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1. Introduction 

Proteins are nanoscale molecules that perform functions essential for biological life. 

Membranes surrounding cells, for example, contain receptor proteins that mediate 

communication between the cell and the external milieu, membrane transporters that 

transport ions and larger compounds across the membranes, and enzymes that catalyze 

chemical reactions. Likewise, soluble proteins found in interior of the cell include motor 

proteins that move other proteins around, enzymes that bind to and repair breaks in the 

DNA, and proteins that help control the cellular clock. Mutations in genes that encode 

proteins can cause disease, as is the case of cystic fibrosis, a disease that associates with 

mutation of a chloride channel called the cystic fibrosis transmembrane conductance 

regulator.1 The essential functions they perform in the cell makes proteins essential drug 

targets for modern bio-medical applications. An important example here is the programmed-

death ligand-1 (PD-L1), which is a valuable target for modern immunotherapy.2-4 Predicting 

how a protein responds to a drug molecule, or using the protein as inspiration for bio-

technological applications, require knowledge of how that protein works. As proteins are 

dynamic entities and protein dynamics are essential for function,5-8 describing the 

mechanism of action of a protein requires knowledge about the protein motions in fluid 

environments. Theoretical biophysics provides valuable tools to characterize protein 

reaction mechanisms and protein motions at the atomic level of detail. 

This Habilitation Thesis presents research on using theoretical biophysics approaches to 

decipher how proteins work. The focus of the research is on membrane proteins and 

reactions that occur at lipid membrane interfaces. The central question I address is the role 

of dynamic hydrogen (H) bonds in protein function and membrane interactions. The 

methods used include quantum mechanical (QM) computations of small molecules, 

combined quantum mechanics/molecular mechanics (QM/MM) of chemical reactions in 

protein environments, classical mechanical computations of large protein and membrane 

systems, and bridging numerical simulations to bioinformatics. In my research group we 

developed algorithms to identify H-bond networks in proteins and membrane environments, 

and to characterize the dynamics of these networks. To extend the applicability of numerical 

computations to bio-systems that bind drug-like compounds, we derive parameters for a 

potential energy function widely used in the field. The main research topics and specific 

questions addressed are summarized below together with a discussion of the computational 

approaches used. 
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2. Main scientific questions and model systems 

2.1 H-bond networks and proton transfers in membrane proteins 

Proton transfer is a reaction fundamental to bioenergetics. Proton pumps translocate 

protons across cell membranes, generating proton electrochemical gradients that can then 

be used, e.g., for secondary active transport across membranes or for the functioning of ion 

channels.9-12 By contrast to the pumps, proton channels mediate the passive flow of protons 

down the electrochemical gradient. 

The transport of protons across the ~30Å distance of the hydrophobic region of the lipid 

membrane occurs stepwise, and it involves protein groups and H-bonded water molecules. 

This stepwise transfer of protons –i.e., the change in the protonation state of specific protein 

groups- couples to changes in protein conformational dynamics, and in the dynamics of the 

internal water molecules.  

 

2.1.1 Microbial rhodopsins are membrane proteins that function as ion transporters or as 

sensory proteins. These proteins bind covalently a retinal chromophore via a protonated 

Schiff base located approximately at the center of the hydrophobic region of the protein 

(Figure 1A). Absorption of light by the retinal triggers a reaction cycle that involves changes 

in the protonation state of specific protein groups, and structural rearrangements.  

Microbial rhodopsins are excellent model systems to investigate the general physical-

chemical principles of the coupling between protonation dynamics, protein and water 

dynamics. Indeed, decades of experimental and theoretical studies of bacteriorhodopsin 

and, over more recent years, of an increasing number of microbial rhodopsins, provide the 

fundament we can build upon to address questions pertaining to structure-function-

relationship in membrane proteins (for reviews and perspectives see, e.g., refs.13-17). 

Importantly, three-dimensional structures of a number of microbial rhodopsins have been 

solved –e.g., for the bacteriorhodopsin proton pump,18-22 for the halorhodopsin proton 

pump,23 for a sodium pump,24-25 for channelrhodopsins,26-27 and for sensory rhodopsins,28-31 

providing a detailed view of the architecture of microbial rhodopsins of different function. For 

theoretical biophysics, reliable three-dimensional structures of microbial rhodopsins are 

invaluable in that they serve as starting points for computations. 

Perhaps the best-studied microbial rhodopsin is bacteriorhodopsin. Extensive 

experimental and theoretical studies led to a detailed description of the reaction cycle of 

bacteriorhodopsin (see, e.g., refs. 13-15, 32-43). Briefly, the photoisomerization of the all-trans 

retinal to 13-cis triggers a reaction cycle during which five proton transfer steps result in the 

net transport of one proton from the cytoplasmic to the extracellular side of the membrane 

(Figure 1A). The first proton-transfer step is from the retinal Schiff base to D85.44 A proton is 
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then released from an extracellular proton release group that includes E194, D204, and H-

bonded water.45-48 The retinal Schiff base reprotonates from D96, which in turn accepts a 

proton from the bulk –potentially with participation of other carboxylate groups at the 

cytoplasmic side of the protein;49-50 the last proton transfer step is from D85 to the 

extracellular proton release group, and might involve transient protonation of D212.51-52 

Discrete water molecules appear to participate in all proton transfer steps of 

bacteriorhodopsin, and the role of water in bacteriorhodopsin proton transfer has been 

studied extensively (see, e.g., refs.15, 37, 47, 53-54). Water molecules that H bond to the proton 

donor and/or acceptor impact the relative orientation and proton affinity of these groups,53 

and the path and energetics of the proton-transfer reaction;54-55 internal H-bonded waters 

help store a proton at the extracellular proton release group,56-58 and transfer a proton from 

the cytoplasmic D96 to the retinal Schiff base.59-60 This highlights the importance of 

accurate information regarding the location of internal water molecules in a cellular ionic 

pump, and of how the location and dynamics of these waters respond to changes in 

protonation during the reaction cycle of the pump. Bacteriorhodopsin remains an excellent 

model system to probe the coupling between protein conformational dynamics and water 

dynamics, and findings from such studies on bacteriorhodopsin can inform research on 

much more complex membrane transporters. 

 

2.1.2 Water and H-bond networks of the AHA2 plasma membrane proton pump. That 

absence of reliable information about the location and dynamics of internal waters makes it 

difficult to understand how a proton pump works is illustrated by, e.g., the AHA2 plasma 

membrane proton pump from Arabidopsin thaliana (Figure 1B). This proton pump is a 

member of the P-type ATPases, which are proteins that hydrolase adenosine triphosphate 

(ATP) to power vectorial ion transfer across cell membranes; the reaction cycle of these 

proteins involves a phosphorylated intermediate, hence their being P-type. 

Although AHA2 has a more complex fold than the simpler bacteriorhodopsin proton 

pump (Figure 1), there are important similarities in the three-dimensional arrangement of 

groups important for proton transfer within the transmembrane domain:10 In AHA2 the 

primary proton donor group, D684, H bonds to N106, and R655 is though to function as a 

counterion for D684;10, 61 at the extracellular side of the pump, carboxylate groups such as 

D92 and D95 could participate in proton release.10, 61 As the crystal structure of AHA261 and 

the newer structural model improved with a flexible fitting procedure and structural 

refinement62 lack coordinates for internal water molecules, the path that could be followed 

by a proton across the ~18Å distance from D684 to the D92/D95 pair is unclear.  
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In principle, water molecules could be added to the protein structure by using protein 

hydration software such as DOWSER++.63 A potential artifact arising from such an 

approach is description of internal water-mediated H bonds in intermediate states of the 

pump. As we had noted before in work on bacteriorhodopsin, the location of a internal water 

molecule along the reaction path of a pump depends not only on the free energy for 

inserting water molecule at a particular site, but also on the free energy barrier associated 

with the relocation of the water to that site.54 That is, internal water location and dynamics 

are part of the reaction coordinate of the pump, and setting a priori coordinates for internal 

waters may provide a biased description of the reaction coordinate of the pump. 

 

Figure 1. Architecture of proton pumps. The proteins are shown as cartoons and selected protein 

groups as bonds with carbon atoms colored cyan, nitrogen, blue, and oxygen, red. Water molecules 

are shown as small pink spheres. (A) The bacteriorhodopsin proton pump. The transmembrane (TM) 

helices of bacteriorhodopsin are labeled with letters A to G. For clarity, helices B and C are shown as 

transparent cartoons. The molecular graphics is based on the crystal structure PDB ID:5ZIM solved 

at 1.3Å resolution.22 (B) The AHA2 plasma membrane proton pump. The central proton 

donor/acceptor group is located within the TM region of the protein. The carboxylate groups shown 

have at least one atom within 30Å from D684. Mg2+ and K+ ions are shown as van der Waals spheres 

colored purple and violet, respectively. ACP indicates phosphomethylphosphonic acid adenlyate 

ester.64 The molecular graphics is based on chain A of the crystal structure PDB ID:5KSD solved at 

3.5Å resolution.62 The distance between the Cγ atoms of D95 and D684 is 17.5Å. Unless specified 

otherwise, molecular graphics were prepared using Visual Molecular Dynamics, VMD.65 
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One possible solution to the problem of finding water-mediated paths that could connect 

transiently proton donor and acceptor groups is to pursue atomistic molecular dynamics 

(MD) simulations of the protein in a hydrated lipid membrane environment, and monitor the 

simulations to observe whether water molecules visit the inter-helical region of the protein. 

Moreover, to derive a glimpse into how the protein and water dynamics could respond to 

changes in the protonation state, MD simulations of a transporter could be performed with 

different protonation states. Limitations to this approach include the timescale that can be 

simulated with current atomistic simulations, which might be insufficient to sample correctly 

the protein and water dynamics, and a dependence of the protein and water dynamics on 

protonation states chosen for the computations. 
 

2.1.3 Retinal-protein coupling and role of water in Jumping Spider Rhodopsin-1 

Jumping Spider Rhodopsin-1 (JSR-1) is a compelling example of a protein in which discrete 

internal waters are likely essential for function, and for which computations serve as 

valuable tool to understand how waters impact protein function. The crystal structure of 

JSR-166  indicates a water molecule that bridges a Glu and a Ser sidechains, both of which 

engage in additional H bonding, such that the Schiff base of the 9-cis retinal is part of a 

network of H bonds that includes the water molecule and 5 protein sidechains (Figure 2B). 

The H-bond network and hydrophobic packing make the binding pocket of the retinal 

appear as rather tight (Figure 2A). Close interactions between protein and retinal might be 

important to couple the geometry of the retinal to protein conformational changes –as 

required for the functioning of JSR-1 as a G Protein Coupled Receptor (GPCR).  

 

Figure 2. H bonding and hydrophobic packing at the retinal binding pocket of JSR-1. (A) Tight 
packing of 9-cis retinal in the crystal structure. The retinal molecule bound to K321 and protein 
sidechains of the H-bond network, together with the active-site water molecule, are depicted as van 
der Waals spheres, and hydrophobic siedchains within 5Å of the retinal chain are shown as a gray 
surface. (B) H-bond network of the retinal Schiff base. The dotted lines indicate H bonding, and 
numbers in italics indicate distances in Ångstrom. The images are based on PDB ID: 6I9K.66 
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H bonding between the protonated Schiff base and Y126 might contribute to a key 

feature of the reaction cycle of JSR-1:66 the retinal Schiff base remains deprotonated during 

the reaction cycle, and retinal re-isomerizes from all-trans back to 11-cis by absorbing a 

second proton. This distinguishes JSR-1 from bovine rhodopsin, whose reaction cycle 

involves Schiff base deprotonation and hydrolysis.66-67 

Computer simulations can help deciphering the role of water in the H-bond network 

proposed to stabilize a protonated retinal Schiff base. A first question that needs to be 

addressed is whether the water molecule and the H-bond network the water is part of are 

present in resting-state JSR-1 bound to 11-cis retinal, and in JSR-1 with isomerized all-trans 

retinal. To address this question, atomistic MD simulations can be used to model these two 

JSR-1 intermediate states, and to probe their dynamics at room temperature. Once models 

of JSR-1 with 11-cis vs. all-trans retinal have been derived, QM/MM computations can be 

used to compute reaction coordinates for proton transfer. 

 

2.1.4 Water-mediated H-bonding in ion pumps: a molecular picture of functional 

interconversions in microbial rhodopsins. To accomplish orchestrated transfers of 

protons across the membrane, proton pumps rely on specific three-dimensional 

arrangements of titratable protein groups and discrete protein-bound waters. Understanding 

which specific structural motifs are essential for proton pumps vs. other ion pumps could 

serve as basis to alter the functionality of the pump. Prominent examples include the 

conversion of the bacteriorhodopsin proton pump into a chloride pump accomplished via the 

single amino acid mutation of D85 into Thr,68 and into a sensory receptor via the mutation of 

3 amino acid residues.69  

More recently, Krokinobacter eikastus rhodopsin 2, KR2, could be converted into a 

proton pump via mutation of 4 amino acid residues as in the Gloeobacter rhodopsin (GR) 

proton pump;70 the reverse mutation of GR into a sodium pump could not be achieved, 

being suggested that the two pumps have as common ancestor a proton pump, and that 

functional convergence could be achieved only when mutations reverse changes occurred 

during evolution.70  

A difficulty with predicting mutations based on sequence analyses and crystal structures 

is that the response of a H-bond network to mutations can be difficult to predict. Computer 

simulations and thorough analyses of the dynamics of internal H-bond networks in wild-type 

vs. mutant proteins can be used to probe and short-list mutations for further study with 

experiments, and to provide a molecular interpretation of the mutations. 
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2.2 H-bond networks for proton transfer in photosystem II  

Photosystem II is a membrane-embedded macro-molecular complex composed of multiple 

protein subunits, cofactor molecules, and special lipids (Figure 3), that uses the energy of 

light to oxidize water, catalyzing a chemical reaction fundamental for life: photosystem II 

splits two water molecules into molecular oxygen, protons, and electrons. As photosystem II 

could be coupled to a hydrogenase to generate molecular hydrogen (H2) in an artificial 

environment,71 and photosystem II is also a target for some of the herbicides,72 

understanding the reaction mechanism of photosystem II could potentially facilitate 

applications for biotechnology.  

I focus on understanding how protons that are generated during water splitting at the 

oxygen evolving complex (OEC, Figure 3) transfer to the bulk lumen. This is a challenging 

aspect of the functioning of photosystem II, because proton transfer appears to involve long 

distances, and the reaction coordinate for proton transfer is largely unclear. 

Analyses of crystal structures of photosystem II, spectroscopy, and theoretical studies 

have provided valuable information about putative pathways for proton transfer in 

photosystem II (see, e.g., refs.73-76); particularly important are thought to be groups such as 

D61 and E65 of subunit D1 and E312 of subunit D2, and H-bonded water molecules. 

Fourier Transform Infrared (FTIR) difference spectroscopy indicated that specific transitions 

between intermediate states of photosystem II associate with changes in the pKa or in the 

environment of three distinct carboxylate groups. 77-78 Recently, it was inferred that proton 

release might involve storage as ‘a protonated Eigen cation’.79 

 

Figure 3. Architecture of the photosystem II dimer. The image is based on the X-ray free-electron 

laser structure PDB ID: 6JLJ. The protein subunits are shown as ribbons colored violet for the PsbO 

subunit, and white for all other subunits. The OEX is shown as van der Waals spheres colored black, 

sulfoquinovosyldiacylglycerol, dark orange, chlorophyll a, lime, beta carotene, dark yellow, heme, 

pink, plastoquinone 9, blue, pheophytin a, magenta, digalactosyl diacyl glycerol, ochre, Cl- ions, red, 

Ca2+, violet, and Mg2+, yellow. 
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Given the complexity of the system, an important question is how protein and water 

dynamics enable transient sampling of proton-transfer paths at room temperature, and how 

changes in the protonation state of carboxylate groups involved in proton transfer might 

couple to changes in protein and water dynamics.  

Atomistic simulations are a valuable approach to study dynamic H-bond networks of 

photosystem II.  Challenges with such simulations include the size of the system, which can 

make it difficult to sample the protein motions for long times, the presence of cofactor 

molecules and special lipids, which might lack accurate representations in atomistic force 

fields, and the large number of H bonds whose dynamics need to be analyzed.  

 

2.3 The PsbO subunit of photosystem II as a putative proton antenna 

PsbO is an extrinsic subunit of photosystem II also denoted as the 33kDa protein and as 

the manganese stabilizing protein80-82 – a name that indicates an essential functional role of 

PsbO in the structural stability of the manganese cluster.83 In the crystal structure of the 

photosystem II complex PsbO has a β-barrel core and long loops (Figure 4); this is 

compatible with NMR data on free PsbO indicating that, in solution, the protein has a folded 

core and flexible loops whose motions might become restricted upon binding to the 

complex.84 Binding of PsbO to photosystem II occurs late in the assembly of the complex,85 

and it requires two conserved Arg groups (R151 and R161 in spinach photosystem II) 

whose mutation to Gly lowers not only the affinity for the binding of PsbO to photosystem II, 

but also impair chloride binding to the OEC and the oxygen evolution activity, which in these 

mutants is as low as 20% (R151G) and 40% (R161G) of wild-type photosystem II.82  

In addition to contributing to the integrity of the manganese cluster, PsbO might directly 

participate in the functioning of photosystem II by contributing carboxylate groups such as 

PsbO-D22475 to an extended H-bond network that could conduct protons from the interior of 

the complex to the bulk lumen. D224 is part of a cluster of carboxylate groups on the 

surface of PsbO hypothesized to function as a proton antenna.86 Proton antennas have 

been discussed, e.g., for bacteriorhodopsin49-50, 87 and for cytochrome c oxidase.87-88 Proton 

antennas consist of clusters of carboxylate groups, possibly also with histidine groups, and 

their role is to increase the time that a proton spends on the surface of a protein.87, 89  

The PsbO antenna cluster suggested for T. elongatus photosystem II includes 16 

carboxylate groups, including D158 and D22486 that are close to the two essential Arg 

groups (Figure 4). But the carboxylate groups of the antenna cluster are only about half of 

the PsbO Asp and Glu groups: in the case of photosystem II from T. vulcanus, for example, 
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the PsbO protein chain solved in a recent crystal structure contains no fewer than 35 Asp 

and Glu groups (PDB ID:6JLJ,79 Figure 4), some of which are at the interface between 

PsbO, PsbU and CP43 (Figure 4).   

