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Introduction

Classification problems are of great importance in algebraic geometry. A moduli space can
been seen as a solution of a geometric classification problem i.e. we classify algebro-geometric
objects up to some notion of equivalence.

The notion of stability condition appears naturally in the construction of moduli spaces of
vector bundles on smooth projective varieties. In order to construct a reasonable moduli
space, we need to restrict to a class of objects which are better behaved and bounded.
Therefore, we usually restrict to the class of semistable objects whose definition depends on
a stability condition.

Rudakov generalized the notion of stability structure in [Rud97, Def. 1.1] to an abelian
category A. It is given by a preorder on A satisfying that if 0→ E → F → G→ 0 is a short
exact sequence, then the middle term F is situated in between the side terms E and G with
respect to the preorder. The heart of a bounded t-structureA in a triangulated categoryD is
an abelian category, that intuitively breaks up every object in D in terms of its cohomology
(with respect to A) indexed by Z. Moreover the objects in A are precisely the objects
whose cohomology is concentrated in degree 0. Let us consider a group homomorphism
Z : K(A) → C, from the Grothendieck group K(A) = K(D) and with image contained in
H ∪R<0. As K(A) is additive with respect to short exact sequences in A, the argument of
the Z([E]) for E ∈ A defines a preorder satisfying Rudakov’s condition.

In [Bri07] Bridgeland generalized the notion of stability condition to a triangulated category
D. A Bridgeland stability condition consists of a pair (Z,A) where Z : K(A)→ C is a group
homomorphism as above and A is the heart of a bounded t-structure, such that Z satisfies
the Harder-Narasimhan property on A and the support property. By extending Z via the t-
structure, we now can break every object E ∈ D into pieces indexed by real numbers.

Moreover, in the last decades there has been a constant interplay between algebraic ge-
ometry and physics. Bridgeland stability conditions were introduced as a mathematical
formalization of Douglas’ work on Π-stability of D-branes for super conformal field theories
(SCFT) in [Dou01] and [Dou02] in order to understand homological mirror symmetry.

In [Bri07], Bridgeland proved that the set of stability conditions has a natural topology and
is a complex manifold. We are particularly interested in the finite dimensional submanifold
of numerical stability conditions, denoted by Stab(D). The support property allows us to
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use Bridgeland’s deformation result [Bri07, Thm. 7.1] to ensure that Stab(D) has a well-
behaved wall-crossing and chamber decomposition, which is one of the main advantages
of this setting. Moreover, the manifold Stab(T ) carries a right action of G̃L

+
(2,R) and a

commuting left action by isometries of the group of exact autoequivalences of T .

Stability manifolds of non-singular projective curves were determined in [Bri07], [Mac07]
and [Oka06]. In the case T = Db(C), for a non-singular curve C of genus g ≥ 1,
we have that G̃L

+
(2,R) acts on freely and transitively on Stab(T ), which implies that

Stab(T ) ∼= G̃L
+

(2,R). Bridgeland stability conditions have been constructed on projective
surfaces as well as a connected component of the stability manifold for K3 surfaces in
[Bri08]. As Gieseker semistable and slope semistable sheaves are both particular cases of
Bridgeland semistable objects for a stability condition near to the "large-volume limit", see
[Bri08, Sec. 14], it gives us also a framework to study the classical moduli spaces. As
the original motivation comes from string theory, the construction of stability conditions
on Calabi-Yau threefolds is still required. However, the existence of Bridgeland stability
conditions has already been proved for surfaces [AB13], for Abelian threefolds in [BMS16]
and [MP15], for Fano threefolds with Picard rank one in [Li18] and for smooth quadrics in
[Sch14].

One important aspect of Bridgeland stability is its connection with birational geometry.
The nef cone of the moduli space of Gieseker stable sheaves on a K3 surface has been
described in [BM14] as well as the ample cone of the moduli of Gieseker semistable sheaves
on P2 in [ABCH13].

The existence of moduli spaces of Bridgeland semistable objects as an Artin stack of finite-
type over C has been studied in some cases in [Tod08] and [PT15] via [Lie06]. On some
particular surfaces, the moduli spaces exist as projective varieties. One of the difficulties
of the study of moduli spaces of Bridgeland semistable objects is that they are not directly
related with a GIT problem. However, in [AHLH18] the authors approach the question of
the existence of good moduli spaces, as in [Alp13], for discrete stability conditions.

Let A be a Noetherian abelian category, such that Db(A), the bounded derived cate-
gory of A, is C-linear of finite type and saturated and let QA,n be the abelian category
of representations of the n-Kronecker quiver on A, with n > 0. Its objects are tuples
(E1, E2, (fj)0<j≤n) where Ei ∈ A, i = 1, 2 and fj ∈ HomA(E1, E2) for 0 < j ≤ n. The main
goal of this thesis is to study Stab(Db(QA,n)) and as a particular case the stability manifold
Stab(Db(TCoh(X))), where TCoh(X) := QCoh(X),n, is the abelian category of holomorphic
triples TCoh(X) on a non-singular projective variety X. A holomorphic triple (E1, E2, ϕ)
consists of a pair E1, E2 ∈ Coh(X) and a morphism ϕ : E1 → E2. Holomorphic triples
were introduced by García-Prada et al. in [BGPG04] and [BGP96] for vector bundles over
a nonsigular projective curve, it was shown in [BGP96] that moduli spaces of α-semistable
holomorphic triples exist and are projective. They also studied wall-crossing and chamber

http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
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decomposition with respect to a parameter α. A precise construction via GIT of the moduli
spaces was given by A. Schmitt in [Sch03]. This category has also played an important role
in the study of Higgs bundles. See [BGPG02] and [BGPG03].

One of the main goals of this Ph.D thesis, partly in collaboration with E. Martínez and
A. Rüffer, is to describe the stability manifold of the derived category of the abelian cat-
egory TCoh(X) of holomorphic triples over smooth projective curves with positive genus.
Our main contribution is to give a complete description of the Bridgeland stability mani-
fold Stab(Db(TCoh(X))), where X is a curve of genus ≥ 1, as a 4-dimensional connected
complex manifold.

If A is the category of Vect of vector spaces over C, then QVect,n is the category of repre-
sentations of the n-Kronecker quiver and its stability manifold is completely described in
[Mac07]. See Subsection 1.2.4.

Our idea is to generalize the construction for quivers in [Mac07], but instead of using ex-
ceptional objects we use semiorthogonal decompositions. The exceptional object Sk, for
k ∈ Z defined in [Mac07], generates a triangulated subcategory 〈Sk〉 of Db(Qn). It also
induces a semiorthogonal decomposition 〈〈Sk〉, 〈Sk+1〉〉 of Db(Qn). We define the analo-
gous triangulated subcategories Dk of Db(QA,n), which will also induce semiorthogonal
decompositions 〈Dk, Dk+1〉 of Db(QA,n). The main tools that we use to study Db(QA,n)
are the semiorthogonal decompositions given above and the existence of the Serre functor
SDb(QA,n) : Db(QA,n)→ Db(QA,n).

In the case of n = 1, we study the following admissible subcategories

D1 := i∗(Db(A)), D2 := j∗(Db(A)) and D3 := l∗(Db(A)),

where

i∗ : Db(A) → Db(QA,1)
E 7→ (E, 0, 0)

j∗ : Db(A) → Db(QA,1)
E 7→ (0, E, 0)

and

l∗ : Db(A) → Db(QA,1)
E 7→ (E,E, id).

It induces the following semiorthogonal decompositions:

〈D1, D2〉 , 〈D2, D3〉 and 〈D3, D1〉.

We follow the construction in [BK90a, Prop. 3.8] to give a precise description of our Serre
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functor STA at the level of objects for TA := Db(QA,1). As a consequence, we conjecture
that

Conjecture 0.1. If Db(A) is a n-Calabi–Yau category, then TA is a fractional Calabi–Yau
with q = 3 and p = 3n+ 1, i.e. S3

TA.
= [3n+ 1].

The conjecture is proved at the level of objects, but no yet at the level of morphisms.

Particularly, if X is an n-Calabi-Yau projective variety we obtain a that Db(TCoh(X))
would be a fractional Calabi-Yau category of dimension 3n+1

3 . Moreover, as we have that
STA(⊥D) = D⊥, for an admissible subcategory D ⊆ TA, we obtain the following dia-
gram:

D1

D2

D3.

S T
A

S
T
A

STA

We construct hearts of bounded t-structures in Db(QA,n) by using the semiorthogonal
decompositions described above. They are induced by hearts of t-structures in Db(A) via
recollement as in [BBD82] and gluing as in [CP10]. The difference between these two
methods is that applying CP-gluing requires an additional orthogonal condition on the
hearts. We proved that all gluing hearts could be also constructed via recollement and
moreover the recollement hearts that do not satisfy the orthogonal condition do not admit
a stability function.

The definition of the stability function is given by [CP10]. Additionally, we prove the
Harder-Narasimhan property (HN) for the all CP-glued pairs, as it does not follow directly
from the CP-gluing construction.

In Subsection 2.2.3, we generalize the necessary condition for the existence of σ-semistable
objects given in [BGP96, Thm. 6.1].

In Chapter 3, we focus on describing Stab(TC) where C is a complex projective non-singular
curve with genus g ≥ 1. First note that α-stability studied in [BGPG04] appears as a CP-
glued prestability condition. We first construct additional hearts in Db(TCoh(C)), i.e.
those which are not given by CP-gluing, by tilting with respect to some torsion theories on
TCoh(C), that also admit stability functions.

One of the main ingredients to describe Stab(Db(X)) is the fact that for every
σ ∈ Stab(Db(X)), any line bundle L and every skyscraper C(x) are σ-stable.

We define

Θ12 = {σ ∈ Stab(TC) | i∗(C(x)), j∗(C(x)), i∗(L), j∗(L) stable},
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Θ23 = {σ ∈ Stab(TC) | j∗(C(x)), l∗(C(x)), j∗(L), l∗(L) stable},

Θ31 = {σ ∈ Stab(TC) | i∗(C(x)), l∗(C(x)), i∗(L), l∗(L) stable}

for all line bundles L and skyscrapers sheaves C(x) and we prove an analogous statement
for Stab(TC).

Theorem 0.2. If σ is a pre-stability condition on TC , then

σ ∈ Θ12 ∪Θ23 ∪Θ31.

This result plays an important role in describing explicitly the stablity manifold Stab(TC).
We use the stability of the skyscraper sheaves to describe the heart of any σ ∈ Stab(TC)
as in [Bri08, Prop. 9.4]. As a consequence they are always given by CP-gluing or by tilting
with respect to a torsion theory on TCoh(C). We define Θi ⊆ Stab(TC), for i = 1, 2 or 3, as
the set consisting of stability conditions which are, up to the action of G̃L

+
(2,R), CP-glued

with respect to the semiorthognal decomposition 〈Di,
⊥Di〉.

In Subsection 3.2.4, we classify all stability condition on Stab(TC) in terms of linear algebra.
We obtain

Theorem 0.3. For all pre-stability condition σ on TC , we have that

σ ∈ Θ1 ∪Θ2 ∪Θ3 ∪ Γ,

where Γ is the set of pre-stability condition, which up to the G̃L
+

(2,R)-action is given by
Lemma 3.14 with ∆(M) < 0. Moreover, note that Γ ⊆ Θij and

Θi ∩Θj = ∅ and Θi ∩ Γ = ∅

for i, j ∈ {1, 2, 3}.

In other to prove that the support property is satisfied, we generalize some of the equations
in [BGP96] to an arbitrary stability condition on Stab(TC) in Subsection 2.2.3 and we use
a Bogomolov-type inequality. The proof of the HN-property goes along the lines of [Bri08].
We produce HN-filtrations in the discrete case and we use Bridgeland’s deformation result
for a full connected component to extend it.

We obtain our main theorem:

Theorem 0.4. [MRRHR19, Martínez, Rincón, Rüffer] Let C be a complex projective non-
singular curve with g(C) = 1, then Stab(TC) is a connected, 4-dimensional complex mani-
fold.
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Under the assumption that all pre-stability conditions constructed above satisfy the support
property, we obtain

Theorem 0.5. [MRRHR19, Martínez, Rincón, Rüffer] Let C be a complex projective non-
singular curve with g(C) > 1 then Stab(TC) is a connected, 4-dimensional complex manifold.

In Proposition 3.87, we have proved the support property for σ ∈ Θi, with i = 1, 2, 3
when g(C) > 1. For σ ∈ Γ, we have not proved yet the support property. See Subsection
2.2.3.

We obtain the following diagram of Stab(TC).



Summary

In Chapter 1, we introduce preliminary concepts. We study several features of a triangu-
lated category D and abelian subcategories of a triangulated category D via t-structures and
torsion pairs. Afterwards, we introduce important concepts to study D, namely semiortho-
gonal decompositions and the Serre functor. Bridgeland stability conditions are the main
object under discussion in Section 1.2. In Chapter 2, we study Stab(Db(QA,n)). The object
under study in this chapter is TA,n := Db(QA,n). We construct different semiorthogonal de-
compositions for TA,n. We prove the existence of the Serre functor and we give an explicit
construction of it in the case n = 1. In Section 2.2, we construct pre-stability conditions
on TA,n and we prove the Harder-Narasimhan property in some cases and we give explicit
examples of CP-glued pre-stability conditions on the category TCoh(X), where X is a nonsin-
gular projective curve, surface or a particular threefold. In Chapter 3, we study TCoh(C)
i.e. the category of holomorphic triples over a curve, where C is a nonsingular projective
curve over C with g(C) ≥ 1. The aim of this chapter is to describe completely the stability
manifold Stab(TC). In the process, we prove that all CP-glued pairs σ constructed in Sec-
tion 2.2 on TC are in fact Bridgeland stability conditions. In order to describe Stab(TC)
we follow the steps of [Bri08]. In Section 3.1 we first construct additional pairs via tilting.
As a consequence we obtain discrete pre-stability conditons. In Section 3.2 we show that
all Bridgeland stability condition in Stab(TC) have to be given by the already constructed
pairs, either by CP-gluing or by tilting. In Section 3.3 we prove the support property and
finally in Section 3.4 we use Bridgeland’s deformation result to describe topologically the
stability manifold and to extend the HN-property to the non-discrete cases. This chapter
appears in [MRRHR19] as joint work with Eva Martínez Romero and Arne Rüffer.
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1 Preliminaries

In this chapter we introduce preliminary concepts, which are of great importance for this
thesis. We start by studying several features of a triangulated category D. For the defi-
nition of a triangulated category and the one of the bounded derived category Db(A) for
an abelian category A, we refer to [GM13], [Huy06] or the original source [Ver96]. If X
is a smooth projective variety, we denote Db(Coh(X)) as Db(X). In Section 1.1 we follow
[BBD82, Ch. 1] to study abelian subcategories of a triangulated category D via t-structures
and torsion pairs. Afterwards, we introduce important concepts to study D, namely semi-
orthogonal decompositions and the Serre functor. Bridgeland stability conditions are the
main object under discussion in Section 1.2. We follow closely [Bri07] and [Bri08]. We
review the definitions, the main results and we study some examples in detail.

1.1 Triangulated and derived categories

1.1.1 t-structures and torsion pairs

Let D be a C-linear triangulated category of finite type. For the general theory of t-
structures we suggest [BBD82, Ch. 1].

Definition 1.1. A t-structure on a triangulated category D consists of a pair of full additive
subcategories (D≤0,D≥0), with D≤i := D≤0[−i] and D≥i := D≥0[−i] for i ∈ Z, such that:

1. HomD(D≤0,D≥1) = 0.

2. For all E ∈ D, there is a distinguished triangle

T // E // F // T [1]

with T ∈ D≤0 and F ∈ D≥1.

3. D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1.

A t-structure is bounded if every E ∈ D is contained in D≤n ∩D≥−n for some n > 0.

Definition 1.2. The heart of a bounded t-structure (D≤0,D≥0) is defined as

A := D≤0 ∩ D≥0

11
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Remark 1.3. [MS17, Lem. 5.2] The heart of a bounded t-structure A ⊆ D is an abelian
category whose short exact sequences are precisely the exact triangles in D with objects in
A. A morphism A→ B between two objects in A is defined to be an inclusion if its cone is
also in A, and it is defined to be a surjection if the cone is in A[1].

Example 1.4. [BBD82, Ch. 1]

1. If (D≤0,D≥0) is a t-structure, then the pair (D≤n,D≥n) is also a t-structure.

2. Let D = Db(A), where A is an abelian category. The standard bounded t-structure of
D is given by D≤0 := {E | H i(E) = 0 , i > 0} and D≥0 := {E | H i(E) = 0 , i < 0}.
Note that A is the heart of the standard bounded t-structure.

Definition 1.5. Given triangulated categories D and D′ endowed with t-structures
(D≤0,D≥0) and (D′≤0,D′≥0), a functor F : D → D′ is called (left)right t-exact if
(F (D≤0) ⊂ D′≥0) F (D≥0) ⊂ D′≥0. We say that F is t-exact if it is left and right t-exact.

Lemma 1.6. [Bri07, Lem. 3.2], [Huy14, Rem. 1.16] Let A ⊂ D be a full additive subcate-
gory of a triangulated category D. Then A is the heart of a bounded t-structure if and only
if

1. HomD(A[k1],A[k2]) = 0 for k1 > k2.

2. For every nonzero E ∈ D there exists a finite sequence of integers

k1 > k2 > · · · > km

and a collection of distinguished triangles

0 = E0 // E1

��

// E2

��

// · · · // Em−1 // Em = E

}}

A1

__

A2

[[

Am

__

with Aj ∈ A[kj ] for all j.

Remark 1.7. Let A ⊆ D be the heart of a bounded t-structure. For every object E ∈ D,
the objects Aj ∈ A[kj ] are its cohomological objects with respect to A. They are denoted by
Ai = H−kiA (E). Moreover, they induce a cohomological functor i.e. they are functorial and
induce a long exact sequence of cohomology for any exact triangle. Note that a t-structure
is uniquely determined by its heart. See [Huy14, Def. 1.13]

Hearts of bounded t-structures play an important role in the definition of Bridgeland sta-
bility conditions. Therefore, we will discuss different ways of giving hearts of bounded
t-structures. Namely, tilting in Proposition 1.10 and CP-gluing and BBD-recollement in
Subsection 2.2.

https://arxiv.org/pdf/1607.01262.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
https://arxiv.org/pdf/1111.1745.pdf
https://arxiv.org/pdf/1111.1745.pdf
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Definition 1.8. Let A be an abelian category. A torsion pair for A consists of a pair
(T ,F) of full subcategories such that

1. HomA(T ,F) = 0.

2. For all E ∈ A, there is a short exact sequence

0→ T → E → F → 0

with T ∈ T and F ∈ F .

Example 1.9. Let X be a smooth projective variety. The pair of subcategories

T := {Torsion sheaves on X}
F := {Torsion-free sheaves on X}.

define a torsion pair on Coh(X).

Tilting

Proposition 1.10. [HRS96, Prop. 2.1] and [MS17, Lem. 6.3] Let A be the heart of a
bounded t-structure on D. Given a torsion pair (T ,F) in A, then the full subcategory

A] = {E ∈ D | H i
A(E) = 0 for i /∈ {−1, 0}, H−1

A (E) ∈ F and H0
A(E) ∈ T }

is the heart of a bounded t-structure on D. We call A] the tilt of A with respect to (T ,F).
Moreover, the torsion pair (T ,F) gives rise to the torsion pair (F [1], T ) for the tilt A].

Remark 1.11. Note that A][−1] = (F , T [−1]) is also the heart of a bounded t-structure.
The heart A][−1] = (F , T [−1]) is called the right tilt of A with respect to (T ,F).

1.1.2 Semiorthogonal decomposition and recollement

Definition 1.12. Let X ⊆ D be a strictly full triangulated subcategory. The category X
is (left) right-admissible if the functor i : X ↪→ D has a (left) right adjoint (i∗ : D → X )
i! : D → X . If X is left and right admissible, we say that X is admissible.

Definition 1.13. An object E ∈ D is called exceptional, if

HomD(E,E) = C and HomD(E,E[t]) = 0,

for t ∈ Z with t 6= 0.

Example 1.14. [Bon90, Thm. 3.2] Let E be an exceptional object in Db(X). The triangu-
lated subcategory generated by E, which is denoted by 〈E〉, is an admissible subcategory

http://iopscience.iop.org/article/10.1070/IM1990v034n01ABEH000583/pdf
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that satisfies 〈E〉 ∼= Db(VectC) where VectC is the category of finite dimensional vector
spaces. The functors defined as i∗(F ) := E ⊗RHom(F,E)∗ and i!(F ) := E ⊗RHom(E,F )
are the left and right adjoint respectively.

Definition 1.15. Let D be a triangulated category. A semiorthogonal decomposition of D
consists of a collection D1, . . . , Dn of full triangulated subcategories such that

1. HomD(Di, Dj) = 0 for every 1 ≤ j < i ≤ n.

2. D is generated by the Di.

We write D = 〈D1, . . . , Dn〉.

Definition 1.16. An ordered collection E = (E0, E1, . . . , En−1, En) ⊆ D is called excep-
tional if every Ei ∈ D is an exceptional object and HomD(Ei, Ej [k]) = 0, for all k, i, j ∈ Z
and for i > j.

An exceptional collection is called strong if HomD(Ei, Ej [k]) = 0, for all i and j, with k 6= 0.
It is called Ext if Hom≤0

D (Ei, Ej) = 0 for all i 6= j. It is called complete if E generates D by
shifts and extensions.

