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Abstract

We want to understand how the topology of Berkovich spaces varies when we conjugate the
non-archimedean base field. After a short introduction with a discussion of the original prob-
lem solved by Serre [Ser64] in the complex setting, we explain some background material about
non-archimedean geometry and non-archimedean analytifications. We are able to construct ex-
amples of non-homeomorphic conjugate Berkovich spaces by controlling the homotopy type of
the Berkovich analytification via its skeleton and its tropicalization. In the appendix we include
some useful programs written in SAGE that compute the examples of the last section.

Zussamenfassung

Wir wollen verstehen, wie sich die Topologie von Berkovich-Radumen veréndert, wenn wir der
nichtarchimedische Basiskorper konjugieren. Nach einer kurzen Einfiihrung mit einer Diskussion
des urspriinglichen Problems, das von Serre [Ser64] in der komplexen Umgebung gelost wurde,
erldutern wir etwas Hintergrundmaterial iiber nichtarchimedische Geometrie und nichtarchime-
dische Analysis. Wir konstruieren Beispiele fiir nicht-homéomorph konjugierte Berkovich-Raume,
indem wir den Homotopietyp der Berkovich-Analytifizierung iiber ihr Berkovich-Skelett und ihre
Tropikalisierung kontrollieren. Im Anhang gibt es in SAGE geschriebene Programme, die die
Beispiele des letzten Abschnitts berechnen.






Between 2016 and 2020, (at least) 12,685 people died in the Mediter-
ranean trying to reach Europe according to the International Organiza-
tion for Migrants of the United Nations. This is a low estimate, since
many deaths are not even reported nor heard by anyone who was not on
the sinking boat. Since World War II there have never been so many
unburied bodies in Europe.

This thesis, done in this time period, is dedicated to the memory of all
migrants who died on their way to Europe, so much at origin as during
voyage or after arrival.
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The topology of conjugate
Berkovich spaces

1 Introduction

Given a projective algebraic variety X over a number field K, and choosing an embed-
ding ¢ : K = C, we can consider its base change X, := X X 4 C so that it becomes a
complex algebraic variety. Now we can follow GAGA [Ser56] and consider its complex
analytification X ;m, whose underlying topological space is just the set of complex points
X 4(C) together with the euclidean topology. Note that considering just the underlying
topological space is equivalent to forgetting the analytic structure of X Zn: for example,
two elliptic curves with different j-invariants are different as analytic spaces, but they
both have the same underlying topological space (homeomorphic to a doughnut).

Some of the topological invariants of X,(C) are independent of the chosen embed-
ding ¢: for example, the comparison between étale cohomology and singular cohomology
due to Artin [SGA4, Exp. XI| implies that the Betti numbers of X, (C) are independent
of ¢.

If X is a smooth projective curve of genus g, we know that X4(C) is a Riemann
surface with ¢ holes. Hence, the variation of ¢ doesn’t change the topology of the
analytification, since choosing a different ¢ doesn’t change the genus of the curve.

In arbitrary dimension, we can also say something about the topological fundamental
group of X 4(C). We first fix a base point € X (C), and denote also by x its pullback to
X4(C). Since the work of Grothendieck and others (see for example [SGA1], or [Sza09,
Theorem 5.7.4] for an easier introduction), we know that the profinite completion of
P (X »(C), x) is isomorphic to the étale fundamental group HP.¢ #» ), and this group
is independent of the chosen ¢ (see for example [Esnl7, Proposition 6.1]). Indeed, all
base changes of X to an algebraic closure of the base field K are isomorphic as K-
schemes; in particular, the geometric étale fundamental group ﬂft(X ) is independent

of the chosen ¢ up to isomorphism. Hence, the profinite completion of WEOP(X,z)((C), x)
is independent of the chosen embedding ¢.

With this kind of examples in mind, it was a plausible question back in the 60’s
whether the topology of X4(C) is independent of the chosen ¢. In other words, the
scheme X, is equipped with a structure morphism X, — Spec(C) given by the Carte-
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Slan square

Xy — Spec(C)

l l

X —— Spec(K),

and the question is whether the topology of X, (C) is intrinsic to the abstract scheme
X4, or if it depends on the structure morphism induced by the embedding ¢ : K = C.
Serre answered this question [Ser64]: he constructs a variety X over a number
field K and embeddings ¢,v¢ : K < C such that the topological fundamental group
WEOP(XQJ)((C), x) is different from inp(Xw((C), x). Let’s say a word on Serre’s example:
e Construction of K. The number field K is the Hilbert class field of a certain
imaginary quadratic field Q(y/=p), where p is a prime number congruent to —1
modulo 4 and the class number of Q(/—p) satisfies an extra condition that we

TAs usual, we abuse notation and write ¢ instead of Spec(¢).



don’t explain here; for example, we can take K to be the Hilbert class field of

Q (v-23), which happens to be K = Q (v-23) [2]/(z® -2 - 1).

e Construction of the embeddings ¢,v : K < C. Due to the theory of complex
multiplication of elliptic curves, there exists an elliptic curve E defined over K
whose ring of endomorphisms is precisely the ring of integers of the imaginary
qltl(i)dratic field. In this situation, there exist embeddings ¢, : K = C such that

71 (Ey(C),e) is a free Og( =5y -module of rank 1, but W;OP(E,/}((C), e) is not free
as an Og(/=p) -module.

e Construction of X defined over K. Let A be the abelian variety given by A = E pTl,
and let Y be the hypersurface inside IP’%_ ! given by the equation Zle :cf = 0; in our
above example, we would have A = E™ and Y the 21-dimensional hypersurface
given by 2?31 xlz # =0. Let G be the cyclic group of order p, which acts both on
Y by permutation of the coordinates and on A by a different action that we don’t
describe here. Then, Serre defines X as the quotient of Y X A by GG, where G acts
on'Y x A via g(y,a) = (¢"'y, ga). Now we base change X via ¢ and ¢ and we get
X, and Xy, such that X4(C) and X, (C) have different topological fundamental
groups.

Serre calls the varieties X, and X, conjugate, as we can go from X, to X, via
a conjugation of the complex numbers o € Autg(C) (indeed, o is an extension of a
particular element in the absolute Galois group Gal(f, K)). In other words, if ¢ = go1,
then we have a commutative diagram

X, > Xy
| |
Spec(C) z > Spec(C)
I
Spec(K)

which is Cartesian, i.e. X4 = X, X¢,, C. Note that X, and X, are isomorphic as
K-schemes, but not as C-schemes.

We have seen our first example of non-homeomorphic conjugate varieties, where the
topological fundamental group of the analytification of one variety is different than the
one of its conjugate’s. In particular, since the profinite completion of the topological
fundamental group is independent of the embedding ¢, we see that the difference be-
tween W;OP(X¢((C), x) and its profinite completion can be far from trivial. Actually, we

don’t know whether there exists a complex projective variety V' such that Wft(‘/, x) is
trivial but =" (V(C),z) # 1 (c.f. [Sza09, Remark 5.7.5]). Another example in this
direction is given by Toledo [Tol93], who constructs a smooth projective variety V' over
C such that the profinite completion map 7, (V(C),z) — m'(V,z) contains a free
kernel of infinite rank.

Since Serre’s example, there have been in the literature more examples of non-
homeomorphic conjugate (complex) varieties, where different topological invariants have
been studied (see for example [Abe74; ACCO7; BCG15; MS10; Shi09; Shil8; Shil9)]).

The aim of this PhD is to analyze the analog question in the non-archimedean world:
are there non-homeomorphic conjugate non-archimedean varieties? What phenomena
do occur in this world?
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2 Non-archimedean geometry and Berkovich spaces

In this section, we recall the basic notions of non-archimedean geometry. In particular,
we recall some facts from non-archimedean fields, rigid geometry and Berkovich spaces.

2.1 Non-archimedean fields

The first example of a non-archimedean field appeared in the work of Hensel, who
introduced in 1893 the p-adic numbers as an analog of the local power series expansion
around a point in complex analysis (c.f. [Ull95]) in order to analyze discriminants of
field extensions. For example, given a non-zero natural number n € N and a prime
number p, we can write n as a finite sum n = Zir a,p’ in a unique way, with € N,

a, € {0,1,...,p—1} and a, # 0. Generalizing this idea, we can consider formal infinite
series
14
> aw”,
vzr

with 7 now in Z, a, € {0,1,...,p— 1} and a, # 0. The set of all such series, together
with the usual addition (with carrying) and multiplication, forms the field of p-adic
numbers, denoted Q,.

Ezample 2.1. Let’s do a some p-adic arithmetic. For p = 2, we can write-1as ) ., 1-2",
because if we add 1 to the above series, then all the coefficients of the power series
expansion will become zero®. Then, —2 can be written as 2(=1) = Y o112 We can
also write 1/3 as

vzl

1+Z22”“=1+21+23+25+...

vz0
Indeed,
3-(1+%,.02"") =(1+2)-(1+Y,,,2""")
=1+ Z,,Zo 221/+1 +92+ Zl,zo 22u+2
=1+2+) .27
= 1.

The importance of p-adic numbers in arithmetic geometry can be seen for example in
the Hasse principle: Hasse [Has24] proved that a quadric defined over Z has a rational
point if and only if it has a real point and a Qp,-point for every prime p. This is
very convenient, because the existence of a real point can be deduced from continuity
arguments, and the existence of a p-adic point comes from solving congruences modulo
p", which have finitely many possibilities.

There is a more systematic way to describe the p-adic numbers, namely in terms of
valuations. For instance, consider in Q\{0} the p-adic valuation given by v,(p"a/b) :=r,
where r € Z and p divides neither a nor b. We extend the valuation to the whole Q
by declaring v,(0) := +00. Then we can define a p-adic norm in Q via |q|, := p_”P(Q),
where [0], :=p™% = 0.

The p-adic norm defines a metric on Q. If we take the completion of Q with respect
to the p-adic norm | - |,, then we obtain again the p-adic numbers Q,,.

Remark 2.2. The norm | - |, of the valued field (Q,, | - |,) satisfies the following prop-
erties:

o It is non-archimedean, i.e. |1 + al, < max{1,|al,}.

e It is positive definite, i.e. |a|, = 0 if and only if a = 0 (if there was an element
¢ # 0 such that |c[, = 0, then | - | would be a seminorm).

2The correct way to think about this is as a collection of congruences modulo 2", and the series is
then congruent to 1 modulo 2, so adding 1 we obtain a collection of congruences which are 0 modulo
2" for all v, hence 0. For general p, —1 can be written in Q, as Y ,.o(p — 1)p".
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o It is multiplicative, i.e. |ab|, = |al,|b],.

These properties motivate the general definition of (real) valued field, which was
given by Kiirschék in® 1913 (c.f. [Kiir13)):

Definition 2.3. A (real) valued field K is a field K together with a map |+|x : K = Ry
such that:

e It satisfies the triangle inequality, i.e. for every element a € K, |1+a|x < 1+|a|g.
e It is positive definite, i.e. |alg = 0 if and only if a = 0.
o It is multiplicative, i.e. |ab|x = |a|x |blk-

If, in addition to the triangle inequality, we have the stronger condition that for every
element a € K,
|1+ a|x < max{1, |a|x},

then we say that (K, |- |x) is a non-archimedean valued field. If this last property is
not satisfied, then we say that (K, | - |x) is an archimedean valued field.

Ezample 2.4. The rational numbers Q together with the euclidean norm |g|e := \/q_2
is an archimedean valued field. Indeed, |1 + 1|4, = 2 > max{1,1} = 1.

However, the rational numbers Q together with the p-adic norm | -
archimedean valued field, as we saw before.

|, is a non-

Remark 2.5. Given any field F', we can define the trivial norm |-|q given by |a|y := 1 for
every non-zero a € F', and [0y := 0. Note that (F,|-|y) is a complete non-archimedean
valued field. In this case, we say that the field F' is equipped with the trivial valuation.

Remark 2.6. Given a valued field (K, | - |x), then the map | - |% defines a different
norm for every ¢t € (0,1). For ¢t > 1, the triangle inequality might fail: for example, if
we start with (Q, | + | ), then

4=1+1)% > |15 + 1% = 2.

However, if the norm | - |; is non-archimedean, then | - |% will also define a norm
for t > 1. Note that choosing a different ¢ is equivalent to choosing a different real
number when defining the p-adic norm |z|, := p @) Indeed, if ¢ > 1, then ¢ () =

The following example shows how the notion of a valued field unifies phenomena
from formal power series, holomorphic functions and p-adic numbers.

Ezample 2.7. 1. Let F((T)) be the field of Puiseux series, where F is any field (for
example the complex numbers C), T is the variable, and any non-zero element a
in F((T)) is of the form

a= Z ciTi,
=10
where iy € Z, ¢; € I and ¢;, # 0. This field is the field of fractions of the ring of
formal power series F[[T]]. Now, let | - | be the norm defined by |a|y := e
for a # 0, and |0|7 := 0. Then, (F((T)),]| - |r) is a non-archimedean valued field.

3Kiirschék [Kiir13] also asks that the valuation is non-trivial, i.e. that there exists an element of
the field with valuation different from 0 or 1. However, we will not include this assumption in our
definition. Moreover, we include in our definition the notions of archimedean and non-archimedean
field, which don’t appear in Kiirschdk’s article.
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2. Let a € C be a complex number, and O, the ring of functions which are holo-
morphic on a neighborhood of a. The elements f of O, that are non-invertible
are precisely those such that f(a) = 0. For f # 0, let v,(f) denote the order of
the zero of f at a, where obviously v,(f) = 0 if f(a) # 0. Let M, be the field of
fractions of O,, which is precisely the field of meromorphic functions which are
holomorphic on a punctured disc around a (i.e. the functions are holomorphic on
B(a,r) \ {a} for r small enough), and extend v, so that it gives you the order of
the pole of f at a in case f € M, \ O,. In this situation, we can define the norm
1f]o = e ") for f # 0, and |0|, := 0. Then, the field M, together with the
norm | - |, is a non-archimedean valued field.

3. In general, if A is a discrete valuation ring (with non-trivial maximal ideal m), we
can consider for every non-zero a € A the valuation vy (a) := max{n|a € m" A}.
We can extend this valuation to the fraction field F' of A, and we can define
the norm |f|q := ¢ for non-zero f, and |0y := 0. Then, (F,| - |wm) is a
non-archimedean valued field.

Remark 2.8. Archimedes of Syracuse lived in the third century B.C., so one could
ask why these fields are called non-archimedean fields. Archimedean fields (K, |« |g)
satisfy the so-called archimedean property: given two non-zero elements a,b € K such
that |a|x < |b|x, there exists a natural number n such that |na|x > |b|g. For
example, the field of real numbers together with the euclidean norm (R, || - ||) satisfies
the archimedean property.

However, if the norm | - | ¢ of our valued field K satisfies the condition

la +b|x < max{|a|k, [b]x},

then the field doesn’t satisfy the archimedean property. Indeed, assume |a|x < |b| k-
Then, for all non-zero integers n we have that |nalg = la+ ...+ a|lg < |a|x < |b| k-

The archimedean property, which appears as Assumption 4 in On the Sphere and the
Cylinder, by Archimedes (c.f. [Hea97, page 4, Assumption 4]), is actually attributed to
Fudoxus of Cnidus, and can be found in the Book 5 of the Elements of Euclid, Definition
4. Tt seems that the naming of this property as archimedean property or archimedean
aziom goes back to Otto Stolz (c.f. [Sto82, page 75]).

Definition 2.9. Given a non-archimedean valued field (K, |- |x ), we can define its ring
of integers O, given by elements of K whose norm is less or equal to 1. This ring is a
local ring, whose maximal ideal my is given by the elements with norm strictly smaller
than 1.

Remark 2.10. If our non-archimedean field (K, | - | g ) is trivially valued, then the above
definition still makes sense. However, here Ox = K and mg = {0}, so we don’t gain
any extra structure.

Remark 2.11. Note that if the valued field (K, |- |g) is archimedean, then the set of
elements with norm smaller or equal than 1 doesn’t form a ring. Indeed, if a non-zero
element a € K has norm smaller or equal to 1, then the archimedean property tells us
that there exists a natural number n such that |na|x > |1|x = 1, and therefore the
sum of n copies of a doesn’t belong to the set of elements of norm less or equal to 1.

Ezxample 2.12. All the above examples of non-archimedean fields have a noetherian ring
of integers. However, this is not always the case. For example, one can extend uniquely
the p-adic norm from Q,, to a fixed algebraic closure @p. Then, the local ring O@ is
not noetherian.

Another example that might be more explicit is the field of Hahn series. Let F' be
any field, and consider the field F[[T%]] given by elements a that are formal power
series of the form

a= Z e, T,

13



where ¢, € F and supp(f) := {v € Q : ¢, # 0} is a well-ordered”® subset of Q. Then,
for every non-zero element a we can define the valuation vy(a) := min{v € Q : ¢, # 0}.
As usual, this extends to a norm on the field via |a|r := ¢~ for non-zero elements,
and [0|7 := 0. This is a non-archimedean valued field, and its ring of integers O pr7o1]

is not noetherian: indeed, we have an infinite chain of strictly increasing ideals, namely

I, = {a € F[[T"]] : laly < 1 -1/n},

2
and we see that the element T'2

n-3
n1isin I, \ I,_q, for n > 2.