 

In the hypothesis that PsbO functions as a proton antenna, key questions include how 

conserved are the carboxylate groups of the putative proton antenna, and whether the pH 

at which the organism lives could determine the size and spatial distribution of the cluster. 

Given the significant spatial extent of the putative antenna cluster, it is unclear whether all 

these carboxylates would be directly involved in proton binding, or whether protons are 

more likely to bind at a particular site of the cluster. Transfer of protons between carboxylate 

groups of the antenna cluster could associate with changes in the local structure, dynamics, 

and water interactions of the protein; at the interface between PsbO, PsbU and CP43, 

changes in protonation state could even associate with altered protein dynamics. These 

aspects would need to be addressed via experiments and computations that together could 

provide a detailed description of the mechanism by which PsbO participates in proton 

transfer of photosystem II. 

 

2.4 The bacterial Sec protein secretion path and conformational dynamics of the 
SecA protein motor 

The Sec secretion path is a major protein biosynthesis path, and mutations in genes that 

encode for Sec proteins have been linked to human disease.90  

In bacterial protein secretion, the cytosolic SecA protein motor (Figure 5A) couples the 

binding and hydrolysis of adenosine triphosphate (ATP) to the binding and stepwise 

translocation of secretory pre-proteins through the membrane embedded SecYEG protein 

Figure 4. The carboxylate groups of PsbO and 

the charged interface between PsbO, PsbU, 

and CP43. The molecular graphics is based on 

PDB ID:6JLJ. For clarity, only a fragment of 

CP43, which is within 15Å of PsbO, is shown 

as blue ribbons, and only selected PsbO 

groups are labeled. Sidechains of the Asp and 

Glu groups of PsbO, PsbU, and of the CP43 

fragment, are depicted as van der Waals 

spheres. The orange star indicates the location 

of PsbO-D158. E97 and D102 are within 2.6Å 

distance.  
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translocon (Figure 5B). SecA recognizes the signal sequence of the newly synthesized 

protein –these are N-terminal sequences of variable length and amino acid composition that 

have three regions, a positively-charged N terminus, an intermediate hydrophobic stretch, 

and a polar C-region.91-92  

Extensive experimental and computational studies (see, e.g., refs.93-96) together with 

structural biology of individual components (e.g., refs.97-102) and of protein complexes103-104 

have provided invaluable insight into how Sec protein secretion works. The highly complex 

reaction coordinate of the bacterial Sec protein secretion, which involves protein 

conformational dynamics, interactions between protein, lipids, and water, and electronic 

structure changes during the catalytic cleavage of ATP, remains, however, incomplete. A 

fundamental open question is how electronic structure changes during ATP cleavage 

couple to conformational changes of SecA and protein secretion through the translocon.  

 

Figure 5. Architecture of the protein translocon and of the bacterial protein motor. (A) The SecYEβ 

translocon from the archaeon Methanocaldococcus jannaschii, PDB ID:1RHZ.105 The three protein 

chains are shown as cartoons. (B) The functional domains of the SecA protein motor, based on the 

crystal structure PDB ID:1M74 of ADP-bound B. subtilis SecA.106 The nucleotide and the Mg2+ ion 

are bound at the interface between nucleotide binding domains NBD1 and NBD2. The two ends of 

the protein binding domain (PBD) are linked to NBD1. The other three functional domains of SecA 

are the scaffold domain (SF), the helical wing domain (HWD), and the two-helix finger domain (2HF). 

 

Understanding the reaction coordinate of conformation-coupled ATP hydrolysis of SecA 

would require description of the sequence of structural rearrangements and associated free 

energy profile along the path. Such a description could be derived, e.g., by using QM/MM 

computations. Once QM/MM reaction paths of the reaction coordinate have been 

computed, they could be dissected to find out why the release of ADP is rate limiting.107 
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Computations of the reaction coordinate of SecA are challenging due to the size and 

complex interactions of the protein. Yet another challenge is how to derive accurate 

structural models of ATP-bound SecA, which are required as starting point for the 

computations: Whereas the structure of ADP-bound SecA has been well characterized with 

X-ray crystallography (e.g., Figure 5B), the three-dimensional structure of ATP-bound SecA 

is somewhat poorly characterized. A crystal structure of ATP-bound SecA has been 

presented for E. coli SecA.100 Difficulties with this structure include lack of coordinates for 

the active-site Mg2+ ion, and for a large part of the PBD. A structure of E. coli SecA with the 

PBD and bound to a signal peptide model, but without nucleotide, was solved with NMR.99 

To characterize the reaction coordinate of SecA, one possible solution is to start from a 

crystal structure of, e.g., ADP-bound B. subtilis SecA, study the protein conformational 

dynamics and the dynamics of nucleotide binding, and dock ATP to B. subtilis SecA to 

derive a structural model with which ATP hydrolysis can then be computed. 

 

2.5 Protein binding at lipid membrane interfaces 

Understanding how membrane proteins acquire their fold is a fundamental question in 

biophysics. An intriguing model system to study how proteins interact with membranes is 

Mistic (membrane-integrating sequence for translation of IM protein constructs’, where ‘IM’ 

indicates integral proteins108). Mistic is a small protein, 110-amino acid residues long, that 

associates with the E. coli membrane108 even though it contains numerous charged and 

polar groups (Figure 6). Mistic is thought to fold without the help of the Sec translocon 

machinery, and it is useful for the expression of other membrane proteins in E. coli.108 In its 

native B. subtilis cells, the gene encoding Mistic, mstX, might be involved in biofilm 

production.109-110 

The NMR structure of Mistic solubilized in the detergent lauryl dimethylamine oxide, 

LDAO108 contains 4 relatively short helical segments – though it was noted that ends of the 

helices might partially unravel in detergent (Figure 6, PDB ID: 1YGM).108 In this detergent, 

circular dichroism measurements indicated that ~60% of Mistic is α-helical;111 helices 3 and 

4 are though to form secondary structure first, with subsequent packing of helices 1 and 

2.111 In early atomistic simulations of Mistic in a LDAO micelle, helix 4 displaced relative to 

the other three helical segments.112 A limitation of these simulations might have been the 

description of the non-bonded interactions between protein and detergent, as it is unclear 

whether deriving HF/6-31G* partial charges for LDAO was sufficient for reliable description 

of protein-detergent-water interactions.  

The conformational dynamics of Mistic was found to depend on physical-chemical 

properties of the detergent micelle, with a more compact, but conformationally dynamic 
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protein, in a zwitterionic detergent, and structure heterogeneity in a nonionic detergent.113 

Likewise, dimerization of Mistic depends on the lipid membrane environment.114 

 

The Mistic protein chain solved with NMR contains no fewer than 25 Asp and Glu 

groups, i.e., ~22% of the protein chain is acidic; when considering the Asp/Glu and Arg/Lys 

sidechains in their standard protonation states, the net charge of this protein chain is -11e. 

In a sequence conservation analysis based on a small set of Mistic proteins from 4 Bacillus 

species, it was noted that the distribution of acidic amino acid residues tends to be 

conserved.115 

How a protein as hydrophilic as Mistic associates with the membrane is difficult to 

envision, and its was hypothesized that binding to the membrane likely involves 

conformational changes of the protein.115 Both the E. coli and the B. subtilis membranes 

contain negatively charged lipids,116-118 which raises the question as to whether 

conformational changes of Mistic might be required to shield Asp/Glu sidechains from 

negatively-charged lipids of the membrane. The negatively-charged lipids of the bilayer 

could also serve as anchors for the protein, as they could H bond to Arg/Lys sidechains. 

The potential role of lipid-protein H bonds in the binding of Mistic at lipid membrane 

interfaces highlights the importance of atomistic computer simulations to derive a molecular 

picture of Mistic-membrane complexes. 

 

2.6 Role of lipids in membrane protein function: the GlpG rhomboid protease 

The lipid bilayer can impact significantly the reaction cycles of membrane-embedded 

proteins. A prominent example here is the visual rhodopsin G Protein Coupled Receptor 

(GPCR), for which experiments demonstrated that phosphatidylethanolamine (PE) lipids 

favor the transition from the intermediate state metarhodopsin I to metarhodopsin II.119 H 

bonds between tyrosine groups and lipids were observed in an early crystal structure of 

bacteriorhodopsin;120 squalene and phosphatidyl glycerophsophate methyl ester, two native 

Figure 6. Architecture and charge distribution 
of Mistic. The protein is depicted as yellow 
ribbons. The colored spheres are van der 
Waals spheres for the Ca atoms of Asp and 
Glu (red), Arg and Lys (blue), and Ser; The, 
Asn, Glrn, Tyr, and His groups (green). Note 
that the protein is loaded with charged and 
polar groups, which raise the question of how it 
bonds at the lipid membrane interface. The 
image is based on a coordinate set from the 
NMR ensemble PDB ID:1YGM.  
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lipids of the purple membrane, appear required for a normal reaction cycle of 

bacteriorhodopsin.121   

Intriguing observations about the role of lipids in membrane protein function were made 

for rhomboid proteases –these are proteases that are embedded in the membrane, where 

they cleave other transmembrane substrates and in doing so release molecules that 

participate in, e.g., cell signaling. The cleavage activity of rhomboid proteases from different 

organisms was tested against a model transmembrane substrate, using different lipid or 

detergent environments. One of the best studied rhomboid proteases, the GlpG protease 

from Escherichia coli (Figure 7), cleaved substrate in PE lipids and in detergent, but had 

poor activity in, e.g., PC, PG, or E. coli lipids;122 YqgP, the rhomboid protease from Bacillus 

subtilis, cleaved substrate in lipids such as PG and PC, but showed poor activity in PE.122 

That is, catalytic activity by rhomboid proteases depends on lipids, and rhomboids from 

different organisms respond differently to a particular lipid.  

That lipids impact enzymatic activity was also observed for the functional domain of 

signal peptide peptidase,123 and for γ-secretase,124 the protein complex whose cleavage of 

the amyloid precursor protein was implicated in Alzheimer’s disease.125  

 

Our earlier atomistic simulations of GlpG embedded in hydrated lipid bilayers provided 

insights into how lipids might impact the functioning of the protease.126 We found that lipid 

bilayers composed of 1-palmytoyl-2-oleoyl-sn-glycero-3 phosphatidylcoline (POPC) or 1-

palmytoyl-2-oleoyl-sn-glycero-3 phosphatidylethanolamine (POPE) thin close to the 

protease to adjust to the size and shape of the protein, and that this thinning, measured as 

the difference between the bilayer thickness far away and close to the protease, is about 

3.8-4.4Å.126 Thinning of the membrane close to the protease is likely important for the 

Figure 7. Architecture of the GlpG 

rhomboid protease. The molecular 

graphics is based on PDB ID:2IRV with 

chains A and B depicted as purple and 

green ribbons, respectively. The catalytic 

groups S201 and H254 are shown as van 

der Waals spheres in atom colors. Water 

molecules solved for chain B are shown as 

small pink spheres. Note the different 

orientation of helix 5 in the two protein 

structures. For simplicity, a lipid headgroup 

that is bound at the active site is not 

shown. 
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functioning of the protease, because it could influence the local structure and dynamics of 

the substrate as it encounters the protease.126-127 

Substrate docking by GlpG is thought to involve lateral movement of transmembrane 

helix 5128 and motions of loops 4129 and 5130-131 (Figure 7, based on PDB ID:2IRV132). As 

lateral movement of helix 5 would occur in the membrane, motions of the helix are likely to 

couple to changes in the local dynamics of the lipids, e.g., the local membrane thinning 

could change during the reaction cycle of GlpG. Knowledge of the reaction coordinate of 

substrate binding and cleavage by GlpG thus requires description of the lipid-protein 

interactions for different conformations of the protein.      

 

2.7 Overview of main research program 

I work on understanding mechanisms of reactions at lipid membrane interfaces. I am 

particularly interested in proteins whose functioning involves proton transfers, and proteins 

that couple to lipids. A unifying question concerns the role of dynamic H-bond networks in 

protein conformational dynamics and protein function. The bio-molecules used as model 

systems are representative to classes of proteins and reaction mechanisms.  

The reaction coordinate of an enzyme that catalyzes a chemical reaction involves 

changes in electronic structure associated with bond breaking and forming, dynamics of the 

protein environment, interactions with the solvent –aqueous solution for a soluble protein, 

hydrated lipid membrane environment for a membrane protein. Describing such complex 

reaction coordinates requires advanced computational techniques to model reaction 

intermediates and probe their dynamics in relevant environments, compute energy profiles 

for the reaction, probe the response of the protein environment to changes in protonation or 

mutation. For proteins that bind cofactor molecules, computational studies of protein 

dynamics might first require tests for the reliability of existing force-field parameters and 

even computations to derive such parameters. Moreover, numerical simulations of large 

biomolecules in hydrated lipid environments would generate large amounts of data whose 

analyses require efficient algorithms. 

In what follows I introduce methods used for computations, and summarize main results 

from our research. 
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3. Theoretical biophysics approach 

3.1 Classical all-atom MD simulations of membrane proteins 

Membrane proteins are embedded in lipid membranes that surround biological cells and 

compartments of these cells, and the communication with lipids is essential for how the 

protein works. That lipids impact various aspects of membrane protein function has been 

observed, e.g., for bovine rhodopsin,119 rhomboid proteases,122 γ-secretase,124 and the 

multidrug transporter LmrP.133 Classical mechanical MD simulations are a valuable 

approach to dissect mechanisms by which lipids can impact membrane protein function, 

because with this approach we can study the motions of the protein in a hydrated lipid 

environment, generate a MD trajectory that describes the time evolution of each atom of the 

simulation system, and then use that trajectory to calculate various parameters to 

characterize the system. 

Classical mechanical MD simulations rely on a potential energy function (force field) to 

compute interactions between atoms of the system. All classical mechanical simulations 

discussed here were performed with the CHARMM potential energy function (Chemistry at 

Harvard Molecular Mechanics),134 which is a sum of energy terms for bonded and non-

bonded interactions, 

𝑉 𝒓 = 𝑘! 𝑏 − 𝑏! ! +!"#$% 𝑘! 𝜃 − 𝜃! ! + 𝑘! 1+ 𝑐𝑜𝑠 𝑛𝜒 −!"!!"#$%&!"#$%&

𝛿 + 𝑘! 𝜔 − 𝜔! ! +  𝑘!" 𝑑 − 𝑑! ! + 𝜖!"
!!"
!!"

!"
− !!"

!!"

!
+!,!!"!"#$%#&$'

!!!!
!!!"

+ 𝐸!"#$    (1) 

where b0, θ0 and ω0 are reference values for covalent bond lengths, valence angles, and 

improper angles, 1-3 Urey-Bradley (UB) interactions, kb, k_θ, k_χ k_ω, and kUP are force 

constants, χ - dihedral angles, δ – phase, n – multiplicity of the dihedral angle, rij is the 

distance between atoms i and j, εij and Rij are the Lennard Jones well depth and distance at 

minimum, qi is the partial atomic charge of atom i, and D = 1 is the permittivity of vacuum. 

ECMAP is an energy correction map term.135  

The force constants, reference values, partial atomic charges, Lennard Jones distances 

and well depths, are collectively denoted as force field parameters. The classical 

mechanical computations reported here were performed with CHARMM force field 

parameters for proteins,135-136 lipid137-138 and nucleotide molecules,139 and ions,140 and with 

the TIP3P water model.141 
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To perform MD simulations of a membrane protein, the structure of the membrane 

protein –which is known from structural biology or derived with homology modeling, is first 

oriented in the membrane, and then embedded in a hydrated lipid membrane patch. 

Convenient platforms for orienting membrane proteins and embedding them in hydrated 

lipid membranes are the web-based tools Orientations of Proteins in Membranes (OPM)142 

and CHARMM-Graphical User Interface (CHARMM-GUI).143-144 Ions are added for charge 

neutrality and/or to study the membrane system at a specific ion concentration in the bulk. 

 

Protonation states of the titratable amino acid residues are chosen at the start of the MD 

simulation; during the course of a regular MD simulation with standard classical mechanics 

force fields, the protonation states remain unchanged. To choose protonation states, we 

rely on information from experiments –e.g., from Fourier Transform Infrared (FTIR) 

spectroscopy, and on careful inspection of hydrogen bonds in the crystal structure of the 

protein studied. We have also probed the likely protonation state and the response of the 

protein to changes in protonation by performing independent MD simulations with different 

protonation states of the protein. 

The size of simulation systems consisting of the membrane protein in a hydrated lipid 

membrane patch depends on how many lipids are included in the membrane, and on the 

size and shape of the membrane protein –a membrane protein that has large solvent-

exposed domains would also need a relatively large number of water molecules in the bulk. 

A typical size of the simulation systems discussed in this thesis is ~150.000-200.000 atoms.    

The simulation system is then heated and equilibrated at room temperature, and the MD 

simulation prolonged as required to sample motions of interest to the question addressed. 