Example 1.17. Let E = (E0, E1, . . . , En−1, En) ⊆ D be a complete exceptional collection.
Then it induces a semiorthogonal decomposition D = 〈〈E0〉, . . . 〈En〉〉.

Lemma 1.18. [BK90b, Prop. 1.5] Let D be a triangulated category. Let D1 and D2 be
strictly full triangulated subcategories of D. Assume that HomD(D2, D1) = 0. Then, the
following are equivalent:

1. The category D is generated by D1 and D2 i.e. for each X ∈ D, there exists a distin-
guished triangle

X2 // X // X1 // X2[1]

with X1 ∈ D1 and X2 ∈ D2.

2. D2 = ⊥D1 := {X ∈ D | HomD(X,Y ) = 0 for all Y ∈ D1} and there exists a functor
i∗ : D → D1 which is left adjoint to the inclusion i : D1 ↪→ D, i.e. D1 is left admissible.

3. D1 = D⊥2 := {X ∈ D | HomD(Y,X) = 0 for all Y ∈ D2} and there exists a functor
j! : D → D2 which is right adjoint to the inclusion j : D2 ↪→ D, i.e. D2 is right
admisible.

Corollary 1.19. If X is an admissible subcategory of D, then we have two semiorthogonal
decompositions D = 〈X⊥,X〉 and D = 〈X ,⊥X〉.

Remark 1.20. [Huy06, Lem. 1.30] Let F : D → D be an autoequivalence. If D has a
semiorthogonal decomposition D = 〈D1, D2〉, then D = 〈F (D1), F (D2)〉.
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Mutations

We now study the action of the braid group, via mutations, on the set of semiorthogonal
decompositions given by admissible subcategories. To study mutations we recommend
[Bon90] as the original source. We follow closely the approach given in [Kuz10, Sec. 2] and
[Kuz09, Sec. 2].

Let r ≥ 2 be a natural number, the braid group is the group generated by n− 1 elements,
with the following relations:

Br = 〈si | 1 ≤ i; sisi+1si = si+1sisi+1, sisj = sjsi for |i− j| ≥ 2〉.

Remark 1.21. Note that B2 ∼= Z.

Notation 1.22. Let ϕ ∈ HomD(E,F ), we denote the cone of ϕ as C(ϕ).

Lemma 1.23. [Bon90] Assume that X ⊆ D is an admissible subcategory. Then, there are
functors

LX : D → D
F → C(i∗i!F → F )

RX : D → D
F → C(F → i∗i

∗F )[−1],

where i∗ : X ↪→ D is the embedding functor and i∗, i! are the left and right adjoints respec-
tively. These functors vanish on X and induce mutually inverse equivalences ⊥X → X⊥

and X⊥ → ⊥X , respectively.

The functors LX and RX are called left and right mutations respectively.

Corollary 1.24. Let E be an exceptional object. The left mutation LEF induced by E is
given by the cone of the evaluation morphism

⊕
k∈Z Homk

D(E,F )[−k]⊗E → F. We obtain
the following triangle ⊕

k∈Z
Homk

D(E,F )[−k]⊗ E → F → LEF.

The right mutation REF induced by E is given by the cone shifted by −1 of the morphism
F →

⊕
k∈Z Homk

D(E,F )∗[−k]⊗ E. with the following distinguished triangle

REF → F →
⊕
k∈Z

Homk
D(E,F )∗[−k]⊗ E.

Note that V [k] ⊗ E where V is a complex vector space denotes the direct sum of dimV

copies of the object E[k]. Moreover, if we consider the dual vector space the grading changes
the sign.

https://arxiv.org/pdf/0808.3351.pdf
https://arxiv.org/pdf/0808.3351.pdf


1.1. Triangulated and derived categories 16

Remark 1.25. The definition that we use differs from the one in [Mac07, Def. 3.8] by a
±1 shift.

Corollary 1.26. [Bon90] Let D = 〈D1, . . . Dn〉 with Di admissible subcategories. Then for
each 1 ≤ k ≤ n− 1 there is a semiorthogonal decomposition

D = 〈D1, . . . , Dk−1,LDk(Dk+1), Dk, Dk+2, . . . , Dn〉

and for 2 ≤ k ≤ n there is a semiorthogonal decomposition

D = 〈D1, . . . , Dk−2, Dk,RDk(Dk−1), Dk+1, . . . , Dn〉.

Moreover, the braid group relations are satisfied:

RDiRDi+1RDi = RDi+1RDiRDi+1 and LDiLDi−1LDi = LDi−1LDiLDi−1

for each 2 ≤ 1 ≤ m− 1.

Corollary 1.27. [Bon90, Ast. 2.1] If E = (E0, E1, . . . , En) is an exceptional callection,
then

RiE = (E0, . . . , Ei−1, Ei+1,REi+1Ei, Ei+2, . . . En)

LiE = (E0, . . . , Ei−1,LEiEi+1, Ei, Ei+2, . . . En)

are exceptional collections.

Particularly, if we have an exceptional pair (E1, E2) then

(E2,RE2E1) and (LE1E2, E1)

are also exceptional pairs.

Remark 1.28. [Bon90, Lem. 2.2] If an exceptional collection E is complete, then the
mutated collection is also complete.

Corollary 1.29. [Bon90, Ast. 2.3] There is action of the braid group Br, on the set of all
exceptional sequences of length r, defined as siE = LiE . Let E = (E0, E1, . . . , En−1, En) be
an exceptional collection. Then

1. LiRiE = RiLiE = E

2. LiLi+1LiE ∼= Li+1LiLi+1E

3. LiLjE = LjLiE and RiRjE = RjRiE , for |i− j| ≥ 2.

We now connect a bounded derived categories with a strong, exceptional collection with a
category of representations of finite-dimensional associative algebras.

http://iopscience.iop.org/article/10.1070/IM1990v034n01ABEH000583/pdf


17 Chapter 1. Preliminaries

Theorem 1.30. [Bon90, Thm. 6.2] Let D be the bounded derived category of an abelian
category with sufficiently many injective (or projective) objects. Assume that D is generated
by a strong exceptional collection {E0, . . . , En}. Then, if E = ⊕iEi and A = End(E) we
obtain that RHom(E,−) : D → Db(modA) is an exact equivalence, where modA is the
category of right A-modules of finite rank. Under this identification the objects Ei correspond
to the indecomposable projective A-modules. We particularly obtain that the category modA
under the equivalence becomes a heart of a bounded t-structure on D.

Example 1.31. The triangulated category Db(Pn) has a strong, complete exceptional
collection given by (O,O(1), . . . ,O(n)). If n = 1, then A is precisely the path algebra of
the 2-Kronecker quiver. See Subsection 1.2.4.

Recollement

Semiorthogonal decompositions given by admissible subcategories induce recollements. Hav-
ing a recollement on D will be an important tool in the construction of t-structures.

Definition 1.32. Let X ,Y be full triangulated subcategories. The triangulated category
D is a recollement of X and Y if there are six triangulated functors

X D Y,
i∗

i∗

i!

j∗

j!

j∗

with the following properties.

1. (i∗, i∗), (i∗, i!), (j!, j∗), (j!, j∗) and (j∗, j∗) are pairs of adjoint functors with j∗ = j! and
i∗ = i!.

2. j∗i∗ = 0.

3. i∗, j! and j∗ are fully faithful.

4. Each object T ∈ D determines distinguished triangles

i∗i
!T // T // j∗j

∗T // i∗i
!T [1]

j!j
∗T // T // i∗i

∗T // j!j
∗T [1]

where the morphisms into and out of T are counit and unit morphism.

Proposition 1.33. [BBD82], [MRRHR19] Let D be a triangulated category and let X ⊂ D
be a full triangulated subcategory. Then, D is a recollement of X and X⊥ if and only if X
is admissible.

http://iopscience.iop.org/article/10.1070/IM1990v034n01ABEH000583/pdf
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Serre functor

Let D be a C-linear triangulated category.

Definition 1.34. A Serre functor on D is an exact autoequivalence S : D → D such that
for any E,F ∈ D, there is an isomorphism

ηE,F : HomD(E,F )→ HomD(F, S(E))∗

(of C-vector spaces) which is functorial in E and F .

Remark 1.35. ForD of finite type, a Serre functor, if it exists, is unique up to isomorphism.
Moreover, it commutes with equivalences, i.e. for F : D → D′ an equivalence, then we have
that SD′ ◦ F ∼= F ◦ SD. See [Huy14].

Example 1.36. Let X be a smooth projective variety defined over C, then the autoequiv-
alence

SX : Db(X) → Db(X)
E 7→ E ⊗ ωX [dimX].

where ωX is the dualizing line bundle, is a Serre functor on Db(X).

Furthermore, given an admissible subcategory X ⊂ D it is easy to see that

SD(⊥X ) = X⊥ and S−1
D (X⊥) = ⊥X .

In terms of mutations, we obtain the following lemma.

Lemma 1.37. [Kuz09, Lem. 2.11] Let D = 〈D1, D2〉 be a triangulated category with Serre
functor SD. Then we obtain

SD(D2) = LD1(D2) and S−1
D (D1) = RD2(D1).

Moreover, the Serre functor will play an important role in the understanding and construc-
tion of the adjoint functors.

Lemma 1.38. If D admits a Serre functor SD and X is an admissible triangulated sub-
category of D, then X admits a Serre functor given by

SX = i!SDi∗ and S−1
X = i∗S−1

D i∗.

Proposition 1.39. [Huy06, Rem. 1.31] Let T1, T2 be triangulated subcategories which admit
Serre functors ST1 and ST2 respectively and let F : T1 → T2 be a functor.
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1. If F admits a left adjoint G : T2 → T1, then it also admits a right adjoint H : T2 → T1,

given as
H = ST1 ◦G ◦ S−1

T2
.

2. If F admits a right adjoint H : T2 → T1, then it also admits a left adjoint G : T2 → T1,

given as
G = S−1

T1
◦H ◦ ST2 .

1.2 Bridgeland stability conditions

In this section we define Bridgeland stability conditions. We follow Bridgeland’s papers
[Bri07] and [Bri08]. We also recommend the following lecture notes on Bridgeland stability
theory [MS17], [Bay11], [Huy14] and [BM11, Appex B.].

Definition 1.40. The Grothendieck group K(D) of a triangulated category D is the abelian
group generated by the isomorphism classes of objects in D subject to the relation
[A] = [C] + [B], where C → A → B → C[1] is an exact triangle. As D is C-linear of
finite type, we consider the Euler bilinear form given by

χ(E,F ) =
∑
i

(−1)i HomD(E,F [i]).

We define the numerical Grothendieck group N (D) as the quotient K(D)/K(D)⊥, where
K(D)⊥ denotes the right orthogonal with respect to the Euler form. Moreover, if N (D)
has finite rank then D is called numerically finite.

Example 1.41. 1. If D = 〈D1, . . . , Dn〉, then K(D) = ⊕iK(Di).

2. If D is generated by a complete exceptional collection. Then the Grothendieck group
K(D) ∼= Zn+1 is the free abelian group generated by [Ei], for i = 0, . . . , n.

Example 1.42. 1. If A is a finite-dimensional algebra over C, then the bounded derived
category Db(A) of finite-dimensional left A-modules is numerically finite.

2. If X is a smooth projective variety over C, then the bounded derived category Db(X)
of coherent sheaves on X is numerically finite.

Throughout all this chapter, we assume that D is numerically finite.

Remark 1.43. If A is an abelian category, we define the Grothendieck group K(A) as
the abelian group generated by isomorphism classes of objects of A subject to the relation
[A] = [C] + [B], where 0→ C → A→ B → 0 is a short exact sequence in A. If A ⊆ D is a
heart of a bounded t-structure then K(D) ∼= K(A).

http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
https://arxiv.org/pdf/1607.01262.pdf
http://www1.phys.vt.edu/mp10/lect-notes/bayer/dc-lecture-notes.pdf
https://arxiv.org/pdf/1111.1745.pdf
https://arxiv.org/pdf/0912.0043.pdf
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We now fix a finite rank Z-lattice Λ and a surjective homomorphism

v : K(D) � Λ.

If D is numerically finite, then N (D) is a finite rank Z-lattice. We often choose Λ = N (D)
and v as the natural projection.

The definition of a Bridgeland stability condition has two main ingredients the heart of a
bounded t-structure and a stability function.

Definition 1.44. Let A be an abelian category. We say that a group homomorphism
Z : K(A) → C is a weak stability function on A if, for all E ∈ A, we have =(Z([E])) ≥ 0,
with =(Z([E])) = 0 then <(Z(E)) ≤ 0. If additionally, for E 6= 0, we have that if =Z(E) = 0
then <Z(E) < 0, we say that Z is a stability function on A. Note that in this case, the
image of Z is contained in the semi-closed upper half plane

H = {α ∈ C | =(α) ≥ 0 if =(α) = 0, <(α) < 0}.

We consider a group homorphism Z : Λ → C, such that Z ◦ v : K(A)(= K(D)) → C is a
stability function on A. We define the slope µZ(E) : K(A)→ R ∪∞

µZ(E) =

−
<(Z(E))
=(Z(E)) if =(Z(E)) 6= 0

+∞ otherwise,

where Z(E) := Z(v([E])).We say that 0 6= E ∈ A is Z-semistable if for all proper subobjects
F ⊆ E, we have that µ(F ) ≤ µ(E). We also define the phase of 0 6= E as

φ(E) = arg(Z(E)) 1
π
∈ (0, 1].

Note that E is Z-semistable if and only if for all proper subobjects F ⊆ E, we have that
φ(F ) ≤ φ(E). We will constantly use the correspondence between slope and phase given
for the complex numbers in the semi-closed upper half plane.

Remark 1.45. Note that this definition of stability function agrees with the definition of
stability given in [Rud97, Def. 1.1], because it satisfies that for a short exact sequence
0→ A→ B → C → 0 in A, we have that

either φ(A) < φ(B) ⇐⇒ φ(A) < φ(C) ⇐⇒ φ(B) < φ(C),
or φ(A) > φ(B) ⇐⇒ φ(A) > φ(C) ⇐⇒ φ(B) > φ(C),
or φ(A) = φ(B) ⇐⇒ φ(A) = φ(C) ⇐⇒ φ(B) = φ(C).

https://www.math.uni-bielefeld.de/~sek/sem/stability/rudakov.pdf
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Definition 1.46. A stability function Z : K(A) → C satisfies the Harder-Narasimhan
property (HN-property, for short) on A if for every 0 6= E ∈ A, there is a filtration

0 = E0 ⊆ E1 ⊆ · · · ⊆ Em−1 ⊆ Em = E

on A, such that Ei/Ei−1 is Z-semistable for i = 1, . . . ,m and

φ(E1/E0) > · · · > φ(Em/Em−1).

Moreover, as the HN-filtration is unique, the quotients Ei/Ei−1 are the HN-factors of
E.

Definition 1.47. A (weak) pre-stability condition on D is pair σ = (Z,A), where A ⊆ D
is the heart of a bounded t-structure and Z : Λ → C is a group homomorphism such that
Z ◦ v : K(A)(= K(D))→ C is a (weak) stability function on A satisfying the HN-property.
The homomorphism Z is also called a central charge.

Remark 1.48. [BLMS17, Prop. 2.9] Let σ = (Z,A) be a weak stability condition, and let
α ∈ R. We form the following subcategories of A

T ασ := {E ∈ A | The HN-factors F of E satisfy µZ(F ) > α},

Fασ := {E ∈ A | The HN-factors F of E satisfy µZ(F ) ≤ α}.

By the HN-property, we obtain (T ασ ,Fασ ) is a torsion pair on A. Therefore, by Proposition
1.10, we obtain a heart of a bounded t-structure Aασ with a torsion pair (Fασ [1], T ασ ).

We will use several examples of hearts of bounded t-structures given by tilting as above in
Subsection 1.2.2 and Sec 3.1.

We now define a slicing. Intuitively, a heart of a bounded t-structure A ⊆ D breaks up
every object in D in terms of its cohomology index by Z, a slicing further refines the heart
of a bounded t-structure, which allows us to break up each object into pieces indexed by
the real numbers.

Definition 1.49. [Bri07] A slicing P on D is a collection of full subcategories P(φ) for all
φ ∈ R satisfying:

1. P(φ)[1] = P(φ+ 1), for all φ ∈ R.

2. If φ1 > φ2 and Ei ∈ P(φi), i = 1, 2, then HomD(E1, E2) = 0.

3. For every nonzero object E ∈ D there exists a finite sequence of maps

0 = E0
f0−→ E1

f1−→ · → Em−1
fm−1−−−→ Em = E

https://arxiv.org/pdf/1703.10839.pdf
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and of real numbers φ0 > · · · > φm such that the cone of fj is in P(φj)
for j = 0, · · · ,m− 1.

For every interval I ⊆ R we define P(I) as the extension-closed subcategory generated by
the subcategories P(φ) with φ ∈ I.

Proposition 1.50. [Bri07, Prop. 5.3] To give a pre-stability condition σ on D is equiv-
alent to giving a slicing P and a group homomorphism Z : Λ → C such that for every
0 6= E ∈ P(φ), we have that Z(v(E)) ∈ R>0 · eiπφ.

Remark 1.51. [Bri07, Lem. 5.2] If σ is a pre-stability condition, then P(φ) is an abelian
subcategory.

Remark 1.52. The key point of the proof of [Bri07, Prop. 5.3] is to show that if P is a
slicing, then A = P(0, 1] is the heart of a bounded t-structure satisfying the HN-property.
If we have a pre-stability condition σ = (Z,A), we define P(φ), for φ ∈ (0, 1] as the set of
all Z-semistable objects in A.

Notation 1.53. Let σ = (Z,P) be a pre-stability condition. By Definition 1.49, for every
E ∈ D, there is a filtration associated to E, that we also call the Harder-Narasimhan
filtration. The semistable objects in the filtration are called Harder-Narasimhan factors
(HN-factors, for short). Moreover, we write φ+(E), φ−(E) for the largest and the smallest
phase appearing in this filtration respectively. If E is σ-semistable, φ+(E) = φ−(E) = φ(E).

Remark 1.54. 1. Let σ = (Z,A) be a pre-stability condition. By definition if E ∈ D is
σ-semistable, then there exists n ∈ Z such that E[n] ∈ A.

2. If E,A ∈ D and φ−(E) > φ+(A), then HomD(E,A) = 0.

3. Consider the last triangle Em−1 → E → Am → Em−1[1] of the HN-filtration of E ∈ D,
where Am is the cone of fm−1. We have that Hom≤0

D (Em−1, Am) = 0.

Definition 1.55. The simple objects of P(φ) are called σ-stable objects.

Let G̃L
+

(2,R) be the universal covering of GL+(2,R), whose objects can be given by pairs
(T, f) where T ∈ GL+(2,R) and f : R → R is a continuous increasing function that sat-
isfies f(x + 1) = f(x) + 1 for all x ∈ R such that the induced maps of T and f on
S1 = R/2Z = (R2−{(0, 0)})/R>0 coincide. In the next section we study in detail G̃L

+
(2,R)

and its action on the set of pre-stability conditions.

We define a right action of G̃L
+

(2,R) on the set of pre-stability conditions. If σ = (Z,A) is
a pre-stability condition and g = (T, f) ∈ G̃L

+
(2,R), then we define σ′ = σg = (Z ′,P ′) as

Z = T−1 ◦Z and P ′(φ) = P(f(φ)), where P and P ′ are the slicing of Z and Z ′ respectively.
Note that the G̃L

+
(2,R)-action preserves the semistable objects, but relabels their phases.
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In the next section, we study G̃L
+

(2,R) and its action on the set of pre-stability conditions
in detail.

Let us consider the group AutΛ(D) of autoequivalences Φ on D whose induced automor-
phism φ∗ of K(D) is compatible with the map v : K(D)→ Λ, i.e. there is a group isomor-
phism v(φ∗) : Λ→ Λ such that the following diagram commutes

K(D) φ∗
//

v
��

K(D)
v
��

Λ
v(φ∗)

// Λ.

(1.1)

We define a left action of the group AutΛ(D) on the set of pre-stability conditions. For
Φ ∈ AutΛ(D), we define Φσ = (Z ′,P ′) as Z ′ = Z ◦ v(φ∗)−1 and P ′(φ) = Φ(P(φ)). Note
that if E is a σ-semistable object, then Φ(E) is Φ(σ)-semistable.

Definition 1.56. A pre-stability condition σ is locally finite if there is some ε > 0 such
that each category P((φ− ε, φ+ ε)), for φ ∈ R, is of finite length.

Definition 1.57. A pre-stability condition is discrete if the image of Z is a discrete sub-
group of C.

Lemma 1.58. [Bri08, Lem. 4.5] Suppose that σ = (Z,P) is a discrete pre-stability condition
and fix 0 < ε < 1

2 . Then for each φ ∈ R the category P((φ− ε, φ+ ε)) is of finite length. In
particular σ is locally finite.

Remark 1.59. [Bri07, Lem. 5.2] The categories P(φ) with φ ∈ R are abelian. If σ is locally
finite, then P(φ) has finite length. Therefore, a σ-semistable object E ∈ P(φ) admits a
finite Jordan-Hölder filtrations, i.e. a finite filtration

E0 ⊂ E1 ⊂ . . . ⊂ En = E

with stable quotient Ei+1/Ei ∈ P(φ), as the stable objects are the simple objects in P(φ).

We now introduce the support property. It plays an important role in proving good de-
formation properties and a well-behaved wall and chamber decomposition. We suggest
[BMS16, App. A] to understand better the relation between the support property and
effective deformations of Bridgeland stability conditions.

