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CHAPTER 1: GENERAL INTRODUCTION 

In the past decades, the consumption of poultry meat has increased considerably to supply a 

cost-effective protein source to a constantly growing population worldwide (Figure 1) (Hannah 

and Max, 2019). An interesting statistic is that the feed consumption and time duration to 

promote the body weight of broiler chicken to 1.8 kg in the 1920s were over 20 kg feed in 112 

d (Diarra and Malouin, 2014). However, commercial broilers nowadays achieve the same body 

weight only with an average consumption of 3.2 kg feed for approximately 35 d, which perfectly 

reflects how the poultry nutrition development improved the production efficiency of animals. 

The great improvement of feed conversion in the last century is attributed to the advances in 

animal breeding and nutrition. However, despite a better utilization of nutrients in poultry diets, 

in-feed growth promoters have played a fundamental role in the rapid improvement of 

performance. In the past, the most efficient and most often used growth promoters were 

antibiotic growth promoters (AGP), including virginiamycin, bacitracin, methylene disalicylate 

and other AGP, which have been used for more than 60 years (Castanon, 2007). However, 

antibiotic resistance has emerged as a new problem due to the long-term usage of AGP. Hence, 

the use or even abuse of antibiotics in livestock is criticized for increasing the presence of 

antibiotic resistant bacteria in animals (Economou and Gousia, 2015). What is worse is that 

the reservoirs of resistance in animals are able to transmit to humans via the food chain. 

Sweden was the first country to respond to AGP-driven resistance development by banning 

the usage of AGP in 1986. Many other countries joined to prohibit the supplementation of AGP 

in animal feed (Wierup, 2001; Millet and Maertens, 2011).  

The public demand for substituting AGP in animal nutrition initiated a worldwide search for 

alternative feed additives that can replace AGP. In recent years, different types of feed 

additives were investigated to compensate the loss in performance when APG are absent. 

Probiotics and phytobiotics are two extensively studied alternatives and have shown great 

potential to improve animal performance, gut microbiota or the immune system (Chaucheyras-

Durand and Durand, 2010; Amara and Shibl, 2015; Hussein and Selim, 2018; Abouelezz et 

al., 2019; Thirumal et al., 2019). However, proven probiotic strains were isolated from vast 

sources such as cheese, kimchi or soil, it is of question whether they will survive and colonize 

well in other different host species. The host specificity of probiotics is often neglected during 

selection of suitable strains. As reportedly, the host-specific origin may enhance the 

colonization and further function of probiotic bacteria in host intestine (Zmora et al., 2018). 

Nevertheless, host-specificity has not been regularly regarded as a selection criterion for 

determining the candidate strain in probiotic feed additive. On the other hand, as two frequently 

tested alternatives, probiotics are rarely used with phytobiotics as combination in feed 

additives. Many reports have demonstrated that combinations of probiotics with other feed 
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additives such as prebiotics or acidifiers have favorable effects, but only two studies employed 

the combination of probiotics and phytobiotics with each other (Erdoğan et al., 2010; M. Abdel-

Raheem, 2016; Liu et al., 2018; Calik et al., 2019).  

On basis of the facts above, the preparation and verification of poultry-specific feed additives 

will be of high interest in the field of animal nutrition. Therefore, this PhD thesis describes the 

isolation, selection, formulation and evaluation of probiotics and phytobiotics for poultry 

nutrition. The first part of the thesis was performed to establish a rapid and high-throughput 

screening method to select competent candidate probiotics for the further use. Over 7000 

colonies from broiler digesta and excreta were subjected a 3-staged screening method, in 

which 2 final candidates were selected by in vitro and ex vivo criteria. Thereafter, the 

candidates were characterized by taxonomic identification, aggregative ability, and resilience 

against gastric stress as well as their antibiotic resistance profile. 

For a better evaluation in vivo, two candidate Lactobacillus strains were optimized in terms of 

production parameters. The metabolic fingerprints of the strains were assessed with BIOLOG 

AN® plates to find substrates which may booster biomass production. The capacity to grow 

under aerobic condition to ease large-scale biomass production was also determined. 

Furthermore, to maintain the maximum viable cells upon storage, a protective medium 

consisting of skim milk, sucrose and trehalose was developed for each strain via optimization 

with the response surface method (RSM). The storage stability of formulated probiotics was 

evaluated under both room temperature and refrigeration.  

The third part of the thesis focuses the in vivo effect of two probiotic feed additive, two 

phytobiotic additives and their corresponding combinations on young broiler chickens. The 

feed additives were supplemented into starter feed for 200 broiler chickens in 9 groups. After 

14 d feeding, birds from each group were sacrificed. The modulation of their gut microbiota 

was analyzed with samples from crop and caecum by 16S rDNA analysis, qPCR and 

metabolome analysis. Additionally, the survival of an extended-spectrum β-lactamase (ESBL) 

producing Escherichia coli in intestinal samples was determined ex vivo to estimate the 

inhibiting capacity of each feed additive or their combinations on this antibiotic resistant strain. 

Overall, the results of the feeding trial indicated that the synergistic effects beneficial 

modification of the intestinal microbiota and inhibition of the ESBL E. coli strain.   
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Figure 1: The worldwide meat production by livestock from 1961-2013  

Data source: Food and Agriculture Organization (FAO) 
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CHAPTER 2: LITERATURE REVIEW 

The global human population is predicted to reach 9.7 billion by year of 2050 (Hunter et al., 

2017), and thus creates a high demand of animal protein source (Boland et al., 2013). As an 

eco-friendly animal protein source, poultry meat primarily contributes to the rapid expansion of 

meat consumption and future demands worldwide (FAO, 2018). Poultry species are 

characterized by higher feed conversion rate, as well as the higher cost-efficiency than other 

livestock (Wahyono and Utami, 2018). In poultry production, the major cost is feed (up to 70%), 

95% of which is used to meet energy and protein requirements (Ravindran, 2013). The 

commonly used ingredients in poultry nutrition are shown in Table 1 (Ravindran, 2013). 

Accordingly, poultry feeds consist primarily of grains and oilseed meals (Rochell, 2018). Along 

with the development of modern poultry breeding, the related products (meat or eggs) are 

expected to enjoy faster and greater production during rearing. Feed additives are used in 

animal nutrition to improve the characteristics of feed and are extensively applied in animal 

industries on scale (Rychen and Toussaint, 2018), it includes five categories, namely 

zootechnical additives, sensory additives, nutritional additives, zootechnical additives and 

coccidiostats and histomonostats based on EU regulation (Regulation EC. No 1831/2003). 

Therefore, an essential goal of feed additives is to achieve rapid and sustainable animal 

production (Beski et al., 2015). Consequently, the formulation of poultry feed is encouraged to 

not only simply fulfil energy or amino acid demands, but also to maximize nutrient availability 

(Ravindran, 2005). 

Animal feeds have a certain composition of nutrients and are designed to fulfill the 

requirements of animals at different life stages. However, there are substances that lower the 

availability of nutrients (Yacout, 2016). These substances are called anti-nutritional factors 

(ANFs). The ANFs are categorized into four chemical groups, namely protein ANFs, 

Glycosides ANFs, Phenol ANFs, and Miscellaneous ANFs (Sarwar Gilani et al., 2012). These 

substances can inhibit the nutrition utilization via modulating protein digestion, mineral 

utilization and anti-vitamin factors and miscellaneous (Francis et al., 2001).  

To enhance performance and animal health for better production and financial results, growth 

promoters are chemical and biological substances which are added to livestock feed as 

additives (Fallah et al., 2013). Various types of feed additives, for instance antibiotics, 

probiotics, prebiotics, phytobiotics, synbiotics, enzymes or antioxidants, have been developed 

to maximize animal growth and to improve animal health. AGP have been broadly used as 

feed additives to ensure not only high resilience against infection but also improvement on 

growth performance for over 60 years (Dahiya et al., 2006; Castanon, 2007). Numerous 

studies endorse the positive impact of AGP on body weight (BW), BW gain, feed conversion 
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ratio (FCR) and egg production to poultry at subtherapeutic doses (Mehdi et al., 2018). Yet, 

the intensive use of AGP has contributed to the development and increase of antibiotic 

resistant bacteria, and pose a huge threat to both animal and human health (Aarestrup, 2015; 

Nelson et al., 2019). Thus, many countries and territories have responded by banning the use 

of AGP for the environmental and public health concern (Costa et al., 2017). Due to the 

absence of APGs in feed, growing interests focus on the development of alternative additives 

to substitute the growth promotion. The ‘green’ feed additives are characterized by high 

efficiency, high biosafety and low selection pressure during the feeding. A list of potential 

alternatives is summarized in Table 2. More details regarding probiotics and phytobiotics will 

be given in the following sections.   

 

Table 1 Commonly-used feed ingredients for poultry dietary formulation (Ravindran, 2013) 

Ingredient type Majorly-used ingredients 

Energy sources cereals (maize, wheat or sorghum), cereal by-products, animal fats 

and vegetable oils 

Plant protein 

sources 

soybean meal 

Animal protein 

sources 

fishmeal, meat and bone meal 

Mineral 

supplements 

limestone, shell grit, dicalcium phosphate, defluorinated rock 

phosphate, bone meal, salt, sodium bicarbonate 

Miscellaneous vitamin premixes, methionine, lysine, threonine, non-nutritive feed 

additives (enzymes, antibiotics, etc.) 

 

Table 2 Examples of alternative feed additives 

 Example  Effect References  

Probiotics Lactobacillus spp., Bacillus 

spp., Enterococcus spp. 

Saccharomyces spp. 

FCR ↑, immune 

response ↑ 

microbiome 

maturation ↑ nutrient 

digestibility ↑ intestinal 

pH ↓ pathogenic 

bacteria ↓ BW gain ↑ 

Koc et al., 2010; 

Levkut et al., 

2012; Gao et al., 

2017; Reis et al., 

2017 

Phytobiotics Carvacrol, thymol, cinnamic 

aldehyde, rosemary extracts 

BW ↑ blood cell ↑, 

meat quality ↑ egg 

quality ↑ 

Alagawany et al., 

2017; Reis et al., 

2018 

Prebiotics Mannanoligosaccharides BW gain ↑, feed intake Iriyanti et al., 
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(MOS), fructooligosaccharides 

(FOS), Xylo-oligosaccharides 

(XOS), inulin 

↑ villus height ↑, 

immune organs ↑ 

2018; Biswas et 

al., 2019; Rahimi 

et al., 2019 

Synbiotics Lactobacillus spp. + lactose, 

Bacillus subtilis + FOS 

FCR ↑, BW ↑, diarrhea 

and mortality ↓, 

immuno-stimulation ↑ 

Vicente et al., 

2007; Li et al., 

2008; Awad et 

al., 2009 

Acidifiers formic acid, ascorbic acid, 

butyric acid, lactic acid and 

their salts 

Nutrient digestibility ↑, 

specific antibody titer 

↑, BW gain ↑, 

cumulative feed 

consumption ↓ 

Lohakare et al., 

2005; Garcia et 

al., 2007; Panda 

et al., 2009; 

Hamid et al., 

2011 

Enzymes  Proteases, xylanases, β-

mannanases 

BW ↑, FCR↑, villus 

height ↑, crypt depth↓ 

Cowieson et al., 

2006; Sardar, 

2006; Mehri et 

al., 2010 

 

As defined by Food and Agriculture Organization/ World Health Organization (FAO/WHO), 

probiotics for human use are ‘Live microorganisms which when administered in adequate 

amounts confer a health benefit on the host’ (FAO/WHO, 2001). In the field of animal nutrition, 

the concept of probiotics particularly targets the microorganisms that protect the animal against 

specific pathogenic bacteria or have beneficial effects on animal performance and health 

(Markowiak and Śliżewska, 2018). The benefits of probiotics have been highlighted and 

studied ever since Élie Metchnikoff firstly theorized that ‘host friendly bacteria‘ were able to 

promote health in humans one century ago (Mackowiak, 2013). The concept was later 

improved by Ferdinand Vergin who introduced the term ‘Probiotika‘ coming from the Greek 

terms “pro” and “bios” in the year 1954 (Ebner et al., 2014). After the first probiotic-based 

product was commercialized in 1905 as bacteria-fermented drink known as ‘Yakult‘ (Amara 

and Shibl, 2015), which is still manufactured today, many applications were developed based 

on various bacterial species for diverse purposes (Kajander et al., 2010; Liu et al., 2014; Lan 

et al., 2016). For a long time the agricultural application of probiotics for farm animals did not 

receive as much attention as for human use, but it is gradually being regarded as a targeted 

additive with increasing interest (Martínez Cruz et al., 2012; Fox, 2015).   
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Although most existing probiotics are bacteria, other microorganisms like yeasts or filamentous 

fungi also belong to group of probiotic (Czerucka et al., 2007; Palma et al., 2015; Sugiharto et 

al., 2015). Lactobacillus and Bifidobacterium spp. are most commonly used probiotics for 

human use, yet Bacillus, Enterococcus, and Saccharomyces yeast play a more practical role 

in farm animals (Simon et al., 2001). In recent decades, applications based on lactic acid 

bacteria (LAB) have increased, which is probably associated with development of better 

processing technologies (Jin et al., 2000; Gueimonde and Sánchez, 2012; Othman et al., 

2017). Multiple criteria have been established and employed for the selection of proper 

candidate strains of probiotics (de Melo Pereira et al., 2018). The criteria mostly rely on their 

in vitro activity such as host-associated stress resistance, epithelial adhesion ability and 

antimicrobial activity (Araya et al., 2002). However, many probiotic products showed the 

additional advantage in improving animal growth performance in in vivo assessments (Frizzo 

et al., 2010; Vieira et al., 2013; Wang et al., 2017; Dowarah et al., 2018). The mode of action 

behind these effects are still unknown. 

 

There is a long history of medicinal usage of herbal products for human and animals (Jamshidi-

Kia et al., 2018). Bioactive compounds derived from plants that improve health and productivity 

of animal husbandry are referred to as phytogenic products or phytobiotics (Puvača et al., 

2013). They originate from a variety of plants such as garlic, oregano, thyme, rosemary, 

coriander or cinnamon (Manafi et al., 2016) and can be prepared as whole plants or processed 

parts of plants including roots, leaves, barks or seeds (Hosna Hajati, 2014). Additionally, 

phytobiotics are usually formulated and used as individual phytochemical or blends of different 

ingredients (Gadde et al., 2017). However, it has been concluded that beneficial effects of 

phytobiotics may vary since it depends on the integrated effects of all constituents (Giannenas 

et al., 2013). 

In general, substances can be categorized into two groups, primary and secondary 

substances. Primary substances are nutritional compounds such as protein or fat. Secondary 

ingredients are the bioactive extracts like volatile oils, bitters or other phytochemicals (Diaz-

Sanchez et al., 2015). Compared to primary ingredients, the secondary substances are of more 

interests due to multiple nutritional functions. Many bioactive molecules such as carvacrol, 

thymol, cineole, linalool, anethole, allicin, capsaicin, allylisothiocynate, piperine and others 

have been identified as the functional substances with beneficial influence (Grashorn, 2010). 

Polyphenolic ingredients have been regarded as the main bioactive compounds, however, the 

composition and concentration of phenolic ingredients depend on plant type, parts of the plant 

used, geographical origin, harvesting season, environmental factors, storage conditions as 

well as processing techniques (Gadde et al., 2017). Therefore, a comparison between different 
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phytogenic products is difficult. 

Phytobiotics have reportedly shown many desirable advantages not only for feed and animals 

but for animal-derived products as well (Windisch et al., 2008). Besides this, in-feed 

phytobiotics may also enhance palatability of diets (Randrianarivelo et al., 2010; Zeng et al., 

2015). However, the palatability-refined character is not well applied to poultry nutrition since 

the birds are not sensitive to odors (Roper, 1999b). Similar to probiotics, many types of 

phytobiotics are also certificated as GRAS status with minor safety concerns (Prabakar et al., 

2016; Thirumal et al., 2019). Considering all these characteristics, the phytobiotics are also 

ideal candidates as novel bioactive feed additive to improve animal production.  

 

The efficiency of various probiotic strains has been tested for different poultry species in 

different studies. Firstly, promotion of growth performance of healthy animals was most widely 

studied. Among all probiotics, Bacillus spp. and Lactobacillus spp. are most often used 

probiotic bacteria and many of them have demonstrated a positive impact on growth 

performance. As summarized in a review by Kabir, some probiotic strains are able to positively 

affect the performance in both active and inactive status from aspects of body weight gain and 

feed conversion ratio (Lutful, 2009). Specifically, several Bacillus subtilis strains were able to 

significantly improve animal performance by increasing the weight gain or decreasing the feed 

conversion ratio (FCR)  in broiler chickens, laying hens, ducks and geese (Wu et al., 2008; 

Guo et al., 2016; Park et al., 2018; Neijat et al., 2019). Similarly, several Lactobacillus strains 

including L. acidophilus, L. bulgaricus or L. salivarius were found to enhance the performance 

of broilers when supplemented into diets (Apata, 2008; Forte et al., 2017; Shokryazdan et al., 

2017). Moreover, non-bacterial microorganisms were also reported with probiotic properties 

that promote poultry production. In a newly published investigation, a probiotic yeast, Diutina 

rugosa, significantly increased the body weight (BW) during week 3 to week 6 and the feed 

conversion ratio (FCR) in early starter phase (Wang et al., 2019). Except being used as single-

strain additive, a particular attention is drawn to the utilization of probiotic cocktails. For 

instance, dietary multi-strain probiotics containing L. acidophilus, B. subtilis and C. butyticum 

was reported to significantly result in the greater BW gain for broiler chickens than birds in 

control group especially in grower phase (Zhang and Kim, 2014). In this study, the researchers 

also found that probiotic cocktails enhanced ileal digestibility of most essential amino acids. 

The same beneficial effect was also observed when a combination of a bacterial probiotic 

cocktail (L. acidophilus, B. subtilis, and A. oryzae) and a non-bacterial probiotic (S. cerevisiae) 

was tested on broiler chickens. This probiotic complex increased bird BW and dressing 
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percentage, as well as better FCR compared to birds fed a basal feed (Hussein and Selim, 

2018).  

Some investigations studied the dynamic impact of probiotic additives on animals challenged 

with specific pathogens, revealing a scenario how feed additives may support birds under the 

condition of infection (challenge trial). In one study, a decreased average BW gain and an 

increased FCR were observed in the broilers challenged with C. perfringens. However, the 

supplementation of L. acidophilus in feed significantly increased the BW of the infected birds 

and reduced animal mortality (Li et al., 2018). The reduction of weight and increase in feed 

conversion triggered by pathogen infection has been one of the main concerns that cause 

economic loss in the poultry industry. Due to this fact, probiotics have been developed to 

compensate the weight reduction caused by pathogens like E.coli or Salmonella spp. 

(Abudabos et al., 2019; Ateya et al., 2019).  

However, it has to be noticed that the administration of probiotic additives do not necessarily 

induce a better growth performance in poultry. Some studies also indicate that the used 

probiotic additives did not exert significant effects on improving growth performance (Lee et 

al., 2010; Zhang et al., 2011). Many factors such as host-specificity, in-feed concentration, 

preparation and processing of probiotics as well as rearing conditions tend to be overarching 

factors that influence the efficiency of probiotics.   

 

2.3.2 Phytobiotics  

The focus on replacing AGP with phytobiotics has intensified in the last decades and numerous 

investigations show that growth performance can be increased with phytobiotics. A number of 

reviews summarize these growth promoting effects in poultry (Yang et al., 2015; Mohammadi 

Gheisar and Kim, 2018). In these reviews, a number of different phytogenic feed additives 

improved average daily gain, feed conversion ratio and/or average daily feed intake of broilers 

or ducks. To broaden the understanding of the effects in details, some applications in different 

animals are given as below. In an experiment involving 900 broiler chickens with a natural 

blend herbal extracts (basil, caraway, laurel, lemon, oregano, sage, tea, and thyme), the 

supplementation of the phytobiotics significantly resulted in higher weight gain. Besides, the 

weight of carcass and breast percentage also improved significantly in the same study (Khattak 

et al., 2014). In another broiler trial, turmeric and garlic additives were added to a chicken diet. 

The results indicated that the single turmeric meal or combined with garlic meal significantly 

promoted body weight gain and feed conversion (Olukosi and Dono, 2014). Phytobiotics were 

also shown to compensate growth loss in pathogen-challenged animals. Xue and coworkers 

compared the growth performance in a challenge trial with Clostridium perfringens when plant-

derived isoquinoline alkaloids (IQA) from Macleaya cordata were used (Xue et al., 2017). The 

IQA meal in that study significantly increased BW gain and feed intake on day 24 and 35, 
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moreover, the IQA also significantly improved FCR and breast yield. The studies on 

improvement on growth performance were as well reported in other poultry species. In a trial 

of meat-type ducks, researchers conducted a feed experiment on 160 ducklings for 42 d. The 

BW gain and FCR of ducks receiving a phytobiotic matrix (quillaja, anise, and thyme) in their 

diet showed a significantly higher level by 2.6% and 3.5% respectively from 21-42 d (Gheisar 

et al., 2015). Eggs have been long produced and utilized as one of best dietary protein source 

in animal husbandry (Kuang et al., 2018). Egg-producing poultry species have been reported 

with refined egg production responding to in-feed phytobiotics. In a study with laying hens, 

rosemary oil exerted a significant effect on laying rate and egg mass at a dose of 100 mg/kg 

feed (Garcia et al., 2019).  

An attractive characteristic of phytobiotics which plays an important role in animal nutrition is 

their palatability (Kaschubek et al., 2018). The feed palatability demonstrates multiple benefits 

feed on their odor which might increase the feed intake of animals (Windisch et al., 2008). 

However, this promising characteristic has been observed in other farm animals like swine 

(Stelter et al., 2013), but only limited work for poultry is available. The rationale might be 

understood as poultry has generally a lack of sensitivity to odors (Roper, 1999a). As for feed 

intake, there are also studies reporting a significant decline in broilers and laying hens fed with 

dietary phytobiotics (Roth-Maier et al., 2005). Nevertheless, unlike higher possibility of feed 

refusal observed in mammals, poultry were reported to respond to low levels of spices in feed 

by increasing digestive secretions without significantly rejecting feed (i.e., decreasing feed 

intake)(Brenes and Roura, 2010).  

In view of nutrient utilization and digestibility, phytobiotics reveal extensive advantages by 

elevating digestive capability. For instance, several essential oils were corroborated with 

development of the activities of trypsin, maltase and pancreatic amylase in broiler chicken (Lee 

et al., 2003; Jang et al., 2004; Jang et al., 2007).  

 

2.4 Manipulation of gut microbiota by probiotic and phytobiotic additives in poultry 

2.4.1 Probiotics 

For in-feed probiotics, many publications suggest that health promoting effects are associated 

with modifications of the gut microbiota (Clavijo and Flórez, 2018; Rubio, 2018). Thus, the 

alteration of the animal microbiome has been always of interest since the gut microbiota 

strongly interacts with the host (Nicholson et al., 2012). In many studies, probiotic strains are 

reported to actively regulate the gut microbiota composition of several poultry species. For 

instance, two Bacillus subtilis strains were evaluated in broiler chicken and were found to 

significantly increase the relative abundance of Pseudomonas, Burkholderia, and Prevotella 

spp. in caecum of broiler chickens during the grower phase compared to the control group. 

Furthermore, the same two strains also demonstrated the ability to increase the diversity of the 
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jejunal microbiota (Li et al., 2019). In another investigation, L. sakei was supplemented to mule 

ducks during the overfeeding stage. The added L. sakei on one hand significantly decreased 

the relative abundance of Bacteroides in the ileum at the mid-overfeeding, on the other hand 

also decreased the ileal microbiota richness at from mid-overfeeding and cecal microbiota 

diversity at the end stage of overfeeding (Vasaï et al., 2014).  