The MD simulation will generate a simulation trajectory that contains the coordinates of 

each atom of the system as a function of the simulation time. These coordinates are used to 

extract from the MD data to characterize the molecular system studied.  

 

The lipid membrane composition of the lipid bilayer in which the membrane protein is 

embedded is set during the initial system setup. A very convenient platform for selecting a 

specific lipid membrane composition is that of CHARMM-Graphical User Interface 

(CHARMM-GUI).143-145  

A typical lipid bilayer used in MD simulations of membrane proteins is 1-palmytoyol-2-

oleoyl-sn-glycero-3-phosphatidylcholine, POPC. For bacterial proteins, bilayers composed 

of 1-palmytoyol-2-oleoyl-sn-glycero-3-phosphatidylethanolamine, POPE, are often used.  
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3.2. QM/MM computations of chemical reactions in protein environments 

Chemical reactions such as proton transfer involve breaking and forming of covalent bonds; 

such reactions need to be described with quantum mechanical (QM) methods. For proton 

transfer reactions between donor and acceptor groups that are part of a protein chain, the 

protein environment needs to be accounted for, because motions and electrostatic 

interactions of the protein environment can influence significantly the energetics of proton 

transfer.55, 146-147 Given the size of a membrane protein, its description with QM is not 

feasible. Instead, combined QM/MM approaches can be used, whereby only the reaction 

site is described with QM, the protein environment is described with MM, and the QM and 

MM regions interact via bonded and non-bonded. Thus, the total energy E of a QM/MM 

system has three terms, 

𝐸 = 𝐸!" + 𝐸!! + 𝐸!"!!!  (2) 

where EQM, the energy for the QM part of the system, is computed according to the QM 

treatment used, and EMM, the energy for the MM part of the system, is computed according 

to the MM force field used. The QM/MM computations discussed here were performed with 

the approximate QM method Self Consistent Charge Density Functional Tight Binding, 

SCC-DFTB,148 as implemented in CHARMM.149 In this implementation EQM-MM, which 

describes interactions between the QM and MM parts of the system, includes bonded 

interactions for atoms at the frontier between the QM and MM regions, and non-bonded 

interactions –van der Waals and Coulomb interactions; the latter interactions are computed 

between MM atomic partial charges as set in the force field, and atomic partial charges of 

the QM region derived with Mulliken analyses.149 The empty valence at the QM frontier 

atom is treated, e.g., with a hydrogen link atom.150-151 

 

3.3 Reaction path computations 

Chemical reactions such as proton transfer or retinal isomerization can have significant 

energy barriers that would be difficult to overcome with regular MD simulations, particularly 

since bond breaking and forming would require a description with QM.  

A relatively simple approach to derive reaction coordinates is coordinate driving, or 

adiabatic mapping. This method entails the a priori choice of a reaction coordinate, and 

sampling along this reaction coordinate by taking small increments; an energy optimization 

of the remaining degrees of freedom is performed for each value of the reaction coordinate. 

The resulting path is thus a minimum energy path. In the case of the isomerization of a 

retinal bond, for example, a simple choice of the reaction coordinate could be the dihedral 

angle whose value changes during isomerization. For proton transfer, a simple choice of the 
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reaction coordinate could be the relative distance between the proton and the donor heavy 

atom, vs. the distance between the proton and the acceptor heavy atom. 

As we have noted in earlier work on bacteriorhodopsin, the a priori choice of a reaction 

coordinate can lead to discontinuities in the energy profile, and in the structural change 

along the reaction coordinate for groups that were not included in the definition of the 

reaction coordinate.55 A solution to this problem is to compute minimum energy paths using 

the Conjugate Peak Refinement algorithm, CPR,152 which starts from energy-minimized 

structures of the reactant and product states of the reaction to construct a path whose 

energy maxima are first-order saddle points. 

 

3.4 Force field parameters for cofactor and drug-like molecules: assessing accuracy 
and deriving force-field parameters 

 Membrane proteins and membrane protein complexes can bind cofactor molecules, special 

lipids, or drug molecules. When such binding takes place, it is often of central interest to the 

understanding of protein function. Important examples here are the family of retinal 

proteins, the G Protein Coupled Receptors (GPCRs), and photosystem II. The retinal 

chromophore bound covalently to retinal proteins photo-isomerizes upon absorption of light, 

which triggers a reaction cycle that results in transport of ions or signal transduction.153 The 

membrane embedded GPCRs bind a wide range of drug molecules, and thus are key 

targets for drug design.154 In the case of photosystem II, several cofactor molecules are 

bound to protein subunits –including the manganese cluster where catalytic splitting of 

water molecules takes place.155  

Numerical simulations of proteins that bind cofactor molecules can be challenging when 

these molecules are absent from the set of force-field parameters used for the protein and 

membrane atoms. Moreover, cofactor molecules might have complex electronic structure 

difficult to represent with a classical mechanical force field, and limitations in the force-field 

description of cofactor molecules can impact significantly protein conformational dynamics: 

Numerical simulations of squid rhodopsin performed with two different sets of retinal 

parameters indicated that the dynamics of internal water molecules depends on how retinal 

is described.156  

When deriving force-field parameters for cofactor and other drug-like molecules, a key 

aspect is to ensure that these parameters are compatible with the force-field representation 

used for other components of the molecular system of interest –i.e., with how the protein, 

lipids, and water are represented in the force field.  

The protocol for deriving CHARMM force-field parameters for drug-like molecules, 

CHARMM General Force Field (CGenFF), consists of an iterative procedure whereby 



	 21	

computations with QM and MM are performed to optimize the partial atomic charges of the 

compound of interest, bonded degrees of freedom and, where needed, Lennard-Jones 

parameters.157 Optimization of the atomic partial charges involves geometry optimization of 

the compound with MP2, computations of water interaction energies and distances with 

Hartree-Fock (HF)/6-31G*, and adjustment of the MM partial atomic charges to fit the MM 

water interaction energies and distances to the QM target values; to ensure usefulness of 

the parameters for the bulk phase, in the case of neutral polar compounds water interaction 

energies are scaled, and distances are offset.157 Parametrizing bonded interactions uses 

relaxed potential energy scans and vibrational frequencies for force constants. 

 

3.5 Analyses of dynamic carboxylate-water interactions 

Membrane-embedded proton transfer proteins often expose to the bulk clusters of 

carboxylate groups. Proton antennas have been discussed, e.g., for bacteriorhodopsin,87 

cytochrome c oxidase,87 and the PsbO subunit of photosystem II.86 A proton antenna has a 

size of ~10Å, and it consists of carboxylate groups that can bind a proton collectively and 

increase the dwell time for the proton.87, 89  

When studying proton transfer at proton antennas, it is particularly important to 

understand how potential proton-binding sites interact with water molecules: H bonding 

water molecules bridging these sites can mediate proton transfers.158 The need to address 

water interactions at carboxylate clusters brings about the challenge of how to accurately 

sample the conformational dynamics of the protein and the dynamics of the water 

molecules. Timescales relevant to protein dynamics range from fast fluctuations on the 

picosecond-nanosecond timescale to large structural rearrangements on the µs-ms 

timescale.6 By contrast, timescales relevant to bulk water dynamics are significantly shorter, 

as the lifetime of water H bonding is on the order of picoseconds.159  

Prolonged trajectories aimed at sampling protein conformational changes need not be 

sampled with the same frequency as needed to sample fast water motions, and doing so for 

a large simulation systems could lead to difficulties with storage of the trajectories. In 

computations presented here, trajectories where we sampled protein motions were saved 

each 10ps; to sample water motions we used equilibrated trajectories to select coordinate 

snapshots and then, starting from these coordinate snapshots, performed short (on the 

order of 100ps-1ns) trajectories with frequent writing of coordinates, such as 10fs.  
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3.6 Combining MD simulations with bioinformatics 

Computer simulations are often performed on one or just a few members of a protein family. 

To find out whether specific H-bond motifs observed in such simulations are relevant for the 

entire protein family, MD simulations can be combined with bioinformatics approaches, in 

which sequences of proteins are aligned and subjected to subsequent data analyses. 

These analyses can aim to find out, e.g., the number of sequences in which a specific 

amino acid residue is conserved or replaced by an amino acid residue of similar H-bonding 

propensity. Moreover, the data set of aligned protein sequences can be analyzed to find out 

whether the net charge carried by the sequence is conserved: such an analysis could be 

performed by calculating the length of the amino acid sequences, and the number of 

positively-charged vs. negatively-charged groups present in that sequence. 

As the reliability of the sequence analysis depends on the size of the dataset of 

sequences, and on the accuracy of the individual sequences included in the dataset, great 

care needs to be taken in generating the sequence dataset. For analyses of the net charge 

carried by an amino acid sequence, potential limitations include lack of precise information 

regarding the signal sequence vs. mature region of a protein, and lack of precise 

information about the protonation states of titratable amino acid sidechains in the cell 

environment of various organisms from which the protein was sequenced. 

 

4. Results 

The Results section is largely organized according to the topics discussed in Chapter 2, in 

which the main scientific topics and model systems are introduced. The publications are 

appended to the Thesis. 
  

4.1 Dynamic H-bond networks in membrane proteins 

To understand the role of dynamic H-bond networks in membrane protein function we used 

a broad range of computational approaches that we applied for membrane proteins that 

function as transporters or receptors. An important common observation from this body of 

work is that internal H-bond networks of membrane proteins typically have complex 

dynamics, with H bonds that break and reform, and that these complex dynamics, whose 

description would require prolonged atomistic simulations or a large data set of crystal 

structures, needs to be accounted for to understand how the protein responds to 

perturbations such as mutation or changes in protonation. 
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4.1.1 Coupling between inter-helical H bonding and water dynamics in proton pumps 

Vectorial transport of ions by cellular ion pumps relies on structural elements that gate the 

accessibility of the pump to the two sides of the membrane, such that ions are translocated 

across the membrane.160 Structural elements of the protein that gate ion access, denoted 

as gates, were suggested to sample two main conformations, open and closed.160  A 

fundamental question is how the conformational dynamics of the protein, which would 

ensure coordinated opening and closing of the gates, couple to changes in the protonation 

state of the pump during its reaction cycle. To address this question I took advantage of the 

wealth of experimental data on mutants of the bacteriorhodopsin proton pump.  

The kinetics of proton transfers in the reaction cycle of bacteriorhodopsin is altered by 

specific mutations that change H bonding. An example is Y57F, in which lack of the inter-

helical H bond between helix-A Y57 and helix-G D212 (Figure 1A) associates with altered 

order of proton transfers: in Y57F, proton uptake from the cytoplasm occurs before proton 

release.161  

Motivated by observations from site-directed mutagenesis work, in ref.162 I performed 

simulations of wild-type and nine different mutants of bacteriorhodopsin, and focused on the 

effect that mutations have on water interactions at protein sites known to be important for 

proton transfers. The simulations indicated that mutations of H-bonding groups can alter 

drastically the dynamics and water interactions at proton-transfer sites.  

One such site is D212 (Figure 1A), which might transiently bind a proton during the 

reaction cycle.51-52 When D212 is mutated to Asn, local structural rearrangements of protein 

groups associate with enhanced hydration of inner cavities of bacteriorhodopsin.162 Altered 

protein and water dynamics of D212N could explain why its photocycle is perturbed.163 

D85N, a mutant in which retinal deprotonation is delayed and the amount of deprotonated 

M retinal intermediate is reduced,163 showed not only reorientation of R82 at the 

extracellular side, but also and enhanced hydration near the inter-helical H bond between 

T46 and the cytoplasmic proton donor D96 (Figure 1A).162 That is, mutations can associate 

with changes in internal water dynamics and structural rearrangements that would be 

difficult to predict based on the crystal structure. 

The H bond between D96 and T46 and that between D115 and T90 were both inter-

helical H bonds between a protonated carboylate and a hydroxyl group. Yet, in the 

simulations these two H bonds had different dynamics and responded differently to 

perturbations induced by mutation, the H bond between D115 and T90 being overall more 

stable and less sensitive to mutations than that between D96 and T46.162 The different 

behavior of these two carboylate-hydroxyl H bonds could originate from differences in 

nearby hydrophobic packing that can restrict the motions of the H-bonding groups.162 
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Taken together, these observations suggest that inter-helical H bonds at functionally 

important sites can play essential roles for the conformational dynamics and water 

interactions of bacteriorhodopsin. 

In closely related work performed in my research group we probed how the AHA2 

plasma membrane proton pump responds to changes in protonation (Figure 1B). The 

central proton donor/acceptor of AHA2, D684,61 is located far away from the putative proton 

release groups D92 and D95, and absence in the crystal structure61 of water molecules that 

could bridge the proton donor and acceptor groups make it difficult to predict the proton 

transfer path, and how the protein and water would respond to changes in the protonation 

state of the protein. In ref.164 we reported classical mechanical atomistic simulations of 

AHA2 in five distinct protonation states of the protein. Water molecules visited the inter-

helical region of the transmembrane domain of the protein.164 Waters could be observed 

close to D684 for all protonation states considered, and a negatively-charged D95 appeared 

to associate with water molecules entering deeper into the protein at its extracellular side.164 

This could be interpreted to suggest that the number of internal waters of AHA2 could 

change during the reaction cycle of the pump. 

When high-resolution crystal structures of AHA2 will become available, it will be 

important to probe again the protonation-coupled dynamics of the protein and compute 

proton-transfer paths.  
 

Main publications discussed: 
del Val C, Bondar ML and Bondar A-N. Coupling between water dynamics and inter-helical hydrogen 

bonds in a proton transporter. Journal of Structural Biology 186:95-111 (2014) 
Guerra F and Bondar A-N. Dynamics of the plasma membrane proton pump. Journal of Membrane 

Biology, 248:443-453 (2015) 
 

4.1.2 Intra-helical hydroxyl H bonding and inter-helical hydroxyl-carboxyl H bonds 

Intra- and inter-helical H bonding of helical segments of membrane proteins impacts local 

helix structure and dynamics, and the overall protein dynamics. Simulations on 

bacteriorhodopsin162 discussed in section 4.1.1 above, and inspection of crystal structures 

of other membrane transporters,162 led me to think that inter-helical carboxylate-hydroxyl H 

bonds between Ser/Thr and Asp/Glu are motifs likely important for the functioning of the 

protein: Changes in the dynamics of the inter-helical H bond could couple to changes in the 

dynamics of intra-helical H bonding in which the hydroxyl group can engage, which in turn 

could alter local protein dynamics.162 At a site where the carboxylate is a proton 

donor/acceptor group, we think that the H-bonded hydroxyl group could serve as an 

intermediate proton carrier.17 In a subsequent study, I inspected additional membrane 

protein structures and noticed that inter-helical carboxylate-hydroxyl H bonds are also 
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present at functionally important sites of GPCRs.165 Taken together, these observations 

suggested that analyses of inter-helical carboxylate-hydroxyl H bonds in membrane 

proteins could be used to identify sites potentially important for function. 

Motivated in part by these observations from simulations and crystal structures of 

membrane proteins, in the Bridge graph-based algorithm for analyses of H-bond networks 

we implemented a search for inter-helical carboxylate-hydroxyl H bonds166 (see section 

4.1.4). In the future, this algorithm could be extended to analyze large data sets of high-

resolution crystal structures to find out how common carboxylate-hydroxyl H-bond motifs–or 

other H-bond motifs- are in membrane proteins. 
 

Main publications discussed: 
Bondar A-N, Lemieux J. Reactions at membrane interfaces. Chemical Reviews 119:6162-6183 

(2019) 
Bondar A-N, Smith JC. Protonation-state coupled conformational dynamics in reaction mechanisms 

of channel and pump rhodopsins. Photochemistry and Photobiology 93, 1336-1344 (2017) 
del Val C, Bondar ML and Bondar A-N. Coupling between water dynamics and inter-helical hydrogen 

bonds in a proton transporter. Journal of Structural Biology 186:95-111 (2014) 
 

4.1.3 H-bonding groups in a protein family: channelrhodopsins as a test case 

MD simulations are typically performed on one or a few members of a protein family. 

Bioinformatics sequence analyses, in which sequences of proteins are aligned and 

subjected to analyses, can inform on whether particular H bond motifs observed in 

simulations or the experimental structure of a protein are relevant for the entire protein 

family. In collaboration with Prof. Coral del Val from the University of Granada, I took such 

an approach to study the conservation of H-bonding groups in channelrhodopsins.167 Our 

focus was on the conservation of charged and polar amino acid residues from 

transmembrane helical segments. 

In the bacteriorhodopsin proton pump, the cytoplasmic proton donor D96 (Figure 1A) is 

followed by a stretch of 5 hydrophobic groups, D96LALLV; within the set of sequences used 

for our analyses, the preferred sequence was HLSNLT, that is, though D96 is replaced by a 

His, the remaining of the sequence stretch is more polar in channelrhodopsins as compared 

to bacteriorhodopsin.167  

The same picture of a more hydrophilic stretch was observed for helix D of 

channelrhodopsin, which can contain several Ser/Thr groups absent from the 

bacteriorhodopsin sequence.167 In all but two of the channelrhodopsin sequences included 

in analyses, A114 that is adjacent to D115 of bacteriorhodopsin (Figure 1A) is replaced by 

Ser. Based on this observation and on previous work on the dynamics of model 

transmembrane peptides with Ser/Thr groups, we hypothesized that the Ser/Thr groups of 
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helix D are likely important for dynamics and thus for protein function.167 A more hydrophilic 

environment at the helix D aspartic group of channelrhodopsins could be related to proton 

transfer events: in channelrhodopsin-2 from Chlamidomonas reinhardtii, D156 

(corresponding to bacteriorhodopsin D115) is thought to be an internal proton donor for the 

retinal Schiff base.168 
 

Main publications discussed: 
del Val C, Royuela-Flor J, Milenkovic S, Bondar A-N. Channelrhodopsins: a bioinformatics 

perspective. Biochimica et Biophysica Acta (Bioenergetics) 1837:643-655 (2014) 
 

4.1.4 Development of algorithms to identify networks of dynamic H bonds in proteins 

Proteins can contain dynamic networks of H bonds that inter-connect different regions of the 

protein; as such networks of H bonds are likely important for the conformational dynamics 

and for the functioning of the protein, there is significant interest in identifying and 

characterizing the dynamics of such H bond networks.  

