTCTTCACTTGCTGTTTTATCGTCGC

CAGTGTTACAACC 

∆US11 F CTCGAGATGCACTCCGCTTCAGTCTATATATCTGTCTTACAAGGGT

AGGGATAACAGGGT 

R CAGGGGAACAGCCTTCCCTTGTAAGACAGATATATAGACTGAAGC

GCCAGTGTTACAACC 

Sequencing of MHC-I down regulating genes 

SeqUS2-3 F CTGCCAGTGCTCTCGCTCGAGCAC 

R CAAAAACACCGTGCAGTCCACACGC 

SeqUS6 F CCGGAGTTGTCTATCGCGACAT 

R ACAAATATATGGAGTTTGTGTAATGC 

SeqUS11 F CAGGCAGATCGCCAGAGGG 

R  TTCTATCACCTAATCTGTCGTACTGTC   

Shuttle plasmids design 

FusedclonEc

orI 

F ATCCGAATTCGCCACCATGGACTGGACCTG 

R TCCCGAATTCGCGGCCGCTCATCAGGGTTT 
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conE6E7 

Kpn-I 

F ATCCGAATTCGCCACCATGGACTGGACCTG 

R TCCCGAATTCGCGGCCGCTCATCAGGGTTT 

conE6E7Kan

BamH 

F ACCTGGATCCTGTTCCTGGTGGCCGCTAGGGATAACAGGGTAATC

GATTTAT 

R AACAGGATCCAGGTCCAGTCCATGGGCCAGTGTTACAACCAATT

AACC 

conE6E7Eco

RV 

F GAAGATATCGAATTCGCCACCATGGACTGGACCT 

R CCCAGAAACCCTGATGAGCGGCCGCGATATCCGC 

Insertion of E6/E7 sequence in US11 

US11ConE6

E7 

F TTTCCGAGCGACTCGAGATGCACTCCGCTTCAGTCTATATAGCGG

CCGCTCATCAGGGTT 

R TGAGTCTAGACAGGGGAACAGCCTTCCCTTGTAAGACAGAGAAT

TCGCCACCATGGACTG 

E6/E7 expression under the control of exogenous promoter (EF-1) 

EF-1E6/E7 F GATCCAACACTGAACGCTTTCGTCGTGTTTTTCACGTGAGGCTCC

GGTGCCCGTCAGTGG 

R ACGCTCTCGTCAGGCTTGTCATGGTCTGTAAAAGCTGCAGCGGCC

GCTCATCAGGGTTTC 

seqEF-

1E6/E7 

F TCTGATCCAACACTGAACGCT 

R CACCTATCATAAAGAATGCAACGCT 

Insertion of E6/E7 sequence in UL111a exon 

IL-

10FusedE6/E

7 

F ACGTAGGTACGGTTTATTGCGACGGTCTTTCTTGAATTCGCCACC

ATGGACTGGACCTGG 

R GCTACAAGAGGAAAACTACGTCACCCGACACGCGGAAGCGGCCG

CTCATCAGGGTTTCTG 

SeqUL111 F ATGCTGTCGGTGATGGTCTC 

R TCGAGTGCAGATACTCTTCGAG 

Insertion of E6/E7 sequence in UL83 

UL83FusedE

6/E7 

F TTATAGAGTCGTCTTAAGCGCGTGCGCGGCGGGTGGCGCGGCCG

CTCATCAGGGTTTCT 

R GCCGCTCAGTCGCCTACACCCGTACGCGCAGGCAGCGAATTCGC

CACCATGGACTGGAC 

SeqUL83 F AGTGGACGTGGGTTTTTATAGAGT 
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R ATAACGTTTTTATTTCGGGTTCCG 

UL83RT F GCAGAACCAGTGGAAAGAGC 

R GTGTCGGTACTCAAGCTTGC 

RT PCT primer for HPV16 E6 and E7 

E6RT F GATCCTGTTCCTGGTGGCC 

R CAGGTGTCTCTGCAGGGG 

E7RT F GACCTGCAGCCTGAGACC 

R GGGTTTCTGGGAGCAGATGG 

E6 peptide fusion to C-terminus of UL123 (IE1) 

E6PepIE1 F TAACAGTAACTGATATATACACACAATAGTTTACACACACTCCAG

GATGATGTCGTGGATGGTGGCAGCTAGGGATAACAGGGTAATCG

A 

R ACCCTATGGTGACTAGAAGCAAGGCTGACCAGGCTGCCACCATC

CACGACATCATCCTGGAGTGTGTGGCCAGTGTTACAACCAATTAA

C 

SeqIE1 F GAGGAGTGTTAGTAACCGCGA 

R AGCAGAGTGATGAGGAACAGG 

E6 peptide fusion to C-terminus of UL83 (pp65) 

E6PepUL83 F GTCGTCTTAAGCGCGTGCGCGGCGGGTGGCTCACACACACTCCA

GGATGATGTCGTGGATGGTGGCAGCTAGGGATAACAGGGTAATC

GA 

R TGCATCGCCTCGACGCCCAAAAAGCATCGAGGTGCTGCCACCAT

CCACGACATCATCCTGGAGTGTGTGGCCAGTGTTACAACCAATTA

A 

SeqUL83C-

ter 

F GGGGAGGGTCAGGGGATG 

R GCATCCTGGCCCGCAA 

Table 20. List of primers. 

2.1.12 Software is listed in Table 21 

Name Manufacture 

BLAST NCBI, Bethesda 

EndNote X8 THOMSON  REUTERS 
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FACStation Software version 3.4 BD Biosciences 

FinchTV 1.4.0 Geospiza, Inc. 

GraphPad Prism 8.1.0 GraphPad Software Inc. 

ND-1000 V.3.0.7 PeqLab 

Vector NTI Advance™ 9.1 Invitrogen 

Table 21. List of software. 

2.2 Methods 

2.2.1 Standard molecular biology methods  

2.2.1.1 Polymerase chain reaction (PCR) 

PCR was used to amplify gene sequences using complementary oligonucleotides, so-called 

primers. For routine PCR, HotstarTaq polymerase (polymerase of the thermophilic eubacterium 

Thermus aquaticus) was used. HotstarTaq polymerases also have the advantage that they only 

activated after an initiation at 95 °C.  The PCR was carried out for 25-30 cycles.  The 

denaturation of DNA takes place at temperatures between 94-96 °C for 30 sec. The temperature 

of the attachment for the specific primer (annealing) is determined according to their melting 

temperature, which in turn depends on the GC content. The elongation step was at 72 °C 

allowing for 1000 bp/1 min extension. The 50 µl reaction contains 200 ng DNA, 1 U 

polymerase, 1x Taq buffer, 200 μM dNTPs (New England Biolabs, Frankfurt, Germany) and 

0.5 μM each forward and reverse primers.  

The Phusion Hot Start II High Fidelity DNA polymerase (New England Biolabs, Frankfurt, 

Germany) was used for cloning, mutagenesis and sequencing. A reaction batch of 50 µl contains 

200 ng DNA, 1 U polymerase, 1x Phusion HF buffer, 3% DMSO, 200 μM dNTPs, and 0.5 μM 

each forward and reverse primer used. The DNA was initially in an initial step denatured at 98 

°C for 30 sec, followed by 25 cycles in which a 10 sec in denaturation step at 98 °C, annealing 

for  30 sec and the elongation of the DNA at 72 °C  with  1000 bp/30 sec .  

2.2.1.2 Gel electrophoresis 

DNA molecules can be sized by agarose gel electrophoresis and be separated from each other. 

The products of the PCR are used in this procedure were applied to a 1% agarose gel, in an 

electric field (electrical chamber with TAE buffer as running buffer) and according to their size 
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separated. Because DNA molecules are negatively charged, they migrate toward the positive 

electrode, the anode. Their running speed depends on their size, which means smaller molecules 

will reach the anode faster than larger ones. The separation of the DNA fragments was carried 

out at a constant voltage of 100 V for about 30 min in room temperature (RT). To interpret the 

results, a size standard (e.g. 1kb ladder) was included in each gel electrophoresis. 

To prepare the agarose gel, appropriate amounts of powdered agarose in TAE buffer was boiled,  

after a short cooling phase, ethidium bromide was added (to a final concentration of 

approximately 0.2-0.5 μg/ml) and poured into the mold. Ethidium bromide intercalates into the 

DNA fragments and makes them visible under UV light. The PCR products were mixed with 

loading buffer before application. This stabilizes the pH of the sample, facilitates their handling 

by a color additive and allows the sinking of the sample into the loading pocket of the gels. 

2.2.1.3 DNA isolation and purification 

Contamination of PCR reactions with primer, nucleotides, polymerase or salts were purified 

using the GeneMATRIX Basic DNA Purification kit according to manufacturer’s instructions. 

2.2.1.4 DNA digestion 

Restriction enzyme digestion was carried out for screening of plasmids and recombinant BACs 

as well as for DNA cloning using multiple restriction endonucleases. DNAs were digested 

according to the manufacturer’s recommendations. 

2.2.1.5 DNA de-phosphorylation 

Antarctic phosphatase (AP) was used to prevent self-ligation by removing of 5` phosphate 

groups. Briefly, purified digested plasmid DNA with a single restriction enzyme was incubated 

with AP in the recommended buffer for 1 hour at 37 °C. The AP was inactivated by heating at 

65 oC for 15 min. 

2.2.1.6 DNA gel extraction 

Purification of DNA fragments from agarose gels was carried out by identifying the band of 

interest from the gel using long wavelength UV light. The band of interest was then carefully 

cut from the agarose gel with a surgical scalpel and DNA was purified using the GeneMATRIX 

Basic DNA Purification kit according to manufacturer’s instructions. 
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2.2.1.7 DNA ligation 

DNA ligation was carried out by T4 DNA ligase according to manufacturer’s instruction. 

Ligation reaction contains a molar ratio of 3:1 (insert to vector) that was calculated by NEBio 

calculator (http://nebiocalculator.neb.com). A 1-5 µl of the ligation reaction was used to 

transform E. coli competent cells (see Section 2.1.1.3). 

2.2.1.8 Determination of DNA concentration by spectrophotometry 

Concentration and purity of PCR products, plasmids and BACs DNA samples was determined 

using Nanodrop ND1000 low volume spectrophotometer measuring 220 nm to 750 nm 

wavelength with software version 3.7.1 (PeqLab, Erlangen). The 260/280 absorbance ratio was 

used to indicate the contaminants of the DNA samples. 

2.2.1.9 Colony PCR 

A single bacterial colony was used directly as template for PCR to detect correct clones after 

ligation reaction. Single colony was transferred to a new agar plate with appropriate antibiotic 

by a pipette tip and the remains of the cells in the tip were mixed into the PCR reaction using 

Taq DNA polymerase as described previously (see Section 2.2.1.1).  

2.2.1.10 RNA isolation and reverse transcriptase PCR (RT-PCR) 

RNA was extracted from cells using RNeasy Plus Mini kit according to the manufacturer’s 

instruction. Samples were treated with DNase I kit and cDNA was generated using SuperScript 

III Reverse Transcriptase kit following manufacturer’s instruction. RT-PCR was performed on 

cDNA with specific primers using Taq polymerase as previously described (see Section 

2.2.1.1).  

2.2.2 Microbiological Methods 

2.2.2.1 Bacterial culture 

Laboratory strains of E. coli were grown on LB medium or platted on LB agar plates (see 

Section 2.1.6.1). The liquid LB medium and LB agar were sterilized by autoclaving.  For 

positive selection, LB agar was heated by microwave and cooled down to 60 oC and then the 
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appropriate antibiotics were added and mixed with LB agar and finally platted in 10 cm petri 

dishes.  

2.2.2.2 Preparation of bacterial stocks for long term storage 

Selected bacterial clones with correctly sequenced BACs or plasmids were stored in glycerol at 

-80 °C for further usage. 

To prepare glycerol stock, a single bacterial colony were inoculated in 3-4 ml LB medium with 

the positively selecting antibiotics for overnight culture at 32 oC or 37 oC with shaking at 220 

rpm in bacterial incubator shaker. The next day, 600 µl of the culture was mixed with 200 µl of 

sterile 60% glycerol in a 1.5 ml eppendorf and stored in -80 oC. 

2.2.2.3 Transformation of chemically competent E. coli 

Chemically competent NEB 10-beta E. coli was used for transformation of plasmids and 

ligation products. NEB 10-beta competent E. coli is a derivative of the popular DH10B strain.  

Transformation steps were carried out according to manufacturer’s protocol. Briefly, tubes of 

NEB 10-beta Competent E. coli cells were left on ice until the last ice crystals disappear. A 1-

5 µl containing 1 pg-100 ng of plasmid or ligation product DNA was added to the cell mixture 

with gently flicking. The cell mixture was then kept for 30 min on ice. The mixture was then 

given a heat shock at 42 oC for 30 sec and then kept on ice for 5 min. A 950 µl of pre-warmed 

supplied growth medium was added to the mixture and then kept for 60 min at 37 oC with 

shaking at 220 rpm in the bacterial incubator shaker. The mixed bacterial cells were then seeded 

down by centrifugation for 5 min at 5000 rpm and resuspended in 100 µl of media and then 

plated on the selective LB agar plated for 18-24 hours. 

