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Preface

Since the discovery of the double-helical structure of the

deoxyribonucleic acid (DNA) by Watson and Crick in 1953 molec-

ular biologists achieved a remarkable understanding of the mech-

anisms undergoing in the expression of genes. The invention of

(Sanger) DNA sequencing in the 1970s and the decoding of the

complete sequence of a humans genome at the end of the last cen-

tury finally gave geneticists the possibility to get a more detailed

look into the genetic code. Ever since then steadily increasing im-

provement in technology changed the pace of research but also new

challenges have arisen regarding data analysis and interpretation.

Since more and more technical advancements based on high through-

put sequencing were achieved in the paste decade, a broad range

of applicability has been opened, including de novo or whole ex-

ome sequencing (WES ) at comparable low prices. Further, exome

screens have already emerged to an indispensable tool to discover

genetic variations that appear in Mendelian disorders which are of-

ten characterized by a high phenotypic and genetic heterogeneity.

The final identification of a pathogenic mutation amongst several

thousands of benign variants often relies on filtering techniques that

simply reduce the search space and approaches such as segregation

or linkage analysis are used for prioritization.

Compared to traditional Sanger sequencing the results obtained

by next generation sequencing (NGS ) can be affected by a range

of artefacts and platform-specific biases that arise during library
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preparation and the actual sequencing process which have a great

impact on the genotyping quality of the sequenced data. Especially

the detection of heterozygous variants is associated with a consid-

erably high error rate compared to the identification of homozygous

mutations, even at comparable levels of sequence coverage. Con-

sequently, it still remains a major challenge to make a trustwor-

thy distinction between falsely assigned heterozygous variants and

true de novo mutations although several methods for quality control

(QC ) were introduced during the last years.

Further, most of the current approaches include the simultaneous

analysis of several unrelated individuals as for example in associ-

ation tests or family members which is applied as standard pro-

cedure in the detection of de novo candidates. However, as these

approaches rely on a correct assignment for sequence samples a ro-

bust method to check for the relatedness between them should be

a constant part of quality control downstream of further analysis

steps.

During my Ph.D. I concentrated on three different levels of QC in

WES experiments, which also make up the main components of

this work.

First I modelled the amplification of sequence fragments during li-

brary preparation of WES experiments as a stochastic (Bienayme-)

Galton-Watson (BGW ) branching process. The resulting variance

of the distribution of allele frequencies (AFs) at heterozygous po-

sitions can be used to draw conclusions about how to reduce the

stochastic fluctuations which originally arise from the amplification

step and serve as an indicator of the quality of an WES experi-

ment.

Further, to indicate the exome-wide accuray of a WES sample I

developed a method that estimates the similarity between a sample

and a Reference set of good quality sequenced by the 1000 genomes

project (1KGP) based on a metric that emphasizes rare variants.

Finally, a likelihood ratio (LR) based approach provides a robust

ii



technique to infer relatedness from WES family data and can be

used to clarify sample mix-ups that would otherwise corrupt fur-

ther analysis strategies.

The results of all three approaches are summarized in the following

publications:

1. V. Heinrich, J. Stange, T. Dickhaus, P. Imkeller, U. Krüger,

S. Bauer, S. Mundlos, P.N. Robinson, J. Hecht, and P.M.

Krawitz. The allele distribution in next-generation sequencing

data sets is accurately described as the result of a stochastic

branching process. Nucleic Acids Res., 40(6):2426–31, 2012.

doi: https://dx.doi.org/10.1093%2Fnar%2Fgkr1073

2. V. Heinrich, T. Kamphans, J. Stange, D. Parkhomchuk, —

-J. Hecht, T. Dickhaus, P.N. Robinson, and P.M. Krawitz.

Estimating exome genotyping accuracy by comparing to data

from large scale sequencing projects. Genome Medicine, 5(7):69,

2013. doi: https://dx.doi.org/10.1186%2Fgm473

3. V. Heinrich, T. Kamphans, S. Mundlos, P.N. Robinson, and

P.M. Krawitz. A likelihood ratio-based method to predict

exact pedigrees for complex families from next-generation se-

quencing data. Bioinformatics, 33(1):72–8, 2016. doi: https:

//doi.org/10.1093/bioinformatics/btw550

A part of this work [115] was also adapted for another approach

which was developed by my colleague Zhu Na. She evaluated dif-

ferent matching strategies for the selection of suitable controls in

rare variant association studies (RVAS ) and I contributed to this

study by the computation of distance matrices based on different

metrics:

4. N. Zhu, V. Heinrich, T. Dickhaus, J. Hecht, P.N. Robinson,

S. Mundlos, T. Kamphans, and P.M. Krawitz. Genome anal-

ysis Strategies to improve the performance of rare variant
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association studies by optimizing the selection of controls.

Bioinformatics, 31(22):3577–83, 2015

Further, during my research time I also contributed to other projects

which are not part of this thesis:

5. Alexander Hruscha, Peter Krawitz, Alexandra Rechenberg,

V. Heinrich, Jochen Hecht, Christian Haass, and Bettina Schmid.

Efficient CRISPR/Cas9 genome editing with low off-target ef-

fects in zebrafish. Development, 140(5):4982–4987, 2013

6. T. Kamphans, P. Sabri, N. Zhu, V. Heinrich, S Mundlos, P.N.

Robinson, D. Parkhomchuk, and P.M. Krawitz. Filtering for

Compound Heterozygous Sequence Variants in Non-Consan-

guineous Pedigrees. PLoS One, 8(8):1–6, 2013

7. Peter M. Krawitz, Daniela Schiska, Ulrike Krger, Sandra Ap-

pelt, V. Heinrich, Dmitri Parkhomchuk, Bernd Timmermann,

Jose M. Millan, Peter N. Robinson, Stefan Mundlos, Jochen

Hecht, and Manfred Gross. Screening for single nucleotide

variants, small indels and exon deletions with a next-generation

sequencing based gene panel approach for usher syndrome.

Molecular Genetics & Genomic Medicine, 2(5):393–401, 2014

8. N. Ehmke, A. Caliebe, R. Koenig, S.G. Kant, Z. Stark, D. Wiec-

zorek, G. Gillessen-kaesbach, K. Hoff, A. Knaus, N. Zhu,

V. Heinrich, C. Huber, I. Harabula, M. Spielmann, D. Horn,

H. Manzke, and S. Mundlos. Homozygous and Compound-

Heterozygous Mutations in TGDS Cause Catel-Manzke Syn-

drome. Am J Hum Genet., 95(6):763–70, 2014

9. D. Emmerich, T. Zemojtel, J. Hecht, P. Krawitz, M. Spiel-

mann, J. Kühnisch, K. Kobus, M. Osswald, V. Heinrich, P. Ber-

lien, U. Müller, V. Mautner, K. Wimmer, P.N. Robinson,

M. Vingron, S. Tinschert, S. Mundlos, and M. Kolanczyk. So-

matic neuro fi bromatosis type 1 ( NF1 ) inactivation events
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1.1 Biological Background

1.1.1 Next Generation Sequencing

The general process of DNA sequencing can be describes as theDNA Sequencing

determination of the order of the four nucleotides or bases adenine

(A), guanine (G), thymine (T ) and cytosine (C ) within a DNA

molecule. Over the last years several technologies for sequencing

have evolved and became indispensable for basic biological research

and in applied fields such as medical diagnostics.

Up until recently most DNA sequencing was performed by apply-From Sanger

Sequencing to

Next Generation

Sequencing

ing the chain termination method developed by Frederick Sanger,

which is still considered as the gold standard regarding sequenc-

ing accuracy [104]. In this approach chemically altered nucleotides

cause the copying process of a DNA strand to stop each time it is

incorporated into the growing chain. A repetition of this method

with all four bases provides the exact information of all breakpoints

and can be joint to build a complete DNA sequence.

In the last two decades limitations regarding costs and throughput

led to a fundamental shift away from the application of classical

Sanger sequencing for genome analysis which is now often replaced

by so-called next generation sequencing (NGS ) techniques which

represent the next phase in the evolution of DNA sequencing tech-

nologies, also referred to as 2nd generation sequencing methods [20].

To date, NGS techniques represent the next phase in the evolution

of DNA sequencing technology at dramatically reduced cost com-

pared to traditional Sanger sequencing.

Miniaturazation and massive parallelization yielded new sequenc-

ing platforms that are now referred to as NGS methods, which are

able to generate large amounts of high-throughput data in a con-

siderably less expensive way compared to the Sanger method [56].

This enabled the resequencing of human genomes which was first

realized by Craig Venter in 2001 [120] and initialized a new field of

2



research, where the discovering and understanding of variations in

the DNA and their influence on health and diseases became one of

the major tasks in clinical diagnostics. Additionally, the targeting

of specific subsets of the human genome, for example the protein-

coding region, the exome, is used to lower sequencing costs and to

increase the sequence coverage of regions of interest. whole exome

sequencing (WES ) is a common approach in genetic diagnostic as

it is especially effective to identify diseases associated with rare

Mendelian variants. This diseases are often related to very rare

variants which are present in a small set of individuals and most

likely occur in the protein coding sequence of a genome.

The capturing of a targeted subset requires an amplification step Polymerase Chain

Reactionduring library preparation that is often realized by polymerase chain

reaction (PCR). The PCR is a technology in molecular biology

which is used to generate thousands to millions of copies of a small

initial number of DNA segments. During the reaction repeated cy-

cles of DNA replication is performed in a tube that contains free

nucleotides, DNA replication enzymes, short nucleotide sequences

(primers), and template DNA molecules. Introduced in 1986 by

Mullis et al. [87] PCR has quickly developed into a common tech-

nique in research labs for a variety of applications and is now among

others a crucial part in the amplification process in next generation

sequencing .

Usually the experimental setup of a PCR reaction consist of 25−40

[53] repeats of temperature changes, referred to as cycles. Each

cycle consists of usually three steps of changing temperatures. Ini-

tially, the double-stranded DNA template is denaturated at high

temperatures, resulting in single strands . In a second step, the tem-

perature is decreased and primers anneal to the now single stranded

DNA template. The polymerase binds to the primer-template hy-

brid and begins to synthesize new strands of DNA.

At the end of the first cycle, each double stranded DNA molecule

consist of a new and an old DNA strand. The PCR then continues

3



with additional cycles that repeat the aforementioned steps where

the newly synthesized DNA segments serve as templates for the

following cycles (illustrated in Figure 1.1).

5’ 3’

5’3’ 5’ 3’

5’3’
...

...

5’ 3’

5’3’
...

...

5’ 3’

5’3’ 5’ 3’

5’3’
...

...

5’ 3’

5’3’
...

...

Figure 1.1: Illustration of a polymerase chain reaction. PCR consists
of of a series of usually 25 − 40 cycles, in which the double stranded
DNA is denatured, primers (gray bars) are annealed and a new strand
is synthesized.

The challenge of getting fast, cheap and accurate genome infor-Different

Sequencing

Technologies

mation has inspired the development of novel sequencing technolo-

gies and the diversity of NGS platforms is growing rapidly. The

major commercial 2nd generation sequencing technologies which

came into existence after the success of the human genome project

(HGP) include Roche/454 [1], Illumina [6] and SOLiD [14]. Each

of these platforms comprises a number of methods including tem-

plate preparation, sequencing and imaging followed by data analysis

and comprehensive overviews are for instance given by Mardis et

al. [80] and Liu et al. [78]).

Beyond the 2nd generation sequencing technologies, so called 3rd3rd Generation

Sequencing generation instruments have already arisen in the last few years

such as Helicos Heliscope [5], Pacific Biosciences SMRT [12] and

Oxford Nanopore [11]. The major difference between the technolo-

gies of both generations is that the initial step of DNA amplification

4
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Figure 1.2: Costs per mb of DNA sequenced in the last 15 years.] The
NHGRI (data source: http://www.genome.gov/sequencingcosts/ ) has
tracked the costs associated with DNA sequencing performed at differ-
ent sequencing centers in the last 15 years. The plot shows the massive
decrease of sequencing costs over the last decade, which is mainly influ-
enced by the increase of commercial vendors since 2005. This finding
is also supported by observing the hypothetical data process defined by
Moore’s Law (red line), which is a commonly used rule to measure the
growth rate of digital technology. It can be clearly seen that the rate
of the reduction of the sequencing costs per Mb passes this rule starting
from approximately 2008.

became unnecessary in the latest technologies [20].

The rate of growth in DNA sequencing generation and the asso- Moore’s Law

ciated decrease of costs has already passed the expected approxi-

mation, commonly described by Moore’s Law paradigm [25], which

is usually used to estimate the expansion rate of digital technology

such as the growth of hardware speed (see Figure 1.2). Moore’s Law

describes a driving force of technological growths and states that

the rate of growths doubles every 2 years, which can be formularized

as a function K, dependent on a time parameter t:

K(t) = K(t0) ∗ 2t, (1.1)
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whereas K(t) describes the technical entity, for example speed or

cost, at time point t.

By different methods, each 2nd generation technology implies the

amplification of single short sequence reads of a fragment library

by PCR followed by a sequencing reactions on the amplified DNA

fragments. Since most of the data shown in this thesis are based on

the Illumina NGS sequencing technology, I will describe the main

steps of this method in the following.

The fragment libraries are generated by annealing platform-specificLibrary

Preparation and

Cluster Generation

adapters to blunt-ended fragments that were prepared by random

fragmentation of the DNA as illustrated in Figure 1.3 a) - c). The

resulting adapter-ligated fragments are then amplified via PCR and

gel purified. For the following generation of clusters, the frag-

ment library is loaded on a flow cell, where each single stranded

DNA fragment is annealed to another surface-bound complemen-

tary oligonucleotide (Figure 1.3 d)-f)).

The Illumina system utilizes a sequencing-by-synthesis approachSequencing-By-

Synthesis in which all four bases are fluorescently labeled. 3-OH blocked nu-

cleotides are added simultaneously to the flow cell channels, along

with DNA polymerase, for incorporation into the oligo-primed clus-

ter strands, which are then extended by one nucleotide. After an

imaging step, the 3′ blocking group is chemically removed to pre-

pare each strand for the next incorporation by DNA polymerase,

which continues for a specific number of cycles which is usually in

the range of 50− 300 [6].

Next generation sequencing determines the order of nucleotidesCoverage Biases in

NGS Platforms within each DNA fragment and allows the detection of genetic vari-

ations. However, a limitation in NGS techniques is the high fre-

quency with which alleles are wrongly weighted due to artefacts in-

troduced in the sequencing process. Sequence dependent deviations

in quality as well as several types of biases that can occur during

sample preparation lead to a partly strong deviation in coverage

from the expected uniformly distributed sequencing reads across
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Figure 1.3: Preparation of sequencing samples.(adapted from [22]) Ge-
nomic DNA is randomly divided into small fragments of a few hun-
dred base pairs. The double stranded fragments are joined to a pair of
oligonucleotides in a forked adaptor configuration (a)). The obtained
ligands are then copied by PCR using two oligonucleotide primers, re-
sulting in blunt-ended double-strands with a different adaptor sequence
on each end (b)), which are then denaturated into single strand frag-
ments (c)). Primed from the 3′-end of complementary surface-bound
oligonucleotides, a new fragment is copied from the original strand by
polymerase-directed single base extension. The original strand, that
served as a template is then removed by denaturation, whereby the
complementary strand is left as template for the next sequencing reac-
tion (d)). The adaptor sequence at the 3′-end of each copied strand
is annealed to another surface-bound complementary oligonucleotide,
forming a bridge and generating a new synthesis template for a second
strand (e)). The resulting double strand is then denatured, generating a
new single-stranded template for the next bridge amplification (f)). The
cycle of annealing, extension and denaturation is repeated several times,
resulting in clusters of surface-bounded DNA strands of approximately
one million copies of the original single DNA molecule that initiated the
amplification process.
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Table 1.1: Comparison of technical specifications of different sequenc-
ing platforms.

Illumina SOLiD 454

Max. read Length (bp) 2× 150 [6] 2× 50 [14] 400 [1]
# Reads/Run (×106) 3.4− 3000 840− 1410 0.1− 1
Output/Run (Gb) [50] 1.2− 600 71.4− 155.1 0.5− 9
Run Time [50] 26h− 14d 8− 12d 10− 20h
Error Frequency (%) [46] 0.1 2 ∗ 0.01 1
Most Frequent Single Nucleotide

A↔T bias INDELs
Error Type [46] Substitution

Min. Costs/Mb ($) [50] 0.04 0.07 7

the genome [46]. Moreover, sequencing and imaging biases show

specific pattern for the respective NGS platforms. For instance,

Illumina and ABI Solid sequencing platforms tend to introduce

wrong nucleotides in regions with high or low GC content which

leads to an uneven coverage or even entire gaps in the sequenced

read distribution [102, 98, 40, 56]. Error profiles which are espe-

cially specific for Illumina sequencing platforms were described in

several publications [102, 88, 40] involving inverted repeats, palin-

dromic sequences and GC sequences. Each of the aforementioned

patterns can influence the base elongation process during sequenc-

ing and leads to an uneven coverage profile. Hence, low quality

reads are not randomly distributed, but are rather localized at spe-

cific mapping regions and should be treated with caution in further

analysis steps.

Current NGS technologies have considerably higher error ratesError Frequencies

in Sequencing

Platforms

than traditional Sanger sequencing, which is the reason why Sanger

is still considered as gold-standard regarding sequencing accuracy

which is about 99.999%. As summarized in Table 1.1, different NGS

platforms are prone to various types of sequencing errors [46, 105]

and different strategies of downstream analysis are required. The
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majority of errors that occur in 454 sequencing platforms are re-

lated to insertions or deletions (INDELs), whereby reads generated

with SOLiD have a higher A↔C bias and the Illumina sequencing

technology tends to introduce single nucleotide substitutions. Dur-

ing the sequencing-by-synthesis approach utilized in the Illumina

sequencing technology, fluorescently labelled nucleotides are added

for the polymerization, which are then illuminated by a red laser

for A and C and a green laser for G and T . A strong correlation

of the complementary bases that cause similar emission spectre of

the fluorophores and limitations in signal separation lead then to

false assignments of nucleotides in approximately 1 out of 1000 base

pairs (bps) [105].

1.1.2 The Human Reference Genome

A fundamental first step in bioinformatics processing of high through-

put sequencing data is to compare the sequenced reads to a suitable

high quality reference assembly which is a haploid representation of

an organism’s genome, also referred to as reference genome (Ref )

in the following. Such an assembly is represented as a series of

characters over the nucleotide alphabet, referred to as contigs, par-

titioned into a set of scaffolds which is an ordered and oriented set

of continuous and gap-free contigs. In case of an uncertain DNA

sequence between contigs, wild-card characters are inserted to fill

the gaps which are typically encoded as ’N’.

The accuracy of a reference genome is crucial for the analysis and International

Human Genome

Sequencing

Consortium

annotation of the sequenced data which is an even more complicated

challenge considering the high population diversity in the human

genome. All reference genomes are based on one of the standard as-

semblies, initially produced by the human genome project (HGP).

Nowadays all assemblies are produced by the international human

genome sequencing consortium (IHGSC ) and all released versions

differ in their length and quality as summarized in Table 1.2. Fur-
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thermore, several minor variants were released by the national cen-

ter for biotechnology information (NCBI ) that additionally inte-

grated the mitochondrial sequence into the assembly. The IHGSC

constructed a map of the whole human genome uitlizing a clone-

based approach, generating an overlapping series of clones that

cover the entire genome sequence whereas each clone represents

a haplotype from one single donor [84].

Table 1.2: Human reference genome build development. Listed are ma-
jor human reference assemblies as defined by the GRC and their main
global statistics. The associated alternative descriptions of the different
builds, released by the UCSC , are displayed in brackets. The table is
based on extracted data from the NCBI website [9].
In summary, the GRCh38 assembly has the best global statistics com-
pared to earlier releases: It is interrupted by less gaps and has a higher
scaffold N50, which is a measure of continuity (50% of the bases reside
in a scaffold of this length or greater).

Description Year Total Length (bp) Total Gaps (bp) Scaffold N50

GRCh38 2015 3, 231, 297, 122 161, 368, 151 67, 794, 873
GRCh37 (hg19) 2013 3, 234, 834, 689 243, 140, 514 46, 395, 641
NCBI36 (hg18 ) 2006 3, 104, 054, 490 222, 405, 369 38, 509, 590

A sequenced assembly is considered as highly accurate, with a high

per-base accuracy of 99.99%, which translates to one expected er-

ror every 10000 bases in a sequence of about 3 billion nucleotides.

The newest assembly version comprises a total consensus sequence

length of ∼ 3.23 billion base pairs (Table 1.2) and accounts for ge-

nomic regions of excess diversity, such as repetitive sequences in the

centromer region, by including additional scaffold sequences and al-

ternate loci, which was managed by introducing gaps in the earlier

version GRCh37 . Nevertheless, most variant calling algorithms ex-

pect a haploid assembly model and thus penalize reads that have

more than one single location in the genome [29].
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The generation of such an assembly is mostly based on the DNA of Population Bias in

the Human

Genome

several anonymous donors and thus represents a mixture of haplo-

types rather than the genome of a single individual. The version of

the human genome assembly produced by IHGSC , GRCh37 , which

is used in this work, is also based on sequences from a combination

of about a few dozen individuals, although most of the haplotypes

are derived from donors from Buffalo, New York, [41] and thus in-

troduces a population bias that neglects the global wide diversity

of the human genome. In the future, a graph-based alternative

illustration of a human assembly would represent the population-

based human genome in a more intuitive way rather than a linear

sequence [29]. However an adaption of this model to existing anal-

ysis pipelines will still take substantial efforts and for now other

detours have to be considered to account for population biases in

the human genome.

1.1.3 Genetic Variability in the Human Genome

In diploid organisms each somatic cell contains two copies of a chro-

mosome that is not involved in sex determination. The different

forms of such a copy at each genomic locus are referred to as alle-

les whereas one has been inherited from the mother and one from

the father respectively. Within a population many different alleles

can exist for one locus and their frequency is used to analyse the

genetic variation within a population. In one individual a genomic

position is described as homozygous for an allele, if the two copies

are the same and heterozygous otherwise. This constitution of such

a position is then referred to as genotype (GT ).

Both the allele frequency (AF ) and the genotype frequency within Hardy-Weinberg

Equilibriuma population are central to population genetics as they provide in-

sight into evolutionary changes over time. Hardy and Weinberg

formulated a general law for bi-allelic loci, referred to as Hardy-
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Weinberg equilibrium (HWE ), that states that both allele and geno-

type frequency will remain in equilibrium between generations if no

other evolutionary influences take place such as mutations or selec-

tion [110]. A deviation of this ideal condition can be an indicator

of selection or a genotyping error [15]. To give an example, the

concept of the HWE can be applied to compare the observed and

expected level of heterozygosity which can be used as an indicator

of the level of consanguinity within a population.