With co-workers in my research group we dedicated significant efforts to design, 

implement and apply algorithms that enable efficient analyses of dynamic H-bond networks 

in proteins. These efforts of my research team are briefly summarized below. 

H-bond maps, shortest-distance H-bond paths, and water-mediated bridges. An early step 

towards this aim were the two-dimensional maps of H-bond donors and acceptors that we 

used to characterize H bonding of the SecA protein motor169-170 (Figure 5B). With help of 

such maps we identified H bonds that inter-connect functional domains of SecA.169  

To focus our analysis on inter-connections between the nucleotide-binding site and the 

PBD (Figure 5B), we implemented algorithms that relied on graphs of H bonds and 

searches of shortest-distance paths between two nodes (i.e., H-bonding amino acid 

residues) of the graph.171 An H-bond path that we identified between NBD1 and the PBD 

includes no fewer than 17 protein groups, with most of the H bonds within the path being 

dynamic.171 

The soluble PsbO subunit of photosystem II (Figure 4), for which a key issue is whether 

it functions as a proton antenna (section 2.3), the challenge was to identify and characterize 

the dynamics of carboxylate-water bridges on the surface of the protein. We developed an 

algorithm that searched for shortest-distance H-bond chains of water molecules between 

pairs of carboxylate groups.172 Briefly, H-bonded water chains were identified by scanning 

the space between carboxylate pairs for water molecules that met the H-bonding criteria 

used. With this approach we found that a cluster of carboxylates that includes D224 (Figure 

4) had persistent bridging via H-bonding waters.172 More recently, we used a similar 
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approach to search for water-mediated bridges between phosphate groups at a lipid 

membrane interface.173 

Water residence times. Clusters of surface carboxylate groups where a proton might bind 

could cage water molecules. In the inter-helical domain of a proton transporter protein, 

discrete water molecules bound to the protein could participate in H-bond networks relevant 

to proton transfers. Computations of water residence times allow us to characterize the 

dynamics of water molecules interacting with the protein, and to identify sites of a protein 

where water molecules spend prolonged times.  

Water residence times can be estimated by first computing from simulations normalized 

time-correlation functions for water molecules within the first hydration shell (~4Å) of protein 

groups; the time-correlation function is fitted with a stretched exponential function – the 

Kohlrausch-Williams-Watts, KWW function, whose integral gives an average residence 

time.174 Tests on simulations of the PsbO-PsbU complex (Figure 4) indicated relatively poor 

fits when using the KWW exponential,175 which led us to implement an algorithm that 

computes water residence times with three additional exponential functions and selects the 

best fit, and thus the best estimation of the water residence times.175 

Graph-based searches of protein-water wires. Our studies of the dynamics of a 

photosystem II monomer in a hydrated lipid membrane environment came with the 

challenge of how to evaluate efficiently the dynamics of H bond networks in such a large 

protein system (Figure 3), particularly since our interest was to identify dynamic water-

protein H-bond networks that could transiently connect the vicinity of the reaction center to 

the bulk lumen. To tackle this issue we presented a graph-based algorithm that pre-

computes chains of H-bonded water molecules, maps these H-bonded water chains onto 

protein side chains, and then searches for H-bonded water wires that inter-connect two 

protein sidechains.176 By using this algorithm to analyze atomistic simulations of 

photosystem II we could identify two long-distance H-bond paths that connect the oxygen 

reaction center to the bulk lumen; both H-bond networks consist of a number of individual 

protein-water H-bond bridges, some of which can be rather dynamic.176 The dynamics of 

the H-bond paths we identified, and of other pathsthat might be sampled, would need to be 

accounted for when considering long-distance proton transfer path: H-bond paths are likely 

to rearrange during proton transfers. 

Bridge: algorithms for efficient analyses of dynamic H-bond networks. The graph-based 

search for water wires presented in ref.176 served as basis for the development of the set of 

algorithms we denoted as Bridge.166 We made Bridge available as a plugin for PyMol, a 

software that to my knowledge is widely used in the community.177 
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Bridge allows computations of all H-bonded paths starting from a particular protein group 

or between two protein groups, and of continuous H-bonded paths between two protein 

groups;166 the percentage of time during which two protein groups connect via a continuous 

H-bonded path is evaluated by computing a joined occupancy of the individual segments of 

the path.166 Given our interest in the functional role of inter-helical hydroxyl-carboxylate H 

bonds, Bridge allows the search of such motifs.166 

Taken together, data analysis tools implemented in my research group allow efficient 

studies of the dynamics of H-bond networks in complex bio-molecular environments, and in 

particular of dynamic water-mediated H-bond networks for proton transfers. 
 

Main publications discussed: 
Guerra F, Siemers M, Mielack C, and Bondar A-N. Dynamics of long-distance hydrogen-bond 

networks in photosystem II. Journal of Physical Chemistry B 122:4625-4641 (2018) 
Karathanou K, Bondar A-N. Using graphs of dynamic hydrogen bonds to dissect conformational 

coupling in a protein motor. Journal of Chemical Information and Modeling 15:1882-1896, doi: 
10.1021/acs.jcim.8b00979 (2019) 

Karathanou K, Bondar A-N. Dynamic water hydrogen-bond networks at the interface of a lipid 
membrane containing palmitoyl-oleoyl phosphatidylglycerol. Journal of membrane Biology 
(Topical Collection) 251:461-473 (2018) 

Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar A-N. Water hydrogen bonding and proton 
transfer at the interface between the PsbO and PsbU subunits of photosystem II. Physical 
Chemistry Chemical Physics 21:25449-25466 (2019) 

Lorch S, Capponi S, Pieront F, Bondar A-N. Dynamic carboxylate/water networks on the surface of 
the PsbO subunit of Photosystem II.  Journal of Physical Chemistry B 119, 12172-12181 (2015) 

Milenkovic S, Bondar A-N. Motions of the SecA protein motor bound to signal peptide: Insights from 
molecular simulations. Biochimica et Biophysica Acta (Biomembranes) 1860, 416-427 (2018) 

Milenkovic S, Bondar A-N. Mechanism of conformational coupling in SecA: Key role of hydrogen-
bonding networks and water interactions. Biochimica et Biophysica Acta (Biomembranes) 1858, 
374-385 (2016) 

Siemers M, Lazaratos M, Karathanou K, Brown K, Bondar A-N. Bridge: A graph-based algorithm to 
analyze dynamic H-bond networks in membrane proteins. Journal of Chemical Theory and 
Computation 15:6781-6798, doi 10.1021/acs.jctc.9b00697 (2019) 

 

4.1.5 Using computations to probe the architecture of ion pumps  

Recent experimental studies of functional interconversions between microbial rhodopsins 

that function as ion pumps used as model proton and sodium pumps GR and KR2, 

respectively.70 The sequence identity between these two proteins is 26%.70 Important 

differences are observed near the retinal Schiff base. GR, as bacteriorhodopsin, contains 

the counterions D121 and D253 on helices C and G, respectively (Figure 8A, corresponding 

to bacteriorhodopsin D85 and D212, Figure 1B); in KR2, D85 is replaced by N112, but 

another carboxylate on helix C, D116 (Figure 8E), which replaces T89 of 

bacteriorhodopsin,178 is thought to function as primary proton acceptor for the retinal Schiff 

base.178  
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Knowledge about the functional role of specific protein groups is essential in studies of 

functional interconversions, which in turn provide invaluable information about sequence-

structure-function relationship. In experiments, a sextuple GR mutant that mimics groups of 

KR2, I83S/H87L/Y88L/D121N/T125D/E132Q was insufficient to convert GR into a sodium 

pump70 (GR-6 in Figure 8B) Could we use MD simulations to understand why mutant GR-6 

is not a sodium pump though it mimics interactions specific to KR2, and to predict which 

additional mutations might be required to achieve functional interconversion? 

 

 
Figure 8. Towards a molecular description of mechanisms of functional interconversions in microbial 
pump rhodopsins. The molecular graphics are based on coordinate snapshots from MD simulations 
of GR and KR2 in hydrated lipid membranes. (A) Wild-type GR proton pump. Amino acid residues 
that are mutated in GR-6, GR-8 or GR-9 are underlined. (B-D) The mutant proteins GR-6, GR-8 and 
GR-9. (E) Wild type KR2 sodium pump. The GR and KR2 work relies for the starting protein 
coordinates on crystal structures PBD ID:6NWD179 and PDB ID:6RF5,180 respectively. 
 

To this end, I initiated, in collaboration with Prof. Keiichi Inoue from the University of 

Tokyo, Japan, a series of atomistic MD simulations in which I probe the dynamics of GR, 

GR-6 and KR2, and of two additional mutations we selected based on inspections of crystal 

structures and knowledge of structural motifs. In GR-8, we added to GR-6 the mutations 

V81M and S82V (Figure 8C), and in GR-9 we further mutated V89 into Ala (Figure 8D). The 

preliminary simulations illustrated in Figure 8 suggest that the mutations alter the internal 
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water dynamics at the cytoplasmic side of the retinal Schiff base, where more waters 

appear to visit in mutant vs. wild-type GR. We also observe that in the mutants the retinal 

Schiff base tends to prefer to interact with D253 – though the strength of interactions 

between the Schiff base and a carboxylate could overestimated by the force field.162 In the 

future, the equilibrated trajectories of GR and KR2 could be used to compute the free 

energy for the binding of a sodium ion at different locations inside the protein.  

 

4.1.6 Control of the protonation state of the retinal Schiff base in JSR-1 

An intriguing aspect of the reaction cycle of JSR-1 is that the retinal Schiff base stays 

protonated.67 Based on the crystal structure of JSR-1 with the inverse agonist 9-cis retinal, it 

was proposed that the local H-bond network in which the retinal Schiff base connects to 

Y126 (Figure 2B) likely stabilizes the protonated state of the retinal Schiff base.66 But the 

extent to which the H-bond network of the 9-cis retinal is representative for the 11-cis and 

all-trans retinals of the reaction cycle of JSR-1 remains unclear. To address this issue we 

pursue reaction path computations of isolated JSR-1, and atomistic simulations of JSR-1 

embedded in hydrated lipid membrane environment. This research is a collaboration with 

Dr. Elena Lesca and Prof. Gebhard Schertler from the Paul Scherrer Institute/ETH Zürich. 

My strategy is to first use coordinate driving and CPR152 to compute MM minimum 

energy paths for the isomerization of the retinal from 9-cis to all-trans, and from all-trans to 

11-cis, in isolated JSR-1. These reaction path computations generate structures of JSR-1 

with 11-cis vs. all-trans retinal that I then refine by performing MD simulations of JSR-1 in 

hydrated lipid membrane environments. The MM minimum energy paths can also be 

decomposed according to equation (1) to dissect contributions to the total energy profile of 

the isomerization reactions, and thus identify which interactions help control the isomeric 

state of the retinal in JSR-1. Based on these analyses, I select amino acid residues to 

mutate and compute new minimum energy paths for the mutants.  

Figure 9 illustrates a CPR minimum energy path computation for the isomerization of the 

retinal from 9-cis to all-trans in wild-type JSR-1 (see section 3.3). For efficiency, I performed 

the CPR computations with MM using for the retinal force-field parameters as described in 

ref.181 based on refs.36, 38. 

The reaction path computation indicates that the retinal Schiff base changes its H-bond 

partner from Y126 in the 9-cis reactant state (Figure 7A) to A317 in the all-trans product 

state (Figure 9C). The total energy profile (Figure 9D) indicates a significant energy barrier 

of 30.2 kcal/mol, and a reaction energy of 4.1 kcal/mol. The finding here of a significant 

energetic penalty against isomerization of the retinal is not surprising, since the protein 
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crystal structure was solved with 9-cis retinal, there is tight packing of retinal protein groups 

at the binding pocket (Figure 2A), and most of the energy barrier is given by the intrinsic 

torsional energetics of the retinal (see red profile in Figure 9D). As the retinal isomerizes 

around the C9=C10 bond, the H bond between the Schiff base and Y126 breaks (Figures 9E, 

9F); the interaction energy between the retinal and A317 is unfavorable first, as there is 

steric repulsion between the C13 methyl group of the retinal and the methyl group of A317 

(Figure 9E). As the retinal completes the isomerization and the Schiff base H bonds to the 

backbone carbonyl of A317 (Figure 9F), the interaction energy between the retinal and 

A317 becomes stabilizing (Figure 9E).  

 

 

Figure 9. Reaction path for the clockwise isomerization of 9-cis retinal JSR-1 to all-trans. (A-C) 
Molecular graphics depicting the retinal and its immediate environment in the starting 9-cis reactant 
state of the path (panel A), an intermediate state with the C9 = C10 bond twisted at -85.3º (panel B), 
and in the all-trans product state. Carbon atoms are colored cyan, H – white, oxygen – red, and 
nitrogen – blue. Only selected H atoms are depicted. (D) Energy profile of the path and 
decomposition of the energy profile. The reaction coordinate is normalized to the length of the path. 
(E) Non-bonded interaction energy of the retinal and K321 with selected protein groups from the 
retinal-binding pocket. Energy profiles for M103, Y126 and A317 are colored black, red and green, 
respectively. (F) Distance between the Schiff base H atom and H-bond partners in the binding 
pocket. The distance between the Schiff base H atom and Y126-OH (black) increases as the retinal 
isomerizes and the Schiff base of all-trans retinal H bonds with the backbone carbonyl of A317 (red). 
 

The all-trans retinal obtained as a product state of the 9-cis isomerization reaction 

(Figure 9C) was then used as a reactant state to compute a path for the isomerization from 

all-trans to 11-cis retinal. For the clockwise isomerization, the energy barrier is 31.4kcal/mol. 

To further probe the impact that nearby protein groups have on the energetics of retinal 

isomerization, I modeled the M103A and Y126A mutants and performed computations for 



	 32	

the isomerization of the retinal from 9-cis to all-trans. The clockwise isomerization of the 

retinal from 9-cis to all-trans costs ~29kcal/mol in the mutants, which is close to the energy 

barrier computed for the wild type (Figure 9D), and consistent with the energy 

decomposition indicating that the total energy barrier is largely given by the intrinsic retinal 

torsion (Figure 9D). 

The CPR computations provide clues about structural and energetic determinants of the 

retinal isomeric state. Minimization-based approaches are, however, limited in their 

description of structural changes of the protein and of the dynamics of internal waters. To 

begin to understand how the protein and internal waters respond to changes in the isomeric 

state of the retinal, and thus to derive better models of JSR-1 with 11-cis and all-trans 

retinal, I used structures derived from reaction path computations to initiate atomistic MD 

simulations of wild-type JSR-1 in hydrated POPC lipid bilayers with 11-cis and all-trans 

retinals. I further performed simulations of wild-type 9-cis wild-type JSR-1 that serve as 

reference, and of the Y126A and M103A 9-cis JSR-1 mutants to probe dynamics at the 

active site with perturbed Schiff base interactions.  

Preliminary MD simulations illustrated in Figure 10 indicate that waters visit the inter-

helical region of JSR-1 (Figure 10A). At room temperature, the H bond network at the active 

site of 9-cis JSR-1 remains close that in the crystal structure (Figures 2B, 10A), suggesting 

that the force-field description used is reasonable. 

The H-bond network at the active site of 11-cis wild-type JSR-1 is similar to 9-cis in that 

the Schiff base H interacts with Y126, though E194 H bonds directly to S199 and several 

waters visit the vicinity of E194 (Figure 10C). In all-trans JSR-1 the Schiff base H bonds to 

the backbone carbonyl of A320 (Figure 10D). H bonding between the Schiff base of all-

trans retinal and a backbone carbonyl could explain why the Schiff base stays protonated in 

the reaction cycle of JSR-1, as a carbonyl group is an unlikely proton acceptor. 

In the absence of the Y126 sidechain (Y126A mutant), S199 remains H bonded to E194 

via the water molecule (Figure 10E), which suggests that the Y126 sidechain is not 

essential to maintain the water bridging of E194. In M107A, a chain of two water molecules 

connects the retinal Schiff base to the backbone carbonyl of M103 (Figure 10F). Taken 

together, the simulations on mutant JSR-1 suggest that in wild-type JSR-1 Y126 and M103 

help optimize the H-bond network of the retinal Schiff base. 

The simulations reported here for JSR-1 provide a qualitative understanding of the 

mechanism by which JSR-1 avoids deprotonation of the retinal Schiff base, in that, 

depending on the isomerization state of the retinal Schiff base, the Schiff base interacts with 

Y126 (Figures 2B, 10B, 10C), or with a backbone carbonyl group (Figure 10 D). In the 
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future, this mechanism will, however, need to be evaluated with QM/MM computations of 

proton transfers.  