The further development of bioinformatic methods has deepened our understanding on the 

microbiome. Gao and colleagues monitored the patterns of microbiota development with a 

trained Random Forest model, which could identify age-discriminatory taxa. They found the 

supplementation of L. plantarum in feed was able to accelerate the maturation of the intestinal 

microbiota. On the contrary, the conventional in-feed AGP significantly decreased time-based 

intestinal microbiota development (Gao et al., 2017). The gender of birds has also been found 

to be a confounding factor in investigating the effects of in-feed probiotic to gut microbiota of 

animals, because the difference of microbiota composition between male and female birds 

were reported. Another study indicated that the microbiota composition similarity between 

males and females was observed under 30 % using denaturing gradient gel electrophoresis 

(DGGE) (Lumpkins et al., 2008). Since most microbiota studies only included the data collected 

from male birds or gender-unknown birds, the sex bias must be considered to deepen the 

understanding upon the interaction between microbiota shifts and probiotic inclusion (Kers et 

al., 2018a).  

Additionally, several probiotics have the ability to inhibit a general or specific spectrum of 

microorganisms, often microorganisms with a negative impact on host health. For instance, 

the application of dietary Enterococcus faecium could reduce intestinal Salmonella in broiler 

chicken (Mohammadi Gheisar et al., 2016). Lavipan, a multi strain probiotic product, 

demonstrated a remarkable exclusion to Campylobacter spp. as feed additive of broiler 

chickens. This probiotic cocktail can not only decrease Campylobacter spp. infection in 

broilers, but can also reduce Campylobacter spp. contamination in chicken carcass (Smialek 

et al., 2018). Various modes of action were described to explain a probiotic-induced inhibition 

of bacterial pathogens. A classic mechanism is the principle of competitive exclusion (CE), 

which is mainly due to topographical competition for niches (for instance in the mucosal layers) 

as well as to competition for nutrients, by which pathogenic microorganisms are prevented 

from colonizing the intestinal tract (Patterson and Burkholder, 2003). CE was regarded as the 

most effective and harmless method available to control intestinal disturbances in poultry 

(Schneitz, 2005). Many studies implied the antagonistic effect based on CE to a wide range of 

bacteria including Extended-Spectrum-β-Lactamase (ESBL)-producing Escherichia coli, 

Salmonella spp., Campylobacter spp. and others (Stern et al., 2001; Ceccarelli et al., 2017). 

Another noteworthy mechanism may be the production of antibacterial substances by 

probiotics. Those substances are generally categorized into three groups, namely organic 
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acids, bacteriocins and bacteriocin-like inhibitory substances. The production of these 

antagonists have been an important criteria for the probiotic selection and numerous 

investigations have shown their inhibitory activity in in vitro conditions (Bermudez-Brito et al., 

2012; Saint-Cyr et al., 2016; Medina Fernández et al., 2019). However, a common scenario 

under practical conditions is that probiotic supplementation may not always be able to perform 

the inhibitory activity as they have shown in in vitro assays. The inconsistency can range from 

a high efficacy to no response (Chambers and Gong, 2011). Thus, this calls for a re-evaluation 

on their in vivo performance during the transition from benchtop research to practical 

application.  

 

2.4.2 Phytobiotics 

As to the gut microbiota of animals, the in-feed phytogenic compounds are always found to 

either decrease the intestinal bacterial counts or their corresponding activities of some specific 

bacteria, mainly contributed by their inhibitory activity on bacterial growth (Zhai et al., 2018). 

Several experiments evidenced this mode of action by showing reduced bacterial growth in a 

dose-dependent manner. When birds were grouped to receive increasing doses of phytobiotics 

in feed from 1gm/kg feed to 10 gm/kg feed, a dose dependent decrease of cecal total viable 

bacterial count was observed in chicken fed with phytobiotics (Ripon et al., 2019). Another 

study with ducks confirmed the inhibiting activity on intestinal bacteria, as the addition of an 

oregano based product significantly reduced coliforms, total anaerobes and lactase-negative 

Enterobacteria in the caecum (Abouelezz et al., 2019).  

However, unlike a direct reduction of the total bacterial count in the gut, changes in the 

composition of the intestinal microbiota have been shown. The changes were dependent on 

the specific phytogenic application. Different phytogenic applications have been shown to 

differently modify the microbiota in poultry. Some phytobiotics are related to the modification 

of the two most dominant phyla, Firmicutes and Bacteroidetes, often significantly increasing 

the Firmicutes/ Bacteroidetes (F/B) ratio in caecal microbiota of animals (Lillehoj et al., 2018), 

and significantly increased beneficial bacteria like Lactobacillus spp. (Mohammadi Gheisar and 

Kim, 2018).  Nevertheless, there are also investigations that report contrary results. For 

example, Zhu and coworkers observed a sharp decline in the genus Lactobacillus after 

phytobiotic (carvacrol/thymol mixture) inclusion into diets (Zhu et al., 2019a). This indicates 

that the effect of different phytogenic applications cannot be generalized since they may lead 

to different effects. 

Regarding their promising antimicrobial activity, phytogenic feed additives are often used to 

reduce the colonization of certain pathogenic or undesirable bacteria which frequently and 

seriously affect the poultry industry. C. perfringens, the common cause of poultry necrotic 

enteritis (NE), was reported to be controlled in several cases when phytobiotics were included 
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in broiler feed (Mitsch et al., 2004; Diaz Carrasco et al., 2016). Phytobiotics like mint, thymol, 

and cinnamaldehyde were also determined to significantly reduce the amount of 

Campylobacter spp. in the caecum (Micciche et al., 2019). In-feed phytobiotics were also 

repeatedly investigated regarding their in vivo inhibition of other intestinal pathogens like 

Salmonella spp. or E. coli in poultry (Lillehoj et al., 2018). Most phytobiotics possess a certain 

degree of inhibitory selectivity as summarized in a review (Chambers and Gong, 2011). The 

existing studies suggest that Gram-negative bacteria seem to be generally more vulnerable 

than Gram-positive bacteria by phytobiotics (Lin et al., 2000; Si et al., 2006b).  

However, like in probiotics, due to a lack of studies it is still unclear if these effects are directly 

induced by the presence of the phytobiotics or are an indirect effect of changes within the 

intestinal microbiota. 

 

2.5 Immunoregulation by probiotics and phytobiotics in poultry 

2.5.1 Probiotics 

Numerous studies highlighted that dietary Lactobacillus spp. supplementation may exert 

beneficial effects on the host via modifying its immune system. The role of immune effector of 

in-feed probiotics has been recognized by the European food safety authority (ESFA) and has 

been summarized in a recent report commissioned by the EFSA (IRTA, 2015). This systematic 

report lists probiotic activities of several commonly used species including Lactobacillus spp., 

Bacillus spp., Enterococcus spp., S. cerevisiae and Bifidobacterium spp., which showed 

beneficial modification of goblet cell numbers, stained area, mean size and mucosal thickness 

as well as an increase in the expression of immune-regulatory genes and genes related to 

humoral immunity. However, different modes of actions were observed for probiotics in 

regulating the immune system in poultry. The probiotics were proven to modulate the host 

immune system directly or indirectly (Markowiak and Śliżewska, 2018). More than 98% all 

multicellular organisms hold an innate immune system (Kogut, 2009). In poultry, the hypothesis 

is that the innate immune system acts with higher efficiency than the adaptive immunity based 

on specific T cells and specific antibodies (Klasing, 2007). Several Lactobacillus strains were 

found to more effectively induce cytokines such as gamma interferon (IFN-γ), interleukin-12 

(IL-12), IL-18 and transforming growth factor β4 (TGF-β4) in chickens (Brisbin et al., 2011). 

Some other probiotics were identified to up-regulate the immune-gene expression and the 

apoptosis in caecum of chicken, which led to a reduction of bacterial infections induced by 

intracellular pathogens (Higgins et al., 2011). The application of a probiotic Lactobacillus 

reuteri and Lactobacillus johnsonii strain as dietary supplementation up-regulated the 

preventive function of gut barrier, thereafter demonstrated by a higher immune response 

against Salmonella enteritidis infection in chicken (Van Coillie et al., 2007). Different than the 

innate immune system, the adaptive immune system is specifically acquired when animals 
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encounter unknown antigens. The inclusion of probiotics to animals was shown to aid the 

adaptive immune system by increasing the antibody response or phagocytic activity (Yirga, 

2015). The immune system of broiler chickens responded to a L. plantarum strain by higher 

concentrations of serum IgG and intestinal secretory IgA (Gao et al., 2017). Regarding the 

responses to specific antigens, there is also strong evidence that probiotics significantly 

increase the antibody level against a broad spectrum of gut pathogens including Newcastle 

disease virus (NDV), bronchitis, avian influenza virus (AIV), Salmonella Typhimurium and other 

antigens (Rowghani et al., 2007; Szabó et al., 2009; Sikandar et al., 2017). Despite the 

functional improvement described above, probiotics have been shown to regulate the immune 

system indirectly by increasing the weight of immune organs, regulating cytokine profiles and 

modifying toll-like receptors (TLRs) (Villena et al., 2008; Alkhalf et al., 2010; Asgari et al., 

2018).  

 

2.5.2 Phytobiotics 

An increasing number of studies endorse the positive role of phytobiotics in modulating the 

poultry immune system. The addition of phytobiotics is reported to enhance the immune 

response of both the innate- and the adaptive immune system similar to probiotics. For 

instance, a phytobiotic derived from the turmeric plant was supplemented to broiler chickens 

for seven weeks in powder form, displaying a general elevation of antibody levels including 

IgA, IgG, and IgM as well as decreased ratio of monocytes in total blood cells (Emadi and 

Kermanshahi, 2007). Pathogen-specific antibody titers increased by phytogenic additives is 

reported for poultry species (broiler chickens, laying hens and etc.) against NDV, AIV, Eimeria 

microneme protein and infectious bursal disease virus (IBDV) (Böhmer, 2009; Landy et al., 

2011; Özek et al., 2011; Kim et al., 2013). Another thyme essential oil provoked higher levels 

of lymphocytes and white blood cells after 42 d feeding in broilers (Hassan and Awad, 2017). 

On the other hand, several publications demonstrate a direct or indirect reinforcement of innate 

immunity by phytobiotics. A previous review has comprehensively summarized the functional 

members of phytobiotics and their possible modulatory actions on innate immunity (Huang and 

Lee, 2018). In that review, applications based on carvacrol, cinnamaldehyde, curcumin and 

thymol are described as being able to regulate the chicken innate immune system majorly via 

TLRs, mitogen-activated protein kinases (MAPKs) and the nuclear factor kappa B (NFκB) 

pathway. Another important pathway of phytobiotic-based immunostimulation is the 

modification of GIT cytokine expression. The supplementation of phytogenic cinnamaldehyde 

to newly hatched chicks for instance led to a remarkable rise on gene transcripts encoding 

interleukin (IL)-1β, IL-6, IL-15 and interferon (IFN)-γ in intestinal lymphocytes. The up-

regulation was about 47 times higher compared to chicks received a basal diet (Kim et al., 

2010). 
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Unlike probiotics, phytobiotics have commonly been used as extracts from plants, but also 

sometimes as sole active ingredients. The immune-modulatory effects of phytobiotics and their 

single compounds were found to be inconsistent in some studies (Lin et al., 2006; Lin et al., 

2011). However, functioning substances have been mostly attributed to the secondary 

products of phytobiotics (Hashemi and Davoodi, 2010).  

Whereas, continuous feeding of an immunomodulatory additive throughout the growing phase 

of poultry does not necessarily result in the over-stimulation of birds and therefore suffering 

from performance reduction (Swaggerty et al., 2019). Improved growth performance may go 

along with the immune system modification induced by inclusion of phytobiotics, which allows 

the reallocation of energy toward improving performance (Murugesan et al., 2015). 

 

2.6 The production and formulation of pro-/phytobiotic as feed additives in poultry 

2.6.1 Probiotics 

Probiotics act in the host as living microorganisms. Thus, a sufficient viable cell number 

probiotics is a prerequisite condition for their function (Simon, 2005). To ensure viability and 

stability of probiotics in feed additives, its biomass must be protected after manufacturing. The 

most commonly utilized preparation is the drying method, which facilitates probiotics storage, 

handling as well as transportation in a stable form (Santivarangkna et al., 2008). The most 

popular techniques are freeze-drying and spray-drying to dehydrate the fermented probiotic 

culture, although there are also other methods like vacuum drying or fluid bed drying (Betoret 

et al., 2003; Broeckx et al., 2016). These two popular methods have their own merits and 

limitations, respectively. Compared to freeze drying, spray drying is more cost-effective, but 

always results in lower viability of the processed probiotics due to the exposure to high 

temperatures (Menshutina et al., 2010). Although there are several studies reporting the use 

of spray drying for in-feed formulation (Corcoran et al., 2004; Shokri et al., 2015; Zhu et al., 

2016), freeze drying preparation is preferred for probiotics like Lactobacillus or Bifidobacterium 

spp. due to their lower resilience against heat processing (Chávez and Ledeboer, 2007). 

However, spore forming probiotics like bacilli are deemed more stable during processing and 

storage (Elshaghabee et al., 2017; Liu et al., 2018). The thermostability of their spore is 

fundamentally contributed by dipicolinic acid (DPA) (Setlow, 2006). On the contrary, freeze 

drying yields more viable cells by avoiding heat stress at a lethal level. However, considering 

its cost, freeze drying is generally regarded as an expensive method for maintenance. 

Furthermore, other factors such as material use, volume capacity and time of duration also 

increase costs compared to other methods (Peighambardoust et al., 2011).  

No matter which method is applied for the formulation of probiotics, the potential viability loss 

cannot be neglected, especially on an industrial scale. Therefore, necessary optimizations of 

processes have to be conducted to minimize loss of viability (King and Su, 1993; Fu and Chen, 
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2011). The mainstream strategy is to develop a protective- or carrier system against external 

stress factors. Numerous protectants to stabilize the probiotic during freeze/ spray drying have 

been studied. The supplementation of sugars, especially of the disaccharide type, into probiotic 

formulations have shown a promotion of viability of many probiotic strains after the drying 

process (Santivarangkna et al., 2008; Broeckx et al., 2016). As examples, sugars like 

trehalose, sucrose, maltose or lactose were extensively used as protectants for probiotic 

formulations (Miao et al., 2008; Behboudi-Jobbehdar et al., 2013). Protein-based stabilizers 

are another important source of drying protectants. The effect of different protein protectants 

(e.g. skim milk, sodium caseinate, whey) on cell viability of a Lactobacillus acidophilus strain 

during the spray drying process showed that whey protein exhibited maximum protection 

(Soukoulis et al., 2014). Similar protective effects of protein-based protectants were also 

observed for freeze drying of probiotics (Wong et al., 2010). To achieve a maximum protection 

during probiotic processing, the combined protectants matrix has become a prior option for its 

synergistic effects. With the advancement of analytical methods, the utilization of the response 

surface method (RSM), an alternative to the traditional one-variable-at-a-time approach 

strategy. With the RSM, potential interactions among different treatments are considered 

simultaneously (Huang et al., 2006). A determination of optimized protective media with RSM 

has been reported to stabilize probiotic lactobacilli in processing and storage (Ren et al., 2019). 

Next to protective media, the encapsulation of probiotics is another enhanced preservative 

means. Generally, encapsulation of probiotics immobilizes probiotic strains within 

semipermeable and biocompatible materials and protects against loss of viability (Gbassi and 

Vandamme, 2012). Additionally, encapsulation may also improve survival rate of the probiotic 

product during gastric transition and a better colonization can thus be obviously expected 

(Shori, 2017).     

 

2.6.2 Phytobiotics 

Phytobiotics are plant-derived products and thus the preparation of phytobiotics involves 

extraction and formulation of bioactive compounds out of the plants or microalgae (Grashorn, 

2010). Phytobiotics are generally extracted from raw materials by infusing phytochemicals of 

interests in relevant solvents (Applegate et al., 2010). Phytobiotics can be formulated into solid 

form or used as crude/ concentrated extracts in liquid form depending on the bioactive 

ingredients (Gadde et al., 2017). Although there are applications of phytobiotic feed additives 

produced by vacuum drying or spray drying (Nm et al., 2018), freeze drying is still assumed to 

be more preferred for the preparation (Abascal et al., 2005). However, dried phytogenic 

extracts are still sometimes poorly conserved, as is the case for volatile, phenolic or carotenoid 

compounds (Abascal et al., 2005). The formulation in liquid phase, normally as an emulsion of 

oil or resin, are preferred for preserving the volatile or polyphenolic compounds.  
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Compared to probiotics, phytobiotic additives are more stable substances during processing. 

However, there are still several chemical factors impacting the stability of phytobiotics (Turek 

and Stintzing, 2013). These factors including light (both UV- and visible light), temperature, 

oxygen availability, metal contaminants, water content and compound structure, summarized 

and discussed comprehensively in a review (Turek and Stintzing, 2013). These factors may 

physically deactivate bioactive ingredients or induce reactions such as oxidation and 

polymerization, subsequently resulting in a loss of quality and pharmacological properties of 

phytobiotics. Therefore, some studies addressed these problems to develop protective 

formulations to steady the functionality of phytobiotic products. One study on phytobiotics for 

piglets suggests that carvacrol and thymol phytobiotic coated with celite or alphacel led to 

better stability (Michiels et al., 2010). Encapsulation technologies are frequently used for 

phytobiotics. Phytobiotics may absorb to feed components or in the upper small intestine of 

animals, and thus decrease established doses or weaken their corresponding bioactivity in the 

lower gut (Kohlert et al., 2000; Si et al., 2006a; Michiels et al., 2008). Hence, encapsulation 

plays an important role in the protection as well as in the controlled release at targeted 

locations in the intestine.  

 

2.7 Synergistic combinations of probiotic and phytobiotic additives in poultry 

It is not rare that different types of feed additives have been used as combinations to invoke 

synergistic effects, which may lead to greater response than their single application 

(Shipradeep et al., 2012). This principle has been mostly applied to the combination of 

probiotics and prebiotics, namely the synbiotics. The beneficial effect of synbiotics has been 

implied as the promotion of beneficial bacterial fermentation with supplementation of suitable 

substrates (de Vrese and Schrezenmeir, 2008). Synbiotics enjoy the merits from both 

probiotics and prebiotics, and are developed to overcome some possible difficulties in the 

survival of probiotics in the gastrointestinal tract (Rioux et al., 2005). Thus, most additive 

combinations were designed following this synbiotic concept. Different combinations with 

different probiotics and prebiotics were studied under research conditions and in practical case 

studies. Several investigations evidenced the effects of synbiotics on improving body weight, 

carcass quality, immune system as well as the net profit of poultry production. Apart from 

prebiotics, combinations with other feed additives such as acidifiers or enzymes were also 

reported (Seifi, 2014; Rodjan et al., 2018).  

Phytobiotics are sometimes combined with other feed additives to enhance or compensate 

their activity as well. In some studies, phytobiotics in combination with organic acids were found 

with greater benefits on improving BW gain, FCR or antibacterial profile in poultry (Mikulski et 

al., 2008; Bozkurt et al., 2012; Gilani et al., 2018). The synergistic effects of phytobiotics and 

acidifiers are not well understood yet. However, several studies revealed some potential 
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modes of actions, for instance that phenolic substances in phytobiotics may induce 

permeabilization of bacterial cell membranes and thus increase the susceptibility of bacteria 

to organic acids. On the other hand, a decreased pH by acidifiers may result in higher 

phytobiotic hydrophobicity, which subsequently increases the possibility of phytobiotics to 

penetrate through the lipid content of bacterial membranes (Karatzas et al., 2001). In one 

study, combinations of enzymes with phytobiotics similarly improved the performance more 

than the single use of phytobiotics in chicken nutrition (Diaz-Sanchez et al., 2015).  

As noted, phytobiotics tend to selectively inhibit the bacterial growth or activity (Zhai et al., 

2018), while probiotics tend to modulate the intestinal microbiota without selective inhibition. 

Thus, expecting synergism for probiotic and phytobiotic combinations seems contradictory at 

first glance. However, due to the complex nature of the host-microbiota interactions, synergistic 

effects may not be as straight forward as just adding up, in this case, the effects of single feed 

additives. Synergistic effects may also occur for members of the gut microbiota that were not 

modified by supplementation of individual components. There are only a quite limited number 

of examples for the combination of phytobiotics with probiotics. A commercial phytobiotic and 

a probiotic E. faecium strain were blended as mix additive and tested on broiler chickens. The 

results indicated that the probiotic-phytobiotic combination promoted animal health but did not 

significantly improve animal performance (Erdoğan et al., 2010). Another example is that 

phytobiotics and probiotics can be formulated into a complex additive matrix with other feed 

additives for synergistic effect based on multiple ingredients. One investigation prepared a 

matrix supplementation consisting of a probiotic, a prebiotic and a phytobiotic. This formulation 

significantly improved the FCR of chickens suffering from C. perfringens induced necrotic 

enteritis during the starter and grower phase (Calik et al., 2019). A recently published 

investigation compared the combination of a probiotic and a phytobiotic to their single 

application as well as to antibiotic supplementation. In that study, the body weight gain in the 

combination group was lower than in the single probiotic group but higher than in all other 

groups. In the light of microbial and hematological performance, the combination was not 

superior to other experimental- or control groups (Ferdous et al., 2019). 

There are also few cases providing the practical effect of probiotic-phytobiotic combinations as 

feed additives to other livestock (Nowak et al., 2017). However, there is still a lack of 

understanding for probiotic-phytobiotic combinations and their potential synergic effect in 

poultry nutrition. The commonly used probiotic bacteria, for example Lactobacillus spp., 

Bacillus subtilis or Bifidobacterium spp., belong to Gram-positive bacteria, which are usually 

tolerant to phytogenic substances in vitro (Lin et al., 2000). The question of how probiotics, 

especially host-specific probiotics, react to co-supplemention with phytobiotics in their 

respective host is yet unclear since both increase and decrease of probiotics have both been 

reported in feeding trials (Mohammadi Gheisar and Kim, 2018; Zhu et al., 2019b). Thus, more 
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in-depth studies regarding the effect of probiotic-phytobiotic combinations are necessary to 

convey a better knowledge on their alternative role in the replacement of AGP. 
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CHAPTER 3: AIMS AND OBJECTIVES 

The aim this thesis was to isolate and produce host-specific probiotics and to investigate the 

possible synergistic effects of these probiotics with commercial phytobiotics. The thesis 

includes the following objectives: 

1. Establishment of a rapid screening method for host-specific Lactobacillus probiotics; 

2. In vitro characterization of the selected candidate strains; 

3. Determination of growth conditions of the candidate strains; 

4. Optimization of cryo-protectants and evaluation of storage stability; 

5. Proof-of-principle feeding trial with candidate strains and phytobiotics with in-depth 

analysis of the gut microbiota;  

The results of current thesis have been included and reported in the published manuscripts in 

the following chapters (Chapter 4, Chapter 5 and Chapter 6). 
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Screening of Host Specific Lactic
Acid Bacteria Active Against
Escherichia coli From Massive
Sample Pools With a Combination of
in vitro and ex vivo Methods
Hao Ren* , Eva-Maria Saliu, Jürgen Zentek, Farshad Goodarzi Boroojeni and
Wilfried Vahjen

Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany

A novel three-step combination of in vitro and ex vivo screening was established to
massively screen host derived lactic acid bacteria (LAB) from the broiler chicken intestine
with inhibitory activity against Escherichia coli. In a first step, a massive sample pool
consisting of 7102 broiler-derived colonies from intestinal contents were established
and sub-cultured. Supernatants thereof were incubated with an E. coli model strain to
screen suitable isolates with inhibitory activity. A total of 76 isolates of interest were
subsequently further studied based on either pH dependent or -independent activity
in the second step of the assay. Here, in-depth growth inhibition of the E. coli model
strain and the potential of isolates for lactic acid production as inhibitory substance were
indexed for all isolates. Resulting scatter plots of both parameters revealed five isolates
with exceptional inhibitory activity that were further studied under ex vivo condition in
the third step of the assay. These isolates were taxonomically classified as strains of
the species Lactobacillus agilis, Lactobacillus salivarius, and Pediococcus acidilactici.
Samples from the broiler chicken intestine were inoculated with the Lactobacillus
isolates and the E. coli model strain. After 8 and 24 h incubation, respectively, growth
of the E. coli model strain was monitored by cultivation of the E. coli strain in antibiotic
supplemented medium. By their superior inhibitory activity against the E. coli model
strain, one L. agilis and one L. salivarius strain were selected and characterized for
further application as probiotics in broiler chicken. Additionally, their antibiotic resistance
patterns and resilience under gastric stress of isolates were also characterized. The
results of this study demonstrate that the novel isolation procedure was able to efficiently
and rapidly isolate and identify bacterial strains from a massive sample pool with
inhibitory potential against specific types of bacteria (here E. coli). The introduction of
the final ex vivo selection step additionally confirmed the inhibitory activity of the strains
under conditions simulating the intestinal tract of the host. Furthermore, this method
revealed a general potential for the isolation of antagonistic strains that active against
other pathogenic bacteria with specific biomarker.