Definition 1.60. A pre-stability condition σ = (Z,A) satisfies the support property if there
is a symmetric bilinear form Q on Λ⊗ R := ΛR which satisfies

1. All σ-semistable objects E ∈ A, satisfy Q(v(E), v(E)) ≥ 0.

2. All non zero vectors v ∈ ΛR with Z(v) = 0 satisfy Q(v, v) < 0.

http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
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Lemma 1.61. [KS08, Sec. 2.1], [BMS16, Lem. 11.4] The following statement are equivalent

1. The pre-stability condition σ = (Z,A) satisfies the support property.

2. The pre-stability condition σ = (Z,A) satisfies that there is a constant C ∈ R>0 and a
norm ||.|| on ΛR, such that for all σ-stable objects 0 6= E ∈ D, we have

||v(E)|| < C|Z(v(E))|.

Remark 1.62. If rk(Λ) = 2 and Z : Λ→ C is injective, then every pre-stability condition
σ = (Z,A) trivially satisfies the support property with respect to any positive semidefinite
quadratic form.

Definition 1.63. A pre-stability condition σ = (Z,A) that satisfies the support property
is called a Bridgeland stability condition. The set of Bridgeland stability conditions with
respect to (Λ, v) is denoted by StabΛ(D). If Λ = N (D) and v the natural projection, then
the set of stability conditions is denoted by Stab(D).

We now follow [Bri07] to define a topology on StabΛ(D) and to prove that it is a complex
manifold.

There is a generalized metric on the set of slicings Slice(D), i.e. a metric that does not need
to be finite: given two slicings P and Q, we define

d(P,Q) = sup
06=E∈D

{|φ+
P(E)− φ+

Q(E)|, |φ−P(E)− φ−Q(E)|} ∈ [0,∞].

Let σ = (Z,A) be a pre-stability condition. As Λ has finite rank, we define the following
norm

||.||σ : HomZ(Λ,C)→ [0,∞]

by sending a group homomorphism W : Λ→ C to

||W ||σ = sup{|W (E)|
|Z(E)| : E σ − semistable}.

Note that the norm on HomZ(Λ,C) depends on σ, however after fixing a connected com-
ponent Σ and τ, σ ∈ Σ then ||.||σ and ||.||τ are equivalent. See [Bri07, Lem. 6.2].

We define a topology on StabΛ(D) as the coarsest topology such that both forgetful maps

StabΛ(D) → Slice(D)
(Z,P) → P

Z : StabΛ(D) → HomZ(Λ,C)
(Z,P) → Zare continuous.

In order to study StabΛ(D), we study the projection Z : StabΛ(D)→ HomZ(Λ,C).



25 Chapter 1. Preliminaries

Lemma 1.64. [Bri07, Lem. 6.4] Suppose that σ = (Z,P) and τ = (Z,Q) are stability
conditions on D with the same central charge Z. Suppose also that d(P,Q) < 1. The σ = τ.

Theorem 1.65. [Bri07, Thm. 7.1] Let σ = (Z,P) be a stability condition. If 1/8 > ε > 0,
then for any group homomorphism W : K(D)→ C with

||W − Z||σ < sin(πε),

there exists a stability condition τ = (W,Q) on D with d(P,Q) < ε.

Theorem 1.66. [Bay16, Thm. 1.2] and [BMS16, Prop. A.5] Let Q be a quadratic form on
Λ ⊗ R. Assume that the stability condition σ = (Z,P) satisfies the support property with
respect to Q. Then:

1. There is an open neighbourhood σ ∈ Uσ ⊆ StabΛ(D) such that Z : Uσ → Hom(ΛR,C) is
a covering of the set of Z ′ such that Q is negative definite on KerZ ′.

2. All stability conditions in Uσ satisfy the support property with respect to Q.

Lemma 1.67. [Bri08, Lem. 4.5] and [BM11, Prop. B.4] If σ is a Bridgeland stability
condition and we fix 0 < ε < 1

2 , then for each φ ∈ R the quasi-abelian subcategory
P((φ − ε, φ + ε)) is of finite length. As a consequence, Bridgeland stability conditions are
locally-finite.

The main point of the proof of the last lemma is that for a Bridgeland stability condition
σ there exist discrete stability conditions arbitrarily close to σ.

Theorem 1.68. [Bri07] The map Z : StabΛ(D)→ Hom(Λ,C) is a local homeomorphism.
Particularly, it implies that StabΛ(D) is a complex manifold of dimension rk(Λ).

For a complete proof see [Bay11, Sec 5.5].

Remark 1.69. Let σ ∈ StabΛ(D) and g ∈ G̃L
+

(2,R), then σg is also a Bridgeland stability
condition. Indeed, if σ satisfies the support property with respect to Q, then σg also satisfies
the support property with respect to Q. If Φ ∈ AutΛ(D), then Φσ satisfies the support
property with respect to Q ◦ φ−1

∗ . By [Bri07, Lem. 8.2], the right action of G̃L
+

(2,R) and
the left action of AutΛ(D) on StabΛ(D) commute.

Example 1.70. Let us consider

C ↪→ G̃L
+

(2,R)

α = a+ bi 7→ Tα := ea
[
cos(b) − sin(b)
sin(b) cos(b)

]
,

and fα(x) = x + b
π . We now check that Tα and fα agree on S1. If we consider polar

coordinates we characterize the objects of R2−(0, 0)/R>0 by (cos(θ), sin(θ)) with θ ∈ (0, 2π]

http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
https://arxiv.org/pdf/1606.02169.pdf
https://arxiv.org/pdf/math/0307164.pdf
https://arxiv.org/pdf/0912.0043.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
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then
Tα(cos(θ), sin(θ)) = ea((cos(θ + b), sin(θ + b))),

which coincides with the restriction of fα to S1. As a consequence we have an action
of the additive group C ⊆ G̃L

+
(2,R) on StabΛ(D). By [Oka06, Prop. 4.1] this action is

holomorphic, free and contains the shifts. Moreover the quotient StabΛ(D)/C is a complex
manifold.

Wall and chamber structure

The support property is one of the key ingredients to ensure that we have a well-behaved wall
and chamber decomposition. We obtain the following theorem presented in
[Bri08, Sec. 9].

Proposition 1.71. [BM11, Prop. 3.3] Let Stab†(D) ⊆ StabΛ(D) be a connected component
of the space of Bridgeland stability conditions. Fix a primitive class α ∈ Λ and an arbitrary
set S ⊂ D of objects of class α. Then, there exists a collection of walls WS

β with β ∈ Λ,
with the following properties:

1. Every wall WS
β is a close submanifold with boundary of real codimension one.

2. The collection WS
β is locally finite, i.e. every compact subset K ⊆ Stab†(D) intersects

only a finite numer of walls.

3. For every stability condition σ = (Z,P) ∈ WS
β , there exists a phase φ and an inclusion

Fβ ↪→ Eα in P(φ) with v([Fβ]) = β and some Eα ∈ S.

4. If C ⊆ Stab†(D) is a connected component of the complement of ∪β∈ΛW
S
β and σ1, σ2 ∈ C

then an object Eα ∈ S is σ1-stable if and only if it is σ2-stable.

1.2.1 Examples

1.2.2 Bridgeland stability conditions on curves with g(C) ≥ 1

We now study Stab(C), where C is a non-singular projective curve with g(C) ≥ 1. Theorem
1.75 asserts that Stab(C) ∼= G̃L

+
(2,R).We prove several simple results in order to fix some

facts and the notation that we use throughout the thesis.

To describe Stab(C) := Stab(Db(C)), we follow closely [Bri07, Sec. 9] and [Mac07].

First of all, note that there is an isomorphism K(Db(C)) ∼= Pic(C) ⊕ Z given by the
(det(E), rk(E)) for every E ∈ Db(C), which implies that

N (Db(C)) ∼= Z2

[E] 7→ (deg(E), rk(E)).

https://arxiv.org/pdf/math/0411220.pdf
https://arxiv.org/pdf/0912.0043.pdf
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As before, let v : K(Db(C))→ N (Db(C)) be the natural projection.

Note that the classical slope stability induces a Bridgeland stability condition in this case.
Indeed we define σµ := (Zµ,Coh(C)) with

Zµ : Z2 → C

(d, r) 7→ −d+ ir.

Remark 1.72. If X is a smooth projective variety with dimension ≥ 2, then the classical
slope stability does not induce a Bridgeland stability condition. Moreover, there is no
stability condition with heart Coh(X). See [Huy14, Cor. 3.3]. However, we can use slope
stability to induce torsion pairs and new hearts by using tilting.

To describe Stab(C), we start by studying whether the skyscraper sheaves C(x), for a closed
point x ∈ C, and a line bundle L are stable. We assume that they are not semistable and
we study the last triangle of their HN-filtrations E → X → A → E[1], where X is either
C(x) or L, note that by Remark 1.54, we have that Hom≤0(E,A) = 0.

Lemma 1.73. (GKR for curve)[GKR04, Lem. 7.2] Let

E → X → A→ E[1]

be a distinguished triangle in Db(C) with X ∈ Coh(C) and Hom≤0
Db(C)(E,A) = 0, then

E,A ∈ Coh(C).

After applying directly the last lemma, we obtain the following result, which is proved in
the first lines of [Mac07, Thm. 2.7].

Corollary 1.74. If σ ∈ Stab(C), then C(x) and L are σ-stable for all points x ∈ C and
all line bundles L ∈ Coh(C).

Theorem 1.75. [Mac07, Thm. 2.7] The action of G̃L
+

(2,R) on Stab(C) is free and tran-
sitive, so that

Stab(C) ∼= G̃L
+

(2,R).

Remark 1.76. Since L and C(x) are σ-stable and there are non-zero morphisms L → C(x)
and C(x)→ L[1], we obtain by Remark 1.54 that

φσ(L) < φσ(C(x)) < φσ(L) + 1.

For every σ ∈ Stab(C), there is g = (T, f) ∈ G̃L
+

(2,R) such that σ = σµg. We now study
this correspondence.

https://arxiv.org/pdf/1111.1745.pdf
http://iopscience.iop.org/article/10.1070/IM2004v068n04ABEH000497/pdf
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Iwasawa decomposition

We define the following matrices in SL(2,R)

Kφ =
[
cos(φ) − sin(φ)
sin(φ) cos(φ),

]
, Aa =

[
a 0
0 1

a

]
and Nx =

[
1 x

0 1

]
,

for φ ∈ [0, 2π), x, a ∈ R and a > 0.

Lemma 1.77. (Iwasawa decomposition)[HJJ+07, Sec. 16.3] For every T ∈ GL+(2,R),
there are real numbers φ ∈ [0, 2π), k, a ∈ R>0 and x ∈ R, such that T = kKφAaNx.

Moreover, this representation is unique.

Remark 1.78. From the decomposition above it follows that GL+(2,R) ∼= C∗ × H and
G̃L

+
(2,R) ∼= C×H. Moreover, we clearly obtain

1→ Z = π1(GL+(2,R))→ G̃L
+

(2,R)→ GL+(2,R)→ 1.

Remark 1.79. Let us consider σµ = (Zµ,Coh(C)) and its corresponding slicing Pµ. By
Example 1.70 we have that Cohr(C) := Pµ(r, r + 1] for r ∈ R is a heart of a bounded t-
structure. Clearly all the hearts appearing in the stability conditions σ = (Z,A) ∈ Stab(C)
are of this form. Indeed, if σ = σµg with g = (T, f) ∈ G̃L

+
(2,R), then by the definition of

the G̃L
+

(2,R)-action, we obtain that

A = Pµ(f(0), f(1) = f(0) + 1].

If f(0) = n+ θ, with n ∈ Z and θ ∈ [0, 1) then we also have A = Cohθ(C)[n].

Let us consider g = (T, f) ∈ G̃L
+

(2,R) where T = kKφAaNx and f(0) = n + θ, as above.
We now relate φ and θ.

Lemma 1.80. Let us consider g = (T, f) ∈ G̃L
+

(2,R) where T = kKφAaNx as above,
then there is m ∈ Z, such that 2m+ φ

π = f(0). Moreover, we have two cases

n = 2m with θ = φ

π
or n = 2m+ 1 with θ = φ

π
− 1.

Proof. As f and T restricted to S1 agree, in order to compute f(0), we compute

T (1, 0) = ka(cos(φ), sin(φ)),

in (R2 − {(0, 0)})/R>0. It is just given by (cos(φ), sin(φ)) and it implies that
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f
∣∣
[0,2)(0) = φ

π ∈ [0, 2). Therefore, there is m ∈ Z with

f(0) = φ

π
+ 2m.

Corollary 1.81. Let σ = (Z,A) ∈ Stab(C). If σ = σµg with g = (T, f) ∈ G̃L
+

(2,R),
where T = kKφAaNx then A = Coh

φ
π (C)[2m].

As a corollary, we obtain that, if we do not rotate σ the heart will not change up to a
shift.

Corollary 1.82. Let σ = (Z,A) ∈ Stab(C). If σ′ = σg with g = (T, f) ∈ G̃L
+

(2,R) where
T = ±kAaNx, then there is l ∈ Z with A′ = A[l] where σ′ = (Z ′,A′).

Proof. As φ = 0 or φ = π, then f(0) = 2m or f(0) = 2m + 1. Therefore, we have that
A′ = P ′(0, 1] = P(f(0), f(1)] = A[l] with l = 2m or l = 2m+ 1.

Remark 1.83. 1. Let σ = σµg = (Z,A) with g = (T, f) ∈ G̃L
+

(2,R) and

T−1 =
[
−A B

−D C

]
. We obtain that Z = T−1Zµ, i.e. Z(d, r) = Ad + Br + i(Cr + Dd).

Moreover, if T = kKφAaNx, then arg(C +Di) = φ. Indeed, as

C = cos(φ)a
k
and D = sin(φ)a

k
,

then arg(C +Di) = arg(cos(φ) + sin(φ)i) = φ.

2. Let θ ∈ (0, 1). First note, that by the HN-property, if Tθ = Pµ(θ, 1] and Fθ = Pµ(0, θ],
then (Tθ,Fθ) is a torsion pair of Coh(C). By Proposition 1.10 it induces a heart of a
bounded t-structure which is precisely Cohθ(C). Moreover, if we define α = − cot(πθ),
then by Remark 1.48 we obtain that

Cohθ(C) = Coh(C)ασµ .

Indeed, it is enough to notice that Tθ = T ασµ and that Fθ = Fασµ , because

µ(E) > α if and only if φ(E) > θ.

Let σ = σµg = (Z,A) with g ∈ G̃L
+

(2,R) and P its slicing. By Corollary 1.74, the objects
C(x) and L are σ-stable. We now study their phases. Note that if we have two different
points x, y ∈ C, with x 6= y, then φσµ(C(x)) = φσµ(C(y)) = 1, by the definition of the
G̃L

+
(2,R)-action, it implies that for every σ ∈ Stab(C) we obtain

φ0 := φσ(C(x)) = φσ(C(y)).
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By definition of the G̃L
+

(2,R)-action, we obtain that P(φ0) = Pµ(f(φ0)) = Pµ(1), i.e.
f(φ0) = 1. Analogously, if φ1 = φσ(OC), then f(φ1) = 1

2 .

Remark 1.84. We have that

−n < φ0 = f−1(1) ≤ −n+ 1 if and only if f(0) = n+ θ,

with n ∈ Z and θ ∈ [0, 1). Indeed, after applying f to the inequality
−n < φ0 = f−1(1) ≤ −n + 1, we obtain −n + f(0) < 1 ≤ f(0) − n + 1, it follows
that n ≤ f(0) < n+ 1. As a consequence, if f(0) = n+ θ it implies that C(x)[n] ∈ A.

The values Z([C(x)]), Z([OC ]) ∈ C and φ0, φ1 ∈ R describe σ completely.

Lemma 1.85. There is a homeomorphism

ρ : Stab(C) → {(m0,m1, φ0, φ1) ∈ R4 | φ1 < φ0 < φ1 + 1, and m0,m1 > 0} =:M
σ = (Z,A) 7→ (m0,m1, φ0, φ1),

where m0 = |Z([C(x)])|,m1 = |Z([OC ])|.

Proof. By the stability of C(x) and OC , we obtain φ1 < φ0 < φ1 + 1 and by definition
m0,m1 > 0. The map ρ is clearly continuous because it is defined in terms of the slicing and
Z. Let σ = σµ(T, f) ∈ G̃L

+
(2,R). To characterize f it is enough to give f : R/2Z→ R/2Z

and n, where n is the integer part of f(0). By Remark 1.84 we have that

−n < φ0 = f−1(1) ≤ −n+ 1, if and only if n ≤ f(0) < n+ 1.

We now prove that we have a bijection. Note that T−1 is completely characterized by its

image. If m0e
πφ0i = A+Di and m1e

πφ1i = B + Ci, then T−1 =
[
−A B

−D C

]
and

m2
0 = A2 +D2 and m2

1 = B2 + C2.

Moreover, the function f : R/2Z→ R/2Z is given by sending t to

arg(m1(sin(φ1π) cos(tπ)− cos(φ1π) sin(tπ)) + im0(sin(φ0π) cos(tπ)− cos(φ0π) sin(tπ)))
π

for t ∈ R/2Z and n the integer part of 1 − φ0. Consequently, we characterized completely
(T, f) with the information in the tuple (m0,m1, φ0, φ1) satisfying the conditions above,
and as a consequence we also characterized σ.
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We just need to prove that ρ is open. We define

ν : M → GL+(2,R)

(m0,m1, φ0, φ1) 7→
[
−m0 cos(φ0π) m1 cos(φ1π)
−m0 sin(φ0π) m1 sin(φ1π)

]−1

.

Note that 1
det(ν(m0,m1,φ0,φ1)) = m0m1 sin((φ0 − φ1)π) > 0, as 0 < φ0 − φ1 < 1. Moreover, ν

is clearly a covering and
ν ◦ ρ = Z,

where Z : Stab(C) ∼= G̃L
+

(2,R) → GL+(2,R) is the universal covering. It implies that ρ
is a covering and therefore it is also open.

For the rest of the thesis if σ ∈ Stab(C), we mix the different forms that we use to represent
σ. Namely as an object g ∈ G̃L

+
(2,R), as ρ(σ) and of course as (Z,A).

Remark 1.86. In [BK06], Kreussler and Burban generalized the description of the stability
manifold to irreducible singular curves of arithmetic genus one.

1.2.3 Bridgeland stability conditions induced by exceptional objects

We now review the construction of pre-stability conditions on triangulated categories gen-
erated by exceptional collections done in [Mac07]. We recommend [Bon90] for the general
theorems about exceptional collections.

We assume now that D has a complete exceptional collection E and we study pre-stability
conditions on D.

Lemma 1.87. [Mac07, Lem. 3.14] Let E = (E0, E1, . . . , En) be a complete Ext-exceptional
collection on D. Then 〈E0, . . . , En〉, the extension-closed subcategory generated by E , is the
heart of a bounded t-structure.

Remark 1.88. By [Mac07, Cor. 3.15] we also obtain, that 〈Ei, Ej〉 is a full abelian sub-
category of D.

Lemma 1.89. [Mac07, Lem. 3.16] Let E = (E0, E1, . . . , En) be a complete Ext-exceptional
collection on D and let σ = (Z,A) ∈ D. Assume that E0, . . . , En ∈ A.

Then A = 〈E0, . . . , En〉 and Ei is stable for each i = 0, . . . , n.

Proposition 1.90. [Mac07, Lem. 3.17] Let (E0, . . . , En) be a complete Ext-exceptional
collection on D and let σ = (Z,A) be a numerical pre-stability condition on D such that
〈E0, . . . , En〉 = A. Fix j > i. Then σ induces a stability condition σij on the full triangulated
subcategory Dij generated by Ei, Ej , in such way that every semistable object in σij with
phase φ corresponds to a semistable object in σ with the same phase.
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Let us assume thatD = (E0, . . . , En). If there is p ∈ Zn+1, such thatAp = (E0[p0], . . . , En[pn])
is an Ext-exceptional collection, then Ap is the heart of a bounded t-structure. We now
define

Zp : N (Ap) ∼= Zn+1 → C,

as follows: since N (Ap) is generated by the classes [Ei[pi]], we choose zi ∈ H and we extend
Zp to Zn+1. Note that the pair σp = (Zp,Ap) is a locally finite pre-stability condition, as
Ap is an abelian category of finite length.

Definition 1.91. Let E be a complete, Ext-exceptional collection. We define

HE = {σ = (Z,A) | pre-stability conditions with 〈E〉 = A}.

Definition 1.92. Let E be a complete, Ext-exceptional collection. We define Θ′E as the
smallest set closed under the action of G̃L

+
(2,R) containing HE .

Definition 1.93. We define

ΘE =
⋃

{p∈Zn+1|E[p] is Ext }
Θ′E[p],

where E [p] = (E0[p0], E1[p1], . . . , En[pn]).

Lemma 1.94. [Mac07, Lem. 3.19] The set ΘE is an open, connected and simply connected
(n+ 1)-dimensional complex submanifold.

Remark 1.95. In Section 2.2, we present analogous statements proved in [CP10] that use
semiorthogonal decompositions instead of exceptional objects.

1.2.4 Bridgeland stability conditions on the n-Kronecker quivers

Definition 1.96. A quiver Q = (V,A, s, t) is a quadruple consisting of two sets: V the
set of vertices and A the set of arrows and two maps s, t : A → V which associate to each
arrow α ∈ A its source s(α) ∈ V and its target t(α) ∈ V. We denote it just by Q.