 

Figure 10. Preliminary simulations of JSR-1 in hydrated POPC lipid membrane environments. (A) 
Cut-away view of all-trans JSR-1 in a hydrated POPC lipid membrane environment. Heavy atoms of 
the retinal and of the K321 sidechain are shown as magenta van der Waals spheres. (B) Overlap of a 
coordinate snapshot from MD simulations of wild-type 9-cis JSR-1 in a hydrated lipid membrane 
environment (atom colors) and the starting coordinates of JSR-1 optimized with MM. The overlap 
was done for a short stretch of helix G that includes K321. The water-mediated H bond between 
E194 and S199 is preserved. (B) Coordinate snapshot from MD simulations of 11-cis retinal JSR-1. 
The Schiff base H bonds to Y126, and S199 H bonds directly to E194. (C) Coordinate snapshot from 
MD simulations of all-trans retinal JSR-1. The Schiff base H bonds to the backbone carbonyl of 
A317. (E) Coordinate snapshot from MD simulations of 9-cis retinal Y126A JSR-1. (F) Coordinate 
snapshot from MD simulations of 9-cis retinal M103A JSR-1. 

 



	 34	

 

4.1.7 Related research on retinal proteins 

I collaborate with Prof. Leonid S. Brown (University of Guelph, Canada) on understanding 

sequence-structure-function relationships in microbial rhodopsins, particularly H bonding 

and proton transfer. As part of this collaboration I contributed structural models to aid 

interpretation of experiments.182-183  

In my laboratory, we used QM/MM proton-transfer computations to dissect the role of 

water and protein electrostatic interactions for channelrhodopsin.184  

I contributed with QM/MM computations to the paper reporting structural dynamics of 

bacteriorhodopsin based on time-resolved serial femtosecond crystallography.21  

In collaboration with Prof. Jeremy C. Smith (Oak Ridge National Laboratory) and Prof. 

Marcus Elstner (Karlsruhe Institute of Technology) we completed work initiated during my 

Heidelberg years on the atomistic picture of retinal untwisting in bacteriorhodopsin.185  
 

4.1.8 Perspectives on retinal proteins research and development of data analysis 
tools for H-bond networks 

The graph-based algorithm we developed for analyses of dynamic H-bond networks, 

Bridge,166 allows efficient analyses of large sets of structures. In the future, I envision that 

we will work on expanding the tool to mine for H-bonding motifs in protein data bases.  

For the particular case of proton transfer in microbial rhodopsins, I anticipate that in the 

future we will use Bridge to identify putative proton-transfer paths in MM atomistic 

simulations, and then use a QM/MM description to compute the energetics for proton 

transfers along these paths.  

The research I initiated together with external collaborators, on sequence-structure-

function relationships in microbial rhodopsins and control of retinal dynamics in JSR-1, will 

contribute to a mechanistic description of how specific structural motifs shape the 

energetics of reactions in microbial rhodopsins. What is needed, and I envision working on 

in the future, is an accurate force-field description for twisted retinals and their water and 

protein interactions. 
 

 

 

4.2 H-bond networks for long-distance proton transfers in photosystem II 

Protons that are generated during water splitting reactions at the oxygen reaction center of 

photosystem II would need to be transferred to the bulk lumen across relatively long 

distances (Figure 3). A fundamental open question is that of the paths for proton transfer: 
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which protein groups are directly involved in proton-transfer reactions, and how do water 

and protein dynamics respond to changes in protonation as protons are transferred.  

As a first step towards understanding how proton transfers might occur in photosystem 

II, I performed, in collaboration with Prof. Holger Dau from the Freie Universität Berlin, a 

detailed analysis of H-bond networks in the high-resolution crystal structure of photosystem 

II that had recently become available at the time.186 Based on my analyses of H bonding, 

we identified clusters of local H bonds involving protein groups and water molecules, and 

presented a scheme illustrating the remarkable connectivity between these local clusters of 

H bonds that could be important for proton transfer and/or conformational coupling.186 

Based on the short distance between the carboxylate groups of PsbO-E97 and D102 in the 

crystal structure, we suggested that one of these two carboxylate groups could be 

protonated.186 

In my research group, we established atomistic MD simulations of a monomer of 

photosystem II in a hydrated lipid membrane environment.176 To analyze water wires in 

photosystem II, we used a graph-based approach176 as described in section 4.1.3. Our 

analyses indicated for the H-bonded networks a complex dynamics that is directly relevant 

to mechanistic interpretations of proton transfer. An important observation from these 

analyses was that intermediate segments –or water wires- of a long-distance H-bond path 

can have rather different dynamics – the shorter the water wire, the less dynamical it tends 

to be; how long a water wire persists, that is its endurance time, depends likewise on the 

length of the wire, and also on the location of the wire and whether waters are available 

nearby and can exchange with waters of the wire.176 These features of long-distance H-

bond networks observed for photosystem II are likely relevant to other bio-systems. 
 

Main publications discussed: 
Bondar A-N and Dau H. Extended protein/water H-bond networks in photosynthetic water oxidation. 

Biochimica et Biophysica Acta (Bioenergetics) 1817: 1177-1190 (2012) 
Guerra F, Siemers M, Mielack C, and Bondar A-N. Dynamics of long-distance hydrogen-bond 

networks in photosystem II. Journal of Physical Chemistry B 122:4625-4641 (2018) 
     Selected for the ACS Editor’s Choice. Listed among the five most-read articles of 2018 for the 

Journal of Physical Chemistry B  

 

4.3 PsbO as a model system to understand proton antennas in bio-molecules 

Proton antennas are of general interest to proton transfer in bio-systems (see section 2.3). 

What makes PsbO a particularly suitable model system for computational analyses of a 

proton antenna system is the small size of the protein, the large number of carboxylate 

groups on its surface (Figure 4), and the fact that it is a soluble protein that can be studied 

in aqueous solution.  
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Dynamic carboxylate-water bridges on the surface of PsbO. In a first study of PsbO we 

performed in my group,172 our aim was to understand how carboxylate clusters on the 

surface of PsbO interact with each other, particularly whether there are carboxylate clusters 

in which carboxylates interact closely with each other via short chains of H-bonded waters, 

as such clusters would be more likely to bind transiently a proton. With this aim in mind, we 

performed extensive atomistic MD simulations to probe the motions of PsbO in aqueous 

solution, and augmented the prolonged simulation probing protein motions with short 

simulations with frequent writing of coordinates to probe the fast motions of water 

molecules. Using the data-analysis algorithm we implemented for the water-mediated 

bridges between PsbO carboxylate groups (section 4.1.4), we indeed could identify a 

carboxylate cluster that included carboxylates bridged via short distance water bridging.172 

This clusters included D224, an amino acid residue along a long-distance protein-water H-

bond path that in the crystal structure of photosystem II connects the reaction center to the 

bulk lumen.172 

The protocol we implemented for simulations and data analyses of PsbO (see section 

4.1.4) is generally applicable to analyses of carboxylate-water bridges on protein surfaces. 

Protonation-dependent dynamics of a surface carboxylate pair of PsbO. A key question 

about proton antennas is where protons might bind transiently. Within SFB 1078 we 

addressed this question by combining crystallography experiments performed by 

experimentalist colleagues (Dr. Martin Bommer, Profs. Athina Zouni, Holger Dobbek, Holger 

Dau) with MD simulations I performed. The model system we used was a truncated version 

of PsbO without its long loops.  

Taken together, the experiments and computations suggested that D102 (Figure 4) is 

likely protonated.187 This observation is consistent with the discussion above of H-bond 

networks in the crystal structure of the photosystem II complex,188 and provides an 

important starting point towards understanding of the potential role of PsbO in transient 

proton storage during the reaction cycle of photosystem II. 

Overall, on the timescale of simulations on truncated PsbO local interactions at the D102 

site were preserved somewhat better with D102 protonated than negatively charged; 

protonated D102 could, however, also interact with E97 via water.187 A limitation of the 

computations is that the force-field parameters used might be insufficiently accurate in their 

description of short-distance H bonds between water-exposed carboxylates.  

Carboxylate-water bridges at the interface between PsbO and PsbU, and energetics of 

proton transfer. Our studies of isolated PsbO in aqueous solution have identified the 

complex dynamics of carboxylate-water bridges.172 As the putative proton antenna 

functionality of PsbO is of interest in the context of photosystem II, the important question 
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that arises is how the carboxylate cluster at the putative proton-binding site PsbO-D102 

interacts with charged groups of PsbU across the PsbO-PsbU interface (Figure 4). To 

address this question, in my research group we studied with classical MD simulations the 

motions of the isolated PsbO-PsbU complex, characterized the dynamics of water and 

carboxylate-water bridges, and then used QM to calculate the energetics of proton transfer 

in relevant clusters of protein groups and water molecules.175 The computational work was 

augmented by analyses of water binding sites in crystal structures of photosystem II – these 

analyses were performed by our collaborators within SFB 1078 Dr. Mohamed Ibrahim, 

Profs. Holger Dobbek and Athina Zouni. 

We found that most waters visit the protein only for short times, <25ps.175 At some sites, 

however, water molecules are caged by interactions with protein groups, or waters can visit 

for as long as ~320-540ps.175 At the interface between PsbO and PsbU, several amino acid 

residues, including PsbO-E97 (Figure 4) have relatively long water residence times ranging 

from ~43ps to ~134ns, which is indicative of interactions between protein groups and water 

being somewhat stronger than at other sites more exposed to the bulk. Nevertheless, the 

lifetimes of the carboxylate-water bridges, including at the interface between PsbO and 

PsbU, is quite short, mostly in the sub-picosecond range.175 Proton transfer at the cluster, 

from PsbO D102 to E97 or to D99, tended to have relatively unfavorable energetics, which 

could be interpreted to suggest that a proton bound at the D102 site could be stored.175 

Conservation of charged groups of PsbO, and a protocol for sequence analyses of PsbO. 

Amino acid residues that are essential for function tend to be conserved in protein families. 

To what extend are the carboxylates of PsbO conserved in sequences from different 

organisms? And, are the specific carboxylate groups thought to be a proton antenna 

conserved, or is there rather a conservation of general features, such as the net charge 

carried by sequences of PsbO? 

With these questions in mind we –my collaborator Prof. Coral del Val from the University 

of Granada and I–embarked in an extensive study whereby we combined bioinformatics 

sequence analyses with MD simulations of wild type and mutant PsbO proteins.  

Our aim with the bioinformatics analyses was twofold: identify carboxylate groups that 

are highly conserved, and estimate the net charge of sequences of PsbO. We used 

datasets with 25 sequences for cyanobacteria PsbO, and 53 sequences for plant PsbO.189 

To estimate the net charge of sequences of PsbO, we calculated the difference between 

the number of Asp/ Glu groups vs. the number of Arg/ Lys groups, and paid special 

attention to the length of the mature region of the protein for which we estimated the 

charge.189 Overall, within the datasets of sequences we included in the analyses, most of 

the plant PsbO sequences have a net estimated charge of about -6e; by contrast, a wider 
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range of net estimated charges was observed for PsbO sequences from cyanobacteria, 

which also tended to be more negatively charged than plant PsbO.189 At the positions in the 

sequence corresponding to the carboxylates proposed to be part of the proton antenna,86 

most plant and bacterial PsbO sequences have at least 10 carboxylate groups.189  

I studied with independent MD simulations the D158A and D224A PsbO mutants, which I 

chose because these two carboxylate groups are close to the two functionally important Arg 

groups (see section 2.3 and Figure 4). The simulations suggested that these two 

carboxylate groups could assist binding of PsbO to photosystem II by contributing to 

dynamic H bonding of the arginine sidechains.  

Taken together, the bioinformatics sequence analyses suggest that a net negative 

charge is a common feature of PsbO sequences, and that carboxylate groups on the 

surface of PsbO could be important for protein-protein interactions. A limitation to the simple 

estimation of the net charge by counting charged groups is that the protonation state of 

titratable groups depends on the pH of the environment in which PsbO is found. 
 

Main publications discussed: 
Bommer M, Bondar A-N, Zouni A, Dobbeck H, and Dau H. Crystallographic and computational 

analysis of the barrel part of the PsbO protein of photosystem II: carboxylate-water clusters as 
putative proton transfer relays and structural switches. Biochemistry 55, 4626-4635 (2016) 

del Val C and Bondar A-N. Charged groups at binding interfaces of the PsbO subunit of  
photosystem II: a combined bioinformatics and simulation study. Biochimica et Biophysica Acta 
(Bioenergetics) 1858, 432-441 (2017) 

Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar A-N. Water hydrogen bonding and proton 
transfer at the interface between the PsbO and PsbU subunits of photosystem II. Physical 
Chemistry Chemical Physics 21:25449-25466 (2019) 

Lorch S, Capponi S, Pieront F, and Bondar A-N. Dynamic carboxylate/water networks on the surface 
of the PsbO subunit of photosystem II.  Journal of Physical Chemistry B 119, 12172-12181 (2015) 

 

4.3.1 Related research on PsbO 

Within SFB 1078 my research group contributed recently with analyses of the electrostatic 

potential on the surface of truncated PsbO;190 I contributed a molecular picture of the 

distribution of charged protein groups in the crystal structure of a photosystem II 

monomer.191 
 

4.3.2 Perspectives on photosystem II and PsbO research 

The research discussed above establishes the fundament for future work on computations 

for proton-transfer paths in photosystem II. To characterize the mechanisms of proton 

transfer, H-bond networks that we identified would need to be subjected to QM/MM 

computations to derive energy barriers for proton transfer. A key question that would need 

to be addressed with such computations is the response of the protein and water dynamics 
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to changes in protonation. In a long-distance H-bond path as we identified for photosystem 

II, where a path can consist of intermediate protein-water wires,176 transfer of a proton 

within one such intermediate segment could cause rearrangement of the remaining path, 

and indeed other paths could be sampled.  
 

 

 

4.4. Role of lipids in membrane reactions 

Experiments have documented the important role that lipids can have in membrane protein 

reactions (section 2.6). As model system to dissect mechanisms by which lipids impact 

membrane protein reactions I use the GlpG rhomboid protease (Figure 7). This choice is 

motivated by the fact that an understanding of how GlpG works can inform on more general 

principles of lipid-protein coupling. Indeed, the drastic impact that the lipid membrane 

composition has on the catalytic activity of GlpG and of other could arise, a priori, from an 

impact of lipids on any segment of the reaction coordinate of GlpG: i) the fluidity of the 

membrane and the hydrophobic mismatch between GlpG and the membrane and between 

the transmembrane substrate and the membrane could govern the dynamics of substrate 

docking to the enzyme active site, and thus the dynamics of the formation of the enzyme-

substrate complex; ii) the hydrophobic thickness of the lipid membrane surrounding the 

enzyme the lipid membrane could influence the tilt and partial unwinding of the 

transmembrane substrate;126-127 iii) the energetics of the chemical reaction could be shaped 

by electrostatic interactions of the protein environment, but also of the lipid headgroups; iv) 

once the transmembrane substrate is cleaved, the dynamics of substrate release from the 

enzyme active site could depend on interactions with lipids –e.g., H bonding at the lipid 

membrane interface could delay substrate release. 

Atomistic MD simulations are a valuable tool that allows us to address such questions, 

because we can study the motions of GlpG in membranes of specific lipid composition and 

dissect interactions between lipids and protein groups.  

I used extensive MD simulations to characterize the motions of GlpG in membranes with 

different thickness and membranes with different lipid headgroups. As the timescale of an 

atomistic simulation of a membrane protein is unlikely to suffice to sample the full 

conformational dynamics of the protein, I studied the dynamics of GlpG with independent 

simulations initiated from three protein crystal structures132, 192 that were suggested to 

represent GlpG in different conformations, and simulations of two mutant GlpG proteins. 

The total sampling time of the 15 independent simulations reported was ~2.9µs. 

I found that the thickness of the lipid membrane surrounding GlpG depends not only on 

the composition of the lipid membrane, but also on the conformation of GlpG. This 
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observation would imply that the thickness of the membrane close to GlpG might change 

during the reaction cycle of GlpG. The largest membrane thinning observed, regardless of 

the protein conformation and lipid membrane composition, was ~4Å, i.e., about one helical 

turn.  

GlpG is found in the membrane of E. coli, which is a rather thin membrane – the 

thickness of the cytoplasmic E. coli membrane is 37.5 ± 0.5Å.193 In simulations of GlpG in 

POPE and in POPE:POPG membranes, which are often used as model membrane for 

bacterial membranes, the thickness of the membrane far away from GlpG, estimated as the 

distance between the peaks of the phosphate groups distributions for the two lipid leaflets, 

was 42.2 - 42.6Å for POPE, and 40 - 41Å for POPE:POPG. In the future, the distinct 

possibility needs to be considered that simulations of GlpG in model lipid membranes 

overestimate the thinning of the membrane close to GlpG.  

Depending on the composition of the lipid membrane and on the conformation of GlpG, 

during simulations a lipid molecule could visit transiently the active site of GlpG. Binding of a 

lipid at the active site could prevent binding of a transmembrane substrate, and could help 

explain the observation from experiments122 that specific lipid membrane compositions 

associate with poor substrate cleavage activity. 
 

Main publication discussed: 
Bondar A-N. Mechanisms by which lipids influence conformational dynamics of the GlpG 

intramembrane rhomboid protease’. Journal of Physical Chemistry B 123:4159-4172 (2019) 
 

4.4.1 Related research on rhomboid proteases 

I contributed with a protein homology model to the interpretation of experimental data on the 

human rhomboid RHBDL4.194 I wrote a review with focus on H bonding in GlpG,195 and co-

wrote a review article that included a discussion of GlpG.165 

 

4.4.2 Perspectives on GlpG research 

A fundamental open question for GlpG remains the molecular movie of the sequence of 

structural changes along the reaction coordinate of GlpG. I am particularly interested in 

understanding whether GlpG, in the absence of a substrate, samples conformations 

compatible with docking of a transmembrane substrate at the active site. To address this 

question I now collaborate with Prof. Joanne Lemieux from the University of Alberta on 

combining simulations and experiments of wild type and mutant rhomboid protease from 

Haemophilus influenzae. On longer term, I envision pursing QM/MM computations of 

substrate cleavage by GlpG. 