Keywords: probiotics, lactic acid bacteria, host-derived, effective screening, E. coli, ex vivo model, massive
sample pool
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INTRODUCTION

The search for alternatives to antibiotics is an important topic
worldwide. Various groups of feed additives have been studied
so far and probiotics seem to be promising candidates to increase
animal health and performance in the absence of in-feed growth
promoters (Mehdi et al., 2018).

As defined by Food and Agriculture Organization/World
Health Organization (FAO/WHO), probiotics are “Live
microorganisms which when administered in adequate amounts
confer a health benefit on the host” (Fao-Who., 2006). However,
in the field of animal nutrition, especially for farm animals,
probiotics are to protect the animal against specific pathogenic
bacteria or have beneficial effects on animal performance
(Chaucheyras-Durand and Durand, 2010; Liao and Nyachoti,
2017; Markowiak and Śliżewska, 2018).

As a group of extensively studied probiotic, lactic acid
bacteria (LAB) have demonstrated inhibitory effects on certain
microorganisms and potentially benefits on animal health
(Dowarah et al., 2017). A large body of evidence have shown
that LAB strains can exert beneficial impact by regulating
intestinal inflammation or decreasing colonization of zoonotic
bacteria like Escherichia coli, Campylobacter jejuni or Salmonella
enterica (Santini et al., 2010; Vasanth et al., 2015; Azizkhani
and Tooryan, 2016; Forkus et al., 2017; Wang et al., 2017).
Among investigated pathogens, E. coli is one of the most well-
documented target, and numerous investigations show eÿciency
of LAB on inhibiting E. coli growth or preventing E. coli
infection (Sherman et al., 2005; Kimble et al., 2015; Azizkhani
and Tooryan, 2016). Therefore, LAB have been also intensively
studied and widely used in recent decades for their beneficial
properties as potential antagonists (Kajander et al., 2005; Hong
et al., 2014; Lan et al., 2016). Diverse LAB products have
been developed on the basis of wide array of species including
L. reuteri, L. acidophilus, L. intestinalis, L. plantarum, L. casei,
and L. sakei (Kılıç and Karahan, 2010; Karami et al., 2017;
Tashakor et al., 2017). The actual isolation of probiotic bacteria
is a field of research that has not been addressed in depth
so far. Theoretical selection criteria for probiotics including
LAB for human use recommended by the WHO include host-
related stress resistance, epithelial adhesion and antibacterial
activity as well as biosafety (Zhang et al., 2016; de Melo Pereira
et al., 2018). Other parameters such as aggregative ability,
hydrophobic phenotyping, reduction of pathogenic virulence,
immunomodulation and specific metabolic pathway were also
reported as possible criteria for selection (Saint-Cyr et al.,
2016). In vitro criteria are preferred because of simplicity
and cost-eÿciency (Papadimitriou et al., 2015). However, the
characterization of probiotic LAB strains by using in vitro
methods alone may not be suÿcient to predict their in vivo
scenario, as different bacterial strains may behave differently
under the conditions of the intestinal tract (Murima et al.,
2014). Whether the selected LAB are able to colonize the
host is as well an essential question. On the other hand,
in vivo selection procedures are time-consuming, costly and
carry ethical considerations, even though it offers the most
direct impact of probiotic on host animals at given condition

(Martins et al., 2008). This implies that an eÿcient screening
assay for potential probiotic bacteria should include the steps to
mimic in vivo conditions and at the same time be feasible in terms
of laboratory work.

Commonly, the number of isolates screened for probiotic
activity were comparably low, ranging between 14 and 1150
isolates with the majority of studies using only 50 to 80 isolates
(Robyn et al., 2012; Babot et al., 2014). Thus, to our best
knowledge, there is no published method to massively screen
bacterial isolates with specific antibacterial activity. Considering
the vast diversity of bacterial species in the intestinal tract as
well as the occurrence of numerous strains in each species, it
seems promising to screen as many potential probiotic isolates
as possible to increase the probability of success. Also, the
origin of probiotic has not yet been considered as significant
factor previously. However, the advantage of isolation of host-
specific probiotics become increasingly focused because those
strains have already shown the capability to colonize the hosts
(Zmora et al., 2018).

Most existing studies on probiotic LAB focus solely on their
antagonistic activity in in vitro (Gram and Ringø, 2005). Recently,
it was hypothesized that the intestinal tract of poultry harbors
strains capable to inhibit the inhabitation of potential pathogens
(Nhung et al., 2017; Shang et al., 2018). Therefore, the present
study developed a three-step combination of in vitro and ex vivo
methods to massively screen LAB isolates for their potential to
inhibit E. coli. The final ex vivo model confirmed inhibiting
activity under conditions simulating the gastro intestinal tract
simultaneously as it is more easily controlled. Due to the technical
simplicity of this method, it has the general potential for the
development of other probiotics that target specific bacteria.

MATERIALS AND METHODS

Strains and Media
Throughout the study, an extended-spectrum beta-lactamase
producing E. coli strain ESBL10716 (phylotype B1) was used as
a model strain. It was isolated from excreta samples of broiler
chicken by the Institute of Microbiology and Epizootics of Freie
Universität Berlin within the RESET program and produces the
CTX-M-15 lactamase (Falgenhauer et al., 2016). The resistance of
model strain against cefotaxime was used as a specific marker in
all culture and growth experiments. The strain was selected as a
representative target strain from 13 E. coli strains of broiler origin
in a pre-experiment, showing the strongest resistance against
in vitro GIT stress and stress of random LAB supernatants (data
not shown). The strain was stored as cryo stock and cultured in
brain heart infusion broth (BHI, Carl Roth GmbH + Co., KG,
Germany) for further application.

Sampling and Original Isolation
Intestinal samples were taken from broiler chicken (Cobb500).
Fresh digesta samples from the crop, ileum, jejunum and cecum
and excreta were obtained from different feeding trials conducted
at the Institute of Animal Nutrition, Freie Universität Berlin and
immediately processed. The animals received standard basal feed
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with no zootechnical feed additives. Samples were serially diluted
in Phosphate Buffered Saline (PBS, Sigma-Aldrich, Chemie
GmbH, Germany) buffer, pH 7.4 and plated on de Man, Rogosa,
and Sharpe (MRS, Carl Roth GmbH + Co., KG, Germany)
agar plates. After anaerobic growth at 39◦C for 48 h, single
colonies from different dilutions and with different colony
morphologies were picked with sterile toothpicks into microtiter
plates supplemented with MRS broth (Carl Roth GmbH + Co.,
KG, Germany). Supernatants of colonies with visible growth were
subcultured in microtiter plates. The original plates were kept at
4◦C until after the preliminary screening (max. 48 h). Isolates of
interest after the first screening were preserved from microtiter
plates to cryo stock in−80◦C freezer.

Ethical Statement
Samples were taken from studies that were conducted in
accordance with the German Animal Welfare Act (TierSchG)
and approved by the local state oÿce of occupational health and
technical safety “Landesamt für Gesundheit und Soziales, Berlin”
(LaGeSo Reg. Nr. T 0162/16 and A 0100/13).

Step 1: Massive Isolation and Preliminary
Screening of Intestinal Lactobacilli
In the first step, a large samplepool was established and subjected
to a pre-screening system.

Buffering and Deacidification Filtering
(Pre-screening)
Regarding the initial pre-screening, two different approaches
were tested to rapidly screen a large number of isolate
supernatants. Thus, before inoculation of the E. coli model
strain, one subset of supernatants (2208 isolates) was mixed with
same volume of double strength BHI medium buffered with
0.4 M citrate buffer (pH = 6.2, Sigma-Aldrich, Chemie GmbH,
Germany), while another subset of supernatants (2592 isolates)
was supplemented with 3.5 µL 5 M NaOH (Carl Roth GmbH
+ Co., KG, Germany). Optimal buffering and deacidification
conditions that still allowed growth of the E. coli model
strain were determined in a series of pre-experiments (results
shown in Supplementary Materials). The microtiter plates were
inoculated with 10 µL E. coli culture (104 CFU/mL and incubated
overnight aerobically at 37◦C. Final optical density (OD) was read
with a microtiter plate reader at 690 nm (Tecan Infinite200Pro,
Germany) to determine bacterial growth. The final OD was used
as indicator of inhibitory potential of a given isolate.

Step 2: In vitro Selection
The second step of the screening studied the E. coli growth
inhibition in depth via growth curves in combination with lactic
acid production of the isolates as probable inhibitory substance.

For this purpose, supernatants were generated by inoculating
the LAB candidates at 104 CFU/mL in 10 mL MRS medium
and incubated anaerobically at 39◦C for 48 h. Supernatants were
either used as is or adjusted to pH 6.5 with 5 M NaOH.

Lag time for E. coli growth was chosen as the first inhibition-
related parameter and assessed according to previous study with

necessary modification. In brief, pH-neutralized supernatants
of the isolates were combined with same volume of double
strength BHI medium and then dispensed into microtiter plates
at 190 µL per well. The model E. coli strain (10 µL) was added
to each well yielding a final concentration of 104 E. coli cells/mL.
Cultures were then incubated aerobically at 37◦C and turbidity
(OD690nm) was recorded every 5 min for 24 h using a microtiter
plate reader (Tecan Infinite200Pro, Germany). Resulting growth
curves were analyzed for lag time against respective controls
without supernatants using the 3-parameter sigmoidal equation
for bacterial growth and compared to respective controls.
All growth experiments were carried out in triplicate. Lactic
acid production was measured as aother probable inhibitory
parameter. Triplicates of non-pH controlled supernatants were
prepared as described above. Protein was precipitated by Carrez
solution, the supernatant was filtered (0.45 µm filter, Carl Roth
GmbH+ Co., KG, Germany) and the concentration of lactic acid
was measured with an enzymatic test reagents (R-Biopharm AG,
Germany) according to themanual withminormodification. The
L-/D-lactic acid standards were prepared with diluting pure L-
/D-lactic acid to a serial dilutions (0, 26.5, 53, 79.5, 132.5, 185.5,
238.5, and 265 mg/L) and treated supernatant of each isolate
was 1:50 diluted. 10 µL of each sample was added to 200 µL
reagent 1 (L-/D-lactic acid-dehydrogenase buffer) and incubated
at room temperature for 3 min. 10 µL distilled water was also
incubated as reagent blank (RB). The OD was read once as A1
after the incubation, then 50 µL reagent 2 (NAD solution) was
added to each reaction. The samples were again incubated in
room temperature for 15 min, then the absorbance was measured
again as A2. The standard curve was established with adjustedOD
absorbance of all standards with equation “1A = (A2-0.808A1)
Sample-(A2-0.808A1) RB.” The standard curve for both L-lactic
acid and D-lactic acid were plotted accordingly (calibration
curves are shown in the Supplementary Figures 4, 5). The
concentration of each sample was further calculated with their
corresponding adjusted OD by the standard curve.

To make the data comparable, the results of lag time and
concentrations of lactic acids were indexed as follows: each
read of lag time and lactic acid concentration was divided by
the maximum value of the data set (lag time n/lag time max
or lactic acid n/lactic acid max) to reflect individual lag time
extension/lactic acid production level among all tested isolates.
Supernatants with superior lag time- and lactic acid index were
then introduced to the final step of the isolation assay.

Step 3: Ex vivo Selection
An ex vivo model was prepared on the basis of a published
method with minor modification (Starke et al., 2013) to test
the impact of the chosen isolates on the survival of the E. coli
model strain under conditions that are similar to the intestinal
tract. Briefly, fresh digesta samples from the crop, jejunum
or ileum were diluted 1:2 (w/v) with sterilized water. After
sedimentation for 5 min, the supernatant of this suspension was
transferred to sterile 15 mL tubes and dispensed into microtiter
plates. LAB candidates (final concentration 107 CFU/mL) and
the E. coli model strain (final concentration 104 CFU/mL) were
then inoculated in triplicate. Non-inoculated suspensions served
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as controls. All suspensions were incubated anaerobically at 37◦C.
This lower temperature than under in vivo conditions was chosen
to chosen to allow the E. coli strain a better survival and therefore
better detectability, as results show that even at 37◦C the most
active isolates completely inhibited E. coli survival after 24 h.
Samples (10 µL) were obtained after 8 and 24 h incubation,
respectively, and inoculated into cefotaxime (8 µg/mL, Thermo
Fisher GmbH, Germany) containing BHI agar plates. After
growth, colony forming units (CFU) as well as growth curves
were analyzed as described above.

The three consecutive steps of screening are schematically
shown in Figure 1.

Eligibility Criteria in Each Step
Isolates that showed inhibitory activity against the E. coli strain
were determined after each step of the procedure. In the first
step (massive screening), the end-point OD of E. coli culture co-
incubated with pre-treated supernatants (buffered/deacidified) of
LAB isolates were referred as the indicator to estimate growth
inhibition of the E. coli strain. A cut-off value of 0.2 at OD690nm,
corrected for controls, was set as the threshold for growth
inhibition. A total of 76 isolates were eligible for the next step.

In the second step, both lag time and lactic acid production
were indexed. A scatter plot of these indices revealed those
isolates with superior inhibition/concentration. The best five
isolates were selected for the final step.

In the third step, isolates that induced the lowest E. coli
survival in both growth assay and CFU after incubation under
ex vivo conditions were selected as the final candidates.

Characterization of Selected Candidates
Taxonomic Identification of Candidates
Selected LAB isolates showing successful inhibition were
identified on the species level via full length 16S rDNA sequence
analysis using the classic universal primer pair F27 and R1492
by DSMZ(German Collection of Microorganisms and Cell
Cultures, Germany) according previously published method
(Stackebrandt et al., 2002).

Production of SCFA
Short-chain fatty acid in the supernatants of the candidates was
analyzed via gas chromatography (Agilent Technologies 6890 N
coupled with auto sampler G2614A and auto injector G2613A;
Santa Clara, CA, United States). A total of 500 µl of each
sample was mixed with the same volume of a CuSO4 solution
(0.5 mmol/L). Protein in samples were precipitated by addition of
200 µl Carrez solution and centrifugation. After centrifugation,
the samples were filtered through a 0.45 µm cellulose acetate
(CA) filter and diluted with 0.5 mmol/L CuSO4 by 1:40 (v/v)
for measuring. SCFA were then determined with a previously
published method with minor modification (Schäfer, 1995). An
Agilent 19095N-123 HP-INNOWAX polyethylene glycol column
was employed in this experiment.

Aggregation Assessment
The auto-/co-aggregation abilities of selected LAB isolates were
evaluated by a reported method with minor modification

(Collado et al., 2008). Briefly, for auto-aggregation, stationary
phase cultures were centrifuged (3 min, 10000 g, 4◦C) and
washed three times in PBS. The centrifugates were then re-
suspended in PBS to an OD690nm of 0.25 ± 0.05 (comparable
to 107 – 108 cells/mL). Turbidity was measured every 2 h.
To determine the auto-aggregation of strains, turbidity was
calculated by the following equation: Auto-aggregation (%) = 1-
(ODt-OD0) × 100 (where ODt was absorbance after 2 h;
OD0 was the initial absorbance). For the co-aggregation, the
centrifugates of lactobacilli isolates and tested E. coli were
both processed and prepared as described above. Lactobacilli
isolates and model E. coli were mixed at equal volume
(vol/vol). Turbidity was monitored as described above and
the co-aggregation rate was calculated by: [(ODE + ODL)/2-
(ODCO)/(ODESBL + ODLAB)/2] × 100 (where ODE was the
E. coli control; ODL was the lactobacilli isolate control and ODCO
expresses the turbidity of coincubation).

Tolerance of Isolates to Acid, Osmotic Pressure and
Bile
The tolerance of lactobacilli isolates to acid and bile stress
was assessed by their viability and growth under conditions
encountered in the stomach and small intestine, respectively.

Overnight cultures were centrifuged (3 min, 10000 g, 4◦C)
and washed three times with PBS, pH 7.0. The centrifugates were
diluted to 108 cells/mL then inoculated into acidified MRS broth
at pH 2, 3, and 4 or MRS broth supplemented with bile salt (w/v:
0.1%/0.3%/0.5%/0.7%) in a microtiter plate, respectively, and
incubated anaerobically overnight at 39◦C. Turbidity (OD690nm)
was monitored every 5 min and growth curves were plotted
accordingly. Another set of centrifuges of the same cultures was
diluted with pH-adjusted incubation buffer and bile containing
buffer to approximately log10 8.0 cells/mL and incubated at 39◦C
for 6 h. Samples from incubations were taken every 2 h and viable
cells were enumerated by plating.

Tolerance against osmotic pressure was assessed with a
published protocol with minor modification (Ng et al., 2015).
After overnight incubation (anaerobically, 39◦C), cultures were
centrifugates (3 min, 10000 g, 4◦C), washed in PBS buffer
and 109 cells/mL were inoculated in MRS broth supplemented
with sodium chloride of 2–10% final concentration. End-point
turbidity at OD690nm was determined after 40 h and compared
to respective controls.

Adhesion and Competitive Adhesion Assay
The in vitro adhesion assay was performed according to previous
report with minor modifications (Yeo et al., 2016). Caco-2 cells
were cultured in Dulbecco’s modified Eagle’s medium/Ham’s
Nutrient Mixture F-12 (DMEM/F-12, Merck, Germany) supplied
with 10% fetal bovine serum (FBS), streptomycin (100 µg/mL),
and amphotericin B (0.5 µg/mL) under 5% CO2 in a 95% air
atmosphere with 90% humidity at 37◦C. The cells were then
seeded onto 12 well plates (Greiner Bio-one GmbH, Germany)
with of 2 × 105 cell per well in antibiotic free medium. After
confluence of cells reached approximately 80%, the cells were
exposed to 108 CFU lactobacilli candidate or combination of
108 CFU lactobacilli candidates with 107 CFU model E. coli. After
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FIGURE 1 | Experimental design of the assay.

incubation at 37◦C for 1.5 h, non-adhering bacteria were washed
three times with PBS. The monolayer of cells was detached
with cell scratcher and re-suspended with 500 µl PBS. After
a serial dilution, detached cells were then plated onto MRS
agar plates or BHI agar plates supplemented with 8 µg/ml
cefotaxime. Adhesion and competitive adhesion of lactobacilli
was determined by enumeration of colonies on agar plates and
calculated as relative to controls.

Antibiotic Susceptibility
The minimum inhibitory concentration (MIC) of a selected
panel of antibiotics including ampicillin, chloramphenicol,
clindamycin, erythromycin, gentamycin, kanamycin,
streptomycin, and tetracycline toward candidates were
determined using a broth microdilution test as described
by the Clinical and Laboratory Standards Institute (CLSI)
with minor modification (CLSI, 2012). Selected candidates
were incubated as described. Microdilution plates containing
100 µl MRS medium were inoculated with 50 µl inoculum as
well as 50 µl antibiotic solution at appropriate concentration
(0.25–128 µg/ml). Negative and positive controls were non-
inoculated/inoculated wells without antibiotics. After anaerobic
incubation at 37◦C for 48 h, the MICs were determined as their
lowest concentration capable to inhibit the visible bacterial
growth. The reference strain DSM 20016 (L. reuteri) was used as

the quality control. The cut-off value documented by European
Food Safety Authority (EFSA, 2012) was used to categorize
susceptibility or resistance of selected candidates.

Statistical Analysis
The experiments were performed twice in triplicates for the
determination and comparison in screening and characterization
section. Results are presented as means ± standard deviation
(SD). For in vitro data, lag times were modeled and analyzed
by 3-parameter sigmoidal equation using SigmaPlot version
11 (Systat Software Inc., United States). Statistical significance
of comparison in screening steps was assessed using Mann–
Whitney test. Significance of different cell adhesion level
was evaluated with Duncan’s multiple range test. Statistical
procedures were performed at a significance level of 95%. All
calculations were performed using the statistics software IBM
SPSS (Version 22, Chicago, IL, United States).

RESULTS

Step 1: Massive Isolation and Preliminary
Screening of Intestinal Lactobacilli
In the initial screening step, 7102 colonies were processed.
2302 isolates failed to show growth after sub-culturing colonies
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in liquid medium. The remaining 4800 isolates were further
tested for inhibitory activity against the model E. coli strain
with the described buffering or deacidification treatments. Of
those isolates, a total of 76 isolates showed either strong growth
inhibition (OD690nm < 0.2) in buffered supernatants (48 of 2160
isolates tested, 2.2% positive) or in deacidified supernatants (28
of 2564 isolates tested, 1.1% positive).

Step 2: In vitro Selection
A more in-depth evaluation of the inhibitory activity of isolates
was studied by monitoring E. coli lag time lag time after
incubation in supernatants. The production of lactic acid by the
isolates was used as an additional inhibitory parameter, as lactic
acid is strongly inhibitory to most enterobacteria. Increase of lag
time of the E. coli strain in supernatants ranged from 1.17 h to
2.57 h and lactic acid production in overnight cultures ranged
from 14.07 g/L to 16.01 g/L (Table 1). From the comprehensive
comparison of both lag time and lactic acid production indices,
five isolates were chosen for the final step (Figure 2).

Detailed lag times of all 76 isolates were shown in
Supplementary Table 1. Regarding the original selection, two of
the five strains were isolated via the buffer system, while three
strains were obtained from the deacidification treatment.

Step 3: Ex vivo Selection
In the ex vivo selection step, five isolates from the in vitro
selection were co-incubated with the E. coli model strain in
intestinal contents of broiler chicken. After 8 h co-incubation,
most candidates showed a stronger inhibitory activity against the
E. coli model strain in crop contents than in jejunum contents
(Figures 3A,B). Strain S26 only led to reduced growth of the
E. coli strain but all other strains resulted in complete inhibition
in crop content. No inhibition by all strains was observed after
8 h in jejunum contents. When the ex vivo co-incubation was
extended to 24 h and studied via CFU, the inhibitory effects of the
candidate isolates were amplified (Table 2). These results indicate
that candidate S1 and S73 completely reduced the survival of
E. coli in intestinal contents.

