9. Abbildungs- und Tabellenverzeichnis

Abbildung 1.1: Der BER-Mechanismus	.1
Abbildung 1.2: Mechanismus von "short patch BER" und "long patch BER"	5
Abbildung 1.3: Poly(ADP-Ribosyl)ierung	8
Abbildung 1.4: Funktionelle Domänen von PARP-1	9
Abbildung 1.5: Mögliche Rolle von PARP-1 im SSBR-Mechanismus1	2
Abbildung 1.6: Mechanismus der Gewinnung von ATP aus PAR1	3
Abbildung 1.7: Derzeit bekannte Interaktionen innerhalb des BER/SSBR-Komplexes1	4
Abbildung 1.8: Endonukleolytische Spaltung einer abasischen Stelle durch APE 11	5
Abbildung 1.9: Pol β : Nukleotidyltransferase- und dRP-Lyase-Aktivität1	7
Abbildung 1.10: Katalysemechanismus von ATP-abhängigen DNA-Ligasen1	8
Abbildung 1.11: Funktionelle Domänen von Lig III1	9
Abbildung 1.12: Funktionelle Domänen von XRCC12	21
Abbildung 2.1: Erzeugung von AP-Substraten mit UDG	9
Abbildung 2.2: Erzeugung eines Ligasesubstrats4	0
Abbildung 2.3: Analyse der Ligationsaktivität durch denaturierende PAGE5	53
Abbildung 2.4: Reparatur von künstlichen Nick- oder Gap-Substraten5	5
Abbildung 2.5: Prinzip der Reparatur von AP-Substraten5	6
Abbildung 3.1: Die isolierten rekombinanten Proteine des BER-Komplexes5	;9
Abbildung 3.2: Die Enzymaktivität von isolierter rekombinanter APE 16	60
Abbildung 3.3: Ligationsaktivität von isolierter rekombinanter Lig III6	;1
Abbildung 3.4: Proteingehalt von PARP-1 und Lig III in DOG-behandelten Zellen6	3
Abbildung 3.5: Die PARP-1-Aktivität ist in Abwesenheit von ATP erhöht6	;4
Abbildung 3.6: Die Pol β -Aktivität wird nicht direkt durch ATP beeinflusst6	6
Abbildung 3.7: BER und SDDS am AP-Substrat6	57
Abbildung 3.8: Stimulierung von SDDS durch XRCC16	8
Abbildung 3.9: SDDS durch Pol β am Nick-Substrat6	;9
Abbildung 3.10: Einfluss von ATP auf SDDS durch Pol β am Nick-Substrat7	0
Abbildung 3.11: FEN 1 und XRCC1 stimulieren die SDDS durch Pol β 7	'2
Abbildung 3.12: Einfluss von FEN 1 und XRCC1 auf die Pol β-Aktivität in Gegenwart vo	n
Lig III7	'3
Abbildung 3.13: Die Ligationsaktivität von Lig III wird nicht durch XRCC1 stimuliert7	'4
Abbildung 3.14: Das Verhältnis von "long patch BER" zu "short patch BER" ändert sich m	nit
der ATP-Konzentration7	'5
Abbildung 3.15: SDDS und NAD ⁺ ermöglichen die Ligation im Kernextrakt	'8
Abbildung 3.16: Die inaktive Mutante Lig III K421V8	60
Abbildung 3.17: Der ATP-abhängige Wechsel zwischen "short patch BER" und "long patc	:h
BER" tritt in Gegenwart von Lig III K421V nicht auf8	31

Abbildung 3.18: Die Enzymaktivität der Mutante Lig III D423N	83
Abbildung 3.19: Die Enzymaktivität der Mutante Lig III D423A	84
Abbildung 3.20: Der ATP-abhängige Wechsel zwischen "short patch BER" und "le	ong patch
BER" in Gegenwart von Lig III D423A	85
Abbildung 3.21: Der ATP-abhängige Wechsel zwischen "short patch BER" und "le	ong patch
BER" in Gegenwart von Lig III D423N	86
Abbildung 3.22: Bindung von Lig III WT, D423A und K421V an DNA-Einzelstrangb	vrüche . 87
Abbildung 4.1: Einfluss der Energiesituation auf den BER-Mechanismus	90
Abbildung 4.2: Der Einfluss von ATP auf Pol eta benötigt die Adenylierung von Lig II	II93
Abbildung 4.3: Unterschiedliche Einflüsse von Lig III, FEN 1 und XRCC1 auf die	e Aktivität
von Pol β	97
Abbildung 4.4: XRCC1 koordiniert die Aktivitäten von Pol β und Lig III	99
Abbildung 10.1: Vektorkonstrukte zur Expression von APE 1, FEN 1, PARP-1	und Polβ
Abbildung 10.2: Vektorkonstrukte zur Expression von Lig III und XRCC1	121
Tabelle 1.1: Die Protein-Protein-Interaktionen von XRCC1	22
Tabelle 2.1: Vektorkonstrukte mit für Reparaturproteine kodierenden Sequenzen	27
Tabelle 2.2: Durch die PCR eingefügte Restriktionsschnittstellen	35
Tabelle 2.3: Programm für die PCR	36
Tabelle 2.4: Programm für die gerichtete Mutagenese	
Tabelle 2.5: Bedingungen für die Proteinexpression	43
Tabelle 2.6: Entnahme von Proben für die Expressionskontrolle	43
Tabelle 2.7: Expressions- und Säulenvolumen für die Proteinreinigung	45
Tabelle 2.8: Waschbedingungen für die Proteinreinigung	45
Tabelle 2.9: Mengen an Protein und Säulenmatrix für die Antikörperreinigung	47
Tabelle 2.10: Bestimmung der PARP-Aktivität	51
Tabelle 2.11: DNA-Reparaturansätze mit Nick- oder Gap-Substraten	56
Tabelle 2.12: DNA-Reparaturansätze mit AP-Substraten	57
Tabelle 2.13: DNA-Reparaturansätze mit Kernextrakten	58