	 41	

4.4.3 Protein binding at lipid membrane interfaces 

The work I pursue on understanding how lipids shape the reaction coordinate of GlpG is 

closely related to research initiated recently on the binding of Mistic (Figure 6) to lipid 

membranes. This research, which is in collaboration with the laboratory of Prof. Bernd Reif 

from the Technical University München, aims to derive a molecular picture of Mistic bound 

at the interface of lipid bilayers and lipid nanodiscs. How does a protein as polar as Mistic 

bind at lipid membrane interfaces? How do the protein groups interact with lipids? Do the 

conformational dynamics of the protein depend on lipid interactions? 

To prepare starting coordinates for Mistic bound at lipid membranes I used OPM to find 

the orientation of the protein relative to the membrane, and CHARMM-GUI to generate 

simulation systems consisting of the protein and a hydrated lipid bilayer or lipid nanodisc 

(Figure 11). The preliminary computations suggest that interactions at the N terminus of 

Mistic largely determine binding of the protein at membrane interfaces. Two hydrophobic 

Phe groups of the N terminus help anchor Mistic into the membrane core (Figure 11).  

The binding pose of Mistic seems to be different in POPE:POPG vs. POPC:POPG 

membranes (Figure 11). Although this observation is compatible with the different 

capabilities of POPE and POPG to H bond to protein groups, to conclude on how Mistic 

binds at membranes of different lipid composition, the current simulations would need to be 

prolonged and augmented by simulations performed from different starting coordinates.  

 

Figure 11. Binding of Mistic at interfaces of lipid bilayers and lipid nanodiscs. Panels A and B display 
as bonds lipids within 3.5Å of the protein. Panels A and C show the protein as a surface with 
hydrophobic groups colored black, and all other protein groups colored pink. (A) Mistic at the 
interface of a POPE:POPG lipid bilayer. Note that the protein anchors to the membrane via the N 
terminus. (B) Mistic at the interface of a POPC:POPG lipid bilayer. The two Phe groups at the N 
terminus of Mistic are shown as van der Waals spheres colored black; other protein sidechains within 
3.5Å of lipids are shown as van der Waals spheres in atom colors. (C) Mistic bound to a nanodisc 
with POPC:POPG lipids. Protein chains of the nanodisc are depicted as ribbons. 
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4.5 Conformational dynamics and the reaction coordinate of the SecA protein motor 

The SecA protein motor (Figure 5B) is a key component of the bacterial protein secretion 

pathway (section 2.4). Its complex reaction coordinate, which involves large-scale 

conformational changes, protein-protein interactions, and ATP hydrolysis, remains unclear.  

Describing the reaction coordinate of an enzyme requires the three-dimensional 

coordinates of the reactant, product, and transition state(s) of the reaction, as these 

structures inform on the structural changes along the reaction pathway. Moreover, the free 

energy difference between the reactant and the product state, and the free energy barrier, 

are required to evaluate the validity of putative reaction mechanisms and to identify 

interactions that determine rate-limiting steps of the chemical reaction. 

In this context, studies of the reaction coordinate of SecA face the challenge that the 

dynamics of nucleotide binding at the active site of SecA is unclear. There is insufficient 

information from structural biology about ATP-bound SecA, as the structural model of ATP-

bound E. coli SecA100 lacks coordinates for the active-site Mg2+ ion and for a large segment 

of the PBD (see section 2.4). And, the molecular origin of the release of ADP being rate-

limiting107 remains unclear. 

In collaboration with Prof. Yuko Okamoto and his post-doctoral colleague Dr. Hirokazu 

Mishima (University of Nagoya) we attempted to use umbrella-sampling computations to 

derive a reaction coordinate for the release of ADP from SecA. As model system we used a 

simpler construct, based on the crystal structure of the motor domain (NBD1 and NBD2, 

Figure 5B) of E. coli SecA.196 The simpler construct allows us to study nucleotide dynamics 

at the nucleotide binding-site of SecA without having to account for the conformational 

dynamics of the other domains of the protein (Figure 5B). 

A reliable distance-based reaction coordinate to sample ADP release could not be easily 

identified, which might be a clue that more degrees of freedom could contribute to the 

reaction. To probe the dynamics of nucleotide binding at the active site, we relied instead 

on an extensive set of MD simulations that I performed for the SecA motor domain with 

different starting locations for the nucleotide and Mg2+.  

When both ADP and Mg2+ were bound at the active site, the location of the nucleotide 

was stable, which could be explained by the nucleotide being part of an extensive network 

of H bonds with protein groups. By contrast, when we probed the motions of the protein 

without Mg2+ at the active site, during the course of the simulations, interactions between 

ADP and protein groups were perturbed. In two of the simulations performed starting with 

the Mg2+ ion bound at the active site and the nucleotide in the bulk, the nucleotide (ADP or 

ATP) could bind spontaneously at the interface between NBD1 and NBD2, where it 

interacted bind to charged and polar protein groups. 
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Taken together, the ensemble of the simulations I performed suggest that charged and 

polar groups at the interface between NBD1 and NBD2 stabilize the nucleotide when bound 

at the active site, but could also stabilize transiently a nucleotide at a different site, and thus 

contribute to ADP release being rate limiting. The Mg2+ ion at the active site might need to 

be released prior to the release of ADP. 
 

Manuscript discussed: 
Bondar A-N, Mishima H, Okamoto Y. Molecular movie of nucleotide binding to a motor protein. 

Submitted to Biochim Biophys Acta General Subjects, Special Issue. 
 

4.5.1 Bioinformatics analyses of SecA identify organism-specific sequence features 

To a large extent, experimental research on SecA uses as model systems SecA from B. 

subtilis and E. coli. To the best of my knowledge, three-dimensional structures have been 

solved for SecA from a handful of organisms – B. subtilis,98, 106 E. coli,99-100 Thermus 

thermophilus,197 Thermotoga maritima,198-199 and Mycobacterium tuberculosis.200 SecA from 

different organisms have the same key functional domains as B. subtilis SecA (Figure 5B), 

but some SecA sequences have additional stretches of amino acid residues, or insertions  – 

E. coli SecA, for example, has an insertion denoted as VAR in NBD2,100 and T. maritima 

SecA has an insertion in NBD1. 198 

As the PBD of SecA (Figure 5B) binds the pre-protein that is to be secreted, and the 

SecA-SecY complex is more stable when negatively-charged lipids are present,201 the 

important question arises as to whether diverse bacterial species, which might be need to 

secrete different proteins and have characteristic lipid composition of their their inner 

membranes, have organism-specific preferences for the sequence of SecA. Description of 

the organism-specific SecA sequences would inform on the general physical-chemical 

principles of protein secretion in bacteria, and could help select of a wider set of model 

SecA proteins for experimental studies. 

With this aim in mind, I worked together with Prof. Coral del Val (University of Granada, 

Spain) on bioinformatics analyses of SecA sequences. The hand-curated dataset we used 

included 425 sequences. We found that SecA sequences can be as short as 787 amino-

acid residues, and as long as 1160 amino-acid sequences. For comparison, the E. coli 

SecA sequence has 901 amino acid residues. Most of the SecA sequences carry an 

estimated net negative charge, which for about half of the sequences is about -39.5e to -

25.5e, but it can be as large as -107e in the case of SecA from the halophile Salinibacter 

ruber; some outliers, such as SecA from the symbiont Buchnera aphidicola, had an 

estimated positive charge. Sequences of the PBD can be highly different among SecA from 

different organisms; by contrast, NBD1 is highly conserved. 
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The remarkable diversity we identified for the length, net estimated charge, and PBD 

sequences within the large dataset we used highlights the importance of extending 

experimental and theoretical studies on SecA to proteins from a more diverse set of 

organisms, particularly to understand how SecA proteins that include large numbers of 

charged groups interact with the membrane-bound translocon of those organisms. 
 

Manuscript discussed: 
Del Val C, Bondar A-N. Sequence analyses identify remarkable diversity of the bacterial SecA 

protein motor. Submitted to Biochimica Biophysica Acta Biomembranes Special Issue, under 
revision 

 

4.5.2 Related research on SecA 

In my research group we pursued over the years work aiming to characterize the reaction 

coordinate of SecA. To facilitate analyses of the complex H-bond networks of SecA, our 

research on SecA included the development of specialized data analysis tools (see section 

4.1.4). We identified dynamic H bonds that inter-connect functional domains of SecA, and 

thus could contribute to long-distance conformational coupling.169 We presented a model of 

B. subtilis SecA bound to ADP and to a signal peptide model, and showed that presence of 

the signal peptide alters motions of SecA, including of NBD2.170 We further constructed 

models of B. subtilis bound to ATP and Mg2+, finding that changes in nucleotide-protein 

interactions at the nucleotide binding interface associate with altered dynamics at the PBD, 

and identified H-bond paths that could contribute to such long-distance conformational 

coupling.171 Analyses of a set of crystal structures of SecA led us to conclude that, at least 

in the absence of interaction partners, the conformational dynamics of SecA could be 

described in terms of the intra- vs. inter-domain contacts between protein groups of a 

functional domain: whereas the number of unique internal, intra-domain H bonding and 

hydrophobic contacts, showed little variation among the different crystal structures we 

analyzed (although intra-domain contacts of the PBD had somewhat larger variation), the 

number of inter-domain contacts of PBD groups varied.202 
 

 

4.5.3 Related research on the SecY protein translocon 

Within the collaboration with Prof. Peter Pohl (University of Linz) I contributed with a 

homology model of the E. coli SecY translocon and with estimations of dipole moments that 

were used to interpret data on voltage sensing by SecY.203 
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4.5.4 Perspectives on Sec proteins research    

The discussion above documents our contributions to the understanding of mechanisms of 

long-distance conformational coupling in SecA, particularly the role of dynamic H bonds and 

dynamics at the nucleotide-binding site. In collaboration with Prof. Anastassios Economou 

(KU Leuven) we started to explore the conformational dynamics of SecA dimers; we are 

particularly interested in finding out how the dynamics of the PBD depends on the 

oligomeric state of SecA. 

In the future, I plan to build upon this foundation to pursue QM/MM computations of the 

reaction coordinate of SecA. The recent bioinformatics analyses we performed, which 

identified a remarkable diversity of the sequences of SecA, highlights the need to expand 

studies of SecA to proteins from other organisms. A direction of research I envision working 

on is binding of SecA from different organisms to membranes whose lipid composition is 

relevant to the organism in which SecA works, as the charge of the SecA sequences could 

be related to the physiological environment in the cell. This research I plan on SecA binding 

to lipid membranes is thus closely related to the current work on Mistic (section 4.4.3). 

 

4.6 Perspective: towards potential energy functions for bio-medical applications 

MD simulations are our days often used to characterize the conformational dynamics of bio-

molecules and to verify reaction mechanisms. As MD simulations rely on the potential 

energy function that describes how atoms of the system interact with each other, and this 

potential energy function includes force-field parameters (section 3.1), how reliable the MD 

simulations are –and, thus, how reliable predictions made from MD-will necessarily depend 

on the accuracy of the force-field parameters.  

My interest in how force-field parameters impact results of MD simulations started with 

earlier work on retinal and retinal proteins. In that work we had showed, for example, that 

torsional barriers of the retinal polyene chain depend on constraints used to twist retinal 

bonds and on the model compound used,204 and that dynamics of internal waters of squid 

rhodopsin depend on how retinal is treated.156  

In my research group, we have dedicated significant efforts to derive accurate force-field 

parameters for cofactors of photosystem II,205-206 and for an azobenzene-based photo-

switchable lipid molecule that can be used to control lateral pressure in membranes.  

During the research stay in my laboratory of Dr. Samo Lešnik from the National Institute 

of Chemistry Slovenia, Ljubljana, we initiated parametrization of fentanyl, which is an opioid 

drug of interest for the treatment of pain. In the future, I envision that we will use these 
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parameters to study binding of fentanyl to membranes of inflamed tissue characterized by 

low pH, i.e., protonation-dependent binding of fentanyl to opioid receptor GPCRs. 
 

 

 

5. Summary 

I presented here research that uses computational biophysics approaches to address the 

dissect mechanisms of reactions at membrane interfaces. Reactions at membrane 

interfaces are considered in a broad sense to include the chemical reaction of proton 

binding at a protein surface, and interactions between proteins, lipids and water molecules. 

We focus on exemplary proteins whose reaction mechanisms have implications for our 

general understanding of how proteins work, particularly proteins whose functioning 

involves changes in protonation, lipid interactions, and long-distance coupling between 

bond breaking and forming and protein conformational dynamics. 

Long-distance proton transfer in protein environments is thought to occur via H-bonded 

chains, or wires, of protein titratable groups and water molecules. As such wires are 

dynamic, computational biophysics approaches are particularly valuable in that we can they 

allow us to evaluate protein and water motions in fluid lipid bilayers at room temperature, 

and to identify transient events during which proton donor and acceptor groups connect to 

each other via H-bonded wires. Moreover, we can probe the response of the protein and 

waters to changes in protonation, or to mutations that impact protein function. To be able to 

analyze dynamic H-bonded networks in complex environments such as channelrhodopsin, 

photosystem II, and lipid membrane interfaces, we implemented efficient data analysis 

algorithms, including a graph-based algorithm, Bridge, that we made openly available to the 

community166 (section 4.1.4). 

The knowledge we acquired on conformational dynamics, H-bond dynamics and reaction 

mechanisms of retinal proteins informs our current research on sequence-structure-function 

relationship in microbial rhodopsins. We demonstrated that mutations that alter H bonding 

can change protein and water dynamics of the bacteriorhdopsin proton pump162 (section 

4.1.1). From MD simulations, bioinformatics analyses, and inspection of crystal structures of 

membrane proteins, we identified an inter-helical hydroxyl-carboxylate motif we think 

important for proton transporters17, 162, 165 (sections 4.1.2, 4.1.3) As a natural development of 

research on sequence-structure-function relationships of retinal proteins, we now probe with 

simulations which mutations might need to needed to convert a mutant proton pump into a 

sodium pump (Figure 8, section 4.1.5), and dissect interactions that control retinal dynamics 

and retinal protonation in a visual rhodopsin (Figures 9-10, section 4.1.6). 
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Photosystem II (Figure 3) and its soluble subunit PsbO (Figure 4) are model systems we 

use to decipher mechanisms of long-distance proton transfers via protein-water H-bonded 

wires, and for the potential function of carboxylate clusters as proton antennas. The data 

analyses protocols we presented for simulations of carboxylate-water clusters on the 

surface of PsbO,172, 175 and for the conservation of charge in sequences of PsbO,189 could 

be applied to study other proteins with carboxylate clusters on their surface. Our 

observations on the dynamics of protein-water wires inside photosystem II176 and at the 

surface of PsbO172, 175 (sections 4.2, 4.3) suggest that long-distance proton transfers in 

complex protein environments involves transient H bonds whose dynamics depends on the 

length of the wires, and on interactions with the environment. 

As membrane proteins function in lipid bilayers, it is of paramount importance to 

understand how the lipid membrane composition influences the structure, dynamics, and 

reactions of membrane proteins. The enzyme I used as a model system, the intramembrane 

protease GlpG (Figure 7), is a particularly useful model system because it is relatively small, 

its catalytic activity has been tested in different lipid membrane environments, and because 

deciphering intramembrane proteolysis catalyzed by GlpG could inform on how the much 

more complex γ-secretase cleaves the amyloid precursor protein. Simulations suggest that 

one potential mechanism by which lipids could shape the reaction coordinate of GlpG is by 

transient binding the active site where the substrate needs to dock207 (section 4.4).  

A highly complex reaction that occurs at the membrane interface is SecA-mediated 

protein secretion. We have found that conformational dynamics of SecA and long-distance 

conformational coupling of SecA involve dynamic H bonds, derived structural models that 

describe molecular interactions along the reaction coordinate of SecA, probed the dynamics 

of nucleotide binding, and identified features that characterize sequences of SecA from a 

large dataset (see section 4.5). Our analyses of SecA sequences indicate that SecA 

proteins tend to be highly negatively charged, which is intriguing given that negatively-

charged lipids appear important for the stability of the SecA-SecY complex.201 Work we do 

on the binding of the smaller protein Mistic to lipid membranes (section 4.4.4) might inform 

on how a charged protein can interact with membranes. 
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6. Perspectives 

Computational biophysics provides valuable tools to explore the workings of biomolecules. I 

envision that our experience with proton-transfer systems will serve as foundation for 

research I plan on protonation reactions of biomolecules of direct relevance to human 

disease, particularly cancer, since the extracellular pH of cancer cells can be acidic.208  

Another important challenge of studies on proteins of direct interest to medical 

applications is that these proteins might interact with drug molecules that are poorly 

represented in current force fields. Yet, understanding how the drug molecule binds to the 

protein target could be essential for the process of drug design. A possible solution to this 

issue, the derivation of accurate force-field parameters, can be time consuming, and 

additive force fields can be limited in their description of, e.g., pH-dependent binding of a 

drug molecule to a protein. In the future, developments in polarizable force fields and more 

efficient implementations of quantum mechanical computations could facilitate efficient and 

accurate screening of protein-drug interactions. 

Advances in computational power and methodologies might enable accurate studies of 

entire protein interaction networks in physiological environments, e.g., of protein interaction 

networks involved in GPCR cell signaling. Such large-scale computations will bring about 

the challenge of data analysis for the simulation trajectories, but also the challenge of 

working together with experimentalist colleagues to incorporate into simulations data from, 

e.g., biochemistry. One methodological development I anticipate working on is extending 

the graph-based algorithms we developed in my research group166 to catalogue H-bond 

networks of exemplary proteins –e.g., GPCR proteins and their G protein counterparts- from 

computations of the wild-type and mutant proteins, combine the catalogues of H-bond 

networks from protein simulations with machine learning approaches that rely on both the 

simulations and experimental structural biology data, and then develop algorithms that can 

predict how the proteins will respond to interactions within their signaling interaction 

network.  
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7. Publications explicitly listed in the various sections of this thesis  

Names of members of my research group are underlined. Corresponding authorship is 

indicated by ‘*’, and co-corresponding authorship by ‘#’. A description of my contribution is 

indicated for each publication. 