Characterization of Final Lactic Acid
Bacteria Candidates
Data on the characterization of the Lactobacillus isolates is
shown in Table 3. The final 2 candidates, Lactobacillus strains

TABLE 1 | Lactic acid production of five lactic acid bacteria candidates and lag
time of the E. coli model strain in media supplemented with supernatants
of the candidates.

Strain Lactic acid (g/L) Lag time (h)

S1 15.06 ± 1.96 8.57 ± 1.16∗

S26 14.07 ± 4.35 8.01 ± 0.79

S62 15.30 ± 2.65 8.09 ± 0.79

S70 16.01 ± 3.08 8.69 ± 0.83∗

S73 15.46 ± 3.01 8.86 ± 1.39∗

Control – 6.29 ± 0.87

∗ = Significantly different to control (p ≤ 0.05, Mann–Whitney test).

FIGURE 2 | Lag time and lactic acid index of 76 lactic acid bacteria isolates.
Red dots indicate selected candidate isolates.

S1 (L. salivarius) and S73 (L. agilis) originated from ileum
and crop samples of 42-day old broilers, respectively. Strain S1
was found using the buffer system, while S73 originated from
the deacidification treatment. Strain S73 exhibited a stronger
production of total SCFA in MRS medium than strain S1 (the
production of lactic acid was included in Table 1). Regarding
auto-aggregation, S73 showed a higher rate than S1. As to
co-aggregation, no significant difference was observed in co-
aggregative ability with the indicator E. coli strain after 24 h
incubation. All candidates demonstrated good surface aÿnity
and S73 revealed maximum hydrophobicity.

Evaluation of Stress Tolerance
Tolerance against gastric pH conditions and small intestinal bile
acids was tested to study the survival of the isolates during
their passage through stomach and small intestine. Growth of
both candidates was suppressed at pH 2, but survival increased
at pH 3–4 (Table 4). Strain S73 seemed to tolerate lower pH
slightly better than S1.

Both strains survived bile acid supplemented media well
in the range from 2.45 to 7.35 mM (0.1% to 0.3% w/v) bile
concentration, while 17.15 mM (0.7% w/v) concentration of bile
exhibited stronger inhibitory effects (see Table 4). However, S1
generally showed slightly reduced tolerance in bile supplemented
MRS medium compared to S73.

Both candidates demonstrated good resistance against
increasing osmolarity (Table 5). Growth could still be detected
until 8% NaCl. S1 showed a slightly better osmolarity resistance
compared to S73.

Antibiotic Susceptibility
The results in MIC test of selected candidates were interpreted
according to the “Guidance on the assessment of bacterial
susceptibility to antimicrobials of human and veterinary
importance” documented by ESFA (2012). No resistance was
observed against ampicillin, clindamycin, streptomycin and
tetracycline. The strain S26 and S62 demonstrated resistance
against gentamycin and kanamycin. S26 also indicated the
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FIGURE 3 | (A) Growth of the model E. coli strain after ex vivo co-incubation with candidate lactic acid bacteria isolates for 8 h in crop contents. Filled circle = S1;
open circle = S26; filled down triangle = S62; open downward triangle open diamond = S70; filled square = S73; open square = control. (B) Growth of the model
E. coli strain after ex vivo co-incubation with candidate lactic acid bacteria isolates for 8 h in jejunum contents. Filled circle = S1; open circle = S26; filled down
triangle = S62; open downward triangle open diamond = S70; filled square = S73; open square = control.

TABLE 2 | Survival of the E. coli model strain after 24 h incubation with lactic acid
bacteria candidates in intestinal contents (CFU/g content).

Crop Jejunum

S1 ND ND

S26 7.40 ± 0.67 × 103 4.00 ± 0.54 × 104

S62 3.10 ± 0.50 × 103 6.80 ± 0.42 × 103

S70 7.20 ± 0.80 × 102 3.80 ± 0.54 × 102

S73 ND ND

E. coli control 3.80 ± 0.22 × 104 9.10 ± 1.79 × 104

Initial E. coli count 8.70 ± 1.35 × 104 8.70 ± 1.35 × 104

Negative control ND ND

ND = not detected (detection limit: 102 CFU/g content).

resistance to chloramphenicol and erythromycin. S70 showed
the resistance to kanamycin. The maximum susceptibility was
observed against ampicillin and clindamycin. As the breakpoint
of cefotaxime was not included in the documentation of ESFA,
the results only revealed none of candidates was resistant to
the cefotaxime at working concentration (8 µg/mL) of ex vivo
model (Table 6).

Adhesion and Competitive Adhesion
Assay
Among the five candidates tested in ex vivo model, S1
demonstrated the best adhesion capacity to human Caco-
2 cell lines (Figure 4A). The competitive adhesion assay
showed that the adhesion of E. coli model strain decreased
significantly when co-incubated with all lactobacilli candidates
except with strain S26 (Figure 4B).

DISCUSSION

Benefits of probiotics in animal nutrition are increasingly
highlighted for their improvement of animal health by reducing

the pathogenic bacterial load and the increase in animal
performance (feed conversion, body weight gain) (Hong et al.,
2005; Taras et al., 2005; Böhmer et al., 2006). Contrary to
probiotics in human medicine/nutrition, probiotics in animal
nutrition are often expected to specifically combat pathogenic
bacteria (Markowiak and Śliżewska, 2018) which are of major
concern in farm animal husbandry. Therefore, the selection
of probiotics against those veterinary pathogens is always the
preferred solution to improve animal health. In our current study,
a combination of in vitro and ex vivo method is introduced
to enable a rapid and comprehensive selection selection from
massive probiotic LAB that are active against E. coli.

The scientific rationale for the focus on host specific
lactobacilli as potential probiotics in this study is based on
following reasons. Firstly, lactobacilli are known for their
antagonistic activity against E. coli (Juven et al., 1991; Servin,
2004; Arena et al., 2018). Secondly, lactobacilli enjoy the
generally-regarded-as-safe (GRAS) status as defined by the FAO
or qualified presumption of safety (QPS) in the EU. Thirdly,
several studies indicate that bacteria are expected with higher
chance to colonize their hosts, if they are isolated from the same
host (Yuki et al., 2000; Kwong et al., 2014). Thus, choosing
lactobacilli as main target of isolation, the functional criterion
(inhibition of E. coli) was combined with safety considerations
(GRAS/QPS status) and high probability of viability in the
intestinal tract. As highlighted by the FAO, a major potential
safety concern of LAB can be their antibiotic resistance. In
our antibiotic susceptibility assay on the five isolates used for
ex vivo selection step, both final candidates (strain S1 and S73)
demonstrated no resistance against recommended antibiotics,
which increases the confidence of their use as safe feed additive
in the future. Finally, host specificity has been deemed a favorable
property for probiotic microorganisms (Saarela et al., 2000).
Consequently, the robustness of potential probiotics against
specific conditions of the GIT should be a pre-requisite for any
candidate strain planned for in vivo colonization (Dicks and
Botes, 2010; Fiocco et al., 2019). As the LAB candidates in this
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TABLE 3 | Characterization of lactic acid bacteria candidates.

Isolates Sampling site Morphology Taxonomic
identification

SCFA production
(µmol/mL)

Auto-aggregation
(%)

Co-aggregation
(%)

Hydrophobicity
(%)

S1 Ileum Rod L. salivarius 96.13 42.31 ± 2.49 35.30 ± 2.17 65.57 ± 2.83

S26 Feces Spherical P. acidilactici 104.57 43.33 ± 2.05 33.33 ± 1.56 38.73 ± 1.58

S62 Crop Rod L. agilis 92.41 46.57 ± 0.91 37.12 ± 1.68 49.10 ± 1.75

S70 Feces Rod L. salivarius 96.51 41.35 ± 2.34 36.45 ± 3.30 45.97 ± 3.70

S73 Crop Rod L. agilis 124.18 53.98 ± 2.93 34.79 ± 1.57 70.13 ± 2.27

TABLE 4 | Viability of final candidates under acidic conditions or bile challenge (log CFU/mL).

Incubation time S1 Survival percentage (cell) (%) S73 Survival percentage (cell) (%)

Acid tolerance 0 h 8.14 ± 0.06 100 8.10 ± 0.042 100

pH = 2 2 h 7.50 ± 0.00 22.91 7.86 ± 0.14 57.54

4 h 5.77 ± 0.23 0.43 6.00 ± 0.20 0.79

6 h 4.88 ± 0.09 0.05 5.22 ± 0.20 0.13

pH = 3 2 h 7.70 ± 0.18 36.31 7.93 ± 0.07 67.61

4 h 6.27 ± 0.05 1.35 7.21 ± 0.20 12.88

6 h 6.01 ± 0.00 0.74 6.40 ± 0.01 2.00

pH = 4 2 h 7.96 ± 0.25 66.07 7.99 ± 0.22 77.62

4 h 7.07 ± 0.14 8.51 7.67 ± 0.13 37.15

6 h 6.36 ± 0.01 1.66 6.86 ± 0.00 5.75

Bile tolerance 0 h 7.63 ± 0.07 100 8.02 ± 0.09 100

2.45 mM 2 h 7.46 ± 0.05 20.89 7.60 ± 0.10 31.62

4 h 6.69 ± 0.07 3.55 6.91 ± 0.03 6.46

6 h 6.49 ± 0.07 2.24 6.74 ± 0.07 4.37

7.35 mM 2 h 7.06 ± 0.03 8.32 7.31 ± 0.10 16.22

4 h 6.71 ± 0.04 3.72 6.53 ± 0.05 2.69

6 h 6.31 ± 0.08 1.48 6.39 ± 0.15 1.95

12.25 mM 2 h 6.83 ± 0.01 4.90 6.850 ± 0.03 5.62

4 h 6.03 ± 0.11 0.78 6.30 ± 0.07 1.58

6 h 5.61 ± 0.12 0.30 5.83 ± 0.15 0.54

17.15 mM 2 h 6.54 ± 0.08 2.51 6.70 ± 0.13 3.98

4 h 5.93 ± 0.16 0.62 6.08 ± 0.05 0.95

6 h 5.26 ± 0.12 0.13 5.69 ± 0.07 0.39

TABLE 5 | Growth capacity of final candidates under different osmotic pressures (final OD690nm).

0% NaCl 2% NaCl 4% NaCl 6% NaCl 8% NaCl 10% NaCl

S1 1.12 ± 0.09 0.99 ± 0.03 0.85 ± 0.01 0.60 ± 0.01∗ 0.52 ± 0.06∗ 0.15 ± 0.02

S73 0.99 ± 0.11 0.82 ± 0.08 0.70 ± 0.07 0.34 ± 0.03 0.26 ± 0.05 0.13 ± 0.06

∗ = Significantly different between strains (p ≤ 0.05. Mann–Whitney test).

study were specifically designated to be used in broiler chicken,
we followed this host-specific concept. To further ascertain the
host specificity, an incubation temperature of 39◦C has been
applied to simulate the body temperature of broiler chicken and
consequently yield mostly host-specific LAB isolates. In future
applications of this method, this parameter can be changed
depending on the host of interest.

The novelty in our procedure firstly lies in the number of
screened isolates because enlarging the sample number simply
enhances the chance to find probiotic isolates. Secondly, the
validation of an ex vivo screening based on the survival of
the model strain co-incubated with candidate LAB of interest
under simulated in vivo conditions possibly predicts their

functional activity in host animal. Thus, our experimental
design combines three consecutive steps to progressively reduce
the number of candidates with multiple criteria step by step
(de Melo Pereira et al., 2018).

A literature search on isolation of probiotic bacteria
revealed that the number of isolates ranges from 14 to
1150 isolates with the majority of publications using only
50 to 80 isolates (Robyn et al., 2012; Babot et al., 2014).
To increase the number of potential isolates, a procedure
allows both high throughput and easy method for detection
of inhibitory activity is needed. Therefore, we designed a pre-
screening step to identify potential candidates out of a massive
sample pool (over 7000 isolates) by systematic processing
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TABLE 6 | Susceptibility test of selected candidate strains to antibiotics.

S1 S26 S62 S70 S73 QC strain

Ampicillin <0.25S 2S <0.25S <0.25S 0.25S 0.5S

Chloramphenicol 4S 8R 4S 4S 2S 2S

Clindamycin 0.5S <0.25S 0.25S 1S 1S <0.25S

Erythromycin 0.25S 2R 0.25S 1S 1S 1S

Gentamycin 16S 64R 64R 8S 16S 8S

Kanamycin 32S 128R 128R 128R 32S 16S

Streptomycin 32S 32S 16S 8S 16S 16S

Tetracycline 4S 2S 4S 1S 4S 2S

Cefotaxime 0.25 2 2 1 1 2

S = susceptible; R = resistant; QC strain = L. reuteri (DSM20016).

instead of one-by-one treatment. This procedure also identified
isolates which exhibit ease of growth and handling as a
prerequisite for production of probiotics on a technical scale.
Elimination of LAB that could not be cultivated under the
relatively simple growth conditions of the assay probably led
to a loss of many strains with potential inhibitory activity.
However, fastidious growth conditions will inevitably lead
to prohibitively high costs during later biomass production
and thus, commercialization of the obtained isolates would
be questionable.

During the selection progress, buffered or deacidified
supernatants were used. It is known that lactic acid produced
by lactobacilli can drastically reduce pH in media. Therefore,
buffered/deacidified supernatants exclude pH-dependent
inhibition via metabolites except for exceptionally high lactic
acid production that overcomes the buffering capacity. On the
other hand, a pH-independent inhibition involves different

modes of action like production of bacteriocin or bacteriocin-
like-substances (BLIS). In the present assay, both pH-dependent
and pH-independent modes of action were considered.

The pre-screening step yielded 76 potential probiotic isolates
out of the initial 4800 robust isolates (1.6%). These isolates
were characterized in more depth via lag time extension of the
E. coli model strain and lactic acid production. Since lag time
extension is a key indicator in evaluating growth inhibition
of microorganisms under adverse conditions (Swinnen et al.,
2004; Rufián-Henares and Morales, 2008), it is often used
to assess growth inhibition to various target microorganisms
(Pereira et al., 2016; Alpaslan et al., 2017). The advantage
of liquid based growth inhibition assays over agar diffusion
assays is their sensitivity to observe subtle influences on growth
(Fredua-Agyeman et al., 2017), and also their sample throughput.
Therefore, we chose a microtiter plate-based assay to fit the
purpose of rapid and eÿcient screening potentially probiotic
LAB. Lactic acid production was considered as another inhibitory
parameter, because exceptional lactic acid production in vitro
may also yield high lactic acid production in vivo. For the studied
isolates, it was also shown in vitro that other metabolites such as
short chain fatty acids are negligible compared to lactic acid. The
classic antagonism requires lactic acid to acidify the environment,
which in turn inhibits growth of non-acid fast bacteria. However,
lactic acid also exerts additional inhibition by disrupting the outer
membrane to Gram-negative bacteria including E. coli (Alakomi
et al., 2000). The use of lag time and lactic acid production indices
enables the identification of isolates with the highest inhibitory
activities. In the end, we chose five isolates among all candidates
that exhibited the highest indices for both parameters.

In view of the complex environment in the intestinal tract,
in vitro models cannot reflect antibacterial effects that may occur

FIGURE 4 | (A) Adhesion ability of lactobacilli candidates to Caco-2 cell monolayers. (B) Adhesion ability of model E. coli strain co-incubated with lactobacilli
candidates to Caco-2 cell monolayers.
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in the animal. It is always questionable whether probiotics inhabit
or maintain their inhibitory activity in vivo well (Talpur et al.,
2012). Consequently, in vitro tests are not able to mimic the
complex intestinal matrix and truly reflect the inhibitory activity
of probiotics in the GIT of animal (Saint-Cyr et al., 2016).
However, in vivo experiments are costly and are subject to ethical
considerations. Ex vivo assays try to find a compromise between
both approaches. Ex vivo assays are advantageous due to higher
replicate numbers and application of biological agents at defined
concentrations. In the present study, although a two-fold dilution
of digesta content may have led to a bias regarding the response
of the biological matrix (partly hydrolyzed nutrients, metabolites,
etc.). Nevertheless, part of the biological matrix was still intact
and previous studies have shown that this ex vivo assay has the
potential to mimic the bacterial response in intestinal contents.
For instance, Starke et al. (2014) used a very similar ex vivo system
on the response of intestinal bacteria to zinc and found that the
system correctly predicted the bacterial response to zinc of later
pig trials (Starke et al., 2014). Therefore, although the chosen
ex vivo assay in this study had its limits, it still is a valuable tool
to more closely elucidate possible inhibitory activity of bacterial
isolates in vitro.

Compared to in vitro assays, the tested Lactobacillus
candidates demonstrated different inhibitory effects against the
E. coli model strain in the ex vivo model. Here, candidate
S1 (L. salivarius) and S73 (L. agilis) showed the highest
inhibitory potential. The other chosen LAB strains were not
able to completely inhibit E. coli growth, although their in vitro
performance was superior. Thus, the ex vivo assay has shown that
it was indeed worthwhile to use an intermediate step before using
probiotic isolates directly in feeding trials.

As recommended by WHO for selecting probiotics, host-
related stress tolerance is usually considered as screening criteria
in many studies (de Melo Pereira et al., 2018). The GIT induced
stress was simulated in vitro according previous publications
(Mongin et al., 1976; Lin et al., 2003; Lemme and Mitchell,
2008; Morgan et al., 2014; Nkukwana et al., 2015). Both
Lactobacillus candidates demonstrated high viability in acidic
incubations, maintained growth at pH 4, tolerated a wide range
of bile concentrations and showed good resistance against high
osmolality. Thus, a good survival in the GIT of the strains is
expected and was predictable as they were isolated from the crop
(S73) or ileum (S1) of broiler chicken. This also underscores
the notion that host specific isolation increases the probability
to isolate candidates with high survival rates in their respective
host. However, four of the studied Lactobacillus isolates also
inhibited E. coli adhesion in a commonly used intestinal model
cell line, the Caco-2 cell lines, which may indicate a potential
benefit of the selected candidates in competitive actions for
intestinal niche. Metabolite production was also monitored and
as expected, only minor amounts of acetate was found compared
to production of lactic acid, while only traces of propionate and
butyrate were present. This is in agreement with some previous
studies (Imen et al., 2015). The level of propionate, butyrate
and valerate was relatively low. This phenomenon might be
because of being consumed as the energy for bacterial survival
(Fernando et al., 2018).

The final two Lactobacillus spp. are currently used in
feeding trials. Preliminary results indicate that the strains indeed
modified the bacterial composition and activity metabolite
concentration in the intestinal tract of broiler chicken (data
not shown). Eventually, the employed combination of in vitro
and in vivo combined method has the potential to isolate other
probiotic bacteria with inhibitory activity against any other
specific bacterium, as long as a specific biomarker for pathogens
(for instance antibiotic resistance) is available. With modification
regarding growth condition as well as the detection method for
the bacterium in question, the describedmethod can be expanded
to other probiotic species for a targeted search against specific
microbes. This gives the method a general applicability in a more
comprehensive and rapid way.

CONCLUSION

In the present study, a novel three-strep rapid screening method
consisted is reported for the isolation of probiotic LAB against
a target E. coli. It includes a pre-screening step as an effective
filter of a massive isolate pool and easy-handling of the isolates
for later technical scale cultivation; an in vitro selection step to
assure the correct choice of the most active isolates and finally,
an ex vivo assay to confirm probiotic function of the candidates
in vivo. As a proof-of-principle we have chosen lactobacilli as
antagonist to E. coli, but the system can be employed to screen any
cultivable probiotic bacterium and its inhibitory activity against
any cultivable bacterium with a specific biomarker.
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Abstract: In animal nutrition, probiotics are considered as desirable alternatives to antibiotic growth
promoters. The beneficial effects of probiotics primarily depend on their viability in feed, which
demands technical optimization of biomass production, since processing and storage capacities are
often strain-specific. In this study, we optimized the production parameters for two broiler-derived
probiotic lactobacilli (L. salivarius and L. agilis). Carbohydrate utilization of both strains was determined
and preferred substrates that boosted biomass production in lab-scale fermentations were selected.
The strains showed good aerobic tolerance, which resulted in easier scale-up production. For the
freeze-drying process, the response surface methodology was applied to optimize the composition of
cryoprotective media. A quadratic polynomial model was built to study three protective factors (skim
milk, sucrose, and trehalose) and to predict the optimal working conditions for maximum viability.
The optimal combination of protectants was 0.14g/mL skim milk/ 0.08 g/mL sucrose/ 0.09 g/mL
trehalose (L. salivarius) and 0.15g/mL skim milk/ 0.08 g/mL sucrose/ 0.07 g/mL (L. agilis), respectively.
Furthermore, the in-feed stabilities of the probiotic strains were evaluated under different conditions.
Our results indicate that the chosen protectants exerted an extensive protection on strains during
the storage. Although only storage of the strains at 4 ◦C retained the maximum stability of both
Lactobacillus strains, the employed protectant matrix showed promising results at room temperature.

Keywords: probiotic; optimization procedure; freeze-drying; response surface method; in-feed stability

1. Introduction

The development of alternatives for antibiotic growth promoters in livestock has been of global
interest in the field of animal nutrition after their ban in many countries [1–3]. Probiotics have shown
beneficial effects in the field of animal nutrition such as improved weight gain, development of a
beneficial intestinal microbiota, and enhancement of the immune system in farm animals [4–6]. Most
probiotic are bacteria, but there are also few non-bacteria microorganisms like yeast that belong to
the probiotic family [7]. As an important member of lactic acid bacteria, Lactobacillus has become one
of the most commonly used probiotic species among all probiotic species [8]. Health promotion by
lactobacilli, which are generally regarded as safe (GRAS), makes them particularly interesting as a
zootechnical additive [9,10].

A sufficient number of viable probiotic cells is a prerequisite for their successful impact in the
animal [11]. In order to commercialize probiotics, timesaving and cost-effective methods to increase
bacterial cell yield during the production progress are necessary [12]. Among other parameters,
biomass production can be improved by adjusting growth factors (e.g., substrates, pH, incubation time)
to optimize biomass production [13–15]. Another fundamental factor is the cost intensive fermentation
especially of anaerobes, which negatively affects the scale-up of biomass production [16]. This topic
has been investigated in several studies, but with a limited number of candidate species [17].
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The preparation of probiotic products calls for reasonable cell stability during the manufacturing
process. Among various techniques, drying methods are commonly used for the preservation and
ease of handling of microorganisms [18]. Freeze-drying has been widely applied to bacteria that
exhibit high stability against low temperatures [19]. However, stress factors such as very low freezing
temperatures or dehydration during freeze-drying can cause undesirable loss of viability for some
probiotic strains [20,21]. Due to this, a variety of cryo-protectants have been developed to increase the
viability of probiotic bacteria during the freeze-drying procedure [22,23]. Protectants such as skim
milk, whey proteins, sugars, or other bio-polymers were studied mostly as combinations for synergistic
protective effects with other protectants [24,25]. The classical one-variable-at-a-time approach (OVAT)
strategy was deemed more time-consuming. It ignores the interaction between functioning factors,
which might lead to the confusion and bias of results [26]. Thus, the response surface method has
become one of the most used optimization approaches to create the best conditions with a minimum
number of experiments [25]. Among different optimization procedures, the Box-Behnken Design
(BBD) has been shown to be superior to 3-level full factorial designs and is, thus, being used in
response surface modelling [27,28]. Furthermore, results indicated that cryo-protectants might work
in a strain-specific manner and, thus, optimization may rely on particular protective systems for a
given strain.

Viability and activity of probiotics during storage are critical criteria for both the manufacturer
and customer [29]. Storage conditions affect survival of bacterial cells [30] and can even influence
the functionality of the probiotic such as stress resistance or capacity of epithelial adhesion without
changing cell viability [31]. Most studies report on the storage stability of probiotics as a sole objective.
However, in-feed stability is of prime importance, but is seldom reported.