Let K(n) be the n-Kronecker quiver 1 2...
α1

αn

given by two vertices V = {1, 2} and

n-arrows A = {αi | i = 1, . . . , n} from 1 to 2.

To study quivers and quiver representations, we recommend [ASS06].

Let Qn := Rep(K(n)) be the category of representations of the n-Kronecker quiver, with
n ∈ N≥1.

The aim of this subsection is to study the Bridgeland stability manifold of
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Stab(Qn) := Stab(Db(Qn)). We follow closely [Mac07]. For the case n = 2, we recom-
mend [Oka06] and for a more general picture [DK16].

Let S1 and S2 be the two simple representations, with C at the source and C at the target
respectively.

Note that S1, S2 are exceptional objects and that (S1, S2) gives us an Ext-exceptional pair.
See [ASS06, Sec. 3.2]. We now follow [Rin94] to show that we can get all exceptional objects
in Db(Qn) via the action of the braid group B2 ∼= Z, i.e. via mutations.

First note that if E ∈ Db(Qn) is exceptional, then E ∈ Qn[m], for some m ∈ Z. Indeed, as
Qn is hereditary, then E ∼=

∑
H i(E)[−i] and since Hom(E,E) = C, it implies that there

is just one m ∈ Z that satisfies H−m(E) 6= 0 and then E ∈ Qn[m]. Therefore, we just need
to study exceptional representations of Qn.

By definition, any simple representation of Qn is an exceptional objects of Db(Qn) and
any exceptional representation is indecomposable. If n = 1, then Q1 has only finitely
many isomorphism classes of indecomposable representation. As a consequence, all the
indecomposable representations of Q1 are exceptional. If n ≥ 2, then only the preinjective
and preprojective indecomposable representations are exceptional. See [Rin94, Sec. 2].

Lemma 1.97. [Rin94, Sec. 4] If E is an exceptional representation in Qn, there are excep-
tional representations E− and E+ such that (E−, E) and (E,E+) are complete exceptional
pairs.

In [CB93] and [Rin94], the authors prove that the action of the braid group on the set
of complete exceptional collections of a quiver Q is transitive. In our case, we obtain the
theorem.

Theorem 1.98. [CB93, Thm. 10] The action of B2 is transitive on the set of complete
exceptional sequences.

We define
Sk+2 := RSk+1Sk for k ≥ 0

and
Sk−1 := LSkSk+1 for k ≤ 1.

Corollary 1.99. The set {Si}i∈Z gives us all exceptional objects in Db(Qn) up to shifts.

Proof. Let E be an exceptional representation in Qn. Then, there is an exceptional repre-
sentation E−, such that (E−, E) is a complete exceptional collection. As the action of B2

is transitive, then there is s ∈ B2 such that s(S1, S2) = (E−, E). It implies that E ∼= Si[m],
for some i,m ∈ Z.

https://pub.uni-bielefeld.de/download/1776236/2312117/Ringel_098.pdf
https://www.math.uni-bielefeld.de/~wcrawley/exceptionalsequencesofrepresentationsofquivers.pdf
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Remark 1.100. See [Dim15, Sec. 2.C.1]. In general the action of the braid group Bn is
not free. However, the action of B2 on the set of complete exceptional collections of Qn
with n ≥ 2 is in fact free. Therefore, for n ≥ 2 the set of Si with i ∈ Z, give as complete
set of exceptional representations. In the case n = 1, the action is clearly not free as we
just have three indecomposable representations, namely

S1 = C→ 0 , S2 = 0→ C and S3 = C→ C.

Lemma 1.101. [Mac07, Lem. 4.2] Let σ ∈ Stab(Qn), then there is an exceptional pair of
the form (Si, Si+1) where Si, Si+1 are σ-stable objects.

Remark 1.102. The proof of Lemma 1.101 goes along the lines of Lemma 1.73, i.e. we
assume that an exceptional object is not semistable and we study the last triangle of the
HN-filtration and we use the fact that Qn is hereditary.

We now define
Ci := {σ ∈ Stab(Qn) | Si, Si+1 σ − stable },

for i ∈ Z, if n ≥ 2 or i = 1, 2 and 3 if n = 1. In this case Ci is precisely ΘE, where
E = (Si, Si+1). By Lemma 1.94, the set Ci is a connected, simply connected two dimensional
manifold.

We now shortly focus on the case n = 1. The Serre functor of the triangulated category
Db(Q1) is defined as follows

SQ1(E1
ϕ−→ E2) = E2

ψ−→ C(ϕ),

where E1
ϕ−→ E2

ψ−→ C(ϕ)→ E[1] is a distinguished triangle and satisfies that S3 = [1]. See
Lemma 2.57 for the generalization and the proof of this result.

Note that as SQ1 acts as an autoequivalence, we obtain precisely that

SQ1(C1) = C2 , SQ1(C2) = C3 and SQ1(C3) = C1.

Therefore it is enough to study one of the Ci. Note that the exceptional pair (S1[n], S2)
is Ext if and only if n ≥ 0. Indeed, we have that Homi(S1[n], S2) = Hom(S1, S2[i − n]),
which is different from zero only if i − n = 1, then i = 1 + n ≥ 0. Therefore, we obtain
Hom≤0(S1[n], S2) = 0. Let us consider σ ∈ C1, then S1 and S2 are σ-stable. As there is a
non-zero map S1 → S2[1], it implies that φ(S1) < φ(S2) + 1.

We define the following map

ρ : C1 → {(m1,m2, φ1, φ2) ∈ R4 | m1,m2 > 0, φ1 < φ2 + 1}
σ 7→ (|Z([S1]|, |Z(S2)|, φ(S1), φ(S2)).

http://othes.univie.ac.at/37766/1/2015-05-05_0963063.pdf
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Lemma 1.103. [Mac07, Lem. 3.19] The map ρ is a homeomorphism.

Proof. It is clearly continuous. We now show that it is a bijection. Let σi = (Zi,Ai) ∈ C1,

for i = 1, 2, with ρ(σ1) = ρ(σ2). AsN (Q1) is generated by [S1] and [S2], then Z is completely
determined by ρ(σi), as a consequence we obtain Z1 = Z2.

Moreover, as S1 and S2 are σ-stable there are n1, n2 ∈ Z with S1[n1] ∈ A1 and S2[n2] ∈ A2.

Note that n1 and n2 are the same for both stability conditions as they are characterized by
φ1 are φ2. Precisely, an object E satisfies that E[n] ∈ A if and only if −n < φ(E) ≤ −n+1.

If φ1 ≤ φ2, as S2 ∈ Ai[n2], then φ2 ≤ −n2 + 1, which implies that −n1 < φ1 < −n2 + 1 and
as a consequence, we obtain n2 ≤ n1. By Lemma 1.87 the set 〈S1[n1], S2[n2]〉 ⊆ Ai is the
heart of a bounded t-structure and it implies A1 = A2 = 〈S1[n1], S2[n2]〉.

In the case φ2 < φ1 < φ2 + 1, without losing generality, we assume n2 = 0, then we obtain
n1 = −1. As the last triangle of the HN-filtration of S3, is precisely

S2 → S3 → S1 → S2[1],

we obtain that if S3 is not σ-stable then φ2 ≥ φ1. Then, in this case S3 is σ-stable and
there is n3 ∈ Z with S3[n3] ∈ Ai, for i = 1, 2.

Since we have non-zero morphisms S2 → S3 → S1, it implies that φ2 < φ(S3) < φ1 and
therefore n3 = 0 or n3 = −1. If S3 ∈ Ai, then (S3, S1[−1]) is an Ext-exceptional pair
and 〈S3, S1[−1]〉 ⊆ Ai, which implies A1 = A2, or if S3[−1] ∈ Ai, then (S2, S3[−1]) is an
Ext-exceptional pair and we argue as above.

We now prove the surjectivity. We have a 4-tuple (m1,m2, φ1, φ2) and we want to construct
a stability condition. We first give the heart. If φ1 ≤ φ2, then if −n1,−n2 are the integer
parts of φ1, φ2 respectively, we have that n1 ≥ n2, and we define the heart as 〈S1[n1], S2[n2]〉
and Z([S1]) = Z((1, 0)) = m1e

φ1π and Z([S2]) = Z(0, 1) = m2e
φ2π, which is enough to

define Z : Z→ C. Note that Z([Si[ni]]) ∈ H as 0 < φ1 + ni ≤ 1.

In the case φ2 < φ1 < φ2 + 1, we assume that n2 = 0, and it implies that n1 = −1. We
define Z as above. We now define the heart. If =(Z(1, 1)) > 0 or if =(Z(1, 1)) = 0 and
<(Z(1, 1)) < 0, we define the heart as 〈S3, S1[−1]〉. If =(Z(1, 1)) < 0 or =(Z(1, 1)) = 0 with
<(Z(1, 1)) > 0, then we define the heart 〈S2, S3[−1]〉. By the same argument of Lemma
1.85 ρ is also open.

Proposition 1.104. [Mac07, Thm. 4.5], [DK16, Thm 1.5], [Oka06] We have that
Stab(Qn) ∼= ∪i∈ZCi and moreover Stab(Qn) is a connected, contractible 2-dimensional com-
plex manifold.

Remark 1.105. In [Mac07, Thm. 4.5], Macrì showed that Stab(Qn) is simply connected.
In [Qiu11, Thm. 7.5.1], Qiu proved that Stab(Q1) ∼= C2. In [Oka06, Thm. 1.1], Okada

https://arxiv.org/pdf/math/0411220.pdf
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showed that for n = 2, we have that Stab(Q2) ∼= Stab(P1) ∼= C2. In [DK16, Thm. 1.5],
Dimitrov proved that Stab(Qn) ∼= C×H for n ≥ 3. See also [Shi11].

Bridgeland stability conditions on Db(P1).

We now study Stab(Db(P1)). We follow [Oka06]. Note that (O,O(1)) is a complete, strong

exceptional collection. We define A = End(O ⊕ O(1),O ⊕ O(1)) =
[
C 0
C2 C

]
, which is

precisely the path algebra of the 2-Kronecker quiver. We study the autoequivalence induced
by Theorem 1.30

F := RHom(A,−) : Db(P1) → Db(Q2)
E 7→ RHom(O ⊕O(1), E)

and whether the skyscraper sheaves C(x) for x ∈ P1, are σ-stable for σ ∈ Stab(P1).Note that
F (O(1)) = C −−−−→→ C2 and F (O) = 0 −−−−→→ C are the projective indecomposables of Rep(Q2).
We also have that F (O(−1)[1]) = C −−−−→→ 0. Therefore, the Ext-exceptional collection given
by (S1, S2) is precisely (O(−1)[1],O). By Lemma 1.87, we have that 〈O(−1)[1],O〉 is the
heart of a bounded t-structure. It is called the Kronecker heart, as its image under F is
precisely Rep(Q2). Moreover for k ∈ Z, we have that

F (O(k)[1]) = C−k −−−−→→ C−k−1 for k ≤ −1

and
F (O(k)) = Ck −−−−→→ Ck+1 for k ≥ 1,

which are precisely the exceptional representations Sk. See [DW17, Exm. 11.2.4]

Remark 1.106. By Lemma 1.101, for every σ ∈ Stab(P1) there is k, such that O(k),O(k+
1) are σ-stable.

Remark 1.107. Note that σµ = (Zµ,Coh(P1)) ∈ Stab(P1) satisfies that C(x) and O(k)
are stable for all points x ∈ P1 and all k ∈ Z. Moreover, the heart Coh(P1) is not given by
any Ext-exceptional pair.

We now study skyscraper sheaves C(x) for x ∈ P1 and under which conditions they are
stable for σ ∈ Stab(P1). As in Lemma 1.73, we assume that C(x) is not σ-stable, for a
x ∈ P1 and we study the last triangle of its HN-filtration.

Lemma 1.108. [GKR04, Lem. 6.3], [Oka06, Lem. 3.1] If C(x) is not σ-semistable, then
there is k ∈ Z such that its HN-filtration is given by

O(k + 1)→ C(x)→ O(k)[1]→ O(k + 1)

https://arxiv.org/pdf/math/0411220.pdf
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and O(k), O(k + 1) are σ-stable and φ(O(k + 1)) > φ(O(k)) + 1

Lemma 1.109. [GKR04, Lem. 6.3], [Oka06, Lem. 3.1] If O(n) is not σ-semistable for
some n ∈ Z, then there is k 6= n, n− 1 ∈ Z such that its HN-filtration is given by

O(k + 1)⊕n−k → O(n)→ O(k)⊕n−k−1[1] if n > k + 1,

or
O(k + 1)⊕k−n → O(n)→ O(k)⊕k−n+1[1] if n < k

and O(k),O(k + 1) are σ-stable and φ(O(k + 1)) > φ(O(k)) + 1.

By Proposition 1.104, we have already that Stab(P1) = ∪kCk. If

σ = (Z,A) ∈ Ck = {σ ∈ Stab(P1) | O(k),O(k + 1) stable}

with φk := φ(O(k)) and φk+1 := φ(O(k + 1)), then as there is a non-zero morphism
O(k) → O(k + 1), we obtain that φk < φk+1 and moreover these values characterize σ
as follows:

Lemma 1.110. 1. If φk + 1 < φk+1, then neither C(x) nor O(n) are σ-stable, for
n 6= k, k + 1 ∈ Z. Moreover, there are p, q ∈ Z with q ≥ 2 such that

A[p] = 〈O(k)[q],O(k + 1)〉.

2. If φk + 1 > φk+1 > φk, then C(x) and O(n) are σ-stable for every n ∈ Z. Moreover,
there is g ∈ G̃L

+
(2,R) such that σ = σµg.

After studying the C-action defined in on Stab(P1), we obtain the following theorem.

Theorem 1.111. [Oka06, Thm. 1.1] Stab(P1) ∼= C2.

Remark 1.112. Note that by Lemma 1.110, under the assumption that C(x) is σ-stable
for all x ∈ P1, there is g ∈ G̃L

+
(2,R), such that σ = σµg as in the case of a curve C with

g(C) ≥ 1.





2 Bridgeland stability conditions on TA,n

Let A be a Noetherian abelian category, such that Db(A) is C-linear of finite type. We
consider the category QA,n of representations of the n-Kronecker quiver over A with
n ∈ Z>0, i.e. the objects of QA,n are tuples (E1, E2, (fj)0<j≤n) where Ei ∈ A, i =
1, 2 and fj ∈ HomA(E1, E2), j = 1, . . . , n. A morphism between (E1, E2, (fj)0<j≤n) and
(F1, F2, (tj)0<j≤n) is given by pair g1 ∈ Hom(E1, F1) and g2 ∈ Hom(E2, F2), such that
g2 ◦ fj = tj ◦ g1 for all j = 1, 2, . . . , n.

Remark 2.1. The category QA,n is abelian. See [JMP10, Thm. 1].

Notation 2.2. If A = VectC is the category of vector spaces over C, we denote QA,n by
Qn.

The aim of this chapter is to study Stab(Db(QA,n)). If A = VectC, then Qn is the category of
representations of the n-Kronecker quiver and its stability manifold is completely described
in [Mac07], as explained in Subsection 1.2.4. If A is Coh(X), whereX is a smooth projective
variety and n = 1, we obtain the category TCoh(X) of holomorphic triples over X. In
Chapter 3, we give a precise description of the stability manifold Stab(Db(TCoh(X))) for
a smooth projective curve of genus ≥ 1. In this case, the study of Db(TCoh(X)) will be
appearing in [MRRHR19].

2.1 The triangulated category TA,n

The object under study in this section is TA,n := Db(QA,n). We construct different semior-
thogonal decompositions for TA,n. We prove the existence of the Serre functor and we give
an explicit construction of it in the case n = 1.

Our idea is to generalize the construction for quivers in [Mac07], but instead of using
exceptional objects we use semiorthogonal decompositions. Often we separate the case
n = 1 and n ≥ 2, as Q1 has finitely many exceptional representations and Qn, with n ≥ 2,
has infinitely many ones.

39
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Semiorthogonal decompositions of TA,n

Let Sk be an exceptional representation of the n-Kronecker quiver for n ≥ 2 and k ∈
Z as in Subsection 1.2.4. The representation Sk generates a triangulated subcategory
〈Sk〉 ∼= Db(VectC) of Db(Qn). It also induces a semiorthogonal decomposition 〈〈Sk〉, 〈Sk+1〉〉
of Db(Qn). We now define the analogous triangulated subcategories Dk of TA,n, which will
also induce semiorthogonal decompositions 〈Dk, Dk+1〉 of TA,n.

Consider the following functors:

i1 : A ↪→ QA,n

E 7→ (E, 0, 0),

j2 : A ↪→ QA,n

E 7→ (0, E, 0).

The definition of the functor at the level of morphisms is the expected one. Since the
functors i1 and j2 are exact, we can extend them to the level of derived categories. We
obtain the following functors:

i1∗ : Db(A) → TA,n
E 7→ (E, 0, 0),

j2∗ : Db(A) → TA,n
E 7→ (0, E, 0).

Lemma 2.3. [BDG17a, Thm. 2.4], [BDG17b, Cor. 2.4] Let F : A → B be an exact functor
between abelian categories, G : B → A be the right (left) adjoint such that F ◦ G → IdB
(IdB → F ◦ G) is an isomorphism. Then, if DF is the derived functor of F and G has a
right (left) derived functor RG (LG), we obtain that RG (LG) is the right (left) adjoint of
DF.

Lemma 2.4. The functors i1∗ and j2∗ are exact embeddings of Db(A) into TA,n.

Proof. We first show that i1∗ is an exact embedding. Note that the functor i1 is clearly an
exact fully-faithful functor. Moreover, we can define the functor

i∗1 : QA,n → A
(E1, E2, fl) 7→ E1,

https://link.springer.com/content/pdf/10.1007/978-3-319-28829-1_4.pdf


41 Chapter 2. Bridgeland stability conditions on TA,n

which at the level of morphisms is defined as expected. It follows

HomQA,n((F1, F2, fl), i1(E1)) ∼= HomQA,n((F1, F2, fl), (E1, 0, 0)) ∼= HomA(F1, E1)

i.e. i∗1 is the left adjoint of i1. Note that by definition i∗1 is exact. Therefore, we directly
consider the induced functor at the level of bounded derived categories

i∗1 : TA,n → Db(A)
(E1, E2, fj) 7→ E1.

By Lemma 2.3, after replacing G by i1 and F by i∗1, we have that (i∗1, i1∗) is an adjoint pair
at the level of derived categories. We now prove that i1∗ is a fully-faithful exact functor.
Indeed, it follows directly from the fact that the counit

ε : i∗1i1∗ → IdDb(A)

is a natural isomorphism, since by the definition of the adjunction we have that

εG : i∗1i1∗(G)→ G

is precisely the identity for every G ∈ Db(A).

Therefore, we obtain that i1∗ is an exact embedding. We analogously prove that j2∗ is an
exact embedding. We define the functor

j!
2 : QA,n → A

(E1, E2, fj) 7→ E2,

which at the level of morphisms is defined as expected. Note that j!
2 is the right adjoint of

j2. Indeed, we have

HomDb(A)(F,E2) ∼= HomTA,n((0, F, 0), (E1, E2, fj)),

and j2(F ) = (0, F, 0), with F ∈ A. Since j!
2 is exact, then we take the induced derived

functor. As (j2∗, j!
2) is also an adjoint pair at the level of derived categories, as for the

functor i1∗, it implies that j2∗ is an exact embedding.

Definition 2.5. We define D1 := i1∗(Db(A)) and D2 := j2∗(Db(A)).

Remark 2.6. The categories Di, with i = 1, 2, are equivalent to Db(A).

Definition 2.7. [BVdB03, Def. 1.2] Let T be a triangulated category of finite type. We
say that T is saturated if every covariant and contravariant cohomology functor T → VectC
of finite type is representable.

https://arxiv.org/pdf/math/0204218.pdf
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Example 2.8. [BVdB03, Cor. 3.1.5] and [BK90b, Sec. 2] The triangulated categories
Db(X), for a smooth projective variety X, and Db(VectC) are saturated.

Lemma 2.9. If Db(A) is a saturated category, then D1 and D2 are admissible triangulated
subcategories of TA,n.

Proof. Since the functors i1∗ and j2∗ are exact embeddings, it is clear that each subcategory
Di with i = 1, 2 is a full triangulated subcategory of TA,n. By [BK90b, Prop. 2.6], we obtain
that they are also admissible.

We assume throughout all this section that the category Db(A) is saturated. This condition
allows to easily prove the admissibility of the triangulated subcategories and the existence
of the Serre functor.

Lemma 2.10. We have D⊥2 = D1.

Proof. Let us consider j!
2 as defined in Lemma 2.4. By definition, we have that

Ker(j!
2) = D⊥2 , then D⊥2 = {(E1, E2, fj) ∈ TA,n | j!

2(E1, E2, fj) = 0}. As j!(E1, E2, fj) = E2,

then by definition
D⊥2 = D1.

Remark 2.11. Note that if A = VectC, then D1 = 〈S1〉 and D2 = 〈S2〉, where S1, S2 are
the simple representation of the n-Kronecker quiver.

We now study the categories D3 := ⊥D2 and D0 := D⊥1 .

Corollary 2.12. We obtain three semiorthogonal decompositions

TA,n = 〈D1, D2〉 , TA,n = 〈D2, D3〉 and TA,n = 〈D0, D1〉.

Proof. SinceD1, D2 are admissible triangulated subcategories, the argument follows directly
from Corollary 1.19.