 

7.1 Publications for main discussion of research 
1. del Val C, Bondar A-N#. Sequence analyses identify remarkable diversity of the bacterial 

SecA protein motor. Submitted to BBA - Biomembranes 
      Research co-design, data co-interpretation, manuscript co-writing 
2. Bondar A-N#, Mishima H, Okamoto Y. Molecular movie of nucleotide binding to a motor 

protein. Submitted to BBA – General subjects 
      Research design, performed MD simulations, prepared figures, wrote manuscript with 

input from collaborator Yuko Okamoto 
3. Siemers M, Lazaratos M, Karathanou K, Brown K, Bondar A-N. Bridge: A graph-based 

algorithm to analyze dynamic H-bond networks in membrane proteins. Journal of 
Chemical Theory and Computation 15:6781-6798, doi 10.1021/acs.jctc.9b00697 (2019) 
Research design and supervision, provided MD simulation trajectories, manuscript co-
writing together with co-authors 

4. Bondar A-N#, Lemieux J. Reactions at membrane interfaces. Chemical Reviews 
119:6162-6183 (2019) 

     Co-wrote review article 
5. Bondar A-N*. Mechanisms by which lipids influence conformational dynamics of the GlpG   

intramembrane rhomboid protease’. Journal of Physical Chemistry B 123:4159-4172 
(2019) 

    Designed and performed research, wrote manuscript 
6. Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar A-N. Water hydrogen bonding and 

proton transfer at the interface between the PsbO and PsbU subunits of photosystem II. 
Physical Chemistry Chemical Physics 21:25449-25466 (2019) 

     Research design and supervision, manuscript co-writing together with co-authors 
7. Karathanou K, Bondar A-N*. Using graphs of dynamic hydrogen bonds to dissect 

conformational coupling in a protein motor. Journal of Chemical Information and 
Modeling 15:1882-1896, doi: 10.1021/acs.jcim.8b00979 (2019)  

     Research design and supervision, preliminary MD simulations, manuscript co-writing 
8. Guerra F, Siemers M, Mielack C, Bondar A-N*. Dynamics of long-distance hydrogen-

bond networks in photosystem II. Journal of Physical Chemistry B 122:4625-4641 (2018) 
     Research design and supervision, manuscript co-writing 
9. Karathanou K, Bondar A-N*. Dynamic water hydrogen-bond networks at the interface of a 

lipid membrane containing palmitoyl-oleoyl phosphatidylglycerol. Journal of membrane 
Biology (Topical Collection) 251:461-473 (2018) 

    Research design and supervision, manuscript co-writing 
10. Milenkovic S, Bondar A-N*. Motions of the SecA protein motor bound to signal peptide: 

Insights from molecular simulations. Biochimica et Biophysica Acta (Biomembranes) 
1860, 416-427 (2018) 

     Research design and supervision, manuscript co-writing 
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11. Bondar A-N#, Smith JC. Protonation-state coupled conformational dynamics in reaction 
mechanisms of channel and pump rhodopsins. Photochemistry and Photobiology 93, 
1336-1344 (2017). 
Co-wrote manuscript 

12. del Val C, Bondar A-N#. Charged groups at binding interfaces of the PsbO subunit of  
photosystem II: a combined bioinformatics and simulation study. Biochimica et 
Biophysica Acta (Bioenergetics) 1858, 432-441 (2017) 
 Research co-design, performed MD simulations and analyses, manuscript co-writing  

13. Milenkovic S, Bondar A-N*. Mechanism of conformational coupling in SecA: Key role of 
hydrogen-bonding networks and water interactions. Biochimica et Biophysica Acta 
(Biomembranes) 1858, 374-385 (2016) 

     Research design and supervision, manuscript co-writing 
14. Bondar A-N*. Biophysical mechanism of rhomboid proteolysis: setting a foundation for 

therapeutics. Seminars in Cell and Developmental Biology 60, 46-51 (2016) 
    Wrote paper 
15. Bommer M, Bondar A-N#, Zouni A, Dobbeck H, Dau H. Crystallographic and 

computational analysis of the barrel part of the PsbO protein of photosystem II: 
carboxylate-water clusters as putative proton transfer relays and structural switches. 
Biochemistry 55, 4626-4635 (2016) 

    Contributed MD simulations, data interpretation 
16. Lorch S, Capponi S, Pieront F, Bondar A-N*. Dynamic carboxylate/water networks on 

the surface of the PsbO subunit of Photosystem II.  Journal of Physical Chemistry B 119, 
12172-12181 (2015) 

      Research design and supervision, manuscript co-writing 
17. Guerra F, Bondar A-N*. Dynamics of the plasma membrane proton pump. Journal of 

Membrane Biology, 248:443-453 (2015) 
     Research design and supervision, manuscript co-writing 
18.  del Val C, Bondar ML, Bondar A-N*. Coupling between water dynamics and inter-

helical hydrogen bonds in a proton transporter. Journal of Structural Biology 186:95-111 
(2014) 
Study design, performed and analyzed MD simulations, co-wrote manuscript 

19. del Val C, Royuela-Flor J, Milenkovic S, Bondar A-N#. Channelrhodopsins: a 
bioinformatics perspective. Biochimica et Biophysica Acta (Bioenergetics) 1837:643-655 
(2014) 

    Research design, homology modeling, co-analyzed data, manuscript co-writing 
20. Bondar A-N# and Dau H. Extended protein/water H-bond networks in photosynthetic 

water oxidation. Biochimica et Biophysica Acta (Bioenergetics) 1817: 1177-1190 (2012) 
Structure analyses, co-wrote manuscript 
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7.2. Publications mentioned in discussion of related research 
1. Klaja O, Frank J, Trauner D, Bondar A-N*. Potential energy function for a photo-

switchable lipid molecule. Submitted to the Journal of Computational Chemistry 
      Research design and supervision, manuscript co-writing 
2.  Gerland L, Friedrich D, Hopf L, Donovan EJ, Wallmann A, Erdmann N, Diehl A, Bommer 

M, Buzar K, Ibrahim M, Schmieder P, Dobbek H, Zouni A, Bondar A-N, Dau H, 
Oschkinat H. pH-dependent protonation of surface carboxylates in PsbO enables local 
buffering and triggers structural changes. ChemBioChem, doi: 10.1002/cbic.201900739 
(2020) 
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Birthday. Journal of Membrane Biology 239: 1-3 (2011) 

3. Bondar A-N and Frangopol PT. Young Roumanian Scientists. Revue Roumaine de 
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bond dynamics in channelrhodopsin. Biophysical Journal Supplement 106:16a-17a 
(2014) 

17. Capponi C, M Heyden M, Bondar A-N, AJ Freites, Tobias DJ, and White SH. Dynamics 
of water inside the SecY translocon complex. Biophysical Journal Supplement 104: 410a 
(2013) 

16. Heyden M, Jardon-Valadez HE, Bondar A-N, and Tobias DJ. GPCR activation on the 
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14. Bondar A-N, Tobias DJ and White SH. Long-distance lipid:protein coupling in the protein 
translocon. Biophysical Journal Supplement 102:714a (2012) 

13. Heyden M, Jardon-Valadez HE, Bondar A-N, and Tobias DJ. Microsecond dynamics of 
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Appendix 2: Invited and Contributed Talks 
 
CONFERENCE SESSION CHAIR OR PANEL MEMBER 

8.  Co-chair, platform session Membrane Proteins I, 63rd Biophysical Society Meeting, 
March 2-6, 2019, Baltimore, USA 

7.  Member of the Membrane Biophysics Subgroup Juror panel for the Student Research 
Achievement Award Poster Competition at the 63rd Biophysical Society Meeting, March 
2-6, 2019, Baltimore, USA 

6. Member of the Juror panel for selecting the Best Contributed Talk at the International 
workshop on lipid membranes, University of Helsinki, Finland, August 19-22, 2018 

5. Invited chairperson, International Symposium on Physics of Life, on the occasion of Prof. 
Tsutomu Kouyama’s retirement. University of Nagoya, Nagoya, Japan, March 25-25, 
2017 

4. Invited chairperson of the session on Intramembrane Proteases of the Gordon Research 
Conference on Protons and Membrane Reactions, February 23-28, 2014, Ventura, 
California, USA 

3. Co-chair, platform session AU: Membrane Protein Function, Biophysical Society 56th 
Annual Meeting, San Diego, California, February 25-29, 2012 

2. Co-chair, platform session AP: Membrane Pumps & Transporters. 54th Biophysical 
Society Meeting, San Francisco, California, USA, March 20-24, 2010 

1. Co-chair of the platform session AR: Membrane protein function. 53rd Biophysical 
Society Meeting, Boston, USA, February 28- March 4, 2009 

 

 

INVITED TALKS AT SCIENTIFIC MEETINGS 

32.  ‘Proton binding at membrane interfaces’. CECAM workshop Frontiers in Multiscale 
Modeling of Photoreceptor Proteins. Tel Aviv, Israel, July 2-5, 2019 

31. ‘Protonation-coupled protein and water dynamics in retinal proteins’. 18th International 
Conference on Retinal Proteins, Hockley Valley Resort, Ontario, Canada, September 24-
29, 2018 

30. ‘Reactions at lipid membrane interfaces’. International workshop on lipid membranes, 
University of Helsinki, Finland, August 19-22, 2018 

29. ‘Proton transfer at membrane and protein interfaces’. Telluride workshop on Proton 
Transfers in Biology. Telluride, Colorado, USA, July 8-13, 2018 

28. ‘Hydrogen bonding and membrane reactions’. Plenary talk. Prague Membrane 
Discussions, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of 
the Czech Republic, Prague, June 21, 2018 

27. ‘Mechanism by which lipids shape reaction mechanisms of rhomboid proteases’. Bridge 
over troubled waters – proteases in disease and aging. Universitätsmedizin Mainz, 
Mainz, Germany, August 24-26, 2017 

26. ‘Hydrogen bonding and membrane reactions’. Telluride workshop on Protein 
Electrostatics, Telluride, USA, June 26-30, 2017 

25. ‘Hydrogen bonding and proton transfer at molecular interfaces’. International 
Symposium on Physics of Life, on the occasion of Prof. Tsutomu Kouyama’s retirement. 
University of Nagoya, Nagoya, Japan, March 25-25, 2017 
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24. ‘Hydrogen bonding at charged biomolecular interfaces’. Meeting ‘Proton transfer in 
complex environments’, on the occasion of Prof. Mechem Gutman’s 80th Birthday. 
University of Tel Aviv, Tel Aviv, Israel, October 25, 2016 

23. ‘Hydrogen-bond dynamics in retinal protein function’. Satellite meeting of the 17th 
International Conference on Retinal Proteins, Potsdam, Germany, October 2, 2016 

22. ‘Dynamic protein/water hydrogen-bond networks in proton transfers’. Telluride workshop 
on proton transfers in biology. Telluride, Colorado, USA, July 12-16, 2016 

21. ‘Lipid-protein coupling in protein function’. Meeting of the DFG Research Group FG1279 
Optogenetics, March 29-31, Chorin, Germany 

20. ‘Ion antennas and transport across cell membranes’. Kick-off Symposium of the Frontier 
Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, 
Japan, March 1-2, 2016 

19. ‘Proton transfer and water dynamics in retinal proteins’. Pacifichem 2015, Symposium 
on Chemistry and Applications of Retinal Proteins. Honolulu, Hawaii, USA, December 
17-20, 2015 

18. ‘Dynamics of the protein secretion machinery’. CECAM Workshop ‘Understanding 
function of proteins in membrane by atomistic and multiscale simulations’ Lugano, 
Switzerland, November 10-12, 2015 

17. ‘Mechanisms of conformational coupling in membrane proteins’. DFG-Rungespräch 
Photoreceptors & Meeting of DFG-Forschergruppe 1279. Abtei Frauenwörth, 
Freuenchiemsee, Germany, October 8-12, 2015 

16. ‘The protein secretion machinery: a view from all-atom simulations’. Annual meeting of 
the Swedish Chemical Society, Theoretical Chemistry Section 2015 Baltic Lights, 
Kalmar, Sweden, August 25-27, 2015 

15. ‘The protein secretion machinery: a perspective from theoretical biophysics’. DK 
Summer school 2015, St. Wolfgang, Austria, July 5-8, 2015 

14. ‘Hydrogen bonding and lipid interactions in GlpG protease function’. 18. Deutsche 
Physikerinnentagung, Dresden, Germany, October 16-19, 2014 

13. ‘Hydrogen bond dynamics and directional proton transfers in microbial rhodopsins’. 16th 
International Conference on Retinal Proteins, Nagahama, Japan, October 5-10, 2014 

12.  ‘Hydrogen bonding and lipid interactions in membrane protein function’. 564. WE-
Heraeus Seminar – Physical approaches to membrane protein function. Bad Honnef, 
Germany, May 25-28, 2014 

11. ‘Water and hydrogen bond dynamics in proton transfer systems’. Les Houches – TSRC 
Workshop on protein dynamics, Les Houches, France, May 19-23, 2014 

10. ‘Dynamics of substrate binding to GlpG rhomboid proteases’. Gordon Research 
Conference on regulated proteolysis of cell surface proteins. Ventura, California, USA, 
March 30-April 4, 2014 

9. ‘Waters in proton transfer systems’. RESOLV IFF Meeting, Zürich, Switzerland, October 
3-4, 2013 

8. ‘Coupling between hydrogen bonding and water dynamics in proton transporters’. 
Optogenetics Forschergruppe Meeting, October 10-11, 2013, Heidelberg, Germany 

7. ‘Proton-coupled water and protein dynamics in complex proton-transfer systems’. 
Workshop on Membrane Protein Folding and Functioning, August 5-9 2013 Telluride, 
Colorado, USA 
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6. ‘Lipid and hydrogen bonding in membrane protein function’. Workshop ‘From 
Computational Biophysics to Systems Biology (CBSB13)’ May 19-21, 2013, Norman, 
Oklahoma, USA 

5. ‘Inter-helical hydrogen bonds and water dynamics in microbial rhodopsins’. 15th 
International Conference on Retinal Proteins, September 30-October 5, 2012, Ascona, 
Switzerland 

4. ‘Long-distance conformational coupling in the GlpG intramembrane protease’. 7th Fabisch 
Symposium for cancer research and molecular cell biology – Regulated intramembrane 
proteolysis in cancer development and neurodegenerative diseases. Potsdam, Germany, 
October 5-7, 2011 

3. ‘Role of hydrogen bonding in helix-gating membrane proteins’. International Biophysics 
Symposium at the Nagoya University, March 12-14, 2010, Nagoya, Japan 

2. ‘Dynamics and lipid interactions of helix-gating membrane proteins’. Research 
Symposium on the occasion of Jeremy Smith’s 50th Birthday. IWR, University of 
Heidelberg, Germany, December 9, 2009 

1. ‘Role of water molecules in bacteriorhodopsin proton transfer reactions’. Israel Science 
Foundation Workshop ‘Diffusion, solvation and transport of protons in complex and 
biological systems’. Eilat, Israel, January 13-17, 2008 

 
 

INVITED SEMINARS 

17. Proton binding at membrane interfaces. University of Bucharest, Department of Physics. 
Bucharest-Magurele, Romania, November 28, 2019 

16. Proton binding at membrane interfaces. Forschungszentrum Jülich, Computational 
Biomedicine, Jülich, Germany, November 5, 2019 

15. Proton binding at membrane interfaces. University of Tokyo, Institute of Solid State 
Physics, Kashiwa, Chiba, Japan, October 8, 2019. Part of the research visit supported by 
the JSPS FoS Program 

14. Reactions at membrane interfaces. Paul Scherrer Institute, Department of Biology and 
Chemistry, Villingen, Switzerland, November 29, 2018 

13. Reactions at membrane interfaces: Bacterial protein secretion and intramembrane 
proteolysis. Nagoya University, School of Science, Department of Physics. August 31, 
2018, Nagoya, Japan, within the JSPS-BRIDGE fellowship 

12. Dynamic hydrogen-bond networks for proton transfers in bio-systems. Nagoya 
University, School of Science, Department of Physics. August 30, 2018, Nagoya, Japan, 
within the JSPS-BRIDGE fellowship 

11. Hydrogen bonding and membrane reactions. Weizmann Institute, Department of 
Structural Biology, Rehovot, Israel, April 29, 2018 

10. Hydrogen bonding and membrane reactions. Hebrew University of Jerusalem, Fritz 
Haber Center for Molecular Dynamics Research. Jerusalem, Israel, April 25, 2018 

9.   ‘Hydrogen bonding and lipid interactions in membrane protein function’. Department of 
Biology, Technical University of Kaiserslautern, February 26, 2018 

8. ‘Hydrogen bonding and lipid interactions in membrane protein function’. Department of 
Chemistry, Brandeis University, USA. February 16, 2017 

7. ‘The Sec protein secretion machinery: understanding reaction coordinates with computer 
simulations. Nara Institute of Science and Technology, Nara, Japan, February 26, 2016. 