In a previous study, two Lactobacillus strains (L. salivarius, L. agilis) were isolated from broiler
intestinal samples (unpublished data). These strains were tested for their applicability as a probiotic
additive for poultry. The current study determined the most economical and feasible procedure to
produce those probiotic strains as feed additive. Furthermore, different factors regarding biomass
production, survival during lyophilization, and in-feed stability of storage were evaluated.

2. Results

2.1. Metabolic Fingerprints of the Lactobacillus Strains

The results for the BIOLOG® AN plates are shown as a heat map in Figure 1. The L. salivarius strain
showed a broader carbohydrate utilization spectrum than the L. agilis strain. The highest metabolic
activity for the L. salivarius strain was observed for maltose, raffinose, sucrose, and glucose, while the
L. agilis strain metabolized mannose, glucose, L-lactic acid, and mannitol as preferred carbohydrate
substrates followed by mannitol, lactic acid, mannose, glucose, maltose, sucrose, maltotriose, lactose,
melibiose, raffinose, sorbitol, and lactulose. Taking cost and easy-availability of those substrates into
consideration, mannitol, mannose, maltose, sucrose, melibiose, and sorbitol were selected for further
evaluation of boosting effects on lactobacilli growth.
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Figure 1. Metabolic fingerprint of the probiotic Lactobacillus strains. DLAE = D-Lactic Acid Methyl 
Ester. HA = α- Hydroxybutyric Acid. DGA = D-Galacturonic Acid. GLM = Glycyl-L-Methionine. GLP 
= Glycyl-L-Proline. NADG = N-Acetyl-D-Glucosamine. S1 = L. salivarius. S73 = L.agilis. 

2.2. Booster Effects of Selective Carbon Sources on Biomass Production 

Figure 1. Metabolic fingerprint of the probiotic Lactobacillus strains. DLAE = D-Lactic Acid Methyl
Ester. HA = α- Hydroxybutyric Acid. DGA = D-Galacturonic Acid. GLM = Glycyl-L-Methionine.
GLP = Glycyl-L-Proline. NADG = N-Acetyl-D-Glucosamine. S1 = L. salivarius. S73 = L.agilis.
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2.2. Booster Effects of Selective Carbon Sources on Biomass Production

The addition of sucrose and sorbitol to the basal medium led to a significantly increased number
of viable cells for strain L. salivarius after 12 h of incubation, while the addition of mannose revealed a
booster effect on bacterial growth for the strain L. agilis (Table 1). Extension of cultivation time to 24 h
showed that, all incubations exhibited lower viable cell numbers than after 12 h, except for incubations
in the basal medium. The lowest viable cell numbers were observed after 48 h of incubation (see
Table 1), whereas the biomass in all experimental groups decreased to a level significantly lower than
in the MRS medium.

When comparing all cultivation situations, the incubation of 12 h with the addition of sucrose
significantly increased the biomass yield of strain L. salivarius (p = 0.05). Although the addition of
mannose did not significantly increase the biomass yield of L. agilis (p = 0.127), it ascertained that
shortening the cultivation time still yielded high biomass for both strains. These two substrates were
used in further tests to increase the biomass yield for L. salivarius and L. agilis, respectively.

Table 1. Biomass of the probiotic strains in media supplemented with different additional substrates at
different time points [log CFU/mL].

12 h 24 h 48 h

L. salivarius L. agilis L. salivarius L. agilis L. salivarius L. agilis

Sucrose 9.22 ± 0.02 * 9.08 ± 0.02 * 8.94 ± 0.05 * 8.82 ± 0.06 * 8.67 ± 0.12 8.11 ± 0.06 *
Maltose 9.08 ± 0.05 * 9.11 ± 0.07 8.74 ± 0.12 * 8.74 ± 0.12 * 8.26 ± 0.13 * 8.1 ± 0.12 *

Mannitol 9.04 ± 0.11 9.02 ± 0.09 8.75 ± 0.19 * 8.54 ± 0.07 * 8.45 ± 0.09 * 8.21 ± 0.09 *
Mannose 9.1 ± 0.04 * 9.2 ± 0.06 * 8.61 ± 0.03 * 8.92 ± 0.05 * 8.49 ± 0.04 * 8.42 ± 0.1 *
Sorbitol 9.18 ± 0.06 * 9.17 ± 0.03 * 8.88 ± 0.03 * 8.88 ± 0.04 8.48 ± 0.11 * 8.22 ± 0.06 *

Melibiose 9 ± 0.06 9.03 ± 0.03 8.96 ± 0.05 8.52 ± 0.04 * 8.63 ± 0.06 8.27 ± 0.1 *
MRS contol 8.86 ± 0.1 8.98 ± 0.04 9.07 ± 0.07 9.13 ± 0.02 8.65 ± 0.04 8.65 ± 0.07

* = p < 0.05. MRS control: control medium (de Man, Rogosa, and Sharpe medium).

2.3. Effect of Aerobic or Anaerobic Incubation on Biomass Production

The tolerance of both strains to oxygen was evaluated by growth under aerobic or anaerobic
conditions. Compared to aerobic conditions, the L. salivarius strain demonstrated numerically
increased biomass under anaerobic conditions (11.97 ± 11.40 log CFU/L anaerobic vs. 11.90 ± 10.74
log CFU/L aerobic). There was also no significant difference in the biomass of strain L. agilis
between anaerobic incubation and aerobic incubation (12.01 ± 11.17 log CFU/L anaerobic vs. 12.02 ±
11.07 log CFU/L aerobic).

2.4. Lyophilization and Optimization of Lyo-Protectants

With the purpose of defining the best survival of the strains after lyophilization, a total of
17 experiments with appropriate combinations of the three chosen protectants (skim milk, sucrose, and
trehalose) were performed, according to the Box-Behnken Design (BBD).

Both actual and predicted responses of the strains with a different combination of factors were
used for the establishment of a quadratic model (Supplemental Table S3). The ANOVA (Analysis of
variance) fitted quadratic polynomial model is presented in Table 2. Data in both models were different
with a high significance. The value of the determination coefficient also confirmed the goodness of fit
for the polynomial model. Coefficients are the effects of each factor. By interpreting the results, it is
possible to define the factor or factor combinations that have higher influence. The significances of
all coefficients are shown in Table 2. In the current case, most linear coefficients, square coefficients,
and interaction coefficients of the L. salivarius model (X1, X2, X1X2, X2X3, X12, X2

2, and X3
2) and the

L. agilis model (X1, X2, X3, X1X2, X1X3, X2
2, and X3

2) were significant model terms, which confirmed
the validation of the model.
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Table 2. Coefficient estimates and ANOVA (Analysis of variance) analysis of the quadratic model for
lactobacilli survival during the lyophilization process.

Variables Coefficient Estimates
(± Standard Error) F-Value p Value Model

Significance R2

L. salivarius

Intercept 72.9 ± 0.4 233.22 <0.0001

<0.0001 ** 0.9924

Skim milk 6.64 ± 0.32 430.95 <0.0001
X2 6.76 ± 0.32 446.4 <0.0001
X3 0.59 ± 0.32 3.41 0.1071

Skim milk, sucrose 3.69 ± 0.45 66.4 <0.0001
X1X3 0.24 ± 0.45 0.29 0.6063
X2X3 2.11 ± 0.45 21.72 0.0023
X1

2 −4.2 ± 0.44 90.93 <0.0001
X2

2 −12.49 ± 0.44 802.54 <0.0001
X3

2 −5.37 ± 0.44 148.45 <0.0001

L. agilis

Intercept 77.26 ± 0.52 82.44 <0.0001

<0.0001 ** 0.9786

X1 8.6 ± 0.41 440.12 <0.0001
X2 3.19 ± 0.41 60.54 0.0001
X3 2.37 ± 0.41 33.46 0.0007

X1X2 −1.79 ± 0.58 9.58 0.0174
X1X3 −1.47 ± 0.58 6.45 0.0387
X2X3 −1.06 ± 0.58 3.36 0.1095
X1

2 −1.01 ± 0.56 3.23 0.1155
X2

2 −6.07 ± 0.56 115.44 <0.0001
X3

2 −4.23 ± 0.56 56.11 0.0001

X1 = skim milk. X2 = sucrose. X3 = trehalose. ** = p < 0.01.

The fitted response surface plots and their corresponding contour plots for the survival of the
strains after lyophilization are shown in Figures 2 and 3. The diagnostic of the modelling demonstrated
that all residuals of both responses were normally distributed as linearity, which validated the statistical
assumption of the model (Supplementary Figure S1). The predicted vs. actual value of survival of
both L. salivarius and L. agilis are presented in Figure 4.

The optimal concentration for each variable was deduced from the software as 0.14 g/L skim milk,
0.08 g/L and 0.09 g/L trehalose for L. salivarius, and 0.15 g/L skim milk, 0.08 g/L, and 0.07 g/L trehalose
for L. agilis, respectively. With the optimized formulation of cryo-protectants, the maximum survival
of both L. salivarius and L. agilis could be demonstrated (Table 3).

Table 3. Optimum process and validation experiment results at a 95% confidence interval.

Response
Viability Target Predicted

Results
Standard
Deviation 95% PI Low 95% PI High

L. salivarius Maximized 76.19 3.91 65.54 86.83
L. agilis Maximized 84.77 1.16 81.56 87.97

PI = Prediction interval.
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Figure 2. Response surface and contour plots depicting L. salivarius viability after lyophilization. A, 
B: skim milk vs sucrose. C, D: skim milk vs. trehalose. E, F: sucrose vs. trehalose. 

Figure 2. Response surface and contour plots depicting L. salivarius viability after lyophilization.
(A,B): skim milk vs sucrose. (C,D): skim milk vs. trehalose. (E,F): sucrose vs. trehalose.
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Figure 3. Response surface and contour plots depicting L. agilis viability after lyophilization. A, B: 
skim milk vs. sucrose. C, D: sucrose vs. trehalose. E, F: skim milk vs. trehalose. 

Figure 3. Response surface and contour plots depicting L. agilis viability after lyophilization. (A,B): skim
milk vs. sucrose. (C,D): sucrose vs. trehalose. (E,F): skim milk vs. trehalose.
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strain was significantly higher on day 15 and 28. The details were shown in Table 4. 

Figure 4. Linear plot fitting predicted vs. actual viability of lactobacilli. (A): L. salivarius. (B): L. agilis.

2.5. Stability during In-Feed Storage

The stability of both strains was determined according to their time-dependent in-feed survival
after mechanical mixing in the feed mill. The cryo-protectants showed no significant effects against
feed processing, since no difference with or without protectants was observed for both strains (Table 4).
The L. salivarius strain suffered only from a small numeric decrease in the cell numbers. Similarly, the
protectants demonstrated no significant protection effect for the L. agilis strain. The refrigerated storage
revealed slightly higher viability than storage at room temperature. Short-term storage (day 0–4)
showed remarkable in-feed survival rates for both strains without differences of storage with or
without cryo-protectants.

As to the mid-term storage (day 5–15), the survival of the L. salivarius strain with protectants
under a refrigerated condition was higher than without protectants at day 15. However, the difference
between the strain with protectants at room temperature and the strain without protectants at a
refrigerated condition was not significant. Long-term storage for 28 days showed that the L. salivarius
strain with protectants at a refrigerated condition exhibited a notably higher survival rate than under
any other condition. When incorporated with protectants, the viability of the L. agilis strain was
significantly higher on day 15 and 28. The details were shown in Table 4.
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Table 4. Survival of the probiotic L. salivarius and L. agilis during the storage [%].

L. salivarius L. agilis

Without Protectants With Protectants Without Protectants With Protectants

20 ◦C 4 ◦C 20 ◦C 4 ◦C 20 ◦C 4 ◦C 20 ◦C 4 ◦C

BM 9.01 ± 0.04 100.00% 9.00 ± 0.02 100.00% 9.01 ± 0.02 100.00% 9.00 ± 0.04 100.00% 9.02 ± 0.00 100.00% 9.00 ± 0.03 100.00% 9.01 ± 0.03 100.00% 9.00 ± 0.01 100.00%
DPM0 8.97 ± 0.01 91.56% 8.98 ± 0.01 95.33% 9 ± 0.02 97.74% 8.99 ± 0.03 98.00% 9.00 ± 0.00 97.11% 9.00 ± 0.01 100.67% 9.01 ± 0.00 99.02% 9.01 ± 0.01 101.00%
DPM1 8.97 ± 0.04 90.58% 8.98 ± 0.02 95.00% 8.99 ± 0.05 95.48% 8.99 ± 0.03 98.00% 9.00 ± 0.01 96.46% 9.00 ± 0.03 100.33% 9.01 ± 0.01 99.35% 9.01 ± 0.02 101.00%
DPM2 8.96 ± 0.03 89.29% 8.97 ± 0.04 93.33% 8.99 ± 0 95.16% 8.99 ± 0.01 98.67% 8.99 ± 0.04 94.53% 9.00 ±0.04 100.00% 9.00 ± 0.02 97.07% 9.01 ± 0.01 101.00%
DPM3 8.95 ± 0.03 87.34% 8.96 ± 0.04 91.33% 8.98 ± 0.02 93.55% 8.99 ± 0.02 97.00% 8.99 ± 0.02 93.89% 8.99 ± 0.04 98.67% 9.00 ± 0.00 97.07% 9.00 ± 0.03 99.00%
DPM4 8.96 ± 0.02 88.31% 8.96 ± 0.03 91.33% 8.99 ± 0.01 93.55% 8.99 ± 0.01 97.33% 8.99 ± 0.01 94.86% 8.99 ± 0.00 98.00% 8.99 ± 0.03 96.74% 9.00 ± 0.01 99.34%
DPM15 8.91 ± 0.01a 78.90% 8.92 ± 0.03ab 83.67% 8.96 ± 0.02b 89.03% 8.97 ± 0.01b 94.33% 8.95 ± 0.01a 85.21% 8.96 ± 0.02ab 91.00% 8.99 ± 0.01b 95.44% 8.99 ± 0.01b 98.34%
DPM28 8.64 ± 0.05a 42.86% 8.83 ± 0.03b 67.10% 8.84 ± 0.02b 67.74% 8.93 ± 0.01c 85.33% 8.71 ± 0.04a 49.84% 8.85 ± 0.01a 70.33% 8.91 ± 0.02b 79.48% 8.95 ± 0.02b 88.37%

BM = before mixing. DPM = day-post-mixing. a, b, c = significantly different within a row.
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3. Discussion

The advantageous role of probiotics in human and animal health has been well accepted.
The promising potential is increasingly used in animal nutrition [10]. Among the challenges toward the
commercialization of probiotic products, the main factor is the delivery of adequate amounts of viable
bacteria at the time of administration [32]. Thus, the optimization of production parameters for specific
probiotic strains is of high importance. The current study investigated optimal and cost-effective
preparation procedures to ensure a high yield of biomass and maximum in-feed stability of two
probiotic strains that were isolated in a previous study. The efficiency of probiotic products is highly
dependent on cell viability, since the mode of action of probiotics is conferred by living cells [33]. Thus,
a prerequisite for a successful probiotic product is its stability throughout the processing and storage
until delivery. Our present study aimed to investigate the optimal and cost-effective preparation
procedure for two selected probiotic Lactobacillus strains. Aspects of biomass production, protection
during lyophilization, and in-feed storage stability were investigated.

The utilization of substrates by lactobacilli is characterized by species-specific or strain-specific
differences during growth [34]. To define the specific carbon source preferences of the probiotic
Lactobacillus strains, the BIOLOG® technology was employed in this study. The microtiter plate-based
BIOLOG® methodology is primarily used as a tool for identifying bacteria [35] and has also been
used as a tool to compare the metabolic activity of microbial communities from different habitats [36].
The BIOLOG® system is based on the reduction of a redox dye, which indicates bacterial utilization of
substrates [37]. Thus, color development during growth not only indicates substrate use, but is also
directly proportional to metabolic activity. This potential was used to rapidly identify the preferential
substrate utilization of the two probiotic Lactobacillus strains. Substrate utilization varied as expected,
which shows specific substrate preferences for each strain. After ranking by OD (optical density), the
six top substrates were selected for further evaluation.

MRS (de Man, Rogosa, and Sharpe) medium was used in this study, because it is the most
commonly used complete medium to allow growth of lactic acid bacteria [38]. The selected carbon
sources were added as additional substrates to determine whether they would enhance cell growth on
top of the already present glucose. Our results indicate that the addition of sucrose for L. salivarius and
mannose for L. agilis shortened the exponential growth phase and yielded more biomass than with
MRS alone.

Lactobacillus spp. are facultative anaerobes, but several species do not tolerate oxygen well [39,40].
Since aerobic cultivation has less energy and is cost intensive, economic advantages can be gained, if
technical biomass production can be run under aerobic conditions [41]. Therefore, it was essential to
know whether the selected probiotic strains grew equally well under an aerobic condition. As the two
strains showed good oxygen resistance, they should be able to be cultured aerobically under large-scale
technical conditions. This will lead to a more economic biomass production for those strains.

Extended incubation time (48 h) led to cell loss, which was likely subjected to the self-inhibition
caused by accumulation of lactate or other end metabolites [42]. Therefore, biomass production was
set to 12 h in the MRS medium supplied with booster substrates. Freeze-drying is one of the commonly
employed techniques to produce viable bacterial cells for long-term storage [43,44]. However, a fraction
of cells is lost during the lyophilization process because of ice crystal formation with subsequent
damage to the viable cell [45]. To maintain viability, a variety of cryo-protectants have been developed
to provide structural dry residues as support as well as to act as rehydration receptors [46]. Therefore,
cryo-protectants also play an important role in the conservation of probiotic products, which lead to
higher survival of probiotic strains [47,48].

Several studies addressed the generation of a protective medium for L. salivarius strains, but
different methods and optimal media compositions were found in different studies [49–51]. This
suggests that protective effects are strain-dependent. To our best knowledge, it is the first study on
optimization of cryo-protection for L. agilis. Although protection might be strain-dependent, the
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beneficial action of skim milk for the L. agilis strains may also hold true for other L. agilis strains. Thus,
future studies on L. agilis may also include skim milk as a cryo-protectant during optimization.

Multiple compounds in a cryo-protective mixture were often found to yield synergic effects [52].
Hence, three potential protective factors were used in this study, i.e., skim milk, sucrose, and trehalose.
To better understand how the three factors interacted and to find the optimal working concentrations,
the Box Behnken Design (BBD) for multivariate optimization schemes with simultaneously changed
variables was applied to build a mathematical model with experimental data [27]. The most influencing
factor for both strains was skim milk, which is consistent with other investigations [53]. Skim milk
for protection of viable cells stabilizes bacterial cell membranes and enables an easier rehydration by
creating a high surface porous structure [54]. Both sucrose and trehalose enhanced survival of the cells
in addition to the protective effect of skim milk. A similar synergistic effect was reported previously
for Candida sake cells. In that study, the single use of sucrose did not significantly increase cell viability,
but protected the cells better, when skim milk was used during freeze-drying [55].

The protection of bacterial cells by disaccharides is generally attributed to their capacity to hydrate
biological structures, which is referred to as a ‘water replacement hypothesis’ [56]. In studies on the
activity of protective sugars, trehalose was shown to be the most effective compound for a range of
lactic acid bacterial strains (L. bulgaricus, L. acidophilus, and S. salivarius etc.) [57]. In our case, trehalose
did not act as a predominant factor, as demonstrated by a similar effect like sucrose. Between the tested
lactobacilli, the L. salivarius strain was more dependent on trehalose. Not only the positive influence
on viable biomass during the lyophilization, but also improvement of viability during storage has been
reported for a range of protectants [58]. Several studies used skim milk, sucrose and trehalose alone or
in combination [49,59,60]. To our knowledge, storage in a feed matrix is rarely tested for probiotics
in animal nutrition. In one study, a mixture of Bacillus spp. was tested as liquid culture in prawn
feed. Similar to our study, their results also indicated that probiotic Bacillus spp. strains were more
stable at a lower temperature (4 ◦C). Nevertheless, the survival of their isolates at room temperature
after 28 days was actually lower than in our study, which can be assigned to a lower stability of liquid
cultures compared to dried powders [61].

Storage at 4 ◦C is not possible for animal feeds, as energy demands for tons of feed would be
prohibitively high. Although the temperature exerted a significant impact on survival, it was evident
that the combination of protectants enhanced the in-feed stability throughout storage. Furthermore,
the L. salivarius strain also showed improved stability against physical mixing, when combined with
cryo-protectants. On the contrary, the L. agilis strain seemed to be more tolerant against a physical force,
since no significant changes were observed between cryo-protectants or non-protected feed samples.
This corresponds to a report by Sadguruprasad and coworkers (2018) who found highly variable and
strain-dependent storage effects on microorganisms [62]. However, the designated protectants in this
study benefited the stability of both strains from short-term to mid-term storage when mixed and
stored with feed.

4. Materials and Methods

4.1. Strains and Medium

The strains were isolated from broiler intestinal samples and taxonomically identified as L. salivarius
and L. agilis by 16S rDNA sequencing. Both strains were stored in cryo stock at −80 ◦C. They were
cultivated in de Man, Rogosa and Sharpe (MRS, Carl Roth GmbH + Co. KG, Germany) broth in
anaerobic jars (Merck KGaA, Germany) with Anaerocult C (Merck KGaA, Germany) at 37 ◦C for 24 h.
The inoculum was prepared fresh each time before use. MRS agar plates were used to determine the
viable cell number after treatment.
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4.2. Metabolic Fingerprint of Probiotic Lactobacillus Strains

BIOLOG® AN plates (BIOLOG® Inc., Hayward, CA, USA) were used to identify the substrate
utilization pattern of the isolates [37]. The technology can also be used to determine substrate utilization
patterns of microbial communities [63]. In the present study, the BIOLOG® AN type plate was used
to determine the carbohydrate preference of the Lactobacillus strains. The procedure followed the
manufacturers’ guide with a minor modification. Both strains were inoculated in de Man, Rogosa
and Sharpe medium (MRS, Carl Roth GmbH + Co. KG, Germany) and incubated in anaerobic jars
(Merck KGaA, Germany) with Anaerocult C (Merck KGaA, Germany) overnight. The cultures were
then washed with Phosphate Buffered Saline (PBS), pH 7.4, for three times and diluted to 107 cells/mL.
A total of 100µL bacterial suspension was pipetted into each well of BIOLOG® AN plate in triplicate.
The plates were incubated in anaerobic jars with Anaerocult C at 37 ◦C for 24 h and optical density was
read with a microtiter plate reader (Tecan Infinite200Pro, Germany) at OD590nm.

4.3. Booster Effects of Additional Carbohydrate Sources on Biomass Production

Six carbohydrates (sucrose, maltose, mannitol, sorbitol, and melibiose) were selected as possibly
beneficial for an increased biomass production of the two probiotic strains. The carbohydrates were added
to MRS medium and supplemented with each of the selected additional substrates at a concentration
of 1% (w/v) and each strain was inoculated into 100 mL of each carbohydrate-supplemented medium
reaching a final inoculum of 106 CFU/mL. After anaerobic cultivation at 37 ◦C for 12 h, 24 h, and 48 h,
respectively, the resulting biomass was enumerated by plating.

4.4. Determination of Bacterial Growth under Aerobic or Anaerobic Conditions

Pre-cultures of both strains were prepared as described above. An inoculum of each strain was
inoculated into 500 mL MRS medium with 105 CFU/mL and incubated either in an anaerobic jar with
Anaerocult C or in an aerobic incubator at 37 ◦C. After 12 h of incubation, the biomass of each culture
was determined by plating.