Remark 2.13. Let (K, ||k ) be a non-archimedean field. Then O is noetherian if and
only if the (additive) value group log(|K*|x) C R is discrete.

Given a valued field (K, |+ |k ), we can define a metric in the field given by the
distance function

A1) (@) 2= |z =yl k.

Note that the induced topology makes the addition and the multiplication continuous
maps

KxK - K,

where K X K carries the product topology. Hence, in order to give a basis of this
topology, it is enough to give a basis around 0, and then we can carry this basis via
addition. For example, for r > 0, the collection of balls

B(0,r):={z € K: dig || (2,0)<r}={z e K: |z|g <7}

forms a neighborhood basis of the topology around 0.

Remark 2.14. Given a field K with two different norms | - [ and | - |, we say that
they are equivalent if they induce the same topology.

Two norms are equivalent if and only if | - |% = | - % for some ¢ > 0. Indeed, if the
latter is true, then they induce the same topology, because to give a ball of radius r» > 0
around 0 with respect to | - | is the same as giving a ball of radius r' around 0 with
respect to | - |’

Reciprocally, two norms | - | and | - | induce the same topology if and only if for
every ¢ € K,

7|k <1 |alx < 1,

which by the multiplicative property is equivalent to
|| > 1 & |z|% > 1.

The trivial norm is only equivalent to itself, so we can assume that our norms are not
and take z € K such that |z|x > 1 (when | - |x is not trivial, there exists a non-zero
element x with norm different than 1, so either x or 2" has norm strictly greater than
1). Let ¢ := log |z| %/ log || -, which is greater than zero because both |z|x and ||
are greater than one. If we prove that this element ¢ is independent of the chosen x
such that |z|x > 1, then we are done, because we deduce that tlog |z|x —log |z|% = 0,
which implies that |z|% = |z|’%.
Assume that ¢ is not constant, and consider y € K such that |y|x > 1 and

I I
10g|$|K < 10g|2/|K
log |z|x  log|y|k’

4A well-ordered set S is a set S together with a total ordering such that every non-empty subset of
S has a minimum element. For example, the set {—1/n : n € Z,} is well ordered, while {1/n : n € Zs¢}
is not.

14



and take m,n € N such that

I T
log |z|x  m < log |y| x
log|z|lg ™ loglylk

By rearranging and taking exponentials, we get that |2" [y™|% < 1 and |2" [y™ |k > 1,
which is a contradiction. Hence ¢ must be constant and we are done.

Ezample 2.15 (Ostrowski’s Theorem). The topology of the rational numbers with the
euclidean norm (Q, | + |eo )is the usual topology on Q. On the other hand, the topology
induced by the p-adic norm |« |, is a bit complicated (for example, all balls are simul-
taneously open and closed) and we will look into it in the next section. Before moving
to the next section, let’s look again to the norms in the rational numbers Q. Ostrowski
[Ost16] classified in 1916 all the non-trivial norms of Q, which are equivalent to:

e The Euclidean norm | - |, or
e the p-adic norm | - |, for some prime number p.

Note that when ¢ — 0, both norms | - |5 and | - |§, tend to the trivial norm |- |¢. Hence,
we could represent informally all the norms of the rational numbers as a broom (c.f.
Figure 1), where

e the broomstick is the set of (equivalent) norms of the form | - |5, with ¢ € (0, 1],

e the are infinite broom hairs (one for every prime p), where each hair is the set of
(equivalent) norms of the form | - |§;, with ¢ € (0, 00),

e the broom hairs are attached to the broomstick in a point representing the trivial
norm | - |g.

Figure 1: The norms of the rational numbers.

This description will be made precise when we introduce Berkovich spaces, c.f. Example
2.44.

15



2.2 The topology of non-archimedean fields

The topology of non-archimedean fields might seem at first confusing, but it is important
for us to understand it because we want to do analysis over these fields. Let’s fix a non-
archimedean valued field (K, | - | ). Note that the non-archimedean property

|1+ alx < max{1,|a|x},
where a € K, implies that
la +b|x < max{la| g, |b|x},

just by multiplying by |b| x both sides and using the multiplicative property. We denote
by B(a,r) the open ball with center a and radius r > 0, and B (a,r) the closed ball
with same center and radius, i.e.

Bla,r):i={d €e K: |la—d'|x <1},

B'(a,r):={d € K: |a—d'|g <7}
Note that every point b inside a ball B(a,r) is also a center of the ball, i.e.
B(a,r) = B(b,7).

Indeed, if ¢ € B(a,r), then we have the inequalities

la =blg <7

la—c|lg <,

which implies that |b — ¢|g < 7 (just use the non-archimedean property in the sum
|b—a+ a-c|g), and therefore ¢ € B(b,r). The other content is exactly the same.
Moreover, if we start with closed balls, the same argument applies (we just need to
substitute the strict inequalities by non-strict inequalities). Hence, we have proved the
following:

Lemma 2.16. In a non-archimedean field (K, |+ |k ), all the points of an open (resp.
closed) ball are also centers of the ball.

The intersection of two balls might be confusing. Balls over a non-archimedean field
behave like mercury droplets: they are disjoint until they touch each other, and then
they become one. In other words: the intersection of two different balls B(a;,7;) and
B(ag,ry) is either empty or one of the balls. Indeed, without loss of generality, assume
that r; < ro and that the intersection is not empty, i.e. there exists ¢ in both balls.
Then, by the previous lemma, the balls are equal to B(c,r,) and B(c,r5) respectively,
and we conclude that the first is inside the second one. Hence, we have proved the
following:

Lemma 2.17. In a non-archimedean field (K,| - |x), two balls are either disjoint or
one is contained inside the other.

Now, the open ball is obviously open, and the closed ball closed. But we also have
that the open ball is closed and the closed ball is open. Indeed, B(0,r) is closed if and
only if K\ B(0,r) is open. If we take b ¢ B(0,7), then |b|x = r, and to conclude the
statement we just need to show that there is an open ball around b disjoint to B(0, 7).
We claim that the ball B(b,r/2) is such a ball. Indeed, b ¢ B(0,r) and similarly
0 ¢ B(b,7/2), so by our previous lemma we conclude that the intersection is empty,
and therefore the open ball B(0,r) is also closed.
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For the closed ball B*(0,r), we pick a point b inside the ball, and we claim that
B(b,r) is inside B*(0,7). Indeed, B*(0,7) = B*(b,7) > B(b,r). Hence, the closed ball
B*(0,r) is also open. By translating (addition is a continuous map) we have proved
the following:

Lemma 2.18. In a non-archimedean field (K, || g ), balls are simultaneously open and
closed.

As a direct consequence, we obtain:

Corollary 2.19. Non-archimedean fields (K, | - |x) are totally disconnected, i.e. the
only connected components are points.

Proof. Tt is enough to prove that given two different points a and b, we can find two
disjoint open sets U and V such that K =U UV anda €U, be V. Let d := |a - b|,
which is greater than zero. Then taking U := B(a,d) is both closed and open, so its
complement V := K \ B(a,d) is also open, and contains b by definition of d. O

Remark 2.20. Tt is worth to compare the Euclidean and the p-adic topologies of the
rational numbers Q. The rational numbers are totally disconnected with respect to both
topologies: our previous corollary proves the claim for the p-adic topology (Q, | - [,);
for the euclidean topology (Q, | | ), We can take two different rational numbers, say
a and b such that a < b, and then there exists an irrational number r between them.
Now, the intervals’ U := (-00,r) 3 a and V := (r,00) 3 b are both open (and closed)
in Q, and they cover the whole rational numbers. In particular, (Q, |+ |s) is also totally
disconnected.

However, we can consider the completion of Q with respect the two topologies.
Recall that the completion is the set of equivalence classes of Cauchy sequences, which
are defined with respect to a norm and therefore depend on the chosen topology. For
the p-adic topology, we get the p-adic numbers Q,,, and this field is non-archimedean, so
it is totally disconnected. But when we complete with respect to the euclidean topology,
we get the real numbers R, which is a connected topological space (even contractible!).

Somehow, the totally disconnected nature of (Q, | - |o) is because the field is not

complete, and as soon as we complete the field, then the topological space (R, | |o0)
becomes connected.
Remark 2.21. We usually imagine the rational numbers with the euclidean topology as
a line with some points missing, and those points appear when we complete the field
with respect to the euclidean norm | - |. How should we imagine (Q,| - |,)? For
simplicity, let’s assume that p = 3. Then, 3-adic numbers should be thought as the
Sierpiriski triangle (see Figure 2).

Recall that points on the Sierpinski triangle are given by a convergent sum

— 1
Z 2_ueauv
v=0

where a, € {0,1,2} and e, is given by

(0,0) ifa, =0,
eq, = 1(1,0) if a, =1,
(0,1)  ifa, =2.

Then, for any element a € Z3 written as Y, a,3", we assign the element Y oo 2%6%

of the Sierpinski triangle. Note however that this is not a bijection: for example the

SWe don’t really need the irrational number r to define these intervals, and we can also avoid
choosing an arbitrary irrational number r, but for this remark this is not a big problem. The key point
here is that the rational numbers Q don’t satisfy the least upper bound property.
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Figure 2: Representation of Z3 (Wikipedia).

points =3 = Zuzl 2-3” and 2 have the same image in this representation, which is the
point with coordinates (0,1).

But we can still grasp the fractal nature of Z3. Indeed, zooming at the biggest lower
left copy of the triangle corresponds to looking at the maximal ideal 3Z3, which is the
closed ball B¥(0,1/3); the triangle on the right is the conjugate class 1 + 3Zs, which
is the ball B*(1,1/3); and the upper triangle is 2 + 3Zs, which is the ball B*(2,1/3).
A little triangle on the lower left corner of the Sierpiriski triangle (say the n-th zoom)
corresponds to the ideal 3"Zs: in other words, this is just the ball B*(0,1/3").

The right vertex of the triangle, the point (0, 2), corresponds to the element —1/2 =
Y, 1-3” € Z3, and the upper vertex, the point (2, 0), to the element =1 =y 23" € Zs.

However, the 3-adic metric induced in this representation of Zs is a bit more tricky
to describe, and shouldn’t be confused by the euclidean metric induced from the plane.
Indeed, two points of the triangle are very close if we need to make a lot of zooms in
order to separate them: for example, the numbers 0 and 3, which correspond to the
points (0,0) and (1/2,0), are closer than the the numbers 1 and 39, which correspond
to the points (1,0) and (7/8,0). Indeed, if we do a single zoom, we separate 1 and 39,
but we need to make two zooms if we want to separate 0 and 3. The number of zooms
that are necessary to separate a and b is equal to 1 + vs(a — b).

2.3 Analysis over the rational numbers

Before explaining the analysis over a non-archimedean field, let’s recall two different
ways of doing analysis over the rational numbers with the euclidean topology (Q, |+ | e )-

To do analysis means to give a sheaf of analytic functions Og, so that the pair
((Q,] * |e), Og) forms a locally ringed space. In real analysis, a function f is said to
be analytic on an open set U if for any zq € U, f can be written as

(o)

f@) =) an(z—x)"

n=0

on a neighborhood around x,, where the coefficients a,, are real numbers. Hence, if we
define the sheaf A of naive analytic functions of Q as the functions that can be written
locally as a power series expansion, i.e.
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N(U) = {f U >R ‘ Vzy € U, 3 an open neighborhood U DV 3 xg such}

that flv(.%') = Z,:o:() an(x - xO)n

where U C Q is an arbitrary open subset, a,, € R and the power series Z::;o an(z—20)"
converges on V', we see that the function defined as

fe) om 11 if |2]o0 < V2,

0 else.

is naive-analytic. This means that there are too many analytic functions when we follow
the naive approach. In particular, we have no analytic continuation: we would like that
an analytic function which is zero on a ball, is zero everywhere (so that we can extend
analytic functions defined in a disc to a bigger open set, just as we do with the Riemann
zeta function), but this is not the case in this naive approach. The reason behind this

is that the only connected open set in (Q, | | ) is the empty set, as we saw before,
and analytic functions are usually extended on connected sets.
We present here two ways of fixing this, so that we can do analysis over (Q, | * |00)

in such a way that we have analytic continuation.

The first approach consists in completing the field Q with respect to the euclidean
norm | - |, s0 that we obtain the real numbers R. The real numbers R form a very nice
topological space which is contractible, and here we can do analysis in the usual way.
Hence, we could stay in the reals, or if we want to come back to the rational numbers,
we could define a sheaf of analytic functions where the sections on an open subset U C
are exactly the restrictions of the analytic functions defined on int(U), where U is the
euclidean closure of U in the real numbers R, and int(C) denotes the interior of the
closed set C.

The second approach is to stay in the rational numbers and restricting the amount
of open sets that we take into account by defining a Grothendieck topology. Recall that
a Grothendieck topology is defined on a category C' with fiber product as follows:

Definition 2.22 ([SGA4, Exposé II]). A Grothendieck topology on a category C' is
given by, for any object U in C, a set of coverings Cov(U), where

e A covering of U, denoted {U; = U};c;, is a collection of morphisms f; : U; » U
indexed by a set I.

o We have stability under base change, i.e. for every object U and V of C, every
covering {U; = U};er in Cov(U), and every morphism V — U, the pullback
{U; Xy V —> V} is a covering of V.

e Coverings have a local character, i.e. let {U; = U};c; € Cov(U) be a covering, and
consider a collection of morphisms {UJ' = U}jes. Assume that for every object

V' and every morphism V — U;, the collection of morphisms {UJ' xpV = V}jes
coming from the Cartesian diagrams

Uj Xy V.—>

!

Qe— Se—<

is a covering Cov(V'). Then, the collection {UJ' — U},ey is a covering in Cov(U).
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e For every isomorphism V — U in C, {V — U} belongs to Cov(U).

The reader who is not familiar with this definition shouldn’t worry, because we are
going to define a very concrete Grothendieck topology on the rational numbers. The
category AOSq that we will use is the category of admissible open sets of Q, whose
objects are the open intervals of the form

{‘TEQ: Q1<33<QZ}7

where ¢q; and g9 are rational numbers or (plus or minus) infinity, and the morphisms
of this category are the inclusions. Note that Q = {x € Q : —00 < z < 00} is an
admissible open set of @, and that the intersection of two admissible subsets U,V is
again admissible and equal to the fiber product U xg V.

Now, for every admissible open set U, a collection {U; = U};er is in Cov(U) if
v= e Ui and the index set I is finite. In other words, we only allow finite collections
of admissible open subsets of U.

Now, the Grothendieck topology on @ given by AOSq and the finite coverings satisfy
the following axioms:

e The empty set is in AOSg. If U and V are in AOSg, then UNV is also in AOSy.

e Stability under base change: if {U;,...,U,} is in Cov(U), and V is an admissible
open subset contained in U, then {U; NV,...,U, NV} is in Cov(V).

e Local character: if {Uy,...,U,} is in Cov(U), and for every i = 1,...,n, {U; ; =
Ui}jEJi, is in COV(U,L'), then {Ui,j}iE{l,...,n},jEUi J; is in COV(U)

e The identity id : U — U is a covering, i.e. {U} € Cov(U).

Remark 2.23. Even if (Q, |+|s) is totally disconnected as a topological space, it becomes
connected with respect to the Grothendieck topology defined above: indeed, if two non-
empty admissible open sets U and V' cover Q, then their intersection can’t be empty.

Now, in order to do analysis, we define the structure presheaf Og gyt With respect
to the Grothendieck topology defined above as follows: for each admissible open subset
U, Og.Grotn(U) is the ring of functions f : Q = R such that for every point zy € U, f
can be written as a power series

[o 0]

@)=Y anlz =)

n=0
convergent on a neighborhood around x,, where the coefficients a,, are real numbers.
Now Og,Groth, becomes a sheaf with respect to the Grothendieck topology defined above,
in the sense that if a section is locally zero, then it must be globally zero, and if we have
a section defined on an admissible covering such that it agrees on the intersections, then
we can glue it to a global section. In other words, if {U; = U};=1,.__, is an admissible
covering of an admissible open set U, then the sequence

0- OQ,Groth(U) - l_[ OQ,Groth(Ui) - l_[ OQ,Groth(Ui n U])
i=1 ij=1

is exact, where the second arrow is the restriction map coming from U; < U, and the
third arrow is the difference of the two arrows coming from the restriction maps

Ui

U,nU



Remark 2.24. The structure sheaf Og grotr, With respect to the Grothendieck topol-
ogy defined above allows us to do analysis over (Q,| + |oo). In particular, we have
analytic continuation. The fact behind this is that now, for every analytic function
I € Og.Grotn(U), where U is an admissible open subset. we can find an admissible
covering U = Uy U ..., U, such that fy, is given by a power series, and since U is
connected with respect to the Grothendieck topology, the smaller subsets U; overlap
and transmit their local properties to the whole U.

2.4 Analysis and geometry over a non-archimedean field

As said by Ducros [Duc07],

“Le role majeur joué en théorie des nombres et en géométrie arithmétique
par les corps p-adiques a incité a développer sur ces derniers, autant que faire
se pouvait, une théorie analogue a celle des espaces analytiques complexes.”

2.4.1 Rigid geometry

We saw before that non-archimedean fields (K, | - | ) are totally disconnected, so we
encounter similar problems as with the rational numbers.