2.2.2.4 DNA isolation from bacteria (Miniprep, Midiprep, and BAC Maxi-prep) 

For small-scale plasmid DNA isolation from bacteria (Miniprep), GeneMATRIX Basic DNA 

Purification kit was used according to manufacturer’s instructions. 

Plasmid Midiprep and BAC Maxiprep were carried out using NucleoBond® Xtra Midi and 

NucleoBond® Xtra BAC kits, respectively, following the manufacturer’s instructions. 
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2.2.2.5 Synthesis of consensus fused HPV16 E6/E7 

The fused form of the modified HPV16 consensus E6/E7 DNA sequence (ConE6E7, GenBank 

accession number: FJ229356) was synthesized and sequenced by Integrated DNA Technologies 

(IDT, Leuven, Belgium). The synthesized ConE6E7 was digested with Kpn-I, cloned into the 

expression vector pcDNA 3.1(+) under the control of the IE promoter of cytomegalovirus and 

the sequence of the insert was confirmed by PCR and sequencing, this construct was named as 

pcDNAE6/E7Kpn-I . 

ConE6E7 was amplified and cloned into pJET 1.2 vector at EcoRV restriction site using primers 

conE6E7EcoRVF and conE6E7EcoRVR, this plasmid was named as pJetConE6E7. Then, the 

kanamycin cassette was amplified from pEPkan-S plasmid using primers conE6E7BamHF and 

conE6E7BamHR and the amplified fragment was inserted into BamHI restriction site, this 

plasmid was named as pJetConE6E7kan. A shuttle vector was constructed using pEF6/V5-His 

A plasmid, in which ConE6E7 with kanamycin cassette were inserted at EcoRI restriction site 

using primers pEF_E6/E7F and pEF_E6/E7R, the plasmid was named as pEF6E6/E7EcoRI.  

2.2.2.6 Two-step Red-mediated recombination (En passant mutagenesis) [242, 248] 

All HCMV recombinant viruses generated in this study were genetically modified using the 

most efficient mutagenesis that allows introduction of the desired mutations including 

insertions, deletions, point mutations or tags into herpesvirus DNA called Two-step Red-

mediated mutagenesis technique system (En passant mutagenesis). This system was originated 

from phage λ (lambda phage) and composed of three major protein which are Exo, Beta and 

Gam proteins components [242, 248]. These proteins can be activated at 42 oC. Linear double 

stranded DNA inserted to E. coli can be degraded by the action of E. coli RecB/C/D helicase–

nuclease complex; Gam protein of the Red-recombination system inhibits this complex and 

maintains the inserted linear DNA. On the other hand, Beta protein protects the 5`-3` 

exonuclease action of homotrimer Exo protein, it also anneals the 3’ single strand end produced 

from the linear DNA with complementary homologous sequences in the desired target. 

Generally, complementary homologous sequence of 30-50 bp is sufficient to allow integration 

into replicating DNA in Red recombination system. 

All mutagenesis steps were carried out in GS1783 E. coli strain harbors HCMV BACs with 

temperature-inducible Red-recombination system, as well as arabinose induced the I-SceI 

homing endonuclease, and chloramphenicol resistance marker. Shuttle plasmids were initially 
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designed which encode the sequence to be inserted into the BAC sequence. These shuttle 

plasmids were used as PCR template, from which the fragments to be inserted into HCMV 

BAC are amplified with primers with 40 bp of homology to the desired target sequence in the 

BAC. The PCR products were digested with DpnI enzyme to get rid of the original plasmids 

and then purified by PCR cleanup or agarose extraction (see Section 2.2.1.3 and 2.2.1.6). A 150 

ng of the clean linear PCR were electroporated into electrocompetent GS1783 E. coli harboring 

the HCMV BAC. 

To generate electrocompetent GS1783 E. coli, GS1783 was grown overnight at 32 oC in 3 ml 

LB-cam medium. In the next day, 50 ml were inoculated with the 500 µl of overnight culture 

and incubated at 32 oC under vigorous shaking (220 rpm). The logarithmic growth phase (at 

OD600) was measured after 2-4 hours till it reaches OD600 0.5 - 0.7, then the culture was 

transferred to water bath shaker at 42 oC for 15 min at 200 rpm to activate the Red-

recombination system. The culture then was cooled down on water-ice bath for 15 min and kept 

on a shaker at RT. The culture was pelleted by centrifugation (5000 rpm, 5 min at 4 oC), 

followed by three times washed with 25 ml of an ice-cold sterile millipore water and finally 

resuspended in 100 µl sterile millipore water. A 40-50µl of the bacterial suspension was used 

for the electroporation step. Electroporation was carried out in 1 mm pre-chilled cuvette at 1.6 

kV, for time constant (Ʈ) 5 msec using the Multiporator device. 

Samples were resuspended in 1000 µl of pre-warmed LB medium (without antibiotics) and 

incubated for 1-2 hours at 32 oC with shaking at 220 rpm. The bacteria were afterwards pelleted 

by centrifugation (5000 rpm, 5 min, RT) and resuspended in 100 µl of the LB medium and 

plated on selective LB-cam-kan agar plates for 24-48 hours. 
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Figure 8. Schematic representation of the two step Red-mediated recombination procedure. Two-

step Red-recombination was used for insertion of fragments into HCMV-BAC. First, the kanamycin 

cassette as positive selection marker (psm) obtained by a PCR from pEPkan-S contains I-SecI site (S) 

with homologous sites (red box) is cloned into the single restriction site (*) of the shuttle plasmids. After 

PCR amplification with primers that have homologous flanks to desired location in BAC (green and 

blue lines), the first recombination step is performed in which the PCR product is integrated into the 

genome. The following process, resolution, is the excision of the positive selection marker (kan). 

Modified from Tischer et al., 2006 [242]. 
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For scarless excision of the positive selection marker (kan) in the second Red-recombination 

step (resolution), the correctly modified BACs in GS1783 from overnight culture were grown 

for 2 hours in 2 ml of LB-cam media at 32 oC with shaking at 220 rpm. To induce the expression 

of I-SceI, 2 ml of fresh LB-cam containing 1% L-(+)- arabinose was added to the culture and 

incubated for 2 hours at 32 oC with shaking at 220 rpm, then cultures were then transferred to a 

42°C water bath shaker (150 rpm) for 30 min to activate the Red-recombination system for the 

second recombination step between duplicated sequences (Figure 8, shown in red). The 

bacterial cultures afterwards were grown for another one hour at 32 oC in bacterial incubator 

shaker with shaking at 220 rpm. Finally,100 µl of 1x10-3 dilution was spread on LB-cam-1% 

L-(+)- arabinose agar plates, incubated for 48 hours at 32 oC. The final clones were tested for 

the absence of kanamycin resistance on replica plates with LB-cam-kan and LB-cam. Selected 

clones were investigated by restriction fragment length polymorphism (RFLP) screening 

analysis using multiple restriction enzymes and were compared to a predicted banding pattern. 

Moreover, these mutations were confirmed by PCR and sequencing as well. 

2.2.3 Cell culture methods 

2.2.3.1 Cell thawing and culture 

The cells were thawed in their cryopreservation tubes and placed under sterile transfer 

conditions to a 15 ml falcon tube containing 10 ml of cell-specific medium. Afterwards, the 

cells were centrifuged at 300 x g for 5min, RT. The supernatant is discarded and the cell pellet 

in a sufficient amount of fresh medium resuspended. The cells are transferred to a multi-well 

plate or cell culture flasks and filled with medium according to their quantity. The cultivation 

takes place in the cell culture incubator at 37 oC and 5% CO2. 

2.2.3.2 Cell feeding and medium change 

Depending on their requirements, the cultured cells were regularly supplied with fresh medium. 

Sometimes, adding a good amount of fresh medium to it is enough. With a strong consumption 

of the presented nutrients, it is recommended to partial replace the old medium by 50% with a 

fresh one. The complete decline of the conditioned medium may cause shock for cells 

depending on the cell type and this is not recommended. 
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2.2.3.3 Cell passaging 

Suspension cells can be divided as desired or lower concentrated by a removing certain amount 

of cells from a culture vessel, transferred to a new one and filled with fresh medium. 

For adherent cells, the old medium is removed, and the cell rinsed with 1x PBS with the 

recommended amount without damaging them. Cells were then detached from the bottom of 

the cell culture vessels with a small amount of trypsin according to the size of cell culture plate 

or flask. 

After a short reaction time (2-5 min) in the cell culture incubator, cells were treated by the 

addition of fresh medium and the cells were mixed with medium using sterile cell culture 

pipettes. The enzymatic reaction of trypsin is stopped, and the complete degradation of the cells 

prevented by the addition of the fresh medium. The cells can then be counted (see Section 

2.2.3.6), distributed to new culture vessels, or in portions to be frozen. 

2.2.3.4 Cryopreservation of cells 

The suspension cells to be frozen had to be suspended in PBS first. For adherent cells, cells had 

to be trypsinized first and washed once with the recommended medium and afterwards 

resuspended in PBS in 15 ml sterile falcon tube. 

The cells were then counted (see Section 2.2.3.6), and afterwards centrifuged for 5 min at 300 

x g, RT. The PBS was removed, and cells were resuspended in a desired amount of FCS.  

Cells were then aliquoted in the 2ml cryopreservation tubes. An equal volume of FCS 

containing 20% sterile DMSO was added to each tube and the tubes were mixed gently by 

inverting for 5 times. The final cell number in each tube should not exceed 1x107cells/ml. The 

cryopreservation vials were then transferred into a Mr. Frosty container (at room temperature) 

and put into a -80°C freezer. The Mr. Frosty container ensures that the temperature decreases 

steadily by 1 oC/min. After approximately 24 hours, the cryopreservation vials were transferred 

from the Mr. Frosty container into liquid nitrogen for long term storage. 
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2.2.3.5 Isolation of peripheral blood mononuclear cells (PBMCs) 

Buffy coat preparations were purchased from German Red Cross (Dresden, Germany). Blood 

samples were taken with the approval of the ethics committee of the 

Charité−Universitätsmedizin Berlin. Written informed consent was obtained from all donors. 

The delivery to our laboratory took place within 24 hours; storage and transport were carried 

out at room or vehicle temperature. The blood was transferred from the preserved blood bag to 

sterile falcon tubes and diluted 1: 3 with PBS. Subsequently, the diluted blood was pipetted in 

a ratio of 3:2 onto a layer of Ficoll-Paque (Roti®-Sep 1077 human); a 50 ml sterile falcon tube 

thus contained 30 ml of blood to 20 ml of Ficoll-Paque. 

In order to avoid a mixing of the layers, particularly slow and careful overlapping was 

necessary. This was followed by centrifugation at 400 x g in a swinging-bucket rotor for 30 min 

at RT without brake. After centrifugation, the supernatant portion of plasma was carefully 

pipetted off about 1 cm above the ring of mononuclear cells without mixing the layers. The 

cells were then carefully removed with a sterile Pasteur pipette and transferred to a 50 ml sterile 

falcon tube. Then the falcon tube was afterwards filled up to a total volume of 45 ml with PBS. 

The cells were afterwards centrifuged at 300 x g for 10 min at room temperature. The 

supernatant was pipetted off and the cell pellet resuspended in the residual volume. For 

erythrocyte lysis, 3 ml of RBC lysis buffer was added and incubated for 5 min on ice. 

Afterwards, the reaction was stopped by adding PBS to a total volume of 45 ml. It was again 

centrifuged at 300 x g for 10 min. The supernatant was removed, and the cells washed twice 

with PBS. Finally, the cells pellet was resuspended in 10 ml PBS. The cells were counted after 

appropriate dilution (see Section 2.2.3.6), and then cultured in RPMI 1640 medium. 

2.2.3.6 Cell counting 

Cells to be counted should be in suspension. For vital staining trypan blue was used; trypan 

blue penetrates defective cell membranes and stains corresponding cells dark blue. Living cells 

and cells with an intact cell membrane remain bright. The staining was carried out in a ratio of 

1:1, for example 100 μl trypan blue (0.4% initial concentration) to 100 μl cell suspension. 

Subsequently, the cell suspension was applied to a Neubauer counting chamber. 

At high cell concentrations, a dilution was first required. At high cell numbers (> 200 cells per 

corner square), the count is no longer possible due to the high cell density. The living unstained 
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cells in 4 large corner squares were counted under the microscope and an average value was 

formed division by 4. Cells touching the left or top lines were counted, but cells at the bottom 

or right margins were not counted. The microscopy work was performed at the microscope 

workstation outside the sterile bench. To determine the number of cells per μl, the average of 

the counted cells was multiplied by the chamber factor and the dilution factor. 