In consideration of the overall genetic diversity the term human

genome must be assessed as an artificial construction since there

are not two humans in the world with the exact same DNA se-

quence. A comparison between any two randomly chosen individ-

uals would lead into roughly 1 difference in 1000 genomic positions

[65]. But also closely related individuals differ from each other due

to novel mutations that did not occur in the parents and structural

variations (SV s) that appear during development. Any form of

mutation can either arise in the germ line which can be passed to

the next generation or in the somatic cell line which is then referred

to as de novo mutation.

The term SV s comprises a number of different genomic rearrange-Structural

Variations ments which span at least 1kb of the genome [48]. In particular this

includes inversions, translocations or genomic imbalances such as

duplications, deletions or insertions which are commonly referred

to as copy number variations (CNV s) (Figure 1.4 a) - e)). Addi-

tionally, medium-sized INDELs , ranging approximately 1 − 10000

nucleotides [85], will play an essential role in personalized medicine

as many of these map to functionally important sites within human

genes [86].

The most frequent changes in the human genome are single baseSingle Nucleotide

Variant, SNV pair (bp) mutations which occur in about 4 billion positions per

individual. If at least one allele differs from the reference genome

at a specific location, this single base-pair mutation is called sin-

gle nucleotide variant (SNV ) which can be further characterized,
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Figure 1.4: Types of structural variations and single nucleotide vari-
ants. Depicted are two chromosomes whereas one represents the refer-
ence genome (Ref ) and the second originates from a single individual
(Ind). All possible structural variations (SV s) are described in a) - e)
and the examples shown in f) - h) visualize different types of single
nucleotide variants (SNV s).
a) an insertion differs in one or more additional nucleotides from the
reference genome. The contrary effect is seen in deletions (b)), where a
part of the reference is not present in the sample’s genome. c) a translo-
cation describes the transfer from a chromosomal part to another loca-
tion in the genome. Insertions, deletions and duplications (d)) are all
SV s where the total amount of the DNA differs from the DNA in the
Ref and are therefore referred to as copy number variations (CNV s).
e) an inversion describes an structural rearrangement in which a part
of the reference genome is reversed. There are several types of SNV s,
depending on the effect on the transcriptional level. Either the mutation
leads to a stop-codon (f)), the mutation has no effect at all and is there-
fore called synonymous or silent (g)) or it results in a non-synonymous
substitution, where a completely different amino acid is translated (h)).

depending on the effect on the translational level (Figure 1.4 f)

- h)). A synonymous (or silent) substitution has no effect on the

translated amino acid (AA), since several triplets of nucleotides en-

code for the same chemical construction, whereas non-synonymous
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mutations lead to a completely different AA or even a stop-codon

(nonsense mutation).

A variation from the reference genome that occurs commonlySingle Nucleotide

Polymorphism,

SNP

within a population in at least 1 out of 100 individuals is referred

to as single nucleotide polymorphism (SNP) [26] and explains about

90% of the heterogeneity within the human genome [30]. Within

populations the AF for SNPs can differ, meaning that a SNP allele

may be common in a geographical or ethical group but is rare in

another.

A public archive for genetic variation, the single nucleotide poly-The Database for

Common Variants,

dbSNP

morphism database (dbSNP) [124], established by the NCBI in col-

laboration with the NHGRI lists a range of molecular variations

that contains in addition to SNPs also other molecular variations

such as for example INDELs .

Several hundred thousand SNPs with large differences in allele fre-

quencies are observed when comparing individuals from populations

with different backgrounds as shown by Durbin et al. [42]. As a

consequence difficulties may arise when analysing cohorts with dif-

ferent population substructures to identify mutations that are asso-

ciated with diseases, especially as rare variants appear to account

much more for the genetic diversity compared to common variants

[28].

1.1.4 The 1000 Genomes Project

The 1000 genomes project was launched in 2008 and established the

biggest map of human genetic variation that is publicly available

until today [31, 32, 33, 34]. Three pilot projects have been designed

and completed until 2010 which contain variants with a genotype

frequency of 1% or greater [31], using a combination of high and low-

coverage whole genome sequencing (WGS ) and WES . Genomes of

two Trios were sequenced at high coverage 20 − 60 times in the

first pilot project, using different sequencing technologies [8]. The
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genomes generated in the 2nd pilot study complemented the first

phase with data from 179 people but were sequenced at low coverage

for economic reasons.

EUR

AFR

AMR

EAS

SAS

Figure 1.5: A map of different populations split into several geographic
groups (adapted from [7]). A detailed description of every population
captured in the 1KGP is given in Table 1.3.

Altogether exons of 1000 genes in about 700 individuals were se-

quenced in the third pilot project that concentrated on the coding

regions. At the end of 2012 1092 individuals were sequenced with a

combination of low-coverage whole-genome and exome sequencing,

comprising data from individuals from 14 different ethnic back-

ground populations [32] (phase 1 ). Up to now 2535 individuals

from 26 different geographical groups were completed [33, 34] (final

phase). An overview of all background populations is illustrated in

Figure 1.5 and a detailed description is given in Table 1.3.
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Table 1.3: Different populations used in the 1KGP. (adapted from [7])
All populations (POPs) can be further clustered into super populations:
AFR (african), AMR (mixed american), EAS (east asian), EUR (euro-
pean) and SAS (south asian).

POP POP Description Super POP #

CHB Han Chinese in Bejing, China EAS 103

JPT Japanese in Tokyo, Japan EAS 104

CHS Southern Han Chinese EAS 108

CDX Chinese Dai in Xishuangbanna, China EAS 99

KHV Kinh in Ho Chi Minh City, Vietnam EAS 101

CEU
Utah Residents (CEPH) with

EUR 99
Northern and Western Ancestry

TSI Toscani in Italia EUR 108

FIN Finnish in Finland EUR 99

GBR British in England and Scotland EUR 92

IBS Iberian Population in Spain EUR 107

YRI Yoruba in Ibadan, Nigeria AFR 109

LWK Luhya in Webuye, Kenya AFR 101

GWD
Gambian in Western Divisions

AFR 113
in the Gambia

MSL Mende in Sierra Leone AFR 85

ESN Esan in Nigeria AFR 99

ASW Americans of African Ancestry in SW USA AFR 66

ACB African Caribbeans in Barbados AFR 96

MXL Mexican Ancestry from Los Angeles USA AMR 67

PUR Puerto Ricans from Puerto Rico AMR 105

CLM Colombians from Medellin, Colombia AMR 94

PEL Peruvians from Lima, Peru AMR 86

GIH Gujarati Indian from Houston, Texas SAS 106

PJL Punjabi from Lahore, Pakistan SAS 96

BEB Bengali from Bangladesh SAS 86

STU Sri Lankan Tamil from the UK SAS 103

ITU Indian Telugu from the UK SAS 103

ALL All Individuals 1KG 2535
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1.1.5 A Broad Outlook of Next Generation Se-

quencing in Human Genetics

Up until today, 2nd generation sequencing technologies had a great

impact in every field of molecular research und diagnostics mainly

due to immense cost reduction and an increased throughput com-

pared to Sanger sequencing and paved the way for studying the

molecular mechanisms of human diseases.

WES had a great impact in the characterization of hundreds of Whole Genome vs.

Whole Exome

Sequencing

novel disease-associated genes within the past five years [109] and

is particularly effective in the study of rare Mendelian diseases.

Each sequencing run identifies approximately 20000 variants in cod-

ing regions of which 90% can be found in publicly available data

bases [90]. Nethertheless, assuming unlimited resources and time,

whole genome sequencing (WGS ) provides clear benefits compared

to WES as it allows SNV s, INDELs , SV s and CNV s to be inter-

rogated in both the ∼ 1% part of the genome that encodes for pro-

tein sequences and the remaining ∼ 99% of the non-coding genome.

This results in ∼ 5 million reported variants of which about 144000

variants are not listed in any database [90]. Additionally the overall

coverage of a WGS sample is uniformly distributed and thus supe-

rior to WES whose captured probes can result in regions with little

or low sequence coverage. This is due to the difficulties to design

suitable capture baits in regions of the genome with low sequence

complexity (such as GC -rich regions) resulting in off-target capture

effects. On the contrary, an up front enrichment step isn’t required

during library preparation in WGS which reduces the potential of

such biases. Furthermore, WES capture probes often tend to pref-

erentially enrich reference alleles at heterozygous sites producing

false negative SNV calls.

Another advantage of whole genome sequencing is the ability to take

advantage of longer sequencing reads, which is restricted in WES

since the majority of human exons are restricted to a maximum
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of 200 bps. Longer sequencing reads simplify the identification of

large CNV s, genomic rearrangements and other SV s.

However, WES still benefits from one unbeatable argument which

is the advantage to quickly sequence an individual at a low price

level compared to WGS . Reduced costs make it feasible to increase

the number of samples to be sequenced, enabling large population

based comparisons which are not yet feasible with WGS . But with

the launch of Illumina’s HiSeq X platform [6] the possibility of se-

quencing genomes at a substantially reduced price level (1000$ per

genome) is already within reach.

On the practical side, the amount of both raw as well as processed

data for WES experiments is far smaller compared to WGS [90].

New challenges regarding the analysis of sequencing reads in the

dimensions of WGS experiments arise and not only existing algo-

rithms have to be adapted (e.g. for read assembly), but also dif-

ferent error rates and quality measurements have to be taken into

account.

18



1.2 Bioinformatics Processing of Next

Generation Sequencing Data

1.2.1 Methods for Sequence Alignment

The outcome of each NGS platform is a bunch of multiple short

DNA fragments, or reads, in the magnitude of giga base pair (Gb)s.

Depending on the fragment library that is used during sample

preparation either single-end or paired-end reads are produced whereas

the latter requires sequencing of both opposite ends of one DNA

fragment. Once sequencing reads are obtained, the first essential

step is to align them against a known reference sequence (see Sec-

tion 1.1.2).

Several applications that align short-read sequences independently Different

Alignment

Approaches

to a reference genome have been developed over the last years, for

example MAQ [74], NovoAlign [10], BWA [71, 72, 70], Bowtie [68]

and Bowtie2 [67], and comprehensive overviews which compare the

different approaches exist [73, 103, 57]. Although many alignment

tools are available, they vary a lot in runtime and accuracy which

affect the identification of SV s and SNV s. However, none of them

outperforms the others in all metrics as already pointed out by

Hatem et al. [57]. The performance rather depends on many differ-

ent factors and each tool reveals its own strengths and weaknesses.

The majority of existing alignment algorithms construct auxiliary Build Index

data structures for the reference genome, referred to as build in-

dex, which is used to search for the corresponding genomic position

for each read. Index based approaches are commonly used to effi-

ciently search a big amount of text that is too large to store it all

in a computers main memory. The need for not only compressing

the textual sequence itself but also the index led to the develop-

ment of many algorithms which address this problem. Varying in

runtime, sensitivity and memory usage, two main index types can

be distinguished that are either based on hash tables as done by
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MAQ [74] and NovoAlign [10] or suffix/prefix tries as applied by

Bowtie [68], Bowtie 2 [67] and BWA [71, 72, 70]. Algorithms based

on suffix/prefix tries store multiple identical sub-strings of a refer-

ence just once because these copies collapse on a single path in the

trie [73] which is an advantage over indices based on hash tables.

Consequently trie based approaches are much faster and require

less memory space compared to hash table based algorithms, but

perform with a lower sensitivity.

To identify inexact matches, all algorithms apply different ap-Strategies to

Identify Inexact

Matches

proaches where a certain number of mismatches is allowed. MAQ

uses a split strategy, NovoAlign adopts an alignment scoring system

based on the Needleman-Wunsch algorithm (NWA) and Bowtie,

Bowtie2 and BWA apply a backtracking strategy based on Burrows-

Wheeler transform (BWT ). BWA implements an upper bound for

the number of mismatches in a read which makes the algorithm

more efficient compared to other similar methods [71].

The performance of sequence alignments, as well as downstreamAccuracy and

Quality Scores analysis of SV , can be increased by using paired-end instead of

single-end reads in terms of sensitivity as well as specificity as it

provides additional position information (shown by Shrestha et al.

[108]). However, not all available alignment tools provide a suitable

statistical adaption of paired-end data. Hence, for instance Bowtie,

Bowtie2 and NovoAlign require preliminary information about the

mean and standard deviation of the genomic distance between two

read mates whereas BWA estimates the fragment size distribution

from uniquely mapped pairs.

Integrating per-base quality scores can additionally help to increase

the mapping accuracy as they lower the penalty for an error prone

mismatch [73]. The sequencing-by-synthesis process is captured in

a series of fluorescence images, as described in Section1.1.1, and

all sequencing platforms record a measurement of uncertainty for

the fluorescence of each base that is represented by a phred quality

score:
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QBase Call = −10log10P(base calling error) (1.2)

A phred score of QBase Call = 20 would therefore correspond to a 1%

error rate in base calling.

An overall mapping quality score (MAPQ) for each sequencing Mapping Quality

Scoreread is additionally used to improve downstream analysis. The

mapping quality is a phred -scaled posterior probability of the ac-

curacy that a read is mapped correctly which is an indicator of the

uniqueness of the aligned read but also incorporates per-base qual-

ities and the number of mismatches within a read. Quality scores

a)

b)

c)

Coor.

Ref G A T A G A T G A T A A * * T A T GGG T C G A A G TC

a c c c G A T

g t c GGG T

A A G TC

A T G A T A A GA T AG

@SQ SN:Ref LN:26

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 65

read 1/

read 1/

read 2/

read 2/

+

-

+

-

read 1 136 Ref 5 30 8M2I2M = 22 22 *ATGATAAGA TAG
read 1 83 Ref 22 30 5M = 5 -22 *AAG TC
read 2 0 Ref 4 30 4H3M * 0 0 NM:i:1GAT
read 2 16 Ref 16 30 3H4M * 0 0 NM:i:0GGGT

Figure 1.6: The SAM format. a) A reference genome/assembly (Ref )
is a representative example of a species set of nucleic assids, that does
not necessarily represent the genome of any single individual. Deviations
from the reference assembly are then classified as single nucleotide vari-
ants (SNV), copy-number variations (*) or inversions. b) Short paired-
end sequence reads are mapped against a reference assembly (Ref ).
Read1 represents a read pair whereas read2 constitues a chimeric read
that consists of two read parts that map to different locations on the
reference genome. c) The corresponding SAM format to the alignment
shown in b). The header (starting with ’@’ ) is always prior to the align-
ment. Each line consists of at least 11 mandatory fields: query name,
bitwise flag, reference name, leftmost position, overall mapping quality,
CIGAR string, reference name of mate read, leftmost position of mate
read, observed template length, segment sequence and per-base quality
(not shown) .
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reported by BWA, NovoAlign and Bowtie2 are calculated in differ-

ent ways which makes a direct comparison difficult. For instance,

the maximum MAPQ score generated by Bowtie2 is 42 whereas

the maximum value reported by BWA is 37.

All available alignment tools produce output in the sequence align-Sequence

Alignment/Map

format

ment/map (SAM ) format, a tab-delimited text file consisting of a

header section, starting with ’@’, and an alignment section that

lists all sequence read, its mapping position and additional infor-

mation such as the mapping quality score. A reduced example of

an alignment in SAM format is given in Figure 1.6.

1.2.2 Variant Calling and Allele Frequencies at

Heterozygous Positions

A crucial step in the analysis of NGS data is the identification of

SNV s and other genetic variation from NGS experiments (as de-

scribed in Section 1.1.3) which depends on a number of different

factors, including per-base and mapping quality scores, read length

and the depth of coverage. The choice of the applied strategy de-

pends also on the type of study design as different properties have to

be taken into account. In this work the focus lies on the identifica-

tion of germline mutations which is a main part in the identification

of rare Mendelian diseases. A common representation of all identi-

fied or called variants within a NGS sample is the variant calling

format (VCF ) [36] that is described in Figure 1.8.

The key challenge in variant calling approaches is to distinguishAllelic Inballance

in NGS data between systematic noise, arising for example from specific plat-

form biases (see Table 1.1), PCR artefacts or local misalignments

and actual variations, especially at heterozygous gene loci. Other

sources of an allelic imbalance (AI ) of both alleles in diploid or-

ganisms can be associated with the epigenetic inactivation of one

of the two gene copies, genetic variation in regulatory regions [122]

or tumor development.
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Several approaches to identify variants in a sequenced sample ex-

ists which are either based on a varity of heuristic thresholds or

statistical models.

Assuming the result of an high throughput experiment would be Heuristic

Approacherror free and well covered with a reasonable number of reads per lo-

cus, a strict threshold for the AF would be sufficient to distinguish

between homozygous and heterozygous variants. For instance, a

simple approach to detect heterozygous genomic loci was described

by Bell, et. al [21] as a sensitive method for SNV calling at a cov-

erage of at least 20 reads per locus. Hence a genomic position is

classified as a heterozygous variant if at least two different alleles

were detected and the reference allele frequency (RAF ) is between

14% and 86%. At bi-allelic loci the RAF can be defined by the

ratio of the number of alleles equal to the reference and the total

number of reads at one position.

However, when performing analyses on real NGS data this robust Deviations in the

Distribution of

Allele Frequencies

but uncompromising decision rule is not very popular as it can-

not properly account for noise and biases in the input data that

can be introduced either during the sequencing procedure or by the

alignment process. With larger deviations in between the number

of reference and alternating alleles, frequency heuristics cannot al-

ways separate true heterozygous variants from noise as exemplarily

shown in Figure 1.7. The RAF s of 42757 allele-mixed positions

of a human exome sample which are well covered with at least 20

reads are plotted and the thresholds defined by Bell et al. [21] are

highlighted (Figure 1.7 a)). Figure 1.7 b) shows a position which

has a RAF ≤ 0.14 and is therefore classified as homozygous. Rely-

ing on this approach, this potentially disease causing variant would

have been completely ignored although the AI might be originating

from previously introduced artefacts or biases.

Another effect can be observed as the detected mean RAF is shifted

from the expected value of 0.5 to slightly higher values. This shift

can be explained by two well known biases which occur during
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in vitro as well as in silico processes. The SureSelect exon en-

richment workflow [51] applies 120bp antisense oligonucleotides, or

baits, which are designed for the haploid reference sequence of the

latest Human Genome Build to select targets out of a set of ran-

domly sheared, adaptor ligated and PCR-amplified total human

DNA. Hybridisation of fragments containing common variants may

be weaker as compared to hybrids without mismatches which leads

to a slight advantage for the reference allele to be enriched. A sec-
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Figure 1.7: Mis-ballance of allele frequencies at heterozygous positions.
a) The reference allele frequency (RAF ) at 42757 Allele-mixed loci of a
human exome (HG00119 ), that are at least covered with 20 reads (gray
distribution). Compared to the expected binomial distribution (solid
line) the detected mean RAF of 0.5 is slightly shifted towards higher
values, which can be explained either by a bias introduced in the PCR
amplification step or by mapping artefacts. b) Displayed is an enlarged
view of a position that is covered with a total number of 93 reads (not
all reads are shown), of which 11 reads are representing an alternating
allele (A). Using the simple ratio-based approach as proposed by Bell et
al. [21] a RAF of ∼ 0.88 would classify this position as homozygous for
the reference allele G and would not be considered in further analysis
steps. On the contrary, a probabilistic model (such as GATK ) identifies
this locus as a heterozygous variant.
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ond bias may be found in the alignment process, where all short

sequence reads are mapped to the haploid reference sequence. A

combination of short read lengths, low base quality, caused by non-

reference variants in the fragments, and a low sequence complexity

may result in mapping errors and consequently leads to a reduced

mapping ratio of non-reference allele fragments [37, 101]. Though

these biases lead to a slight deviation of the detected mean refer-

ence AF , they do not influence the variance of the AF distribution.

Over the last years, several probabilistic methods have been de- Probabilistic

Methodsveloped to identify SNV s from NGS experiments by generating ro-

bust estimates of the probabilities of each of the possible GT s and

a comprehensive overview is given for example by [89]. To date,

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE

Chr20 14370 rs6054257 G A 29 PASS DP=14;AF=0.5 GT 1|1

##fileformat=VCFv4.0
##phasing=partial
##INFO=ID=DP,Number=1,Type=Integer,Description=”Total Depth”
##INFO=ID=DP,Number=1,Type=Integer,Description=”Total Depth”
##INFO=ID=AF,Number=.,Type=Float,Description=”Allele Frequency”
##FILTER=ID=q10,Description=”Quality below 10”
##FORMAT=ID=GT,Number=1,Type=String,Description=”Genotype”

Chr20 47781 . C T 11 PASS DP=21;AF=0.1 GT 0|1
Chr20 17330 . T A 4 q10 DP=6;AF=0.017 GT 0|1
Chr20 19999 microsat GTC G 40 PASS DP=11 GT 0/1

a)

b)

Figure 1.8: The VCF format. (adapted from [7]) The variant calling
format is a tab-delimited text format, that consist of meta-information,
including the header line (a)) and data lines for each position in the
genome (b)). The header line starts with ’#’ and lists eight fixed,
mandatory fields for the chromosome (CHROM ), the genomic position
(POS ), the dbSNP identifier (ID), the reference base (REF ), a comma
separated list of alternating Alleles (ALT ), the phred-scaled quality
score for the variance call (QUAL), a column that gives information
if the position has passed all filtering criteria (FILTER) and additional
information such as the total read depth, DP, of a position or the allele
frequency (AF ) (INFO). These information is followed by a FORMAT
column header and an arbitrary number of SAMPLE identifiers. The
genotype (GT ) for each sample is always encoded with a 0 for the ref-
erence allele and a 1 for the alternating allele. Phased GT s are charac-
terised with a separating ’|’ and with ’/’ otherwise.
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commonly used probabilistic methods for variant calling apply al-

gorithms based on Bayes’ Theorem, named after Thomas Bayes

(1702 – 1761) (e.g SAM tools [69] or the Unified Genotyper of The

Genome Analysis Toolkit (GATK ) [83, 38, 117]). This allows to

compute the conditional probability for a GT dependent on the

available data D which are the aligned reads :

P(GT |D) =
P(GT )P(D|GT )∑
i P(GTi)P(D|GTi)

, (1.3)

whereas P(GT ) defines the prior probability of seeing this GT and

P(D|GT ) gives the likelihood of GT . The notation GTi refers to the

ith out of 10 possible diploid GT s at each position, GT ∈ {AA, AC ,

..., GT , T T}. Tools that utilize this approach differ, dependent

of the applied models for the calculation of the prior probabilities

and the likelihood of the GT . The variant calling approach imple-

mented in the software package GATK (Unified Genotyper) utilizes

an algorithm that relies on a likelihood function that is based on

the decomposed haplotypes H1 and H2 for every read j [3] [83]:

P(D|GT ) =
∏
j

(
P(Dj|H1)

2
+

P(Dj|H2)

2

)
, (1.4)

assuming GT = H1H2.