However, if we complete K with respect to |+ |k, it will remain totally disconnected.
Hence the first approach that we did before doesn’t seem to work.

For this section, we will assume that K is complete with respect to a non-trivial
norm | - |g, and for simplicity we will assume that it is algebraically closed (we will
drop some of these assumptions in the next section). We will follow the presentation
by Kato [And03, Appendix A].

Tate’s approach to non-archimedean analysis is to define a suitable Grothendieck
topology that makes balls connected, and this is what we are going to do now. Since
K is algebraically closed, we can identify the closed ball B*(0,1) = Ox ¢ K with the
set of maximal ideals of the ring

K{t} := {Zant” € K[[t1]: lanlx - 0},
nz0

which is now called Tate algebra. Indeed, since K is algebraically closed, any maximal
ideal in K {t} is generated by an element of the form ¢ — a, with a € Og: if a # 0, then

the Taylor expansion
1 1 t\”
=iy (4

vz0

converges if and only if 1/|a|% — 0, which occurs if and only if |a|x > 1. Hence, t — a
generates a maximal ideal if and only if |a|x < 1, i.e. if and only if a € B*(0,1).

The Tate algebra K{t}, together with the Gauss norm || f|| := max,, |a,|, forms a
Banach space. Note that this algebra is precisely the subring of formal power series
convergent on B¥(0,1). In particular, f(z) lies in K for every € B*(0,1). The
maximum modulus principle holds:

Ifll=" sup [f(z)lx = max |f(2)|k.
z€B*(0,1) z€B*(0,1)
The Tate algebra K {t}, together with the Gauss norm || f|| := max, |a,|x, forms a
K-Banach algebraG.
5Recall that a K-Banach space is a K-vector space V together with a norm || - ||y : V = Ryg such

that ||v|| = 0 if and only if v = 0, |Jv+v'||y < max{||[v|lv, [[¥'llv}, llevllv = lelk llvllv and V is complete
for the metric given by ||v —v'||y,. Moreover, if V is also an algebra, then we say that the K-Banach
space (V, || - ||y/) is a K-Banach algebra if ||vi -y vallv = ||v1]lv|lv2|]yv holds.
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Remark 2.25 ([Con08, Example 1.2.2]). If K is not algebraically closed, then Spm (K {t})
has many more points than B*(0,1), and this is actually the big difference between
rigid analytic spaces and the classical notion of K-analytic manifolds. We will not talk
about this classical approach here, but this is for example the point of view developed
by Serre in his Harvard lectures (c.f. [Ser65]).

The definition for higher dimensional Tate algebras K({t,...,t,} is similar, and
they correspond to higher dimensional balls B¥(0,1)". We denote the set of maximal
ideals of a ring R by Spm(R), the so-called mazimal spectrum. The bijection B*(0,1) =
Spm(K{t}) induces naturally the non-archimedean topology on Spm(K{t}).

Remark 2.26. Note that the Tate algebra K{t} plays the role of K[t] in algebraic
geometry, and the closed disk B*(0,1) (or more precisely, Spm(K {t}) plays the role of
the affine line Spec(K[t]). Indeed, if we forget the norm | - |, we know that we can
endow any field with the trivial norm | - |y, and the Tate algebra of (K, |- |¢) equals
K[t].

Remark 2.27. If K is not algebraically closed, we know that for any maximal ideal
x € Spm(K{t}), the quotient K{t;,...,t,}/x is a finite extension of K. Since K

is complete, this implies that we can extend uniquely | - |g (c.f. [Ser79, Chapter 2,
Proposition 3]). However, if x is just a prime ideal, there is no canonical way to extend
| - |k to K{ti,...,t,}/x. This is one of the reasons why we restrict to the maximal
spectrum.

Definition 2.28. In general, a strictly affinoid algebm7 A over K is a K-algebra iso-
morphic (as a K-algebra) to the quotient K{t,...,t,}/I for some ideal I. Since all
ideals in K{ty,...,t,} are closed (because the Tate algebra is noetherian, c.f. [FP04,
Theorem 3.2.1]), every isomorphism « : A = K{tq,...,t,}/I defines a residue norm
|- |o. Recall that the residue norm of f € K{t,,...,t,}/I is defined to be the infimum
of all the representatives, i.e.

—<n! .
A= inf ISl
f mod I=f
However, even if the | - |, are different, they are all equivalent, in the sense that they

define the same topology. Note that (A, |- |,) is a K-Banach algebra. The correspond-
ing maximal spectrum Spm(A) is called an strictly affinoid domain. Strictly affinoid
domains play the role of affine schemes in algebraic geometry.

Now, we can define the Grothendieck topology that we will use. We will follow here
the approach of Kato [And03, Appendix A].

First, we fix a strictly affinoid domain Spm(A). The category that will play the role
of admissible open sets is the category of rational subdomains, which are subspaces of
the form

R ={x € Spm(A) : [fi(z)x < |fo(2)|x, i=1,....,n},

where the f;’s are elements in A without common zeros on Spm(A). Note that R is the
strictly affinoid domain corresponding to the strictly affinoid algebra8

AR = A{Sla""sn}/(fl - 81f07"'7fn - 5nf0)7

i.e. Spm(Agr) = R. Rational subdomains satisfy the following universal property:
for any morphism of strictly affinoid domains ¢ : Spm(B) — Spm(A) such that

"In rigid analytic literature, this is called just affinoid algebra. We use here the terminology from
Berkovich spaces.

8The norm on the A-algebra A{s} is defined as || Y a,s”|| := max{||la, ||}, and the norm of the
quotient is the usual residue norm.

22



¢(Spm(B)) C R, there exists a unique K-homomorphism Ar — B such that

Spm(B) — Spm(A
\ T

commutes. One can prove that the intersection of two rational subdomains is again a
rational subdomain, and that if R, is a rational subdomain in R;, and R; a rational
subdomain of Spm(A), then R, is a rational subdomain of Spm(A) (c.f. [FP04, Lemma
4.1.3]).

Hence, rational subdomains satisfy the properties of the Grothendieck topology on
a strictly affinoid domain Spm(A) where:

e Admissible sets are rational subdomains Spm(Ag) of Spm(A).

e For a rational subdomain R C Spm(A), an admissible covering is a finite covering
Ry, ..., Ry, of rational subdomains such that R = Ule R;.

Now we fix a strictly affinoid domain X := Spm(A), and we define the structure
presheaf Ox on the admissible open sets (i.e. rational subdomains of Spm(A)) as
Ox(Spm(Ag)) := Ag. The key fact is that the structure presheaf Oy is indeed a sheaf
with respect to the Grothendieck topology:

Theorem 2.29 (Tate’s acyclicity theorem, [FP04, Theorem 4.2.2]). Let X := Spm(A)
be a strictly affinoid domain, and Ry, ..., R, rational subdomains covering X. Then,
the sequence

O—’OX nox _’ﬁox(RinRj)

i,5=1

is exact, where the last arrow is the difference of the two restriction morphisms.

Remark 2.30. In the theorem we start with a finite covering of a strictly affinoid domain
X by rational subdomains. We can always do this thanks to the Gerritzen-Grauert
theorem, c.f. [FP04, Theorem 4.10.4].

Note also that thanks to Tate’s acyclicity theorem, together with the Gerritzen-
Grauert theorem, we can extend the definition of the structure sheaf to strictly affinoid
subdomains: indeed, if U C X is a strictly affinoid subdomain, then we define Ox (U) :=
ker(l—[?:1 Ox(R;) —» H” 1O0x(R; N Ry )), where {R; — U} is an admissible cover of
U (i.e. a finite cover of rational subdomains). Note that Ox(U) = Oy (U).

Remark 2.31. This approach follows the philosophy of Grothendieck, as explained by
Berkovich [Ber90, Preface]: “According to A. Grothendieck one really does not need a
space to do geometry, all one needs is a category of sheaves on this would-be space”.
This is precisely what we do here, and what is done in étale cohomology, crystalline
cohomology and many other algebraic geometric contexts.

If A is a strictly affinoid algebra over K, then the strictly affinoid domain X =
Spm(A), together with the Grothendieck topology defined above and the structure
sheaf O, is called a strictly affinoid space (X,Ox) over K. We can now globalize this
definition:

Definition 2.32. A rigid analytic space (X,Ox) over K is a locally ringed space,
with respect to a given Grothendieck topology, locally isomorphic to a strictly affinoid.
In other words, there exists a (possibly infinite) covering {X; — X};c;, where each
(X;,Oxlx,) is (isomorphic to) a strictly affinoid space over K.

Ezample 2.33. e Any strictly affinoid space is a rigid analytic space.
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e Any open subset U of a strictly affinoid domain X = Spm(A) is a rigid analytic
space. Note that here we don’t ask the open subset to be admissible, nor strictly
affinoid. For example (c.f. [Nic08, Examples 4 and 5]), let X = Spm(K{t}) =
B*(0,1) be the closed ball, where K is still algebraically closed, and let B(0,1)
be the open ball

B(0,1)={z€ X : |t(2)|x < 1}.

Then, B(0,1) is not a strictly affinoid domain (since the function |¢(+)|x doesn’t
attain a maximum, and therefore contradicts the maximum modulus principle,
c.f. [BGR&4, p. 6.2.1.4]), but we can cover it with infinitely many strictly affinoid
domains

BO,1)= | B0,

re(0,1)n[K* |k

where each ball B*(0,r) := Spm (K{t,s}/(t —rs)) is a strictly affinoid domain.
Note that we can write B*(0,1) as the disjoint union of the two open subsets

B*(0,1) = B(0,1)u{z € B*(0,1) : [t(z)|x = 1}.

This is why we don’t want to include B(0,1) as an admissible open set in the
definition of the Grothendieck topology above (otherwise the closed ball wouldn’t
be connected with respect to the Grothendieck topology).

e We can glue two disks in order to get the rigid analytic projective space, c.f.
[And09, Appendix A, Example 2.6].

e We can also define the rigid analytification of the affine space by gluing infinitely
many closed balls of increasing radius, c.f. [Con08, Example 2.4.3]. This proce-
dure is the analog of covering a non-archimedean field (K, | - | ) with non-trivial
valuation with the disks 7" , where 7 is any non-zero element of the maximal
ideal.

Remark 2.34 ([Nic08, Section 4.6]). In general, given any scheme X of finite type over K,
we can endow the set of closed points9 X (K) with the structure of a rigid analytic space
(X8, Oxrie) over K. This rigid analytification functor preserves a lot of properties:
it commutes with fiber products, preserves immersions, and when X is proper over
K, it has the classical GAGA properties between proper K-schemes of finite type and
their rigid analytification, i.e. we have an equivalence between coherent O x-modules
and coherent O xriz-modules, cohomology groups agree, and if Y is another proper K-
scheme of finite type, then all rigid analytic morphisms X"'® — Y™ are algebraic.

Remark 2.35. As an example of a result in this setting, we have the uniformization of
elliptic curves with multiplicative reduction (done by Tate), and even uniformization of
higher genus curves with totally degenerate reduction, also known as Mumford curves,
which was obtained by Mumford [Mum?72].

Hence, we have a successful non-archimedean analytification procedure, but the
topology of X" is not satisfactory: everything works when we restrict to the Grothen-
dieck topology, so we don’t have for example a topological fundamental group or similar
features. Hence, in order to solve the original problem of analyzing non-archimedean
analogues of non-homeomorphic conjugate complex varieties, we need a different ap-
proach.

In the next section, we introduce another way to construct non-archimedean ana-
lytifications that yields nice topological spaces (they will be Hausdorff, locally path-
connected, locally contractible, etc.), due to Berkovich. This will allow us to solve our
original problem.

9Since K is algebraically closed, the set of closed points coincides with X (K).
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2.4.2 Berkovich spaces

Recall that when we try to do analysis over QQ, there are two approaches: the first one
is to add missing points by completing the field with respect to the euclidean norm (so
that we obtain the real numbers), and the second one consists in restricting the amount
of open sets that we are looking at by defining a suitable Grothendieck topology.

In the previous section, we studied how to define suitable strictly affinoid algebras
(that are the algebras of analytic functions on a disk over a non-archimedean field) and
how to define a suitable Grothendieck topology over non-archimedean fields so that
we can do analysis and obtain an analytification functor from the category of schemes
of finite type over a non-archimedean field K to the category of rigid analytic spaces.
This approach corresponds to the second approach when we studied analysis over the
rational numbers.

There is, however, another approach to do non-archimedean analysis that considers
more points in the analytification, so that we obtain a topological space which is lo-
cally connected (actually locally contractible), Hausdorff, and that has many other nice
properties. This approach is analog to the one that adds more points to the rationals
(so that we obtain the real numbers) in order to do analysis, and was introduced by
Berkovich [Ber90]. As he says in his preface:

“(...) And so they [rigid analytic spaces] are called spaces only conditionally.
Several years ago I found that p-adic analytic spaces really exist. They
are quite elegant objects possessing many topological properties of complex
analytic spaces that are sufficient, for example, for applying to them the
homotopy and singular homology notions in the usual sense.”

Note that if we start with a complete non-archimedean valued field (K, | - |x), we
can’t add more points by completing. So how did Berkovich add more points? We will
analyze here the case of the closed ball corresponding to the Tate algebra (K {t}, || - ||),
assuming for simplicity that K is algebraically closed.

In rigid analytic geometry, we consider the maximal spectrum Spm(K{¢}). Note
that every maximal ideal 2 € Spm(K{t}) defines a multiplicative seminorm |-|, on K{t}
via | f|, := | f|k, where f is the image of f under the projection K{t} - K{t}/z ~ K.
It is clearly not a norm, since every element f inside the maximal ideal # has norm
equal to zero, and it is immediate to see that it is multiplicative. If x is generated by t'b,
we also denote |f(b)| := | f|.. Note that | - |, is a bounded seminorm on (K{t},|| - I|)
, where a bounded seminorm | - | on a Banach K-algebra (A, || - ||) is a seminorm | - |
on A such that there exists a constant C' > 0 satisfying the inequality

[f] = ClIfll forall fe A.

Indeed, if f =) ., a,t”, and z is generated by ¢ —b, where |b|x < 1, then we have that

Z a,b”

vz0

|Fle =1l =

< max{la, | - [blx} < max{la, |} = [I£]]

K

Hence, every point b € B (0, 1) induces the bounded multiplicative seminorm |- (;-p)
on (K{t},|| - ||). However, there are many more bounded multiplicative seminorms on
(K{t}, || - ||): for instance, any closed ball B (¢,r) with center ¢ € B*(0,1) and radius
r < 1 defines the seminorm | - | g+(., ) given by

Z al,ty

v20

= max {|f(b)]},

|f|B+(c,r) =
B*(er) beB*(c,r)
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which is clearly a seminorm bounded by || « || = | - | g+(0,1). Indeed,

|flB(ery = maxpeps(e,m{lf(0)]}

< maXpe B*(c,r) {maXU{lauble}}
maXpe g+ (c,r) {max, {|a, |k }}
max, {|a, |}

II£1I-

In the next lemma we show that it is multiplicative.

1A

Lemma 2.36. The seminorm | « | g+(c.r) defined on K{t} is multiplicative.

Proof. We have to show that |fglp+(c.r) = | flB*(c.r) |9 B*(c,r)-

We first assume that r = 1. If the norm | - | is trivial, then the result clearly
holds, so let’s assume it isn’t, and let k := Ok [mg be the residue field. Now, let 7 :
B7(0,1) = Og{t} » Og{t}/mg{t} = k[t] be the projection. Note that |f|p+o.1) < 1
if and only if 7(f) = 0. Hence, if both f,g € B*(0,1) satisfy |f|z+(0.1) = |9]5+(0.1) = 1,
we have that w(f),7(g) # 0, and therefore 0 # w(f)n(g) = 7(fg), so |fgls+0,1) = 1.

For general f,g € K{t}, choose ¢,d € K so that'’ f = c¢f and g = dg', with
|f'|B+(0,1) = |9'|B+(0,1) = 1. In other words, |f|p+01) = |c|x and |g|g+(0,1) = |d| k-
Then,

I P
| f9lB+01) = ledf g1+ 01) = lelxldl x| f g 1B+ 0.1) = [flB+0,1)l9] B*+(0,1)-

For a general disk B (¢,7), we can write any element f € K{t} as a power expansion
with center ¢, i.e. f=) ., a,(t—c)”. Then, if f € K{t} converges in the disk B* (¢, r)
(which is equivalent to |aj,| 7" = 0), we have that

I
|l ey = max{lal | -7},

and by using the non-archimedean property we can check that the seminorm is multi-
plicative on the elements converging in the disk.

Note that for any f € K{t}, we can find ¢ € K such that f = cf' with f' convergent
on the disk B* (¢, r), and we conclude that the seminorm is multiplicative. O

Hence, in addition to the points of the rigid analytic closed points (which can be
viewed as bounded multiplicative seminorms on (K {t}, || - ||)), we can consider the set
of all bounded multiplicative seminorms of (K{t}, || - ||) to define the Berkovich closed
disk. For a general Banach algebra, this leads us to Berkovich’s definition of spectrum.

Definition 2.37. Let (A, ]| - ||) be a Banach algebra, i.e. a ring A together with a
(not necessarily multiplicative, possibly trivial) norm || - || : A = R, such that A is
complete with respect to || - ||. The Berkovich spectrum M(A) is the set of all bounded

multiplicative seminorms on A.