The chamber factor results from the reciprocal of the volume of a corner square (0.1 μl) and is 

thus 10. In order to determine the total cell number of the cell suspension, the number of cells 

per μl was multiplied by the total volume of the suspension. 

2.2.3.7 Surface expression of HLA-A2 molecules 

Cell surface expression of HLA-A2 molecules was measured by FACS as previously described 

using PE-conjugated anti- HLA-A2 antibody clone BB7.2 [249]. 

2.2.4 Virological methods 

2.2.4.1 Stable mammalian cells transfection by electroporation 

U251 cells were used in this study for stable plasmid transfection by electroporation. Cells were 

trypsinized form cell culture plate and washed once with PBS and counted (see Section 2.2.3.6). 

About 2X106 cells were transferred to another 15 ml sterile falcon tube and centrifuged for 5 

min at 300 x g, RT and resuspended in 150 µl in hypo-osmolar buffer for eukaryotic cells 

electroporation in 1.5 µl eppendorf. About 3 µg of plasmid (pcDNAE6/E7Kpn-I) was diluted 

in 50 µl iso-osmolar buffer and then added to the cells and mixed gently by tipping and left for 

30 min incubation at RT. The cells mixture was then transferred to 2 mm cuvette and was pulsed 

at 240 V for time constant (Ʈ) 40 μsec using the Multiporator device. After the pulse the cells 

were kept standing in the cuvette for 5 to 10 minutes at RT and then transferred to the culture 

medium. 

After 48 hours, the culture medium was changed, and the cells were fed by fresh medium 

containing the selection antibiotic (G418) at final concentration of 1 mg/ml. The medium was 

changed every 3 days with keeping the selective antibiotic at the same concentration. 

After two weeks of positive selection, different cell clones were isolated using the cloning rings 

as described previously [250]. Different clones were allowed to expand in cell culture in 

separate cell culture wells and plates for further investigations. 
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2.2.4.2 HCMV reconstitution from BACs 

All modified HCMV BACs in this study were reconstituted in Fi301 cells using Basic 

NucleofectorTM kit for primary mammalian fibroblasts following the manufacturer’s 

instructions. 

Briefly, about 3 µg of the purified DNA BACs (see Section 2.2.2.4) was used for HCMV 

reconstitution, the cells were given a pulse using program A-024 of the NucleofectorTM 2b 

device. 

On the next day, culture media was changed, and more fibroblasts were added to the transfected 

cells to keep cell confluency 70-90%. The culture was kept for two weeks with medium change 

every 4 days. The typical cytopathic effect (CPE) of HCMV appears in 7-14 days after 

transfection, the infected cells were mixed with fresh non-infected Fi301 in a T-75 cell culture 

flask and kept for another 7-10 days till were fully infected. The infected cells were then 

passaged to infect two T-175 flasks of Fi301 cells. 

2.2.4.3 HCMV stock generation 

To generate high titer of HCMV stocks, Fi301 cells were used in T-175 cell culture flasks with 

70% confluency. The cells were infected at multiplicity of infection (MOI) 0.01-0.02 and the 

infected cells were kept in culture till the cells were fully infected. The supernatant was 

collected, and the cells were scraped by cell culture scrapers and then resuspended in a 

minimum residual volume (about 2 ml) and cell were afterwards transferred to a 15 ml sterile 

falcon tube and kept for -80°C overnight. The cells were then handled for two freezing-thawing 

cycles with a vortex in between and then cell debris were removed by centrifugation at 200 x g 

for 5 min, RT. The cell lysate was collected in another 15ml sterile falcon tube.  

The collected supernatant was handled separately; the supernatant was ultra-centrifuged for 1 

hour at 20,000 rpm, 4 oC. The virus pellets were then combined to the same falcon tube 

containing HCMV from the cell lysate and aliquoted in 1.5 eppendorf tubes and kept in -80 oC. 

2.2.4.4 HCMV infection of cells 

Cells were infected with HCMV using different volumes from the virus stock based on the 

tissue culture infection dose 50 per ml (TCID50/ml) of a virus stock. TheTCID50/ml describes 
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the amount of a virus dilution needed to infect 50 % of all cells. To determine the volume of 

virus stock needed to infect cells at a given MOI the following equation was used:  

𝑁𝑢𝑚𝑏𝑒𝑟𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 ∗ 𝑀𝑂𝐼

𝑇𝐶𝐼𝐷50/𝑚𝑙
= volume of virus stock in ml  

The required volume from virus stock was used to infect cells by adding this volume to the 

attached cells. The culture plates were afterwards rocked gently to ensure even cell infection 

and then kept in cell culture incubator. After 30 min the plates were rocked gently once again 

and returned back to the incubator. 

2.2.4.5 HCMV titration and growth kinetics 

Virus titers of virus stocks and multi-step growth kinetics were quantified by TCID50 assay on 

Fi301 cells. The TCID50 values were calculated using the method of Reed and Muench [251]. 

2.2.4.6 HLA ligandome analysis 

HLA-A2 Fi301 were cells were left uninfected or infected with HCMV (MOI 1). The cells were 

harvested after 48 hours, washed twice with cold PBS, and stored frozen at −80 oC. The cells 

were sent to Prof. Stefan Stevanovic (Department of Immunology, Institute for Cell Biology, 

University of Tübingen, Tübingen) where the cells were subjected to subsequent isolation of 

HLA peptides using standard immunoaffinity purification and mass spectroscopy, as described 

previously [252, 253]. 

Peptides-source proteins were annotated using Uniprot and NetMHCpan 4.0 [254] and were 

classified according to subcellular locations and biological functions using human protein 

reference database [255]. 

2.2.5 HPV oncoprotein assay 

2.2.5.1 HPV16-encoded E7 protein assay 

Expression of the oncoprotein E7 was detected by recomWell HPV16/18/45 ELISA kit. All 

steps were done at RT. Cells were trypsinized, centrifuged at 600 x g for 15 min, supernatant 

discarded, and the pellet resuspended in 250 µl of lysis solution A by vortexing for 3 sec. After 

an incubation for 30 minutes 250 µl of lysis solution B was added and vortexed for 3 sec. A 

100 µl aliquot of the lysate was applied to one well of the ELISA plate and incubated for one 
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hour. The plate was washed three times with 300 µl washing buffer and tapping it firmly. The 

detection antibody (100 µl/well) was added and incubated for one hour. The plate was washed 

three times. streptavidin conjugate (100 µl/well) was added und incubated for one hour. The 

plate was washed six times and the substrate solution (100 µl/well) was added and incubated 

30 min in the dark.  Stop solution (100 µl/well) was added and the absorbance was read at 450 

nm in the Multiskan FC microplate photometer. 

2.2.5.2 HPV16-encoded E6 protein assay 

OncoE6 Cervical Test™ kit (Arbor Vita, USA) was used to detect expression of the oncoprotein 

HPV16 E6. All steps were done at RT. The trypsinized 1x106 cells were centrifuged at 10,000 

x g for 5 min and supernatant was discarded. A volume of 930 µl rinse solution was added to 

the tube containing the cell pellet, the tube was shaken vigorously and centrifuged at 10,000 x 

g for five minutes. After discarding the supernatant, a volume of 186 µl of lysis solution was 

added to the cell pellet. The tube was shaken followed by rotating at 8 rpm for 15 min. After a 

centrifugation at 10,000 x g for 15 sec, 17.5 µl conditioning solution was added to the tube. The 

tube was shaken and rotated at 8 rpm for 15 min. After centrifugation at 10,000 x g for 15 sec, 

a 200 µl aliquot of the lysate was filled into the antibody-coated detector vial and slowly tilted 

for antibody resolution. The test unit was inserted into the lysate and incubated for 55 min, then 

transferred into a vial containing 200 µl washing solution and incubated for 12 min, and then 

transferred into a vial containing 650 µl development solution and incubated for 15 min. The 

test unit was immediately placed onto a reading guide for result interpretation. Appearance of 

a test line indicated positive detection of oncoprotein E6. Different expression levels could be 

distinguished by the color intensities of the test lines.  

2.2.6 Functional T cell assay 

In collaboration with Prof. Gerald Willimsky (Institute of Immunology, Charite 

Universitätsmedizin Berlin, Berlin), PBMC isolated from healthy donors (see Section 2.2.3.5) 

and Jurkat cells were transduced by retrovirus encoding specific TCRs specific for HLA-A2-

restricted HPV16 E6 or HCMV pp65 peptides. 
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2.2.6.1 Generation of TCR expression vectors 

For HPV E629-36-specific TCR [256], transgene cassettes were codon-optimized for human 

expression and synthesized by GeneArt (Life Technologies, Darmstadt, Germany). TCR-α/β 

chains with human TCR constant regions replaced by their murine counterparts were linked via 

2A “self-cleaving” peptide sequence from Porcine teschovirus-1 (P2A) and cloned in the 

configuration TCRβ-P2A-TCRα into pMP71-PRE using NotI and EcoRI restriction sites as 

described before [257],  the plasmid named as pMP71-PRE-E6. The CMV-specific TCR (NLV-

3) was used in its original configuration as described previously (MP71TCRα and MP71TCRβ) 

[247]. 

2.2.6.2 TCR gene transfer 

TCR gene transfer was carried out as described previously [246].  In brief, HEK-293T cells 

stably expressing GALV-env and MLV-gag/pol were grown to approximately 80% confluence 

and transfected with 3 µg of pMP71-TCR vectors in the presence of 10 µg Lipofectamine2000 

(Life Technologies, Germany). A 3 ml of retrovirus containing supernatant were harvested 48 

hours and 72 hours after transfection.1 x 106 from Jurkat cells or frozen human PBMCs, isolated 

as described previously (see Section 2.2.3.5), were stimulated with 5 µg/ml anti-CD3 (OKT3) 

and 1 µg/ml anti-CD28 (CD28.2) coated plates in the presence of 300 U/ml recombinant human 

interleukin 2 (hIL-2) .Transductions at 48 hours and 72 hours after stimulation were performed 

by addition of retrovirus containing supernatant and 4 µg/ml protamine sulfate (Sigma-Aldrich, 

Steinheim, Germany) followed by spinoculation for 90 min at 800 x g and 32 oC (1st 

transduction). For 2nd transduction retrovirus was preloaded onto retronectin- coated plates 

followed by spinoculation for 30 min at 800 x g and 32 oC. Transduced T cells were kept in the 

presence of 300 U/ml hIL-2 for a total of 2 weeks. At least 2 days prior experiments, PBMCs 

to be transduced were cultured in the presence of 30 U/ml hIL-2.  

2.2.6.3 Functional assays using transduced PBMCs 

Interferon-γ (IFN-γ) production was measured by ELISA using the standard protocol after 16 

hours co-culture of 1x105 TCR-transduced T cells with 1x105 target cells (HCMV-infected or 

peptide-loaded cells). Stimulation with phorbol myristate acetate and ionomycin (P+I) was used 

as a positive control.  
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2.2.6.4 Functional assays using transduced Jurkat cells 

For detection of nuclear factor of activated T-cells (NFAT) activation, a previously described 

cellular platform for analysis of TCRs was used [258, 259]. In the human lymphoma T cell line 

Jurkat 76 (J76),  the response elements of transcription factor NFAT drive the expression of 

EGFP [258]. The J76 cell line is a subline of cell line Jurkat E6.1 (JE6.1), which lacks 

expression of the TCR alpha and beta chains [260]. The J76 cell line was transduced with a 

retroviral vector encoding HLA-A2‐restricted HPV E629-36-specific TCR [256]. Moreover, J76 

cells were co-transduced  to express an HLA-A2‐restricted HCMV pp65-specific TCR 

(NLVPMVATV; aa 495-503) and CD8 [259]. 

For measuring of nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) 

activation a single T cell reporter cell line was used, in which the responsive element for NF-

κB controls EGFP expression [261]. This single reporter cell line was transduced with retroviral 

vector encoding HLA-A2‐restricted HPV E629-36-specific TCR [256] or with retroviral vector 

encoding the CMV-specific TCR (NLV3), which recognizes an HLA-A2‐restricted epitope 

derived from pp65 (NLVPMVATV; aa 495-503) [247]. 