Finally, the likelihood function P(Dj|H) uses the pileup of bases b

and associated reversed phred quality scores ε at a given locus with

P(Dj|H) = P(Dj|b) and

P(Dj|b) =

1− εj Dj = b

εj
3

otherwise
(1.5)

The prior probability of observing a GT is usually calculated as-

suming an underlying binomial distribution of the read count data,

as also shown in Figure 1.7 a).
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Another variant caller of the GATK package, the HaplotypeCaller,

is considered as the state-of-art variant calling algorithm as it per-

forms a local de novo assembly of haplotypes around each genomic

site and identifies variants with high accuracy, especially on IN-

DELs . However, in a direct comparison the Genotype Caller out-

performs the Haplotype Caller in terms of run time.
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1.3 Quality Control and Filtering

Techniques

1.3.1 Quality Measurements in NGS Data

Once sequencing Reads from NGS experiments are obtained and

aligned against a suitable reference genome and variants are de-

tected, several filtering criteria can be applied, on the one hand

to shrink the search space for variant detection and on the other

hand to reduce sources of platform and sequencing specific errors

and biases.

The average sequencing depth or coverage is often used to denoteSequencing Depth

the breadth of sequence coverage of a target region which is defined

as the percentage of the region that is sequenced a given number of

times. A commonly used target region which is applied in diverse

WES studies is the consensus coding sequence as defined by the

collaborative consensus coding sequence (CCDS ) project [95]. In

practice, a good quality exome sample should yield an average se-

quencing coverage of 50× and achieve a 90% breadth of coverage of

the target region at a minimum depth of 10 reads [80]. This is also

illustrated in Figure 1.9, where the coverage distribution over the

CCDS target region of 123 Illumina WES experiments is shown.

In general sequencing of more reads at higher depths improves the

confidence level in downstream variant calls. However platform and

sequence specific biases, such as a GC bias that is introduced during

DNA amplification, yield varying sequencing coverages at different

genomic areas or even result in regions with no coverage at all. The

distribution of the mean GC content against the mean coverage of

57 exome samples sequenced by the 1000 genomes project (1KGP)

is shown in Figure 1.10.

The term coverage can also refer to the number of reads that alignPer-Base

Coverage to a particular position in the genome which correlates strongly

with the degree of confidence for variant discovery that is higher
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Figure 1.9: Coverage of target region. Exomes of 123 samples were
sequenced on a HiSeq 1500 platform [6] and exonic regions were cap-
tured using the SureSelect Human All Exon V 5 kit from Agilent [2].
Duplicated sequencing reads were removed from each alignment using
SAM tools [13] and a threshold of a minimum MAPQ ≥ 1 was applied.
The figure visualizes the fraction of the captured target region that is
covered with a minimum number of reads (blue lines). For instance tak-
ing the mean fraction of all samples (solid red line) 0.98% of the target
region is covered by a minimum of 10 reads (gray dotted line). A good
quality sample is considered if at least 90% of all positions in the target
region were covered by at least 10 reads (green box).

for well covered positions. This is why a minimum per-base cover-

age threshold is often used as a first quality criterion to filter for

high confidence variant calls.

In most NGS analysis pipelines a phred -scaled quality score is Genotype Quality

provided for each identified GT which is a measure of confidence

for the call (QUAL, see Figure 1.8):

QGenotype Call = −10log10P(wrong genotype) (1.6)

Algorithms that assume a certain distribution of the sequenced

reads at heterozygous positions may introduce biases for locations

with AFs deviating from the expected value of 0.5 and the phred -
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Figure 1.10: GC content against coverage. WES sequence alignments
from 57 individuals produced by the 1KGP were used to calculate the
mean GC content and sequence coverage in a window of 400 bps in for
the CCDS target region. A strong deviation of the distribution from the
expected mean of 0.5 can be explained by the low coverage in GC -poor
or GC -rich regions.

scaled quality score would decrease the more the ratio of reads

supporting the alternate allele deviates from the expected mean.

However, this quality score not only depends on the raw data but

also on the mapping algorithms and probability models that were

used for variant calling. Processing the same raw data by different

bioinformatic pipelines may result in varying distributions of qual-

ity scores suggesting different genotyping error profiles for the same

exome sample. Even variant calling approaches that are based on

similar Bayesian methods do not yield the same GT probabilities

due to different priors and methods of quality score recalibration

cannot completely adjust for that effect (see Table 1.4) [115].

The variance of reference AFs as shown in Figure 1.11 may also be

an indicator for quality in NGS experiments as it is associated with

the error rates in heterozygous variant detection. As exemplarily

shown in Figure 1.7 variants with an AF that is strongly deviating

from the expected mean of 0.5 may be missed by variant calling
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Table 1.4: Quality measurements in VCF files. (adapted from Hein-
rich et al. [115]) Short sequence reads of test Sample #1 and #2 and
a sample from the 1KG reference set, NA06986, were down-sampled to
comparable mean per-base coverages over the target region. The mean
GT quality scores for all three samples drop with a decreasing coverage,
indicating an increasing false positive error rate. It can also be observed
that different priors in the genotyping models used by SAM tools and
GATK result in different mean GT quality scores for the same align-
ments (a)). Quality score recalibration with GATK VariantRecalibrator
performed on SAM tools- and GATK -called variants adds an adjusted
quality score, VQSLOD (log odds ratio of being a true variant versus be-
ing false under a trained Gaussian mixture model) which diverge greatly
between the two variant calling tools (b)). All variants that pass the
VQSLOD score cutoffs identified by the VariantRecalibrator are then
defined as a set of highly confidential calls. The percentage of this set
shows an irregular behaviour with respect to the mean per-base coverage
of the different samples (c)).

Sample #1 Sample #2 NA06986

Coverage 30 50 65 30 65 100 142 30 65 100 313

a) Mean Genotype Quality

SAM tools 83.4 88.0 89.7 84.7 91.8 93.4 94.4 77.2 87.3 90.4 94.8
GATK 81.6 87.7 89.8 81.7 91.2 93.4 94.7 73.1 85.1 89.4 94.7

b) Mean VQSLOD Score

SAM tools 14.12 13.69 14.46 14.58 11.32 14.46 14.89 12.69 1.94 15.68 1.86
GATK 4.21 3.33 3.09 3.33 -0.34 -0.05 0.51 2.15 2.02 1.94 1.59

c) % High Confidential Calls

SAM tools 93.8 94.0 93.9 92.3 91.8 92.1 96.5 91.4 85.2 91.2 88.0
GATK 90.9 91.0 90.9 82.7 81.7 84.4 86.2 85.7 83.3 81.4 76.9

algorithms.

Other quality metrics can be applied to the entire set of variant Additional Quality

Metricscalls in a VCF file such as the percentage of SNV s that are already

listed in databases such as dbSNP [107], the ratio of homozygous

and heterozygous variant calls and the ratio of transitions (Tis)

and transvertions (Tvs). There are two types of DNA substitutions
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Figure 1.11: Allele frequencies at heterozygous positions. The refer-
ence allele frequencies (AFs) of 123 exome samples were calculated for
heterozygous loci with at least one alternating allele. By comparing the
average distribution over all samples (red solid line) and the assumed
binomial distribution, one recognizes that the detected mean reference
AF differs from the expected value of 0.5 which is due to well known
biases introduced during in vitro as well as in silicio processes.

in SNV s: transvertions are interchanges of purine for pyrimidine

bases, transitions describe substitutions within purines or pyrim-

idines. For the CCDS region, the Ti/Tv ratio should be close to

1 : 3 and the proportion of variants that are not listed in dbSNP ,

also referred to as singletons, should be below 10% [18, 115]. How-

ever, the Ti/Tv ratio is influenced by the target region and the

correlating amount of non-coding variants, whereas the number of

novel variants may also correlate with the background population.

For example, higher ratios of novel variants may be observed if the

sequenced sample is of a population that is poorly represented in

the variant databases [115].
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Table 1.5: Additional quality parameters in VCF files. Shown are the
mean (µ) and the standard deviation (σ) of different quality measure-
ments obtained from 123 VCF files based on WES , that were restricted
to the exome target region defined by CCDS : the total number of SNV s
in the target region, the percentage of SNV s that are present in dbSNP
(version 138), the ratio between heterozygous and homozygous GT s
(het/hom) and the ratio between transitions and transvertions (Ti/Tv).

# of SNV s % in dbSNP het/hom Ratio Ti/Tv Ratio

µ 24646 0.98 1.70 0.88
[−/+ σ] [24195− 25098] [0.98− 0.98] [1.59− 1.81] [0.84− 0.93]

1.3.2 Strategies to Filter for Diseases in NGS

Studies

With WES experiments yielding about 20000 to 24000 protein al- Annotation of

Variantstering variants, depending on the background population [19], the

interpretation of all SNV s remains challenging in terms of com-

plexity and time expenditure. The separation of disease-related

variants which are associated with Mendelian or complex traits

from the background of non-pathogenic polymorphisms is still the

key issue. Several approaches have been developed to simplify the

search space by applying annotations for variants, including allele

frequencies (AFs), the functional impact on gene expression, path-

way informations and predictions for the expected pathogenicity

(e.g. MutationTaster [106], ANNOVAR [123], VariantDB [118],

GeneTalk [60]). However, several tools applied for annotations such

as ANNOVAR or MutationTaster may rather be used for prioriti-

zation as the assessment of human expertise may not be replaced

yet [60].

Mendelian traits are passed down by recessive or dominant alle- Filter for

Inheritanceles of only one gene and depending on the inheritance model and
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available sequenced relatives, different filtering strategies can be

applied. The additional sequening of family members is common

practice when studying Mendelian disorders and filtering strategies

and linkage analysis are usually applied. Genetic linkage analysis

is a powerful approach to identify two loci in close proximity which

are likely to be inherited together via the calculation of logarithm

of the odds (LOD) scores.

When analysing trios (parents and one offspring) variants which

are present in the patient that could not have been inherited from

the parents can be easily filtered (Non-Mendelian trait). These

would most likely be an indication for either sequencing artefacts

[92] or de novo mutations, especially whenever the disorder is highly

heterogeneous and de novo mutations are the most promising can-

didates [119]. To give another example, when analysing sequencing

samples from patients with rare recessive diseases the most likely

underlying inheritance model is compound heterozygosity, at least

in non-consanguineous families [61]. Additionally non-related in-

dividuals can help to filter for non-pathogenic variants. However,

these filtering approaches rely on the presence of correct pedigree

information and have to be additionally adapted when analysing

highly consanguineous families. Another popular approach for de-Association

Studies tecting variants at genomic loci that are associated especially with

complex traits which are hard to resolve via the analysis of just

one single pedigree is referred to as genome wide association stud-

ies (GWAS ). This technique is based on the hypothesis of strong

associations between common SNPs and common diseases such as

heart diseases or psychiatric disorders. While common variants

typically have modest effect sizes, rare variants, especially those

in coding regions, can have larger effect sizes with greater poten-

tial to influence disease. While population-based variant callers

such as GATK have improved the accuracy of GT s for low fre-

quency variants, they perform poorly when identifying singletons

and doubletons [26]. Therefore rare variants have a high heterozy-
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gote to homozygote error rate. Additionally GWAS for common

variants usually require a large amount of case and control samples

to guarantee sufficient power and possible population substructures

or varying data quality within the samples may influence the disease

gene discovery [127].
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This work is devoted to various aspects of quality measurements

in next generation sequencing (NGS ) and especially in whole ex-

ome sequencing (WES ) studies. Three strategies for quality control

(QC ) will be presented which focus on different parts of an WES

experiment.

During the introduction (Chapter 1) various levels in the analy-

sis of exome experiments were highlighted and existing tools and

strategies were introduced. The following chapters are focusing on

remaining uncertainties in quality assessment of WES experiments.

To be more specific, in the third chapter (Chapter 3) I will study the

distribution of the variance of allele frequencies (AFs) at heterozy-

gous genomic loci as measured in NGS data sets as this is a cru-

cial pre-requisite for variant calling algorithms based on Bayesian

models such as SAM tools or GATK as explained in Section 1.2.2.

For this I will define the amplification of sequence fragments dur-

ing library preparation as described in Section 1.1.1 as a two-type

(Bienayme-) Galton-Watson (BGW ) branching process. I will then

analyze the effect of different parameter values analytically as well

as on simulations and finally compare the results with real NGS

data sets.

In the fourth chapter (Chapter 4) I will demonstrate the importance

of different background populations that have to be taken into ac-

count during the analysis of sequencing samples. I will introduce

a new similarity metric, weighted with population based allele fre-

quencies (AFs) that can be used to access the overall genotyping

accuracy of an exome. For this I will make use of a high quality

reference set comprising 2535 genotyped exome samples which were

sequenced by the 1000 genomes project (1KGP) as introduced in

Section 1.1.4.

Section 1.3.2 highlighted different strategies for efficient filtering

and prioritization of possible disease causing variants, which are

depending on correct pedigree information. In Chapter 5 I will

systematically describe likelihood ratio (LR) based approaches to
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reconstruct entire pedigrees which also take rare marker loci into

account. I will give a description for the calculation of logarithm of

the oddss (LODs) scores for different genotype combinations based

on five predefined relatedness hypotheses and study the effects of

the number of variants and the degree of consanguinity on the pre-

cision values.

Finally I summarize and discuss the major results from the sep-

arated chapters and give an outlook for future research projects

(Chapter 5).

Additionally I would like to give some general information about

the formal structure of this thesis. Each of the three main chap-

ters (3, 4 and 5) is constructed with a similar layout. First, each

chapter starts with a short overview (Overview of this Chapter)

and introduces some basic knowledge that is related to the specific

topic of the chapter (Introduction to [...]). The following sections

describe the actual work I have done during my Ph.D.. Finally,

each chapter includes a section where the obtained results are val-

idated (Experimental Validation) and a short summary (Summary

of this chapter).
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3.1 Overview of this Chapter

This chapter focuses on the distribution of allele frequencies (AFs)

at heterozygous genomic loci as measured in whole exome sequenc-

ing (WES ) data sets. A lot of variant detection tools rely on the

assumption that the allele frequencies (AFs) at heterozygous po-

sitions follow a binomial distribution. But as exemplarly shown

in Figure 1.7 the variance of the reference allele frequency (RAF )

can be much broader compared to an expected binomial distribu-

tion, which can lead to a misclassification of variants. This can

be explained by a bias introduced in the polymerase chain reac-

tion (PCR) amplification step during library preparation before

sequencing as described in Figure 1.3. In the following sections

the amplification of sequence fragments is described as a stochas-

tic process, depending on the number of cycles, the initial amount

of fragments and the amplification efficiency. Hence I will first

introduce the concept of stochastic processes, Markov chains and

(Bienayme-) Galton-Watson (BGW ) branching processes in par-

ticular. These stochastic concepts are then applied to the fragment

amplification step which results in a single function of the variance

of the fragment distribution. The effects of these parameters are

analysed on simulated data as well as on real life WES samples.

Note that the results of Section 3.4.2 were obtained in collabora-

tion with Prof. Dr. Peter Imkeller, Jun.-Prof. Dr. Thorsten Dick-

haus and Jens Stange from the Department of Mathematics at the

Humboldt-University in Berlin whom I would like to acknowledge

at this point.
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3.2 Introduction to (Bienayme-) Galton-

Watson (BGW) Branching Processes

3.2.1 Stochastic Processes

In probability theory a stochastic or random process is a collection Stochastic Process

Xk{Xk : k ∈ K} of random variables on a probability space (Ω,F ,P)

whereby the sample set Ω is defined as the set of all possible out-

comes, the σ-algebra F is a collection of subsets of possible out-

comes and the probability measure function P assigns probabilities

to each subset of Ω [23]. Although K can be quite arbitrary, in

most cases, K is a set of integers and k is interpreted as time.

To every time point k corresponds a random variable, for instance

Xk : Ω → R, which means that to every outcome ω 7→ Xk(ω),

ω ∈ Ω, corresponds a realization of the stochastic process which is

a function defined on the index set K and values in R.

A stochastic process can be characterized by its finite distribution Distribution

Function Fk̂(x)function for any fixed k̂:

Fk̂(x) = P(Xk̂ ≤ x), ∀x ∈ R. (3.1)

Considering a more generalized form with several quantities

Xk1 , Xk2 , ..., Xkn , n ∈ N, the corresponding joint n−dimensional

distribution function is denoted as following:

F~k(~x) = Fk1,...,kn(x1, ..., xn) = P(Xk1 ≤ x1, ..., Xkn ≤ xn). (3.2)

Each family of finite dimensional distribution functions as defined Consistency

Conditionsin Equation 3.2 satisfy the following consistency conditions [62]

1. (Symmetry) The n− dimensional distribution function is sym-

metric in all pairs (xj, kj), so that F~k(~n) remains invariant for

every permutation of (j1, j2, ..., jn):
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Fkj1 ,...,kjn (xj1 , ..., xjn) = Fk1,...,kn(x1, ..., xn) (3.3)

2. (Consistency) Knowing the n−dimensional distribution im-

plies knowing all lower order distributions:

lim
xn→∞

Fk1,...,kn(x1, ..., xn) = Fk1,...,kn−1(x1, ..., xn−1) (3.4)

Stochastic processes can be classified by imposing suitable restric-Classification of

Stochastic

Processes

tions on their n-dimensional distribution functions:

1. (Stationary) process A stochastic process is stationary if its

finite dimensional distributions are invariant under arbitrary

translation of the parameter k ∈ K.

2. (Gaussian) process For gaussian or normal processes the joint

distribution functions are multivariate normal.

3. (Markov) process Given a random variable Xk, the value of

(Xs)s 6=k does not depend on the values of (Xu)u6=k,s for

u < k < s.
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Figure 3.1: Examples of simple stochastic processes. a) A realization of
the i.i.d noise process which consists of a series of uncorrelated random
variables {Xk : k ∈ Z}. b) Two sample paths of the random walk Rn
with {Xk : k ∈ N} and Rn = X1 +X2 + · · ·+Xn.
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One fundamental stochastic process from which many other sta- Examples of

Stochastic

Processes

tionary processes are derived is the so-called i.i.d noise process,

which is defined as a series of uncorrelated random variables {Xk :

k ∈ Z}, each with a zero mean and the same finite variance as illus-

trated in Figure 3.1 a). Another classic example of a stochastic pro-

cess is the random walk, Rn, which can be defined as a sequence of

accumulated independent random numbers Rn = X1+X2+···+Xn

with {Xk : k ∈ N}, usually starting with Xk0 = 0 [23] as shown in

Figure 3.1 b).

A special case of stochastic processes is the Markov process, named Markov Processes

after Andrei Markov, which is described as a random process with

the so-called Markov property which is that the conditional prob-

ability distribution of future states of the process depends only on

most recent present state and not on the past states (also referred

to as memoryless):

P(Xk+1 = sk+1|X0 = s0, X1 = s1, ..., Xk = sk) =

P(Xk+1 = sk+1|Xk = sk), (3.5)

with s0, ..., sk, sk+1 ∈ S whereas S defines the state space and

P(X0 = s0, X1 = s1, ..., Xk = sk) 6= 0.

A distinction is made between a Markov process in discrete and

continuous time depending on the nature of S and the ordered in-

dex set K.

If both variables are based on discrete time values, k ∈ N0 the Markov Chains

stochastic process is referred to as Markov chain with the following

transition probability function:

plm(k) = P(Xk+1 = m|Xk = l), (3.6)

with m, l ∈ S where l,m = 1, ..., n and S is a denumerable index

set.

One special class of Markov chains which is often adapted to popu-
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lation dynamics is the (Bienayme-) Galton-Watson (BGW ) branch-

ing process and will be described in the following section.

3.2.2 (Bienayme-) Galton-Watson Branching

Processes

Consider a not further specified evolution population of particles

with non-overlapping generations. Each individual of the popula-

tion has a fixed lifetime of one time unit k ∈ N0 and reproduces a

random number of descendants according to the same distribution

before death, independent of the number of ancestors. Starting with

Xk0 particles at time point k = 0 each of it splits independently of

the others into a random number of offspring, namely the first gen-

eration, according to the transition probability function plm(k) as

defined in Equation 3.6. The process continues and the number of

descendants produced by a single particle at any given time k is in-

dependent of the history of the process and other existing particles.

In the following most definitions were taken from Athreya and Ney

[17] unless stated otherwise.

The transition probability function given a reproduction distribu-Transition

Function tion (pm)m≥0 with (pm)m≥0 ≥ 0 can be defined as follows:

plm(k) = P(Xk+1 = m|Xk = l) =

{
p∗

(l)

m , l ≥ 1,m ≥ 0

δ0m , l = 0,m ≥ 0
, (3.7)

whereas p∗
(l)

m is the l−fold convolution of (pm)m≥0 and δ0m defines

the Kronecker symbol:

δ0m =

{
1 , l = m

0 , else
. (3.8)

Let {Xk, k ∈ N0} be a branching process with initially X0 par-

ticles and Xk particles in the kth generation. Further denote the

46



probability generating function Fk(s):

Fk(s) = E[sXk ] =
∞∑
m=0

pms
m,∀|s| ≤ 1 (3.9)

with the reproduction distribution (pm)m≥0 and the following no-

tations:

F0(s) = s (3.10)

F1(s) = F (s) (3.11)

Fk+1(s) = F [Fk(s)] (3.12)

By repeated application of the branching process Xk, additive Multi-Type

(Bienayme-)

Galton-Watson

Processes

property of the BGW process can be used which can be under-

stood as a set of l independent copies of the branching process.

To be more specific the multi-type BGW branching process { ~Xk :

k ∈ N0} = (Xk(1), Xk(2), ..., Xk(d)) is denoted as a set of d ∈
N independent processes at time k. To define the particle pro-

duction of the d-type branching process d generating functions
~Fk(s) =

(
F

(1)
k (s), ..., F

(d)
k (s)

)
are needed. The ith generating func-

tion,
{
F

(i)
k (s)

}
i∈1,...,d , will determine the distribution of the number

of offspring of various types to be produced by a type i particle.