Remark 2.38. Note that the norm of a Banach algebra (A, || - ||) might not be multi-
plicative. Hence the existence of an element inside M (A) is not trivial (but it is true,
c.f. [Ber90, Theorem 1.2.1]).

Remark 2.39. Note that we don’t need our Banach algebra to be defined over any field.
In particular, since (Z, | « | ) is a Banach algebra, then we can consider its Berkovich
spectrum M (Z).

'%Such ¢ and d exist. Here we construct ¢: due to the maximum modulus principle, there exist
by € B¥(0,1) and v € N satisfying
lav bl = _max  fmax{]a,b” |k}
v

beB*(0,1)

Hence, c := al,obg0 satisfies |c|x = | flB+(0,1)-
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Remark 2.40. We can endow M (A) with a natural topology. Note that every (bounded
multiplicative) seminorm on A can be seen as a section of A x R,q: in other words,
if we fix a multiplicative bounded seminorm | - |,, then we get the pairs of the form
{(a,lal,) : a € A}. Hence, M(A) is contained in R*, so the topology of R induces
a topology on M(A). This topology coincides with the weakest topology so that for
every a € A, the function

a:M(A) —>R20

is continuous. An equivalent way of defining this topology is as the topology generated
by open sets of the form

{l-lc e M(A): |alo <7}, {l-|o € M(A): |al, > 7},

for some a € A and r € R,.

Ezample 2.41. Let B*(0,1) denote the Berkovich unit closed ball M(K{t}). Observe
that the notation is different from the unit closed ball inside K, denoted B*(0,1). How
does B*(0,1) := M(K{t}) look like? We have seen already that the (multiplicative
bounded) seminorms of the form | - |(;—y), for b € B*(0,1) ¢ K, belong to B*(0,1).
Hence we have an injection

B*(0,1) — B*(0,1)

b——= |l

Note also that for any | - |, € B*(0,1), we have (c.f. [BR10, Lemma 1.1]):

e For every f € K{t}, |f|. < ||f]l, where || - || is the Gauss norm defined above.
e For all f,g € K{t}, |f + gl, = max{|f|,,[gl.}, with equality if |f], # |g].-

e Forallce K, |c|, = |c|k-

Berkovich’s classification theorem (c.f. [Ber90, Example 1.4.4]) says that every
bounded seminorm on K{t} arises as the (norm corresponding to a) limit of a de-
creasing sequence of disks. In other words, for | - |, € B"(0,1), we can find a nested
sequence of disks {B*(a;,7;)}is1 inside B(0,1), where B (a;,7;) 2 B (aje1,7is1),
such that

1o = ZILIEJ |- |B+(az‘,m)'
Moreover, Berkovich classifies the points | - |, as follows. We say that | - |,:
® Is of type I, if (), B (a;,7;) = {b}. In this case, | - [, = | - |(s-p)-

A Is of type I1, if (), B* (a;, ;) = B (b, s), for some b € B*(0,1) and s rational*
with respect to | K™ | . In this case, |+ |, = | - |5+@,5)-

@ s of type IT1, if (), B* (a;,7;) = B* (b, s), for some b € B (0,1) and s irrational
with respect to | K" |x. In this case, we also have |+ |, = | |g+(.5)-

"1n other words, s € |K*|x n (0, 1].
121 other words, s ¢ |K*| k.
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o Is of type IV, if [, B (a;,r;) = @. The existence of these points is related with
the concept of spherically completeness. Most of the fields that we will use here
(as C{t} or C,) are not spherically complete, and therefore type 4 points will
exist!

Figure 3: Berkovich closed disk with 13 type I points, 8 type II points, 5 type III points
and 2 type IV points marked. Note that the set of type I points look like Figure 2.

One way to represent B (0, 1) is as an upside down tree, see Figure 4. The top point
would be the Gauss point corresponding to the Gauss norm || || = || g+(,1), which is a
type II point. Every type II point |-|g+(;, s) has many branches: a single branch going up
(in case s < 1, which corresponds to increasing radius s), and infinitely many branches
going down, in one to one correspondence with the open disks B(b, s) C Bi(f% s), which
are in one to one correspondence with the elements of the residue field K := Og [m.
These branches end up in the points of type I and IV. Points of type III lie between
points of type II.

Now, for any b € B (0, 1), if we interpret the type I point | - |(;_p) as the seminorm
| - | 3+(b.0) corresponding to the degenerate ball B*(b,0), we have a map

v :[0,1] —— B*(0,1)

s | |-
Geometrically, this corresponds to taking the valuation corresponding to a disk with

center b and radius growing until it’s the whole disk. One can show that this map is
continuous (the intuitive idea behind this is that two norms | - |, = | - | p+(a, r,) and
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|1y = |*|B*(ay,r) are close to each other if there exists a ball B*(d,r") containing both
B*(ay,r1) and B*(as,75) such that |r' — 71| and |r' — 75| are small. See also Remark
2.42 below).

In general, if | - |, = lim; | * |+(a,r,), then the map v : [limr;, 1] » B*(0,1),
defined in the obvious way, is continuous and gives a path between | - |, and the Gauss
point. In particular, B*(0,1) is path-connected! See also [Ber90, Theorem 3.2.1] for a
generalization of this fact.

Remark 2.42 ([BR10, §1.4]). The closed ball B*(0,1) has the structure of a tree. One
way to see it is as follows: first, we define a metric d on B*(0,1) via

d(| - |z 1+ 1y) :== 2diam(| - |, v | - |)) = diam(] - |) — diam(] - |,),
where

e The points | - [, and | - |, are given by | - |, = lim; | - |g+(q,,r,) and | - |, =

hIIlJ | . |B+(aj,7'j);

e The point | - |, v | - |, is the least upper bound inside B*(0,1) given by the
partial order defined as

| -1z < |-, if and only if | f|, < |f|, for all f € K{T};
e The function diam is defined as

diam (lim| . |B*(a7:,m)) := limr,.

Then, M(K{T?}) viewed as a set, together with the distance d, forms a metric space
(M(K{T}),d) which is an R-tree (c.f. [BR10, Lemma 1.12]) and whose topology is
finer than the Berkovich topology on M(K{T}). However, the Berkovich topology on
M(K{T?}) coincides with the weak topology on the R-tree (M (K{T}),d), which is the
topology with sub-basis of open sets given by the connected components of M(K{T'})\
|- |z, for all ||, € M(K{T}). See [BR10, Appendix B] for more on R-trees and [BR10,
Proposition 1.13] for a proof of this fact.
For our path ~ defined above, the distance is given by

d(] - 1B+ (s1)s | * | B*(s5)) 1= 2max{sy, so} — 51 — 59 = |59 — 51].

131¢ ||z =1+ 1B*(a1,r1) and | |y = | * | B*(as,rs) are points of type I, II or IIL, then |- |, v |- |, is just
the seminorm corresponding to smallest disk B* (a,r) containing both B* (a1, ) and B*(as,rs).
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Figure 4: The Berkovich closed ball B*(0,1). It has the structure of a tree.

One can also show that type I points are dense in B7(0,1): the idea behind this is
that an open ball inside B*(0,1) contains all the type I points below any point of type
IT or III of the disk, in the sense that if | - |g+(; 5) belongs the open ball, then every
point | - |(s_y), with b' € B (b, s), belongs to the ball.

Finally, note that the Berkovich closed disk is also contractible, compact and Haus-
dorff.

For more details and proofs about these facts, we refer the reader to the first Chapter
of Baker and Rumely’s monograph [BR10].

Remark 2.43. A lot of the properties of the Berkovich closed ball are shared by an
arbitrary Berkovich spectrum. In particular, if (A, ]| - ||) is a non-zero Banach alge-
bra, then M(A) is non-empty, compact, Hausdorff, locally path connected and locally
contractible.

Moreover, if A is also a K-algebra and the valuation on K is non-trivial, we always
have an inclusion Spm(A) < M (A) and the set Spm(A) is dense inside M (A). If more-
over A doesn’t have non-trivial idempotent elements, then M (A) is path-connected.

Ezample 2.44. The Berkovich spectrum of (Z,]| « |s), denoted M(Z), looks like the
broom of Example 2.15. Indeed, all the norms given by Ostrowski’s Theorem belong
to M(Z), since they are bounded seminorms. Moreover, for every prime p and every
n € Z,
o ._ | ¢ |0 if p divides n,
Inly _tirglnlp 1 else.

defines a bounded seminorm on Z, so it belongs to M(Z). One sees that there are no
other bounded seminorms, and that the topology defined in M(Z) looks like Figure
1 (one has be careful when taking open sets around | - |9, because any neighborhood
around | - |o contains almost all hairs of the broom, c.f. [Ber90, Example 1.4.1]; at any
other point, M(Z) looks locally as a real interval).

Remark 2.45. Since Berkovich spaces are locally path-connected, they have a topological
fundamental group as defined in algebraic topology. We will look into this topological
fundamental group later.

Remark 2.46. Given a Banach algebra (A, || - ||), we have seen how to associate a
Berkovich space. In order to globalize this construction, we need first to define a
structure sheaf. However, this turns out to be complicated because our building blocks,
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the Berkovich spectrum of Banach algebras, are compact and Hausdorff. In particular,
since compact subsets of Hausdorff spaces are closed, our building blocks are generally
not open subsets (unlike in rigid geometry, where our building blocks were closed and
simultaneously open). For example, the Banach algebra

K{2t} := {f = Zaytu 2o ay g - 1/27 - 0}
v20

defines the Berkovich closed ball of radius 1/2, denoted B*(0,1/2) := M(K{2t}). The

inclusion K{t} < K{2t} induces the strict inclusion B*(0,1/2) ¢ B*(0,1). Since

B¥(0,1/2) is a compact subset of B*(0,1), it is closed, and since B*(0,1) is (path-)

connected, we see that B7(0,1/2) can’t be an open subset.

Hence, defining the structure sheaf Ops4) on M(A) is a bit tricky because we want
to define a Grothendieck topology where the “admissible opens” are actually not open
subsets (they are called affinoid™* domains, which are a generalization of the strictly
affinoid domains considered in rigid analytic geometry). Once we do this, given an open
subset U C M(A), Ona)(U) is defined as a limit of the algebras Ay corresponding to
the affinoid domains V' contained in U. The algebra Ops4)(U) doesn’t have in general
a norm (because we might have unbounded functions). For more details, see [Ber90,
Section 2.3] or [BR10, Appendix C.4].

For the moment, we content ourselves here by saying that given a Banach algebra
(A, || - I|), there is a way to define a structure sheaf Ops4y on M(A) which gives the
expected ring on affinoid domains.

Remark 2.47. Now that we have defined a structure sheaf, one is tempted to define
global Berkovich spaces as locally ringed spaces (X, Ox) locally isomorphic (with re-
spect to a suitable Grothendieck topology) to (M(A),Opray), as we did with rigid
spaces. This is actually what Berkovich did in [Ber90]. However, it turns out that
the spaces obtained by this procedure don’t give all the spaces that we would like to
consider (in particular, the analytification functor defined in [Ber90] goes from the cat-
egory of algebraic K-schemes to the category of Berkovich spaces, but this definition
doesn’t extend to a functor from more general rigid analytic spaces over K to Berkovich
spaces).

Berkovich developed in [Ber93, §1] a second approach for defining (Berkovich) an-
alytic spaces via atlases, nets, and morphisms defined up to an equivalence of atlases.
This second approach gives analytification functors from the categories of algebraic va-
rieties and from rigid analytic spaces over K to the category of (Berkovich) analytic
spaces (sometimes also called non-archimedean analytic spaces). In the present work,
we will focus just on the topology of the Berkovich analytification of algebraic schemes,
so we will not need all this machinery. We refer the interested reader to [Con08, Section
5], which is a nice survey giving a feeling of what it is occuring, and [Ber93, §1] for the
details.

2.4.3 Berkovich analytification of algebraic varieties

We fix for this section a complete non-archimedean field (K, | - |x) (the valuation may
be trivial). Our aim is to define an analytification functor such that for every scheme
X locally of finite type over K, we get a Berkovich analytic space X™ together with a
continuous map ker : X** — X. Let’s look first at the affine line Ay := Spec(K[t]).
Recall that the Berkovich analytification of K{t} is the closed unit disk B*(0,1).
When K is algebraically closed, type I points of B¥(0,1) are in one to one correspon-
dence with the closed points z = (t — a) of A} such that |a|x < 1. In general, for
r > 0, the analytification of K{r™ 't} gives us the closed disk B*(0, ) or radius r, which

MNot necessarily strict.

31



as a set is the set of multiplicative seminorms on K{r 't} bounded by || - ||,, which is
defined as

-1l K{r 't} — Ry
f = Zu thV — ”f”r ‘= maXzGB*(O,r){lf(x)lK}'

Type 1 points of B*(0,7) are'® in one to one correspondence with the closed points
z = (t —a) of A) such that |a| < r. Note that for every r > 0, K[t] is a subset of
K{r~'t}, and we can restrict the seminorms of B*(0,7) to K[t]. All these seminorms
restricted to K are just | + | k.

Now, if we want to get the Berkovich space associated to the affine line, the natural
candidate is to consider the union of all Berkovich closed disks of increasing radius, i.e.

A =B (0,m),
r>0

which gives us a cover (actually the atlas, in the language of [Ber93]) of the Berkovich

affine line by affinoid domains'®. Note that as a set, A}fm is just the set of all multi-
plicative seminorms | - |, on K[t] extending the given norm | - | on K (without any
bounded condition). The kernel map is defined as

1l,an

ker : Ay — Spec(K[t])
| - o — ker(| - |.) = {f € K[t]: |f|. =0}
The topology of A}(’an is the topology induced from the closed balls B*(0,7). An
equivalent way to describe this topology (c.f. [Nicl6, Section 2]) is as the coarsest

topology making ker continuous and such that for every Zariski open U C A" and
regular function f € OAkan(U), the map

ev(u,f) : ker_l(U) —_ REO

is continuous. In particular, this gives us an equivalent way of thinking (c.f. [Nic16])
on the elements of A};an and on the kernel map: indeed, points would be pairs (p, | - |4)

where p is a (not necessarily closed) point of Spec(K[t]) and | - |, is a multiplicative
norm on the residue field x(p) of Spec(K[t]) at p extending the norm |« | . With this
description, the kernel map is the forgetful map sending (p,| - |;) to p. In particular,

we see that if K is algebraically closed, then ker ' (p) is:
e A unique type I point if p is a closed point;
e The set of all points of type II, III and IV if p is the generic point.

Remark 2.48. Note that there is some parallelism between the procedure of adding
generic points in algebraic geometry (to go from old school varieties to schemes) and
the procedure of adding points in non-archimedean geometry (to go from rigid analytic
geometry to Berkovich geometry). However, when we add points in algebraic geome-
try, the topology of the scheme becomes more complicated, while in non-archimedean
geometry, when we add points the resulting topology is easier.

5Here we are still assuming K algebraically closed.
16T e rigid analytic affine line is defined analogously.
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For the case of affine K-schemes X = Spec(A), where A is a finitely generated alge-
bra over K, the Berkovich analytification X™" consists of the multiplicative seminorms
on A extending the given norm | - | on K (c.f. [Ber90, Remark 3.4.2]). Note that
again, as in the case of Al’an, we don’t have to consider any bounded condition because
of a similar reason: when considering the Berkovich analytification of a Banach algebra,
we have to consider just bounded seminorms, but when we consider the analytification
functor of an affine scheme, we first cover our affine scheme with Banach algebras, and
then we glue the Berkovich analytification of all these Banach algebras, so at the end
of the day we lose the boundedness condition. The topology and the kernel map are
defined analogously.

In general, for any scheme X locally of finite type over K, we can glue the Berkovich
analytifications of an affine cover of X in order to obtain X*". We can also glue the
kernel maps. Since we will not describe the glueing process, a better approach might
be to think on X" as the pairs (p, | - |) such that p is a point of X, and | - |, a norm
on k(p) extending | - | k-

Remark 2.49 ([Ber90, Corollary 3.4.13 and section 3.5]). If X is a proper K-scheme, then
our Berkovich analytification functor X — X™" gives us the typical GAGA properties.
For example, it induces an equivalence of categories between the category of finite
schemes over X and the category of finite'” Berkovich K. -analytic spaces over X",

Remark 2.50. Under the assumptions of Remark 2.43, the inclusion Spm(A) < M(A)
extends to an inclusion X% — X"

Remark 2.51. Berkovich spaces have a lot of applications in other areas of mathe-
matics, including Arithmetic Geometry. The original motivation of Berkovich was to
understand some phenomena in p-adic spectral theory, as he explains in his funny article
[Ber08]. However, there are many more applications, including (but not only):

e A conjecture by Carayol and Drinfeld about the local Langlands program [Boy99;
Har97; HT01; Hau05].

e A conjecture by Deligne about vanishing cycles [Ber94].

e Harmonic analysis over the p-adic numbers and Arakelov geometry [BR10; Thu05].
e Tropical geometry [BPR16].

e Birational geometry and Minimal Model Program [Nic16].

e Motivic Zeta functions [NX16].

e Mirror symmetry [KS06].

¢ Compactification of Bruhat-Tits buildings [RTW15].

e Theory of p-adic period mappings [And03].