2.2.6.5 Acid wash of MHC-I associated peptides 

U251 stably transfected cells with pcDNAE6/E7Kpn-I (pcDNAE6/E7Kpn-I U251 cells) as 

previously described in (see Section 2.2.4.1) were left uninfected or infected with 

RVTB40ΔUS11 for 3–24 hours at different MOIs. RVTB40ΔUS11 lacks all known HCMV-

encoded immune evasion genes (US2, US3, US6, and US11) that target MHC-I presentation 

and does not downregulate MHC-I molecules. On uninfected and infected pcDNAE6/E7Kpn-I 

U251 cells, the existing peptide-MHC-I complexes on U251 cells were removed by acid wash 

as previously described [262]. Briefly, 1 × 106 cells were harvested, washed with PBS and 

subsequently washed with ice-cold citric acid buffer (pH 3) for 2–3 min. Afterwards, stripped 

pcDNAE6/E7Kpn-I U251 cells were pelleted, washed twice with EMEM medium, resuspended 

in RPMI 1640 medium and subsequently co-cultured for 18 hours with the HPV E629−36-

specific reporter cell line, in which the responsive element for NF-κB controls EGFP expression 

[263]. Finally, EGFP expression of reporter cells was determined by FACS analysis. In parallel, 

the maximal peptide stimulation was always determined by pulsing a cell aliquot with the E6 

peptide (1 μg/ml) during co-culture with the E6-specific reporter cell line. 
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3. Results 

3.1 Deletion of MHC-I downregulating genes from HCMV 

3.1.1 Deletion of MHC-I downregulating genes from the genome of HCMV strain Merlin 

In order to optimize HCMV as a vaccine vector, MHC-I downregulating genes were deleted to 

potentiate CTL-mediated immune response. We initially used the Merlin strain as this is the 

closest to wild-type HCMV [245]. 

Although different BACs of HCMV strain Merlin have been constructed, only one of these 

BACs was used in this study (RCMV1161). This BAC had been repaired for RL13 and UL128 

regions which were previously lost due to virus adaption during passaging in fibroblasts. It also 

encodes for EGFP cassette under the control of HCMV IE2 [245]. 

MHC-I downregulating genes (US2, US3, US6 and US11) were deleted sequentially using 

specific primers (see Section 2.1.11). The En passant mutagenesis steps were carried out as 

previously described (see Section 2.2.2.6).  

Each mutagenesis process was carried out in two steps. Firstly, the gene to be deleted was 

replaced by the kanamycin cassette. Secondly, excision (resolution) of the kanamycin cassette 

was performed (Merlin1161∆US2-BAC, Merlin1161∆US2∆3-BAC, Merlin1161∆US2∆3∆6-

BAC and Merlin1161∆US2∆3∆6∆11-BAC) as shown in Figure 9. 

                          

 

 

 

 

 



3. Results 
 

56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. RFLP patterns for RCMV1161 HCMV mutants with MHC-I downregulating genes 

deletion. (A) Patterns obtained by restriction enzyme EcoRI. The DNA was run through an 0.8% agarose 

gels overnight at 65 V. (B) Vector NTI 9.1 prediction of RFLP patterns are shown with size markers 

from 7 to 20 kb. 

 

All mutants were sequenced for the modified regions confirming the deletion of these genes 

(data not shown). However, none of these mutants could be successfully reconstituted by 

nucleofection (see Section 2.2.4.2). Although transfected cells were kept in culture over three 

weeks, only single green cells were detected confirming that the mutated (unrepaired) forms of 

UL128 and RL13 are essential for virus propagation in fibroblasts [245] as shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Reconstitution of Merlin HCMV (RCMV1161). Fi301 cells were transfected by 

RCMV1161 using nucleofection. The image shows EGFP-Fi301 cells using fluorescent microscopy. 

Only single green cells could be detected without any characteristic CPE of HCMV.  
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3.1.2 Deletion of MHC-I downregulating genes from HCMV (TB40-BAC4) 

Another HCMV strain was also included in our study to develop vaccine vectors. TB40/E 

(TB40-BAC4) is promising as a vector because it is adapted to cell culture and hence is easier 

than HCMV strain Merlin (RCMV1161) to reconstitute and expand. Moreover, it can infect 

endothelial cells and DCs while the laboratory strain AD169 cannot, making it a good candidate 

to drive a CTL-mediated  inflationary response in vivo [264].  

The mini-F sequence (the BAC backbone) has replaced the region for US2-US6 in TB40-

BAC4. For this reason, US11 was the only remaining MHC-I modulating gene that had to be 

deleted in order to fully optimize TB40-BAC4 by En passant mutagenesis (see Section 2.2.2.6). 

This optimized vector was named as RVTB40ΔUS11 as shown in Figure 11. 

 

Figure 11. Deletion of US11 gene from HCMV TB40-BAC4. (A) Schematic diagram of TB40-BAC4 

showing the deletion US11 (RVTB40ΔUS11-BAC). (B) PCR from up and down-stream of US11 

(primers SeqUS11F and R) confirming the insertion and the excision of the kanamycin cassette from 

TB40-BAC4 using 1 kb DNA ladder GeneSTA (M). The fragment amplified from RVTB40ΔUS11-

BAC was sequenced using the same primers and the results confirmed the deletion of US11 gene (data 

not shown). 

RVTB40ΔUS11-BAC was successfully reconstituted as previously described (see Section 

2.2.4.2) and the virus growth kinetics were analyzed by TCID50 determination as previously 

described (see Section 2.2.4.4). The results showed that RVTB40ΔUS11 can grow in fibroblasts 

like TB40/E WT virus as shown in Figure 12.  
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In order to investigate the effect of all MHC-I downregulating genes (US2, US3, US6 and 

US11) on the expression and presentation of MHC-I (HLA-A2) molecules, Fi301 infected with 

TB40/E WT or RVTB40ΔUS11 (MOI 0.5) were stained for HLA-A2 molecules as described  

(see Section 2.2.3.6) and shown in Figure 12.  

Figure 12.  Characteristics of RVTB40ΔUS11 mutant. (A) Fi301 cells were infected with WT 

TB40/E or RVTB40ΔUS11(ΔUS11) at MOI of 0.5. After 2 days cells were stained with HLA-A2 

specific antibody or isotype control and analysed by flow cytometry. (B) Multi-step growth kinetics of 

TB40/E WT (WT) or RVTB40ΔUS11(ΔUS11). Fi301 cell were infected with HCMV at MOI 0.01 and 

the supernatant was collected at different days post infection (p.i.) and was titrated for HCMV as 

described previously (see Section 2.2.4.5).  Results are derived from three independent experiments; 

error bars represent the mean ± SEM. 

3.2 Infection of GBM cell lines by HCMV 

In order to investigate the HLA-A2 GBM selected in this study for their susceptibility to 

HCMV, GBM cell lines (LN18, U343 or U251 cells) were infected by RV-TB40-BACKL7-SE-

EGFP HCMV (MOI 0.3). At different time points post infection, the percentage of EGFP-

expressing GBM cells was measured by FACS and they were all permissive to HCMV at 

different levels (Figure 13).    

 

 

 

 

 

 

 

 

Figure 13. Permissiveness of GBM to RV-TB40-BACKL7-SE-EGFP HCMV. GBM cells were analyzed by 

FACS for EGFP expression at different time points p.i. Results are derived from three technical replicates; error 

bars represent mean ± SEM. 
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The supernatant of the infected GBM cell line was also analyzed for the presence of cell-free 

HCMV. The supernatant was collected at the same time points and used to infect Fi301 cells 

which were further analyzed by FACS after two days for EGFP expression. The results showed 

that RV-TB40-BACKL7-SE-EGFP HCMV was highly cell-associated in GBM cell lines (Figure 

14). 

 

 
Figure 14. RV-TB40-BACKL7-SE-EGFP HCMV detection in the supernatant of the infected GBM cells. The 

results show the percentage of the Fi301 cells infected by the supernatants collected from RV-TB40-BACKL7-SE-

EGFP-infected GBM cell lines. Results are derived from three technical replicates; error bars represent the mean 

± SEM.  

3.3 Construction of HCMV-based vaccines 

The modified HCMV lacking all MHC-I downregulating genes (RVTB40ΔUS11-BAC) was 

used to construct all HCMV-based vaccines. 

3.3.1 Optimized HCMV-based vaccines expressing fused HPV16 E6/E7 protein 

3.3.1.1 Construction of HCMV-based vaccines with E6/E7 expression under control of 

endogenous or exogenous promoter 

In order to investigate the capacity of recombinant HCMV-based vaccines to stimulate T cells, 

four different vaccines were constructed by En passant mutagenesis (see Section 2.2.2.6). All 

these viruses were constructed using a shuttle plasmid (pEF6E6/E7EcoRI), which encodes the 

E6/E7 under the control of EF-1 promoter. The kanamycin cassette was also cloned into this 

vector inside the E6/E7 sequence (see Section 2.2.1.4). 

Three viruses were constructed with E6/E7 expression under the control of endogenous HCMV 

promoters. The first strategy was to express the E6/E7 protein under control of a viral early 
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promoter with minimum change of the viral sequence. In this virus, the E6/E7 sequence 

replaced the sequence of US11. The E6/E7 sequence with kanamycin cassette was amplified 

(using US11ConE6E7F and R primers) and the amplified PCR product was used to generate 

recombinant HCMV; this BAC was named as RVTB40E6/E7intoUS11-BAC (Figure 15). 

We also sought to investigate the expression of the E6/E7 protein combined with interruption 

of other immune evasion genes. The amplified E6/E7 sequence (using IL-10FusedE6/E7F and 

R primers) was used to insert the E6/E7 sequence into UL111A, which is expressed in both 

lytic and latent infection. This BAC was named RVTB40ΔUS11_E6/E7intoUL111A-BAC 

(Figure 15). Another vaccine candidate was also constructed by replacing UL83 (using 

UL83FusedE6/E7F and R primers); this BAC was named RVTB40ΔUS11_E6/E7intoUL83-

BAC (Figure 15). 

The expression of E6 and E7 under exogenous promoter control was investigated by the 

amplification of the E6/E7 sequence together with EF-1 promoter and were subsequentially 

inserted into RVTB40ΔUS11-BAC downstream of the mini-F sequence. To construct this 

virus, the primers EF-1E6/E7F and R were used, and the generated BAC was named 

RVTB40ΔUS11_EF-1E6/E7-BAC (Figure 15). 

To confirm the construction of recombinant HCMV-based vaccines, PCR using primers 

flanking the target site was carried out (Figure 16) and the amplified fragments from final 

mutants were sequenced using the same primers (date not shown). 
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Figure 15. Construction of HCMV-based vaccines expressing the full E6/E7 protein. (A) 

RVTB40_E6/E7intoUS11-BAC with E6/E7 was expressed under the control of the endogenous US11 

promoter. (B) UL111A has alternative splicing in lytic (cmvIL-10) and latency associated form (LA-

cmvIL-10). RVTB40∆US11_E6/E7intoUL111A-BAC was constructed by inserting the E6/E7 fusion 

sequence into the second exon. This construction allows the expression of E6/E7 protein in lytic and 

latent HCMV infection (C) RVTB40∆US11_E6/E7intoUL83-BAC. The E6/E7 protein was expressed 

under the control of the UL83 promoter. (D) RVTB40∆US11_EF-1E6/E7-BAC. The E6/E7 protein was 

expressed under the control of exogenous EF-1 promoter, which was inserted downstream of mini-F 

sequence. 
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Figure 16. Confirmatory PCR for HCMV-based vaccine expressing the E6/E7 protein. PCR was 

carried out using primers flanking the target regions. PCR using primers SeqUS11F and R , SeqUL111F 

and R, SeqUL83F and R, and seqEF-1E6/E7 showing the insertion of the E6/E7 sequence in 

RVTB40_E6/E7intoUS11-BAC (A) RVTB40∆US11_E6/E7intoUL111A-BAC (B), 

RVTB40∆US11_E6/E7intoUL83-BAC (C), and RVTB40∆US11_EF-1E6/E7-BAC (D), respectively. 

The 1 kb DNA ladder GeneSTA was used (M). The amplified DNA fragments from the final mutants 

were sequenced using the same primers (data not shown). 

3.3.1.2 Growth kinetics of HCMV-based vaccines expressing E6/E7 protein 

Multi-step growth kinetics were carried out for all recombinant viruses in Fi301 cells as 

previously described (see Section 2.2.4.5). TCID50 was determined at different time points p.i. 

and the results are summarized in Figure 17. 
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Figure 17. Growth curve kinetics of E6/E7 expressing vaccines. Fi301 cells were infected at MOI of 

0.01. Supernatant was collected at different time points after infection and titrated on Fi301 cells to 

calculate the TCID50. Results are derived from three independent experiments; error bars represent the 

mean ± SEM. Results were analyzed using Two-way ANOVA and there was no significant difference 

among the growth curves (P value 0.1313). 