As motivated in Equation 3.9 one can define the probability gen- Probability

Generating

Function

erating function for the multi-type BGW process { ~X(k); k ∈ N0}
as done by Yakovlev and Yanev ([126]):

~Fk(s) = E
[
s
~Xk |X0(1)

]
= E

{
s
Xk(1)
1 s

Xk(2)
2 · · · sXk(d)d |X0(1) = 1

}
(3.13)

with s = (s1, s2, ..., sd) and |si| ≤ 1, i = 1, ..., d.

In other words, ~Fk(s) denotes the number of particles in the kth

generation with initially 1 particle. Unlike one-dimensional BGW

branching processes multi-type processes allows to study a number
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of distinguishable particles with different probabilistic behaviour.

As the main focus in the theory of branching processes is on proba-

bilistic characteristics of the multi-type process ~Xk and its asymp-

totic behaviour, I will concentrate on the behaviour of ~Xk when

the initial number of ancestors is large and the time point k of

observation is fixed. This aspect will become especially important

when focusing on relative frequencies of different particle types as

described in the next section.
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3.3 Asymptotic Behaviour of the

Relative Frequencies

The analysis of relative fractions of a set of distinguishable types of

particles is useful when studying for example proliferation or differ-

entiation of cells. However the main focus in previous studies was

rather on the number of particles but not on their relative frequen-

cies. Yakovlev and Yanev [126] suggested an approach to study the

asymptotic behaviour of the fractions of different particle types Ti,

which is denoted as ∆i(k;N), as the initial number of ancestors,

denoted as N tends to infinity (N → ∞) assuming a fixed time

point k.

Consider a multi-type BGW process ~Xk with X
(i)
k defined as the to-

tal number of particles of a finite number of different particle types

Ti and U(k) =
∑d

i=1X
(i)
k denotes the total number of particles at

time point k ∈ N0.

All moments of a branching process can be obtained from the

probability generating function ~Fk(s) as motivated in Equation

3.13 and expressed in terms of the derivates of ~Fk(s) evaluated

at ~s = (1, 1, ..., 1).

Therefore the mean of the process X
(i)
k can be determined as Mean mi(k)

follows:

mi(k) = E[X
(i)
k |X

(1)
0 = 1] =

δ

δi
~Fk(s) |~s=(1,1,...,1) . (3.14)

The normalized mean qi(k) will be important for the long-time

behaviour of multi-type BGW processes:

qi(k) =
mi(k)∑d
j=1mj(k)

. (3.15)

As stated by Georgii [54] the variance of the process can be ob- Variance σ2i (k)
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tained as follows:

σ2
i (k) = V ar[X

(i)
k |X

(1)
0 = 1] =

δ2

δ2i
~Fk(s) |s=(1,1,...,1) +mi(k)− (mi(k))2 (3.16)

With the assumption of a finite covariance matrix Cij(k), it follows:Covariance

||Cij(k)||
Cij(k) = ||Cov[X

(i)
k , X

(j)
k ]||i 6=j =

δ2

δiδj
~Fk(s) |s=(1,1,...,1) −mi(k)mj(k) (3.17)

Let ∆i(k) be defined of the relative frequency of the non-extinctionRelative

Frequency ∆i(k) set {U(k) > 0}, the total number of particles at time point k is

denoted as follows:

∆i(k) =
Xi(k)

U(k)
(3.18)

with the propoerty
∑d

i=1 ∆i(k) = 1.

The development of the process X
(k)
k strongly depends on the num-Number of Initial

Particles N ber of initital particles X
(i)
0 = N and thus the following notation

holds (as motivated by Yakovlev et al. [126]):

~Xk(N) = (X
(1)
k (N), X

(2)
k (N), .., X

(d)
k (N)) (3.19)

with the property

X
(i)
k (N) =

N∑
n=1

X
(i)
k (n) (3.20)

under the assumption that all particles develop independently with{
X

(i)
k (n)

}
defined as i.i.d copies of the branching process {X(i)

k (n)}Nn=1.

Further the total number of particles at time point k is denoted as:

U(k;N) =
d∑
i=1

X
(i)
k (N) =

N∑
n=1

U (n)(k) > 0 (3.21)
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with U (n)(k) =
∑d

i=1X
(i)
k (n) and E[U(k;N)] =

∑d
i=1mi(k).

Hence, with Equation 3.18, 3.19 and 3.21 it follows:

∆i(k;N) =

∑N
n=1X

(i)
k (n)∑N

n=1 U
(n)(k)

. (3.22)

The law of large numbers (LLN ) will serve as a basis for the fol- The Strong Law

of Large Numberslowing steps. In probability theory the LLN describes the result of

performing the same experiment for a large number of trials. Let

X1, ..., Xn be a sequence of i.i.d distributed random variables with

finite expected value µ = E[X1] = E[X2] = ... = E[Xn] < ∞. The

strong LLN by Cantelli and Kolmogoroff states that the sample

average converges a.s. to the expected value µ as n→∞.

Hence, as stated by Georgii [54]:

1

n

n∑
i=1

(Xi − E[Xi])
a.s.→ 0. (3.23)

which is equivalent to

1

n

n∑
i=1

Xi
a.s.→ µ. (3.24)

For each particle type i the normalized mean qi(k) as defined in

Equation 3.15, can be interpreted as the probability for a randomly

chosen particle i at time point k to be of type Ti. Further, consid-

ering the fractions ∆i(k;N) as defined in Equation 3.22 , ∆i(k;N)

can be seen as a strongly consistent estimator for qi(k). With a

strong LLN one can obtain that ∆i(k;N) converges to qi(k) as

N →∞:

∆i(k;N)
a.s.→ qi(k). (3.25)
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As stated by Yakovlev and Yanev [126], the difference

∆i(k;N)− qi(k) can be obtained using Equation 3.22:

∆i(k;N)− qi(k) =
1

N∑
n=1

U (n)(k)

{
N∑
n=1

X
(i)
k (n)

}
− qi(k)

+0
=

1
N∑
n=1

U (n)(k)

{
N∑
n=1

(
X

(i)
k (n)+mi(k)−mi(k)

)}
− qi(k)

=
1

N∑
n=1

U (n)(k)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
+

N∑
n=1

mi(k)

}
− qi(k)

Equ.3.21
=

1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
+

N∑
n=1

mi(k)

}
− qi(k)

=
1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
+

N∑
n=1

mi(k)− qi(k)U(k;N)

}
Equ.3.21

=
1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
+

N∑
n=1

mi(k)− qi(k)
d∑
i=1

X
(i)
k (N)

}
Equ.3.20

=
1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
+

N∑
n=1

mi(k)− qi(k)
N∑
n=1

d∑
i=1

X
(i)
k (n)

}
· qi(k)
qi(k)=

1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
− qi(k)

( N∑
n=1

[ d∑
i=1

X
(i)
k (n)

]
− mi(k)

qi(k)

)}
Equ.3.15

=
1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
− qi(k)

( N∑
n=1

d∑
i=1

X
(i)
k (n)−

d∑
j=1

mj(k)
)}

=
1

U(k;N)

{
N∑
n=1

(
X

(i)
k (n)−mi(k)

)
− qi(k)

N∑
n=1

d∑
j 6=i

(
X

(j)
k (n)−mj(k) +X

(i)
k (n)−mi(k)

)}

=

√
N

U(k;N)

{
σi(k)[1− qi(k)]Vi(k;N)− qi(k)

d∑
j 6=i

σi(k)Vj(k;N)

}
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with

Vi(k;N) =

N∑
n=1

(
X

(i)
k (n)−mi(k)

)
σi(k)

√
N

and E[Vi(k;n)] = 0 and V ar[Vi(k;N)] = 1.

With the Central Limit Theorem by Lindeberg and Levy [23] the

random variable Vi(k;N) converges in distribution to a normally

distributed variable:

Vi(k;N)
D→ N (0, 1). (3.26)

A vector of i.i.d random variables is said to be multivariate nor-

mally distributed if every linear combination of its components has

an univariate normal distribution [54]. By this the following holds:

(V1(k;N), ..., Vd(k;N))
D→ (X

(1)
k (N), ..., X

(d)
k (N)) (3.27)

whereas the random variables ~Xk(N) have a joint normal distribu-

tion with E[X
(i)
k ] = 0 and V ar[X

(i)
k ] = 1.

With the notations:

Wi(k;N) =
d∑
i=1

mi(k)
√

(N)[∆i(k;N)− qi(k)] (3.28)

and the linear combination of multivariate normal random vari-

ables:

Yi(k) = σi(k)[1− qi(k)]Vi(k;N)− qi(k)
d∑
j 6=i

σi(k)Vj(k;N) (3.29)

the following convergence holds in distribution with N →∞:

Wi(k;N)
D→ Yi(k) (3.30)
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These observations are used in the next chapter, where the obtained

limiting result of multi-type BGW branching processes is of advan-

tage in the study of the evolution of two different allele types A1

and A2 in an amplification process with an initial large number of

fragments.
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3.4 Sequence Fragments after

Amplification

3.4.1 Fragment Amplification as a BGW

Branching Process

As introduced in Section 1.1.1 the enrichment of DNA fragments

during sample preparation includes an amplification step of a cer-

tain number of cycles of PCR which is also illustrated in Figure 1.1.

The assumption of binomially distributed allele frequencies (AFs)

at heterozygous loci is commonly used as prior knowledge in many

currently used variant calling programs (e.g. SAM tools [69] or

GATK [83, 38, 117], Section 1.2.2). However, as shown in Figure

1.11, the distribution of AFs of WES experiments deviates strongly

from the expected mean of 0.5 which can partly be explained by

a bias occuring in the enrichment step before sequencing (Section

1.2.2). Additionally, read mapping algorithms tend to favor the ref-

erence allele. Both systematic biases are rather systematic which

lead to a shifted mean of the allele frequency (AF ) distribution

but leads the variance unaffected, which cannot be observed in real

data (Figure 1.7 and Figure 1.11).

In the following the crucial step of amplification of sequence frag- Fragment

Amplification as

an inhomogenous

Markov Chain

ments during library preparation is modelled as a stochastic process

or, to be more precise as an inhomogeneous Markov chain, with

transition probabilities plm(k) which are dependent of the parame-

ter k, k ∈ K (see Section 3.2.1).

To illustrate this model, one can think of a tube that initially con- Polya’s Urn Model

tains a set of fragments with different alleles such as depicted in

Figure 3.2. The amplification process can be seen as a Polya’s Urn

model whereas balls are drawn from an urn and thrown back to-

gether with additional balls from the same color. In the context of

fragment amplification, performing a finite number of PCR cycles
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{
n1(k)

{
n2(k)

Bin(n1(k), ρ) Bin(n2(k), ρ)

n1(k) + b1(k)

n2(k) + b2(k)

select and copy
independently with probability ρ

return

Cycle
k

Figure 3.2: The amplification of heterozygous alleles before sequenc-
ing. (Adapted from [116]) Consider a tube that initially contains a set
of different alleles. In each PCR step k a certain number of allele type
Ai, ni(k), is drawn from this tube and replaced by ni(k) + bi(k) whereas
bi(k) is the result of a binomially distributed random variable depend-
ing on the cycle- and allele independent variable ρ that gives gives the
probability that a fragment is copied.

K≥0 on each allele Aii∈N is the same as performing a Polya’s Urn

experiment. Note that the process can be applied to all sequence

variants but will just be studied on bi-allelic (autosomal) loci in

the following. Hence, considering only fragments which contain

one variable base of a SNV two classes of fragments can be dis-

tinguished containing either allele A1 or allele A2 with ni(k)i={1,2}

being the number of alleles of type i at cycle step k.

The following assumptions are made:

1. The fragmentation should ideally be random and unbiased
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which means that the extensions into both directions from the

variable position is uniform and only limited by the fragment

size.

2. The initial number of alleles n1(k = 0) and n2(k = 0) are in

the same order of magnitude with the assumption that the

DNA originates from many cells containing the DNA of the

same diploid genome with a total initial number of alleles

N =
∑2

i=1 ni(0).

The distribution of allele frequencies (AFs) after amplification Efficiency of the

PCR reaction ρdepends partly on the cycle independent efficiency of the PCR re-

action represented as parameter ρi for each allele and partly on the

probability that an allele is amplified. Additionally ρ = ρ1 = ρ2 if

considering an allele independent amplification process as done in

the following.

Prior to sequencing sequencing adaptor oligomers are ligated to the

fragments and a PCR is applied for K cycle steps. For a successful

amplification adaptors must be attached to both ends of the frag-

ment and the attachment of the polymerase to the adaptor can be

seen as a prerequisite.

The success of this event only depends on the total number of poly-

merase molecules which remains stable for k and N and in this work

it is preconditioned that a constant number of sequence fragments

will always be bound by polymerase in every cycle.

The probability that a randomly chosen allele Ai is copied in each

PCR cycle k can be described as the transition probability of a

Markov chain. Due to the different amount of fragments in each

cycle k the process is further characterized as inhomogeneous.

With the Markov condition:

P
[(

(n1(k), n2(k)
)∣∣∣(n1(k − 1), n2(k − 1)

)
, ...,

(
n1(0), n2(0)

)]
= P

[(
(n1(k), n2(k)

)∣∣∣(n1(k − 1), n2(k − 1)
)]
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the probabilities of the three possible transitions of a randomly

chosen allele Ai in cycle step k can be denoted as

P
(
n1(k), n2(k)

)
→ (n1(k) + 1, n2(k)) =

n1(k)

n1(k) + n2(k)
· ρ

P
(
n1(k), n2(k)

)
→ (n1(k), n2(k) + 1) =

n2(k)

n1(k) + n2(k)
· ρ

P
(
n1(k), n2(k)

)
→ (n1(k), n2(k)) =1− ρ,

whereby ρ is the probability that a fragment is copied. The ratio[
ni(k)/

∑
i ni(k)

]
i∈{1,2} describes the proportion of allele Ai after

the kth amplification step and can be interpreted as the expected

AF measured by sequencing multiple read fragments in this pool.

With this definitions the system can be reduced to:(
n1(k + 1), n2(k + 1)

)
=
(
n1(k) + b1(k), n2(k) + b2(k)

)
, (3.31)

whereas bi(k)i∈{1,2} are realizations of binomially distributed ran-

dom variables B(ni(k), ρ)i∈{1,2}.

The distribution of the fragments of two allele types A1 and A2 atFragment

Amplification as a

BGW Branching

Process

the k+ 1th cycle step can be described as a cycle-dependent BGW

branching process.

Therefore, let ξ
(i)
n.k denote two independent triangular arrays of

stochastically independent random bernoulli distributed variables

for allele types Ai ∈ {1, 2}:

P(ξ
(i)
n,k = 2) = ρi = 1− P(ξ

(i)
n,k = 1), (3.32)

whereas n ranges from 1 to ni(k−1) and the parameter ρi, i ∈ {1, 2},
reflects the probability of a successful amplification of one fragment.

This leads to a two-type BGW branching process (X1
k , X

2
k)k≥0 with

an initial number of ni(0) fragments. The following recursive defi-
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nition holds:

X
(i)
k = ξ

(i)
1,k + · · ·+ ξ

(i)

(X
(i)
k−1), k

=

X
(i)
k−1∑
n=1

ξ
(i)
n,k (3.33)

The focus in this work will be on the proportion of alleles of type

Ai after k PCR cycles as defined in Equation 3.22. For two allele

types A1 and A2, this can be described as

Proportion of

alleles Ai after k

Cycles, ∆
(i)
k

∆
(i)
k =

X
(i)
k

X
(1)
k +X

(2)
k

(3.34)

To study the asymptotic behaviour of ∆
(i)
k the central limit theorem

(CLT ) as proven by Yakovlev and Yanev [126] will be utilized for

n1(0) ≈ n2(0) ≈ N and N →∞:

(m1(k) +m2(k))
√
N(∆

(i)
k − qi(k))

D→ Z(i) (3.35)

with

mi(k) :=E[Xk(i) | X0(i) = 1] and

qi(k)) =
mi(k)

m1(k) +m2(k)
, i ∈ {1, 2}.

It should be noted, that the limiting variable Z(i) is normally dis-

tributed with mean 0 and variance ai(k)2:

ai(k)2 = σ2
1(k)(1− qi(k))2 + σ2

2(k)(qi(k))2, (3.36)

whereby

σ2
i (k) = V ar[X

(i)
k | X

(i)
0 = 1]i∈{1,2}.

The entire process is determined by its probability generating func-

tion as introduced in Section 3.2.2 and will be used in Section 3.4.2
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to derive the first two moments of the two-type BGW branching

process (X
(1)
k , X

(2)
k )k≥1.

3.4.2 Variance of ∆i
k

Assuming independence of positions and individuals the marginalDerivation of the

PGF for a

Two-Type BGW

Branching Process

PGF of the two branching processes X
(1)
k and X

(2)
k can be consid-

ered for one allele type A1 which is denoted by ~Fk(s) as defined in

Equation 3.13.

Using Equation 3.33:

~Fk(s) = E
[
sX

(1)
k

∣∣∣n1(0)
]

= E
[
E[sX

(1)
k |X(1)

k−1]
∣∣∣X(1)

0 = n1(0)
]

= E
[
E[s

X
(1)
k−1∑
n=1

ξ
(1)
n,k

|X(1)
k−1]

∣∣∣X(1)
0 = n1(0)

]
By Equation 3.32 it follows for any |s| ≤ 1 that:

E
[
sξ

(1)
n,k

]
= P[ξ

(1)
n,k = 1] · s

[
ξ
(1)
n,k = 1

]
+ P[ξ

(1)
n,k = 2] · s

[
ξ
(1)
n,k = 2

]
= (1− ρ1)s+ ρ1s

2

and assuming stochastic independence of the ξ’s leads to:

~Fk(s) = E
[(

(1− ρ1)s+ ρ1s
2
)X(1)

k
∣∣∣n1(0)

]
(3.37)

In the following
(
(1− ρ1)s+ ρ1s

2
)

will be substituted by ϕ(s) and

with this the PGF can be formulated as:

~Fk(s) = E
[
ϕ(s)X

(1)
k−1
∣∣∣X(1)

0 = n1(0)
]

(3.38)

For the following the concept of function composition will be ap-Composition of

Functions plied which is a point-wise application of one function f1(x) to the

60



result of another function f2(x) with f1(x) ◦ f2(x) = f1(f2(x)).

With the notation ϕ1 = ϕ and the composition ϕk = ϕ ◦ ϕk−1 for

k ≥ 2 it follows:

~Fk(s) = E
[
ϕ ◦ ϕ(s)X

(1)
k−2
∣∣∣X(1)

0 = n1(0)
]

= E
[
ϕ ◦ · · · ◦ ϕ(s)X

(1)
0

∣∣∣X(1)
0 = n1(0)

]
=
(
ϕk(s)

)n1(0)

With Equation 3.14 and 3.16 one can formulate the following lim-

iting behaviours:

m1(k) = lim
s→1

δ

δs
~Fk(s) (3.39)

σ2
1(k) = lim

s→1

δs

δs2
~Fk(s) +m1(k)− (m1(k))2. (3.40)

For the special case n1(0) ≡ 1 and ϕk(s) is considered as a smooth

function one can calculate the first and second derivative of ϕk(s)

with respect to s in 1.

Note that ϕ(1) = ((1 − ρ1) · 1 + ρ1 · 12) = (1 − ρ + ρ) = 1 and

ϕk(1) = 1 for all k ≥ 1. Moreover, the first derivative of ϕ with

respect to s is given by:

ϕ
′
(s) =

δ

δs
ϕ(s) = (1− ρ1) + 2ρ1s, (3.41)

which leads to ϕ
′
(1) = 1 + ρ1.

The second derivative is then given by:

ϕ
′′
(s) =

δs

δs2
ϕ(s) = 2ρ1. (3.42)
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By application of the chain rule, which can be generalized as

(f1 ◦ f2)
′
= (f

′
1 ◦ f2)f

′
2, one can obtain the following:

δ

δs
ϕk(s) =

δ

δs

(
ϕ(ϕk−1(s))

)
= ϕ

′
(ϕk−1(s)) · (ϕk−1(s))′

and with iterating it follows:

δ

δs
ϕk(s) |s=1

Equ.x.xx
= (ϕk(1))

′

Equ.3.41
= (1 + ρ1)

k

Equ.3.39
= m1(k).

(3.43)

For the calculation of the second derivative δ2

δs2
ϕk(s) |s=1, the gen-

eralized chain rule by Faà di Bruno [39] can be applied, which can

be formulated as follows:

δ2

δs2
(f1 ◦ f2)(x) = f

′′

1 (f2(x))(f
′

2)
2 + f

′

1(f2(x))f
′′

2 (x). (3.44)

And with ϕk = ϕ ◦ ϕk−1 this leads to:

δ2

δs2
ϕk(s) = ϕ

′′
(ϕ(s)k−1)(ϕ

′
(s)k−1)2 + ϕ

′
(ϕ(s)k−1)(ϕ

′′
(s)k−1)
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Iterating leads to:

δ2

δs2
ϕk(s) |s=1

ϕ(1)k=1
= ϕ

′′
(1)ϕ

′
(1)2(k−1) + ϕ

′
(1)(ϕ

′′
(1)k−1)

Equ.x.xx
= ϕ

′′
(1)ϕ

′
(1)2(k−1) + ϕ

′
(1)
(
ϕ
′′
(1)ϕ

′
(1)2(k−2) + ϕ

′
(1)ϕ

′′
(1)k−2

)
Equ.x.xx

= ϕ
′′
(1)ϕ

′
(1)2(k−1) + ϕ

′′
(1)ϕ

′
(1)ϕ

′
(1)2(k−2) + ϕ

′
(1)2ϕ

′′
(1)k−2

Equ.x.xx
= [...]