4.5. Lyophilization and Optimization of Cryoprotectants

Pre-cultures were harvested after culturing under an aerobic condition at 37 ◦C for 12 h. Biomass
was concentrated by centrifugation (10 min, 15,000 g, 4 ◦C) and resuspended in different protective
media. Each medium contained combinations of sucrose, skim milk, and trehalose at different
concentrations (see Supplemental Materials). The suspensions were transferred into lyophilization
boxes, incubated at −80 ◦C for 48 h, and dehydrated at −55 ◦C in a lyophilizer (LyoVac GT2, LC
Didactic, Hürth, Germany) for 48 h. The freeze-dried biomass was ground into powder with a mortar
and pestle and stored at 4 ◦C. The survival of the strain was determined by plating.

The optimization of cryoprotectants was performed using the response surface methodology [64],
by which a response surface model was constructed for optimization with a sequential quadratic
programming approach.

The survival of both lactobacilli was considered to be an individual response. The Box Behncken
Design (BBD) with three factors (skim milk: X1, sucrose: X2, and trehalose: X3) and the software
Design Expert 8.06 (Stat-ease Inc., Minneapolis, MN, USA) was used to analyze the survival data. The
analytical procedure was referred to a study with minor modification [25]. A three-variable BBD with
six replicates at the center point was selected to build the response surface models. The design is shown
in the Supplementary Materials (Supplementary Tables S1 and S2). Analysis of variance (ANOVA)
was performed to determine the post prediction and reproducibility of assessed combinations. The
design was used to determine an optimal composition of protective medium by fitting the polynomial
model on the basis of the response surface methodology [65].
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4.6. In-Feed Stability of Probiotic Products

Both strains were prepared by lyophilization with or without cryo-protectants, as described
above. A basal feed for broiler chicken was produced in mash form in the feed mill of the Institute of
Animal Nutrition, Freie Universität Berlin (Supplementary Table S3). The probiotic products were
homogenized in the feed with a feed mixer (5 kg) at an approximate concentration of 107 CFU/g.
The following treatments were applied to the mash feeds: with or without cryo-protectants at room
temperature or 4 ◦C storage. All feed samples were stored for a maximum of 28 days. Subsamples
(2 g) were drawn at 0, 1, 2, 3, 4, 15, and 28 days of storage and serially diluted in PBS (Phosphate
buffered saline). Residual CFU/g of the strains was determined by plating. The in-feed survival rate
was calculated as: survival rate [%] = CFU/g detected at day n post mixing (DPMn)/CFU/g before
mixing (BM) ×100.

4.7. Statistical Analysis

All experiments were performed twice in triplicates. The results are presented as means ±
standard deviation (SD). The Design Expert 8.06 software was used for the data analysis estimation of
responses and prediction of optimized parameters by plotting response contours and surface graphs.
Statistical significances of comparisons were assessed using one-way analysis of variance (ANOVA) or
the Mann-Whitney test with the statistics software IBM SPSS (Version 22, SPSS Inc., Chicago, IL, USA).

5. Conclusions

In summary, two broiler-derived probiotic Lactobacillus strains (L. salivarius and L. agilis) were
characterized for their preferred substrate utilization, biomass production, and oxygen tolerance as
well as their optimal protective agents during freeze-drying and in-feed storage. The response surface
methodology was employed to study the optimal composition of protective agents. The prepared
probiotic products were supplemented into feed and, although viability decreased, more viable cells
were recovered from samples with protectants. This study showed that optimal routines for lab-scale
production, processing, and storage of newly-isolated probiotic strains can be employed to increase the
technical production of probiotics for poultry nutrition. The results are expected to be further applied
for large-scale manufacturing of these probiotic Lactobacillus strains.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/18/3286/s1,
Figure S1 Linear plot fitting normal plot of residuals. A: L. salivarius. B: L. agilis. Table S1: Actual and coded levels
of variables employed in the Box-Bohnken design. Table S2: Factors and responses of the Box-Behnken design
(BBD). Table S3: Composition of feed used for in-feed storage experiments.
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Abstract: Probiotics and phytobiotics have been studied as in-feed antibiotic alternatives for decades,
yet there are no studies on their possible symbiotic effects. In the present study, newly hatched
chickens were fed with feeds supplemented either with host-specific Lactobacillus strains (L. agilis
and L. salivarius), commercial phytobiotics, or combinations of both. After 13 days of life, crops
and caecums were analyzed for bacterial composition (16S rDNA sequencing, qPCR) and activity
(bacterial metabolites). Crop and caecum samples were also used to study the ex vivo survival of a
broiler-derived extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strain. In the crop,
combinations of probiotics and phytobiotics, but not their single application, increased the dominance
of lactobacilli. The single application of phytobiotics reduced the metabolite concentrations in the
crop, but certain combinations synergistically upregulated the metabolites. Changes in the qualitative
and quantitative composition of the caecal microbiota were less pronounced than in the crop. Acetate
concentrations were significantly lower for phytobiotics or the L. agilis probiotic strain compared to
the control group, but the L. salivarius probiotic showed significantly higher acetate concentrations
alone or in combination with one phytobiotic. The synergistic effects on the reduction of the ex
vivo survival of an ESBL producing E. coli strain in crop or caecum contents were also observed for
most combinations. This study shows the beneficial synergistic effects of probiotics and phytobiotics
on the intestinal bacterial composition and their metabolic activity in young broilers. The reduced
survival of potentially problematic bacteria, such as ESBL-producing E. coli further indicates that
combinations of probiotics and phytobiotics may lead to a more enhanced functionality than their
individual supplementation.

Keywords: feed additives; probiotics; phytobiotics; symbiotics; gut microbiota; antibiotic-resistant
Enterobacteriaceae

1. Introduction

Poultry meat production is expanding rapidly, as global meat consumption is constantly
increasing [1]. As antibiotic growth promoters (AGPs) are still used in many countries to increase
performance in poultry production, their usage increased simultaneously. However, AGPs contribute to
the development and increase of antibiotic-resistant bacteria such as extended-spectrum beta-lactamase
(ESBL) producing bacteria in poultry [2]. Many countries have, therefore, banned AGPs for
environmental and public health concerns [3,4]. AGPs in poultry production are well known to increase
animal performance and infection resistance, and thus, alternatives are demanded to compensate for
this loss [5,6]. Among the commercially existing alternatives, probiotics and phytobiotics have been
reported to impact on the performance and health in poultry [7].
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Regarding probiotics, many publications have shown health promoting effects that are associated
with the modifications on gut microbiota [8,9]. Bacillus spp., yeasts, and lactic acid bacteria are
commonly used as probiotics in animal nutrition. Among the lactic acid bacteria, the lactobacilli have
the advantage that they are “generally regarded as safe” (GRAS-status) and are indigenous to the
intestinal tract. Certain Lactobacillus agilis strains are able to modify the presence of pathogenic bacteria
in vitro [10] and ex vivo [11] or regulate the gut microbiota in broiler chickens in vivo [12,13]. In some
studies, several L. salivarius strains have also been shown to promote animal health [14,15]. Proper
supplementation of certain probiotic strains may also lead to the immunomodulation of the host [16],
and consequently, resilience against pathogenic bacteria may be increased [17,18]. However, those
effects primarily depend on the specific strain, and it is still unclear if immunomodulation is a direct
effect of the probiotics or a response to a modified microbiota. Nevertheless, the health-promoting
effect of probiotics has often been observed, and this effect may sometimes lead to an improvement in
performance. Finally, host-specific probiotics were reported to show better survival and colonization
of the strain in the intestinal tract of the host [19,20].

Phytobiotics have also been studied as an alternative to AGPs due to their strong antibacterial
activity in vitro and their beneficial influence on animal health and performance in broiler production
systems [21–23]. Phytobiotics have the potential to inhibit pathogenic bacteria [24] and show a range of
host-related responses such as improvement in antioxidative status [25], intestinal barrier functions [26]
as well as a beneficial modification the digestive or immune function of the host [27]. These modes of
action may contribute to an increase in growth performance [28,29]. However, like probiotics, due to a
lack of studies, it is still unclear if these effects are directly induced by the presence of the phytobiotics
or are an indirect effect of changes within the intestinal microbiota.

Synergistic feed additives are thought to act by combining their individual effects that lead to
a superior effect than their sole application [30]. This principle has been applied for combinations
of probiotics and prebiotics with the intent to promote beneficial bacteria and at the same time,
supply suitable substrates for the probiotic [31]. There are also reports on other combinations of feed
additives like organic acids combined with phytases [32], probiotics [33], or phytobiotics [34]. To our
best knowledge, only one study evaluated the use of a probiotic E. faecium strain with a commercial
phytobiotic product as a combination in broiler chickens. This study showed beneficial effects on animal
health, but no effect on animal performance [35]. In summary, the use of such possibly synergistic
combinations of feed additives has not received attention in the field of poultry nutrition. Therefore, a
concept was designed and applied in this study to combine host-specific probiotic Lactobacillus strains
with specific phytobiotics to invoke beneficial synergistic effects for the animal.

Both probiotics and phytobiotics are known to modulate the intestinal microbiota in poultry [36].
Therefore, studies on possible synergistic effects must include an in-depth analysis of the bacterial
composition and activity. Furthermore, in light of the evolution of ESBL-producing Enterobacteriaceae
in poultry [2], the impact of the feed additives on the colonization of antibiotic-resistant bacteria is of
high interest.

As young animals are still in the process of developing a mature microbiota [37], this progress may
be modified more easily via feed additives [9]. Thus, young broiler chickens were used to investigate
the effect of these feed additives on the intestinal microbiota.

Thus, the aim of this study was to compare two different Lactobacillus strains and two different
commercial phytobiotics as well as their combinations on the possible synbiotic activity in young
broiler chickens.
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2. Materials and Methods

2.1. Ethics Statement

The feeding trial was conducted according to the German Animal Welfare Act (TierSchG) and
approved by the local state office of occupational health and technical safety ‘Landesamt für Gesundheit
und Soziales, Berlin’ (LaGeSo Reg. A 0437/17).

2.2. Animals, Rearing Conditions, and Experimental Diets

Newly hatched Cobb 500 broiler chicks were purchased from a commercial hatchery and randomly
allocated into nine experimental groups. All animals were kept in cages and had ad libitum access
to feed and water. The ambient temperature was adjusted as follows: for the first 2 days of age, the
ambient temperature was 34 ◦C and was then gradually reduced by 3 ◦C per week. Artificial light
was provided continuously during the first 3 d of age. From 4 d of age onwards, the lighting regime
consisted of an 18 h light and 6 h dark cycle. Each group included 21 animals in seven replicate cages
per group. Nine experimental feeds were offered in meal form as follows: control feed, two probiotic
feeds (1010 cfu/kg feed), two phytobiotic feeds (250 mg/ kg feed), and four feeds with the respective
combination of probiotics and phytobiotics at the same concentrations. Feed composition and nutrient
content of the basal diet are shown in Table 1.

Table 1. Feed ingredients and nutrition composition of the diets (as-fed basis).

Ingredient (%)

Soybean Meal (49% CP) 32.33
Maize 32.03
Wheat 24.78
Soy oil 5.95

Limestone 1.46
Monocalcium Phosphate 1.84

Vitamin and Mineral Premix 1.20
Salt 0.10

DL-Methionine 0.18
L-Lysine 0.13

Nutrient Composition

Crude Protein (%) 22.00
Crude Fat (%) 8.19

Crude Fiber (%) 2.42
Methionine (%) 0.51

Lysine (%) 1.28
Threonine (%) 0.84
Calcium (%) 0.96

Phosphorus (%) 0.80
AMEN (MJ/kg)3 12.6

1) Contents per kg diet: 4800 IU vit. A; 480 IU vit. D3; 96 mg vit. E (α-tocopherole acetate); 3.6 mg vit. K3;
3 mg vit. B13 mg vit. B2; 30 mg nicotinic acid; 4.8 mg vit. B6; 24 µg vit. B12; 300 µg biotin; 12 mg calcium
pantothenic acid; 1.2 mg folic acid; 960 mg choline chloride; 60 mg Zn (zinc oxide); 24 mg Fe (iron carbonate);
72 mg Mn (manganese oxide); 14.4 mg Cu (copper sulfate-pentahydrate); 0.54 mg I (calcium Iodate; 0.36 mg Co
(cobalt- (II)-sulfate-heptahydrate); 0.42 mg Se (sodium selenite); 1.56 g Na (sodium chloride); 0.66 g Mg (magnesium
oxide). 2) Nitrogen-corrected apparent metabolizable energy estimated from the chemical composition of the feed
ingredients (based on the European Union (EU) Regulation - Directive 86/174/EEC): 0.1551 × % crude protein +
0.3431 ×% ether extract + 0.1669 ×% starch + 0.1301 ×% total sugar.

2.3. Sampling

On the 13th day of life, two birds from each group were randomly selected daily, weighed, and
sacrificed by exsanguination after anesthesia. In order to obtain fresh digesta samples for ex vivo
studies and their appropriate processing, this procedure was continued until 10 animals per group were

60



Microorganisms 2019, 7, 684 4 of 23

sampled in a span of five days. The digesta from crop and caecum of birds were collected individually
and allocated into two portions. One portion was snap-frozen in liquid nitrogen for DNA extraction
and metabolite analysis; the other portion was used for ex vivo studies with an ESBL-producing
E. coli strain.

2.4. Bacteria and Media

Probiotic LS1 (L. salivarius) and LA73 (L. agilis) were isolated, identified, and characterized
previously [38]. Both strains were cultured anaerobically (starting culture) or aerobically (biomass
production) in de Man, Rogosa, and Sharpe broth (MRS, Carl Roth GmbH + Co. KG, Germany) at
37 ◦C for 24 h.

The ESBL-producing E. coli (EE10716) strain was isolated from the broiler chicken by the Institute
of Microbiology and Epizootics of the Freie Universität Berlin within the RESET project (Germany,
http://www.reset-verbund.de/index.htm) and produced the CTX-M-15 lactamase [39]. This strain was
selected as the model strain to study its survival in ex vivo broiler ingesta samples. The strain was
stored as cryo stock and cultured in brain heart infusion broth (BHI, Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) for further application.

2.5. Feed Additives

The probiotic Lactobacillus cells were harvested from MRS broth after aerobic growth at 37 ◦C
for 12 h. The pelleted biomass was concentrated by centrifugation (10 min, 15,000× g, 4 ◦C) and
freeze-dried at –55 ◦C in a lyophilizer (LyoVac GT2, Hürth, Germany) for 48 h after pre-freezing at
–80 ◦C as described previously [40]. The lyophilized probiotics were stored at 4 ◦C until mixed with
the feed.

The commercial phytogenic compounds (formulation C and L) were provided in solid form by
EW nutrition (Visbek, Niedersachsen, Germany) and kept at 4 ◦C until mixed with feed. The active
ingredients in formulation C were carvacrol and cinnamaldehyde, while formulation L contained
carvacrol, cinnamaldehyde, and eugenol. All additives were mixed with the basal diet using a feed
mixer and stored at room temperature. To ensure that sufficient amounts of viable probiotic cells and
concentrations of the volatile phytobiotic products were present in the feeds, the diets were prepared
on a weekly basis.

2.6. 16S rDNA Sequencing and qPCR

Total DNA was extracted from 0.2 g digesta samples of crop and caecum (45 samples for each
section, five samples for each group) with a commercial extraction kit (QIAamp Fast DNA stool mini kit,
Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions with minor modification
(lysis step at 90 ◦C). The resulting DNA extracts were stored at –30 ◦C until further analysis.

DNA extracts were subjected to amplicon sequencing using an Illumina NextSeq500 sequencer
(LGC, Berlin, Germany) with two 150–base pair reads. After a combination of forward and reverse reads
using the BBMerge tool [41] and demultiplexing, the resulting 16S-rDNA sequences were analyzed
using the QIIME2 pipeline [42] and the SILVA SSU database [43]. Quality control and determination
of sequence counts were performed using the DADA2 [44]. Sequence variants with less than five
counts were excluded from further analysis to increase the confidence of sequence reads and reduce
bias by possible sequencing errors [45]. Normalization of sequence reads was done by verification
with an equal representation of 10,000 sequences per sample [46]. Further statistical analysis was done
using RStudio (Rstudio, Boston, USA) and KNIME 4.01 (KNIME, Zürich, Switzerland) [47] with the R
package stats and ggplot2.

Quantification of predominant bacterial groups and species in poultry was performed via qPCR
assays with five biological replicates per group (Table S1). Target gene copy numbers were calculated
from standard curves with known copy number concentrations.
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2.7. Analysis of Bacterial Metabolites

Short-chain fatty acids (SCFA) in crop and caecum contents were analyzed as described
previously [48]. In short, SCFAs were analyzed using gas chromatography (Agilent Technologies
6890N, autosampler G2614A, and injection tower G2613A; Network GC Systems, Böblingen, Germany)
equipped with a flame ionization detector. D- and L-lactate was measured by HPLC (Agilent 1100;
Agilent Technologies, Böblingen, Germany) with a pre-column (Phenomenex C18 4.0 4.0 × 2.0 mm;
Phenomenex Ltd., Aschaffenburg, Germany) and an analytical column (Phenomenex Chirex 3126
(D)-penicillamine 150 × 4.6 mm; Phenomenex Ltd.).

2.8. Ex-vivo Survival of the ESBL-Producing E. coli Model Strain in Crop and Caecum

The ex vivo survival of the ESBL-producing E. coli model strain was evaluated according to a
previous study with minor modification [49] in a two-step incubation assay. In short: in the first step,
fresh crop and caecum samples were immediately diluted anaerobically in incubation buffer at 1:5
(w/v). After 5 min sedimentation, supernatants (190 µL) were anaerobically transferred to microtiter
plates, and the E. coli strain EE10716 was added (a final concentration of 2 × 105 cells/mL). To avoid the
interference from the indigenous ESBL-producing bacteria in the samples, identical plates but without
inoculation of the ESBL indicator strain was prepared and incubated under the same conditions. In the
second step, after anaerobic incubation at 37 ◦C for 12 h, samples were transferred to a microtiter plate
containing Mueller–Hinton broth 2 (Carl Roth GmbH + Co. KG, Germany) with 4 µg/ml cefotaxime to
ensure selective growth of the resistant E. coli strain. The plates were then incubated aerobically in a
microtiter plate reader (Tecan infinite M Plex, Männerdorf, Switzerland) at 37 ◦C and OD690nm was
obtained as the ODexperiment subtracted by the ODcontrol. The resulting growth curves were subjected
to a non-linear regression model using the Gompertz equation, which gave the best fit with an r2

≥ 0.98
for all samples. The lag time was then documented as an indicator for E. coli growth inhibition. All
assays were performed with five technical replicates.

2.9. Statistical Analysis

Results are presented as means and pooled standard error of mean except for figure 2, which is
presented as the means and standard deviation. Due to the non-normally distributed nature of the data,
we chose to use the Kruskal–Wallis test, followed by the Mann–Whitney test, when appropriate. The
Chi-square test was performed to compare Clostridium. perfringens (C. perfringens) counts. Statistical
procedures were performed at a significance level of 95% using the SPSS Statistics software (SPSS,
Chicago, USA).

3. Results

3.1. Qualitative Determination of the Intestinal Microbiota in Young Broiler Chickens

A total of 1.26 × 106 quality sequence reads from 89 samples (44 crop samples and 45 ceca samples)
with a mean combined read length of 404 nucleotides were used for the qualitative analysis of the
bacterial composition. One sample (control group, crop) had to be omitted from the analysis, as it
contained a massive amount of Aeromonas spp., and C. perfringens, which classified this sample as a
true outlier.

A total of six phyla, 18 orders, and 88 genera were assigned to the sequences. A comprehensive
overview of the taxonomic assignments is given in Tables S2–S7.

Overall, the crop was heavily dominated by Lactobacillus spp., while caecal contents displayed a
more even distribution with an unidentified Clostridiales, Bacteroides spp., and Faecalibacterium spp. as
the most dominant genera (Figure 1).
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Figure 1. Phylogenetic composition of the intestinal microbiota in young broiler chickens. (A) Genus 
distribution in the crop; (B) Genus distribution in the caecum (LS1: L.salivarius, LA73: L. agilis, AC: 
formulation C, AL: formulation L). Data of each group are presented as the mean of five samples. 

  

Figure 1. Phylogenetic composition of the intestinal microbiota in young broiler chickens. (A) Genus
distribution in the crop; (B) Genus distribution in the caecum (LS1: L.salivarius, LA73: L. agilis, AC:
formulation C, AL: formulation L). Data of each group are presented as the mean of five samples.
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3.2. Impact of Probiotics and Phytobiotics on the Relative Composition of the Crop Microbiota

The crop was considerably dominated by Lactobacillus spp. sequences in all feeding groups,
ranging from 98.0% to 99.7% abundance (Table S6). Other dominating genera, including Aeromonas
spp., Acinetobacter spp., Bacteroides spp., as well as two unidentified genera belonging to the Clostridiales
order rarely exceeded one percent of all sequences. The control group, as well as treatment groups with
single feed additives, showed the lowest lactobacilli abundance. However, combinations of probiotics
and phytobiotic additives significantly increased lactobacilli abundance at the expense of the next
dominant genera (Aeromonas, Acinetobacter, Bacteroides) compared to control. One exception was the
combination of LA73 and formulation C, in which the Clostridium sensu stricto 1 genus and Bacteroides
spp. prevailed. Seven different Lactobacillus species were assigned based on their unique OTUs, which
significantly differed in their abundance in the crop (Table 2). As expected, supplementation of the
probiotic Lactobacillus strains significantly increased their abundance in the respective treatment groups.
Another dominating Lactobacillus species (L. crispatus) showed a significant numerical reduction in all
treatment groups compared to the control.

Interestingly, the putative pathogenic genera Aeromonas spp. and Acinetobacter spp. were among
the dominating sequences in the crop of 13-day-old animals. No significant differences were observed
in this genus, but combinations of probiotics and phytobiotic additives strongly reduced the numerical
abundance of Aeromonas spp., except for the combination of LS1 and formulation C. The genus
Acinetobacter spp. was strongly reduced in the LA73 and formulation C groups, as well as in all
combination groups (see Table S6).

Ecological indices showed no significant differences for richness (number of different sequences),
but diversity (Shannon Index) and accordingly evenness were significantly reduced in treatment
groups supplemented with the phytobiotic formulation C as well as the combination of the probiotic
LS1 and formulation L (Table S8).

64



Microorganisms 2019, 7, 684 8 of 23

Table 2. Relative abundance of dominant putative Lactobacillus species in the crop of 13-day-old broiler chickens fed probiotics and phytobiotics [%].

Putative
species
name

Control LS1 LA73 Formulation
C

Formulation
L

LS1 &
Formulation

C

LS1 &
Formulation

L

LA73 &
Formulation

C

LA73 &
Formulation

L

Pooled
SEM p-value1

L. salivarius 33.8a,b 46.5a,b 24.9a,b 68.2b,c 26.3a,b 57.1b,c 71.9c 18.1a 37.6b 3.21 0.002
L. agilis 16.1a,b 9.1a 38.1b 4.5a 38.3b 13.3a,b 5.7a 49.4c 20.8a,b 0.97 0.003

L. crispatus 18.2c 10.3b,c 9.9b,c 8.7b,c 5.7a 7.1a 3.2a 13.8b,c 8.4b 0.68 0.049
L. reuteri 15.3 18.0 15.2 6.2 14.0 10.9 8.2 7.2 16.5 0.61 0.425

L. johnsonii 8.7 9.8 8.0 9.5 11.6 9.8 8.7 5.2 11.1 1.39 0.593
L. kitasatonis 4.4 4.3 1.1 0.6 1.9 0.4 1.2 n.d. 0.7 3.73 0.814
L. vaginalis 3.4 1.9 2.9 2.4 2.1 1.5 1.1 6.3 4.7 0.43 0.120

n.d. = Not detected; 1 = Kruskal–Wallis Test; a,b = different superscripts denote significant changes within a row (Mann–Whitney U test, p ≤ 0.05).
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3.3. Impact of Probiotics and Phytobiotics on the Relative Composition of the Caecal Microbiota

An unidentified Clostridiales genus and Bacteroides spp. were the most dominant genera in the
caecum, followed by Faecalibacterium spp. (Table S7). Due to high individual differences in the samples,
only a few significant differences were observed. There was a trend for an increased abundance of the
unidentified Clostridiales genus in the probiotic LS1 and in the LA73/ formulation L treatment groups,
which was offset by a significant reduction of Faecalibacterium spp. in these groups. Additionally,
compared to control- or phytobiotic supplemented feed groups, Anaerostipes spp. showed significant
differences in feed groups that were supplemented with the probiotic strain LS1 alone or in combination.