3.3.1.3 Expression of E6 and E7 proteins by HCMV-based vaccines 

3.3.1.3.1 Transcription analysis of E6 and E7 genes using RT-PCR 

In order to confirm the transcription of E6 and E7, Fi301 cells were infected with 

RVTB40ΔUS11 or HCMV-based vaccines expressing E6/E7 protein (MOI=1). RNA isolation 

and RT-PCR were carried out as previously described (see Section 2.2.1.10). All recombinant 

viruses showed expression of E6 and E7. There was no expression of cmvIL-10 in 

RVTB40∆US11_E6/E7intoUL111A and UL83 in RVTB40∆US11_E6/E7intoUL83 as these 

genes have been modified or deleted in these recombinant viruses (Figure 18). 
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Figure 18. RT-PCR for HCMV-based vaccines expressing E6/E7 protein. 1x106 Fi301 cells were 

infected at MOI 1 and RNA was extracted after 18 hours. (A) PCR was done for E6 and E7 without 

reverse transcriptase (-RT) or after reverse transcriptase (+RT) using primers (E6RT F and R) for E6 

and (ER7T F and R) for E7. (B) PCR was done on +RT samples for UL111A (vIL-10) using primers 

SeqUL111 F and R or UL83 using primers UL83RT F and R. 

3.3.1.3.2 Expression analysis of E6 and E7 proteins 

3.3.1.3.2.1 Detection of HPV16 E6 protein 

For analyzing oncoprotein expression from HCMV mutants and pcDNAE6/E7Kpn-I U251 

cells, OncoE6 Cervical Test™ kit was used to detect expression of oncoprotein E6 as previously 

described (see Section 2.2.5.2). Appearance of a test line indicated positive detection of 

oncoprotein E6.  

All cells infected with recombinant viruses (MOI 1) as well as pcDNAE6/E7Kpn-I U251 cells 

showed high band intensity for E6 protein. Different expression levels could be distinguished 

by the color intensities of the test lines. The band intensity decreases in accordance with the 

decrease of the cell number (Figure 19). 
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Figure 19. OncoE6 Cervical Test for HPV16 E6 detection. (A) E6 was detected in different infected 

Fi301 (MOI 1) or pcDNAE6/E7Kpn-I U251 (750.000 cells) with different signal strengths. The bars 

represent the mean of two independent experiments ± SD. (B) the read out for the test shows the signal 

for same number of CaSki cells as positive control.  (C) Test read-out showing different signal strength 

detected upon with different cells number infected with RVTB40_E6/E7intoUS11 which are 750.000 

cells (lane 1 with signal strength 5), 75.000 cells (lane 2 with signal strength 1), and 7500 cells (lane 3 

without detection of E6). 

3.3.1.3.2.2 Expression analysis of HPV16 E7protein 

In order to analyze the expression of E7 protein in recombinant HCMV or in pcDNAE6/E7Kpn-

I U251cells, recomWell HPV16/18/45 ELISA kit was used as previously described (see Section 

2.2.5.1). All recombinant HCMV-expressing E6/E7 protein showed higher expression of E7 

protein compared to CaSki cells which were considered the positive control, as they have 

integrated HPV16 genome. The results showed that recomWell HPV16/18/45 ELISA kit could 

be used in research to assess quantitatively the expression of HPV16 E7. The E7 ELISA results 

were summarized in Figure 20. 
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Figure 20. Quantification of HPV16 E7 protein expression by ELISA.  In this assay 6× 103 (A), 2× 

103 (B), and 0.7× 103 (C) cells were used for each experimental group. For detection of E7 in 

recombinant viruses, Fi301 cells were left uninfected (Mock) or infected with HCMV (MOI 1). 

Afterwards, cells were collected after 48 p.i. The same cell number was also used for pcDNAE6/E7Kpn-

I U251 cells. The absorbances detected for experimental probes were expressed relative to the 

absorbance measured for the positive control (the same number of CaSki cells). Bars represent the mean 

of three in dependent experiments ± SEM. 

3.3.2 Optimized HCMV-based vaccines expressing HPV16 E6-derived peptide 

3.3.2.1 Construction of HCMV-based vaccines with C-terminus fusion of HPV16 E6-

derived peptide 

In order to investigate the optimum peptide presentation using HCMV-based therapeutic 

vaccines, the HLA-A2‐binding peptide E629-38 (TIHDIILECV) derived from the E6 protein of 

HPV16 [265] was fused with a double Alanine (AA-) linker (AATIHDIILECV) to the C-

terminus of HCMV proteins such as  IE1 or UL83. These regions were selected because they 

have consistent expression and strong T cell recognition in lytic infection, and they have an 

inflationary response in latency [14, 125]. 

This peptide (TIHDIILECV) was chosen as we have an established immunological assay to 

analyze presentation by TCR-based testing. This allows us to validate our strategy in the 

development of HCMV-based vaccines (see Section 3.3.4). 

Insertion of E6-derived peptide was carried out by En passant mutagenesis (see Section 2.2.2.6). 

the DNA-encoding sequence for this peptide was already included in the mutagenesis primers, 

that is why no shuttle plasmids were needed to generate the PCR fragments for mutagenesis. 

For this purpose, three viruses were constructed. The RVTB40ΔUS11 was utilized to construct 

two HCMV-based vaccines. In one of them, the peptide (AATIHDIILECV) was fused to C-
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terminus of IE1 (using primers E6PepIE1F and R); the generated BAC was named 

RVTB40ΔUS11_E6peptideIE1-BAC. In the other one, the same peptide was fused to C-

terminus of UL83 using primers E6PepUL83F and R, and the generated BAC was named as 

RVTB40ΔUS11_E6peptideUL83-BAC (Figure 21). 

Another BAC (RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1-BAC) was generated by 

fusing the E6-drived peptide to C-terminus of IE1 in RVTB40ΔUS11_E6/E7intoUL83; which 

had been generated on the background RVTB40ΔUS11-BAC (see Section 3.3.1.1). However, 

this virus is deficient for UL83 which is considered as an immunodominant protein and also 

plays a role in immune evasion (see Section 1.2.2) (Figure 21).  
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Figure 21. Construction of HCMV-based vaccines expressing E6-derived peptide. The HPV16-E6 

peptide (underlined) with AA- linker was fused to C-terminus of HCMV proteins. (A)  

RVTB40ΔUS11_E6peptideIE1-BAC with E6 peptide fused to UL123 (IE1). (B) 

RVTB40ΔUS11_E6peptideUL83-BAC with E6 peptide fused to UL83 (pp65). (C) 

RVTB40ΔUS11_E6/E7intoUL83 _E6peptideIE1-BAC with E6/E7 sequence replaced UL83(pp65) and 

E6 peptide fused to UL123 (IE1). 

To confirm the construction of recombinant HCMV-based vaccines, PCR with primers flanking 

the target site was carried out (Figure 22) and the amplified fragments from final mutants were 

sequenced using the same primers (date not shown). 
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Figure 22. PCR for HCMV-based vaccine expressing E6-derived peptide. PCR was carried out 

using primers flanking the target regions. (A) PCR using primers SeqIE1F and R, showing the insertion 

of HPV16 E6-derived peptide with kanamycin cassette (RVTB40ΔUS11_E6peptideIE1 kan-BAC) and 

the resolution of kanamycin to get the final mutant (RVTB40ΔUS11_E6peptideIE1-BAC). (B) PCR 

using primers SeqUL83C-terF and R and the bands show the construction of the intermediate mutant 

with kanamycin (RVTB40ΔUS11_E6peptideUL83fusion kan-BAC) and the resolution of kanamycin 

cassette (RVTB40ΔUS11_E6peptideUL83-BAC). The 100 bp DNA ladder (Thermo Scientific) was 

used (M). The amplified DNA fragments from the final mutants were sequenced using the same primers 

(data not shown). 

3.3.2.2 Growth kinetics of HCMV-based vaccines C-terminus fusion of HPV16 E6-derived 

peptide 

Multi-step growth kinetics were carried out for all peptide-expressing viruses in Fi301 cells. 

The experiment was carried as previously described for E6/E7-expressing viruses (see Section 

3.3.1.2) (Figure 23). 
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Figure 23. Growth curve kinetics of HCMV-based vaccines with C-terminus fusion of HPV16 E6-

derived peptide. Fi301 cells were infected at MOI of 0.01. Supernatant was collected at different time 

points after infection and titrated on Fi301 cells to calculate the TCID50. Results are derived from three 

independent experiments; error bars represent the mean ± SEM. Results were analyzed using Two-way 

ANOVA and there was no significant difference among the growth curves (P value 0.9807). 

3.3.3 Immunopeptidome analysis of HCMV-based vaccines 

In order to investigate the heterogenous antigens presentation of HCMV-based vaccines, we 

analyzed the peptides processed and presented by MHC-I and MHC-II molecules as previously 

described (see Section 2.2.4.6). To gain insight into this, Fi301 cells were left uninfected or 

infected with HCMV-based vaccine candidates (RVTB40ΔUS11_EF-1E6/E7 and 

RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1) at MOI 1 (Figure 24).  
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Figure 24. Overview of the identified peptides upon HCMV-based vaccine infection. The number 

of the derived peptides for MHC-I (I) and MHC-II (II) were analyzed by mass spectroscopy. Fi301 cells 

were left uninfected (Mock) or infected with RVTB40ΔUS11_EF-1E6/E7 (A) or 

RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1 (B). The bars represent the mean of three technical 

replicates. 

Interestingly, the HCMV-derived MHC-I peptides of Fi301 cell were much higher in number 

upon infection with RVTB40ΔUS11_EF-1E6/E7 than 

RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1. However, in both cases no HPV16 peptides 

could be detected. The identified viral peptides were analyzed as previously described (see 

Section 2.2.4.6) and summarized in the Table 22.  

RVTB40ΔUS11_EF-1E6/E7 

Sequence 

Protein group 

accessions 

Best NetMHC 

allele rank Gene name 

QYDPVAALF P06725 A2402 UL83 (pp65) 

LLIDPTSGLLGA P16789 A0201 UL98 

TLINGVWVV P09717 A0201 US16 

GLLAHIPAL P09717 A0201 US16 

YPRPPGSGL P16757 B0702 UL16 

ALFNQLVFTA P16812 A0201 UL34 

FQIGHTDSV P16812 A0201 UL34 

TILDKILNV P16729 A0201 Major capsid protein 

LYILLPTEL P09728 C0702 US10 

QYAEGLRQL P16725 C0702 UL76 

LLINTGITV P69334 A0201 US18 

YLLEQIQNL P16732 A0201 Tripartite terminase subunit 3 

YVLDPDIVGV P09700 A0201 US24 

AYEYVDYLF P06473 A2402 gB 

ALFSFGVQV P09729 A0201 US9 

YLFEGQYSTI P17149 A0201 UL70 



3. Results 
 

72 
 

SPRFSSPAEF P17147 B0702 Major DNA-binding protein 

SLYADPFFL P16736 A0201 DNA replication helicase 

TRLFLSHVEV P16736 B2705 DNA replication helicase 

VYSPVVESL P16781 A2402 UL43 

LLDDVPPHV Q7M6R1 A0201 UL21A 

FTDNVRFSV P16724 A0201 Tripartite terminase subunit 1 

LYSTNFLTL P16849 A2402 UL33 

RLLDLTQMV P16784 A0201 UL47 

SPSRDRFVQL P16793 B0702 UL52 

RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1 

Sequence 

Protein group 

accessions 

Best NetMHC 

allele rank Gene name 

VLAELVKQI P13202 A0201 UL123 (IE1) 

YPRPPGSGL P16757 B0702 UL16 

LYILLPTEL P09728 C0702 US10 

VYLPKDAFF P16753 A2402 UL80 

LLIDPTSGLLGA P16789 A0201 UL98 

LLINTGITV P69334 A0201 US18 

SRLKLVLSF P16776 B2705 UL5 
Table 22. Immunopeptidomic analysis of HCMV-based vaccines of infected Fi301 cells. HPV16 

E6- or E7-derived peptides were not detected from infected Fi301 cells with RVTB40ΔUS11_EF-

1E6/E7 or RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1.  

3.3.4 Immunological assays 

In order to establish the platform for HCMV-based vaccine development, two different 

immunological assays were carried out based on specific TCR stimulation for HLA-A2 

peptides (E629–38: TIHDIILECV and pp65495-503: NLVPMVATV). Infection of Fi301 cells and 

stimulation of PBMCs transduced with specific TCRs could simulate the eventual clinical 

application of these vaccines for treatment of HPV16-induced cancer. Furthermore, infection 

of GBM cells with these vaccines could show whether these vaccines would be useful for the 

treatment of GBM by delivering neoantigens (such as E6 and pp65 peptides) which could render 

these tumor-driving cells vulnerable to cytotoxic attack by specific CTLs. 