	 A11	

6. ‘Water and hydrogen bonding in proton-transfer reactions’. Nagoya Institute of 
Technology, department of Frontier Materials, Nagoya, Japan, February 24, 2016 

5. ‘Water and hydrogen bonding in proton-transfer reactions’. Nagoya University, Graduate 
School of Science, J-Lab, Nagoya, Japan, February 23, 2016 

4. ‘Hydrogen bond dynamics in membrane protein function’. Tel-Aviv University / Freie 
Universität Berlin Membrane Workshop, Freie Universität Berlin, Berlin, Germany, 
September 15-16, 2014 

3. ‘Membrane protein function and lipid interactions’. Johannes Keppler Universität Linz, 
Department of Physics, Linz, Austria, June 26, 2014 

2. ‘Hydrogen-bond dynamics and lipid interactions in membrane protein function’. 
Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany, June 26, 2012 

1. ‘Role of hydrogen bonding in the opening of the SecYEG protein translocon’. University 
of California, Davis, Department of Chemistry, the Stuchebrukhov research group. Davis, 
USA, April 10, 2009 

 

 

CONTRIBUTED TALKS AT SCIENTIFIC MEETINGS 

19. ‘Lipids, water and protons’. TSRC Telluride Workshop on Protein Electrostatics. 
Telluride, Colorado, USA, June 24-28, 2019 

18. ‘Hydrogen bonding and proton transfer at complex biomolecular interfaces’. CECAM 
meeting ‘Tackling complexity of the nano-bio interface – computational and experimental 
approaches’. Bremen, Germany, June 12-16, 2017 

17. ‘Mechanism by which lipids shape reaction coordinates of rhomboid proteases’, Gordon 
Research Conference on Membrane Protein Folding, Easton, MA, USA, June 4-9, 2017 

16. ‘Mechanism of rhomboid intramembrane proteolysis’. DPG (German Physical Society) 
Meeting, Dresden, Germany March 19-20, 2017 

15. ‘Proton-coupled water and hydrogen-bond dynamics in channelrhodopsin’. Platform 
presentation at the 2014 Biophysical Society Meeting, San Francisco, USA, February 14-
19, 2014 

14. ‘Lipid-coupled docking of transmembrane substrate by the GlpG rhomboid protease 
from Escherichia coli. Platform presentation at the 2012 Biophysical Society Meeting, 
San Diego, USA, February 25-29, 2012 

13. ‘Lipid-mediated helix gating in the GlpG rhomboid protease from Escherichia coli’. 
Platform presentation at the 2011 Biophysical Society Meeting. Baltimore, Maryland, 
USA, March 5-9, 2011 

12. ‘Lipid membrane composition has a dramatic effect on the dynamics of the GlpG 
rhomboid protease from Escherichia coli’. Platform presentation at the 2010 Biophysical 
Society Meeting, San Francisco, USA, February 20-24, 2010 

11. ‘Pathways for opening the SecYEG protein translocon: role of hydrogen bonding and 
signal peptide interactions’. Gordon Research Conference on Protein Transport across 
Cell Membranes, Galveston, Texas, USA, March 7-12, 2010 

10. ‘How prl mutations or binding of the signal peptide unlock the translocon’. Young 
Investigator Talk at the 24th Annual Symposium of the Protein Society, August 1-5, 2010, 
San Diego, California 

9. ‘Opening the translocon: the role of hydrogen-bonding’. Gordon Research Conference on 
Protons and Membrane Reactions, Ventura, California, USA, February 22-27, 2009 
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8. ‘Opening the translocon: the role of hydrogen-bonding’. Platform presentation at the 2009 
Biophysical Society Meeting, Boston, USA, February 28-March 4, 2009 

7. ‘Lipids, water, and protein interactions of intramembrane rhomboid protease’. Platform 
presentation at the 2008 Biophysical Society Meeting, Long Beach, California, USA, 
February 2-6, 2008 

6. ‘Quantum Mechanical/Molecular Mechanical investigation of bacteriorhodopsin proton 
pumping’. 11th International Conference on the Applications of Density Functional Theory 
in Chemistry and Physics. Geneva, Switzerland, September 11-15, 2005 

5. ‘Mechanism of the retinal deprotonation step in the bacteriorhodopsin photocycle’. 
Workshop on Modeling interactions in Biomolecules II. Prague, Czech Republic, 
September 5-9, 2005	

4. ‘Proton Transfer Pathways in Bacteriorhodopsin’. CECAM Meeting on Multiscale 
Modelling of Chemical Reactions. Lyon, France, September 3-5, 2003 

3. ‘Theoretical Analysis of Proton Transfer Pathways in Bacteriorhodopsin’. CECAM (Centre 
Europeén de Calcul Atomique et Moléculaire) discussion meeting ‘Ion channels: from 
biology to physics’. Lyon, France, July 15-17, 2002 

2. ‘Computer simulations of proton transfer in bacteriorhodopsin’. 2nd Fall Workshop. 
Complex Processes: modelling, simulation and optimisation. Bêdlewo, Poland, October 
18-20, 2002. 

1. ‘Quantum Mechanics/Molecular Mechanics study on the proton transport mechanism in 
Bacteriorhodopsin’. Human Frontier Science Program workshop on Bacteriorhodopsin, 
Heidelberg, Germany, August 26-28, 2001 
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Appendix 3: Brief Curriculum Vitae 
 
Ana-Nicoleta Bondar 
 

DEGREES 

2004 Doctor of Natural Sciences, magna cum laudae, Ruprecht-Karls Universität 
Heidelberg, Germany, The Joint Faculty of Natural Sciences and Mathematics. 
Examination subject: biology. Doctoral research was in computational 
biophysics 

1999 Advanced studies, ‘Alexandru Ioan Cuza’ University of Iasi, Romania, Faculty 
of Physics 

1997        Diploma in physics, ‘Alexandru Ioan Cuza’ University of Iasi, Romania, Faculty 
of Physics 

 

ACADEMIC EMPLOYMENT 

01.12.2019-  Guest Professor, Department of Physics, Freie Universität Berlin, Germany 

2014-2019 Professor W2 fixed term, Department of Physics, Freie Universität Berlin, 
Germany 

2010-2014 Junior Professor W1, Department of Physics, Freie Universität Berlin 

2006-2010 Assistant Project Scientist, University of California, Irvine, Department of 
Physiology and Biophysics. Appointed as Assistant Project Scientist Step I in 
2006, merit increase to Step II in 2008, and accelerated merit to Step IV in 
2010 

2004-2006 Post-doctoral researcher (scientific employee BAT IIA), University of 
Heidelberg, Interdisciplinary Center for Scientific Computing 

2000-2004 Doctoral researcher (scientific employee BAT IIA/2) at the University of 
Heidelberg, Interdisciplinary Center for Scientific Computing; doctoral student 
at the the German Cancer Research Center Heidelberg Molecular Biophysics 
Department 

2000 Student Assistant, University of Heidelberg, Interdisciplinary Center for 
Scientific Computing 

 

NON-ACADEMIC EMPLOYMENT 

1998-1999 Referent, National University Research Council, University of Bucharest, 
Romania 

 

GRANTS 

2019-2022 European Commission/ Marie Skłodowska Curie Actions, Innovative Training 
Network ‘PROTON – Proton transport and proton-coupled transport’ (PI) 

2017-2020 German Research Foundation Collaborative Research Center ‘Protonation 
Dynamics in Protein Function’, SFB 1078, Project C4 ‘Coupling between 
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protein, water, and protonation dynamics in channelrhodopsins and 
photosystem II’ (PI) 

2016-2019 German Research Foundation Priority Program SPP 1926 Next Generation 
Optogenetics: Tool development and application. Grant on ‘Photoswitchable 
lipids for optical control of mechanosensitive ion channels’ (co-PI) 

2012-2016 German Research Foundation Collaborative Research Center ‘Protonation 
Dynamics in Protein Function’, SFB 1078, Project C4 ‘Coupling between 
protein, water, and protonation dynamics in channelrhodopsins and 
photosystem II’ (PI) 

2011-2015 European Commission, Marie Curie International Reintegration Grant, FP7-
PEOPLE-2010-RG-276920 ‘Mechanisms of transport across cellular 
membranes’ (Fellow) 

 

AWARDS AND HONORS 

2018   Diploma of Excellence from the Embassy of Romania in Berlin. Berlin, October 30 

2018  JSPS-BRIDGE Fellowship from the Japan Society for the Promotion of Science (16 
days) Nagoya University, School of Science, Department of Physics. Nagoya, Japan  

2018 Invited to attend the 14th Japanese-German Frontiers of Science Symposium of the 
Alexander von Humboldt Foundation and the Japanese Science for the Promotion of 
Science. Kyoto, Japan, September 6-9 

2018    Certificate of Reviewing in recognition of the review made for BBA Bioenergetics 

2012    Granada Excellence Network of Innovation Laboratories Strengthening through 
Short-Visits Fellowship (GENIL-SSV 2012) for the project ‘Bioinformatics analyses of 
the SecA motor protein’, November 6-18, 2012, University of Granada, Spain 

2010    European Commission Marie Curie International Reintegration Grant 

2006  Short-term Fellowship from the Japan Society for the Promotion of Science (20 days) 
Nagoya University, Nagoya, School of Science, Department of Physics  

1992-1999 Merit stipend from the Al. I. Cuza University of Iasi, Faculty of Physics, for the 
1st, 2nd and 3rd semesters of Advanced Studies. Merit stipend for the 8th semester of 
the undergraduate Diploma studies; study stipend for the 1st, 2nd, 6th, and 7th 
semesters 

 
 
 

RESEARCH VISITS ABROAD 

Tokyo University, Institute for Solid State Physics, Tokyo, Japan, planned for 27.09.2019-
10.10.2019 Supported by the Follow-up Program of the JSPS Frontiers of Science (FoS) 
Symposium 
Nagoya University, School of Science, Department of Physics. Nagoya, Japan. Supported 
by JSPS-BRIDGE fellowship. 26.08.2018 - 15.09.2018 (06.09 to 09.09: symposium in 
Kyoto) 
University of Granada, Spain, Department of Computer Science and Artificial Intelligence. 
06.11.2012 -18.11.2012. Supported by GENIL-SSV Fellowship 
Nagoya University, School of Science, Department of Physics. Nagoya, Japan. Supported 
by JSPS short-term fellowship for 20 days, 2006 
 



	 A15	

 

PROFESSIONAL SERVICE AND ACADEMIC MANAGEMENT 
 

BOARD MEMBER 
2018 -    Member of the International Advisory Committee of the ICRP (International 

Conference on Retinal Proteins) 
 

EDITORIAL SERVICE 

2019       Initiated ‘Young Investigator Featured’, a new section of the Journal of Membrane 
Biology 

2019      Co-Guest Editor of the Biochimica Biophysica Acta General subjects, Special Issue 
on Advances in Computational Molecular Biophysics. In progress 

2019       Guest editor of the Chemical Reviews thematic issue ‘Biomembrane Structure, 
Dynamics and Reactions’ 

2018        Co-Guest Editor of Journal of Membrane Biology Special Issue ‘Lipid membranes 
& reactions at lipid interfaces’  

2018-      Section Editor – Biophysics Section, Journal of Membrane Biology 
2016-2018  Associate Editor - Biophysics Section, Journal of Membrane Biology 
 
 

ORGANIZING COMMITTEE MEMBER 

2019    Co-applicant on the proposal for a Biophysical Society Conference entitled ‘Protein 
Reactions: From Basic Science to Biomedical Applications’, to be held in Ventura, 
California, August 20-24, 2021. Favorable review, we need to address 
sustainability for future meetings. 

2018     CECAM (Centre Europeen de Calcul Atomique et Moleculaire) workshop ‘Frontiers 
in computational biophysics: understanding conformational dynamics of complex 
lipid mixtures relevant to biology’, January 10-12, Lugano, Switzerland 

2013    CECAM workshop ‘Coupling between protein, water, and lipid dynamics in complex 
biological systems: Theory and Experiments’. September 24-27, Lausanne, 
Switzerland  

2010       Symposium ‘Frontiers in Membrane and Membrane Protein Biophysics: 
Experiments and theory’, University of California, Irvine, August 19-20 

2008      CECAM workshop ‘Membrane Protein Assembly: Theory and Experiments’, 
Lausanne, Switzerland, September 3-6 

  
 
PUBLIC OUTREACH 
 

NEWSLETTER ARTICLE, NEWSPAPER INTERVIEW  
2018  Report from the BRIDGE Fellowship ‘Protein dynamics and enzyme reactions’. 

Neues von JSPS Club (Newsletter of the JSPS German Alumni Association, the 
Deutsche Gesellschaft der JSPS Stipendiaten e.V.) NvC Nr. 3/ 2018, Ausgabe 72, 
6-8. 

2016  ‘Uns verbindet die Physik’, interview in the Free University Supplement to the Berlin 
Tagesspiegel, September 24, 2016, page B8. 
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TEACHING 
 

PROFESSIONAL DEVELOPMENT  
1-day seminar attended at the Further Education Center of the Freie Universität Berlin 
2019     Assignment, guidance, and support of student tutors for natural sciences teaching 

(Einsatz, Anleitung, und Begleitung studentischer Tutor*inen für die 
naturwissenschaftliche Lehre) 

 

2-day seminars attended at the Berlin Center for University Teaching (Berliner Zentrum für 
Hochschullehre, BZHL): 
2019         Organization of oral examinations (Mündliche Prüfungen kompetenzorientiert 
gestalten) 
2018         Activate the class with digital media (Aktivieren des Hörsaals mit digitalen 
Medien) 
2018         Teaching International Students 
2018         Competent advising of students (Studierende kompetent beraten) 
 

German evening language courses attended at the Goethe Institute Berlin: 
2019         Level C2_2 
2019         Level C2_1 
2018         Level C1 
 

2019        Private German classes with Mr. Burkart Encke, Berlin 
 

DIRECT SUPERVISION OF BACHELOR, DIPLOMA AND MASTER THESES  
By month of completion of the thesis: 
08/2019     Lukas Kemmler (Master), Water motions at negatively-charged protein interfaces 
05/2017     Alexandra Krause (Bachelor), Study of water dynamics around ATP 
10/2015      Malte Siemers (Bachelor), Water structures in channelrhodopsin 
04/2015     Christian Spakowski (Master), Investigation of the effects of retinal isomerization 

and its conformational dynamics in channelrhodopsin-2 addressed by 
theoretical biophysical methods 

08/2013   Christoph Mielack (Master), Proton-coupled water and hydrogen bond dynamics 
in channelrhodopsin 

05/2013     Sebastian Lorch (Diploma), Proton-coupled water and hydrogen-bond dynamics 
of the SERCA calcium pump 

04/2013   Suliman Adam (Master), The parametrization of thiamine and riboflavin for the 
application in ECF transporters 

04/2013   Florian Pieront (Master), Analysis of hydrogen-bonding networks and surface 
water dynamics in photosystem II’s PsbO subunit my molecular dynamics 
simulation 

12/2012   Federico Guerra (Master), Proton-coupled dynamics in wild-type and mutant 
plasma membrane proton pumps 
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08/2012   Michael Paris (Bachelor), Towards accurate force field description of 
phosphorylated aspartate systems 

 

On-going Master projects, by month of project start: 
05/2019     Thomas Giannos, Numerical simulations of morphine binding to opioid receptors 
12/2018     Eva Bartalan, Numerical simulations of the kappa- and delta-opioid receptors 
 
 

DOCTORAL THESES, COMPLETED  
By month of public thesis defense: 
03/2018   Federico Guerra, ‘Dynamic hydrogen-bonded networks of photosystem II’ 
05/2018   Suliman Adam, ‘Towards accurate computations of cofactor-containing 

biosystems’ 
11/2017  Stefan Milenkovic, ‘Hydrogen bonding and conformational coupling of the SecA 

protein motor’  
 

DOCTORAL THESES, ON-GOING 
By month of starting doctoral research: 
02/2018     Michalis Lazaratos, Water networks in retinal proteins 
04/2017     Krzystof Buzar, Computer simulations of photosystem II 
12/2016     Oskar Klaja, Photo-switchable lipids 
02/2016    Konstantina Karathanou, Development of data analysis tools for H-bond systems 
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COURSES, SEMINARS AND TUTORIALS TAUGHT  
 

Role Level Topic Hours Period 

 
 
 
 
 
 
Lecturer 

 
 
 
 
 
 
Master 

Quantum and statistical mechanics 
computations of molecular structure 

2 + 1/ 
week 

WS 2018 

bio(Nanotransporters): Theoretical 
biophysics and bioinformatics methods. 
Lecture and exercise class. 

2 SS 2018 

Modern Methods in Physics: Electronic 
Structure Methods 

2 SS 2011, SS 2012, 
WS 2014, WS 2018 

Advanced Quantum Mechanics 4 WS 2016, WS 2017 

Advanced Theoretical Biophysics 2 WS 2011, WS 2012, 
WS 2015, WS 2019 

Photobiophysics and Photosynthesis, 
shared 50% 

2 + 1 WS 2010 

Bachelor Analytical Mechanics (Theory 2)  
Taught in English/ German 

4 SS 2013, SS 2014, 
2015 

Experimental Physics III, shared 50% 4 WS 2012 

Research-oriented seminars 

 
 
Lecturer 

 
 
Master 

Journal Club on Molecular Biophysics – 
Theory and Experiment, shared 50% 

2 SS 2014, WS 2014, 
SS 2015, WS 2015 

Literature Seminar on Statistical 
Mechanics for Computer Simulations 

2 SS 2016, WS 2016 

Doctoral, 
Master, 
Bachelor 

Theoretical Molecular Biophysics, regular 
research seminars of the lab 

2 Regular lab 
meetings 

Practical computer classes 

 
Tutor 

 
Master 

Advanced Theoretical Biophysics – 50% 2 WS 2011 

Modern Methods in Theoretical Physics: 
Electronic Structure Methods 

2 SS2011 

Bachelor Computational Physics 2  WS 2010 
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