Ecological indices did not differ significantly between treatment groups (Table S9). A range of 40.6
to 45.8 independent OTU were found with even distributions of diversity and very similar evenness.

3.4. Quantitative Determination of the Intestinal Microbiota in Young Broiler Chickens

16S rDNA sequencing yields an in-depth view of the abundance of bacterial genera but is unable
to quantify the bacterial composition in the intestinal tract. Therefore, qPCR assays on a range of
dominant bacterial groups and species were carried out.

3.5. Impact of Probiotics and Phytobiotics on Dominant Bacterial Groups and Species in the Crop

The quantitative determination of the crop microbiota confirmed the dominance of lactobacilli
and mirrored results for relative Lactobacillus spp. abundance (Table 3). The most prominent species
was L. salivarius, followed by L. reuteri, L. agilis and L. acidophilus. As expected, supplementation of
LS1 significantly increased the L. salivarius counts, while LA73 significantly increased L. agilis copy
numbers. This was also visible for their combinations with the phytobiotic additives. Interestingly, the
supplementation of the probiotic L. salivarius strain reduced the counts of the L. agilis species and vice
versa. The other dominant lactobacilli (L. reuteri and L. acidophilus) showed no significant response to
the presence of either probiotic supplementation.
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Table 3. Quantitative determination of the crop microbiota of 13-day-old broiler chickens fed different probiotics and phytobiotics [log 16S rDNA copy number/g].

Control LS1 LA73 Formulation
C

Formulation
L

LS1 &
Formulation

C

LS1 &
Formulation

L

LA73 &
Formulation

C

LA73 &
Formulation

L

Pooled
SEM p- value1

Lactobacillus spp. 9.84 9.81 10.07 9.81 9.77 9.81 10.01 9.89 10.00 0.04 0.167
L. salivarius 9.14a 9.55b 9.39a.b 9.58b.c 9.25a 9.6b.c 9.92c 9.20a 9.53a.b 0.05 0.016

L. agilis 8.87b 8.83b 9.30d 8.19a 9.14c 8.73b 8.61b 9.40d 9.13c 0.11 0.016
L. reuteri 9.19 9.23 9.61 8.91 9.08 9.11 9.23 9.29 9.52 0.07 0.338

L. acidophilus 8.45 8.33 8.58 7.99 8.12 7.98 8.08 7.91 8.10 0.11 0.768
Clostridial

Cluster XIVa 8.38b 8.41b 8.45b 8.60b 8.43b 7.76a 7.88a 8.49b 8.22b 0.09 0.040

Clostridial
Cluster IV 8.08 7.89 8.11 8.16 7.86 7.36 7.43 7.92 7.72 0.09 0.206

Clostridial
Cluster I 7.41b 7.32b 7.81c 6.95a.b 7.27b 6.99b 7.27b 7.03b 6.62a 0.08 0.016

BPP-Cluster2 8.48 8.36 8.56 8.22 8.37 7.95 8.16 8.29 7.82 0.07 0.338
Enterobacteria3 8.83a.b 8.42a 8.94b 8.64a 8.38a 8.30a 8.47a 8.62a.b 8.45a 0.04 0.004

Escherichia group 6.89a 6.66a.b 7.28c 6.93a.b 6.27a 6.06a 6.62a 7.01b.c 6.40a 0.08 0.018
Int14 7.77b 7.37b 7.98c 7.27b 7.34b 7.17b 7.27b 6.99a.b 6.72a 0.08 0.042

1 = Kruskal–Wallis Test; 2 = Bacteroides-Prevotella-Porphyromonas Cluster; 3 = Copy number of the enterobacterial ribosomal polymerase beta subunit; 4 = Enterobacterial Integrase 1 gene.
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The combination of LS1 with both formulation C and formulation L significantly reduced bacteria
belonging to the Clostridial Cluster XIVa, while no changes were observed in any other feeding group.
The copy numbers of the total enterobacteria and the Escherichia group were higher in the LA73 group,
but absolute differences were only minor. However, in combination with either phytobiotic additive, a
small (formulation C) or drastic (formulation L) reduction was observed for Escherichia group counts.
Similarly, the copy numbers of the integrase 1 gene, responsible for the incorporation of foreign DNA,
mirrored the trend seen for the Escherichia group.

Finally, due to the presence of an unidentified Clostridium sensu stricto 1 in the sequencing data,
we also tested for the presence of C. perfringens, which is phylogenetically closely related to this
genus (Table S10). C. perfringens was detected sporadically in the crop samples, but no significant
differences were observed (p = 0.103, Chi-square test). However, all the samples from the feed groups
supplemented with LA73 or its combination with formulation L were negative for C. perfringens.
Interestingly, the omitted sample from the control group showed a very high amount of C. perfringens
(log 6.1).

3.6. Impact of Probiotics and Phytobiotics on Dominant Bacterial Groups and Species in the Caecum

The supplementation of probiotics and phytobiotics showed no significant impact on the caecal
microbiota (Table 4). Two clostridial clusters, the Bacteroides-Prevotella-Porphyromonas cluster, and
enterobacteria followed by lactobacilli dominated the caecum of 13-d old broiler chickens. C. perfringens
was detected in all control samples (see Table S10), but only rarely in the other experimental groups.
However, no significant differences between the feed groups were observed (p = 0.126, Chi-square test).
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Table 4. Quantitative determination of the caecal microbiota of 13-day-old broiler chickens fed different probiotics and phytobiotics [log 16S rDNA copy number/g].

Control LS1 LA73 Formulation
C

Formulation
L

LS1 &
Formulation

C

LS1 &
Formulation

L

LA73 &
Formulation

C

LA73 &
Formulation

L

Pooled
SEM p- Value1

Clostridial
Cluster XIVa 10.96 10.97 10.85 11.15 11.09 11.08 11.17 10.93 11.11 0.05 0.639

Clostridial
Cluster IV 10.39 10.28 10.51 10.72 10.61 10.73 10.67 10.47 10.30 0.05 0.134

Clostridial
Cluster I 6.45 6.13 5.93 6.33 6.15 6.76 6.70 5.60 6.03 0.14 0.383

BPP-Cluster2 10.72 10.77 10.72 10.86 10.72 10.72 10.86 10.66 10.69 0.03 0.650
Lactobacillus spp. 9.63 9.61 9.82 9.73 9.83 9.69 9.94 9.61 9.67 0.04 0.605
Enterobacteria3 10.51 10.49 10.43 10.43 10.36 10.35 10.75 10.30 10.53 0.06 0.857

Escherichia group 8.45 8.43 8.32 8.21 8.53 8.13 8.13 8.20 8.43 0.07 0.910
L. salivarius 8.78 8.94 8.95 9.20 9.14 9.17 9.32 8.70 8.94 0.05 0.130

L. agilis 9.42 9.17 9.54 9.44 9.47 9.50 9.75 9.21 9.51 0.07 0.392
L. reuteri 8.79 8.71 9.10 8.27 8.86 8.18 8.12 9.14 9.05 0.07 0.774

L. acidophilus 8.26 7.48 8.21 8.12 8.49 8.27 8.27 7.67 7.79 0.11 0.620
Int14 7.94 7.69 7.35 7.76 7.75 7.80 7.27 7.58 7.95 0.11 0.177

1 = Kruskal–Wallis Test; 2 = Bacteroides-Prevotella-Porphyromonas Cluster; 3 = Copy number of the enterobacterial ribosomal polymerase beta subunit.
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3.7. Bacterial Metabolism of the Intestinal Microbiota in Young Broiler Chickens

Short-chain fatty acids and lactate concentration in the crop are shown in Table 5. As expected,
the crop was dominated by lactate in all feeding groups, while acetate and propionate only played
minor roles in the formation of bacterial metabolites. The phytobiotic supplementation significantly
reduced lactate concentrations in the crop, and also showed the numerically lowest concentrations of
acetate. Surprisingly, the single supplementation of the probiotic lactobacilli did not increase lactate
concentrations compared to the control. However, the combination of LA73 and formulation L led to
significantly more lactate than in any other treatment group. The combination of the probiotic LS1
with phytobiotic products also led to higher lactate concentrations than their single addition.

Lactate in the caecum is not shown, as those values are generally very low or undetectable.
The dominating SCFA in the caecum was acetate (Table 6). The phytobiotic products again showed
significantly (formulation C) or numerically but non-significantly (formulation L) lower acetate
concentrations compared to the control group. The addition of the probiotic strain led to a diverse
bacterial response in the caecum, as the strain LS1 showed a significantly increased acetate concentration,
while L73 led to significantly lower acetate concentrations compared to the control group. However, all
combination groups displayed significantly or numerically higher concentrations than their respective
single addition except for the combination of LS1 and formulation C.
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Table 5. Concentration of lactate and short-chain fatty acid (SCFA) in the crop of 13-day-old broiler chickens fed different probiotics and phytobiotics [µmol/g].

Control LS1 LA73 Formulation
C

Formulation
L

LS1 &
Formulation

C

LS1 &
Formulation

L

LA73 &
Formulation

C

LA73 &
Formulation

L

Pooled
SEM p-Value1

L-lactate 19.8b 15.2a,b 21.1b 11.2a 14.2a 19.5b 25.0b 16.9b 29.5c 1.10 0.008
D-lactate 11.5b 3.9a 6.6a,b,c 2.2a 4.2 a 4.9a,b 7.6b 4.8a 13.2c 0.70 0.029

total Lactate 31.3b.c 19.1b 27.8b,c 13.4a 18.3a 24.4a,b 32.6b 21.7b 42.7c 1.69 0.010
Acetate 5.9 4.4 6.0 2.4 3.3 4.2 4.1 4.1 6.7 0.49 0.638

Propionate 1.5 1.8 2.1 2.0 1.9 1.9 1.9 1.7 1.7 0.04 0.218
n-butyrate 0.1 n.d.2 0.1 n.d. 1.8 n.d. n.d. n.d. n.d. 0.19 0.332
i-valerate n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.317
n-valerate n.d. n.d. 0.02 n.d. n.d. n.d. n.d. n.d. n.d. 0.277
Total SCFA 7.5 6.3 8.2 4.3 6.1 6.1 6.0 5.8 8.4 0.51 0.719

Total
Metabolites3 40.4b 25.4a,b 35.9b 18.9a 24.5a,b 33.1b 39.5b 29.0a,b 53.7c 2.20 0.020

1 = Kruskal–Wallis Test; superscripts denote significant differences within a row (Mann–Whitney U Test, p ≤ 0.05); 2 = not detected; 3 = sum of the total lactate and total SCFA.

Table 6. Concentration of SCFA in the caecum of 13-day-old broiler chickens fed different probiotics and phytobiotics [µmol/g].

Control LS1 LA73 Formulation
C

Formulation
L

LS1 &
Formulation

C

LS1 &
Formulation

L

LA73 &
Formulation

C

LA73 &
Formulation

L

Pooled
SEM p-Value1

Acetate 39.9b 55.8c 32.1a 30.7a 34.8a,b 53.1c 43.6b 42.6b 44.0b 2.01 0.044
Propionate 5.0 7.8 6.1 5.2 4.2 5.7 5.2 5.9 7.0 0.28 0.142
i-butyrate 1.9 2.1 0.8 0.6 1.2 1.1 0.4 0.5 0.6 0.22 0.963
n-butyrate 8.7 7.7 5.8 7.7 6.0 9.4 8.7 10.1 6.2 0.50 0.548
i-valerate 0.5 0.3 0.3 0.4 0.2 0.4 0.2 0.3 0.2 0.03 0.684
n-valerate 0.4 0.4 0.6 0.6 0.3 0.4 0.3 0.2 0.3 0.04 0.504

BCFA2 2.0 2.4 1.1 0.8 1.2 1.5 0.6 0.6 0.7 0.21 0.873
Total SCFA 55.9 74.1 45.6 44.9 46.4 70.1 58.4 59.3 58.2 2.50 0.103

1 = Kruskal–Wallis Test; superscripts denote significant differences within a row (Mann–Whitney U Test, p ≤ 0.05).; 2 = Sum of branched chain fatty acids.
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3.8. Ex-vivo Growth Response of an ESBL Producing E. coli Model Strain in Intestinal Samples

The impact of different intestinal conditions due to the addition of probiotics and phytobiotics
was tested for the ex vivo survival of an ESBL-producing E. coli. Lag time, i.e., start of the exponential
growth phase, is the most informative fitness parameter of a bacterium, and thus, this parameter was
used to estimate the impact of probiotics and phytobiotic supplementation.

In crop samples, the significantly lowest lag time, and thus, the best fitness of the E. coli strain
was observed in the LS1 treatment group, followed by the formulation L (Figure 2A). However, the
combination of both additives slightly increased lag time compared to a single application. The
significantly lowest fitness was noted in the combination of LA73 and formulation L, although their
single application yielded a significantly higher fitness.
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Figure 2. Ex vivo survival of an ESBL-producing E. coli strain in crop- or ceca contents of 13-day-old
broiler chickens. (A) crop; (B) caecum (LS1: L.salivarius, LA73: L. agilis, AC: formulation C, AL:
formulation L). Grey: Control, Green: Probiotic supplementation, Yellow: Phytobiotic supplementation,
Blue: Combined feed additive supplementation. Data are presented as means with standard deviation.

In caecal samples, the best survival of the E. coli strain was observed in the control group
(Figure 2B). Both additive types showed a numerically lower fitness as single supplementation, but
combinations of probiotics and phytobiotics displayed a significantly lower survival with the exception
of the combination of LS1 and formulation C.
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4. Discussion

Accumulating numbers of studies show that novel additives such as probiotics or phytobiotics may
be used as alternatives to in-feed AGPs. However, the efficiency of the alternative additives depends
on many factors like uptake concentration, overall diet, supplementation method, or the rearing
environment [50]. To maximize the efficiency of those alternatives, the combination in accordance with
a synergistic concept is a favorable solution that may act beyond their single applications. The present
study investigated the synergistic effects of probiotics and phytobiotic feed additives on the intestinal
microbiota in young broiler chickens. The gut microbiome is a key to understand animal health and
nutrition better [51], and thus, this study focused on the bacterial composition and –activity in crop
and caecum of young broiler chickens that has not yet developed a stable microbiota.

Probiotics generally do not reduce the total amount or activity of bacteria in the gut, but can
sometimes increase bacterial metabolite concentrations in broiler chicken [52,53]. On the other
hand, phytobiotics are often used due to their strength in vitro antibacterial activity [54]. The active
ingredients in the phytobiotic products were carvacrol and cinnamaldehyde as well as additionally
eugenol in formulation L. All three substances have been shown to inhibit a range of bacteria in vitro
and show diverse effects on performance, immunology, and reduction of pathogenic bacteria in broiler
chicken [55–57]. The probiotic Lactobacillus strains in this study were previously characterized in vitro
regarding their resilience against both phytobiotic products (data not shown). Both strains showed
a high tolerance in vitro, which could be confirmed in vivo, especially for the L. salivarius strain. In
fact, a strong synergistic effect was observed for the species L. salivarius with formulation L, which
may indicate that the functionality of LS1 increased accordingly when applied as a synergistic product.
However, the species L. agilis was strongly inhibited by the effects of the formulation C in vivo, but
in combination with LA73 an increase of this species was observed in the crop. This also points to a
synergistic effect for increased LA73 colonization in combination with formulation C. Taken together;
the data suggest that indigenous L. agilis strains may be much more sensitive to phytobiotic pressure
compared to the supplemented L. agilis strain. This reflects strain-specific differences in lactobacilli in
general. Therefore, synergistic effects seem to be in effect regarding certain combinations of probiotic
and phytobiotics. Unfortunately, to the best knowledge of the authors, there are not many reports on
phytobiotic modifications of the intestinal microbiota in broiler chicken, studies on combined usage
with probiotics are even rare [35]. However, studies in humans, pigs, and rats show that the absorption
of the mentioned essential oils occurs in the upper small intestine [58,59]. It is therefore probable that
pancreatic enzymes in poultry attack these substances, and resorption of their metabolites could be
expected before they reach the caecum. Consequently, it is unlikely that relevant concentrations of the
phytobiotics reached the hindgut. This implies that results on crop and caecum microbiota should be
viewed separately from different angles and that modifications of the caecal microbiota are largely due
to bacterial- or host-related changes in the upper intestinal tract.

The crop plays an essential role in the transient storage and moisturization of feed [60]. It
is also viewed as a pre-gastric fermentation chamber that defines the input of bacteria into the
gut [61]. Generally, the crop of broiler chicken is heavily dominated by certain dominant Lactobacillus
species [62–64], which was also observed in this study. Of the few studies on the subject, one report
with a probiotic L. salivarius strain showed no effect on crop lactobacilli after administration [65]. This
was also observed for the number of lactobacilli in this study, but the single addition of probiotic strains
significantly enhanced their quantity compared to the control group. Thus, both strains were able to
colonize the crop. This was not unexpected, as both probiotic strains were originally isolated from
the broiler intestine and already demonstrated great potential for in vitro survival under-stimulated
gastric stress and epithelial adherence in our previous study [38].

Significant positive synergistic effects on relative Lactobacillus spp. abundance were only observed
for L. salivarius in combination with formulation L as well as for L. agilis with both phytobiotics. In
general, the supplementation of the probiotic strains seemed to be the overriding effect on Lactobacillus
spp. abundance, while the additional phytobiotic supplementation showed only minor effects. Similarly,
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a slight non-significant decrease of species richness was observed for combination groups, but significant
differences for microbiota diversity (Shannon-index) did not show clear synergistic effects.

The impact of the probiotics and phytobiotics on the crop microbiota also extended to non-dominant
bacteria. For instance, the Clostridium sensu stricto 1 genus exhibited the highest abundance apart from
the lactobacilli. This Clostridium genus has been shown to be associated with necrotic enteritis and
Clostridium perfringens infection models [66,67]. However, the Clostridium sensu stricto 1 cluster also
contains species such as C. butyricum, which has also been used as a probiotic in poultry [68]. It is,
therefore, difficult to assign a positive, indifferent or negative role to this genus. Nevertheless, the
comparison of Clostridium sensu stricto 1 sequencing data to the much more sensitive C. perfringens
qPCR data did not show any correlation (data not shown). We can, therefore, conclude that this genus
probably did not include C. perfringens. The abundance of Clostridium sensu stricto 1 was high in single
probiotic and formulation L supplemented feed groups but was dramatically reduced in combinations
of LS1 with both phytobiotic products and especially in LA73 with formulation L. Thus, synergistic
effects in the significant reduction of this Clostridium spp. were visible only for certain combinations.
Although the additional eugenol in formulation L may have played a role in enhancing the Clostridium
sensu stricto 1 abundance compared to formulation C in single supplementation; this does not account
for its total inhibition in combination with both probiotic strains. These results signify again that
the synergistic mode of action on certain bacteria are not additive but rely on the impact of the feed
additives on other bacteria. In this case, the concomitant responses of Faecalibacterium spp., Blautia spp.,
and an unidentified Clostridiales may have played a role in the significant modification of Clostridium
sensu stricto 1.

Interestingly, similar changes in relative abundance were observed for the putatively pathogenic
genera Aeromonas spp. and Acinetobacter spp. Furthermore, C. perfringens positive samples in the
crop were generally lower in combination groups, which points to their potential to a synergistic
potential to reduce detrimental bacteria in the intestinal tract. Nevertheless, synergistic effects for these
bacteria were not visible for all combinations. Therefore, the response of the intestinal microbiota to
different phytobiotics seems to be quite diverse. However, as beneficial synergistic effects are clearly
visible regarding putatively pathogenic bacteria, the combination of certain probiotic and phytobiotic
products may be advantageous for animal health.

Overall, bacterial activity in terms of bacterial metabolites was lower in the crop of feed groups
with single phytobiotic addition, although only the reduction in lactate was significant. Carvacrol,
cinnamaldehyde, and eugenol are all known to inhibit bacterial growth in vitro, and consequently,
their activity [69,70]. Our results indicate that both phytobiotic formulations indeed inhibited
bacterial metabolism, although no significant changes in the absolute bacterial counts were observed.
Consequently, at the employed in-feed concentrations, the phytogenic products may not inhibit total
bacterial growth per se, but significantly reduce their activity in the crop. However, the production of
lactate or acetate in the intestinal tract is usually considered beneficial, as it may inhibit pathogenic or
other bacteria detrimental to the host [71,72]. The increased lactate concentration in certain combinations
of phyto- and probiotics points to a beneficial synergistic effect. Still, the synergism seems to depend
on specific combinations and cannot be classified as an additive effect of individual supplementation.

We also monitored the ex vivo survival of an ESBL producing, but non-pathogenic E. coli strain
in the intestinal contents because ESBL producing enterobacteria have become a worldwide concern
in poultry production [73]. The results of our study show synergistic effects on reducing the ex vivo
survival of the E. coli model strain in crop contents compared to the control. The in vivo results on the
quantification of the Escherichia group show a similar reducing synergism except for LA73/formulation
C. Lactobacilli are known for their antagonistic activity against enterobacteria [74,75] and both probiotic
strains showed exceptional inhibitory activity against the E. coli strain in vitro and ex vivo [38]. Contrary
to these results, data from both the ex vivo assay and the Escherichia group quantification showed
that the single addition of the probiotic strains had only slight effects on E. coli survival. Thus, the
inhibitory activity of the phytobiotic products was probably necessary to enhance the impact of the
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probiotic strains. However, the survival of the E. coli strain was also affected in the caecum, where
active phytobiotic concentrations are considered low. This indicates that different modes of action may
be in play.

In the context of ESBL producing enterobacteria and transfer of their resistance genes, the
presence of the enterobacterial class 1 integron integrase 1 gene (int1) was also monitored. This
enzyme is a key protein in the incorporation of foreign DNA in enterobacteria [76]. Its copy numbers
correlated highly to the count of the Escherichia group (p < 0.0001; 0.551 coefficient) as well as to the
count of enterobacteria (p < 0.0001; 0.423 coefficient). However, only the combination of LA73 and
formulation L showed a reducing effect on int1 concentration. The int1 gene is widely distributed
in enterobacteria, and it is likely that certain enterobacterial species or strains responded differently
to the supplementation of the feed additives. Nevertheless, the results clearly show that synergistic
effects of probiotics and phytobiotics may be superior to a single addition to combat the spread of
enterobacterial antibiotic resistance.

In the caecum, fermentation of undigested nutrients occurs [77], and the bacterial composition and
activity is largely determined by incoming nutrients as well as bacteria from the small intestine [78].
Their metabolites (SCFA) can be used as an energy source by the host and may contribute to meet
the energy requirements of the animal. Furthermore, the caecum also determines the output of
the potentially detrimental bacteria into the environment and thus has an important impact on
stable hygiene.