3.3.4.1 IFN-γ release in response to E6 and pp65 peptide for Fi301 infected with HCMV-

based vaccines 

Human PBMCs isolated, as previously described (see Section 2.2.3.5), were transduced with 

either retroviral vector encoding E6-specific TCR (pMP71-PRE-E6) or retroviral vector 

encoding pp65-specific TCR (MP71TCRα and MP71TCRβ) as previously described (see 

Section 2.2.6.2). Untransduced PBMCs were included as a negative control and treated in the 

same way. In order to analyze the T cell stimulation, IFN-γ was measured as previously 

described (see Section 2.2.6.2). Vaccine-infected Fi301 cells loaded exogenously with the 
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corresponding E6-derived or pp65-derived peptides were also co-cultured with the transduced 

PBMCs as a positive control to give the maximum stimulation for IFN-γ release. Although 

infected Fi301 with E6/E7 expressing HCMV mutants could stimulate specific T cells for pp65 

(except for RVTB40ΔUS11_E6/E7intoUL83 that lacks pp65), none of HCMV-based vaccines 

expressing E6/E7 protein could stimulate E6-specific T cells. Only RVTB40ΔUS11_EF-

1E6/E7-infectd Fi301 showed slight stimulation for E6-specific T cells (Figure 25).  

Interestingly, all HCMV-based vaccines expressing HPV16 E6-derived peptide could strongly 

stimulate E6-specific T cells for IFN-γ release. Moreover, all of them could also stimulate pp65-

specific T cells for IFN-γ release, except for RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1 

which is pp65-diffcient mutant (Figure 25). 
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Figure 25 Release of IFN- by TCR transduced PBMCs after stimulation with infected cells. 1x105 

human PBMCs, transduced with HPV E6-specific TCR and HCMV pp65-specific TCR, respectively, 

or non-transduced (Background), were co-cultured for 16 hours with 1x105 Fi301 cells that had been 

infected for 48 hours with HCMV-based vaccines. PBMCs as described above were also co-cultured 

with infected Fi301 cells that had been additionally pulsed with the corresponding peptide (maximal 

peptide stimulation). Subsequently, IFN- production was measured by ELISA. Release of IFN- is 

shown as percentage of maximal peptide stimulation after subtraction of the background. Uninfected 

cells (Mock) and cells infected with RVTB40ΔUS11 (Control) were also included in this type of 

analysis.  Results are derived from three experiments; error bars represent the mean ± SEM; n.d., not 

detectable.  

3.3.4.2 Stimulation of transduced Jurkat cell with specific TCRs 

Three HLA‐A2 GBM cell lines were included in this study to analyze the role of HCMV-based 

vaccine in rendering the GBM susceptible for recognition and attack by specific CTLs. As 

previously described (see Section 2.2.4.4), the cell lines (U343, LN18 and U251) were infected 

with HCMV-based vaccines at MOI 5 and reporter Jurkat cell lines were used as a read out of 

T cell activation.  

3.3.4.2.1 Detection of NF-κB activation upon Jurkat cell line stimulation 

Jurkat cell line (Jurkat E6-1) with EGFP expression under the control of NF-κB [261] was 

transduced with retroviral vector encoding HLA-A2‐restricted HPV E629-36-specific TCR or 

with retroviral vector encoding the HCMV-specific TCR recognizing an HLA-A2‐restricted 

epitope derived from pp65 (pp65495-503) as previously described (see Section 2.2.6.2). All 

HCMV-based vaccines expressing pp65 showed pp65-specific Jurkat cells stimulation, 

whereas a HCMV-based vaccine lacking pp65 could not (Figure 26). However, only the 
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vaccines expressing the E6-derived peptide in fusion to viral protein could significantly 

stimulate E6-specific Jurkat cell lines (Figure 26). 
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Figure 26. NF-B-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 

5x104 GBM cells (LN18, U343 or U251 cells) were infected with HCMV-based vaccines (MOI of 5). 

After 2 days and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter 

cells (left graphs) and HCMV pp65-specific reporter cells (right graphs), respectively, for 24 hours at a 

ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis. 

Uninfected cells (Mock) and cells infected with RVTB40ΔUS11 (Control) were also included in this 

type of analysis. Stimulation of reporter cells is given as percentage of maximal peptide stimulation, i.e. 

stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical 

replicates; error bars represent the mean ± SEM. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 

0.05, one-way ANOVA test. 
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3.3.4.2.2 Detection of NFAT activation upon Jurkat cell line stimulation 

The J76 cell with NFAT-driven EGFP [259] was transduced with a retroviral vector encoding 

HLA-A2‐restricted HPV E629-36-specific TCR (pMP71-PRE-E6) or HLA-A2‐restricted HCMV 

pp65495-503-specific TCR (MP71TCRα and MP71TCRβ) [259] as previously described (see 

Section 2.2.6.2). Infected GBM cell lines were infected and handled as described for NF-κB 

assay (see Section 3.3.4.2.1). 

Although the detection of NFAT activation was less sensitive than NF-κB [258], similar results 

were obtained. Only HCMV-based vaccine expressing E6-derived peptide fused to viral protein 

stimulated E6-specific Jurkat cell lines (Figure 27). 
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Figure 27. NFAT-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 

5x10 4 GBM cells (LN18, U343 or U251 cells) were infected with HCMV-based vaccines (MOI of 5). 

After 2 days and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter 

cells (left graphs) and HCMV pp65-specific reporter cells (right graphs), respectively, for 24 hours at a 

ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis. 

Uninfected cells (Mock) and cells infected with RVTB40ΔUS11 (Control) were also included in this 

type of analysis. Stimulation of reporter cells is given as percentage of maximal peptide stimulation, i.e. 

stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical 

replicates; error bars represent the mean ± SEM. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 

0.05, one-way ANOVA test. 
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3.3.4.2.3 A novel HCMV-encoded block of MHC-I presentation 

The GBM-infected cells with E6/E7-expressing recombinant HCMV vaccine candidate failed 

to stimulate E6-specific T cells despite abundant E6/E7 protein expression was surprising.  To 

investigate this mechanism, aliquots of pcDNAE6/E7Kpn-I U251cells, which stably express 

the E6/E7 protein, were left uninfected or RVTB40ΔUS11-infected at different MOIs with the 

HCMV-vector. Thereafter, cells were acid washed as described previously (see Section 

2.2.6.5). Subsequently, cells were co-cultured with HPV E629-36-specific reporter cells, which 

express EGFP under the control of NF-κB responsive elements [263]. Figure 28 shows that 

pcDNAE6/E7Kpn-I U251 cells (positive control) but not untransfected U251 cells (negative 

control) stimulated E6 peptide-specific reporter cells. Interestingly, acid washed 

pcDNAE6/E7Kpn-I U251 cells that had been infected with different MOIs of the HCMV-

vector showed a significantly reduced capacity to stimulate E6-specific reporter cells as 

compared to acid washed uninfected pcDNAE6/E7Kpn-I U251 cells (Figure 28). After 

additional pulsing with exogenous E6 peptide, however, acid washed pcDNAE6/E7Kpn-I U251 

cells that had been infected could stimulate E6-specific reporter cells to a similar extent as acid 

washed uninfected pcDNAE6/E7Kpn-I U251 cells (Figure 28). Strikingly, the block of MHC-

I antigen presentation induced by the HCMV-vector was more than 50% (Figure 28).  Taken 

together, these results showed a previously unsuspected HCMV-encoded block of MHC-I 

presentation. 
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Figure 28.  Block of MHC-I presentation induced by immune evasions-deficient HCMV. U251 

cells stably expressing the E6/E7 protein (pcDNAE6/E7Kpn-I U251 cells) were left uninfected or 

infected with RVTB40ΔUS11, a mutant HCMV lacking all known viral MHC-I blockers, at the 

indicated MOIs for 3 to 24 hours. Subsequently, cells were harvested, washed with PBS and 

subsequently washed with ice-cold citric acid, to remove all preexisting peptide-MHC complexes 

and co-cultured at a ratio of 2:1 with HPV E6-specific reporter cells, in which NF-κB drives EGFP. 

After 18 hours EGFP expression was assessed by FACS analysis. Unwashed U251 cells (Negative 

control) and unwashed pcDNAE6/E7Kpn-I U251 cells (Positive control) were also co-cultured with 

HPV E6-specific reporter cells. In parallel, maximal peptide stimulation was determined for each 

experimental group by pulsing cells additionally with E6 peptide (1 µg/ml) before co-culture with HPV 

E6-specific reporter cells and subsequent FACs analysis. (A) The stimulation in each experimental 

group is given as percentage of maximal peptide stimulation. (B) The % of EGFP+ reporter cells after 

pulsing with E6 peptide (maximal peptide stimulation) is shown for washed pcDNAE6/E7Kpn-I 

U251 cells left uninfected and washed pcDNAE6/E7Kpn-I U251 cells infected with mutant HCMV 

at the indicated MOIs. (C). The block of MHC class I presentation after infection with mutant HCMV 

at the indicated MOIs is given as a percentage. The results shown are derived from three independent 

experiments. Error bars represent the mean ± SEM (****, P < 0.0001; ***, P < 0.001; *, P < 0.05; 

unpaired t-test).
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4. Discussion 

4.1 Optimization of HCMV for vaccine vector construction 

The ability of CMV to elicit and maintain high frequencies of effector memory CTLs, makes 

CMV-based vectors promising to develop novel prophylactic and therapeutic vaccines against 

infectious diseases as well as cancer [266]. This study initially aimed to generate an optimized 

HCMV vector that can be eventually used as a platform for generating therapeutic vaccines that 

induce strong CTL-mediated immunity against a target antigen derived from a pathogen or 

tumor.  

4.1.1 RL13 and UL128 mutations are crucial for HCMV reconstitution and virus 

propagation in fibroblasts 

The most promising HCMV strains for the generation of vaccine vectors should be able to infect 

DCs and establish latency in vivo in order to elicit and maintain potent memory inflation. 

Simultaneously, these vectors should be safe and amenable to the genetic modifications 

essential for the insertion of heterologous antigens [266].  

The circular mini-F BAC plasmids allow HCMV or other herpesviruses genomes to be stably 

maintained at low copy number and manipulated in E. coli and then reconstituted as infectious 

virus by transfection of eukaryotic cells [267]. So far, most HCMV research is based on the 

laboratory strains, i.e. AD169 and Towne, which have major disadvantages [268]. It has been 

reported, that these HCMV strains show many mutations due to extensive passaging in 

fibroblasts. The main genomic regions affected are the RL13 and UL128 locus [245, 269]. 

These mutations can limit the ability to infect endothelial cells and DCs and hence restrict the 

memory inflation of CTLs [264]. With this in mind, the BAC of the clinical HCMV strain 

Merlin was selected initially to generate the vaccine vector. Merlin was derived from the urine 

of a congenitally infected infant and sequenced after 3 passages in human fibroblasts [245, 270]. 

During the construction of Merlin strain BAC, mutations that affect HCMV coding regions 

were repaired by mutagenesis and recombineering. The virus recovered from BACs by DNA 

transfection harbors only a residue of single loxP and NheI sites (40 bp) located between US28 

and US29. However, the presence of this sequence does not show any effect on the expression 

of the flanking genes [245]. 

The HCMV Merlin BAC (RCMV1161-BAC), which had been repaired for both RL13 and 

UL128 was used. The acquisition of mutations in both RL13 and UL128 may have resulted 
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either from sequential mutations in the same template or as a result of recombination between 

independent mutants [245]. Several mutants were constructed using RCMV1161-BAC to delete 

all MHC-I downregulating genes (US2, US3, US6, and US11). However, none of these mutants 

could be reconstituted and propagated in fibroblasts. These findings were in accordance with a 

previous study showing that RL13 and UL128 restrict either HCMV cell-to-cell transmission 

or production of cell-free virus in fibroblasts [245].   

4.1.2 Deletion of HCMV-encoded MHC-I downregulating genes improves antigen 

presentation 

The failure to reconstitute RCMV1161-BAC prompted us to use HCMV TB40/E strain which 

combines the high endothelial cell and DCs tropism of a clinical isolate with the high titer 

growth of a cell culture adapted strain [23, 271]. Interestingly, the mini-F sequence of the 

corresponding BAC (TB40-BAC4) was inserted into to the viral genome, replacing the US2-

US6 region [271]. In a previous study, DCs infected with RVTB40/EΔUS11 stimulated T cells 

to produce more IFN-γ than DCs infected with TB40/E WT although both infected DCs equally 

well [272].  

Although HCMV strain TB40/E also shows mutations in both RL13 and UL128L these stable 

mutations did not prevent the virus from being propagated in fibroblasts while retaining 

epithelial cell tropism [268, 273]. These results suggested that TB40-BAC4 is well suited for 

generation of vaccine vectors. For further optimization, the US11 gene was deleted and the 

BAC generated (RVTB40ΔUS11-BAC) was successfully reconstituted in fibroblasts. Although 

US11-deleted HCMV has been generated previously [272], we aimed to generate this mutant 

in our laboratory and to characterize it for further clinical applications. The resulting mutant 

lacks US2-6 and US11, which account for the MHC-I downregulation observed in HCMV-

infected cells. However, a previous study showed that these genes do not alter the expression 

levels of other immunologically relevant molecules such as MHC-II, CD40, CD80, CD86 and 

CD83 [272]. Although fibroblasts infection by TB40/E WT downregulate MHC-I molecules, 

the analysis of MHC-I expression in RVTB40ΔUS11-infected Fi301 cells showed that the 

downregulation effect mediated by US2, US3, US6, and US11 was abolished upon deletion of 

these genes.   