To describe D0 and D3 explicitly, we start by considering the following functor

j3 : A → QA,n (2.1)
E 7→ (E,E⊕n, (il)0<l≤n),

where the il is a canonical inclusion for each l and it is defined at the level of morphisms
as expected. As the functor j3 is an exact embedding, we can consider directly the induced
functor at the level of bounded derived categories j3∗.

https://arxiv.org/pdf/math/0204218.pdf
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Lemma 2.13. The functor j3∗ is an exact embedding.

Proof. Let E = (E1, E2, fl,0<l≤n) ∈ QA,n and let us consider the functor

j!
3 : QA,n → A (2.2)

E 7→ E1.

We now prove that j!
3 is a right adjoint of j3. Note that

HomA(F1, E1) ∼= HomQA,n(j3(F1), E).

Indeed, if t1 : F1 → E1, then we define

t2 :=
n∑
l=1

fl ◦ t1 ◦ πl,

where πj is the canonical projection, for each l we obtain

F1
t1 //

il
��

E1

fl
��

F⊕n1
t2 // E2.

(2.3)

We clearly get the desired bijection. Moreover, by definition j!
3 is also exact and (j3∗, j3!)

is an adjoint pair at the level of bounded derived categories. Therefore, as in Lemma 2.4
we obtain that j3∗ is an exact embedding.

Remark 2.14. The category j3∗(Db(A)) is a full triangulated subcategory of TA,n and it
is also equivalent to Db(A). Once again as Db(A) is saturated, by [BK90b, Prop. 2.6], we
obtain that j3∗(Db(A)) is a full triangulated admissible subcategory of TA,n.

Lemma 2.15. j3∗(Db(A)) = D3

Proof. First note that by [BK90b, Lem. 1.7], it is enough to prove that j3∗(Db(A))⊥ = D2.

By adjointness, if E ∈ j3∗(Db(A))⊥ then

0 = HomTA,n(j3∗(F1), E) ∼= HomDb(A)(F1, E1)

for all F1 ∈ Db(A), which implies that E1 = 0.

Let us now consider the functor

i0 : A → QA,n (2.4)
E 7→ (E⊕n, E, (πl)0<l≤n),

http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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where πl is a canonical projection for each j and i0 is defined at the level of morphisms as
expected.

As the functor i0 is an exact embedding, we can consider directly the induced functor at
the level of bounded derived categories i0∗.

Lemma 2.16. The functor i0∗ is an exact embedding.

Proof. Let E = (E1, E2, (fl)0<l≤n) ∈ TA,n and let us consider the functor

i∗0 : QA,n → A (2.5)
E 7→ E2.

We now prove that i∗0 is a left adjoint of i0. Note that

HomA(E2, F2) ∼= HomQA,n(E, i0(F2)).

Indeed, if t2 : F2 → E2, then we define

t1 :=
n∑
l=1

il ◦ t2 ◦ fl

and for each j we obtain
E1

t1 //

fl
��

F⊕n1

πl

��

E2
t2 // F2.

(2.6)

We clearly get the desired bijection. Moreover, by definition i∗0 is also exact and (i0∗, i0∗)
is an adjoint pair at the level of bounded derived categories. Therefore, as in Lemma 2.4
we obtain that i0∗ is an exact embedding.

Remark 2.17. The category i0∗(Db(A)) is a full triangulated subcategory of TA,n and it
is also equivalent to Db(A). Once again as Db(A) is saturated, by [BK90b, Prop. 2.6], we
obtain that i0∗(Db(A)) is an admissible subcategory of TA,n.

Claim 2.18. i0∗(Db(A)) = D0

Proof. First note that it is enough to prove that ⊥i0∗(Db(A)) = D0. By adjointness, if
E ∈ ⊥i0∗(Db(A)) then

0 = HomTA,n(E, i0∗(F2)) ∼= HomDb(A)(E2, F2)

for all F2 ∈ Db(A), which implies that E2 = 0.

http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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Moreover, the semiorthogonal decompositions

TA,n = 〈D0, D1〉 and TA,n = 〈D2, D3〉

induce respectively the following triangles for each E ∈ TA,n

i1
∗i1

!(E) → E → i0∗i
∗
0(E), (2.7)

j3∗j
!
3(E) → E → j2∗j2

∗(E).

Example 2.19. By the definition of i0∗ and j3∗, we obtain the following triangles for every
G ∈ Db(A) :

i1∗(G⊕n[−1]) → j2∗(G) → i0∗(G),
j3∗(G) → i1∗(G) → j2∗(G⊕n[1]).

Remark 2.20. Note that in the case A = VectC, then D0 = 〈S0〉 and D3 = 〈S3〉, where
S0 is the exceptional representation with dimension vector (n, 1) and S3 is the exceptional
representaion with dimension vector (1, n).

Lemma 2.21. If Db(A) is saturated, then the triangulated category TA,n is also saturated.

Proof. As D1 and D2 are equivalent to Db(A), they are both saturated triangulated sub-
categories of TA,n. Moreover by [BK90b, Prop. 2.6] they are also admissible. Therefore, by
[BK90b, Prop. 2.10], we obtain that TA,n is saturated.

Lemma 2.22. If Db(A) has a complete exceptional collection, then TA,n also has a complete
exceptional collection.

Proof. Let E = {E1, E2, . . . , En} be a complete exceptional collection of Db(A). We claim
that F = {i1∗(E1), . . . , i1∗(En), j2∗(E1), . . . , j2∗(En)} is a complete exceptional collection
of TA,n. Indeed, it is clearly complete, because 〈D1, D2〉 is a semiorthogonal decomposition.
Since the functors i1∗ and j2∗ are fully faithful, then when E is an exceptional object of
Db(A), we get that i1∗(E) and j2∗(E) are exceptional objects in TA,n. To show that F is
exceptional collection, we use that

Hom(j2∗(Ei), i1∗(Ej)[l]) = 0 for all l, i and j,

because D⊥2 = D1 and E is an exceptional collection.

Example 2.23. The triangulated category Db(P1) has a complete, strong, exceptional
collection given by (O,O(1)). By Lemma 2.22, the category TCoh(P1),1 also has a complete

http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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exceptional collection given by

E = {i1∗(O), i1∗(O(1)), j2∗(O), j2∗(O(1))}.

Moreover, the complete exceptional collection

E = {i1∗(O), i1∗(O(1)), j2∗(O)[1], j2∗(O(1))[1]}.

is strong.

Let Q be the quiver

• •

• •
l1

α

β

l2γ

δ

and let A be the path algebra of Q under the relations l2 ◦ α = γ ◦ l1 and ł2 ◦ β = δ ◦ l1.

Lemma 2.24. There is an equivalence of categories

TCoh(P1),1
∼= Db(modA)

Proof. Since we have that

E = {i1∗(O), i1∗(O(1)), j2∗(O)[1], j2∗(O(1))[1]}

is a complete, strong exceptional collection, by Theorem 1.30 we have that

TCoh(P1),1
∼= Db(mod(End(P))),

where

P =

O

0

⊕

O(1)

0

⊕

0

O[1]

⊕

0

O(1)[1]
.

We notice that

End(P) =


C 0 0 0
C2 C 0 0
C 0 C 0
C2 C C2 C

 ,
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which is precisely the path algebra of the quiver Q with the relations described above.

Remark 2.25. There is also an equivalence of categories TCoh(P1),1
∼= TQVectC,2,1. Indeed, we

have that E = {i1∗(S1), i1∗(S2)[1], j2∗(S1)[1], j∗(S2)[2]} is a complete, strong, exceptional
collection. By Theorem 1.30, we obtain that

TQVectC,2,1
∼= Db(modA).

Lemma 2.26. The Grothendieck group K(TA,n) is isomorphic to K(A)
⊕
K(A).

Proof. The categories D1 and D2 are equivalent to Db(A). Considering the semiorthogo-
nal decomposition TA,n = 〈D1, D2〉 and the fact that K(A) ∼= K(Db(A)), it follows that
K(TA,n) ∼= K(A)

⊕
K(A).

Corollary 2.27. The numerical Grothendieck group N (TA,n) is isomorphic to the group
N (A)

⊕
N (A).

Proof. Let E = (E1, E2, fj) and F = (F1, F2, gj) ∈ TA,n. We want to show that
E = (E1, E2, fj) ∈ K(TA,n)⊥ if and only if E1 and E2 ∈ K(A)⊥.

As the Euler form is linear in the Grothendieck group and as [E] = ([i∗E1], [j∗E2]), then

χ(E,F ) = χ(i1∗E1, i1∗F1) + χ(i1∗E1, j2∗F2) + χ(j2∗E2, i1∗F1) + χ(j2∗E2, i1∗F2).

As D⊥2 = D1, then χ(j2∗E2, i1∗F1) = 0. Now, by Example 2.19 and by adjointness we have
that

χ(i1∗E1, j2∗F2) = χDb(A)(E1, F
⊕n
2 [−1]) = −nχDb(A)(E1, F2).

Therefore, we obtain that

χ(E,F ) = χDb(A)(E1, F1) + χDb(A)(E2, F2)− nχDb(A)(E1, F2).

We clearly obtain that if E1 and E2 are in K(A)⊥, then E ∈ K(TA,n)⊥.

We now prove the other direction. Let us consider E ∈ K(TA,n)⊥ i.e.

χTA,n(E,F ) = 0

for all F ∈ K(TA,n), in particular for any i1∗(G), j2∗(G), where G ∈ Db(A). As a conse-
quence, we have that

0 = χ(E, i1∗(G)) = χDb(A)(E1, G)

and
0 = χ(E, j2∗(G)) = χDb(A)(E2, G)− nχDb(A)(E1, G).

It implies that for all G ∈ Db(A), we get that χDb(A)(E1, G) = χDb(A)(E2, G) = 0.
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Example 2.28. In the case that A = VectC, as the isomorphism N (Db(VectC)) ∼= Z
is given by the dimension, we get the following description of the numerical Grothendieck
group induced by the semiorthogonal decomposition TA,n = 〈D1, D2〉. Let
E = (E1, E2, fj0<j≤n), then

N (Qn)→ Z2

E 7→ (dim(E1), dim(E2)).

Example 2.29. In the case that A is Coh(C), where C is a smooth projective curve, we
have that N (Db(C)) ∼= Z2 by considering the rank and the degree, then we get

N (TC,n)→ Z4

E 7→ (rk(E1), deg(E1), rk(E2), deg(E2)).

Remark 2.30. [JMP10, Prop. 3] Let F ∈ Aut(A) be an autoequivalence, then the functor
FQn , defined as follows at the level of objects

FQn : QA,n → QA,n

(E1, E2, (fj)0<j≤n) 7→ (F (E1), F (E2), F (fj)0<j≤n)

and for morphisms ϕ = (ϕ1, ϕ2) ∈ HomQA,n as FQn(ϕ) = (F (ϕ1), F (ϕ2)), is also an autoe-
quivalence. Moreover, if F is exact, then FQn is also exact.

Example 2.31. If A = Coh(X), where X is a nonsingular projective variety. We have the
exact autoequivalence

−⊗ L : Coh(X) → Coh(X)
E → E ⊗ L,

where L is a line bundle. By Remark 2.30, it induces an exact autoequivalence on QA,n.
Therefore, by passing to the derived category, we obtain an autoequivalence of TA,n.

Theorem 2.32. If the triangulated category Db(A) is saturated, then the category TA,n
admits a Serre functor.

Proof. Since Db(A) is a saturated triangulated category of finite type, by [BK90b, Cor. 3.5]
the triangulated category Db(A) has a Serre functor SA. Since D2 ∼= Db(A) and D⊥2 = D1

are admissible and have Serre functors SA, by [BK90b, Prop. 3.8], we deduce that TA,n also
has a Serre functor.

We now follow the constructive proof in [BK90b, Prop. 3.8] to give explicitly the isomor-
phism induced by the Serre functor in the numerical Grothendieck group. For a complete

https://pdfs.semanticscholar.org/2f49/9840b84f5aa95e0c89bbdcf2b082e5f79dbd.pdf
http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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construction of the Serre functor, we suggest to consult the original source. To make the
notation simple during the construction we assume

i∗ := i1∗ and j∗ := j2∗.

First of all we want to construct a representative of the contravariant functor

h = HomTA,n(X,−)∗,

with X = (X1, X2, fj0<j≤n) ∈ TA,n, i.e. an object STA,n(X) such that

HomTA,n(−,STA,n(X)) = HomTA,n(X,−)∗.

In order to construct a representing object for h, we need to construct a representing object
for h

∣∣
D2

and a representing object for h
∣∣
D1
. Let us consider

h
∣∣
D1

: Db(A) → VectC
E 7→ HomTA,n(X, i∗E)∗.

By adjointness we have

HomTA,n(X, i∗E) ∼= HomDb(A)(i∗X,E).

By Serre duality on Db(A) we get

HomDb(A)(i∗X,E) ∼= HomDb(A)(E,SAi∗X)∗.

Therefore, we get

HomDb(A)(E,SAi∗X)∗ ∼= HomTA,n(i∗E, i∗SAi∗X)∗,

which finally implies that

HomTA,n(X, i∗E)∗ ∼= HomTA,n(i∗E, i∗SAi∗X),

and the representing object of h
∣∣
D1

is given by

F1 = i∗SAi∗X = (SA(X1), 0, 0).

Let us consider

h
∣∣
D2

: Db(A) → VectC
E 7→ HomTA,n(X, j∗E)∗.
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By adjointness we have

HomTA,n(X, j∗E) ∼= HomDb(A)(j∗X,E).

By Serre duality on Db(A) we get

HomDb(A)(j∗X,E) ∼= HomDb(A)(E,SAj∗X)∗.

As before, we obtain

HomTA,n(X, j∗E)∗ ∼= HomTA,n(j∗E, j∗SAj∗X),

and the representing object of h
∣∣
D2

is given by

F2 = (0,SAj∗X, 0).

We also need to find a representing object for the following functor

HomTA,n(−, F2) : Db(A) → VectC
E 7→ HomTA,n(i∗(E), F2).

By adjointness
HomTA,n(i∗E,F2) ∼= HomTA,n(i∗E, i∗i!F2).

Therefore, by Example 2.19, the representing object is given by i∗i!F2 = (j!(F2)⊕n[−1], 0, 0).
We obtain that

HomTA,n(i∗i!F2, i∗i
!F2) ∼= HomTA,n(i∗i!F2, F2).

The identity induces a morphism

γ : i∗i!F2 → F2,

which is precisely the morphism that appears in

i∗i
!F2 → F2 → i0i

∗
0F2

induced by the semiorthogonal decomposition 〈D0, D1〉 as in Example 2.19. Therefore, we
obtain the morphism

h(γ) : HomTA,n(X,F2)∗ → HomTA,n(X, i∗i!F2)∗,

as
HomTA,n(X,F2)∗ = HomDb(A)(F2, F2)
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and
HomTA,n(X, i∗i!F2)∗ = HomDb(A)(i∗i!F2, F1).

Then, the identity induces a morphism δ : i∗i!F2 → F1 in D1. We obtain a triangle

i∗i
!F2 → F1 → C(δ)→ i∗i

!F2[1]

in D1. After composing with γ, we obtain the following morphism

C(δ)→ i∗i
!F2[1] γ−→ F2[1].

After taking once again the cone

C(t)[−1]→ C(δ) t−→ F2[1].

And we define STA,n(X) = C(t)[−1].

As the Serre functor is an autoequivalence, it induces an isomorphism of the numerical
Grothendieck group. We make explicit this homomorphism.

Proposition 2.33. The automorphism induced by the Serre functor is defined as follows:

STA,n : N (Db(A))⊕2 → N (Db(A))⊕2

([X1], [X2]) 7→ ((1− n2)[SA(X1)] + n[SA(X2)], [SA(X2)]− n[SA(X1)])

where SA is the group automorphism of N (Db(A)) induced by the Serre functor in Db(A).

Proof. First note that by

STA,n([X1], [X2]) = (0,SA(j∗[X])) + ([C(δ))], 0),

where j∗ : N (TA,n)→ N (Db(A)) is the group homomorphism induced by j∗.

As by Example 2.19 we have the following triangle

X⊕n1 → X2 → j∗(X)→ X → X⊕n1 [1],

we obtain
SA([j∗(X)]) = [SA(X2)]− n[SA(X1)].

By the triangle
i∗(i!(F2))→ F1 → C(δ)→ i∗(i!(F2))[1],

we obtain
[C(δ)] = [SA(X1)] + n[SA([j∗(X2)]),
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then
[C(δ)] = [SA(X1)] + n[SA(X2)]− n2[SA(X1)].

Therefore, we have

[STA,n(X)] = ((1− n2)[SA(X1)] + n[SA(X2)], [SA(X2)]− n[SA(X1)]).

Remark 2.34. Note that the morphism is given precisely by multiplying the Coxeter

matrix
[
1− n2 n

−n 1

]
by the pair ([SA(X1)], [SA(X2)]).

Example 2.35. If we take A = VectC, and n = 1. The induced automorphism of the
numerical Grothendieck group is given by

SQ1 : Z2 → Z2

(r1, r2) 7→ (r2, r2 − r1).

If A = Coh(C), where C is an elliptic curve, we obtain that the induced automorphism is
given by

STCoh(C),1 : Z4 → Z4

(r1, d1, r2, d2) 7→ (−r2,−d2, r1 − r2, d1 − d2).

If we take A = VectC, and n = 2. By Example 2.27, we have N (Qn) = Z2 and

SQ2 : Z2 → Z2

(r1, r2) 7→ (2r2 − 3r1, r2 − 2r1).

Moreover, if we consider the equivalence of triangulated categories Db(Q2) ∼= Db(P1), we
use the well-known description of the Serre functor for Db(P1). The semiorthogonal decom-
position 〈D1, D2〉 on Db(Q2) is given by 〈O(−1)[1],O〉 on Db(P1) via the equivalence given
by RHom(O ⊕O(1),−) : Db(P1)→ Db(Q2). See [Bon90, Ex. 6.3.].

For example for O(3) we obtain that its triangle with respect to the semiorthogonal decom-
position 〈O(−1)[1],O〉 is given by

O⊕4 → O(3)→ O(−1)⊕3[1].

It means that [O(3)] is represented by (3, 4). After applying the Serre functor, we obtain

http://iopscience.iop.org/article/10.1070/IM1990v034n01ABEH000583/pdf
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S(O(3)) = O(1)[1], numerically we obtain (−1,−2), which corresponds to

O⊕2[1]→ O(1)[1]→ O(−1)[2].

If we take A = Coh(C), where C is an elliptic curve and n = 2,

STCoh(C),2 : Z4 → Z4

(r1, d1, r2, d2) 7→ (−2r2 + 3r1,−2d2 + 3d1,−r2 + 2r1,−d2 + 2d1).

Remark 2.36. Note that from Corollary 2.12 we can also conclude that D1 and D2 are
admissible without the assumption of being saturated. From Lemma 2.4, we have that
D1 is left-admissible and from the semiorthogonal decomposition 〈D0, D1〉, as D0 is left-
admissible by Lemma 1.18, we obtain thatD1 is right-admissible, as a consequenceD1 is ad-
missible. We prove analogously the admissibility of D2. Moreover, by
[BK90b, Prop. 3.8], if D1 and D2 have Serre functors, we can prove that TA,n also has
a Serre functor and we can prove that D0 and D3 are also admissible. We assumed from
the beginning that Db(A) is saturated to directly have the existence of the Serre functor
SA and to make the arguments cleaner and easier.

The Serre functor on the triangulated category TA

We now study TA,1. From now on we denote it by TA. Analogously to the description of
Db(Q1) via the exceptional pairs

(S1, S2) , (S2, S3) and (S3, S1),

we obtain three semiorthogonal decomposition of TA. Moreover, we give an explicit de-
scription of the Serre functor. As a consequence we obtain several examples of fractional
Calabi–Yau categories.

First note that since n = 1, we have l∗ := j3∗ = i0∗, therefore

D0 = D3.

Moreover, as the functors i∗0 and j!
3, as defined in Lemma 2.16 and Lemma 2.13, are the

left and right adjoint of l∗ respectively, we rename them as

l! := j!
3 and l∗ := i∗0.

Remark 2.37. By the definition of l! and l∗ given in Lemma 2.16 and Lemma 2.13 we

http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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obtain that
l∗ = j! and l! = i∗.

Remark 2.38. In many cases, we express a morphism Φ ∈ HomTA(E,F ) as two horizontal
arrows, but note that they just represent i∗(Φ) and j!(Φ) and they do not characterize the
morphism Φ.

Proposition 2.39. We have the following three semiorthogonal decompositions on TA

TA = 〈D1, D2〉, TA = 〈D2, D3〉 and TA = 〈D3, D1〉.

Proof. It follows directly from Corollary 2.12.

The semiorthogonal decompositions TA = 〈D3, D1〉 and TA = 〈D2, D3〉 define i! as the
right adjoint of i∗ and j∗ as the left adjoint of j∗. We obtain the following triangles for
X = (X1, X2, ϕ)

i!(X) πX //

��

X1 ϕ
//

ϕ

��

X2 //

��

i!(X)[1]

��

0 // X2 id
// X2 // 0

(2.8)

and
X1

id //

id
��

X1 //

ϕ

��

0 //

��

X1[1]

id
��

X1
ϕ
// X2

τX // j∗(X) // X1[1].

(2.9)

As a consequence, we can now describe the functors i! and j∗ at the level of objects and
some features at the level of morphisms.