Remark 2.52. The topology of Berkovich spaces is in general difficult to understand.
Their homotopy type, however, is easier to understand because the Berkovich analyti-
fication of K-varieties have a deformation retraction onto a simplicial complex, called
the skeleton of the Berkovich space, which is much simpler.

Y This is defined in [Ber93, Pages 27-28], and it means that locally, with respect to the Grothendieck
topology that we use but that we will not define, we have that M(B) — M(A) is finite, i.e. that there
is an admissible epimorphism of Banach algebras A™ —» B for some natural number n.
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2.5 Skeleton of Berkovich spaces

From now on, we will restrict our attention to the Berkovich analytification of algebraic
varieties (which are, in the terminology of [Ber93], good Berkovich spaces).

Let K be a complete non-archimedean field with non-trivial norm, let O be its ring
of integers and let X be a connected and smooth K-variety of finite type of dimension
n. Assume that X is defined over a discretely valued subfield of K, so that we can also
assume that K is discretely valued.

In order to define the skeleton'® of X it is easier to assume that we have an
sncd-model of X i.e. a regular scheme X of finite type over O such that the special
fiber X}, is a divisor with strict normal crossings (such a model always exists for curves,
and for arbitrary dimension if the characteristic of the residue field & is zero).

Then, the skeleton Sk(X') of X™ associated to the sncd-model X is defined as
the dual intersection compleazc19 of the special fiber X),. This complex has a canonical
embedding into X", see Remark 2.55.

Definition 2.53. Recall that the dual intersection complex20 Sk(X) of an sncd-model
X of X with special fiber X, = ) .., N;E; is constructed as follows:

For any non-empty subset J C I, we denote E; := [ jes Ej Then, the complex is
given by:

e The faces: for all d € N, we establish a bijection

Connected components of E,
where |J| =d +1

T — (C..

{Simplices of dimension d} «— {

e The gluing: given 7,7 simplices of Sk(X'), we establish

TC7',<=>CT'CC7..

Remark 2.54. Note that vertices the of Sk(XX') correspond to irreducible components of
X. Those points are called divisorial points in [Nicl6]. In terms of valuations, if F
is an ireducible component of X with multiplicity IV, it corresponds to the Berkovich
point (&, |+ |ng), where |+ |y g is the norm defined on the function field K(X) of X cor-
responding to the valuation giving the order of vanishing on the irreducible component
E,ie. oyp(f):= % ordg f (c.f. [Nicl6, Section 2.3] for more details).

In general, there is such a description for all points in Sk(X’) (c.f. [Nic16, Paragraph
2.4.4)).

Remark 2.55. The idea behind this definition comes from the reduction morphism
spy t X = A,

which extends the reduction morphism of rigid geometry that maps X "8 ¢5 the set of
closed points of the special fiber, denoted X}, to all the scheme theoretic points of the

special fiber A};:
sp

Xan X 1 Xk

|

rig sPx | xrig o
xrie P IXTE o

18Here we are following [Nic16] with the extra assumption of properness, but there are similar
approaches. Berkovich uses polystable models in [Ber99], which are roughly speaking étale locally
semistable models; Gubler et al. use strictly semistable pairs in [GRW16]; Nicaise and Mustatd define
the essential skeleton in [MN15].

90One can define a metric on Sk(X), but we will only consider the skeleton just as a topological
space.

201t is usually denoted as |A(X} )|, but since it is homeomorphic to the skeleton Sk(X') we omit that
notation, c.f. [Nicl6, Proposition 2.4.6].
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If X is a smooth proper curve, the inverse image of smooth closed points under sp y is an
open ball (in the sense of Berkovich), and the inverse image of a node is an open annulus
(also in the sense of Berkovich). The rigid analytic version of the reduction morphism
is continuous because of the non-archimedean topology (in other words: rigid analytic
open balls and annuli are also closed), while the Berkovich version is anticontinuous.
The idea behind this fact is that given a rational function f € K(X) regular around a
point z € X™, then

|f(2)|ia) < 1 &= flz) € ey = flspa(z)) =0,

and we see that an open condition in the Berkovich space corresponds to a closed
condition in the special fiber.

The inverse image of the generic point corresponding to an irreducible component of
the special fiber is the boundary (in the Berkovich sense) of the open ball corresponding
to any smooth closed point of that component, and it coincides with the corresponding
point in Sk(X’) described in the previous remark.

Theorem 2.56. Let X be a proper smooth irreducible K-variety and X a proper sncd-
model of X. Then, there exists a continuous map

H:X"x[0,1] » X*

such that H(-,0) is the identity, H(-,1) maps onto Sk(X), and H(x,t) = x for every
point x of Sk(X) and every t € [0,1]. In particular, Sk(X) is a strong deformation
retract of X".

Moreover, if U C X is a dense open subset, then the restriction of H to U induces
a deformation retraction of U"" onto Sk(X).

Remark 2.57. For similar results and proofs, see [Ber99, Theorem 5.2], [NX16, p. 3.1.3]
and [Nicl6]. In the literature, there is still no complete proof of this, but what we will
use in this PhD can be found in the above references. We refer to [MN15, (3.1.5)] for
more information about the continuity of this map.

Remark 2.58. If we start with a non-proper smooth variety U, then if we have a smooth
compactification X and an sncd-model X, we can study the skeleton of its analytifi-
cation. Note that due to the above Theorem, the analytification of different smooth
compactifications have the same homotopy type.

On Sections 4 and 5, we will start from a smooth hypersurface U inside a torus G,,,,
and we will study its skeleton via tropicalizations.

Ezample 2.59. Let K = C((t)), so that O = C[[t]]. Consider the (n — 1)-dimensional
hypersurface X in Py = Proj (C((¢))[zo,...,2,]) given by the equation

n
+1
f= Zx? +t-xzgexy,.
i=0

Note that the same equation defines a flat proper model X over C[[¢]]. Since the special
fiber X is smooth, then X and X are also smooth.

Lemma 2.60. Let f : X - Spec(Og) be a morphism between schemes, with f locally
of finite presentation, proper and flat, and Ok a discrete valuation ring. If the special
fiber X}, is smooth, then the generic fiber is also smooth.

Proof. Let s be the closed point of Spec(Ox ). By [Stacks, Lemma 01V9] (or [EGA 1V,
Théoréme 17.5.1]), we use local finite presentation and smoothness of the special fiber to
conclude that f is smooth on an open U C X containing the special fiber X}, = f_l(s).

Since f is proper, we conclude that U = X, so in particular the generic fiber is
smooth. Indeed, X' \ U is closed; if it were non-empty, then the properness of f implies
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that f(X\U) c Spec(Of) is closed and non-empty, and since O is a discrete valuation
ring, f(X \ U) has to be equal to s or Spec(Og). In both cases s € f(X \ U), which
implies that X \ U meets f~'(s), hence a contradiction. O

Therefore, in our example both X and X are smooth and proper, so in particular X
is an sncd-model. We can now define the skeleton Sk(X) of X™" with respect to X,
which is the dual intersection complex of the special fiber X, i.e. a single point. In
particular, the analytification X™" of the hypersurface given by the equation

n
n+1
f= le +t-xzgexy,.
i=0

is contractible.

Ezample 2.61. Given an elliptic curve E over K, the dual intersection graph of an sncd-
model can be either contractible (if it has good reduction or additive bad reduction)
or homotopy equivalent to a circle (if it has multiplicative bad reduction). Therefore,
the homotopy type of the Berkovich analytification of an elliptic curve depends on its
reduction.

Remark 2.62 ([BPR13]). If X is a smooth proper curve of genus at least 2 defined over a
complete algebraically closed non-archimedean field, the semi-stable reduction theorem
guarantees that X has a model A where the irreducible components of the special
fiber are smooth and proper, and each irreducible component intersects transversely
the other irreducible components in at most two points. Since we can view a Berkovich
open annulus as a real open interval with Berkovich open balls attached to its rational
(i.e. type II) points (c.f. [BPR13, Section 2]), we can picture X™" as follows: first, one
constructs the dual intersection graph of this model, and then one adds Berkovich balls
on the type II points.

Remark 2.63 ([BPR16, Section 2.4]). For smooth connected curves X that are not
complete, there is an extended notion of skeletons that includes the missing points.
Let X be its smooth compactification, and denote D the set of missing points D :=
X \ X. Now, we have to choose a semistable model X of X such that the points of D
reduce to different smooth points of the special fiber. Then, we consider inside X™" the
unique minimal closed connected subset Sk(X’, D) which contains the skeleton Sk(X)
and whose closure in X*" contains D. In other words, we consider inside X" the
minimal closed connected set containing the skeleton Sk(X') and the points D, and we
intersect this set with X*".

As in the theorem above, we get a deformation retraction H such that H(-, 1) maps
onto Sk(X, D).

36



3 Non-homeomorphic conjugate Berkovich spaces

3.1 Example of the elliptic curve

Let (K, |- |x) be a complete and algebraically closed non-archimedean field with non-
trivial absolute value, and fix a valuation vg : K = QuU {oo}. For simplicity, we assume
that the characteristic of the residue field is different from 2 or 3. Let ¢ € K be an
element of valuation vg(t) = 1. Throughout this section, we fix a compatible set of
roots of £, so that we can talk of t"* for any rational number m.

Given an elliptic curve E/K, it is known that its reduction depends only on the
valuation of the j-invariant j(E) (c.f. for example [Liu02, Proposition 10.2.33]). Hence,
if |[j(E)|x <1, then E" is contractible; otherwise, E*" is homotopic to a circle.

Following an idea of Antoine Chambert-Loir, one can try to take an elliptic curve
E and an automorphism o of K such that [j(E)|x <1 < |j(E,)|k, where E, denotes
the fiber product

E, —— 3 F

| l

Spec K —Z— Spec K.

Remark 3.1. If o is continuous with respect to the non-archimedean topology, then the
absolute value of the j-invariant will not change. This is the case for example if K = C,
and o fixes Q,. Hence, we will have to look to abstract field automorphisms of K.

Now, when we work over a field of characteristic different from 2 or 3, we can always
write an elliptic curve in this form (c.f. [Sil09, Section III.1]):

E:y2=a:3+ax+b,

and its j-invariant is given by

(B) = 172820
SN S f o

Let’s construct an automorphism o € Aut(K') that changes this j-invariant.
For simplicity, let’s assume that a = ¢t. Then,
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413 + 272

3
[t"]

()| = 1728 S U S
7B ‘ PR

Now, let b be any element in K transcendental over F'(¢), where F' is the prime field*!

1—UK(b))

of K. By multiplying with an appropriate power of ¢ (for instance, with ¢ we

can assume that |b| g = |t| k. In this way,

3 3
_ |t"| _ |t"|
|4t3+27b2|K |b2|K

l7(E) ke = [tlx <1,

so its Berkovich analytification E“" will be contractible.
Since K is algebraically closed, the element —%t?’ +b* has two square roots. We

choose one and denote it by \/—%t?’ + b*. Let 0}, be an automorphism of K mapping b

to \/—%ts + b*. Such an automorphism exists.

Lemma 3.2. Let Cy and Cy be algebraically closed fields with same prime subfield F,
and assume that they both have the same transcendence degree (possibly infinite) over
F. Then, they are isomorphic.

2INote that t might be inside F'. This is the case if K = C,, and t = p, for example.
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Moreover, if (z1,...,2,) (resp. (y1,.--,Yn)) is an n-tuple of algebraically indepen-
dent elements of Cy (resp. of C3), then the morphism between the fields

F(xlvﬂ'axn) - F(ylvvyn)
mapping x; to y; can be extended to an isomorphism
o:C; — Cs.

Proof. Let X be a transcendental basis of C; over F', that is, a minimal set of elements
inside C such that any element of C is algebraic over the field generated by F' and the
elements of X, denoted F(X). Such a set exists by the axiom of choice. The cardinality
of X is the transcendence degree of (.
Let Y be a transcendental basis of C'5. Since C; and C5 have the same transcendental
degree, there exists a bijection
s: X —Y

which induces a field isomorphism
F(X)— F(Y).
Now, we want to extend this morphism to

J:Cl—>02.

Since C; /F(X) is an algebraic extension and Cy/F(Y') is an algebraic closure, we can
extend the morphism (c.f. [Mill8, Theorem 6.8])

F(X) — F(Y)

| |

Cy ---%-2

Finally, since C] is also algebraically closed, we get that o is indeed an isomorphism of
fields (c.f. [Mil18, Theorem 6.8]).

Note that if we have two n-tuples (xi,...,2,) and (y;,...,v,) of algebraically
independent elements of C; and Cy respectively, then we can extend these tuples to
transcendental basis X and Y of C'; and (5 respectively, and we can construct a bijection

s: X —Y

such that s(x;) = y; for i = 1,...,n. The above procedure yields the extension that we
were looking for. O

.22
In our case, we extend the morphism

4 3 4
F(t,b) —»F(t,\/—ﬁt +b )

to an automorphism oy, of K. Then, if we pull back this automorphism to F, we get an
elliptic curve Ej,

E, —— E

l l

Spec K RN Spec K

221f ¢ belongs to the prime field F', then we are just extending the morphism F(b) —» F (‘/— %t:; + b4).
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with equation

[ 4
E,, :y2=x3+tm+ —ﬁt3+b4,

_ 1] Pl 1
|4t3+27(—%t3+b4)|;{ bk Itk

and we have that

17(Eo, )¢

In particular, its Berkovich analytification Eg," is not contractible, so this conjugation
gives us two non-homeomorphic conjugate Berkovich spaces.

3.2 More examples

We have just constructed a non-continuous automorphism o € Autpgy K that makes
E™ and EZ" non-homeomorphic. But we can ask a converse question: given a non-
continuous automorphism ¢ € Aut K, is there an elliptic curve E such that both E*"
and E5" are non-homeomorphic?

In order to find such an elliptic curve, we first need to make some auxiliary compu-
tations.

Lemma 3.3. Let 0 € Aut K be a non-continuous automorphism such that™ |u| =
|o(u)|x for some non-zero uw € K with absolute value |u|x strictly smaller than 1.
Then,

1. There exists a transcendental element pu € K such that
vk (1) < vi(o(p)).
2. There exist A\, u € K algebraically independent such that

v (A) = v (p) < vg (A + p)

and
v (0(N)) = vr(o(A + p)) < vk (a(p)).

Proof. Let 0 € Aut K be a non-continuous automorphism. This means that there exists
i € K such that vg(u) # v (o(n)). We can assume that vy (p) < v (o(p)), because
if we have the other inequality, we can just consider /fl.

If p is transcendental over its residue field, then we obtain the first part of the
lemma. Else, we pick any transcendental number w. If vg(w) # vg(o(w)) we are done
(either w or w ™ will give us the result), and if we have an equality, then p := pw works:

v () = vk (p) + vk (w)
<vg(o(p) + vk (o(w)) = vk (o(y)).

Now, for the second part, we first pick pu as above, and let m be the arithmetic mean

k) + k(o)

2

which satisfies v () < m < vig(o(p)). Let s € K be an element such that sV (W) =y

In particular, 1 = v (s) = v (o(s)). Without loss of generality, we can assume that s
and p are algebraically independent: Indeed, if s and p are not algebraic independent,

B K= C,, then we always have this assumption, since o(p) = p for every field automorphism o.
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pick an element w € K algebraically independent of s and p. If |w|x = |o(w)|k, then

we redefine s as an element such that s"<() = w; else, w or w ™ will play the role of p.

. . m
Now, we choose an appropriate root of s so that we can consider s, and we define

Then, since
we have that

and also that

Hence, we get the result.

O

Now, we fix a non-continuous automorphism o € Aut K such that vg(o(u)) =
v (u) for some non-zero u of valuation strictly positive, and A, u algebraic independent
numbers satisfying Lemma 3.3. Let E be the elliptic curve given by

E:y’=2"+az+b, (1)

where a is a cubic root of A[4 and b a square root of 1 /27.
Then we have that

_ |al ey
|4a3+27b2|K |)\+,U|K ’

17 (E) | xe
so that E™ is not contractible, and

o @l ek
i = @ + 2700~ 1o + ol

=1,

so that E5" is contractible. In particular, we obtain the following proposition.

Proposition 3.4. Let K be a complete and algebraically closed non-archimedean field
with non-trivial valuation and residue field of characteristic different from 2 or 3. Let
o € Aut K be a non-continuous automorphism such that |u|g = |o(u)|x for some non-
zero u € K with absolute value |u| i strictly smaller than 1. Then, the elliptic curve E
of equation (1) satisfies that E*" and E,;" are non-homeomorphic.

Corollary 3.5. Let p 2 5 be a prime number, and o € AutgC, be a non-continuous
automorphism. Then, the elliptic curve E of equation (1) satisfies that E*" and E;"
are non-homeomorphic.

Remark 3.6. These examples already show how different this problem is in the non-
archimedean setting, compared with the complex setting. In complex geometry, the
analytification of all conjugate projective smooth curves are homeomorphic as topolog-
ical spaces (Riemann surfaces are, as topological spaces, classified by their genus, which
is invariant under conjugation). In non-archimedean geometry, elliptic curves already
give us examples of non-homeomorphic conjugate Berkovich spaces.
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3.3 Existence of a contractible conjugate

In this subsection, due to Johannes Nicaise, we show the existence of non-homeomorphic
examples in arbitrary dimension.