Equ.x.xx
=

k−1∑
l=0

ϕ
′′
(1)ϕ

′
(1)lϕ

′
(1)2(k−l−1)

Equ.x.xx
= ϕ

′′
(1)ϕ

′
(1)2k−2

k−1∑
l=0

ϕ
′
(1)−l

Equ.3.41
= ϕ

′′
(1)(1 + ρ1)

2k−2
k−1∑
l=0

(1 + ρ1)
−l

Equ.3.42
= 2ρ1(1 + ρ1)

2k−2
k−1∑
l=0

(1 + ρ1)
−l

By utilizing the sum formula of the first k terms of the geometric

series
k−1∑
l=0

(1 + p1)
−l this leads to:

δ2

δs2
ϕk(s) |s=1

Equ.x.xx
= 2ρ1(1 + ρ1)

2k−2

1− ( 1
1+ρ1

)−k

1− (
1

1 + ρ1
)


Equ.x.xx

= 2ρ1(1 + ρ1)
2k−2

1− (1 + ρ1)
k

ρ1
1 + ρ1


Equ.x.xx

= 2(1 + ρ1)
2k−1 − (1 + ρ)k−1

And with Equation 3.40 it follows:

σ2
1(k) = (1+ρ1)

2k
(

2(1+ρ1)
−1−2(1+ρ1)

−k−1+(1+ρ1)
−k−1

)
(3.45)

63



With Equation 3.36, the variance of the asymptotic normal distri-

bution ∆
(i)
k is given by:

V ar(∆
(i))
k =

a1(k)2

N(m1(k) +m2(k))2
, (3.46)

whereas for i = 1:

a1(k)2
Equ.x.xx

= σ2
1(k)(1− q1(k))2 + σ2

2(k)(q1(k))2

Equ.3.15
= σ2

1(k)
(

1− m1(k)

m1(k) +m2(k)

)2
+ σ2

2(k)
( m1(k)

m1(k) +m2(k)

)2
Equ.3.43

= σ2
1(k)

(
1− (1 + ρ2)

k

(1 + ρ1)k + (1 + ρ2)k

)2
xxx+ σ2

2(k)
( (1 + ρ1)

k

(1 + ρ1)k + (1 + ρ2)k

)2
Assuming the special case ρ1 = ρ2 = ρ, we get that m1(k) =

m2(k), q1(k) = q2(k) =
1

2
and σ2

1(k) = σ2
2(k) = σ2(k), ∀k ≥ 1.

Furthermore, the asymptotic normal distributions ∆
(1)
k and ∆

(2)
k

coincide if n1(0) ≈ n2(0).

With these pre-assumptions and Equation 3.45, the a asymptotic

variance of ∆
(1)
k and ∆

(2)
k respectively is given by considering a(k)2

for ρ1 = ρ2 = ρ:

a(k)2 =
1

2
σ2(k)

=
1

2
(1 + ρ)2k

(
2(1 + ρ)−1 − 2(1 + ρ)−k−1 + (1 + ρ)−k − 1

)
.
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Utilization of Equation 3.46 finally gives the variance of the two-

type BGW branching process:

V ar(∆
(i)
k )|i∈{1,2} =

1

2
(1 + ρ)2k

(
2(1 + ρ)−1 − 2(1 + ρ)−k−1 + (1 + ρ)−k − 1

)
N(2(1 + ρ)2)2

=

1

2
(1 + ρ)2k

(
2(1 + ρ)−1 − 2(1 + ρ)−k−1 + (1 + ρ)−k − 1

)
N(2(1 + ρ)k)2

=

1

2
(1 + ρ)2k

(
2(1 + ρ)−1 − 2(1 + ρ)−k−1 + (1 + ρ)−k − 1

)
8N(1 + ρ)2k

=

(
2(1 + ρ)−1 − 2(1 + ρ)−k−1 + (1 + ρ)−k − 1

)
8N

(3.47)

65



3.5 Experimental Validation

3.5.1 Experimental Whole Exome Sequencing

Data

Altogether, 17 anonymized donors where used for WES , obtainingSample Collection

and Sequencing either human blood or tissue samples. Additionally, 9 independent

samples of the same individual were collected and further processed

independently which will be referred to as technical replicates in the

following subsections.

Genomic DNA was enriched for the target region of all human

CCDS exons, with Agilent ’s SureSelect Human All Exon Kit [2] for

each sample and subsequently sequenced on an Illumina Genome

Analyzer II [6] with 100 bp single end reads.

The standard protocol including an amplification step of 18 PCRNumber of PCR

Cycle Steps k cycles was applied to all samples with the exception of one exome

which was run with 36 cycles of PCR to further analyze the effect

of the cycle number on the allele frequency (AF ) distribution.

Additionally 35 cycles of PCR were run for all samples in a Cluster

Generation step that follows the PCR step in the standard protocol

(as described in Section 1.1.1) to increase the fluorescent signal of

a fragment on the sequencing flow cell.

The raw sequencing data (≈ 5 Gb per sample) was mappedAlignment and

Variant Calling to the haploid reference genome GRCh37 using NovoAlign [10]

that yielded a mean per-base coverage of the exome target region

(CCDS ) of 50×.

3.5.2 Independency of Positions and Individu-

als

The dependency between genomic loci was tested by comparing theDependency

Between Positions distribution of all heterozygous AFs in a pooled set of 17 WES data

sets (Section 3.5.1) to a smaller randomly chosen subset of these
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positions (see Figure 3.3). A test of independence by χ2 statistic

did not show significant differences (p = 0.234) which suggest an

association between both distributions.

Dependence between individuals was tested by comparing the dif- Dependency

Between

Individuals

ferences of heterozygous allele distributions between different indi-

viduals and technical replicates of the same individual. Differences

in frequency distributions between individuals is statistically not

significant and fluctuations in these distributions are comparable

to those observed in technical replicates of the same individual.

3.5.3 Simulation of Allele Frequencies After

Amplification

For an experimental validation of the analytically derived variance

of allele frequencies (AFs) after amplification, V ar(∆
(i)
k ) as given

in Equation 3.47 the variance was simulated for different parame-

ter settings of the amplification efficiency ρ, the initial number of

alleles N and for the cycle number k (see Algorithm 1).

Each amplification step was simulated for a per-base coverage of

20× for 10, 000 heterozygous positions which is in the expected or-

der of magnitude for heterozygous variant calls in a human WES

sample.

The simulations are well approximated by the analytical result for Simulations for

Fixed N and kinitial numbers of fragments N ≥ 5. In case of fixed parameters

k = 18 and N ∈ {1, 3, 5, 10} the function of V ar(∆
(i)
k ) reaches its

maximum at an amplification efficiency of ρ ∼ 0.2 and decreases

towards ρ = 1 which corresponds to a perfect amplification (Figure

3.4). Overall as N increases the simulated as well as the derived

variance (Equation 3.47) is constantly shrinking and approaches a

fixed level. This can be explained solely by the variance introduced

by the measurement process of sequencing.

By adapting the analytically derived variance as well as the simu- Adaptation of

V ar(∆
(i)
k )lated results towards an additional contribution of variance which
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Figure 3.3: Allele frequency distributions at heterozygous sites are
position- and individual independent. (Adapted from [116]) a) Fre-
quency distribution of the reference allele for all positions and all indi-
viduals pooled. b) Frequency distribution for a random set comprising
5% of all positions in a randomly chosen individual. Comparison of the
two distribution shown in a) and b) with Pearsons χ2 test yields a p-
value of p = 0.234, which corresponds to the distributions having a not
further specified association and are not independent.

is introduced during sequencing values comparable to real WES

experiments can be achieved (see Algorithm 2).

Further statements about the limiting behaviour of the variance

can be made by an alternating fixating of two out of the three de-

pending parameters N , k and ρ (Figure 3.5).

The variance increases with a growing number of PCR cycles k,Constant variance

level for k ≥ 15

and N ≥ 10

for fixed values of N and ρ, and approaches a constant level for

k = 15 which leads to the argumentation, that an increase in the
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number of cycles during library preparation (k ≥ 15) as well as am-

plification of the cluster generation step that succeeds the library

preparation will only contribute marginally to the total variance.

Overall a generalized conclusion can be drawn: assuming one allele

type Ai is preferred to be sequenced it is easier for this allele to

gain predominance in the pool of alleles that is sequenced if first

the initial set of alleles is small (N ≤ 10), the amplification effi-

ciency is low (ρ ≤ 0.2) and enough PCR cycles are run (k ≥ 15).

Algorithm 1: Simulation of V ar(∆
(i)
k ).

Result: Simulation of the variance of AFs after the

amplification process: V ar(∆
(i)
k (N, ρ))simulated

Data:

ρ: fixed amplification efficiency;

N : fixed number of initial fragments;

k: fixed number of cycles;

Ratio of Alleles
[
‖SNV s‖

]
: ratio after amplification;

foreach b in number of SNVs do

Intital number of alleles Ai, i ∈ {1, 2};
ni(0) = N ;

foreach k̂ in k do

The number of copies of allele Ai in Cycle k̂ is drawn

from a binomial distribution;

Number of CopiesAi =Bin(ni(k̂ − 1), p);

Add number of copies of allele Ai to ni(k̂ − 1);

ni(k̂) = ni(k̂ − 1) +Number of CopiesAi ;

end

Ratio of allele A1 after amplification;

Ratio of Alleles[b] = n1(k)/
∑2

i=1 ni(k)

end

V ar(∆
(i)
k (N, ρ))simulated = V ar(Ratio of Alleles);
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Figure 3.4: Simulation of V ar(∆
(i)
k ). (Modified from [116]) The vari-

ance of of the allele frequency (AF ) after amplification V ar(∆
(i)
k ) was

sampled from simulations which is described in Algorithm 1 for fixed val-
ues of the cycle number k = 18 and various values of the initial number
of fragments N ∈ {1, 3, 5, 10, 15, 20} (circles). Additionally the variance
is analytically derived from Equation 3.47 (solid lines).
The function reaches its maximum around an amplification efficiency of
ρ = 0.2 (gray dotted line) and decreases for ρ towards 1 which corre-
spond to a perfect amplification.
For very small initial numbers of N the simulated results do not fit per-
fectly to the analytically derived curve but are in agreement starting
from an initial number of alleles of N ≥ 5.
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Algorithm 2: Adaptation of V ar(∆
(i)
k )

Result: V ar(∆
(i)
k ) adapted by an additional variance

introduced during sequencing: V ar(∆
(i)
k (N))adapt

Data:

c: per-base coverage;

V ar
(

∆
(i)
k (N)

)
: Variance After Amplification (Equ. 3.47);

foreach b in number of SNVs do

The AF after amplification is a random number drawn from a

normal distribution:;

AF After Amplification ∈ N (0.5,

√
V ar

(
∆

(i)
k (N)

)
);

The AF after sequencing is a random number drawn from a

binomial distribution:;

AF After Sequencing[b] ∈ Bin(c, AF After Amplification);

end

V ar(∆
(i)
k (N))adapt = V ar(AF After Sequencing[b]);

The distribution of AFs at heterozygous genomic positions was Allele Frequency

Distribution of

Real WES samples

also analysed in 17 real human WES data sets that were generated

following the standard protocol (see section 3.5.1), including k =

18 cycles of PCR to verify the findings obtained in the previous

simulations. Furthermore, one WES sample was sequenced twice

with the solely difference that k = 36 cycles of PCR steps were

applied in order to experimentally check if the variance remains

stable above a cycle number of k ≥ 15, as observed in Figure 3.5

a).

For a fair comparison to the analytical derived results each position Down-Sampling of

Coveragein all samples was randomly down-sampled to a per-base coverage

of 20 reads. A position was defined as heterozygous by applying a

simple percent rule call , 0.14 < RAF < 0.86 as proposed by Bell

et al. [21] and as already described in Section 1.2.2.
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Figure 3.5: The fragment amplification as a stochastic branching pro-
cess. (Adapted from [116]) The variance of the allele frequency (AF )
was sampled from simulations as well as analytically derived (solid line)
for different initial values for the cycle number k, the amplification effi-
ciency ρ and the number of starting alleles N . Every simulation of the
measurement process of sequencing was done for a read coverage of 20×.
The variance sampled from 10 000 simulated heterozygous SNV s (blue
circles) is well approximated by the analytical results of Equation 3.47
(solid gray lines).
a) The variance approaches a fixed level for a cycle number k > 15 and
fixed values of ρ and N (gray dashed line). b) It reaches its maximum
for an amplification efficiency around ρ = 0.2 (gray dashed line). c) For
an increasing number of starting alleles N before amplification the vari-
ance approximates a fixed level which is explained solely by the variance
introduced by the measurement process of sequencing. This could al-
ready be observed in Figure 3.4 where the variance started to approach
a fixed level at around N = 10.

Random numbers in the dimension of the measured AFs wereSimulation of

Allele Frequencies drawn from a binomial distribution whereby the number of trials is

equal to the number of initial fragments n1(0) = n2(0) = N and the

success parameter is equal to the mean of the empirically measured

AFs (see Figure 3.6 a)).

By comparing the two distribution one can observe that the vari-

ance at heterozygous positions which was obtained by the measured

RAF distribution is 0.017 and thus much larger than the variance

of 0.012 which is expected by hypothetical sequencing before am-

plification, derived by a binomial distribution. That leads to the
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Figure 3.6: Measured variance in WES data sets. (Adapted from [116])
a) The variance of the distribution of heterozygous allele frequencies
(AFs) measured in WES data sets at a per-base coverage of 20× (blue)
is significantly larger compared to the theoretical distribution expected
before amplification (red). b) An exome of the same individual was
sequenced following k = 18 and k = 36 cycles of amplification and the
variance of the AFs only slightly increases after the additional 18 cycles.
This is in agreement with the finding observed in Figure 3.5 a) where

V ar(∆
(i)
k (N)) approaches a fixed level at around k ≥ 15 with fixed

parameters ρ and N .

conclusion that the sequence fragments in a short read alignment,

on which variant calling is performed, are not properly represented

by a random sample of the distribution of initial fragments but the

effect of the amplification process on this distribution has to be

taken into account.

A single WES sample was sequenced using 18 and 36 rounds of Comparison of

different Cycle

Numbers k

PCR cycles and the same analysis was applied. As already observed

in the analytical and simulated results in Figure 3.5 a) no signifi-

cant increase in the variance of the derived AFs could be detected

(see figure 3.6) b).

In all simulations a constant amplification efficiency ρ is assumed Amplification

Efficiency

ρ ∈ [0.3, 0.5]

over all PCR cycles k which is a reasonable simplification of the pro-

cess, taking the relatively low number of usually ∼ 18 PCR cycles
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into account, which are used in NGS library preparation proto-

cols (see Section 1.1.1). An amplification efficiency of ρ ∈ [0.3, 0.5]

yields a variance of the AFs that is close to the variance observed

in real WES data sets (compare Figure 3.5 b) and Figure 3.2 a)).

A value of 5ng of initial fragmented DNA (k = 0) and 5− 10µg of

DNA after k = 18 cylces of PCR was measured, which corresponds

to an amplification by a factor of (1−2×103) which is in agreement

of an amplification efficiency of ρ ∈ [0.3, 0.5].

3.5.4 Influence on Error Rates in heterozygous

Variant Detection

As already exemplary illustrated in Section 1.2.2 heterozygous vari-Strong Deviations

in Allele

Frequencies

ants with AFs that are strongly deviating from the expected mean

of 0.5 correlate to a high variance in the distribution of AFs . These

may be misclassified by existing variant calling algorithms which as-

sume an underlying binomial distribution (see Figure 1.7).

Another example is given in Figure 3.7 a) where a common het-

erozygous SNP position is highlighted that is present in 5 technical

replicates. In 4 out of 5 replicates the position is classified as het-

erozygous but due to low frequency in the fifth sample (v) this

position was misclassified as homozygous.

Based on these observations the hypothesis can be formulated that

a certain rate of true positive (TP) heterozygous variants will not

be detected by commonly used variant calling algorithm due to the

high variance in AFs after amplification. To proof this the influence

of the variance of AFs on error rates in the detection of heterozy-

gous variant calls will be analysed in more detail in the following.

Assuming a comparable quality for all Reads each variant call is

based on a random sample that is drawn from the set consisting of

alleles A1 and A2 after amplification which is of size n1(k) +n2(k).

Consequently the sequencing depth at a SNV location is equal to

the size of the random sample on which the call is based on.
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Figure 3.7: Influence of variance in measured allele frequency on vari-
ant calling. (Adapted from [116]) a) The GT at a common SNP position
rs539412 could be identified as heterozygous variant in 4 technical repli-
cates (i - iv) but could not been detected in the fifth replicate due to
low AF (v). b) To measure the false negative rate (FNR) for SNP po-
sitions that were classified as heterozygous by SAM tools or by the PRC
(14% <RAF≤ 86%), a TP call was defined, when at least six out of
nine replicates where called heterozygous with the chosen calling algo-
rithm. Variant calling was performed on randomly drawn sets of alle-
les to achieve comparable per-base coverages of 15×, 25×, 35×, 45×, 55×
and 65×. Overall the FNR decreases with an increasing sequencing
depth. The classification of a heterozygous variant based on a frequency
interval (percent rule call (PRC ), green circles) is more sensitive than
a calling algorithm that uses a binomial prior distribution (SAM tools,
blue circles). At low total sequencing depth the FNR can be markedly
reduced by creating pools of two (green squares) and four (green rhom-
bus) replicates for which the PRC was applied.

A TP heterozygous position was defined by using nine technical Definition of TP

heterozygous

Variant Calls

replicates of a WES sample and the following conditions:

1.)a The variant is listed in dbSNP .

2.)a The variant is covered by at least 15 reads.

3.a) The variant is called in at least 6 out of 9 technical replicates
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by the percent rule call (0.14 < RAF < 0.86) [21] or

3.b) The variant is called in at least 6 out of 9 technical replicates

by SAM tools [13].

Using this TP set as a gold standard, the FNR as well as the falseFNR and FPR for

heterozygous

Variant Calls

positive rate (FPR) could be computed for different categories of

coverage for heterozygous calls on each WES data set as listed in

Table 3.1. Overall the FNR decreases with an increasing sequencing

depth and over the whole exome a FNR between 1.0 − 3.0% and

a FPR in the range of 0.1− 2.9% was measured depending on the

coverage category and the calling approach.

Table 3.1: FNR and FPR for variant calling depending on different
coverages. (Adapted from [116]) The GT calling approach proposed
by Bell et al. [21] (PRC ) classifies a genomic position as heterozygous
variant if 0.14 <RAF≤ 0.86 whereas SAM tools utilizes a prior binomial
distribution. Depending on the per-base depth all error rates decrease,
whereby the frequency based method (PRC ) has lower values of FNR as
SAM tools for all categories of coverage. Additionally the FNR as well
as the FPR approaches a stable level for sequencing depth around ≥ 35
independent of the calling algorithm. For per-base coverages of ≥ 35 the
values for FNR as well as FPR remain relatively stable independent of
the calling algorithm.

Coverage 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85-94 95-104

FNR
SAM tools

3.0 1.5 0.9 0.6 0.6 0.6 0.7 0.5 0.6

FPR
SAM tools

2.6 0.8 0.3 0.1 0.1 0.1 0.1 0.1 0.1

FNR
PRC

0.7 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2

FPR
PRC

2.9 1.0 0.4 0.2 0.2 0.2 0.2 0.2 0.3
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For the condition 3.a) pools of 2 and 4 technical replicates were Pools of

Replicatesconsidered and the mean of all FNRs for all replicates in a pool

was calculated (Figure 3.7 b)). At low sequencing depths the error

rate could be markedly reduced by considering pools of technical

replicates instead of just one sample. This observation indicates

that, once a sufficient sequencing depth is achieved an additional

reduction of the total error rates can only be reached by technical

replication.
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Figure 3.8: ROC curves for heterozygous genotype calling. (Adapted
from [116]) A genomic position was defined as heterozygous if
| 0.5 − RAF |< c, with cut-off thresholds c ∈ [0.02, 0.04, ..., 0.48]. The
area under the ROC curve (AUC ) increases considerably for the first
three categories of coverage. However, for a per-base coverage ≥ 35× no
significant change can be observed in AUC and for | 0.5 - RAF |< 0.36,
the FPRs are comparable to the error rates of SAM tools
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Usually one would expect about 10 000− 15 000 heterozygous vari-

ants in an WES sample and the obtained FNRs indicate that ∼ 100

heterozygous variants will be missed just due to stochastic fluctua-

tions of the AFs after amplification.

These observations lead to the conclusion that a variant call-Sensitivity vs.

Specificity ing approach that is simple based on a heterozygous AF inter-

val (PRC , 14% <RAF≤ 86%) has a higher sensitivity at a com-

parable specificity that an algorithm that uses a prior distribu-

tion that is not perfectly suited for the allele frequencies (AFs).

This can also be observed in the ROC analysis displayed in Fig-

ure 3.8 for different categories of coverage depending on different

cut-offs c ∈ [0.02, 0.04, ..., 0.48] for heterozygous variant calling:

| 0.5− RAF |< c.

The AUC increases markedly for the first three categories of cover-

age whereas for a per-base coverage ≥ 35 no difference can be seen.

However, the FPR are comparable to the error rates of SAM tools

as shown in Table 3.1 for | 0.5− RAF |< 0.36.
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3.6 Summary of this Chapter

In this chapter the distribution of allele frequencies (AFs) at het-

erozygous genomic positions was studied and it’s implication on

variant calling was analysed.

Examples as given in Figure 1.7 indicate that the total variance

of AFs at heterozygous genomic loci is strongly influenced by an

amplification process during library preparation in next generation

sequencing protocols (as introduced in Section 1.1.1). Furthermore

a solid knowledge of the distribution of AFs is essential as many

variant calling approaches such as SAM tools or GATK rely on this

prior information.

Therefore the fragment amplification of sequence fragments was de-

scribed as a two-type (Bienayme-) Galton-Watson branching pro-

cess with discrete time k steps which are interpreted as cycles

in a polymerase chain reaction. The variance of this distribution

V ar(∆
(i)
k ) could be accurately described by Equation 3.47 for two

allele types ai, i ∈ {1, 2}, and validations based on simulations and

real whole exome sequencing data correspond well with the analyt-

ical derived findings.

The final equation is depending on different parameters namely

the amplification efficiencies ρi, the number of PCR cycles k and

the amount of initial fragments before amplification ni(k = 0)

whereby all simulations were done assuming the simplification that

ρ1 = ρ2 = ρ and n1(0) + n2(0) = N .

It could be shown that for typical values of the amplification ef-

ficiency ρ ∈ [0.3, 0.5] and for a sequencing depth of 20× the an-

alytical derived variance is considerably higher than the variance

of the corresponding binomial distribution that is usually used as

prior probability distribution in variant calling algorithm based on

Bayesian methods.

The correlation of high variances in AFs at heterozygous positions

and error rates in variant detection could be demonstrated: the
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higher the variance the higher the false negative rate. In the anal-

ysis of single WES samples the FNR approaches a fixed level at a

per-base coverage of about ≥ 35 reads. However, pooling of tech-

nical replicates of whole exome sequencing samples is an efficient

approach to further decrease the FNR and yields even better re-

sults than just sequencing more reads from the same library.

Overall conclusions can be drawn to minimize stochastic fluctua-

tions arising from the amplification step during library preparation

in WES experiments. Increasing both N and ρ and simultaneously

decreasing the number of PCR cycles k in 2nd generation sequenc-

ing protocols will reduce the overall variance in the distribution of

AFs at heterozygous loci.
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4.1 Overview of this Chapter

This chapter will address the importance to measure an overall

quality to a whole set of GT data obtained from a single WES

experiment, which was already discussed in Section 1.3.1.