Corollary 2.40. Let X = (X1, X2, ϕX) and Y = (Y1, Y2, ϕY ) ∈ TA. The functor i! is given
as follows

i! : TA → Db(A) (2.10)
X 7→ C(ϕX)[−1]

at the level of objects. If ψ : X → Y is a morphism of triples, then the following diagram
commutes

C(ϕX)[−1]
i!(ψ)

//

πX
��

C(ϕY )[−1]
πY
��

X1
i∗(ψ)

// Y1.

(2.11)
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Proof. As we have the (triangle 2.9) and i∗ is an exact functor, we obtain the triangle

i!(X) πX−−→ X1
ϕ−→ X2 → i!(X),

therefore i!(X) ∼= C(ϕX)[−1]. We use the naturality of the adjunction and we obtain

ψ ◦ πX = i∗i
!(ψ) ◦ πY

and by taking i∗ in both sides we obtain the (square 2.11). Indeed, we have the following
diagram, where the two inner squares commute:

HomDb(A)(i!(X), i!(X)) //

i!(ψ)
��

HomTA(i∗(i!(X)), X)

ψ

��

HomDb(A)(i!(X), i!(Y ))
i!(ψ)

// HomTA(i∗(i!(X)), Y )

HomDb(A)(i!(Y ), i!(Y ))

i!(ψ)

OO

// HomTA(i∗(i!(Y )), Y ).

i!(ψ)

OO

. (2.12)

Note that i!(ψ) ◦ idi!(X) = idi!(Y ) ◦i!(ψ).

Corollary 2.41. Let X = (X1, X2, ϕX) and Y = (Y1, Y2, ϕY ) ∈ TA. The functor j∗ is
given as follows

j∗ : TA → Db(A) (2.13)
X 7→ C(ϕX)

at the level of objects. If ψ : X → Y is a morphism of triples, then the following diagram
commutes

X2
j!(ψ)

//

τX
��

Y2

τY
��

C(ϕX)
j∗(ψ)

// C(ϕY )

(2.14)

Proof. The proof goes along the lines of Corollary 2.40.

As we have already proved the existence of the Serre functor in Lemma 2.32, we now
describe it explicitly. We first compute the image under the Serre functor for some precise
objects.

Lemma 2.42. Let X ∈ Db(A), then

1. STAj∗(X) = l∗SA(X).
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2. STAi∗(X) = j∗SA(X)[1].

3. STA l∗(X) = i∗SA(X).

Proof. We use the fact that
STA(⊥D) = D⊥

and that
SA = F !STAF∗,

where F is one of the functors i, j or l. See [Shi, Prop. 3.3].

As ⊥D1 = D2 and D⊥1 = D3, we obtain that STAj∗(X) ∈ D3, for all X ∈ Db(A). Now as

j!STAj∗ = SA

and by the definition of j! in Lemma 2.10 and of l∗ we obtain that

STA,nj∗(X) = l∗SA(X).

As ⊥D2 = D3 and D⊥2 = D1, we obtain that STA l∗(X) ∈ D1, for all X ∈ Db(A). Now as

l!STA l∗ = SA

and by the definition of l! in Remark 2.37, we obtain that

STA l∗(X) = i∗SA(X).

As ⊥D3 = D1 and D⊥3 = D2, we obtain that STAi∗(X) ∈ D2, for all X ∈ Db(A). By the
exactness of the rows of the following triangle

i!j∗(X) //

��

0 //

��

X //

id
��

X

��

0 // X
id
// X // 0,

(2.15)

induced by the semiorthogonal decomposition 〈D3, D1〉, we obtain

i!j∗(X) = X[−1].

By the definition of i! on D2 and as we have that

i!STAi∗ = SA,

https://e-shinder.staff.shef.ac.uk/Mainz-Lecture-2.pdf
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for all X ∈ Db(A) and we obtain

STAi∗(X) = j∗SA[1](X).

Lemma 2.43. Let X ∈ Db(A), then

1. S−1
TA j∗(X) = i∗S−1

A (X)[−1].

2. S−1
TA i∗(X) = l∗S−1

A (X).

3. S−1
TA l∗(X) = j∗S−1

A (X).

Proof. It follows directly from Lemma 2.42.

Remark 2.44. Let X = X1
ϕ−→ X2 be an element in TA. As we have F !STA = SAF ∗ for

F = i, j or l, then we obtain directly

l!(STA(X)) = SA(X2),
i!(STA(X)) = SA(X1),
j!(STA(X)) = SA(C(ϕ)).

Remark 2.45. Let X = X1
ϕ−→ X2 be an element in TA. As we have F ∗S−1

TA = S−1
A F ∗ for

F = i, j or l, then we obtain directly

l∗(S−1
TA (X)) = S−1

A (X1),
i∗(S−1

TA (X)) = S−1
A (C(ϕ)[−1]),

j∗(S−1
TA (X)) = S−1

A (X2).

Let us consider an element X = X1
ϕ−→ X2 and its decomposition

j∗j
!(X)→ X → i∗i

∗(X) tX−→ j∗j
!(X)[1]

with respect to TA = 〈D1, D2〉. We now study the morphism tX : i∗i∗(X) −→ j∗j
!(X)[1].

More explicitly, we obtain

0 //

��

X1
id //

ϕ

��

X1 //

��

0

��

X2 id
// X2 // 0 tX // X2[1].

(2.16)

Remark 2.46. See [BBD82, Prop. 1.3.3] and [BBD82, Cor. 1.1.10]. Note that tX char-
acterizes the triangle, i.e. it is the unique morphism representing the isomorphism class of
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the triangle induced by the semiorthogonal decomposition 〈D1, D2〉 for X. Moreover, note
that C(tX)[−1] is isomorphic to X up to a non unique isomorphism in TA.

Remark 2.47. Let us consider the triangle

j∗j
!(X)→ X → i∗i

∗(X) tX−→ j∗j
!(X)[1],

after applying the Serre functor we obtain a triangle

STA(j∗j!(X))→ STA(X)→ STA(i∗i∗(X))
STA (tX)
−−−−−→ STA(j∗j!(X)[1].

As STA(⊥D) = D⊥, then

STA(j∗j!(X)) ∈ D3 and STA(i∗i∗(X)) ∈ D2.

By the uniqueness of the triangle induced by the semiorthogonal decomposition, it implies
that we obtain precisely the corresponding triangle of STA(X) induced by the semiortho-
gonal decomposition

TA = 〈D2, D3〉

up to isomoprhism. Moreover STA(tX) is the unique morphism that characterizes the tri-
angle as mentioned in Remark 2.46. See [Kuz19, Lem. 2.3] and [BBD82, Prop. 1.3.3].

Notation 2.48. Let us consider the canonical functor

C(A)→ Db(A),

where C(A) is the category of complexes over A. If ϕ ∈ Mor(C(A), C(A)) we denote by [ϕ]
its image in Mor(Db(A), Db(A)) given by the roof (id, ϕ).

The following technical lemma connects the triple X with the roof (id, ϕ), i.e with [ϕ]
and it plays a role in the explicit construction of the Serre functor. We first consider the
decomposition of l∗(X2) with respect to the TA = 〈D1, D2〉, that it is in fact given by

j∗(X2)→ l∗(X2)→ i∗(X2)
tl∗(X2)−−−−→ j∗(X2)[1].

We study two morphisms in TA, the first on given by tl∗(X2) ◦ i∗([ϕ])

X1
[ϕ]
//

��

X2 //

��

0

��

0 // 0
tl∗(X2)

// X2[1].

(2.17)

https://arxiv.org/pdf/1509.07657.pdf
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The second one given by tX .

Lemma 2.49.
tX = tl∗(X2) ◦ i∗([ϕ]).

Proof. First note that tX is given by a roof

C(l2X)

i∗i
∗(X) j∗j

!(X)[1].

Note that l2X : j∗j!(X)→ X is a morphism of complexes and C(j∗j!(X))→ X) its cone.

We study the composition tl∗(X2) ◦ i∗([ϕ]) by composing the following roofs

i∗(X1) C(j∗(X2)→ l∗(X2))

i∗(X1) i∗(X2) j∗(X2)[1].

We first define a morphism C(l2X) → C(j∗(X2) → l∗(X2)), induced by ϕ, such that the
following diagram commutes

C(l2X) //

qis
��

C(j∗(X2)→ l∗(X2))

qis
��

i∗(X1)
i∗(ϕ)

// i∗(X2).

(2.18)

We do it explicitly for the case where X ∈ QA, the general case is done analogously. In
this case C(l2X) is the complex given by

0 // 0

��

// X1 //

ϕ

��

0

��

0 // X2
id // X2 // 0

(2.19)

in position −1 and 0. Moreover, the complex given by C(j∗(X2)→ l∗(X2)) is

0 // 0

��

// X2 //

id
��

0

��

0 // X2
id // X2 // 0,

(2.20)

it has objects only in position −1 and 0.
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We define the morphism in position 0 by

X1
ϕ
//

ϕ

��

X2

id
��

X2 id
// X2.

(2.21)

In position −1 the morphism is given by the identity.

This morphism clearly makes the diagram commute.

We obtain the following roof

C(l2X)

i∗(X1) C(j∗(X2)→ l∗(X2))

i∗(X1) i∗(X2) j∗(X2)[1].

Therefore, the object C(l2X) will give us a common roof for both morphisms and it implies
that

tX = tl∗(X2) ◦ i∗([ϕ]).

Remark 2.50. Note that from the [ϕ] we can recover X up to isomorphism. Indeed, by
Lemma 2.49, we obtain that after taking the cone of the composition of i∗([ϕ]) with tl∗(X)
we get an object isomorphic to X[1].

We now describe the Serre functor at the level of objects.

Lemma 2.51. Let X = X1
ϕ−→ X2 be an element of TA. If SA(iX) is a morphism of

complexes, where X2
iX−→ C(ϕ) is the morphism of complexes given by the injection, then

STA(X) is isomorphic to the triple Y := SA(X2) SA(iX)−−−−→ SA(C(ϕ)) in TA.

Proof. Let us consider the decomposition of X with respect to TA = 〈D3, D1〉

C(ϕ)(−1) //

��

X1
[ϕ]
//

ϕ

��

X2
τX //

id
��

C(ϕ)

��

0 // X2 id
// X2 // 0.

(2.22)

Note that τX = q ◦ [iX ] ∈ Db(A) where q ∈ HomDb(A)(C(ϕ), C(ϕ)) is an isomorphism.
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As the Serre functor is an autoequivalence and behaves well with respect to semiorthogonal
decompositions (see Remark 2.47), we obtain the triangle given by the decomposition of
STA(X) with respect to 〈D1, D2〉

STA(i∗C(ϕ)[−1])→ STA(X)→ STA l∗(X2)→ STA(i∗C(ϕ)).

We obtain precisely

0 //

��

SA(X2) id //

��

SA(X2) //

��

0

��

SA(C(ϕ)) id // SA(C(ϕ)) // 0
tS(X)
// SA(C(ϕ))[1].

(2.23)

Note that by Remark 2.50 we have that C(tS(X))[−1] is isomorphic to STA(X). Then, we
now focus on studying the morphism tS(X).

We first consider the triangle

l∗(C(ϕ)) lid−→ i∗(C(ϕ))
tl∗(C(ϕ)−−−−−→ j∗(C(ϕ))[1]→ l∗(C(ϕ))[1]

given by the decomposition of i∗(C(ϕ)) with respect to 〈D2, D3〉, i.e.

C(ϕ)
id
//

id
��

C(ϕ) //

��

0

��

C(ϕ) lid // 0
tl∗(C(ϕ))

// C(ϕ)[1].

(2.24)

As the Serre functor is exact and behaves well with respect to semiorthogonal decomposi-
tions, by Lemma 2.42 we obtain

SA(C(ϕ)) //

id
��

0 //

��

SA(C(ϕ))[1]

id
��

0 // SA(C(ϕ))[1]
id
// SA(C(ϕ))[1].

Therefore, we have that C(j∗SA(C(ϕ))→ l∗SA(C(ϕ))) = i∗(SA(C(ϕ)) and

SA(C(ϕ)) //

id
��

0

��

0
tSA(l∗(C(ϕ))

// SA(C(ϕ))[1].
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Let us now consider the morphism l∗(X2)→ i∗(C(ϕ)) as the last morphism of the (triangle
2.22) and tS(X) = STA(l∗(X2) → i∗(C(ϕ))). Note that it is given by direct composition of
the roof l∗(τX) with the roof lid, as follows:

X2
τX //

id
��

C(ϕ)

id
��

id // C(ϕ)

��

X2
τX // C(ϕ) lid // 0.

(2.25)

After applying the Serre functor and by Lemma 2.42 we obtain

SA(X2)
SA(τX)

//

��

SA(C(ϕ))

��

// 0

��

0 // 0
tl∗(SA(C(ϕ))

// SA(C(ϕ)).

(2.26)

Since this morphism is precisely tS(X), we get

C(tS(X))[−1] = C(tl∗(SA(C(ϕ)) ◦ i∗(SA(τX))[−1] ∼= STA(X).

On the other hand, note that

C(tl∗(SA(C(ϕ)) ◦ i∗(SA(τX)) ∼= C(tl∗(SA(C(ϕ)) ◦ i∗([SA(iX)]),

because τX = q ◦ [iX ] where q is an isomorphism in Db(A). As SA(iX) is a morphism of
complexes, we get [SA(iX)] = (id,SA(iX)) as a roof.

By Lemma 2.49, we obtain

tl∗(SA(C(ϕ)) ◦ i∗([SA(iX)]) = tY .

As a consequence C(tY )[−1] = C(tSTA (X))[−1] which is isomorphic to Y and to STA(X).
Therefore, we obtain

STA(X) ∼= Y

in TA.

Proposition 2.52. Let X = X1
ϕ−→ X2 be an element of TA. If S−1

A (pX) is a morphism of
complexes, where

C(ϕ)[−1] pX−−→ X1
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is the projection, then S−1
TA (X) is isomorphic to S−1

A (C(ϕ)(−1))
S−1
A (pX)
−−−−−→ S−1

A (X1).

Proof. The proof follows along the lines of Proposition 2.51.

We present the following examples:

Example 2.53. If A = VectC and n = 1,

SQ1(E1, E2, ϕ) = (E2,C(ϕ), iX).

Example 2.54. If A = Coh(X) and n = 1, where X is a smooth projective variety, then

STCoh(X)(E1, E2, ϕ) = (E2 ⊗ ωX [n],C(ϕ)⊗ ωX [n], ψ),

where ψ = iX ⊗ idωX [n]. If X is a n-Calabi–Yau variety, then

STCoh(X)(E1, E2, ϕ) = (E2[n],C(ϕ)[n], iX [n]).

Definition 2.55. A triangulated category T is n-Calabi–Yau if T has a Serre functor ST
and there is an integer n ∈ Z such that ST ∼= [n].

Definition 2.56. A triangulated category T is a fractional Calabi–Yau if it has a Serre
functor ST and there are integers p and q 6= 0 such that SqT ∼= [p].

Conjecture 2.57. If Db(A) is a n-Calabi–Yau category, then TA is a fractional Calabi–
Yau with q = 3 and p = 3n+ 1.

By Lemma 2.51, we have that

S3
TA(X1, X2, ϕ) = (S3

A(X1[1]),S3
A(X2[1]),S3

A(ϕ[1])).

Then, as Db(A) is a n-Calabi–Yau category, we have that

S3
TA(X1, X2, ϕ) = (X1[3n+ 1], X2[3n+ 1], ϕ[3n+ 1]).

Therefore, we have already proved Conjecture 2.57 at the level of objects.

Under the assumption that the last conjecture is satisfied, we obtain the following examples:

Example 2.58. Let A = VectC, then in TVectC we have that S3
TVectC,1

= [1], which is a
well-known result. See [Kel05, Ex. 8.3].

Example 2.59. Let A = Coh(C), where C is an elliptic curve. Then Db(TCoh(C)) is a
fractional Calabi–Yau and S3 = [4].

https://arxiv.org/pdf/math/0503240.pdf
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Example 2.60. Let A = Coh(S), where S is a K3 surface. Then Db(TCoh(S)) is a
fractional Calabi–Yau and S3 = [7].

Conjecture 2.61. Let Q be the Dynkin quiver Am. We consider the category of rep-
resentations QA over A. Assume that Db(A) is a n-Calabi–Yau category, then Db(QA)
admits a Serre functor and is a fractional Calabi–Yau category with q = m + 1 and
p = (m+ 1)n+ (m− 1). See [Kel05, Ex. 8.3].

Further semiorthogonal decompositions for TA,n, with n ≥ 2

In the case n ≥ 2, we now define inductively the categories Dk by using D1 and D2, for
k ∈ Z. We define the subcategories Dk inductively

D⊥k = Dk−1
⊥Dk = Dk+1.

Moreover, as STA,n(⊥D) = D⊥, we get

Dk = STA,n(Dk+2) Dk = S−1
TA,n(Dk−2).

Remark 2.62. Since Dk is the orthogonal complement of an admissible subcategory and
TA,n is saturated, then Dk is also admissible.

Remark 2.63. By [BK90b, Lem. 1.9] and Lemma 1.23 we have Dk
⊥ and ⊥Dk are equiv-

alent categories. As D1 and D2 are equivalent to Db(A), we obtain that each of the
subcategories Dk is equivalent to Db(A).

Remark 2.64. Let X ∈ TA,n. By the definition of Dk, we obtain semiorthogonal decom-
positions TA,n = 〈Dk, Dk+1〉 for k ∈ Z. Let us consider the triangle of X induced by the
semiorthogonal decomposition TA,n = 〈Dk, Dk+1〉,

Xk+1 → X → Xk → Xk+1[1].

After applying the Serre functor we obtain the triangle given for STA,n(X) induced by the
semiorthogonal decomposition TA,n = 〈Dk−2, Dk−1〉

Yk−2 → STA(X)→ Yk−1 → Yk−2[1],

with Yk−i ∈ Dk−i. The argument goes along the lines of Remark 2.47.

Remark 2.65. Note that to obtain the categories Dk, we are applying the braid group ac-
tion on two strands B2 ∼= Z on the set of 2-term semiorthogonal decomposition as explained
in Corollary 1.27 via left and right mutations.

https://arxiv.org/pdf/math/0503240.pdf
http://iopscience.iop.org/article/10.1070/IM1990v035n03ABEH000716/pdf
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If A is the category of vector spaces over C, then D1 = 〈S1〉 and D2 = 〈S2〉 as men-
tioned in Remark 2.11 and (S1, S2) is a complete exceptional collection. As explained in
[Rin94, Thm. 3], the action of the braid group is transitive on the set of complete exceptional
sequences. See Corollary 1.99.

As A consequence of Remark 2.64, we focus on studying the semiorthogonal decomposition
TA,n = 〈D1, D2〉, and we will use the Serre functor and its inverse to study the semiortho-
gonal decompositions TA,n = 〈Dk, Dk+1〉.

2.2 Constructing stability conditions on TA,n

The aim of this section is to use the semiorthogonal decompositions described in Section
2.1 to construct pre-stability conditions on TA,n. The construction given in [CP10] applied
to TA,n heavily depends on the stability conditions in Stab(Db(A)). For the convenience
of the reader we review relevant material from [CP10, Sec. 2] without proofs to make our
exposition self-contained. In addition, we prove the Harder-Narasimhan property in some
cases and we give explicit examples of CP-glued pre-stability conditions on the category
TCoh(X), where X is a nonsingular projective curve, surface or a particular threefold.

Let T be an arbitrary triangulated category.

We start by constructing hearts of bounded t-structures. In this thesis we use three differ-
ent ways of constructing hearts on T , namely CP-gluing, BBD-recollement and tilting with
respect to a torsion pair on an existent heart as in Proposition 1.10. We now briefly explain
and compare CP-gluing and BBD-recollement. For more details
we recommend [CP10, Sec. 2] and [BBD82, Sec. 1.4].

We start by reviewing the construction of hearts of bounded t-structures coming from
semiorthogonal decompositions. Let T = 〈D1, D2〉 be a semiorthogonal decomposition and
let i∗ : T → D1 be the left adjoint of the inclusion i∗ : D1 → T , and j! : T → D2 be the
right adjoint of the inclusion j∗ : D2 → T .

Lemma 2.66. [CP10, Lem. 2.1] Let Ai on Di be hearts of bounded t-structures such that

Hom≤0
T (i∗A1, j∗A2) = 0.

Then, there is a t-structure on T with the heart

gl12(A1,A2) = {T ∈ T | i∗(T ) ∈ A1, j
!(T ) ∈ A2}. (2.27)

With respect to this t-structure on T the functors i∗ and j! are t-exact.

https://arxiv.org/pdf/0902.0323.pdf
https://arxiv.org/pdf/0902.0323.pdf
https://arxiv.org/pdf/0902.0323.pdf
https://arxiv.org/pdf/0902.0323.pdf
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Remark 2.67. t-exactness of the functors i∗ and j! implies that

i∗(A1) ⊆ gl12(A1,A2) and j∗(A2) ⊆ gl12(A1,A2).

As a consequence, by Definition 1.2 of a heart of a bounded t-structure it follows directly
that Hom<0

T (i∗A1, j∗A2) = 0.

Theorem 2.68. [BBD82, Thm. 1.4.10] Let X ,Y, T be triangulated categories such that T is
a recollement of X and Y and assume the notation of Definition 1.32 . Let (X≤0,X≥0) and
(Y≤0,Y≥0) be t-structures in X and Y respectively. Then there is a t-structure (T ≤0, T ≥0)
in T defined by:

T ≤0 := {T ∈ T | i∗T ∈ Y≤0, j∗T ∈ X≤0}
T ≥0 := {T ∈ T | i∗T ∈ Y≥0, j!T ∈ X≥0}.