Proposition 3.7. Let K be the field of Puiseuzr series. Fvery connected smooth and
proper variety X over K is conjugate to a smooth and proper variety Y whose Berkovich
analytification is contractible.

Proof. Spread out X over a complex algebra A of finite type, take a general complex
arc in the smooth locus of Spec(A), and let Y be the base change to a completed
algebraic closure of the generic point of the arc. Then the Berkovich analytification of
Y is contractible. Since both X and Y come from the same variety over the function

field of A, they are conjugate.
O

Remark 3.8. For curves, we can do the following: Take any smooth and proper family
of curves over a complex connected smooth curve C. For every place z of C' (including
the closed points of its smooth compactification) we can consider the base change C,
of C to a completed algebraic closure of the fraction field of the completed local ring
at x. All these curves are conjugate (because they come from the same curve over the
function field of C') but the homotopy type of the Berkovich analytification depends on
the reduction at x. So every example where the dual graph of an sncd-model at some
point x has a loop will give a pair of conjugate curves where one is contractible and the
other is not.

Remark 3.9. In the rest of the thesis, we will focus in producing explicit examples of
conjugate curves of higher genus with non-homeomorphic analytifications. For this, we
will use tropical geometry.
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4 Tropicalizing towards explicit examples of curves
of higher genus

Our previous explicit examples were constructed because we could use the j-invariant
of an elliptic curve, which relates its equation with the homotopy type of its Berkovich
analytification. In order to look into higher genus curves, we need a different approach,
since we don’t have an analogue of the j-invariant.

We fix for this section an algebraically closed field K which is complete with respect
to a nontrivial nonarchimedean valuation v : K* — R. We choose the approach of
looking into the tropicalization24 of a curve. Roughly speaking, the tropicalization of
a curve (or more generally a quasi-projective variety) which is inside a torus G,,, (for
example, we can first embed in P}, and then intersect our variety with a choice of
G,, = P%) consists in the valuation of its points: we obviously lose a lot of information
in this process, but if we consider the limit of all (extended) tropicalizations, we can
recover the Berkovich analytification.

Theorem 4.1 ([Pay09, Theorem 1.1]). Let X be an affine variety over K. The
Berkovich analytification X" is homeomorphic to the inverse limit in the category of
topological spaces of all extended tropicalizations m, : X" — (R U 00)", where ¢ is an
affine embedding

X o A"ty (A, fu(y),
and m, is given by

ﬂ—L(I) = (_ 1Og |f1|a;7 sy T log |fn|L)7

. . an
where | — |, denotes as usual the seminorm associated to v € X*".

The advantage of using tropical geometry is that it is very convenient for compu-
tations. But Payne’s theorem needs to consider all the tropicalizations, which makes
the computations again difficult. However, if we restrict to curves and are only inter-
ested in the skeleton of the analytification, there exists a faithful tropicalization, i.e. a
tropicalization that induces a homeomorphism25 on a finite subgraph I' containing the
skeleton of X*" (c.f. [BPR16, Paragraph 5.15.2]).

Theorem 4.2 ([BPR16, Theorem 5.20]). Let X be a nonsingular curve over K. If T’
is any finite subgraph of X", then there is a closed immersion X = Ya of X into a
quasiprojective toric variety Ya such that Trop : X" — Ng(A) faithfully represents T.
In particular, there exists a faithful tropicalization.

Remark 4.3. In Theorem 4.2 we are using the standard notation for toric geometry, that
is, N := Hom(M,R) is the dual lattice of a free abelian group of rank n, A a fan in Np,
Ng(A) is the partial compactification of Ng with respect to A (c.f. [Rab12, Definition
3.6]) and Y the associated toric variety. If for example we start with M = Z" and
A = {0}, then Ng(A) = Ng and Y = G'.. If we start with M = Z° and A equal to the
first quadrant, then Ng(A) = (R2, U oo)é (c.f. [Rabl2, Example 3.7]) and YA = A® as
in Theorem 4.1. Check [Rab12], [BPR13] and [BPR16] for further details with tropical
flavor.

Remark 4.4. Theorem 4.2 has also a higher dimensional version, c.f. [GRW16, Theorem
9.5].

In the next subsection, we give all the definitions while we revisit our previous
example of non-homeomorphic conjugate elliptic curves in the setting of tropicalizations.
Afterwards, we use these tools to construct examples for higher genus curves.

e Tropical geometry is named in honor of the Brazilian computer scientist Imre Simon, who lived in
Sao Paolo, near the Tropic of Capricorn, c.f. [Kat17] or [MS15, p. 1].

250ne can define a metric on Berkovich curves and on tropicalizations, and a faithful tropicalization
also induces an isometry on the finite subgraph containing the skeleton. In this thesis we will not use
this metric, so we don’t define it and refer instead the interested reader to [BPR16].
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4.1 Tropicalizations

Let (K, | |x) be a non-archimedean field with non-trivial valuation. For convenience,
let’s assume that K is also algebraically closed. In tropical geometry it is more con-
venient to use valuations and valued groups (rather than norms). Let val be a valua-
tion of our field K normalized so that there exists an element of valuation 1, and let
Fya = val(K \ {0}) C R denote the valuation group. We denote by k the residue field
of K, and we choose an element ¢ of valuation 1 and a compatible collection {tl/ "} 0
of roots of ¢.

The tropicalization map in the closed points of G, x = Spec(K[z3', ..., 2%']) is
defined as

Gnx — R"
(1,...,2,) —— (val(z),...,val(x,))

Let X - GZ%K be a closed subscheme. Then, the tropicalization of X < GZ%K,
denoted Trop(X), is defined as the closure in R" of the image of the closed points of X
under the previous map, that is,

Trop(X) := {(val(z),...,val(x,)) € R : (xq,...,7,) € X},

that is, the closure™ of the valuation of the coordinates of the (closed) points of X.
We can also describe Trop(X) from its Berkovich analytification X*". Indeed, if
X o Gnm’ x 1s a closed scheme as before, the tropicalization map is defined as

nan

| : |ac — (_log(lxllz)v~‘~7_10g(|$n|m))'

Restricting this map to X" C ana; gives us again Trop(X) (c.f. [Gubl3, Propo-
sition 3.8]). We see that the tropicalization map is continuous. Moreover, if n = 2,
X c (G,Qn is a smooth curve, X is its smooth compactification and D := X \ X, then
for any sncd-model X of X such that the points of D reduce to different smooth points
of the special fiber, the tropicalization map factors through the retraction onto the
extended skeleton Sk(X, D) (c.f. [BPR16, Section 2.4] and [BPR13, Section 4]):

Trop
X)

X*" —— Trop(

”l /
Trop |sk

We present here a third way to describe the tropicalization, in this case of a hyper-
surface X = V(f) inside G, x, which corresponds to a morphism K[z, .. . 2t -

K[zt ..., 22"/ (f) for some Laurent polynomial f(z1,...,2,) = Y ez Cu"

The tropicalization of this polynomial is defined as the piecewise linear function

Sk(

trop(f) : R" - R : w - min{val(c,) + w-u: u € Z" and ¢, # 0},

where w - u denotes the scalar product between (the so-called weight vector) w and (the
exponent of the monomial c,z") w.

26We don’t need to take the closure if T'yq1 = R. This is the case if for example K = (C(tR), the field
of Hahn series. In the examples that we will see, we usually have I';,; = Q, for example K = C,, or
K = C{t}.

43



Given a weight vector w € R", we denote W := trop(f)(w). Then, Trop(X) is
exactly the set of w € R" where the minimum W is achieved at least twice, i.e. there
are two different u, u' € Z" such that

W = val(c,) +w-u = val(cy) +w-u'.

See [MS15, Theorem 3.1.3] for a proof that both definitions coincide.

Example 4.5. Let K = C, and consider the elliptic curve E inside an’ K given by
g(z,y) =y* — 2 — 2% = p. Then, for w = (w;,ws) € R?, we have that

i val(c,) + (wq,ws) - u
(0,0) 1
(2,0) 2’Ujl
(3,0) 3w,
(072) 2w2

and therefore

1 if wy,wy = 1/2,

2wy if wy € [0,1/2] and wy = wy,

3w, if wy; £0and wy 2 (3/2)wy,

2wy if wy = 0 and wy < (3/2)w;, or if wy € [0,1/2] and w; = w,

trop(g)(wy, wy) =

Hence, Trop(E) is given by the set of (w;,ws) where trop(g)(w;,ws) is achieved at
least twice, that is,

o If w; =1/2 and wy = 1/2, then u = (0,0) and (2,0) achieve the minimum, which
is 1. This is the green ray of Figure 5.

o If wy =1/2 and wy = 1/2, then u = (0,0) and (0, 2) achieve the minimum, which
is 1. This is the blue ray of Figure 5.

e If w; = wy and they are in the interval [0,1/2], then u = (2,0) and (0,2) achieve
the minimum, which is 2w;. This is the black segment of Figure 5.

e If w; =0 and wy = 0, then u = (2,0) and (3,0) achieve the minimum, which is 0.
This is the orange ray of Figure 5.

o If w; <0 and wy = (3/2)wy, then u = (3,0) and (0,2) achieve the minimum,
which is 3w;. This is the red ray of Figure 5.

Note that this is much easier to compute than the image of E*" under the tropical-
ization corresponding to the given embedding E C an.

It is convenient to introduce here the concept of initial form. The initial form of f
with respect to the weight w is the Laurent polynomial with coefficients in the residue
field given by

in, (f) := Z eyt~ vallen) " e k[mfl,...,x; 1,

wival(c, )+w-u=W

where ¢, t~¥2!(¢u) ig just the reduction of c,t~ ") in the residue field k.
Ezample 4.6. Let K = C,, k = Oc,[mc, and g(z,y) = v —2® -2 —p. We
fix the weight w = (1/4,1/4). Then, the set of u € N° where ¢, # 0 is equal to
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Figure 5: Trop(F).

{(0,0),(2,0),(3,0),(0,2)}, so W is the minimal value of val(c,) + (1/4,1/4) - u, where
u € {(0,0),(2,0),(3,0),(0,2)}. We have

> val(c,) + (1/4,1/4) - u
- 1+0=1

b 0+1/4-2=1/2
> 0+1/4-3=3/4
b 0+1/4-2=1/2

so we get W = 1/2, and therefore

. B S
(1a10(9) =) syt jp Cat

—val(cu)xu

- Zue{(Q,O),(O,Z)} Cu
= —2? +y% € k[2*', y*'].

Then, our last definition of tropicalization reads as follows: Trop(X) is the set of
w € R" such that in,(f) is not a monomial.

In practice, we will also use the Newton polytope for studying tropicalizations.
Recall that for a Laurent polynomial f =) c,z" € K[zi',...,22"] defining an hyper-
surface X inside G, -, the Newton polytope Newt(f) is defined as the convex hull of
the exponents appearing in the monomial, i.e.

Newt(f) = conv(u € Z" : ¢, #0) CR".

Moreover, we subdivide this polytope using the valuation of K, i.e. we consider the
n+1

convex hull inside R""" U (0,...,0, 00) of the set

n+1

{(u,val(c,)) €R" ¢ ¢, #0} U (0,...,0,00),

and then we project onto the first n coordinates (the projection lies inside Newt(f)).
This subdivision of Newt(f) is called the regular subdivision.

Ezample 4.7. Let K = C{t}, and f(z,y) = 2° + 4* + tzy + t*. Then we construct the
regular subdivision of Newt(f) as follows.
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First, we consider the set
{(u,val(c,)) € R*™" ¢, # 0} = {(3,0,0),(0,3,0),(1,1,1),(0,0,4)}.

Now, we take the convex hull of this set union the vertical direction (0,0, 00). In Figure
6 we drew this on the left, without the vertical faces.

Then, we project to the horizontal plane the edges of the convex hull, and we obtain
the regular subdivision of Newt(f), which is on the right of Figure 6.

(3,0,0)

Figure 6: On the left, convex hull induced by the valuation of K; on the right, the
corresponding regular subdivision of Newt( f).

Finally, we present the last way to compute a tropicalization. For any Laurent
polynomial f € K[2t',...,2%"], it turns out that Trop(V (f)) is the (n — 1)-skeleton
of the polyhedral complex dual to the regular subdivision of Newt(f) (c.f. [MS15,

Proposition 3.1.6]). This gives us an easy way to sketch tropicalizations, see Figure 7.

Figure 7: Trop(f), in red, is dual to Newt(f), in black. One needs to rotate the red
picture 180° to get the usual tropicalization.

Moreover, this approach with the regular subdivision of the Newton polytope allows
us to define multiplicities of the maximal cells of the tropicalization. Indeed, any max-
imal cell ¢ on Trop(f), which has dimension n — 1, is dual to an edge e, of Newt(f).
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Every edge e, of Newt(f) has a lattice length m(c), which is precisely the number of
lattice points at e, minus one. Then, the multiplicity of o at Trop(f) is precisely m(co)
(c.f. [MS15, p. 112], and also [MS15, Definition 3.4.3 and Lemma 3.4.6] for an algebraic
definition).

Example 4.8. In Figure 7, the rays have multiplicity 3 and the segments have multiplicity
1.

Remark 4.9. Tropical hypersurfaces satisfy a balancing condition with respect to the
multiplicity defined above (c.f. [MS15, Proposition 3.3.2]). For planar curves, the
balancing condition says that for any point w € Trop(f), then

oestar(w)

where star(w) is the set of 1 dimensional faces intersecting an arbitrarily small ball
around w, and e, is the vector lying on the 1 dimensional vector space parallel to o,
with the same orientation as the ray or segment starting27 on w, such that e, lies in the
lattice Z°. Note that such a vector exists because the Trop(f) is rational with respect
to the valuation group I',,; of our base field.

With the notation of Example 4.5, then we have that around w = (0,0), the set
star(w) consists of the black segment, and the orange and red rays. Looking at the
Newton polygon, we see that the multiplicities are 2 for the segment, and 1 for the ray.
Then, we check that indeed

2(1,1) + (0,1) + (=2, -3) = 0.

4.2 Faithful and homotopic tropicalizations

We are interested in the homotopy type of the Berkovich analytification of an hypersur-
face X C G,,. Assume that we have a smooth compactification X of X and a proper
sned-model X of X such that the points D := X \ X reduce to different smooth points
of the special fiber (for curves, we can always achieve this), and let Sk(X’, D) denote the
corresponding skeleton. Then, we say that the embedding X c G, induces a faithful
tropicalization (c.f. [CHW14]) if

’Iirop |Sk(X) : Xan e Rn

restricted to Sk(X) is injective and the map Trop |gk(x) has a continuous section (in
particular, the tropicalization map induces a homeomorphism between Sk(X') and its
image). If X is a planar curve, we also require that the homeomorphism between Sk(X’)
and its image are isometric with respect to metrics that we have not defined here (c.f.
[BPR16)).

Note that faithful tropicalizations induce in particular an homotopy equivalence
between X™" and Trop(X) (c.f. [BPR13, Theorem 5.15]. Indeed, since the tropical-
ization is faithful, no loop of the skeleton of X*" is contracted or created (there is an
homeomorphism between the skeleton and its image in the tropicalization), and since
the curve is planar, the rays will not intersect creating extra loops in Trop(X) (for an
example of a tropicalization of the projective line inside P? where a loop appears, see
[Spe07, Example 6.5]).

Since we are only interested in the homotopy type, we will consider homotopic
tropicalizations.

Definition 4.10. We say that the embedding X < G,, induces a homotopic tropical-
ization if X™" is homotopy equivalent to Trop(X).

2"If w is in the interior of the edge, we have two copies of o at opposite directions, so that the
balancing condition trivially holds.
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Remark 4.11. Faithful tropicalizations of hypersurfaces are homotopic, but the converse
is not true (we could contract the length of a segment, see for a concrete example [CM16,
Example 4.9]).

Remark 4.12. If X c G,,, is not an hypersurface, then faithful tropicalizations may fail
to be homotopic. This is because there can be extra intersections of unbounded rays
that we wouldn’t like to consider. For hypersurfaces, the description via the regular
subdivision of the Newton polytope ensures that these phenomena can’t happen.

Remark 4.13. Assuming that the residue characteristic of K is not 2 or 3, then any
elliptic curve given in Weierstrass form is of the form (c.f. [Sil09, Section III.1]):

E:y2=x3+ax+b,

so the regular subdivision of its Newton polygon is of one of these forms:

Figure 8: Possible Newton polygons of an elliptic curve written in Weierstrass form.

In particular, we see that there can’t be a loop in the tropicalization, so if our elliptic
curve has multiplicative bad reduction, the embedding corresponding to the Weierstrass
equation can’t induce an homotopic tropicalization.

Remark 4.14. Let f € K[27',...,2%"] define a hypersurface X ¢ G7,. We say that
the regular subdivision of Newt(f) is unimodular if all the n-dimensional cells are n-
simplices with the same minimal volume 1/(n!). Note that this implies that all the
interior points of Newt(f) occur as vertices of these cells.

For example, if X is a planar curve, the regular subdivision of Newt( f) is unimodular
if its regular subdivision consists only on triangles of area 1/2.

One can show that if Newt(f) is unimodular, then X C G,, is smooth [MS15,
Proposition 4.5.1].

4.3 Faithful tropicalization of an elliptic curve

In this section we follow [BPR16] and [Hell19] to construct a faithful tropicalization of
an elliptic curve. For convenience, we work over C,, with p > 5.