Various quality control measurements can be applied to an entire

variant call set and recommendations for the sequencing depth and

coverage over the target region of an exome exist [80]. However,

these parameters are valuable indicators of quality, but they do not

directly indicate the accuracy of a sequenced exome. For instance,

the Ti -Tv ratio is strongly influenced by the target region and

the number of novel variants within an exome also depends on the

background population. Further, the phred-like quality score that

is provided for each called variant, is based on a certain likelihood

model for genotypes and depends not just on the raw data but also

on the applied alignment and calling algorithm. Applying different

algorithms to the same sample yields different quality scores.

The following chapter will show a new approach that calculates the

distance of an exome to a reference set of high quality and uses this

as an indicator for the genotyping accuracy.

A short introduction will provide an overview about similarities,

distance metrics and methods to reduce the dimensionality of a

high dimensional dataset. The exome-wide GT accuracy will then

be estimated from the distance to a good quality reference set that

is given by the 2535 individuals which are sequenced by the 1000

genomes project , as introduced in Section 1.1.4. Finally, the overall

accuracy will be estimated by a standardized dissimilarity score

(SDS ) that is based on simulated error rates.

Different exomes of varying quality will be analysed, depending on

the GC content, sequencing coverage, sequencing platform and the

size of the target region.
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4.2 Introduction to Distance Metrics

4.2.1 Distance Metrics and Similarity Measures

Measures of distance or similarity are key features in classification

or clustering of data points [91] and the choice of a suitable distance

metric for a given data set is crucial.

A distance metric can be defined as a (non-negative) real-valued Distance Metric

Conditionsfunction d(x1, x2) on the cartesian product X × X that assigns

a distance between any two pairs x1 and x2 whereby x1, x2 ∈
X. Further, the following conditions must be satisfied for every

(x1, x2, x3) ∈ X [75] [27].:

I. (Non-Negativity) d(x1, x2) ≥ 0

II. (Identity Axiom) d(x1, x2) = 0 iff x1 ≡ x2

III. (Symmetry Axiom) d(x1, x2) = d(x2, x1)

IV. (Triangle Inequality) d(x1, x2) + d(x2, x3) ≥ d(x1, x3)

Although the concept of distance metrics is well defined it seems Difference

between Distances

and Similarities

that no consistent formal definition exists for similarity measures as

stated by Chen et al. [27]. Generally, a similarity between two ob-

jects cannot be transferred into a metric or euclidean space, but can

be calculated by using a distance measure. However, a commonly

used definition for similarity measure is that it has to satisfy condi-

tions I − III, but must not necessarily fulfil the triangle inequality

which makes a similarity measure less stringent than a distance

metric.

By that definition, a similarity measure s(xi, xj) is not a metric but

coefficients that express similarity in the range [0, 1] can be trans-

formed into a (distance) metric by using for instance the following

equation [52]:

d(xi, xj) =
√

1− s(xi, xj)
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But more generally any monotonically decreasing transformation

can be applied to transform similarity measures into a distance

metric.

Consider each instance xi as a vector of N measures for attributesDifferent Distance

Functions with ~xi = (x
(1)
i , .., x

(N)
i ). For non-nominal scales the distance func-

tion d( ~x1, ~x2) can be generalized as

d( ~x1, ~x2) =
( N∑
n=1

|x(n)1 − x
(n)
2 |λ

) 1
λ
, (4.1)

which is also referred to as Minkowski Metric for λ ≥ 1. Depend-Minkowski Metric

ing on the value λ, different distance functions can be derived,

such as the Euclidean distance (dEuclidean, λ = 2), which uses the

Pythagorean formula, or the Manhattan distance (dManhattan, λ = 1)

(as illustrated in Box 4.2.1). The Hamming distance is another spe-

cial case of the family of Minkowski metrics, that operates over a

binary alphabet.

dManhattan( ~x1, ~x2) =
N∑
n=1

| x(n)1 − x
(n)
2 | (2,2)

(8,4)

dManhattan = 8

dEuclidean( ~x1, ~x2) =

√√√√ N∑
n=1

(
x
(n)
1 − x

(n)
2

)2
(2,2)

(8,4)

dEuclidean = 6.32

dHamming( ~x1, ~x2) =
N∑
n=1

| x(n)1 −x
(n)
2 | ~x1, ~x2∈{0,1}

(0,0)

(1,1) dHamming = 2

Box 4.2.1: Different distance functions for two instances

~x1 and ~x2, derived from Equation 4.1.
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Given two vectors ~x1 and ~x2 the Hamming distance dHamming is

then the number of entries in which they differ which is equivalent

to Equation 4.1 for λ = 1 and ( ~x1, ~x2) ∈ {0, 1}N .

A summary of the pairwise distances between any object in X can Distance Matrix D

then be collected in a distance matrix D. The properties of such a

matrix are directly related to the properties of a (distance) metric:

D(X) =


x11 = 0 x12 = x21 [...] x1i = xi1

x21 = x12 x22 = 0 [...] x2i = xi2

[...] [...] [...] [...]

xi1 = x1i xi2 = x2i [...] xII = 0

 (4.2)

Usually such high-dimensional data is difficult to interpret and tech-

niques to reduce the complexity of D and visualize the data in a

lower dimensional space are applied to provide a manageable rep-

resentation of the dataset.

4.2.2 Embedding of the Distance Matrix D

Data reduction techniques create an n-dimensional embedding in Dimension

Reduction

Techniques

Rn, n < N which displays the relative positions of a number of ob-

jects xi ∈ X given the distances between them in an I×I matrix D.

Different approaches exist, among them principal component analy-

sis (PCA), classical (metric) multi dimensional scaling (MDS ) and

non-metric MDS . All techniques assume different properties of the

input distance matrix D (Equation 4.2).

However, the primary outcome of each technique is a spatial n-

dimensional configuration where each object xi is represented as a

point ϕ(xi) in a new embedded coordinate system, arranged in a

way such that distances between each pair
(
ϕ(xi), ϕ(xj)

)
i 6=j

corre-

spond to their similarities.

The principle of PCA can be understood as an orthogonal linear Principal

Component

Analysis

transformation of D. By this means, the coordinates represented

in the distance matrix D are transformed to a new coordinate sys-
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Figure 4.1: Different visualizations of data reduction techniques. Sim-
ulated (non euclidean) distances were embedded into the 2-dimensional
space with PCA (a)), metric MDS (b)) and non-metric MDS (c)).
Whereas the results of PCA and non-metric MDS are similar, non-
metric MDS leads to a better clustering of the data.

tem, where the n biggest variances of D, also referred to as prin-

cipal components, are represented by the new axes. To do so, the

eigenvectors ν of the centred covariance matrix of D are calculated

and ordered by the corresponding eigenvalues λ. The new n×N -

dimensional map Dn is then the result of the multiplication of D

with a matrix containing the first n eigenvectors with the biggest

eigenvalues, Γ = (~ν1, ~ν2, ..., ~νn): Dn = DΓ

The approach of metric MDS [64] assumes metric properties inMetric MDS

the input matrix D and preserves the intervals and ratios between

the new embedded coordinates ϕ(xi) and ϕ(xj) such that Euclidean

distances between them approximate the given distances d(xi, xj)

or short dij:

‖ ϕ(xi)− ϕ(xj) ‖≈ Dij (4.3)

This can be archived by minimizing the goodness of fit, also referred

to as STRESS function:

STRESSmetric(x1, ...xn, ϕ) ∼
( n∑

i 6=j

(dij−||ϕ(xi)−ϕ(xj)||)2
) 1

2
(4.4)
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The classical MDS which was first introduced by Torgerson [113]

replaces this cost function by a related function, called STRAIN :

STRAIN (x1, ...xn, ϕ) ∼
( n∑

i 6=j

(bij− < ϕ(xi), ϕ(xj) >)2
) 1

2
(4.5)

Here the error of scalar products is minimized and the new coor-

dinate matrix Dn is derived by eigenvalue decomposition of B =

DnD
′
n. B can then be computed from D by using double centering.

The classical MDS yields the same results as PCA, if Euclidean

distances were used to obtain D [35] and thus PCA can be seen as

a sub-form of the classical MDS . In contrast to other ordination Non-Metric MDS

methods, non-metric MDS makes few assumption about the na-

ture of the data, as for instance PCA requires a linear relationship

between the objects. The most common STRESS function was

introduced by Kruskal [64]:

STRESSnon-metric(x1, ...xn, ϕ) =


n∑
i 6=j

(dij − ||ϕ(xi)− ϕ(xj)||)2

n∑
i 6=j
||ϕ(xi)− ϕ(xj)||2


1
2

(4.6)

Figure 4.2: Method of steep-
est descent.

The embedded coordinates ϕ(xi) and

ϕ(xj) are regressed against the origi-

nal distances dij and the configuration

is improved by moving the positions

in ordination space by a small amount

in the direction of the steepest de-

scent, where the STRESSnon-metric

function changes most rapidly (as il-

lustrated in Figure 4.2).

Results for different data reduction techniques for simulated

(non euclidean) distances are shown in Figure 4.1. Since non-

metric MDS yields the best clustering result and does not make
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any assumptions about the distribution of the underlying high-

dimensional data, this data reduction technique will be used in

this work.
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4.3 Generation and Processing of

Exome Data

Genomic DNA of 241 european individuals was enriched for the

CCDS target region with Agilents SureSelect Human All Exon Kit

[2] and sequenced on an Illumina HiSeq 2000 [6]. This in-house

dataset consists mainly of individuals of European and Arabian

origin, but some also have an African or Asian population back-

ground. In the following this dataset will be referred to as BER

(samples obtained from Berlin).

All short sequence reads were mapped to the human reference

genome GRCh37 using novoalign [10] and BWA [70] and variants

were detected using SAM tools [70] and GATK [83, 38].

Additionally variant calls of 2535 individuals with different ethnic

backgrounds were obtained from the 1000 genomes project (1KGP)

[7, 33, 34] and are referred to as reference set in the following sec-

tions. An overview of the 1KG dataset was already given in section

1.1.3 and a more detailed description of the 26 background popu-

lations is shown in Table 1.3.

All variants were restricted to bi-allelic SNV positions and to the

exome target consensus region of size K (∼ 29Mb) as defined by

the 1KGP . Variant calls that are classified as technical artifacts by

the 1KGP were ignored in the analysis.

Further, to test the predicted accuracies exome variants of the

exome sequencing project (ESP)[4] were used.
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4.4 An Error Sensitive Genotype-Weighted

Metric

4.4.1 Computation of the Weighted Distance

Function

The similarity or distance dij ≡ d(xi, xj) between any two individ-Weighted

Distance dWij uals xi and xj can be calculated by a weighted indicator function,

Iij ·W (k)
ij :

I
(k)
ij = I

(
x
(k)
i , x

(k)
j

)
=

1, if x
(k)
i ≡ x

(k)
j

0, if x
(k)
i 6= x

(k)
j

, (4.7)

whereby 1 − Iij is equivalent to dHamming as described in Section

4.2.1. That means, if two individuals xi and xj differ at a genomic

position k, this will contribute to the function with the weight W
(k)
ij :

W
(k)
ij =

2

f(x
(k)
i ) + f(x

(k)
j )

. (4.8)

The genotype frequencies f(x
(k)
i ) are pre-defined by the referencePre-defined

Genotype

Frequencies

f(x
(k)
i )

set, taking from the 1KGP , for all bi-allelic positions.

To give an example, consider a genotype for individual xi at a

given position k: x
(k=CHR 6: 79595096)
i = C C . If the same genotype

C C occurs in the 1KG dataset 2534 times and one individual has

genotype AC , the frequency at this position would be

f(x
(k)
i ) = 2534 \ 2535 = 0.9996055 (see Table 4.1).

For the sake of completeness, SNV positions which are not present

in the reference set, but in another sample, are initialized with

frequency
1

(N + 1)
, whereby N is the total number of individuals

in the reference set.
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Table 4.1: Example genotype counts.

Position AA AC AG AT C C C G C T GG GT T T
∑

CHR 6: 79595096 0 1 0 0 2534 0 0 0 0 0 2535

Thus, the weighted distance, or dissimilarity between two individ-

uals xi and xj is given by dWij :

dWij = 1− 1

Cij

K∑
k=1

I
(k)
ij ·W

(k)
ij (4.9)

where

Cij =
K∑
k=1

W
(k)
ij

is utilized as a normalizing constant and K is the size of the con-

sensus target region.

As each position is weighted with the inverse of it’s genotype fre-

quency rare variants that appear less often in a population than

common variants contribute more to the overall distance dWij . Fur-

ther, a disagreement at a position with low variability in the ref-

erence set has a stronger impact than a disagreement at highly

variable positions. This also translates to positions with falsely

called genotypes, which are induced either during sequencing or

during the bioinformatics workflow. A metric that induces a topol-

ogy that is sensitive to rare variants is in an analogous manner

sensitive for genotype errors.

Additionally, other related metrics have been used to compare Hamming

Distance dHijdifferent effects on the data. The Hamming distance was already

described in Section 4.2.1 and is equivalent to an unweighted dis-

tance metric dWij with W
(k)
ij = 1. In this context this metric will be
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referred to as dHij :

dHij = 1− 1

K

K∑
k=1

I
(k)
ij . (4.10)

Φ1

ϕ
2

ϕ1

ϕ
2

ϕ1

ϕ
2

EUR:

AFR: ASN:

SAN: AMR:
BER GBR FIN IBS CEU TSI

CHS CDX KHV CHB JPT

PUR CLM PEL MXLPJL BEB STU ITU GIH

ACB GWD ESN MSL YRI LWK ASW

a)

b) c)

Figure 4.3: Comparison of different similarity metrics. Distances be-
tween 2535 individuals with 26 different population backgrounds and 241
in-house individuals (BER) were calculated using different metrics and
visualized with non-metric multi dimensional scaling . All populations
can be clustered by their 5 super-populations: European (EUR), South
Asian (SAS ), East Asian (EAS ), Mixed American (AMR) and African
(AFR) (see also Table 1.3). The weighted metric dWij (a)) separates
more clearly between the sub-populations than the Hamming distance
dHij (b)) and the entropy based approach dEij (c)).

92



To observe a counterpart to dWij a metric that puts much emphasis Entropy Based

Distance Metric

dEij

on common variants has also been studied. In this context Shan-

non’s entropy was used to calculate the similarity dEij between two

samples xi and xj where the entropy of all 10 genotype frequencies

fa given by the 1KG data (see Table 4.1) was added up for each

position k:

dEij = 1− 1

K

K∑
k=1

10∑
a=1

f (k)
a · log(f (k)

a ). (4.11)

The influence of the different metrics is displayed in Figure 4.3,

where all pairwise distances are visualized with non-metric MDS

(see Section 4.2.2). All three distance metrics can successfully clus-

ter the different super-populations, but the weighted approach dWij

(Figure 4.3 a)) distinguishes better between sub-populations.

To access the genotype quality of a single individual xi, that is Different

Background

Populations

not included in the reference set the distances dWij between xi and

all 1KG individuals xj of the best suiting background population is

calculated. Visualization of the data with non-metric MDS gives

a first impression of the overall genotype accuracy of xi assuming

perfect data quality in the 1KG dataset. The distance of sam-

ples with comparable quality is closer than the distance between

samples with strongly deviating qualities. This can already been

observed in Figure 4.3 when comparing individuals from BER and

other European sub-populations

4.4.2 Computation of a Standardized Dissimi-

larity Score (SDS)

To assign a comparable value to the dissimilarities which are col-

lected in the distance matrix D and visualized via non-metric MDS

a SDS is calculated for every sample that is compared to the ref-

erence set.

To do so the distances between all 1KG individuals of each back-

ground population are calculated and the average of the mean
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mreference and inter qartile range (IQR) IQRreference of all columns of

the distance matrix is computed and stored. For each sample that

does not belong to the reference set the median mxi of the distances

dWij to all 1KG samples with an appropriate background population

is computed and normalized by the pre-calculated median and IQR

of the reference set:

SDSxi =
mxi −mreference

IQRreference

. (4.12)
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Figure 4.4: Standardized dissimilarity score. (Adapted from [115]) a)
The dissimilarities of three samples of different qualities were embedded
with non-metric MDS in the two-dimensional plane. The reference set,
consisting of the best suited background population for all three samples
(European descent, CEU ) builds a homogeneous cluster (gray circles).
The larger distance of in-house sample #1 (green triangle) to the ref-
erence set indicates a lower genotyping accuracy than in-house sample
#2 (green triangle) and the 1KG sample NA06986 (blue triangle).
b) The SDS reference curve (black line) with it’s 5% and 95% quantiles
(gray) is calculated based on simulated error rates to the reference set.
The estimated error rate of in-house sample #1 (> 0.0001) is consid-
erably higher than the error rates of in-house sample #2 and the 1KG
sample NA06986.
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The SDS score was computed as described for different simulated Simulated

Genotyping

Accuracies

genotyping accuracies. For this a 100% accuracy is assumed in

the reference set and genotyping errors were introduced at ran-

dom positions. Most of these positions have a low variability in

the reference set and the contribution of genotyping errors could

be approximated by adding twice a binomially distributed random

variable Bin(N, p) to the normalizing constant Cij where p is the

specific genotyping error (p ∈ {0.00001, 0.0001, 0.001, 0.01}) and

N = 2.8 · 107 is the total size of the consensus target region.

By calculating the SDS score for all simulated error rates an exome

sample can be directly linked to its estimated genotyping accuracy.

To give an example, Figure 4.4 shows two in-house samples of differ-

ent qualities and one 1KG sample (NA06986 ) which was processed

with the same analysis pipeline.

All three samples were compared to the best suited background Exomes with

Different

Genotyping

Accuracies

population within the 1KG dataset (CEU ) and the result is vi-

sualized with non-metric MDS (Figure 4.4 a)). The distance of

in-house sample #2 and 1KG sample NA06986 to the reference

set is similar while in-house sample #1 is clearly separated from

the reference cluster. This result can also be seen in the SDS curve

displayed in Figure 4.12 b) where the SDS of in-house sample #2

is corresponding to higher error rates than the other two samples.
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4.5 Experimental Validation

4.5.1 Analysis of Exomes With Different

Genotyping Accuracies

The distance from an individual to a high quality reference set in-

creases when the genotyping quality of the sample decreases. Fig-

ure 4.4 a) displays the dissimilarities of two in-house samples with

strongly deviating distances to the reference set.
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Figure 4.5: Allele frequencies in 1KG and in-house samples. (Adapted
from [115]) Genotype allele frequencies (AFs) of 85 samples from the
1KGP and from 85 in-house samples of the same ethnicity (CEU ) were
computed. The gray ellipse displays twice the standard deviation assum-
ing a binomial model for the AF p. Variants with a strongly deviating
AF as seen in the right lower quadrant, were called with a lower proba-
bility in the in-house data and are characterized by a GC content that
deviates from the expected median of 0.52.
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Although the basic quality parameters as the Ti -Tv ratio (both

∼ 3.2), the percentage of SNPs as listed in dbSNP (both ∼ 97%)

and the mean variant genotyping quality as listed in the VCF files

(89.7 in sample #2, 94.8 in sample #1) are comparable these two

samples result in different estimated accuracies.

One hypothesis states that variants that are often detected in ex- Differences in

Quality between

In-house and 1KG

Datasets

omes of the 1KGP but not in the two in-house samples, might point

to a subset that requires high data quality to be properly detected.

To investigate this allele frequency based on 85 CEU individuals

from the 1KG set and from 85 in-house samples were computed

and compared, which is shown in Figure 4.5.
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Figure 4.6: GC content at false negative positions. (Adapted from
[115]) The GC content of 100 bps flanking each variant that was present
in at least half of the samples from the 1KGP but in just one in-house
sample was calculated as classified as false negative positions (green
distribution). Additionally the GC content of randomly drawn SNV s
was computed (red distribution).
This comparison shows that variants in exomes with a large distance to
the high quality reference set are overrepresented in exome regions with
a high GC content.
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Figure 4.7: Coverage against GC content. (Adapted from [115]) The
mean per-base coverage of an exemplary chosen 1KG exome with Eu-
ropean descent (NA06986 ) was downsampled, yielding 20%, 40% and
60% of the original coverage, ∼ 170 reads per bp (gray distributions).
Sample #2 has a particularly low coverage in GC -rich regions (green
distribution) in comparison to in-house sample #1 (red distribution)
and sample NA06986.

In case of technical replicates one would expect that all AF value

pairs would lie close to the diagonal. For two sample sets of the

same size that are drawn from the same background population a

certain variance in the measured AF is expected. However, for a fi-

nite sample size one would assume that about 95% of the frequency

value pairs would fall inside the displayed ellipse that is based on a
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bernoulli distribution. Instead there are considerably more outliers

in the right lower corner than expected by chance.

To further analyse similarities within the unequal AF pairs shown Influence of the

GC-Contentin Figure 4.5 the GC content of 100 bps flanking each variant that

was present in at least half of the samples from the 1KGP but in

at most one in-house sample was computed. The resulting distri-

bution strongly deviates from that of randomly drawn variants as

displayed in Figure 4.6.

On this basis it can be concluded that GC -rich sequences lead to an

increase in false negative rates (FNRs). Thus the difference in qual-

ity between the two in-house samples can partly be explained by a

low sequence read coverage of regions with an extreme GC -content

in sample #2 as shown in Figure 4.7.
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4.5.2 The Influence of Coverage and Error Rates

on dWij

To investigate the influence of low sequence coverage and an in-

creased error rate on the distance metric dWij , the per-base coverage

of 1KG sample NA06986 was iteratively reduced and in addition

detection artefacts were simulated and randomly distributed over

the consensus target region.