When AX and AY are the corresponding hearts in X and Y respectively, we denote by
rec(AY ,AX ) := T ≤0 ∩ T ≥0.

We now relate the hearts given by CP-gluing and by BBD-recollement. If the hearts used
in Theorem 2.68 satisfy the additional orthogonal condition of Lemma 2.66, we have that
both constructions coincide.

Lemma 2.69. [MR18, Prop. 1.16.12] Let T = 〈D1, D2〉. Let (D≤0
1 , D≥0

1 ) and (D≤0
2 , D≥0

2 )
be t-structures with hearts A1 and A2 in D1 and D2 respectively. If Hom≤0(i∗A1, j∗A2) = 0,
then

rec(i∗A1, j∗A2) = gl12(A1,A2).

In Section 2.1 we have already described several semiorthogonal decompositions of TA,n.
We now give necessary and sufficient conditions to apply Lemma 2.66 to TA,n = 〈D1, D2〉.

Notation 2.70. Since throughout this section we are going to use only the semiorthogonal
decomposition TA,n = 〈D1, D2〉, for simplicity, we take i∗ := i1∗ and j∗ := j2∗.

Lemma 2.71. Let TA,n = 〈D1, D2〉 be the semiorthogonal decomposition given in
Corollary 2.12 for n ≥ 1 and let σ2 = (Z2,A2) be a stability condition on Stab(Db(A)). If
g = (T, f) ∈ G̃L

+
(2,R) and σ1 := σ2g = (Z1,A1) ∈ Stab(Db(A)), then

Hom≤0
TA,n(i∗A1, j∗A2) = 0

if and only if f(0) ≥ 0.

Proof. First note that if we consider the slicing of the stability conditions, we obtain
A1 = P1(0, 1] ⊆ Db(A) and A2 = P2(0, 1] ⊆ Db(A). By the definition of the G̃L

+
(2,R)-

action we get that P1(0, 1] = P2(f(0), f(1)]. By adjointness, we have

Hom≤0
TA,n(i∗(E1), j∗(E2)) = Hom≤0

Db(A)(E1, i
!(j∗(E2))),



67 Chapter 2. Bridgeland stability conditions on TA,n

for every E1 ∈ A1 and E2 ∈ A2. The triangle induced by the semiorthogonal decomposition
TA,n = 〈D0, D1〉 for j∗(E2) is given by

i!(j∗(E2)) //

��

0 //

��

E⊕n2
//

��

E⊕n2

��

0 // E2 id
// E2 // 0,

(2.28)

as shown in Remark 2.19. As a consequence, we obtain

HomDb(A)(E1, i
!(j∗(E2))) = HomDb(A)(E1, E

⊕n
2 [−1]).

Note that E1 ∈ P2(f(0), f(1)] and E⊕n2 [−1] ∈ P2(−1, 0]. If f(0) ≥ 0, then by the definition
of slicing we obtain that

Hom≤0
Db(A)(E1, E

⊕n
2 [−1]) = 0.

If f(0) < 0, then f(0) = −m + θ, with −m ∈ Z<0 and θ ∈ R with 0 ≤ θ < 1. There is
F ∈ P2(f(0), f(1)], such that F [m] ∈ P2(0, 1].

Since −m+ 1 ≤ 0 then
Hom−m+1

Db(A)(F, F⊕n[m− 1]) 6= 0,

as the canonical inclusion is a non-zero morphism. Therefore, if

HomDb(A)(E1, E
⊕n
2 [−1]) = 0,

for all E1 ∈ P2(f(0), f(1)] and E2, with E⊕n2 [−1] ∈ P2(−1, 0], then f(0) ≥ 0.

Remark 2.72. Let C be a smooth projective curve with g(C) ≥ 1. Since the G̃L
+

(2,R)-
action is transitive, there is always g ∈ G̃L

+
(2,R) such that σ1 = σ2g, where σi ∈ Stab(C),

for i = 1, 2. As a consequence, we can always apply Lemma 2.71.

Let us consider σ = (Z,A) ∈ Stab(Db(A)).We take gi = (Ti, fi) ∈ G̃L
+

(2,R) and we define
σi = σgi = (Zi,Ai) for i = 1, 2.

Corollary 2.73.
HomTA,n(i∗A1, j∗A2) = 0

if and only if f1(0) ≥ f2(0).

Proof. Note that σ1 = σ2(g−1
2 g1). By Lemma 2.71, it is enough to show that f−1

2 ◦f1(0) ≥ 0
if and only if f1(0) ≥ f2(0), which clearly follows from the fact that f2 : R→ R is continuous
and increasing.

By applying the Serre functor, we can obtain Corollary 2.73 for the other semiorthogonal
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decompositions. We do it explicitly for TA, because we will use these conditions in the next
chapter.

Corollary 2.74. 1. If TA = 〈D3, D1〉, then HomTA(l∗A1, i∗A2) = 0 if and only
if f1(0) ≥ f2(0) + 1.

2. If TA = 〈D2, D3〉, then HomTA(j∗A1, l∗A2) = 0 if and only if f1(0) ≥ f2(0) + 1.

Proof. Let us consider the functor G := (− ⊗ ω∗C [−1])Q1 , which by Remark 2.31 is an
autoequivalence. We define the following autoequivalence F := G ◦ STA . Note that from
Lemma 2.42, we obtain

F (l∗Ai) = i∗Ai , F (i∗Ai) = j∗Ai[1] and F (j∗Ai) = l∗Ai,

for i = 1, 2. Therefore, we have that

Hom≤0
TA TA(l∗A1, i∗A2) = Hom≤0

TA(F (l∗A1), F (i∗(A2)) = Hom≤0
TA(i∗A1, j∗A2[1]).

After applying Corollary 2.73 to σ1 and σ2[1] = (−T2, f2 + 1), we get that

Hom≤0
TA TA(l∗A1, i∗A2) = 0 if and only if f1(0) ≥ f2(0) + 1.

Analogously, we have

Hom≤0
TA(j∗A1, l∗A2) = Hom≤0

TA(F (j∗A1), F (l∗A2)) = Hom≤0
TA(l∗A1, i∗A2).

Then, as above Hom≤0
TA(j∗A1, l∗A2) = 0 if and only if f1(0) ≥ f2(0) + 1.

Notation 2.75. If X is a nonsingular projective variety, then we denote TCoh(X) as TX .

Remark 2.76. Consider TX = 〈D1, D2〉. By definition we have that

TCoh(X) = gl12(Coh(X),Coh(X)).

Consider TX = 〈D2, D3〉, then we define

H23 := gl23(Coh(X)[1],Coh(X)).

Consider TX = 〈D3, D1〉, then we define

H31 := gl31(Coh(X)[1],Coh(X)).
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Notation 2.77. When working in TX , we use the following notation

i∗Coh(X) = Coh1(X) and j∗(Coh(X)) = Coh2(X) and l∗(Coh(X)) = Coh3(X).

Lemma 2.78. [MR18, Prop. 1.15.16] The hearts TCoh(C), H23 and H23 on TC have
cohomological dimension two.

We now define suitable stability functions on the hearts given in Lemma 2.66. We consider
two Bridgeland stability conditions σ1 = (Z1,A1) and σ2 = (Z2,A2) on Di, with i = 1, 2,
respectively, such that they satisfy the orthogonality condition

Hom≤0
T (i∗A1, j∗A2) = 0.

We define Z as

Z : N (T ) → C (2.29)
[E] → Z1([i∗(E)]) + Z2([j!(E)]),

where [E] denotes the class of E in N (T ).

Our next step is to study whether the pair σ = (Z, gl12(A1,A2)) is a Bridgeland stability
condition on T i.e. if σ satisfies the support property and Z satisfies the Harder-Narasimhan
property on gl12(A1,A2).

Remark 2.79. The homomorhpism Z is clearly a stability function on gl12(A1,A2). In-
deed, as Z1 and Z2 are stability functions and i∗(E) ∈ A1 and j!(E) ∈ A2 then Z1([i∗(E)])
and Z2([j!(E)]) are in H ∪ R<0.

Remark 2.80. If we have a group homomorphism v : N (Di) � Λi and the central charges
Zi are defined on Λi, as in Definition 1.47, then we define the central charge
Z : Λ = Λ1 ⊕ Λ2 → C as in Equation (2.29).

Definition 2.81. Let σ = (Z,A) be a pair given by a heart of a bounded t-structure
A and a stability function Z : N (A) → C. We say that σ is a CP-glued pair if there
is a semiorthogonal decomposition of T = 〈D1, D2〉 and Bridgeland stability conditions
σ1 = (Z1,A1) ∈ Stab(D1) and σ2 = (Z2,A2) ∈ Stab(D2) such that A = gl12(A1,A2) and
Z is given by Equation (2.29).

Definition 2.82. Let σ = (Z,A) be a pair given by the heart of a bounded t-structure A
and a stability function Z : N (A)→ C. We say that σ is a CP-glued pre-stability condition
if σ is a CP-glued pair and it is also a pre-stability condition i.e. Z satisfies the Harder-
Narasimhan property on A.

Definition 2.83. We define Θk the set of pre-stability conditions on TA,n which are,
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up to the action of G̃L
+

(2,R), CP-glued induced by the semiorthogonal decomposition
〈Dk, Dk+1〉, for k ∈ Z.

Notation 2.84. If σ is a CP-glued pair of σi ∈ Stab(Db(A)), for i = 1, 2, given by the
semiorthogonal decomposition TA,n = 〈Dk, Dk+1〉. Then σ = glk,k+1(σ1, σ2), for k ∈ Z.

The next lemma provides a characterization of the CP-glued pre-stability conditions.

Proposition 2.85. [CP10, Prop. 2.2]

1. A pre-stability condition σ = (Z,A) on T is CP-glued from σ1 = (Z1,A1) on D1 and
σ2 = (Z2,A2) on D2 if and only if Zi = Z|Di for i = 1, 2 and Hom≤0

T (i∗A1, j∗A2) = 0
with i∗A1, j∗A2 ⊂ A.

2. Let σ = (Z,A) be a pre-stability condition on T . Assume that the heart A is glued
from hearts A1 ⊂ D1 and A2 ⊂ D2, with Hom≤0

T (i∗A1, j∗A2) = 0. Then, there exists
pre-stability conditions σi = (Zi = Z|Di ,Ai) on Di, for i = 1, 2, such that σ is CP-glued
from σ1 and σ2.

3. If σ = (Z,P) is CP-glued from σ1 = (Z1,P1) and σ2 = (Z2,P2), then i∗P1(φ) ⊂ P(φ)
and j∗P2(φ) ⊂ P(φ) for every φ ∈ R.

We now explain the behaviour of the CP-glued pre-stability conditions under the G̃L
+

(2,R)-
action. First of all, it is important to mention that if g ∈ G̃L

+
(2,R) is a CP-glued pre-

stability condition σg is not necessarily a CP-glued pre-stability condition. We explain this
statement in detail in Chapter 3.

Lemma 2.86. Let σ = gl12(σ1, σ2) be a CP-glued pre-stability condition on T with respect
to the semiorthogonal decomposition T = 〈D1, D2〉. Let g = (T, f) ∈ G̃L

+
(2,R), then

σg = (W,B) satisfies the following conditions: If σig = (Wi,Bi), for i = 1, 2 then

1. i∗B1 ⊆ B and j∗B2 ⊆ B

2. W
∣∣
Di

= Wi, for i=1,2.

Moreover, if Hom≤0(i∗B1, j∗B2) then σg = gl12(σ1g, σ2g)

Proof. Let us consider the slicing Pi of σi, for i = 1, 2, and P the slicing of σ. By definition
of the G̃L

+
(2,R)-action we have Bi = Pi(f(0), f(1)] and B = P(f(0), f(1)]. By the third

part of Proposition 2.85 we obtain directly that i∗B1 ⊆ B and j∗B2 ⊆ B. By definition we
have that W = T−1 ◦ Z, then if E ∈ Di, we obtain that

W ([E]) = T−1 ◦ Zi([E]) = Wi,

because if E ∈ D1, then i∗(E) = E and j!(E) = 0 and if E ∈ D2, then i∗(E) = 0 and
j!(E) = E. If we also assume that Hom≤0(i∗B1, j∗B2), by the first part of Proposition 2.85
we obtain that σg = gl12(σ1g, σ2g).
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We now consider the hearts of T = 〈D1, D2〉 constructed via BBD-recollement from hearts
Ai ⊆ Di, with i = 1, 2, which do not satisfy Hom≤0

T (i∗A1, j∗A2) = 0. We claim that
rec(i∗A1, j∗A2) does not admit a stability function. More precisely,

Proposition 2.87 (Jealousy lemma). [MRRHR19] Let TA = 〈D1, D2〉 and σ2 ∈ Stab(Db(A)).
if σ1 = (A1, Z1) = σ2g ∈ Stab(Db(A)), for g = (T, f) ∈ G̃L

+
(2,R). If

HomTA(i∗A1, j∗A2) 6= 0, but Hom<0
TA(i∗A1, j∗A2) = 0. Then, the heart rec(i∗A,j∗A2) does

not admit a stability function.

2.2.1 Harder-Narasimhan property

The aim of this section is to study the Harder-Narasimhan (HN) property for the CP-
glued pairs σ = (Z,A) on TA,n. The idea behind proving the HN-property goes along the
lines of [Bri08], i.e. the Harder-Narasimhan filtrations are produced first for the discrete
stability functions and the general case is deduced by Bridgeland’s deformation theorem
for a connected component. We consider the general case just for TC . However, whenever
we have that a CP-glued pair satisfies a stronger orthogonality condition, the HN-property
is always satisfied. In this section, we study the discrete cases and in the next chapter we
study the general case for A = Coh(C). Note that the existence of stability conditions in
Stab(TA,n) heavily depends on the existence of stability conditions in Stab(Db(A)).

We first recall useful statements to study the HN-property. We also recommend
[BM11, Prop. B.2] for further details.

Lemma 2.88. [CP10, Lem. 3.4] Let Z be a stability function on an abelian category A.
Assume that 0 is an isolated point of =Z(A) ⊆ R≥0 and that A0 = {E ∈ A | =(Z(E)) = 0}
is Noetherian. Then Z satisfies the Harder-Narasimhan property on A if and only if A is
Noetherian.

Corollary 2.89. [BLMS17, Rem. 2.5] Let us consider a pair σ = (Z,A) consisting of a
heart of a bounded t-structure A and a stability function Z. If the image of Z is a discrete
subset of C and A is Noetherian, then Z satisfies the Harder-Narasimhan property on A.

Proof. If Z is discrete, then it satisfies that 0 is an isolated point of =Z(A) ⊆ R≥0. As A is
Noetherian then A0 is also Noetherian and by Lemma 2.88, we obtain that Z satisfies the
HN-property on A.

As we are taking stability conditions σi = (Zi,Ai) ∈ Stab(Db(A)), for i = 1, 2, i.e they
satisfy the support property and the HN-property, this implies that they are locally finite.
It follows that

A0 = {E ∈ A | =(Z(E)) = 0}

is already Noetherian. As a consequence, we obtain the following result.

https://arxiv.org/pdf/math/0307164.pdf
https://arxiv.org/pdf/0912.0043.pdf
https://arxiv.org/pdf/0902.0323.pdf
https://arxiv.org/pdf/1703.10839.pdf
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Corollary 2.90. [CP10, Prop. 3.5] Let T = 〈D1, D2〉 and σ1, σ2 ∈ Stab(Db(A)) be dis-
crete stability conditions such that Hom≤0

T (i∗A1, j∗A2) ≤ 0. Then Z, as defined in Equation
(2.29), has the HN-property on gl12(A1,A2).

Proof. Since the σi are discrete, they satisfy that 0 is an isolated point of =Zi(Ai) ⊂ R≥0

for i = 1, 2. As σi has the HN-property and, by the support property of σi, the set A0 is
already Noetherian. By Lemma 2.88 it implies that Ai is Noetherian. As a consequence,
we have that A is Noetherian and by Lemma 2.89 we have that Z has the HN-property on
gl12(A1,A2).

Remark 2.91. There are discrete stability conditions constructed in [Bri07] for curves,
in [Bri08] and [AB13] for surfaces and in [BMS16] for abelian threefolds. Moreover, for
curves and surfaces there exists a connected component in the space of stability conditions
in which discrete stability conditions are dense.

Remark 2.92. Recall that by Lemma 1.58 all discrete pre-stability conditions are locally
finite.

The next lemma asserts that whenever we have CP-glued pairs, whose hearts satisfy a
stronger orthogonality assumption, then the Harder-Narasimhan property will be always
satisfied.

Theorem 2.93. [CP10, Thm. 3.6] Let T = 〈D1, D2〉 and σi = (Zi,Ai) ∈ Stab(Di), with
slicings Pi, for i = 1, 2. If

Hom≤0
T (i∗A1, j∗A2) = 0

and there is θ ∈ (0, 1) such that

Hom≤0
T (i∗P1(θ, θ + 1], j∗P2(θ, θ + 1)) = 0,

then Z, as defined in Equation (2.29), satisfies the Harder-Narasimhan property on
gl12(A1,A2).

2.2.2 CP-gluing pre-stability conditions on the same orbit

We now study CP-glued pairs σ = (Z,B) = gl12(σ1, σ2) on TA,n = 〈D1, D2〉, where
σi = (Zi,Ai) ∈ Stab(Db(A)), for i = 1, 2, and there is g = (T, f) ∈ G̃L

+
(2,R), with

T−1 =
[
−A B

−D C

]

and σ1 = σ2g, i.e. if σ1 and σ2 are in the same G̃L
+

(2,R)-orbit. In this section we study
whether σ is a CP-glued pre-stability condition.

https://arxiv.org/pdf/0902.0323.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v166-n2-p01.pdf
https://arxiv.org/pdf/math/0307164.pdf
https://arxiv.org/pdf/0708.2247.pdf
https://arxiv.org/abs/1410.1585
https://arxiv.org/pdf/0902.0323.pdf
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Proposition 2.94. Under the assumption that f(0) > 0 or that f(0) = 0 with the condition
that if (A+ C) = 0 then B ≥ 0, we obtain that σ is a CP-glued pre-stability condition.

Proof. Let Pi be the slicing of σi, with i = 1, 2. By Lemma 2.71 we have that f(0) ≥ 0.
Note that by applying the same argument as in Lemma 2.71, after rotating σi by θ, we
obtain that

Hom≤0
TA(i∗P1(θ, θ + 1], j∗P2(θ.θ + 1]) = Hom≤0

TA(i∗(P2(f(θ), f(θ) + 1], j∗P2(θ, θ + 1]) = 0

if and only if f(θ) ≥ θ. Therefore, we just need to show that there is θ ∈ (0, 1) such that
f(θ) ≥ θ. The proof falls naturally into three cases:

Case 1: If f(0) ≥ 1. Then, if θ ∈ (0, 1) then f(θ) > f(0) ≥ 1 > θ.

Case 2: If 1 > f(0) > 0, by the correspondence between f and T we have that

f(θ) = arg(C cos(θπ)−B sin(θπ) + (−A sin(θπ) +D cos(θπ)i).

Since f(0) > 0, then D > 0. As a consequence, there is always a θ ∈ (0, 1) such that
−A sin(θπ) + D cos(θπ) = 0. Indeed, it is equivalent to prove that there is x ∈ R with
−A+Dx = 0, which follows from the fact that the image of cot(y) between 0 and π covers
all the reals.

If −A sin(θπ) + D cos(θπ) = 0, then f(θ) = arg(−det(T−1) sin(θπ)) = 1 > θ, because
det(T−1) ≥ 0. Therefore, we found θ with f(θ) ≥ θ

Case 3: If f(0) = 0, i.e D = 0 and C ≥ 0. Since det(T−1) = −AC > 0 then −A ≥ 0. By
the correspondence between slope and argument, we have that that f(θ) ≥ θ if and only if

− cos(θπ)
sin(θπ) ≤

−C cos(θπ) +B sin(θπ)
−A sin(θπ) ,

i.e. if and only if
(A+ C) cos(θπ)−B sin(θπ) ≤ 0.

Once again if (A+C) 6= 0, by using cot(y), it is enough to find x ∈ R with (A+C)x−B ≤ 0,
which is always possible. If (A+ C) = 0, then it is only possible to find θ if B ≥ 0.

So far we have shown that the discrete CP-glued pairs in TA,n and the CP-glued pairs
induced by stability conditions on the same orbit with f(0) > 0 are pre-stability conditions.

Remark 2.95. Note that Lemma 2.94 implies that if Stab(Db(A)) is not empty then there
always exist CP-glued pre-stability conditions on TA,n.

Remark 2.96. Let C be a non-singular projective curve with positive genus. As
Stab(C) ∼= G̃L

+
(2,R), then if σ = gl12(σ1, σ2) is a CP-glued pair, there is always
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g = (T, f) ∈ G̃L
+

(2,R) such that σ1g = σ2. Then, by Lemma 2.94 if f(0) > 0, or f(0) = 0
together with the assumptions of that lemma, σ satisfy the Harder-Narasimhan property.

Let us make the last remark more explicit.

Example 2.97. Let A = Coh(C), where C is a smooth projective curve of genus g ≥ 1.