In this study, the impact of the feed additives on the caecal bacterial composition was much less
pronounced compared to changes observed in the crop. This may point to the fact that the active
compounds in the phytobiotic products (carvacrol, cinnamaldehyde, and eugenol) are metabolized in
the small intestine. Consequently, their active concentration may be drastically reduced. Nevertheless,
an antagonistic relationship between the abundance of a dominating unidentified Clostridiales genus
and Faecalibacterium spp. was observed, as the significant reduction of Faecalibacterium spp. was always
offset by a trend for an increase of the unidentified Clostridiales genus. As noticed for other parameters,
a trend for synergistic effects was again visible for the combination LA73 and formulation L.

The dominating bacteria in the caecum are most likely to be the most prominent producers of
SCFA from undigested nutrients, and indeed, an increase in the relative abundance of the unidentified
Clostridiales genus always corresponded with increased acetate concentrations. The increased metabolite
production points to an enhanced capacity to ferment undigested nutrients and indicates a more mature
microbiota. As a mature microbiota is viewed as beneficial [79], the caecal microbiota, especially in
animals, fed the combination LA73 and formulation L, could have developed faster than the microbiota
in other feed groups.

There were two noteworthy exceptions to the generally low response of the caecal microbiota: a
reduced colonization of C. perfringens and reduced ex vivo survival of the ESBL-producing E. coli in all
treatment groups. Apparently, adverse conditions for these two detrimental species existed due to
the addition of the feed additives. However, as the phytobiotic concentration is believed to be low in
the caecum, these adverse conditions may have mainly originated from interbacterial competition or
host-related responses that were induced in the crop or small intestine.

5. Conclusions

This study has shown that probiotics and phytobiotics can have beneficial synergistic effects on
the intestinal microbiota in young chickens. The impact of the probiotics and phytobiotics was mainly
confined to the crop, but synergistic effects were also observed in the caecum regarding the colonization
of C. perfringens and the survival of an ESBL producing E. coli strain. Comprehensively considering the
effects in microbiota shifts, changes in bacterial metabolites, and resilience to detrimental bacteria in
host GIT, the combination of the L. agilis strain in combination with the formulation L was chosen as a
synbiotic feed additive for large scale feeding trial on animal performance and health.
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CHAPTER 7: GENERAL DISCUSSION AND CONCLUSION 

Results for the establishment of the screening method, probiotic strain selection and 

characterization of probiotic candidates, formulation of probiotics and their in vivo activity in 

combination with phytobiotics have been presented and discussed in depth in Chapter 4, 

Chapter 5 and Chapter 6. 

 

Screening method for probiotic lactobacilli 

The newly-developed screening method broadly followed existing techniques to select 

candidate probiotics by progressive reduction of candidate isolates with increasingly strict 

criteria. A major advancement of the method was the use of a specific target bacterium (ESBL 

E. coli) to assess the inhibitory activity of the probiotic candidates. 

 Compared with classic screening criteria, the developed three-staged method simplifies 

detection of inhibitory activity and massively enlarges of the number of isolates to be screened. 

Based on a literature review on probiotic selection, we found that the number of isolates ranged 

from 14 to 1150 isolates with the majority of publications using approximately 50 to 80 isolates 

(Robyn et al., 2012; Babot et al., 2014). The massive enlargement of isolate numbers leads to 

both high throughput and easy method for detection of inhibitory activity. Hence, a pre-

screening was designed as the first step to quickly filter isolates by their inhibitory potential on 

microtiter plates. The advantage of liquid based growth inhibition assays over agar diffusion 

assays is their sensitivity and rapidity to observe subtle influences on growth (Fredua-

Agyeman et al., 2017). In the first step, with over 7000 isolates subjected to the screening 

assay, only 76 isolates showed pH-dependent and/or pH-independent inhibitory potential. To 

more precisely study 76 selected isolates, lag time and lactate production were chosen as 

probiotic indicators due to their sensitivity and probable probiotic factors (Swinnen et al., 2004; 

Rufián-Henares and Morales, 2008). In the end, a total of five isolates among all 76 isolates 

that exhibited the highest indices for both parameters were chosen.  

In view of the complex intestinal environment, in vitro models cannot reflect antibacterial effects 

that may occur in the animal, because it is always questionable whether probiotics maintain 

their inhibitory activity in vivo (Talpur et al., 2012). Consequently, in vitro tests cannot mimic 

the complex intestinal matrix and truly reflect the inhibitory activity of probiotics in the GIT of 

animals (Saint-Cyr et al., 2016). Thus, an ex vivo model was established based on the work of 

Starke and coworkers, to find a compromise between in vitro and in vivo approach (Starke et 

al., 2013). This ex vivo model mimics a maximum of in vivo conditions with cost-efficiency and 

ease of handling of in vitro models. From this novel model, two Lactobacillus candidates, one 

L. salivarius and one L. agilis strain, were eventually selected. Although host-related gastric 

stresses were not considered as main criteria, resilience against the acid, bile and osmotic 
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stress in accordance of the physiological conditions in the poultry GIT were determined. Both 

candidates were highly tolerant against putative gastric stress. Safety assessment is an 

important approach before their application on animals. In terms of safety check for lactobacilli 

species, a major concern is their antibiotic resistance (Imperial and Ibana, 2016). Hence, the 

resistance profile of selected candidates was assessed on the basis of commonly used 

antibiotics. Both final candidates (L. salivarius and L. agilis) demonstrated no resistance 

against recommended antibiotics in human medicine, which increased the confidence for a 

further development as safe feed additive in the future. The first part of the thesis successfully 

validated a three-staged method to massively screen potential probiotic isolates for pathogenic 

targets with clear biomarkers. Moreover, the selected candidate probiotics were shown to be 

suitable as feed additive in poultry nutrition. 

 

Production of probiotics on the laboratory scale 

Probiotic traits in bacterial strains do not necessarily mean that they can be successfully 

applied in practice. The efficiency of probiotic products is highly dependent on cell viability, 

since the mode of action of probiotics is conferred by living cells (Del Piano et al., 2006). Thus, 

the optimization of production parameters of a probiotic is a prerequisite for a successful 

probiotic product during fermentation and stability throughout processing and storage until 

delivery to the animal. The metabolic fingerprints of two probiotic candidates (L. salivarius and 

L. agilis) were analyzed with BIOLOG AN® plate (Stefanowicz, 2006) and indicated that 

different substrates were preferred by the strains. Six top substrates were selected to 

supplement the basal medium MRS for probiotic biomass production to study a possible 

booster effect on bacterial growth. The results indicated that the supplementation of sucrose 

for L. salivarius and mannose for L. agilis shortened the exponential growth phase and yielded 

more biomass than with MRS alone.  

Lactobacillus spp. are facultative anaerobes, but several species do not tolerate oxygen well 

(Mitropoulou et al., 2013; Maresca et al., 2018). It is known that aerobic cultivation requires 

less energy and is thus more economic (Siciliano et al., 2019). Therefore, probiotics with high 

oxygen tolerance and capability to maintain robust growth under aerobic condition are 

preferred for a scale-up production. Both probiotic strains were able to grow well in aerobic 

condition, leading to a more economic biomass production for those strains.  

Most probiotics are not used directly as fresh cultures in animal nutrition, as many strains loose 

viability in this form. Freeze drying and spray drying are usual processes to formulate probiotics 

(Broeckx et al., 2016). However, even freeze drying causes a viability loss of probiotic cultures. 

Thus, the protection of the probiotic cells during processing is of high importance. Numerous 

investigations reported that cryo-protective mixtures are able to yield synergistic effects on cell 

viability. Yet, results from various studies indicate that protectants work in a strain-specific 
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manner.  Hence, three potential protective substances were studied in the second part of the 

present thesis, namely skim milk, sucrose, and trehalose. For a better understanding of the 

interactions among the three factors and minimizing data bias, the response surface method 

strategy with Box-Behnken Design was assigned in this work. Similar to some other studies, 

skim milk was assumed to be the most influencing protective factor (Lu et al., 2017). Sucrose 

and trehalose demonstrated a synergistic protective effect as they enhanced the protection 

offered by skim milk. This effect was in accordance with a study on preserving Candida sake 

cultures (Abadias et al., 2001). On the basis of a model built by the interaction of the three 

factors, an optimized protective composition was generated (0.14 g/L skim milk, 0.08 g/L and 

0.09 g/L trehalose for L. salivarius, and 0.15 g/L skim milk, 0.08 g/L, and 0.07 g/L trehalose for 

L. agilis, respectively). These formulations were also determined with their storage stability. 

Although storage temperature was the overriding effector, the protective formulations endowed 

improved stability to both probiotics strain. In this part of the thesis, production parameters 

were optimized specifically for two selected probiotic candidates that were selected for a 

feeding trial due to their exceptional probiotic activity.  

 

Synergistic effects of pro- and phytobiotics in a feeding trial 

Probiotics and phytobiotics have been extensively investigated as feed additives individually 

in the past decades, yet there is a lack of in depth investigations on the combination of these 

two types of feed additives. Therefore, the third part of this thesis was concerned with the 

possible synergistic effects of pro- and phytobiotics in a feeding trial with broiler chickens. This 

part investigated the effects of different feed additives on the gut microbiota of young broilers. 

It compared the effects of single use of probiotic/ phytobiotic versus their respective 

combinations to investigate possible synergistic effects. The rationale behind the selection of 

young broilers as research objective was that young animals are still in the process of 

developing a mature microbiota. This process may thus respond more sensitively to alterations 

by feed additives (Kers et al., 2018b; Rubio, 2018). The detailed modulation on the microbiota 

composition and –activity is shown and discussed in Chapter 6.  

The crop and caecum of birds are viewed as the pre- and post-gastric fermentation chambers, 

which defines the input and output of GIT bacteria (Lu et al., 2003; Gallazzi et al., 2008; Ercolini 

and Fogliano, 2018). However, as expected, the microbiota in crop and caecum responded 

differently to the feed additives. Generally speaking, the effects of the pro- and phytobiotics 

and their combinations were more pronounced in the crop than in the caecum. This outcome 

could be possibly due to the phytogenic products (carvacrol, cinnamaldehyde and eugenol) 

which are absorbed in the small intestine and consequently their active concentration may be 

drastically reduced in the caecum. This indicates that the micro-ecology of different intestinal 

sections must be viewed individually. A notable synergistic effect in this feeding trial was that 
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the additives modified Lactobacillus spp. populations, as L. salivarius in combination with 

formulation L as well as L. agilis with formulation C significantly elevated Lactobacillus spp. 

abundance. To our best knowledge, this is the first report about the promotion of Lactobacillus 

by a synergistic effect of probiotics and phytobiotics. A similar effect was observed in the 

animals fed with the single use of probiotic or phytobiotic (Gheisar et al., 2015; Gao et al., 

2017). The abundance of Clostridium sensu stricto 1 was high in single probiotic and 

formulation L supplemented feed groups, but was dramatically reduced in combinations of LS1 

with both phytobiotic products and especially in LA73 with formulation L. These results signify 

again that the synergistic mode of action on certain bacteria is not additive but relies on the 

impact of the feed additives on other bacteria. As to the bacterial metabolites, lactate was 

significantly and acetate was numerically lower in the crop of groups with single phytobiotic 

addition. Although the active ingredients like cinnamaldehyde or eugenol show high 

antibacterial activity in vitro, the observed reduction of bacterial activity without significant 

reduction of absolute counts of bacteria may be viewed as a bacteriostatic effect.  

Consequently, at the employed in-feed concentrations, the phytogenic products may not inhibit 

total bacterial growth per se, but significantly reduce their activity in the crop. Interestingly, 

certain combinations, for instance, formulation L in combination with LA73, reversed the 

inhibition of lactate production, showing significantly or numerically higher concentrations of 

metabolites.  

Extended-Spectrum-Beta-Lactamase (ESBL) producing enterobacteria have become a 

worldwide concern in poultry production (Saliu et al., 2017). Thus, we also evaluated whether 

the feed additives may decrease the colonization of ESBL producing E. coli in the birds. We 

therefore estimated the ex vivo survival of an ESBL E. coli model strain in crop- and caecum 

contents. Data from both ex vivo assay and Escherichia group quantification suggested that 

the single addition of the probiotic strains had only slight effects on E. coli survival, but in 

combination with phytobiotics, some feed groups showed a significant reduction of the E. coli 

survival in ex vivo assays. Thus, the inhibitory activity of the phytobiotic products was probably 

necessary to enhance the impact of the probiotic strains in the crop. However, the inhibition by 

synergistic combinations in the caecum may follow a different mode of action, as phytobiotics 

may be absorbed in the foregut. To further understand the resilience against colonization 

against ESBL enterobacteria, the presence of the enterobacterial class 1 integron integrase 1 

gene (int1), which is an essential element in the incorporation of foreign DNA in enterobacteria 

was also monitored (Fluit and Schmitz, 1999). The only decrease of int1 genes was observed 

in the combination group of LA73 and formulation L, suggesting a synergistic effect on 

subsequently reducing the ESBL gene transmission. Nevertheless, the results clearly show 

that synergistic effects of pro- and phytobiotics may be superior to single addition to combat 

the spread of enterobacterial antibiotic resistance. Additionally, the colonization of C. 
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perfringens was also reduced in birds receiving combinations of feed additives. In general, the 

results of this section of the thesis confirmed that synergistic effects of combination of 

probiotics and phytobiotics in terms of gut microbiota composition and –activity as well as 

inhibition against certain detrimental bacteria. This was especially pronounced for the 

combination of LA73 in combination with phytobiotic formulation L. 

To conclude, the present thesis firstly established a high-throughput method to quickly 

screen possible probiotic isolates against a specific target bacterium with a clear biomarker 

(ESBL producing E. coli in our study) and showed the potential of the method to be extended 

to a broader spectrum of probiotics with only minor modifications of the screening criteria. 

With this method, two Lactobacillus strains with activity against ESBL E. coli were selected 

from more than 7000 isolates.  

These strains were then optimized for their production parameters. The best condition of 

cultivation and formulation was determined and probiotic powders with high residual viability 

were formulated.  

The probiotic strains were then tested on young birds with or without commercial phytobiotics. 

The impact of the pro- and phytobiotics were mainly confined to the crop, but synergistic effects 

were also observed in the caecum regarding the colonization of C. perfringens and the survival 

of an ESBL producing E. coli strain.  

Thus, in this thesis, both probiotics and phytobiotics showed capability to exert the beneficial 

modification of the gut microbiota and potential to promote host health, while the combination 

of L. agilis and formulation L is preferred due to its superior synergistic effects on important 

bacterial parameters. 
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CHAPTER 8: SUMMARY 

Selection, Preparation and Application of Host-derived Probiotic Lactobacilli from 

Chicken and their Synergistic Effects with Phytobiotics on Broilers. 

In Chapter 1, the general scientific rationale of the current thesis is introduced. In-feed 

antibiotics have benefited the animal husbandry for over 80 years, but antibiotic resistance 

emerged as a massive problem in recent decades. Antibiotics have been broadly used as 

growth promoters and for veterinary treatments in animal industry. This has contributed to a 

fast spread of antibiotic resistance, especially in poultry. Thus, it calls for theoretical and 

practical efforts to select promising alternatives to in-feed antibiotics.  

Several alternative feed additives have been comprehensively studied, among them probiotics 

and phytobiotics. However, the limitation in host-specificity of probiotics and their combination 

with phytobiotics in animal nutrition has restricted the in-depth understanding towards their 

functionality and role as AGP alternative. Thus, the refinements in probiotic screening, 

formulation and application is necessary and meaningful to better substitute AGP in animal 

production. 

In Chapter 2, a literature review regarding the research advances of in-feed probiotics and 

phytobiotics is provided. The literature review summarizes both probiotics and phytobiotics as 

AGP alternatives from the aspect of growth promotion, GIT microbiome alteration, immuno-

regulation, practical formulation and their respective combinations with other additives. The 

main objectives of the present thesis are to develop a rapid and efficient protocol of probiotic 

screening and preparation and investigate possible beneficial synergistic effects with 

phytobiotics.  

In Chapter 3, on basis of the given background, the aim of this study was to isolate and 

produce host-specific probiotics and to investigate the possible synergistic effects of these 

probiotics with commercial phytobiotics. This chapter also clarified the research objectives of 

the thesis including establishment of new screening method, in vitro characterization, 

optimization of production and stabilization and a proof-of-principle by an in vivo evaluation.  

The Chapters 4 to 6 comprehensively summarize investigations on the establishment of the 

novel screening method, production of probiotics and their effects of bacterial development in 

young broiler chickens. With the three-staged screening method, over 7000 isolates were 

filtered through the screening and finally two candidates were selected for their excellent in 

vitro and ex vivo activity against ESBL E. coli. The strain-specific production parameters of two 

probiotic strains were optimized regarding cultivation and formulation, achieving both relative 

high yields and high stability after production. The chosen probiotic strains and two commercial 

phytobiotics as well as their combinations were tested in a proof-of-principle feeding trial. The 

composition and activity of crop and caecum microbiota of young broilers were analyzed to 

demonstrate the impact of the feed additives on the host intestinal ecology. Additionally, the 
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ability to inhibit colonization of ESBL producing E. coli as well as C. perfringens in either foregut 

or hindgut of birds was documented. These three consecutive studies showed an overarching 

process from isolation of probiotic strains to functional feed additives in a feeding trial.  

In Chapter 7, the results from the current thesis are discussed in general. The efficiency of the 

three-staged method was emphasized by discussing handling and financial cost during the 

screening step. The method also allows an easier enlargement of the screening scale 

compared to traditional one-step screening procedures. It also endows the feasibility to 

drastically enlarge the screening scale compared to traditional one-step screening methods. 

With both experimental and computational means, the formulation of selected probiotic strains 

into feed additives was improved. Finally, the prepared probiotic feed additives were shown to 

exert beneficial effects on the gut microbiota of young broilers. This was especially observed 

for a specific combination of probiotic and phytobiotic. This evidenced the great potential of 

probiotics in combination with phytobiotics as an alternative to the use of AGP in broiler 

husbandry.   
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KAPITEL 9: ZUSAMMENFASSUNG 

Auswahl, Herstellung und Anwendung von aus dem Wirt stammenden probiotischen 
Lactobacillen von Hühnern und ihre synergistischen Wirkungen mit Phytobiotika bei 
Broilern. 
In Kapitel 1 wird die allgemeine wissenschaftliche Begründung der vorliegenden Arbeit 
vorgestellt. Antibiotika haben die Tierhaltung seit über 80 Jahren begünstigt, aber 
Antibiotikaresistenzen haben sich in den letzten Jahrzehnten zu einem massiven Problem 
entwickelt. Antibiotika wurden in großem Umfang als Leistungsförderer und zur Prophylaxe 
und Therapie in der Tierhaltung verwendet. Dieses hat zu einer schnellen Ausbreitung von 
Antibiotikaresistenzen beigetragen, insbesondere bei Geflügel. Daher sind theoretische und 
praktische Anstrengungen erforderlich, um vielversprechende Alternativen zu Antibiotika in 
Futtermitteln auszuwählen.  
Mehrere alternative Futtermittelzusätze wurden umfassend untersucht, darunter Probiotika 
und Phytobiotika. Die Einschränkung der Wirtsspezifität von Probiotika und ihre Kombination 
mit Phytobiotika in der Tierernährung hat jedoch das eingehende Verständnis der 
Funktionalität und Rolle als AGP-Alternative eingeschränkt. Daher ist die Verfeinerung des 
Screenings, der Formulierung und der Anwendung notwendig und sinnvoll, um AGP in der 
Tierproduktion besser zu substituieren. 
In Kapitel 2 wird eine Literaturübersicht zu den wissenschaftlichen Fortschritten bei Probiotika 
und Phytobiotika gegeben. Die Literaturübersicht fasst sowohl Probiotika als auch Phytobiotika 
als AGP-Alternativen unter den Gesichtspunkten Leistungsförderung, Mikrobiom des 
Gastrointestinaltrakts, Effekte auf das Immunsystem, praktische Formulierung unter 
Berücksichtigung von Kombinationen und der Interaktion mit anderen Additiven. Das Hauptziel 
der vorliegenden Arbeit war es, ein effizientes Protokoll für das Screening von potenziellen 
probiotischen Bakterien, Verfahren für die Herstellung zu entwickeln und mögliche vorteilhafte 
synergistische Effekte mit Phytobiotika zu untersuchen. 
In Kapitel 3 wurde anhand des gegebenen Hintergrunds das Ziel dieser Studie verfolgt, 
wirtsspezifische Probiotika zu isolieren und zu produzieren und die möglichen synergistischen 
Wirkungen dieser Probiotika mit kommerziellen Phytobiotika zu untersuchen. In diesem Kapitel 
wurden auch die Forschungsziele der Dissertation geklärt, einschließlich der Etablierung einer 
neuen Screening-Methode, der In-vitro-Charakterisierung, der Optimierung der Produktion 
und der Stabilisierung sowie einer In-vivo-Bewertung. 
In den Kapiteln 4 bis 6 werden Untersuchungen zur Etablierung der neuartigen Screening-
Routine, zur Herstellung stabiler Probiotika und zu deren Auswirkungen auf die Entwicklung 
der intestinale Mikrobiota bei jungen Masthühnern umfassend zusammengefasst. Mit einem 
dreistufigen Screening-Verfahren wurden über 7000 Isolate geprüft und schließlich zwei 
Kandidaten aufgrund ihrer erwünschten probiotischen Aktivität in vitro und ex vivo ausgewählt. 
Die stammspezifischen Produktionsparameter wurden hinsichtlich Kultivierung und 
Formulierung optimiert, wobei sowohl eine relativ hohe Ausbeute als auch eine hohe Stabilität 
nach der Produktion erzielt wurden. Die ausgewählten probiotischen Stämme und zwei 
handelsübliche Phytobiotika sowie deren Kombinationen wurden in einem Fütterungsversuch 
getestet. Die Zusammensetzung und Aktivität der Kropf- und Caecum-Mikrobiota junger 
Masthähnchen wurde analysiert, um den Einfluss der Futterzusätze auf die Darmökologie des 
Wirts nachzuweisen. Zusätzlich wurde die Fähigkeit dokumentiert, die Kolonisierung von 
ESBL-produzierenden E. coli sowie C. perfringens im vorderen und hinteren Verdauungstrakt  
zu hemmen. Diese drei aufeinanderfolgenden Studien zeigten in einem Fütterungsversuch 
einen übergreifenden Prozess von der Isolierung probiotischer Stämme bis hin zu funktionellen 
Futterzusatzstoffen. 
In Kapitel 7 werden die Ergebnisse der aktuellen Arbeit übergreifend diskutiert. Die Effizienz 
der dreistufigen Methode wurde durch die Diskussion der Handhabung und der Kosten 
während des Selektionsverfahrens unterstrichen. Das Verfahren ermöglicht auch eine 
einfachere Ausweitung des Testprinzips im Vergleich zu herkömmlichen einstufigen 
Screening-Verfahren. Es macht es möglich, den Umfang der Untersuchungen im Vergleich 
zum herkömmlichen einstufigen Screening erheblich zu vergrößern. Sowohl experimentell als 
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auch unter Nutzung rechnerischer Verfahren wurde die Formulierung ausgewählter 
probiotischer Stämme zu praktisch einsetzbaren Futtermittelzusatzstoffen verbessert. 
Schließlich wurde gezeigt, dass die hergestellten probiotischen Futterzusätze positive 
Auswirkungen auf die Darmmikrobiota junger Broiler haben. Dies wurde insbesondere für eine 
spezifische Kombination von Probiotika und Phytobiotika beobachtet. Dies belegt das große 
Potenzial von Probiotika in Kombination mit Phytobiotika als Alternative zum Einsatz von AGP 
in der Masthühnerhaltung. 
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