The resulting samples were compared to the 1KG reference set

(CEU ) and visualized with non-metric MDS (Figure 4.8). The

embedded points follow a trajectory that departs from the refer-

ence cluster with growing error rate. A similar behaviour can be

observed for the samples with a decreasing coverage.
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Figure 4.8: Influence of decreasing coverage and increasing error rate.
(Adapted from [115]) A reduction of the per-base coverage for the 1KG
sample NA06986 (blue circles) and simulated genotyping error rates
(red triangles) reduces the similarity to the reference set (gray circles,
CEU ).
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4.5.3 Comparison of WES Data from Different

NGS Studies and Target Sizes

In addition to the in-house samples and the exomes from the 1KGP Varying SDS

Scores in Different

NGS Studies

also simulated individuals based on genotype frequencies from the

exome sequencing project (ESP) [4] and 100 exomes that were al-

ready studied by de Ligt et al. [76] were analysed. In comparison

the mean SDS for the the simulated ESP exomes is comparable to

the in-house data and lower than the SDS of the de Ligt exomes

(4.9 a)) which could partly be explained by out-dated error-prone

genotyping algorithms.
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Figure 4.9: Comparison of different platforms. (Adapted from [115])
Altogther 100 in-house samples were sequenced on the Illumina plat-
form [6] with a mean coverage above 60×.
a) The obtained mean SDS for the Illumina samples (green distribu-
tion) is comparable to value of 100 exomes that were simulated based on
genotype frequencies from the exome sequencing project (red distribu-
tion) [4], although the variance is much smaller due to missing haplotype
information in the ESP data that leads to a higher self-similarity in the
simulated data. In comparison the mean SDS of 100 exomes that were
sequenced on an Abi Solid [14] platform is considerably higher. This
can be explained by a lower and less uniform sequence distribution over
the target region (see b)) and due to less accurate variant calls. b) The
coverage distribution of two Illumina samples (green) and one Abi Solid
sample (blue).
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An additional reason might be the low mean sequencing coverageLow Sequencing

Coverage which is depicted in Figure 4.9 b) for an exemplarly chosen exome,

which was sequenced on an Abi Solid platform [14].
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Figure 4.10: PCA reveals platform specificity. (Adapted from [115])
In both PCA (shown) and metric MDS (not shown) a clear substructure
is visible in the reference set (CEU ) that is specific to the sequencing
platform and also explained by the two biggest principal components,
which show the biggest variation within the data (upper left cluster).
However, the effect of the sequencing platform for predicting the geno-
typing accuracy is small and the estimated error rates are comparable
even if the reference set is restricted to a specific sequencing platform
(not shown).
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Figure 4.11: Different target sizes. (Adapted from [115]) The distances
of two in-house samples and their corresponding SDS were computed
for different target regions that differ in size. Originally, this calculation
was done for the consensus target region (∼ 29 Mb) which is displayed
in Figure 4.4.
a) The HPO panel [100] comprises all exons of genes that are associ-
ated with phenotypic features (∼ 5.8Mb). b) The Kingsmore panel [21]
includes 548 genes of known inherited diseases (∼ 1.2Mb). c) Chromo-
some 22 of the CCDS target region [95] comprises a size of about 600kb.
d) The GPI panel contains all genes involved in the GPI -anchor syn-
thesis (∼ 45kb).
The larger the target region the larger is the estimated precision of the
estimated error rates. On the other hand, with a shrinking size of the
target region the confidence intervals (5% and 95% quantiles, gray area)
of the reference curve for the standardized dissimilarity score expand.
Further, gene panels below 1 Mb are too small to clearly distinguish the
different genotyping qualities between both samples.
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To further investigate the influence of the sequencing platform on

the results, the reference set (CEU ) was restricted to samples that

were sequenced with the same technology. Interestingly visualiza-PCA Reveals

Platform-

Dependent

Clustering

tion of the weighted distances dWij with PCA as well as with metric

MDS showed a clustering of the different platforms (see Figure

4.10) and the in-house samples were closest to the Illumina cluster

(not shown). However, the effect of the sequencing platform on the

accuracy prediction (SDS ) is just marginal (not shown).

Although the standardized dissimilarity score seems to be robust

and independent of the underlying sequencing platform, the ap-

proach requires a minimum amount of positions to achieve high

precision as shown in Figure 4.11.
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4.6 Similarity Metrics in Rare Variant

Association Studies

Recently another application for a similarity-based approach was

shown by Zhu et al. [127] which emphasizes the importance of the

right choice of a suitable metric.

In the analysis of cohorts with extremely rare disorders the sample

size is usually small which is simultaneously associated with varying

ethnicities and heterogeneous data qualities. The usual approach

in common variant association studies (CVAS ), such as GWAS ,

is to correct for population stratification in the dataset. However,

Mathieson and McVean [82] have already demonstrated that this

approach is not suitable for RVAS as they cannot account for the

sub-structure that is introduced by rare variants. As existing tech-

niques fail to correct for confounding effects, Zhu et al. analysed

the effects of different similarity-based matching strategies for case

and control group setups.

All three metrics introduced in Section 4.4.1 were applied to differ-

ent cohorts and found that the best performance is achieved when

applying a metric that puts a stronger weight on sharing rare alleles

(dWij ), especially if the data quality is heterogeneous.
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4.7 Summary of this Chapter

This chapter described an approach to estimate the overall exome

genotyping quality and different datasets were applied to evaluate

the results.

Although various quality control measurements as introduced in

Section 1.3.1 exist they do not directly indicate the accuracy of an

entire exome. It was shown that the genotyping quality of an ex-

ome can be estimated by calculating the distance to a high quality

reference set with a suitable background population, as the indi-

viduals sequenced by the 1000 genomes project using a metric that

is sensitive for rare variants and genotyping errors, dWij . The com-

puted standardized dissimilarity score is platform independent and

suitable for a comprehensive quality control in exome samples.

Further, non-metric multi dimensional scaling was the best tech-

nique to reduce the high dimensionality of the distance matrix

D whereas principal component analysis and non-metric MDS re-

vealed a sub-clustering of the reference set based on different se-

quencing techniques.

Exomes with poor data quality based on low coverage in GC -

rich regions could be identified although common quality control

measurements such as the Ti -Tv ratio, the percentage of SNPs in

databases such as dbSNP and the mean phred -like genotype quality

score were comparable to other exome samples of good quality.

Comparisons of target regions of different sizes showed that a min-

imum size of ∼ 10 Mb that corresponds to about 10000 variant

positions is necessary to yield reliable results.

Even in high quality data sets, such as the 1000 genomes project ,

up to 2% of the variants cannot be validated, not even if the exome

is re-sequenced by an alternative sequencing platform. In a target

region that comprises ∼ 30Mb, as in the consensus target region,

one would detect an average of 15000 variants depending on the

background population. From this, approximately 300 variants are
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falsely detected which corresponds to an error rate of about 10−5.

Thus every estimated SDS that corresponds to a similar error rate

would indicate a sample of high genotyping quality.

Finally another parameter for the quality assessment of exomes

can be applied, namely the variance of allele frequencies (AFs)

at heterozygous variant calls which was introduced in Chapter 3.

The lower the variance the lower is the expected error rate from

amplification artefacts. This effect could also be observed in the

discussed two in-house samples of deviating qualities. The poor-

quality sample with a high estimated error rate yields a variance of

0.009 which is far below the average value for the tested in-house

samples (∼ 0.017).
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5.1 Overview of this Chapter

The identification of disease causing mutations is often based on the

analysis of several family members, especially if segregation or link-

age analysis is used to prioritize suitable candidate variants which

are often de novo mutations associated with highly heterogeneous

disorders [119]. However, these approaches rely on correct pedigree

information and a method to test for underlying relationships be-

tween individuals is crucial. In particular sample mix-ups can lead

to erroneous conclusions when filtering for potentially pathogenic

variants.

The following chapter focuses on different methods to infer relation-

ship classes for related whole exome sequencing (WES ) individuals

which are sequenced by the 1000 genomes project (1KGP) as well

as in-house, including several degrees of relationship. Therefore

genetic identity coefficients such as identical-by-state (IBS ) and

identical-by-descent (IBD) are introduced and a likelihood based

approach to reconstruct entire pedigrees is systematically anal-

ysed. Pairwise logarithm of the odds (LOD) scores for predefined

hypotheses for different classes of relatedness are calculated and

evaluated depending on the number of positions and the degree of

consanguinity.
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5.2 Introduction to Approaches to

Analyse Family Structures

5.2.1 Genetic Identity Coefficients

During meiosis, crossover recombination occur between homolo- Identical-By-

Descent &

Identical-By-State

gous chromosomes. Thereby two individuals may receive identical

allele segments which are inherited from a common ancestor and

defined as identical-by-descent (IBD) as illustrated in Figure 5.1

a). If the two alleles which are observed in different individuals

are identical but may be derived from different ancestors then they

are called identical-by-state (IBS ) [77]. For both definitions a dis-

tinction is made weather none, one or two alleles are shared by two

individuals (also referred to as dyad) as displayed in Figure 5.1 b).

The expected proportion of the genome that shares common alleles

between a dyad can be formulated as a function of their genetic

relatedness and several methods that are based on this approach

already exist [55, 111].

A1 A2 A3 A4

A1 A3 A1 A4

IBS = 2

IBS = 1

IBS = 0

A1 A1A1 A1

A1 A1A1 A4

A1 A4A1 A4

a) b)

Figure 5.1: Identical-By-Descent and Identical-By-State. a) Two alle-
les are identical-by-descent (IBD) if they are copies of the same ancestral
allele as exemplarily shown for allele A1. b) A pair of diploid individu-
als can be identical-by-state (IBS ) (or IBD) for none, one or two alleles
at a certain locus.
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The probability that two alleles are IBD is given by the kinshipKinship

Coefficient &

Coeffient of

Relatedness

coefficient F which is a measure of the likelihood that two randomly

drawn alleles at the same autosomal locus from different individu-

als are identical. To give an example, if a randomly sampled allele

from a child is given at a certain locus then there is a probability of

50% that this allele originates from the mother or from the father

respectively. Due to the independence of these two probabilities the

kinship coefficients is then given by F = 1
2
· 1
2

= 1
4
. Table 5.1 lists

several common relatedness cases and their kinship coefficients F

as well as the associated coefficients of relatedness R = 2F [125].

Table 5.1: Kinship coefficients and coefficients of relatedness. Common
cases of pair-wise relationships and their associated kinship coefficients
F and coefficients of relatedness R are listed. The categories grand-
parent - grand-offspring, half siblings and aunt/uncle - niece/nephew
are summarized as 2nd Order relationships whereas first cousins and
great grand-parent - great grand-offspring are combined as 3rd Order
relationships.

Relationship Kinship Coefficient Coefficient of Relatedness

Identic 0.5 1
/Monozygotic Twins

Parent-Child 0.25 0.5

Full Siblings 0.25 0.5

2nd Order 0.125 0.25

3rd Order 0.0625 0.125

The kinship coefficient is also often used to identify cryptic re-Cryptic

Relationships lationships or population sub-structures within large population-

based studies [111] which may avoid confounders in case-control

association studies [121, 127] as selection will increase the number

of alleles that are IBD among individuals within a population.
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5.2.2 Likelihood Ratios

In general a likelihood ratio (LR) is a statistical procedure to com- Likelihood Ratios

pare the goodness-of-fit of two models. Mathematically the ratio

between the likelihood of Θ taking a value, for example ΘA, and

the likelihood L of Θ under the null -hypothesis, for example Θ0,

given the same underlying data D is denoted as given by Marshall

[81]:

LR(Θ0,ΘA|D) =
L(D|ΘA)

L(D|Θ0)
. (5.1)

For practical reasons human geneticists have used the related log- LOD Score

arithm of the odds (LOD) score for hypothesis testing of genetic

linkage which is defined as the base 10 logarithm of the LR score:

LOD = log10
L(D|ΘA)

L(D|Θ0)
. (5.2)

Broadly speaking the interpretation of a LOD score is that the al-

ternative hypothesis ΘA is 10LOD times more likely than the null -

hypothesis Θ0.

This method is often applied in linkage analysis which is a pow- Linkage Analysis

erful approach to detect the chromosomal location of disease genes

based on the knowledge that genes residing physically close on a

chromosome remain linked during meiosis [96].

Finally the LOD score can also be used to discriminate between LOD Score to

Infer Relationshipsdifferent classes of relationship between two individuals x1 and x2

(dyad) which are formulated as hypotheses Θi (e.g. x1 and x2 are

related) and Θj (e.g. x1 and x2 are unrelated) given the underlying

SNP genotype (GT ) data D = (gtx1 , gtx2) for both samples:

LOD
(
Θi,Θj | D

)
= log10

P
(
D = (gtx1 , gtx2) | Θi

)
P
(
D = (gtx1 , gtx2) | Θj

) . (5.3)

The majority of approaches to infer relatedness to a pair of in- Information

Contentdividuals which are based on either IBD or LR make use of a
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pre-defined marker set, mostly including SNPs or simple sequence

repeats (SSRs), which are characterized by a high information con-

tent (IC ) [24, 93]. SSRs or microsatellites are variable in length,

highly informative and in general accurate predictions about the

relatedness between two samples can be achieved by analysing just

20 − 30 SSRs. On the contrary, SNPs that are in general easier

to genotype than microsatellites [94] are mostly bi-allelic and not

as heterogeneous as SSRs. Additionally there is a chance that bi-

allelic markers with a high population frequency are also IBS by

pure chance.

In the following sections the effectiveness of LOD scores to assign

relationships to dyads by using all GT s that were obtained by WES ,

including rare variants, will be studied.
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5.3 Definition of Hypotheses and LOD

Scores

As introduced in Section 5.2.2 LOD scores can be applied to eval-

uate the goodness-of-fit between two pre-defined hypotheses for re-

latedness given the genotype SNP data of two individuals x1 and

x2. In this work five different hypotheses Θi, i ∈ I = {0, 1, 2, 3, 4},
are defined:

Θ0: x1 and x2 are unrelated

Θ1: x1 and x2 are technical/biological replicates or mono-

zygotic twins

Θ2: x1 and x2 are full siblings

Θ3: x1 is a parent of sample x2 (parent - child relationship)

Θ4: x1 and x2 have a 2nd order relationship

(including grandparent - grandoffspring, half siblings and

aunt/uncle - niece/nephew)

Box 5.3.1: Different hypotheses for relatedness between two

samples x1 and x2.

The probability of the combination of two genotypes (GT s) at a Probability of

Genotype

Combinations

given locus of a dyad can be estimated with the use of population

data as already introduced in previous works [81, 16, 112]. For

this purpose allele frequencies (AFs) of 2535 unrelated individuals,

sequenced by the 1000 genomes project (1KGP) [31, 32, 33, 34]

which was already introduced in Section 1.1.4 and summarized in

Table 1.3, were extracted and added to the calculations. Depending

on the tested hypothesis different numbers of unknown relatives

must be taken into account. Examples for two hypotheses, Θ3 and

Θ4, for a given dyad (x1, x2) which are both homozygous for an
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Figure 5.2: Scheme for genotype combinations. Displayed are two
pedigrees for two possible underlying hypotheses Θ3 and Θ2 for samples
x1 and x2. Imagine that both are homozygous for an allele A1.
a) If hypothesis Θ3 is true (x1 and x2 have a parent - child relationship)
there are two possible GT s for the unknown second parent : A1A1 (I ) or
A1A2 (II ). b) If hypothesis Θ2 is true (x1 and x2 are full siblings) three
GT combinations are possible for the two unknown parents: either both
are homozygous for allele A1 (I ), only the second parent is heterozygous
(II ) or both unknown parents have a heterozygous GT A1A2 (III ).

allele A1 at any position k is given in Figure 5.2.

A more detailed example of how to calculate the probability for a

hypothesis, e.g. Θ3, given a pair of genotypes (GT s), e.g. A1A1

and A1A1, is described in the following.

If hypothesis Θ3 is true (samples x1 and x2 have a parent - childExample

Calculation for

LR(Θ3,Θ0)

relationship) two GT s are possible for the alleged second parent as

also depicted in Figure 5.3 a):

• Case I) A1A1 and

• Case II) A1A2.

In conformity with the Hardy-Weinbergs equilibrium (see Section

1.1.1) the probability that each parent transmits an allele to their

offspring is equal to the AF in the population, f1 for allele A1 and

f2 for allele A2 respectively. Hence, the frequency of a GT A1A1

is then defined by f1 · f1 = f 2
1 and the frequency of A1A2 is 2f1f2.
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The probability of the GT of the offspring gtx1 (A1A1), given the

assumed GT s for the two alleged parents can then be calculated by

multiplying their frequencies. For D = (gtx1 = A1A1, gtx2 = A1A1)

the probability P(D | Θ3) is given by:

P(D | Θ3) =

Case I︷︸︸︷
f 2
1 f

2
1 +

Case II︷ ︸︸ ︷
f 2
1

1

2
2f1f2

= f 4
1 + f 3

1 f2.

With the probability that both samples x1 and x2 are unrelated

formulated by the null -hypothesis Θ0:

P(D | Θ0) = f 2
1 f

2
1 = f 4

1

the likelihood ratio LR(Θ3,Θ0 | D) can be calculated as follows:

LR(Θ3,Θ0 | D) =
P(D | Θ3)

P(D | Θ0)
=
f 4
1 + f 3

1 f2
f 4
1

=
f1 + f2
f1

=
1

f1
,

assuming that f1 + f2 = 1.

A comprehensive summary of all LRs LR(Θi,Θ0 | D = (x1, x2)),

i ∈ {1, 2, 3, 4}, for all GT combinations of the dyad (x1, x2) is given

in Table 5.2.

For perfectly genotyped datasets without the occurrence of De- Error Constant e

Novo mutations some combinations of GT s do not exist and there-

fore the corresponding probability would simply be zero. To give

an example a parent cannot be homozygous for allele A1 while the

child is homozygous for another allele A2 at the same position. The

incorporation of an additional error constant e = 0.001 allows to

include these positions into the analysis without upstream filtering

accounting for sequencing errors and de novo mutations. It should
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be noted that the choice of e is not trivial as the result can be

influenced by deviating values. In this work, e corresponds to the

mean genotyping error rate which is observed as upper bound for

low quality WES samples [115] which is also sufficiently discussed

in Chapter 4.

Table 5.2: Likelihood ratios for genotype combinations. The variable
fn refers to the allele frequency of allele An and is pre-calculated using
GT data from the 1KGP assuming

∑
n fn = 1. Combinations of GT s

that do not occur for certain relationships (Mendelian error) could still
be observed due to e.g. erroneous genotyping (e = 0.001).

gtx1 gtx2 LR(Θ1,Θ0) LR(Θ2,Θ0) LR(Θ3,Θ0) LR(Θ4,Θ0)

A1A1 A1A1
1

f 2
1

(f1 + 1)2

4f 2
1

1

f1

f1 + 1

2f1

A1A1 A1A2
e

2f 3
1 f2

f1 + 1

4f1

1

2f1

2f1 + 1

4f1

A1A1 A2A2 f 2
1 f

2
2

1

4

e

f 2
1 f

2
2

1

2

A1A2 A1A2
1

2f1f2

1 + f1f2
4f1f2

1

4f1f2

4f1f2 + f1 + f2
8f1f2

A1A1 A2A3
e

4f 2
1 f2f3

1

4

e

4f 2
1 f2f3

1

2

A1A2 A1A3
e

8f 2
1 f2f3

2f1 + 1

8f1

1

8f1

4f1 + 1

8f1

A1A2 A3A4
e

8f1f2f3f4

1

4

e

8f1f2f3f4

1

2

Finally with the pre-calculated probabilities given in Table 5.2LOD Scores

and Equation 5.3 the LOD score for all combinations of GT s gt =

(AnAn), An ∈ {A,C ,G ,T}, for each dyad (x1, x2) can be calculated

for all loci k ∈ K as follows, assuming linkage equilibrium between
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positions:

LOD(Θi,Θ0 | D) = log10
∏
k∈K

P
(
D =

(
gtx1(k), gtx2(k)

)
| Θi

)
P(D =

(
gtx1(k), gtx2(k)

)
| Θ0)

=
∑
k∈K

log10
P
(
D =

(
gtx1(k), gtx2(k)

)
| Θi

)
P
(
D =

(
gtx1(k), gtx2(k)

)
| Θ0

)
(5.4)

whereby gtx1(k) refers to the GT of sample x1 at the kth position.

For each dyad (x1, x2) LOD scores for all hypotheses Θi, i ∈ {1, 2, 3, 4},
versus the null -hypothesis Θ0 (unrelated) are computed and divided

by the number of comparisons K.

In the following the notation LOD(Θi,Θ0 | D) is simplified as

LOD(Θi,Θ0)
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5.4 Experimental Validation

5.4.1 Separation Efficiency of LOD Scores

LOD scores were calculated for all dyads from 39 WES families se-WES Samples

quenced by the 1KGP as well as from 9 in-house families including

three families with a self-declared consanguineous degree of rela-

tionship which are only used in Section 5.4.4. All in-house samples

were sequenced on an Illumina HiSeq 2000 [6] and the resulting

reads as well as the raw reads from the 1KGP were mapped to the

GRCh38 reference genome using BWA-MEM [70].

Additionally six technical replicates were simulated based on oneSimulation of

Technical

Replicates

1KG individual (NA06986 ) by randomly reducing the coverage of

the original alignment yielding a mean per-base coverage of 313,

140, 120, 80, 50 and 30 reads.

Multi-sample variant calling was performed using GATK [83, 38,

117] and the variant list was restricted to the consensus exonic tar-

Table 5.3: Summary of related individuals. All related WES samples
from 39 families sequenced by the 1KGP as well as from six in-house
families. Additionally six technical replicates of one individual from the
1KGP (NA06986 ) were simulated, yielding decreasing coverages of 313,
140, 120, 80, 50 and 30 reads per positions.

Dateset Relationship Type Number of dyads

1KG replicates 15

1KG full siblings 6

1KG parent - child 16

1KG 2nd order 7

in-house full siblings 7

in-house parent - child 24

in-house 2nd order 7

in-house 3rd order 5
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get region defined by the 1KGP [31, 32, 33, 34].

A summary of all families, with the exception of the three consan-

guineous families, and their underlying relationship types is shown

in Table 5.3.

Figure 5.3 displays all LOD scores LOD(Θi,Θ0), i ∈ {1, 2, 3, 4}, Visualization of

LOD Scoresfor each dyad sequenced by the 1KGP as well as in-house. Violin

plots visualize the distributions of all unrelated dyads for each hy-

pothesis, whereas known relationship types are highlighted. Most

LOD scores show a segmentation of the dyads which corresponds

to their kinship coefficient (see Table 5.1). To give an example the

LOD scores LOD(Θ3,Θ0) cluster the technical replicates (red cir-

cles) at the right end, dyads with a full sibling or parent - child

relationship in the middle area and 2nd order related individuals at

the left side. The most likely hypothesis maximizes the LOD score,

max{LOD(Θi,Θ0)}≥0 which is emphasized in Figure 5.3 with ad-

ditional dashed lines.

As shown in Table 5.3 five 3rd order relationships are included in Higher order

Relationship

Types

the in-house dataset which are not explicitly tested with an addi-

tional hypothesis as they occur in just one big in-house family. In

absence of a suited pre-defined hypothesis these dyads are marked

as unrelated but assigned to a 2nd order relationship which can be

observed in the upper panel of Figure 5.3 (LOD(Θ4,Θ0) ) as the

violin distribution includes values ≥ 0.