The HCMV mutant RVTB40ΔUS11 could replicate in fibroblasts and showed growth kinetics 

similar to TB40/E WT. This finding demonstrates that US2-6 and US11 are not essential for 

viral reconstitution and propagation in cell culture and further confirm the findings of the 

previous studies [272]. 
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The CMV-encoded MHC-I downregulating genes could totally abrogate the development of 

specific CTL response against heterogenous antigens in rhesus macaques using RhCMV-based 

vaccines against Ebola [162]. However, this can be also due to another CMV-encoded block of 

MHC-I antigen presentation (see Section 4.2.1).   

4.2 Construction of HCMV-based vaccine against HPV16-induced cancer 

It is estimated that HPV-related cancers account for 7-8 % of all human cancers [181]. Although 

several prophylactic vaccines against HPV have been generated and are being used worldwide 

[274], there is no approved therapeutic vaccine against HPV-induced cancer [275]. In the last 

few years, several immunotherapeutic approaches have been explored, however, therapeutic 

vaccines are very promising as a treatment option for HPV-induced cancer [276]. In this work, 

we decided to generate a therapeutic vaccine against HPV-induced cancer using our optimized 

HCMV vector (RVTB40ΔUS11). 

4.2.1 HCMV-based vaccine expressing E6/E7 protein does not present peptides derived 

from E6/E7  

As a DNA virus, HPV is relatively stable [277]. Only a limited number of genotypes are 

implicated in HPV-induced cancers, HPV16 being the most prevalent [278, 279]. HPV-encoded 

E6 and E7 are the main conserved oncogenes responsible for cell transformation and 

carcinogenesis. After HPV-induced cell transformation, the cancer express HPV-derived E6 

and E7 oncogenes that are both of low diversity, making them ideal targets for immunotherapy. 

[280, 281]. A fused DNA consensus sequence encoding non-transforming fusion protein of 

HPV16 E6/E7 that covers all relevant antigenic peptides was synthesized following the 

published sequence [282]. In a previous study, the mice vaccinated with this DNA vaccine 

encoding this fused protein showed both CD4+ T cells and CTL responses against the encoded 

antigens with prophylactic and therapeutic effects [282]. 

Several HCMV BACs encoding the E6/E7 protein were constructed during this study. 

However, only four of them could reconstitute virus and were thus examined further. The 

resulting HCMV-based vaccines differ in the expression characteristics of E6/E7 protein due 

to different promoter activities that drive E6/E7 expression. For example, the 

RVTB40E6/E7intoUS11 and RVTB40ΔUS11_EF-1E6/E7 mutants, expressed high level of 

E6/E7 protein under the control of endogenous and exogenous promoters, respectively. Some 

other major immune evasion genes where interrupted or deleted in other vaccine candidates, 

such as RVTB40ΔUS11_E6/E7intoUL111A and RVTB40ΔUS11_E6/E7intoUL83.  
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The HCMV RVTB40_E6/E7intoUS11 mutant shows a minimal change to the parent 

RVTB40ΔUS11 genome by replacing US11 with the E6/E7 sequence. This virus can express 

the E6/E7 protein under the control of the US11 promoter, which is activated in the early phase 

of infection [283]. In fact, several mammalian promoters are commonly used in cell culture to 

generate stable and potent expression of genes. One of these promoters, the EF‐1α promoter, is 

constitutively active in a broad range of cell types [284, 285]. Moreover, several studies showed 

that EF‐1α promoter is more resistant to silencing than other viral promoters [286-288]. The 

HCMV RVTB40ΔUS11_EF-1E6/E7 mutant was constructed to express E6 and E7 under the 

control of exogenous promoter EF-1 α [286-288]. Our results showed that the TB40-BAC4 can 

tolerate insertion of large DNA fragments up to 2200 bp (the EF‐1α promoter and fused E6/E7 

genes) with successful reconstitution of these modified BACs. 

During HCMV latency, only a subset of viral genes are transcriptionally active [109, 289-292], 

including HCMV UL111A (cmvIL-10), which encodes a protein that is a homolog of the potent 

immunomodulatory cytokine hIL-10. UL111A is transcriptionally active during both 

productive and latent HCMV infection and encodes several viral IL-10 proteins according to 

alternative splicing of the transcribed RNA [107, 109, 110, 116]. UL111A-encoded protein 

mediates different immunomodulatory functions that support viral latency, including inhibition 

of cytokine synthesis, MHC-I molecule modulation in infected cells, suppression of B cell 

stimulation during latency, and hindering DCs maturation and cytotrophoblast function [112, 

117, 293, 294]. It has been shown that cmvIL-10 expression during viral latency in primary 

human myeloid progenitor cells is implicated in modulation of MHC-II levels which results in 

inefficient recognition of the infected cells by allogeneic or autologous CD4+ T cells [117]. 

The HCMV RVTB40ΔUS11_E6/E7intoUL111A mutant was generated through insertion of 

the E6/E7 sequence in frame with the second exon, making it translationally active in both lytic 

and latency phases [116, 295].  

HCMV UL83-encoded protein (pp65) is one of the most abundant tegument proteins, however 

it is not essential for viral growth and production of infectious virions in vitro [296].  Moreover, 

it is implicated in several immunomodulatory features in infected individuals that counteract 

both innate and adaptive immune responses against HCMV infection [54, 297, 298]. We have 

successfully generated a pp65-deficient vaccine candidate, RVTB40ΔUS11_E6/E7intoUL83. 

In this mutant, UL83 was replaced in frame by the E6/E7 sequence. UL83 has an early-late 

expression profile in lytic infection cycles and it is expressed in latency as well. It has also an 
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immune evasion action by blocking antigen presentation [21, 298], modulating NK cells 

functions [299] and supressing several antiviral cytokines [300-302].  

For HPV16 infection diagnosis, previous studies have shown that western blot (WB) as well as 

ELISA can be used [303]. However, WB of E6 and E7 proteins showed either a low sensitivity 

or specificity when compared to other diagnostic tools such as Hybrid Capture 2 (HC2) test and 

ThinPrep cytological test (TCT), respectively [304].  In this study, the expression of both 

HPV16 E6 and E7 was analyzed for all recombinant viruses after the infection of Fi301 cells. 

In addition, these tests were used to determine expression of the E6/E7 protein in stably 

transfected cells with E6/E7 protein expression plasmid (pcDNAE6/E7Kpn-I U251 cells) as a 

positive control. Our results showed that all these mutant viruses can express the E6/E7 protein 

with different expression levels. As shown in results, the recomWell HPV16/18/45 ELISA kit 

can be used in research to assess quantitatively the expression of HPV16 E7. On the other side, 

OncoE6 Cervical Test™ kit can be used for semi-quantitative detection of HPV16 E6 in 

research assays. Taken together, these assays showed sensitivity to E6 and E7 despite low cell 

numbers and could be a useful tool for in vitro evaluation of HPV16 E6 and E7 protein 

expression.  

Interestingly, none of the fused HPV16 E6/E7-expressing HCMV mutants stimulated Jurkat or 

PBMCs transduced by E629-36-specific TCR. In contrast, all pp65-encoding HCMV mutants 

stimulated pp65495-503-specific TCR transduced Jurkat or PBMCs. As a positive control, 

uninfected pcDNAE6/E7Kpn-I U251 cells stimulated E629-36-specific reporter Jurkat cells. 

In a previous study exploring MCMV-based therapeutic vaccine against HPV-induced cancer, 

it was proposed that the exact position of the immunogenic peptide in the viral protein is crucial 

for peptide processing and presentation [205].  Our results showed that pcDNAE6 /E7Kpn-I 

U251 cells stimulated the specific Jurkat cells while HCMV-expressing the same form of fused 

E6 /E7 did not. We conclude that HCMV impairs presentation of heterologous (recombinant, 

non-HCMV) proteins in a selective way. This mechanism is independent on MHC-I 

downregulation because all MHC-I downregulating genes were deleted from our vector. The 

underlying mechanism, however, is unknown and needs to be researched. We also assume that 

this blocking mechanism is involved in the failure of RhCMV-based vaccine expressing Ebola 

virus glycoprotein, a heterologous protein, to drive Ebola-specific CTLs stimulation [162]. 
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4.2.2 HCMV-based vaccines expressing E6 peptide fused to viral protein stimulate E6-

specific T cells 

In previous studies, MCMV-based vaccines were able to stimulate CTLs against heterologous 

antigens (such as influenza and HPV16 antigens) with the antigenic peptides were fused to viral 

proteins, resulting in protective and therapeutic responses when animals were vaccinated and 

challenged with pathogenic viruses expressing the same antigens [158, 205]. Although these 

vaccine models were based on MCMV, we constructed recombinant HCMV-based vaccines 

using the same strategy.  We generated three HCMV-based vaccines expressing the antigenic 

peptide fused to C-terminus of viral proteins (IE1 and pp65) with a double Alanine (AA-) linker 

that facilitates cleavage and processing of the immunogenic peptide. 

As shown in results, the fusion of the HPV16 E6-derived peptide to the C-terminus of HCMV 

IE1 stimulated specific CTLs to secrete higher levels of IFN-γ than HCMV with peptide fused 

to C-terminus of pp65. However, replacing UL83 with fused E6/E7 protein and fusing the 

HPV16 E6-derived peptide to the C-terminus of IE1 (RVTB40ΔUS11_E6/E7intoUL83 

_E6peptideIE1) did not show better stimulation than by just fusing the HPV16 E6-derived 

peptide to C-terminus of IE1 (RVTB40ΔUS11_E6peptideIE1). We conclude that expressing 

the immunogenic peptide at the C-terminus of HCMV proteins such as IE1 and pp65 is essential 

for efficient MHC-I presentation, and this is not improved by additional expression of the full-

length protein (fused E6/E7). 

We also performed a ligandome analysis for HCMV-infected Fi301 cells with 

RVTB40ΔUS11_EF-1E6/E7 and RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1 mutants, 

which showed several HCMV-derived peptides. However, peptides derived from the E6/E7 

fusion protein were not detected for either mutant viruses although Fi301 cells infected with 

RVTB40ΔUS11_E6/E7intoUL83_E6peptideIE1 stimulated E6-specific T cell. This finding 

demonstrates the higher sensitivity of reporter T cells as compared to detection of mass 

spectrometry, although it could also be that the HPV16 E6-derived peptide (TIHDIILECV), a 

cysteine-containing 10mer peptide, may be difficult to be detected by mass spectrometry. 

4.3 GBM infection by HCMV could be a promising therapeutic option 

GBM is the most aggressive malignant primary brain tumor and is highly lethal with inevitable 

relapse after standard treatment [208]. The current therapeutic options for GBM treatment are 

radiotherapy, chemotherapy (temozolomide), and surgery if possible [221]. However, none of 

the current therapeutic options are efficient. GBM patients have a median survival of only 14–
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15 months after GBM diagnosis [221, 305]. Thus, there is an urgent need to develop novel 

approaches for GBM treatment. 

4.3.1 Virotherapy can be a novel approach for GBM treatment 

One of the novel treatment approaches is the clinical use of oncolytic viruses, which can 

selectively replicate in cancer cells. The results of recent phase I/II clinical trials showed that 

this approach could be highly promising as a treatment option [306, 307]. Virotherapy based 

on utilizing oncolytic replicating virus can induce specific killing of the infected cancer cells. 

Different mechanisms are hypothesized to elucidate killing of cancer cells by these viruses, 

most of these mechanisms are immunogenic [308]. Recently, the use of oncolytic viruses in 

combination with other treatment options such as radiation therapy or chemotherapy has been 

shown to have a synergistic activity [309-311]. This indicates the feasibility of new GBM 

treatment protocols based on the combination of virotherapy with approved forms of GBM 

therapy; especially that GBM and glioma stem–like cells are radio- and chemo-resistant in 

many cases resulting in progression and recurrence of tumor cells. [312, 313]. Interestingly, 

GBM infection by HCMV does not increase the resistance of GBM cells to chemotherapy, 

however, it significantly reduces tumor cell viability [238].  

4.3.2 GBM infection by HCMV produces cell-associated virus rather than free virions 

The detection of HCMV DNA and proteins was associated with GBM in some studies [314, 

315], however, other studies showed contradicting results that HCMV genomes and/or proteins 

were present in neglected proportion in GBM [316-319]. However, GBM cell lines are 

permissive for HCMV which encouraged us to use our generated HCMV-based vaccine as a 

treatment option for GBM.  