If we start with an elliptic curve given in Weierstrass form with multiplicative bad
reduction, we’ve seen that the corresponding tropicalization can’t be faithful.

Recall (c.f. [Sil09, Proposition 111.3.1]) that the Weierstrass equation of an elliptic
curve (E,O) is obtained from the chosen point O (which is the zero element in the
group law) by taking a basis of rational functions {1, z} of the linear system £(2(0)),
and extending it to a basis {1,z,y} of £(3(0)). Since the divisor 3(O) has degree 3
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and an elliptic curve has genus 1, it is very ample%; therefore the rational map E —
P?: P [2(P) : y(P) : 1] is a closed immersion. Now, the vector space £(6(0)) has
dimension 6 by Riemann-Roch (c.f. [Har77, Remark IV.1.3.2 and Example 1V.1.3.3]),
so there has to be a linear combination of the seven elements {1,x,y,x2,xy,y2,x3},
which gives the Weierstrass equation.

Now, in order to obtain a new embedding that determines a faithful tropicalization
of our elliptic curve, we have to construct rational functions in a different way. This
is achieved in [BPR16] (the construction is also studied more explicitly in [Hell9]) in
the following way: first, we fix a 3-torsion point P € FE, which exists since we are
working over an algebraically closed field. Let @ := P + P (which is also a 3-torsion
point). Then, we take the rational functions given by the divisors 2(P) — (Q) — (O) and
2(Q) - (P) - (0), which are principal® and therefore correspond to rational functions
(f) and (g) respectively. These rational functions define a closed immersion E — P :
P [f(P):g(P):1]because {1, f, g} is a basis of L((P) +(Q) +(0O)), and the divisor
D = (P) + (Q) + (O) is very ample. Now the rational functions {1, fg, f*g, f¢°} lie in
L(3(0)), which is 3-dimensional (Riemann-Roch), and therefore there exists a linear
combination af2g + bfg2 + ¢fg = d. Moreover, as shown in [Hell9], we can choose the
coefficients a, b and ¢ to have valuation 0 and simultaneously d with strictly positive
valuation. This gives a new equation for the elliptic curve with the following Newton
polygon.

Figure 9: Newton polygon of the new embedding of the elliptic curve. This gives a
faithful tropicalization.

Since the Newton polytope has a unimodular triangulation, we conclude that this
new embedding of our elliptic curve gives a faithful tropicalization: this is shown in
[BPR16, Corollary 5.28] by using the Poincaré-Lelong formula, and without this ma-
chinery (by making more explicit computations) in [Hell9]. In particular, it is an
homotopic tropicalization.

If we had started with E,, the elliptic curve with multiplicative bad reduction con-
jugate of the elliptic curve F from equation 1 of the previous section, we could apply
the inverse automorphism o' to obtain an elliptic curve with good reduction (namely
E). At the level of the tropicalizations, we would see how the cycle disappears.

This method of constructing faithful tropicalizations, however, relies in the group
structure of the elliptic curve, so we can’t generalize it straightforward (c.f. [Hell6] for
more in this direction). Is there another way of obtaining faithful tropicalizations that
we can also use for curves of higher genus?

#83ce [Har77, Corollary TV.3.2].
29 A divisor Y a;(P;) on an elliptic curve is principal if and only if Y a; = 0 and ) a;P; = O, where
the second sum is the sum from the group law, c.f. [Sil09, Theorem X.3.8].
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4.4 Faithful tropicalizations via modifications

Here we will still work over C,,, with p at least 5, and we denote by I its residue field.
Let E be the elliptic curve given by the Weierstrass equation y2 =22 +27 + p. Reducing
modulo p, we see that it has multiplicative bad reduction. In Figure 10 we can see that
its tropicalization contains no cycle (c.f. Example 4.6 for an explicit construction of the
tropicalization).

(1/2, 1/2)

(0, 0)

Figure 10: Tropicalization of g(z,y) = y° — 2° — z° — p.

Note that the segment from (0,0) to (1/2,1/2) has multiplicity 2.

In [CM16], they explain how to repair tropicalizations locally, in the sense of slightly
changing the tropicalization in order to get more information from the skeleton. They
do this by using modifications. Instead of explaining this machinery, we will see how
does this construction look like with a concrete example.

Theorem 4.15 ([CM16, Theorem 3.4]). Let e be a vertical bounded edge of Trop(g) of
multiplicity at least 2 whose endpoints have valency 3. If the discriminant of e does not
vanish at in.(g), then the tropicalization map is not faithful at e and we can unfold this
edge with a linear re-embedding I, y of the curve determined by a tropical modification.
The new curve Trop(1, ) contains a cycle that maps to e via Txy .

Here g(x,y) = y> —2° — 2° — p, e is the only bounded edge of Trop(g) and in,(g) is
defined to be the initial degeneration of g at any interior point w inside the edge e; in
our case (see Example 4.6),

—val(c,)

. . 2 2
in, (g) = ingu/a10)(9) = Y plede, ot =y - 2® € Fla.y).

u:val(c, )+(1/4,1/4)u
is minimal

The discriminant of e is given by cil — 4cp 2¢a,0, 50 when we evaluate it on in.(g) we
get 02 —4-1-(=1) = 4 # 0. Considering the modification along f(z,y) = x + v, the
ideal I, s := (g,z = f) C C,[x,y, 2] defines a curve in A%p which is the intersection of
E x A(lcp with the plane z —x —y = 0.

Its tropicalization defines a curve Trop([/, ;) in the tropical 3-space that contains

a cycle mapping to e via the projection mxy. We can see this cycle by projecting
Trop(l, ;) via mzy. Indeed, this projection is the tropical curve Trop(g) coming from

50



the equation

~

2 3 2 3 2 2 3 2
9(zy)=g(z=-y,y) =y —(2-y) = (2~y) —=p=—2"+327y =32y +y — 2" +2zy—p,

and we see in Figure 11 that it has a cycle.

(172, 1/2)

N\

(2/3, 1/3)

(0,0)

Figure 11: Tropicalization of §(z,y) = —2° + 32°y — 32¢° + y° — 2% + 22y — p.

Remark 4.16. The method of modifications has not been fully developed yet. If we
had a way to construct a modification giving faithful tropicalizations in general, we
could apply those methods to construct a lot of explicit examples of non-homeomorphic
conjugate Berkovich curves. However, we don’t have this at our disposal.

Remark 4.17. It would also be interesting to study the method of modifications for
obtaining homotopic tropicalizations, since that might be easier than obtaining faithful
tropicalizations. In particular, that would help in the study of whether a given smooth
curve is Mumford or not.
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5 Smooth planar curves of higher genus

In this section we construct explicit examples of conjugate curves ofhigher genus over
the field of Puiseux series C{t} such that their Berkovich analytifications are not homeo-
morphic. For the figures, we use the software Polymake [GJ00]. Let C be the projective
curve defined by

flz,y,2) = a0z4 +a' + y4 + t6$y22 + t2x2yz + txy2z,

where ag is a transcendental element over Q(¢) with valuation equal to 0. Since the spe-
cial fiber is smooth®®, we conclude (c.f. Lemma 2.60) that the generic fiber is smooth.
Hence, C = V(f) has good reduction and its Berkovich analytification C™" is con-
tractible.

Now let as; be a transcendental element over Q(¢) of valuation equal to 21, and let
o be an automorphism of C{t} sending ay to as; and fixing ¢, which exists because of
Lemma 3.2. The conjugate curve C, is defined by the equation

folz,y,2) = a21z4 +at+ y4 + t6a:y22 + t2x2yz + ta:sz.

This curve doesn’t have good reduction. Figure 12 shows us the Newton polytope of

o

Figure 12: Newton polytope of f,(z,y,2) = asi 2" + 2* + y* + tPwyz® + 2%z + tay’ .

Since the resultant of f, has valuation equal to 100, we conclude that is non-zero
and therefore C, is smooth.

We see that the three interior points occur, so we conclude (c.f. [BPR16, Proof of
Corollary 5.28, (ii)]) that the Berkovich analytification Cy" has 3 cycles: its topological
fundamental group is the free group on 3 letters. In particular, C, and C are conjugate
curves of genus 3 with non-homeomorphic Berkovich analytification.

39The partial derivatives are 4:(:3,4y3 and 4aoz3, so they only vanish at the point (0,0,0). Another
way to see this is because the resultant, up to a sign, will be in this case —18014398509481984%9,
which is different from zero because ag has valuation 0. In Appendix A.1 we include an algorithm
written in SAGE that computes the discriminant of plane curves, and that works reasonably well until
degree 6.
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5.1 Candidates of arbitrary degree

We want to construct candidates of arbitrary degree. We will generalize the idea of the
above example to build higher degree examples.

The way we do this is the following: firstly we construct a Newton polytope with
where all the interior vertices are vertices of the subdivision, such that when we change
the valuation of the coefficient corresponding to the vertex (0, 0), all the interior points
disappear. The Newton polytope with the interior vertices occurring will correspond to
f», and the one without interior vertices, to f.

Secondly, we construct polynomials f and f, that define smooth curves and give
the desired Newton polytopes. To get the desired Newton polytope is not very difficult,
and to prove smoothness we use discriminants. However, we expect them to be smooth
because the expected genus of f, when looking at the Newton polytope is precisely
(n—1)(n —2)/2, the number of interior points; if we had a singularity, we would have
smaller genus.

Let’s describe now how we obtained the example above of degree 4, and afterwards
we explain how to obtain a polynomial of arbitrary degree such that the regular sub-
division of its Newton polytope has all interior points. In the appendix, we include an
algorithm for SAGE that implements this procedure.

For degree 4, the Newton polytope is inside the triangle (0,0), (0,4) and (4,0).
The interior points of this polytope are (1,1), (1,2) and (2,1). Since we want our
automorphism o to change the valuation of the coefficient corresponding to the point
(0,0) (which corresponds to the monomial 24), it is more convenient to construct the
valuations from the “north-east” direction to the “south-west”, which is where the
vertex (0,0) is. Hence, we start with (0, 4), (4,0) and (1, 2), and we give them valuation
vo4 =0, v40 =0 and vy » = 1. The next point in the diagonal is (2,1), and we want it
to be over the affine plane generated by (0,4,0), (4,0,0) and (1,2,1), where the last
coordinate of (4,7, v; ;) is the valuation assigned to the coefficient corresponding to the
point (i,7). Since (2,1,1) lies in the plane, we choose vy := 2, which is the smallest
integer strictly bigger than 1 (there is no strict need to choose an integer, we do it just
to get later coefficients in C[t]).

The diagonal where i + j = 3 is done, and now we go to the next diagonal, i.e. where
i+ j = 2. The only interior point of the Newton polytope lying in this diagonal is (1,1).
In order to compute the valuation vy ;, we have to check 4 planes: the first one, which
was generated by the points (4,0,0),(0,4,0) and (1,2, 1), together with the three new
planes given by the 3-tuples

(4,0
(4,0
(0,4

A computation shows us that we want v; ; bigger than

o O O

b

max{v : (1,1,v) belongs to one of the planes defined above} = max{2,4,5,1},

so we choose v; ; = 6. We are done with the interior points, so now we can define f to
be o
fl@,y,2) =apz* +a +y* + Z £ gty 4
1<i,j<2
i+j<3

4 4 4 2 2 2 2
=agz +tx +y +ixy z+twyz+t6xyz.

A computation with the discriminant shows us that f is indeed smooth. In order to
define the automorphism o of C{t}, we need to choose first the valuation of o(ay) so
that f, is a Mumford curve. In other words, we want that the point (0,0, val(c(ag)))
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lies above all the planes defined by the 3-tuples

(4,0,0),(0,4,0), (1,2,1)
(4,0,0),(0,4,0),(2,1,2)
(4,0,0),(1,2,1),(2,1,2)
(0,4,0),(1,2,1),(2,1,2)
(4,0,0),(0,4,0),(1,1,6)
(4,0,0),(1,2,1),(1,1,6)
(4,0,0),(2,1,2),(1,1,6)
(0,4,0),(1,2,1),(1,1,6)
(0,4,0),(2,1,2),(1,1,6)
(1,2,1),(2,1,2),(1,1,6)

Another computation shows us that val(c(ag)) has to be bigger than
max{4,8,12,0,12,44/3,16,20,40/3, 15},

so we look for val(c(ag)) = 21. Hence we have to choose an element aq; of valuation
21 and transcendental over Q(t), and o an automorphism fixing ¢ and mapping ag to
as1. In this way, the conjugate curve

folwy,z) =anz' +a'+y'+ Y aly T

1<i,5<2
z+7<3

4 4 4 2 2 2
=a9z +tx +y +itxy z+tmyz+t6xyz

will have the desired regular subdivision on its Newton polytope. Again, a computation
with the discriminant shows us that f, is smooth. This is how we constructed the
example of degree 4.

For general degree n bigger than 4, the Newton polytope is inside the triangle
(0,0), (0,n) and (n,0). The interior points of this polytope are {(i,7) : 1 <4,j,<
n—2 and i+j < n—1}. We give to the vertices (0,n), (n,0) and (1, n—2) the valuations
0, 0 and 1 respectively. As before, we go on in the diagonal where i + j = n — 1, and for
every such point (i, j), we give the valuation v; ; so that the point (7,7,v; ;) lies above
all the previous (non-vertical) affine planes generated by the the 3-tuples of points
( g ,v# i1). We keep on going diagonal after diagonal, and on each diagonal, from
the left to the right (i.e. increasing i) until we are done with all the interior points of
the Newton polytope. Finally, we construct the valuation v, ¢ associated to the vertex
(0,0), which allows us to choose an element g of valuation vy o and transcendental
over Q(t), and an automorphism o sending ag to a,, , and fixing t. This automorphism
o will transform our curve C' defined by f, which has good 1reductiomgl7 to its conjugate
C, that we expect to be Mumford (it is needed to check whether C, is smooth).

In the Appendix A.2 we describe an algorithm written in SAGE that constructs
these valuations for any degree n. For example, when n = 5, we get the following
curves:

5
fey.2) = a2
+2° + y5 + t28xyz3 + t12x2yz2 + tga:y2z'2 + t4a:3yz + t2x2y22 + txygz
5
fa(xay7z) = G972 4
+2° 4+ y5 + tzsxyzg + t12x2y22 + tgxy222 + acgyz + t2m2y22 + txygz.
The discriminant of f (up to the sign) equals

700

—171052300930023193359375¢ .= 35527136788005009295’)55621337890625&56 ,

3Tt has good reduction because modulo ¢, our equation is agz" + " + y".
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and a computation shows us that the discriminant of f, (which is the same, just write
ag7 instead of ag) has valuation 595, so in particular is different from 0 (hence f, is
smooth). Figure 13 shows the Newton polytope of f.

Figure 13: Newton polytope of f,(z,y,2) = agrz” + 2° + y° + t*°xy2” + t"2%y2” +
9° 22 43 2 272
txy 2"+t xyz+t 2y z+taey z.

Hence, we have constructed a curve C of genus 10 such that C*" and C%" are non-
homeomorphic.
For degree 6, the polynomial f is given by
aOZG +25 4 y6‘ + t818xyz4 + t274x2y23 + t147:vy223 + t32x3y22 + t23x2y2z2
+ t15xy322 + t7x4yz + t4x3y22 + t2x2y32 + txy4z,

and we want to define o so that ag maps to asgz7. In order to check smoothness, we have
to compute the discriminant. This computation starts getting complicated because it
involves a big determinant. It would be easier to check that the discriminant is non-zero,
but for the moment we just stick to the algorithm that we have.

Figure 14 shows the Newton polytope of f,.

Remark 5.1. In order to overcome the computational difficulties of the discriminant,
one can construct in a similar way polynomials f and f, such that we have another way
to prove smoothness. For example, if f has good reduction and f, defines a polynomial
whose Newton polygon has a unimodular triangulation, then we can conclude that
V(f,) n G2, is smooth.

5.2 Smooth non-homeomorphic planar curves of arbitrary de-
gree

Using the ideas of the previous section, we can construct an explicit smooth curve of
arbitrary degree with good reduction such that its conjugate is a Mumford curve.
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Figrure 14: Newton polytope of {o(x,é/, zg = ayprz" + 2° +§6 + tglgacgf + 2% ¢
4 xy223 + t32x3yz2 + t23x2y2z +t Ty 2+ t7x4yz +thr yzz + % y3z + ta:y4z.

For degree n = 4, consider

fla,y,2)= o'

+tydz + txy3

+t3sz2 + t4xy2,z + t7x2y2

+t14y23 + t24xy22 + t46x2yz + t127:r3y

+a024 +1707 2% 4 t4141x2yz2 + 11388 4 b0x4.
where by and aq are algebraically independent elements of C{¢} that are transcenden-
tal over Q(t) and have valuation 0. As before, we immediately see that it has good
reduction.

Now, let ¢ be an automorphism of C{t} fixing ¢ and sending ag to a;gs and by
to b4go99, where argy has valuation 704 and bygo09 has valuation 49229, and both are
algebraically independent elements transcendental over Q(¢). Then, the conjugate of f
with respect to o is

folw,y,2) = o'
+ty3z + ta:y3
+7§3y2212 + t4xy2z + t7ac2y2
+tl4yz3 + t24xyz2 + t46x2yz + t127x3y
+a704z4 +17970° ¢ t414lz2y22 + 1293, 4 b49229:c4.