Misclassification can also occur due to low quality within samples Misclassification

due to Low

Quality

with a high genotyping error rate as shown for three replicate dyads

with strongly deviating per-base coverages in Figure 5.3 (yellow as-

terix). These dyads are rather assigned to a full sibling relationship

when resolving max{LOD(Θi,Θ0)}≥0 as with increasing error rates

it becomes more difficult to identify technical replicates or monozy-

gotic twins.
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LOD(Θ1,Θ0)

LOD(Θ2,Θ0)

LOD(Θ3,Θ0)

LOD(Θ4,Θ0)

Replicates Full Siblings Parent - Child 2nd Order

LOD Score

Figure 5.3: LOD scores based on different hypotheses. All hypothe-
ses Θi, i ∈ {1, 2, 3, 4} are compared to the null -hypothesis Θ0 (unre-
lated), for each dyad included in the 1KG family dataset as well as in
6 in-house families. Individual pairs, that are not related are depicted
as gray background distribution whereas true underlying relationship
classes are highlighted. Note that most of the dyads have small values
for LOD(Θ1,Θ0) and are not displayed in the figure. The variance of the
LOD scores comparing Θ1 and Θ0 is relatively big compared to other
hypotheses and therefore most dyads have very small LOD scores and
could not be displayed in the same figure. When comparing the same
dyad under all hypotheses as exemplarly chosen in the figure (crosses)
the most likely relationship class is chosen as max{LOD(Θi,Θ0)}≥0
(dashed lines).
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One solution could be to adjust the error constant e, corresponding

to the mean genotyping quality for each sample which was also

discussed in Chapter 4.

5.4.2 Directionality of Pairwise Relationships

All relationship types assigned to each dyad by resolving

max{LOD(Θi,Θ0)}≥0 are not directed which makes it necessary to

include at least three individuals of one family into the analysis to

reconstruct entire pedigrees. To give an example, if the most likely

classification of a dyad is a parent - child relationship it cannot be

distinguished between parent and child, especially when the sex of

each individual is the same (see Figure 5.4 c)). On the other hand,

additional knowledge about the second parent (Figure 5.4 a)) or at

least one sibling (Figure 5.4 b)) can be used to clear the assignment

of parent - child relationships. Further the sex of each individual

is determined by the ratio of heterozygous SNV s compared to all

variants which are located on the X chromosome.

unrelated

siblings
unknown

I1 I2

II1

I1

II1 II2

? ? I1

II1

a) b) c)

Figure 5.4: Directionality of parent - child relationships. At least three
related samples are sufficient to classify a parent - child relationship with
known directionality, either due to the knowledge that both parents are
unrelated (a)) or with the additional information from siblings (b)).
The directionality cannot be resolved with just two sequenced samples,
that are involved in the analysis (c)). Without additional information,
it is impossible to infer whether I1 or II2 is the parent.
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In general without additional knowledge the directionality of aParents with

Different Ethnic

Backgrounds

parent - child relationship of a single dyad cannot be resolved.

One special exception is given in the case when both parents have

strongly deviating ethnic backgrounds, as the offspring will show a

combination of two sets of population specific SNPs. The heterozy-

gosity of the offspring will be higher than of each of the parents

as the frequency of many polymorphisms differs, depending on the

background population, and the directionality can be resolved with-

out any additional information.

5.4.3 Precision of LOD Scores

The average number of SNV s that is expected in the consensus

exonic target region as defined by the 1KGP yields about 15000−
20000 positions per sample. With these high amount of markers a

precision of 100% could be achieved for all tested dyads.

In order to test the effect of smaller target regions, the numberEffect of Small

Target Regions of SNV s was randomly reduced for all 1KG samples and pedigree

prediction was performed for all reduced subsets repeatedly for 100

times. The obtained precision remains constant for all full sibling

and parent - child dyads up to 1000 randomly chosen positions

but starts to drop with less available markers, as shown in Figure

5.5. At a comparable number of SNV s, dyads with a 2nd order

relationship are more difficult to distinguish from other classes and

especially unrelated dyads are more often falsely assigned to 2nd

order relationships.

The contribution of different GT combinations to the LOD scoresHeterozygosity

also depend on their heterozygosity, h, which is defined as

h = 1−
∑
n

f 2
n, (5.5)

whereby fn is the AF of the nth allele.

The mean heterozygosity for bi-allelic SNV s in WES experiments
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Figure 5.5: Precision of pedigree prediction with decreasing number of
loci. The number of loci was either randomly reduced (big shapes) or
restricted to a subset of highly informative markers (small shapes). In
general the positive predicted value or precision drops with decreasing
number of positions for all three relationship types: full siblings (orange
circles), parent-child (green triangles) and 2nd order (blue squares). For
parent-child as well as for full sibling relationships the precision starts to
drop when using ≤ 500 randomly chosen markers, whereas 2nd order re-
lationships are more difficult to distinguish from unrelated individuals.
A higher precision can be achieved when choosing bi-allelic positions
with a heterozygosity above the average value of h = 0.3 in WES exper-
iments.

is ∼ 0.3. When the subset of markers is not chosen randomly but

with a high heterozygosity above 0.3, higher precision values can

be achieved for all relationship types (small shapes in Figure 5.5).

This is also in good agreement with approaches in studies, where

predominantly markers with a high IC are used [45].

5.4.4 Influence of Inbred Structures

In families with a high degree of consanguinity, the prediction of

exact pedigrees becomes more challenging. The heterozygosity de-

creases in outbred populations and as a result the AFs deviates

stronger from the expected null -model. To test the influence of Simulation of

Inbred Structuresthis known bias on the assignment of relationship types via LOD
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Figure 5.6: Classification of relationships in highly consanguineous
families. Offspring from related 1KG dyads with different degrees of
relatedness (full siblings , parent - child and 2nd order) were simulated.
Additionally the individual inbreeding coefficient was calculated for all
offsprings and the LOD score LOD(Θ3,Θ2) was computed for all sim-
ulated parent - child pairs. A correct classification was possible for all
simulated parent - child dyads although a strong negative correlation
between the degree of inbreeding and LOD(Θ3,Θ2) exist.

scores not only three in-house families with a self-declared consan-

guineous degree were analysed but additionally inbred structures

were simulated using related 1KG dyads. For this purpose one al-

lele from each assumed parent was chosen randomly at each locus

to create a new GT at this position for the simulated offspring.
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With this approach different degrees of consanguinity could be cre- Inbreeding

Coefficientated, depending on the relationship of the assumed parents which

can be quantified with the inbreeding coefficient described as the

proportion of the genome that is IBD [125] [49].

As shown in Figure 5.6 high inbreeding coefficients correlate with

lower LOD scores between relationship models with the same kin-

ship coefficient, LOD(Θ3,Θ2). However, all relationship types could

be resolved as parent - child regardless of the underlying inbreeding

coefficient of the simulated offsprings as well as of the consanguin

in-house datasets.
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5.5 Summary of this Chapter

This paragraph focused on an approach to reconstruct entire family

structures soley based on whole exome sequencing (WES ) sequenc-

ing datasets including rare variants. For this purpose logarithm of

the odds (LOD) scores were computed for different models of re-

latedness utilizing allele frequencies (AFs) obtained by 2535 non

related individuals of the 1000 genomes project (1KGP) to esti-

mate the probability of the combination of two genotypes (GT s) at

any position.

Pedigrees could be derived with high precision for up to 1000 posi-

tions for publicly available as well as in-house samples with different

underlying coefficients of relatedness.

The methods reveals some flaws when the kinship coefficient be-

tween two models becomes close, which is difficult especially in

family structures with a high degree of consanguinity (as shown in

Figure 5.6). Also dyads with a higher degree of relationship than

2nd order can just be resolved by the analysis of additional family

members as the method highly depends on pre-defined hypotheses.

Further it was shown that particularly dyads with a 2nd order rela-

tionship benefit from highly polymorphic marker loci as illustrated

in Figure 5.5. Especially in paternity testing marker loci with a

high heterozygosity, such as microsatellites (SSRs), were used so

far. Positions which are highly polymorphic can be found in the

human leukocyte antigen (HLA) cluster on chromosome 6 that in-

cludes 7300 known alleles [99]. A comparison between the predic-

tive power of multiple bi-allelic marker loci such as most SNV s

and a single marker as for example the HLA locus demonstrates

the limited discriminatory power as the information content (IC ),

IC = −
∑

n fnlogfn, of 13 unlinked bi-allelic markers is comparable

to the IC of the HLA locus with 7300 markers. However it could

also be demonstrated that also rare and family specific SNV s can

be used infer to ancestry.
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Another drawback of the approach is, that strongly deviating lev-

els of genotyping quality are not considered, which can lead to

falsely classified relationship types as shown in Figure 5.3 for dif-

ferent technical replicates with deviating per-base coverages. With

an decreasing coverage the error rate increases, especially for het-

erozygous variant calls. One solution could be to adapt the error

constant e for each sample independently according to the esti-

mated genotyping quality (see Chapter 4).
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6 | Discussion

Up to date next generation sequencing (NGS ) has influenced and

expedited many biomedical areas. Particularly exome screening

that focuses on the protain coding region, has emerged to be an es-

sential tool for the detection of disease causing variants in routine

diagnostic.

Still, the detection of pathogenic single nucleotide variant (SNV )

among thousands of potentially disease causing mutations remains

challenging and assisting techniques for prioritizing became indis-

pensable. However, all approaches rely on correct sequencing in-

formation and the need for methods for quality control (QC ) sub-

stantially intensified.

Each sequencing platform is characterized by a specific error pro-

file and stochastic fluctuations may occur in the biological process

of library creation. Even in datasets that were sequenced with a

high sequencing coverage, up to about 2% of the detected variants

couldn’t be reproduced if resequenced by a different technique [115].

Further, algorithms for sequence read alignment and variant detec-

tion cannot compensate for artefacts that were either introduced

during the sequencing process or that arise due to error prone re-

gions, such as highly repetitive genomic ranges. Quite the contrary,

most variant calling algorithms make strong assumptions about the

distribution of the sequencing distribution and deviations affect the

sensitivity of SNV identification. Especially the error rates in the

detection of heterozygous SNV s is much higher compared to ho-
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mozygous variants. This is mainly due to a lower sequencing cover-

age, for exampels in GC -rich regions, and the preferential capture

of reference sequence alleles.

Most of these systematic biases arise during polymerase chain re-

action (PCR) amplification and lead to a relatively heterogeneous

profile of the overall sequencing coverage over the genome. In con-

trast, Whole genome sequencing (WGS ) would yield a more uni-

form distribution of sequencing reads as it does not contain an

additional PCR and capturing step. Until now, WES was consid-

ered as the state-of-the-art technique in diagnostic set-ups, as it

targets the 1% of the genome that encodes for protein sequences at

comparable low costs and less storage efforts compared to WGS .

However, as the costs to sequence a whole genome has come down

significantly this may lead to a fundamental rethinking within the

community. Not only is the coverage uniformity superior to WES ,

but it would also allow to examine SNV s and copy number varia-

tions (CNV s) within the 99% of the non-coding genomic sequence.

However, WES still benefits from lower costs which also enables

to sequence more samples at comparable prices. This is not only

important for large scale population studies but also for linkage

analysis and filtering approaches based on family data as for in-

stance the detection of de-novo mutations.

Apart from NGS or 2nd generation sequencing technologies, 3rd

generation instruments have already been introduced in the recent

years including Helicos Heliscope [5], Pacific Biosciences SMRT

[12] and Oxford Nanopore [11]. One of the main advantages of

this new generation is that the initial step of DNA amplification

becomes unnecessary [20] which theoretically increases the accu-

racy of a sequencing experiment. On the other hand, these new

instruments still suffer from worse accuracy and lower throughput

compared to NGS technologies as for example reported for Pacific

Biosciences platforms [97].

To overcome the limitations that are associated with WES and 2nd
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generation sequencing technologies several measures were recom-

mended to address and improve the quality of an exome sample.

Besides suggestions for a minimum sequencing depth, other quality

parameters were introduced such as the proportion between tran-

sitions (Tis) and transvertions (Tvs) or the percentage of variants

that are already listed in databases such as dbSNP . However, many

of these parameters are influenced by the size of the target region

and may also depend on the ethnic background population. These

examples illustrate that existing guidelines for QC are still ambigu-

ous and methods which help to increase the sensitivity of variant

calls would improve the analysis of exome sequencing experiments.

This work focused on strategies for quality control (QC ) for ex-

periments based on WES whereby three different stages and their

specific characteristics of the analysis were examined.

Initially, I described the distribution of AFs at heterozygous posi-

tions as measured in next generation sequencing (NGS ) data sets.

The assumption of binomially distributed frequencies that is used

as prior distribution in variant call algorithms based on Bayesian

methods often lead to a misclassification of heterozygous variants.

I could show that the amplification step during sequencing prepa-

ration strongly influences the variance of this distribution and de-

viates from the widely accepted model. The process of fragment

generation during the polymerase chain reaction (PCR) step could

be simulated by a two-type (Bienayme-) Galton-Watson (BGW )

branching process. Conclusions about how to reduce the stochastic

fluctuations could be drawn from the analytically derived variance

of heterozygous AFs , such as increasing the efficiency of the adap-

tor ligation and the number of initially used fragments.

The variance of the AFs at heterozygous SNV positions can further

be used as an additional quality parameter to indicate the overall

false negative rate (FNR) of an WES experiment. Additionally the

simulated distribution could serve as an adapted prior distribution

for variant calling algorithms to increase the sensitivity of variant
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calls in targeted exome screens.

Although the amplification process may become obsolete in the fu-

ture as WGS develop to be more and more feasible, one should keep

in mind that simple technical replication of samples substantially

decrease the FNR of variant calls.

The second topic of this work concentrated on an approach to as-

sess the overall accuracy of an exome sample, independent of the

sequencing platform. I developed a distance metric that empha-

sizes the weight on rare variants and used this to compare in-house

WES samples to a high quality reference set with the best suiting

background population, which was sequenced by the 1000 genomes

project (1KGP). Groups with different simulated accuracies, based

on the 1000 Genomes (1KG) exome data, were used to estimate

the quality of a single genotyped sample without further knowledge

about the sequencing technology or applied bioinformatic pipeline.

The derived standardized dissimilarity score (SDS ) and the associ-

ated estimated error rate serves as an indicator for the genotyping

quality and should yield values comparable to the reference set. In

a high quality WES sample about 15000 − 20000 SNV s would be

detected in a coding region that targets ∼ 30Mb and one would

expect about 300 of them to be false positive. This corresponds

to an error rate of ∼ 0.00001 and this is also the value one would

expect for a good quality WES sample.

This approach heavily relies on finding a suiting reference back-

ground population to which a sample can be compared to. If a

WES sample is compared to a reference set, that is not exactly

the best suiting background population, all population specific sin-

gle nucleotide polymorphisms (SNPs) that are absent in the ref-

erence set will be treated as false positive variant calls and in-

fluence the result. Similar problems occur when an offspring of

two different ethnic backgrounds is analysed. Up to date the 1000

genomes project (1KGP) provides sequencing data for 2535 individ-

uals which are grouped into 26 ethnic sub-populations. In general
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the reference set can be adapted and more high quality exomes can

be incorporated, for example if more individuals are sequenced by

the 1KGP or by additional in-house data and more fine grained

population studies will help to improve the breakdown of genetic

diversity within sub-populations in the future.

In the case of an unknown source of the sequenced sample I would

suggest to first analyse the population background, regardless of

the quality of the sample. This could be done in a similar approach

with a distance metric that puts for example more weight on com-

mon SNPs.

Recently the approach could be adapted to another application by

Zhu et al. [127]. In rare variant association studiess (RVAS s) of

cohorts with ultra-rare disorders the size of the available samples

is usually very small and approaches such as GWAS cannot be ap-

plied. In the work of Zhu et al. it was shown that a similarity based

matching strategy for the set-up of case-control groups is suitable

to correct for possible confounding effects in the underlying data

that occur due to varying ethnicities or heterogeneous quality of

the data.

In the exploration of high dimensional sequencing data the only

strategy to reduce the search space of possible pathogenic variants

is often to integrate additional samples into the analysis. These ap-

proaches rely on correct pedigree information and can lead to false

conclusions in the case of sample mix-ups. Therefore, the estima-

tion of relatedness structures between pairs of individuals was the

last important topic that was studied in this work.

I developed a tool based on logarithm of the odds (LOD) scores

to test different pre-defined hypotheses of relatedness between two

WES samples and correct pedigrees could be derived for publicly

available 1KG families as well as for in-house data with different re-

latedness coefficients. The most difficult separation occurs between

unrelated individuals in a highly homogeneous population with con-

sanguineous structures and samples that are related by 2nd order.
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This is especially challenging when only a few marker loci are avail-

able. Usually positions with a high information content (IC ), such

as simple sequence repeats (SSRs), were used to infer paternity or

differentiate between full and half siblings. As these markers are

not available in WES experiments, such an approach is not suit-

able in this setting without the effort of additional experiments.

Up to date, the most polymorphic site that could be obtained via

exome sequencing is the human leukocyte antigen (HLA) cluster on

chromosome 6 which is characterized by more than 7300 different

alleles [99]. However, a comparison between the predictive power of

multiple bi-allelic SNV s and one single polymorphic marker such

as HLA shows some limiting disillusionment. The information con-

tent (IC ) of 13 bi-allelic variants would be the same as the IC of

the HLA locus. However, it was shown in this work that ances-

try could also be predicted with the use or rare and family specific

variants that are available in exome screens.

It was also illustrated that different levels of qualities within the

data influence the precision of the pedigree prediction. Until now,

just one error constant is used to account for misclassified variants.

This could be adapted by combining the estimation of an overall

genotyping accuracy for each sample with the prediction of pedi-

grees.

The estimation of relatedness structures could markedly be im-

proved in combination with haplotype reconstruction [58]. However,

the derivation of long haplotypes for 2nd generation WES experi-

ments that are based on PCR amplification is limited but could be

realized with WES . With an likelihood ratio (LR) based approach

that does not only utilize GT frequencies but includes additional

haplotype information, also difficult relationship types such as 2nd

order could be resolved with higher precision.

In summary I studied various levels of a exome sequencing experi-

ments and the different possibilities for quality control (QC ). As

whole exome sequencing (WES ) is an important part in routine
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diagnostics, the estimation and improvement of data quality is cru-

cial. For a reliable variant calling, it is not only important to ob-

serve the coverage of an exome over the target region, as several

other biases can influence the sensitivity of an exome screen. To

assess a reliable estimation of the quality of an experiment, the over-

all distribution of the sequence reads has to be taken into account.

Further, as several international projects provide good quality data

sets by now, these should be taken as a comparable reference to

estimate the overall accuracy of the whole variance set. Finally, as

a simple mislabelling can lead to serious misinterpretation of the

data, testing for underlying family structures or cryptic relation-

ships can help to improve and speed up the analysis.
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7 | Summary

During the last decade methods based on NGS have revolutionized the field

of medical genetics. By sequencing the protein coding region via WES genetic

variations that appear in Mendelian disorders can be identified. Further, ad-

ditional approaches were introduced to reduce the search space for potentially

pathogenic mutations, for example by including more family members into the

analysis. With a growing rate of technical advances also new challenges have

arisen and methods for QC are crucial to increase the sensitivity of variant

detection. In this work different strategies for QC are presented which concen-

trate on three levels of the analysis of an WES experiment.

The distribution of AFs at Heterozygous positions is associated with the am-

plification step during library preparation before sequencing. Strong deviations

from the expected mean of 0.5 lead to an increased error rate in the detection

of genetic variations. It is shown that the variance of this distribution can be

modelled with a two-type BGW branching process. With this, conclusions can

be drawn on how to reduce stochastic fluctuations caused by the amplification

step. Additionally the derived variance can be used as an indicator for the

error rate of a WES sample.

Variant detection is strongly influenced by the ethnic background of an indi-

vidual as SNP frequencies have population specific characteristics. Here the

exome wide accuracy is estimated by comparing all variants of an WES sample

to a good quality Reference set with a matching background population, using

a distance metric that emphasises weight on rare variants.

Most strategies to filter for potentially pathogenic variants are based on the

simultaneous analysis of several family members, for example if filtering for De-

Novo mutations. However, these techniques strongly rely on correct pedigree

information and sample Mix-Ups considerably affect the analysis and can lead

to false conclusions. In this work relatedness structures between samples are

inferred by calculating LOD scores based on population GT frequencies.

These approaches complement existing QC recommendations and help to in-

dicate the accuracy of a WES sample.

I





8 | Zusammenfassung

Durch die Sequenzierung der Protein kodierenden genomischen Region können

genetische Variationen identifiziert werden, die Mendelischen Krankheiten

zugrunde liegen. Dabei sind Methoden zur Qualitätskontrolle ein essen-

tieller Bestandteil, um die Sensitivitt der Detektion von genetischen Varianten

abzuschätzen und zu steigern. In dieser Arbeit werden verschieden Strategien

zur Qualitätskontrolle vorgestellt, welche sich auf drei verschiedene Phasen in

der Analyse eines Exoms konzentrieren.

Die Verteilung von Allele Frequenzen an heterozygoten Positionen ist mit

einem Amplifikationsschritt assoziiert, welcher der Sequenzierung vorrausgeht.

Es wurde gezeigt, dass die Varianz dieser Verteilung mit einem Verzwei-

gungsprozess modelliert werden kann. Mithilfe dieser Simulation können

Rückschlüsse über die stochastischen Fluktuationen während des Amplifika-

tionsschrittes gezogen werden, womit sich die Fehlerrate eines Experimentes

abschätzen lässt.

Die Detektion von Varianten ist stark durch den ethnischen Hintergrund eines

Individuums beeinflusst, da SNP Häufigkeiten populationsspezifische Charak-

teristika aufweisen. Durch den Vergleich aller Varianten eines Exoms mit einem

qualitativ guten Referenzset, welches einen ähnlichen Populationshintergrund

aufweist, kann die Genauigkeit eines Experimentes abgeschaetzt werden. In

diseser Arbeit wurde dafür eine Distanzmetrik verwendet die seltene Varianten

stärker gewichtet als Häufige.

Viele Strategien, die angewandt werden um nach möglichen pathogenen Mu-

tationen zu filtern, basieren auf der Analyse mehrerer Familienangehöriger.

Allerdings sind diese Ansätze auf korrekte Stammbäume angewie-sen and

mögliche Probenverwechslungen behindern die Analyse und führen zu falschen

Ergebnissen. In dieser Arbeit wurden Verwandtschaftsbeziehungen mithilfe von

Likelihood-Quotienten-Tests ermittelt, welche auf Genotypfrequenzen basieren.

Die vorgestellten Ansätze ergänzen vorhandene Empfehlungen zur Quali-

tätskontrolle und helfen, die Genauigkeit eines Exom Experimentes zu bes-

timmen.

III
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