The permissiveness of GBM cells to HCMV is not consistent among all cell lines. In a previous 

study using different HCMV strains,  all tested HCMV strains have been shown to infect GBM 

cells [238]. In this study, we chose three different GBM cell lines for further experiments 

(LN18, U343 and U251) due to their expression of HLA-A2 haplotype. This makes it possible 

to analyze the presentation of peptides binding to HLA-A2 by using our T cells recognizing 

E6-peptide in the context of HLA-A2.   

Upon GBM infection with EGFP-expressing TB40/E HCMV at intermediate infection level 

(MOI 0.3), the GBM cells showed different levels of permissiveness and EGFP expression. 

Interestingly, free HCMV virions were undetectable in the supernatant. That would also be 
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advantageous in our treatment approach, limiting the spread of HCMV to healthy tissues distal 

to the tumor. However, further studies using different MOIs were not done.   

4.3.3 HCMV-based vaccines expressing E6 peptide fused to viral protein render GBM 

cells susceptible for recognition and attack by T cells 

We aimed to use HCMV-based vaccines as an adjuvant for the presentation of high levels of 

vector-encoded neoantigens and repurposing HCMV-specific CTLs to fight the GBM tumors. 

This strategy was supported by our finding that pcDNAE6/E7Kpn-I U251 cells, which were 

stably transfected with E6/E7-expressing plasmid, could stimulate specific TCR-transduced T 

cells. The E6/E7 fusion protein is normally expressed neither in healthy tissue nor in GBM 

cells. After in situ vaccination of GBM with E6/E7-expressing HCMV vaccine, E6/E7 could 

act as a neoantigen that render GBMs susceptible for specific T cell attack. 

We established immunological assays based on Jurkat cells (J E6-1 and J76) that were 

transduced with retroviral vectors encoding TCRs specific for HPV16 E6- or HCMV pp65-

derived peptides. These Jurkat cells were modified for NF-κB or NFAT-driven EGFP 

expression. This assay facilitates the analysis of T cells activation. The cooperation between 

NFAT and NF-κB proteins induces maximal transcription of the IFN-γ gene [320]. Moreover, 

NFAT is required for expression of the cytokine IL-2 [321].  

Our established immunological assays showed that GBM cell lines infected with HCMV-based 

vaccine expressing the entire E6/E7 protein separately from any viral protein did not stimulate 

E6-specific Jurkat cells. They were, however, highly stimulatory for viral pp65-specific Jurkat 

cells when using pp65-encoding viruses. In contrast, GBM cells infected with HCMV-based 

vaccines expressing the HPV16 E6-derived peptide fused to viral proteins could efficiently 

stimulate E6-specific Jurkat cells as well as pp65-specific Jurkat cells (with the exception of 

mutant HCMV lacking pp65). These results are in accordance with our finding of TCR-

transduced PBMCs stimulation and confirm that fusing the antigenic peptides derived from 

heterologous proteins to the C-terminus of HCMV proteins (such as IE1 and pp65) is highly 

efficient for processing and presentation of the non-HCMV antigenic peptides. 

In conclusion, HCMV-based therapeutic vaccines are very promising as a novel therapeutic 

approach for GBM and HPV-induced cancer therapy.  Further studies using animal models are 

recommended to investigate the therapeutic potential of our vaccines. More studies are needed 

for constructing other recombinant HCMV-based vaccines based on our prototype to develop 

more therapeutic and prophylactic vaccines using different neoantigens. For clinical use, our 



4. Discussion 
 

89 
 

group are exploring the attenuated HCMV-based vaccines to undergo one only round of 

infection. In addition, we are currently investigating the mechanism underlying HCMV-

induced block of MHC-I presentation which remains elusive. 
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5. Summary 

Human papilloma virus (HPV), which belongs to the most common sexually transmitted human 

pathogens, is linked to several cancers including cervical and oropharyngeal cancer. The most 

important HPV genotypes in this respect are HPV16 and HPV18.  Expression of the highly 

conserved HPV-encoded E6 and E7 oncoproteins is required for the initiation and progression 

of HPV-associated malignancies. So far, no approved therapeutic vaccine against HPV-

associated cancer is available. Another important type of cancer is glioblastoma multiforme 

(GBM), the most aggressive primary brain tumor. GBM patients have a very short median 

survival time despite standard treatment involving surgery, chemotherapy, and radiation. Thus, 

novel therapeutic strategies are urgently needed to improve the poor prognosis of GBM patients.  

The aim of this study was to develop a human cytomegalovirus (HCMV)-based platform for 

generation of therapeutic vaccines against cancer. Malignant cells are killed by cytotoxic CD8+ 

T lymphocytes (CTLs) that recognize tumor neoantigens presented by MHC class I molecules 

(MHC-I). Thus, therapeutic cancer vaccines should induce a high frequency of CTLs that can 

recognize tumor neoantigens. In this regard, HCMV is a very promising starting point for a 

vaccine platform. HCMV, a member of the β-herpesvirinae affecting 60-80% of the population 

in the developed countries, causes latent asymptomatic infection in immunocompetent 

individuals. The persistent HCMV infection is associated with a uniquely high frequency of 

HCMV-specific CTLs with an effector-memory phenotype representing 10-20% of all 

circulating T cells, a phenomenon called memory inflation. Accordingly, a tumor neoantigen 

vectored by HCMV should induce strong antitumor responses. As a proof of principle, we 

developed a HCMV based therapeutic vaccine that can induce CTLs recognizing HPV16-

encoded E6 as a neoantigen. Intriguingly, these HCMV-based vaccines can also infect GBM 

cells. This finding paves the way for altering the immunogenicity of GBM by driving the 

presentation of E6 as a neoantigen, thus rendering GBM susceptible to CTL attack, e.g. after 

adoptive transfer of E6-specific autologous T cells.  

In order to optimize antigen presentation to CTLs, HCMV-encoded MHC-I downregulating 

genes (US2-US11) were deleted in the HCMV vector. This modified vector was used to express 

a non-transforming HPV16 E6/E7 fusion protein that covers all the relevant antigenic peptides. 

Further HCMV modifications such as insertion of exogenous promoter or interruption of 

additional immune evasion genes (such as UL111A) were introduced to optimize the CTL 

response. In addition, different types of HCMV-based vaccine candidates were constructed by 

linking a dominant antigenic peptide derived from HPV16 E6 to HCMV proteins. Surprisingly, 
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only the latter could efficiently stimulate E6 peptide-specific T cells. To explore the mechanism 

that interferes with processing and presentation of the HPV16 E6/E7 fusion protein, cells were 

stably transfected with a plasmid expressing the HPV16 E6/E7 fusion protein. Intriguingly, 

these E6/E7 expressing cells were able to stimulate E6 specific T cells in the absence of HCMV. 

However, this stimulation was significantly inhibited when E6/E7-expressing cells were 

additionally infected with HCMV, although the HCMV used no longer possessed any MHC-I-

downregulating genes. This finding shows a novel HCMV-encoded block of MHC-I antigen 

presentation that is independent of the already known MHC-I downregulating HCMV genes. 

This is the first study describing the construction of HCMV-based vaccines expressing tumor 

neoepitopes and provides the preclinical basis for development of HCMV-based therapeutic 

vaccines against cancers. Further investigations using different cell lines in vitro as well as in 

vivo studies exploring the safety and therapeutic effect of HCMV-based vaccines are warranted.  
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6. Zusammenfassung 

Das humane Papillomvirus (HPV), welches zu den häufigsten sexuell übertragbaren 

menschlichen Krankheitserreger gehört, ist mit verschiedenen Krebsarten einschließlich 

Cervixkarzinom und Oropharynxkarzinom assoziiert. Die wichtigsten HPV-Genotypen in 

dieser Hinsicht sind HPV16 und HPV18.  Die Expression der hochkonservierten HPV-

kodierten E6- und E7-Onkoproteine ist für die Initiierung und das Fortschreiten von HPV-

assoziierten Malignomen erforderlich. Bislang ist kein zugelassener therapeutischer Impfstoff 

gegen HPV-assoziierten Krebs verfügbar. Eine weitere wichtige Krebsart ist das Glioblastoma 

multiforme (GBM), der aggressivste primäre Hirntumor. GBM-Patienten haben trotz der 

Standardbehandlung mit Operation, Chemotherapie und Bestrahlung eine sehr kurze mediane 

Überlebenszeit. Daher werden dringend neue therapeutische Strategien benötigt, um die 

schlechte Prognose von GBM-Patienten zu verbessern.  

Das Ziel dieser Studie war die Entwicklung einer auf dem humanen Cytomegalievirus (HCMV) 

basierenden Plattform für die Herstellung therapeutischer Impfstoffe gegen Krebs. Bösartige 

Zellen werden von zytotoxischen CD8+ T-Lymphozyten (CTLs), die von MHC-Klasse-I-

Molekülen (MHC-I) präsentierte Tumor-Neoantigene erkennen, abgetötet. Daher sollten 

therapeutische Krebsimpfstoffe eine hohe Frequenz von CTLs induzieren, die Tumor-

Neoantigene erkennen können. In dieser Hinsicht ist das HCMV ein sehr vielversprechender 

Ausgangspunkt für eine Impfstoffplattform. HCMV, ein Mitglied der β-Herpesvirinae, das 60-

80% der Bevölkerung in den entwickelten Ländern betrifft, verursacht eine latente 

asymptomatische Infektion bei immunkompetenten Personen. Die persistierende HCMV-

Infektion ist mit einer einzigartig hohen Frequenz von HCMV-spezifischen CTLs mit einem 

Effektor-Gedächtnis-Phänotyp verbunden, der 10-20% aller zirkulierenden T-Zellen ausmacht, 

ein Phänomen, das als „Memory inflation“ bezeichnet wird. Dementsprechend sollte ein durch 

HCMV exprimiertes Tumor-Neoantigen starke Immunreaktionen gegen den Tumor auslösen. 

Als „Proof of principle“ haben wir einen therapeutischen Impfstoff auf der Basis von HCMV 

entwickelt, der CTLs induzieren kann, die HPV16-kodiertes E6 als Neoantigen erkennen. 

Interessanterweise können diese Impfstoffe auf HCMV-Basis auch GBM-Zellen infizieren. 

Diese Erkenntnis ebnet den Weg für eine Veränderung der Immunogenität von GBM, indem 

sie die Präsentation von E6 als Neoantigen ermöglicht und damit GBM anfällig für einen CTL-

Angriff macht, z.B. nach adoptivem Transfer von E6-spezifischen autologen T-Zellen. 
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Um die Antigenpräsentation für CTLs zu optimieren, wurden HCMV-kodierte MHC-I 

herunterregulierende Gene (US2-US11) im HCMV-Vektor deletiert. Dieser modifizierte 

Vektor wurde zur Expression eines nicht-transformierenden HPV16 E6/E7-Fusionsproteins 

verwendet, das alle relevanten antigenen Peptide abdeckt. Weitere HCMV-Modifikationen wie 

die Einfügung eines exogenen Promotors oder die Unterbrechung zusätzlicher 

Immunevasionsgene (wie UL111A) wurden eingeführt, um die CTL-Antwort zu optimieren. 

Darüber hinaus wurden andere Impfstoffkandidaten auf HCMV-Basis konstruiert, die ein 

dominantes antigenes Peptid des HPV E6 Proteins verknüpft mit HCMV-Proteinen 

exprimieren. Überraschenderweise weise konnten nur letztere effizient E6-Peptid-spezifische 

T-Zellen stimulieren. Um den Mechanismus zu untersuchen, der die Prozessierung und 

Präsentation des HPV16 E6/E7-Fusionsproteins stört, wurden Zellen stabil mit einem Plasmid 

transfiziert, welches das HPV16 E6/E7-Fusionsprotein exprimiert. Interessanterweise konnten 

diese E6/E7-exprimierenden Zellen E6-spezifische T-Zellen stimulieren – in Abwesenheit von 

HCMV. Diese Stimulation wurde jedoch bei einer zusätzlichen Infektion E6/E7-

exprimierenden Zellen mit HCMV signifikant gehemmt, obwohl das verwendete HCMV keine 

MHCI-herunterregulierenden Genen mehr besaß. Dieser Befund zeigt einen neuartigen 

HCMV-kodierten Block der MHC-I-Antigenpräsentation, der unabhängig von den bereits 

bekannten MHC-I herunterregulierenden HCMV-Genen ist. 

Dies ist die erste Studie, welche die Herstellung von Tumor-Neoepitop exprimierenden 

HCMV-basierten Impfstoffen beschreibt. Sie ist damit die präklinische Grundlage für die 

Entwicklung von therapeutischen Impfstoffen gegen Krebs auf HCMV-Basis. Weitere 

Untersuchungen mit verschiedenen Zelllinien in vitro und in vivo, die die Sicherheit und die 

therapeutische Wirkung von Impfstoffen auf HCMV-Basis untersuchen, sind gerechtfertigt. 
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