Note that setting z = 1, we have that Newt(f,) is unimodular®®, c.f. Figure 15.

Hence, by [MS15, Proposition 4.5.1], we can conclude that f, is smooth inside the
torus an.

Now, let C' C G2, be the curve defined by f(z,y,1), and C, C G2, its conjugate.
We conclude, since both are smooth, that their Berkovich analytification are not home-
omorphic.

In Appendix A.3 we give a script written in SAGE that constructs the equation of
a smooth curve such that its Berkovich analytification is not not homeomorphic to the
Berkovich analytification of its conjugate. Here we list the examples of Mumford curves

32This can be checked using Pick’s theorem.
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Figure 15: Newton polytope of f,(z,y, 2).

of degree 5 and 6 (the conjugate, which has good reduction, is defined by sending a,,
and b, to ag and by resp.):

fz,y) =

y5

+1Ey4 + txy4

+t3y3 + t4:vy3 + t7x2y3

+t14y2 " t24a:y2 " t46$2y2 + t127:c3y2

704 2072 4141 2 12353 3 49229 4
+t T y+tT Tyttt Ty +t Ty+t Ty

2352074 7050014 2 28199937 3 112783186 4
+asggroo + 1 rx+t x +t o+t x

5
+bs563854166T

Figure 16: Newton polytope of the Mumford curve of degree 5 f(x,y).
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fley)= o
+ty5 + txy5
+t3y4 + t4xy4 + t7m2y4
+tl4y3 + t24a:y3 + t46x2y3 + t127m3y3

704 2 | ,2072 2 | 4141 2 2 12353 3 2 | 49229 4 2
+t Ty + i Yy +1 Yy +t T +i T

588722 2352074 7050014 2 28199937 3

+t y+t Ty +t Ty+t T
+t

225495869320 2

112783186 4 563854166 5
Ty+t T

901983466923 3
+1 +1 x

+a11275852602 1
3607933846990 4 , ,18039528235267 5 6
+1 x +t x° + b108236492712487T -

56376319402
xT

Figure 17: Newton polytope of the Mumford curve of degree 6 f(z,y).

Remark 5.2. The advantage of this second approach is that we don’t have to check
smoothness, so we actually get explicit examples of non-homeomorphic conjugate Berko-
vich curves of arbitrary degree. The disadvantage is that the polynomials have many
more terms and the valuations appearing are much bigger.
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A Appendix: Programs to make computations in
SAGE

A.1 Program that computes the discriminant

The following script written in SAGE implements the algorithm from [CLO05, Chapter
3, Section 4, Exercise 15]. That algorithm gives the resultant of three homogeneous
polynomials Fy, F; and Fy in C[z,y, 2] of degree greater or equal than 2. In the
program I wrote, the input is a homogeneous polynomial f of degree greater or equal
than 3, with coefficients in Q[ag,t] and variables z, y¥ and 2. Here we see ag as an
element of C{t} of valuation 0. The partial derivatives play the role of the F}’s, and the
output is the discriminant of f up to the sign.

# We define the ring R
__tmp__=var("x,y,z,t,a_0")

S = PolynomialRing(QQbar, 't')
R = PolynomialRing(S, 'x,y,z')

f = input()
g(x,y,z,t,a_0) = £

g = glx,y,z,1,1)
degree = R(g).degree()

FO, F1, F2 = derivative(f,x), derivative(f,y), derivative(f,z)
Fis = [FO,F1,F2]
# We compute the z"(at1), y~(b+1), z"(ct1) such that a+b+c= 1-1
1 = degree - 1
List = [(a,b,c) for a in range(l) for b in range(l) for ¢ in range(l) if a+b+c == 1-1]
ListOfDivisors = [(x**(List[i][0]+1),y**(List[i][1]1+1), z**(List[i][2]+1))
for i in range(len(List))]
# We perform all the divisions to get the summands of the P_i's
POQOROs,P1Q1R1s,P2Q2R2s = [1,[1,[]
PiQiRis = [POQOROs,P1Q1R1s,P2Q2R2s]
for n in range(len(PiQiRis)):
auxlist = []
for j in range(len(ListOfDivisors)):
# .iterator() gives the monomials of a symbolic polynomial
monomialsFn = list(Fis[n].iterator())
# The 3 below is the number of wartables, here z,Yy,2z
for k in range(3):
auxlist2 = [(ListOfDivisors[j], ListOfDivisors[j][k])]
for i in range(len(monomialsFn)):
if monomialsFn[i] '= O and
monomialsFn[i] .maxima_methods() .remainder (List0fDivisors[j][k]) == 0:
auxlist2.append(monomialsFn[i]/List0fDivisors[j] [k])
monomialsFn[i] = 0
# This is to add a 0 (seen as a momomial) in case nmo monomial is divided
# by ListOfDivisors([j][k]:
if len(auxlist2) ==
auxlist2.append(0)
auxlist.append(auxlist2)
for i in range(0,len(auxlist),3):
Pn,Qn,Rn = 0,0,0
#The -1's and +1's below are because in auxlist[i], the first element is the
# tuple (exzponents, wvariable)
for k in range(len(auxlist[i])-1):
Pn = Pn + auxlist[i] [k+1]
for k in range(len(auxlist[i+1])-1):
Qn = Qn + auxlist[i+1] [k+1]
for k in range(len(auxlist[i+2])-1):
Rn = Rn + auxlist[i+2] [k+1]
#Here we add the exponents to keep track of things, and the polynomials Pn, @n,
# Rn with respect to these exponents:
PiQiRis[n] .append((auxlist[i] [0] [0], [Pn, Qun, Rnl))
# Now we compute the Fabc's
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Fabc = []
for i in range(len(List)):

rowl = []
row2 = []
row3 = []

for j in range(3):
rowl.append (POQOROs [1] [1] [j]1)
row2.append (P1Q1R1s [1] [1] [j])
row3.append (P2Q2R2s [1] [1] [j]1)
M = matrix([rowl, row2, row3])
Fabc.append(M.determinant () . expand())
# The following MonDeg2lMinus2 is a list of all monomials of degree 21-2.
# They will be our wvariables afterwards
List2 = [(a,b,c) for a in range(2*1-2+1) for b in range(2*1-2+1) for c
in range(2*1-2+1) if atb+c == 2x1-2]
MonDeg21Minus2 = [x**(List2[i] [0])*y**(List2[i] [1])* z**x(List2[i]l[2]) for i
in range(len(List2))]
# Now we define the big system of equations (4.11)
# We want the variables to be the monomials of degree 21-2
List3 = [(a,b,c) for a in range(1-2+1) for b in range(1-2+1) for c
in range(l-2+1) if a+b+c == 1-2]
x_alphas = [x**List3[i][0] * y**List3[i][1] * z*xList3[i][2] for i in range(len(List3))]
system_4_11 = []
for i in Fabc:
system_4_11.append(i == 0)
for i in range(len(List3)):
system_4_11.append((x_alphas[i] * FO).expand() == 0)
system_4_11.append((x_alphas[i] * F1).expand() == 0)
system_4_11.append((x_alphas[i] * F2).expand() == 0)
# Now we define the matrixz C_l of coefficients of the system 4.11, where the variables
# are the monomials of deg 21-2
C_1 = matrix([[equ.lhs().coefficient(v) for v in MonDeg2lMinus2] for equ in system_4_11])
#Define an auzxiliary ring for computing the determinant of C_l faster, so that entries
# are polynomials and not symbolic expressions
#See https://ask.sagemath.org/question/8021/large-symbolic-determinant/
AuxRing = PolynomialRing(QQ, ['x', 'y', 'z', 't', 'a_0'l)
C_lpoly = []
for i in range(len(C_1[0])):
C_lpoly.append(C_1[i].1list())
for j in range(len(C_1[0])):
C_1lpoly[il[j] = AuxRing(C_1[il[j]1)
C_lpoly = matrix([[j for j in C_lpoly[il] for i in range(len(C_1[0]))]1)
# The resultant (up to a sign) %s the determinant of C_l, and we are done
resultant = C_lpoly.determinant()
print resultant

A.2 Program that defines the curve that we expect to be Mum-
ford

The following script written in SAGE implements the algorithm described in section
5.1. The input is the degree, and the output is the polynomial that will give the desired
Newton polytope. Note that we have to substitute the coefficient of z" either by ag if
we want f, or by a,, where v is valuations[-1], if we want a Mumford curve.

# We want to construct polynomials that will define Mumford curves.
# The idea is to construct them recursively

n = input('Give the degree of the curve that you want to construct (at least 3): ')

# Now we define the (homogeneous) monomials that will appear.
# The coefficients are still not defined

_tmp__=var("x,y,z,t")

# These are the exponents whose coeff will have valuation 0
exponents = [(n,0,0),(0,n,0)]
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# These are the exzponents that will be interior points of the Newton polytope.
# I do it in the correct order so that at the end the coefficients have increasing
## valuation when going to the vertez (0,0).

for k in range(l,n-1,1):
for i in range(l, n-k,1):
exponents.append(( i, n-i-k, k))

exponents.append((0,0,n))

# Note that in the list 'exponents', the first two elements, together with the last,
## correspond to the convex hull of the Newton polytope.
# The interior vertices correspond to the other elements of 'exponents'.

# Now we define the valuations of the coefficients.
# This is the main difficulty of the program.
# We fiz the first 3 waluations

valuations = [0,0,1]

# We define the list Points, which corresponds to the points (%,75,v_17),

## where i (resp. j) is the exponent of = (resp. y), and v_ij will be the valuation

## of the coefficient of the monomial x i*y 5%z~ (n-1-7)

# We use these points to keep track of the convex hull that defines the Newton polytope.

Points = []
for i in range(len(valuations)):
Points.append((exponents[i] [0], exponents[i][1], valuations[i]))

# The equation of the plane through 3 points is given by the determinant of this matriz:

rowl = [x - Points[0][0], y - Points[0][1], z - Points[0][2]]

row2 = [Points[1][0] - Points[0][0], Points[1][1] - Points[0][1], Points[1][2] -
Points[0] [2]]

row3 = [Points[2] [0] - Points[0][0], Points[2][1] - Points[0][1], Points[2][2] -
Points[0] [2]]

M = matrix([rowl, row2, row3])

P = M.determinant ()

# It is more convenient to keep track of the equation Pz of the plane P in terms of (z,y):

PlaneCoeff = [P.maxima_methods().quotient (x)*x,
P.maxima_methods () .quotient (y)*y,
P.maxima_methods() .quotient (z)*z,
P - P.maxima_methods().quotient(x)*x - P.maxima_methods().quotient(y)*y -
P.maxima_methods () .quotient (z)*z]

Pz(x,y) = -(PlaneCoeff[0]+PlaneCoeff [1]+PlaneCoeff [3])/(PlaneCoeff [2]/z)

Planes = [Pz]

for i in range(3, len(exponents),1):

# First, we define the valuation that the next point should have
val = 0
for p in Planes:

if val < p(exponents[i] [0], exponents[i][1]):

val = p(exponents[i] [0], exponents[i][1])

# We put floor() to get integer wvaluations
valuations.append(floor(val) + 1)
newPoint = (exponents[i] [0], exponents[i][1], val+1)
# Here we add the point with the correct valuation
Points.append(newPoint)

# Now, we compute all the planes passing through the new point and the pairs of other
# points. We exclude the vertical planes because they are irrelevant for us.
for j in range(len(Points)-2):

for k in range(j+1, len(Points)-1,1):
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rowl = [x - newPoint[0], y - newPoint[1], z - newPoint[2]]

row2 = [Points[jI1[0] - newPoint[0], Points[jl[1] - newPoint[1],
Points[j][2] - newPoint[2]]

row3 = [Points[k] [0] - newPoint[0], Points[k][1] - newPoint[1],
Points[k] [2] - newPoint[2]]

M = matrix([rowl, row2, row3])

P = M.determinant()

PlaneCoeff = [P.maxima_methods().quotient (x)*x,
P.maxima_methods () .quotient (y)*y,
P.maxima_methods () .quotient (z)*z,

P - P.maxima_methods() .quotient (x)*x -
P.maxima_methods () .quotient (y)*y -
P.maxima_methods () .quotient (z)*z]

# Here we ezclude the wvertical planes

if PlaneCoeff[2] != O:

Pz(x,y) = -(PlaneCoeff[0] + PlaneCoeff[1] + PlaneCoeff[3]) /

(PlaneCoeff [2]/2z)

Planes.append (Pz)

# Finally, we define the polynomial, which is given by specifying the coefficients
monomials_curve = []

for i in range(len(exponents)):
monomials_curve.append(t**valuations[i] * x"exponents([i] [0] *
y**exponents[i] [1] * z**exponents[i][2])

curve = sum(i for i in monomials_curve)
print curve

A.3 Program that defines a Mumford curve of arbitrary degree

The following script written in SAGE implements the algorithm described in section
5.2. The input is the degree, and the output is the polynomial of a smooth Mumford
curve of the given degree. Note that we have to substitute the coefficient of 2" by a,
and the coefficient of 2" by by, where v and v' are the valuations of the coefficient
of the corresponding monomial (if we only want to draw the Newton polygon or the
tropicalization, we don’t need to do that).

# We want to construct polynomials that will define Mumford curves.
# The idea is to construct them recursively

n = input('Give the degree of the curve that you want to construct (at least 3): ')

# Now we define the (homogeneous) monomials that will appear.
# The coefficients are still not defined

_tmp__=var("x,y,z,t")

# These are the exponents whose coeff will have wvaluation 0, 1, 1
exponents = [(0,n,0), (0,n-1,1), (1,n-1,0)]

# We fixz the first 3 valuations

valuations = [0,1,1]

# These are the exponents that will be the vertices of the Newton polytope.
for i in range(n-2,-1,-1):

for k in range(n-i, -1,-1):
exponents.append(( n-i-k, i, k))

# Now we define the valuations of the coefficients.
# This is the main difficulty of the program.
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# We define the list Points, which corresponds to the points (i,j,v_1j),

## where 1 (resp. j) is the exponent of = (resp. y), and v_ij will be the wvaluation of the
## coefficient of the monomial z i*y j¥z~ (n-1-3)

# We use these points to keep track of the convex hull that defines the Newton polytope.

Points = []
for i in range(len(valuations)):
Points.append((exponents[i] [0], exponents[il[1], valuations[il))

# The equation of the plane through 3 points is given by the determinant of this matriz:

rowl = [x - Points[0] [0], y - Points[0][1], z - Points[0][2]]

row2 = [Points[1][0] - Points[0][0], Points[1]1[1] - Points[0][1], Points[1][2] -
Points[0] [2]]

row3 = [Points[2][0] - Points[0][0], Points[2][1] - Points[0][1], Points[2][2] -
Points[0] [2]]

M = matrix([rowl, row2, row3])

P = M.determinant ()

# It is more convenient to keep track of the equation Pz of the plane P in terms of (z,y):

PlaneCoeff = [P.maxima_methods().quotient (x)*x,
P.maxima_methods () .quotient (y)*y,
P.maxima_methods() .quotient (z)*z,
P - P.maxima_methods().quotient(x)*x - P.maxima_methods().quotient(y)*y -
P.maxima_methods() .quotient (z) *z]

Pz(x,y) = -(PlaneCoeff[0]+PlaneCoeff[1]+PlaneCoeff [3])/(PlaneCoeff [2]/z)

Planes = [Pz]

for i in range(3, len(exponents),1):

# First, we define the valuation that the next point should have
val = 0
for p in Planes:

if val < p(exponents[i] [0], exponents[i][1]):

val = p(exponents[i][0], exponents[i][1])

# We put floor() to get integer valuations
valuations.append(floor(val) + 1)
newPoint = (exponents[i] [0], exponents[i][1], val+1l)
# Here we add the point with the correct valuation
Points.append (newPoint)

# Now, we compute all the planes passing through the new point and the pairs of other
# points. We exclude the wvertical planes because they are irrelevant for us.
for j in range(len(Points)-2):
for k in range(j+1, len(Points)-1,1):
rowl = [x - newPoint[0], y - newPoint[1], z - newPoint[2]]
row2 = [Points[j][0] - newPoint[0], Points[j]l[1] - newPoint[1], Points[j]l[2] -
newPoint [2]]
row3 = [Points[k] [0] - newPoint[0], Points[k][1] - newPoint[1], Points[k][2] -
newPoint [2]]
M = matrix([rowl, row2, row3])
P = M.determinant ()
PlaneCoeff = [P.maxima_methods().quotient (x)*x,
P.maxima_methods () .quotient (y)*y,
P.maxima_methods() .quotient (z)*z,
P - P.maxima_methods() .quotient (x)*x -
P.maxima_methods() .quotient (y)*y -
P.maxima_methods () .quotient (z)*z]
# Here we exclude the vertical planes
if PlaneCoeff[2] != O:
Pz(x,y) = -(PlaneCoeff[0] + PlaneCoeff[1] + PlaneCoeff[3]) / (PlaneCoeff[2]/z)
Planes.append (Pz)

# Finally, we define the polynomial, which is given by specifying the coefficients
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monomials_curve = []

for i in range(len(exponents)):
monomials_curve.append(t**valuations[i] * x"exponents[i] [0] *
y**exponents[i] [1] * z**exponents[i][2])

curve = sum(i for i in monomials_curve)

print curve
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