If σi = (Zi,Ai) ∈ Stab(C), then under the isomorphism given by Theorem 1.75, they are
given by (Ti, fi) ∈ G̃L

+
(2,R) such that

Zi(d, r) = Aid+Bir + i(Cir +Did),

where i = 1, 2. If f1(0) ≥ f2(0), by Lemma 2.71 we obtain that σ is a CP-glued pair. We
split our example into two cases:

Case 1: If f1(0) > f2(0). By Lemma 2.94 we obtain that σ is a CP-glued pre-stability
condition on TC .

Case 2: If f1(0) = f2(0). There is g = (T, f) ∈ G̃L
+

(2,R) with T−1 =
[
−A B

0 C.

]
If

(A+C) 6= 0, then by Lemma 2.94, we have that σ is a CP-glued pre-stability condition. If
C ∈ Q, then by Lemma 2.90, we obtain that σ is a CP-glued pre-stability condition.

Note that if g(C) = 0 and if σi, for i = 1, 2 are in the G̃L
+

(2,R)-orbit of σµ, the same
example holds.

We recover the notion of α-stability for holomorphic triples given by Álvarez-Cónsul and
García-Prada in [ACGP01] as a CP-glued pre-stability condition.

Remark 2.98 (α−stability). Let σ = (Z1(r, d) = −d − rα + ir,Coh(C)) ∈ Stab(C),

which corresponds to g = (T, f) ∈ G̃L
+

(2,R), where T−1 =
[
1 −α
0 1

]
and f(0) = 0. then

gl12(σ, σµ) = (Z,TCoh(C)) is a discrete CP-glued pre-stability conditon and

Z(r1, d1, r2, d2) = −d1 − d2 − αr1 + i(r1 + r2).

Remark 2.99. Pre-stability conditions σ = (Z,TCoh(C)) on elliptic curves were studied
in [Dal07, Sec. 5.3].

Remark 2.100. Let A = Coh(X), where X is a smooth projective variety. The existence
of Bridgeland stability conditions has already been proved if X is a surface in [AB13], if X
an Abelian threefold in [BMS16] and [MP15], for Fano threefolds with Picard rank one in
[Li18] and for smooth quadrics in [Sch14]. Note that if there is σ = (Z,A) ∈ Stab(X), then

gl12(σg, σ)
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is a CP-glued pre-stability condition in TX , where g = (T, f) ∈ G̃L
+

(2,R), satisfies the
conditions of Lemma 2.94.

The Discriminant

Definition 2.101. We define

∆(M) = (A+ C)2 − 4BD,

where M = T−1.

For the notation above see Subsection 2.2.2.

We now classify pre-stability conditions σ = gl12(σ1, σ2) as above, by using its discriminant.
We also study the behaviour of the pre-stability conditions up to the G̃L

+
(2,R)-action. This

classification will play an important role in the proof of the support property of the pre-
stability conditions on TC . See Sec. 3.3. We start by studying stability conditions with
∆(M) ≥ 0.

Remark 2.102. As det(T ) > 0, if ∆(M) ≥ 0 we only have two options, either the eigen-
values are both positive or the eigenvalues are both negative.

Lemma 2.103. Let σ be a CP-glued pre-stability condition given as above with ∆(M) ≥ 0
and positive eigenvalues, then there is h ∈ G̃L

+
(2,R), such that σh = gl12(σ1h, σ2h) with

σih = (Z ′i,A′i) and
A′1 = A′2.

Proof. As ∆(M) ≥ 0, it guarantees the existence of real eigenvalues for M and therefore
for T. Let λ be an eigenvalue. Let us consider the corresponding eigenvector v. We obtain
Tv = λv. We give v in polar coordinates v = m(cos(φ, sin(φ)), with φ ∈ (−π, π] and
m ∈ R>0. We define h = (Kφ, fφ) ∈ G̃L

+
(2,R).

First of all, we consider g ◦ h = (TKφ, f ◦ fφ). Let us show that f ◦ fφ(0) = φ/π. By
the correspondence between f ◦ fφ and TKφ over S1, it suffices to compute TKφv0, where
v0 = (1, 0). We have that (TKφ)v0 = T (1/m)v. Since (cos(φ), sin(φ)) is an eigenvector,
we get (TKφ)v0 = λv

m . Consequently, if we study the induced map f : S1 → S1, where
S1 = (−1, 1], we obtain f ◦ fφ(0) = f(φ/π) = φ/π on S1. Therefore, we get f ◦ fφ(0) =
φ/π + 2k over R with k ∈ Z. Due to the fact that f is an increasing continuous function
and −1 < φ/π ≤ 1, it implies −1 ≤ f(−1) < φ/π + 2k < f(1) = f(0) + 1 < 2 and k = 0,
k = 1 or k = −1.

If k = 1, then −1 ≤ φ/π + 2 < 2 and 1 < φ/π + 2 ≤ 3. It implies that −1 < φ/π < 0
and −1 ≤ f(φ/π) < 1, i.e. −1 < φ/π + 2 < 1, this clearly forces −3 < φ/π < −1, which is
impossible.
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If k = −1, then −1 < φ/π − 2 < 2 and −3 < φ/π − 2 ≤ −1, it implies that φ/π = 1 and
1 ≤ f(φ/π) < 2, which is impossible.

Then k = 0 and f(φ/π) = φ/π.

If σih = (Z ′i,A′i), for i = 1, 2, we have that

A′1 = P2(f ◦ fφ(0), f ◦ fφ(1)] = P2(φ/π, φ/π + 1]

and
A′2 = P2(fφ(0), fφ(1)] = P2(φ/π, φ/π + 1],

so A′1 = A′2 and by Lemma 2.86, we obtain σh = gl12(σ2gh, σ2h).

Lemma 2.104. Let σ be a CP-glued pre-stability condition given as above with ∆(M) ≥ 0
and negative eigenvalues, then there is h ∈ G̃L

+
(2,R), such that σh = gl12(σ1h, σ2h) with

σih = (Z ′i,A′i) and
Hom≤1(i∗A′1, j∗A′2) = 0.

Proof. As ∆(M) ≥ 0, it guarantees the existence of real eigenvalues for T−1 and therefore
for T. Let β < 0 be an eigenvalue of T . Let us consider the corresponding eigenvector v.
We obtain Tv = βv. We give v in polar coordinates v = m(cos(φ), sin(φ)), with φ ∈ (−π, π]
and m ∈ R>0.

We study now σh where h = (Kφ, fφ) ∈ G̃L
+

(2,R).

First of all we consider gh = (TKφ, f ◦ fφ). By the correspondence between f ◦ fφ and
TKφ over S1, to compute f ◦ fφ(0) it suffices to compute TKφv0, where v0 = (1, 0). We
have (TKφ)v0 = T (1/m)v. Since (cos(φ), sin(φ)) is an eigenvector, we get (TKφ)v0 = βv

m .

Consequently, if we study the induced map f : S1 → S1, where S1 = (−1, 1], as β < 0, we
show that f ◦ fφ(0) = f(φ/π) = φ/π + 1. We obtain two cases:

Case 1: If −1 < φ/π ≤ 0, then f ◦ fφ(0) = f(φ/π) = φ/π + 1 on S1. Consequently, we
obtain f ◦fφ(0) = f(φ/π) = φ/π+ 1 + 2k, for k ∈ Z. Due to the fact that f is an increasing
continuous function, we have that −1 < φ/π ≤ 0, implies

−1 < f(−1) < φ/π + 1 + 2k ≤ f(0) < 1,

and the only possible option is k = 0.

Case 2: If 0 < φ/π ≤ 1, then f ◦ fφ(0) = f(φ/π) = φ/π − 1 on S1. Consequently, we
obtain f ◦fφ(0) = f(φ/π) = φ/π−1 + 2k, for k ∈ Z. Due to the fact that f is an increasing
continuous function, we have that 0 < φ/π ≤ 1 implies 0 < f(0) < φ/π−1+2k ≤ f(1) < 2,
and the only possible option is k = 1.

Therefore, we have f ◦ fφ(0) = f(φ/π) = φ/π + 1 We now consider σ2h. As σih = (Z ′i,A′i),
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for i = 1, 2, we show that Hom≤1
TA(i∗(A′1), j∗(A′2)) = 0. Indeed, as

A′1 = P2(f ◦ fφ(0), f ◦ fφ(1)] = P2(φ/π + 1, φ/π + 2]

and
A′2 = P2(fφ(0), fφ(1)] = P2(φ/π, φ/π + 1].

By Lemma 2.86 we have that σh = gl12(σ1h, σ2h)

Remark 2.105. If ∆(M) ≥ 0, then we reduce our study, up to the action, to two types of
pre-stability conditions σ = gl12(σ1, σ2), either it satisfies a stronger orthogonality condition

Hom≤1(i∗A1, j∗A2) = 0

or
A1 = A2.

We now consider pre-stability conditons with ∆(M) < 0.

Lemma 2.106. Let σ = gl12(σ1, σ2) be a CP-glued pre-stability condition given as above.
For all h ∈ G̃L

+
(2,R), we have that σh = gl12(σ1h, σ2h) is a CP-glued pre-stability condi-

tion.

Proof. We assume that there is a h = (Kr, fr) ∈ G̃L
+

(2,R), with r ∈ R, such that σh is
not a CP-glued stability condition. Note that by Corollary 1.81 it is enough to show our
statement for h of this form. If σih = (Z ′i,A′i) then

A′2 = P2(r, r + 1]

and
A′1 = P2(f(r), f(r) + 1].

By Lemma 2.71, it implies that there is r ∈ R such that f(r) < r. But f(0) ≥ 0, therefore
there is x′ ∈ R with f(x′) = x′. As the restriction of f to S1 agrees with the restriction of
T to S1, we obtain that T has a real eigenvalues and it contradicts the assumption that
∆(M) < 0.

2.2.3 Semistability on TA

We now follow the steps of [BGP96, Sec. 3] in order to study the σ-semistable objects in
the CP-glued pre-stability conditions σ = (Z,B) = gl12(σ1, σ2), on TA such that there is
g = (T, f) ∈ G̃L

+
(2,R), that satisfies σ1 = σ2g with 1 > f(0) ≥ 0.
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We start by the case f(0) = 0 and by Remark 2.105 the pre-stability conditions with
1 > f(0) ≥ 0 and positive discriminant.

We have that g = (T, f) ∈ G̃L
+

(2,R) has the following form

T−1 =
[
−A B

0 C

]
,

with C > 0 and det(T ) > 0. It implies that A1 = A2 = H. We obtain that σ1 = (Z1,H)
and σ2 = (Z2,H). By definition we have

<(Z1(w)) = −A<(Z2(w))) +B=(Z2(w)), (2.30)
=(Z1(w)) = C=(Z2(w)),

where w ∈ N (Db(A)).

We use the following notation

d2 = −<(Z2([j!(E])) , d1 = −<(Z2([i∗(E)])),

and
r2 = =(Z2([j!(E)])) and r1 = =(Z2([i∗(E)])).

Therefore,

Z2([j!(E)]) = −d2 + ir2 and Z1([i∗(E)]) = Ad1 +Br1 + i(Cr1).

Note that for every E ∈ B, we have that r1, r2 ≥ 0. If r1, r2 6= 0, we define

µσ(E) = −Ad1 −Br1 + d2
Cr1 + r2

.

We obtain the following inequalities.

Lemma 2.107. If E = E1
ϕ−→ E2 ∈ B with r1, r2 6= 0 is a σ-semistable object and [ϕ] 6= 0,

then
−B ≥ (A+ C)µσ(E)

Proof. As H is an abelian category, we can compute Ker(ϕ),Coker(ϕ) ∈ H and by the
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definition of B we obtain the following short exact sequence in B.

0 //

��

Ker(ϕ) //

0
��

E1 //

ϕ

��

Img(ϕ)

��

// 0

��

0 // E2 // E2 // 0 // 0

(2.31)

and
0 //

��

0 //

��

E1 //

ϕ

��

E1

��

// 0

��

0 // Img(ϕ) // E2 // Coker(ϕ) // 0.

(2.32)

Let Z2(Img(ϕ)) = −d′′1 + r′′1 i. Note that r′′1 6= 0. Indeed if r′′1 = 0, then φ(j∗(Img(ϕ))) = 1,
and by the σ-semistability φ(j∗(Img(ϕ))) ≤ φ(E) ≤ 1, therefore Img(Z(E)) = 0, which
implies that r1, r2 = 0, which is a contradiction.

From these short exact sequences and the correspondence between slope and phase, we
obtain that

d′′1
r′′1
≤ µσ(E) and µσ(E) ≤ −Ad

′′
1 −Br′′1
Cr′′1

.

It follows that

µσ(E) ≤ −A
C

d′′1
r′′1
− B

C
,

µσ(E) ≤ −A
C
µσ(E)− B

C
.

As we have that −A,C > 0, therefore we get

µσ(E)(A+ C) ≤ −B.

Example 2.108. Consider σα as in Remark 2.98 on TC . As

σα = gl12(σµg, σµ)

with g = (T, f) where T−1 =
[
1 α

0 1

]
and f(0) = 0. If there are σα-semistable objects, as

A+ C = 0 and −B = α, then α ≥ 0. See [BGP96, Prop. 3.13].
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Lemma 2.109. If E = E1
ϕ−→ E2 ∈ A with r1, r2 6= 0 and [ϕ] 6= 0 is σ-semistable, then

−Ad1 + d2 − µσ(E)(r2 −Ar1) ≤ 0.

Proof. We clearly have

µσ(E) = −Ad1 + d2 −Br1
Cr1 + r2

= −Ad1 + d2
Cr1 + r2

+ −Br1
Cr1 + r2

.

By Lemma 2.107, we obtain

µσ(E) ≥ −Ad1 + d2
Cr1 + r2

+ (A+ C) µσ(E)r1
Cr1 + r2

,

µσ(E)(r2 −Ar1) ≥ −Ad1 + d2.

Lemma 2.110. If E = E1
ϕ−→ E2 ∈ A with r1, r2 6= 0 and [ϕ] 6= 0 is a σ-semistable object,

then
(r2 − r1)µσ(E) ≤ d2 − d1

Proof. If Ker(ϕ) = 0, then we have the following short exact sequence

0 //

��

E1 //

��

E1 //

ϕ

��

0

��

// 0

��

0 // E1 // E2 // Coker(ϕ) // 0.

(2.33)

By the σ-semistability of E, we obtain directly µσ(E) ≤ d2−d1
r2−r1

.

If Coker(ϕ) = 0, then we have the following short exact sequence

0 //

��

Ker(ϕ) //

��

E1 //

ϕ

��

E2

id
��

// 0

��

0 // 0 // E2 // E2 // 0

. (2.34)

We obtain
µσ(E) ≥ −A(d1 − d2)−B(r1 − r2)

C(r1 − r2) = −A(d1 − d2)
C(r1 − r2) + −B

C
,

By Lemma 2.107, we have the following inequality

µσ(E) ≥ µσ(E) + µσ(E)A
C
− A(d1 − d2)
C(r1 − r2) .
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Since we assume −A,C ≥ 0, it implies directly that

µσ(E) ≥ d1 − d2
r1 − r2

.

As in this case we get that r1 − r2 ≥ 0, because rk(Ker(ϕ)) = r1 − r2 and Ker(ϕ) ∈ H, we
obtain that

µσ(E)(r2 − r1) ≤ (d2 − d1).

We now assume that Coker(ϕ) 6= 0 and Ker(ϕ) 6= 0. From the short exact sequence

0 //

��

Ker(ϕ) //

��

E1 //

ϕ

��

Img(ϕ)

��

// 0

��

0 // 0 // E2 // E2 // 0,

(2.35)

it follows that
−Ad′1 −Br′1

Cr′1
≤ µσ(E),

where Z2(Ker(ϕ)) = −d′1 + r′1i. Note that we get r′1 6= 0. If r′1 = 0, then φ(i∗(Ker(ϕ))) = 1
and by σ-semistability we have that 1 = φ(i∗(Ker(ϕ))) ≤ φ(E) ≤ 1, which implies that
r1, r2 = 0, and it gives us a contradiction.

We now make some computations

−Ad′1
Cr′1

≤ µσ(E) + B

C

−Ad′1r1
r′1

≤ µσ(E)Cr1 +Br1

≤ −ACd1r1 −BCr2
1 + Cd2r1 +BCr2

1 +Br1r2
Cr1 + r2

≤ −ACd1r1 + Cd2r1 +Br1r2
Cr1 + r2

≤ (Cr1 + r2)(−Ad1 + d2) +Ad1r2 +Br1r2 − d2r2
Cr1 + r2

≤ −Ad1 + d2 − µσ(E)r2.

We obtain
−Ad′1r1 + µσ(E)r2r

′
1 − r′1(−Ad1 + d2) ≤ 0. (2.36)
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Note that if it is satisfied that r2 − r′′1 6= 0, then from the exact sequence below

0 //

��

E1 //

φ
��

E1 //

φ

��

0

��

// 0

��

0 // Img(ϕ) // E2 // Coker(ϕ) // 0

(2.37)

it follows that
µσ(E) ≤ d2 − d′′1

r2 − r′′1
, (2.38)

where Z2(Img(φ)) = −d′′1 + ir′′1 , as before.

As d′′1 = d1−d′1 and r′′1 = r1−r′1, after multiplying 2.38 by −Ar1 and adding 2.36 we obtain

Ar1(d2 − d1)− r′1(−Ad1 + d2) + µσ(E)(−Ar1(r2 − r1) + r′1(−Ar1 + r2)) ≤ 0.

By Lemma 2.109, we have

d1 − d2 + µσ(E)(r2 − r1) ≤ 0.

As a consequence, we get
µσ(E)(r2 − r1) ≤ d2 − d1.

If r2 − r′′1 = 0, then we obtain that d2 − d′′1 ≥ 0. Due to the fact that d′′1 = d1 − d′1 and
r′′1 = r1 − r′1, we obtain that

−Ar1(d1 − d′1 − d2) ≤ 0.

Adding the last inequality with Equation (2.36) we have that

µσ(E)r2r
′
1 − r′1(−Ad1 + d2)−Ar1(d1 − d2) ≤ 0.

By Lemma 2.109, we obtain

µσ(E)r2r
′
1 − r′1(µσ(E)(r2 −Ar1)−Ar1(d1 − d2)) ≤ 0

−Ar1(−µσ(E)r′1 − (d1 − d2)) ≤ 0
−Ar1(µσ(E)(r2 − r1)− (d1 − d2)) ≤ 0.

As −A > 0, we conclude that

µσ(E)(r2 − r1) ≤ (d2 − d1).
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Lemma 2.111. Let σ = (Z,A) be as above with Z = Ad1 +Br1−d2 + i(Cr1 + r2). If there
is a σ-semistable object with r2 > r1 > 0 then

Cy +Ax ≤ −B,

where x = d1
r1

and y = d2
r2
. Moreover, if [ϕ] 6= 0 then

y − x ≥ 0,

and
−B ∈ [Cy +Ax, (Ax+ Cy + y − x− r1

r2
x(A+ C)) r2

r2 − r1
].

Proof. Let E = E1
ϕ−→ E2 be a σ-semistable object. Let us consider the following short

exact sequence
0 //

��

0 //

��

E1 //

ϕ

��

E1

��

// 0

��

0 // E2 // E2 // 0 // 0.

(2.39)

By the semistability of E and the correspondence between slope and phase it follows that

d2
r2
≤ µσ(E) ≤ −Ad1 −Br1

Cr1
. (2.40)

Thus it implies
Cr1d2 +Ad1r2 ≤ −

B

C
r1r2,

as r1, r2, C > 0. We obtain
Cy +Ax ≤ −B.

As ϕ 6= 0, by Lemma 2.110, we have the following inequality

−Ad1 −Br1 + d2
Cr1 + r2

≤ d2 − d1
r2 − r1

.

From this equation we obtain

−B ≤ Cd2r1 +Ad1r2 − (C +A)d1r1 + d2r1 − d1r2
(r2 − r1)r1.

Since we have that x = d1
r1

and y = d2
r2
, we obtain
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−B ≤ (Ax+ Cy + y − x− r1
r2
x(A+ C)) r2

r2 − r1
.

Therefore, we have

−B ∈ [Cy +Ax, (Ax+ Cy + y − x− r1
r2
x(A+ C)) r2

r2 − r1
].

From the equation
Cy +Ax ≤ −B,

we obtain

Cy +Ax ≤ (Ax+ Cy + y − x− r1
r2
x(−A− C)) r2

r2 − r1
,

(Cy +Ax)(r2 − r1) ≤ (Ax+ Cy + y − x)r2 − x(C +A)r1,

0 ≤ (Ax+ Cy + y − x)r2 − x(C +A)r1 − (Cy +Ax)r2 + (Cy +Ax)r1,

0 ≤ (y − x)r2 + (y − x)Cr1,

0 ≤ (y − x)(r2 + Cr1).
(2.41)

As r2 + Cr1 > 0, then we obtain
y − x ≥ 0.

We now write Lemma 2.111 explicitly for TC .

Lemma 2.112. Let σ = (Z,TCohθ(C)) = gl12(σ1, σ2) be a pre-stability condition on TC
with σi = (Zi,Cohθ(C)) and θ ∈ [0, 1). If Z2(d2, r2) = A2d2 + Br2 + i(C2r2 + D2d2) and
σ1 = σ2g, were g = (T, f) ∈ G̃L

+
(2,R) and

T−1 =
[
−A B

0 C

]

with C > 0 and there is a σ-semistable object E ∈ TCohθ(C) with [E] = [r1, d1, r2, d2] and
C2r2 +D2d2 > C2r1 +D2d1 > 0, then

Cy +Ax ≤ −B,

where x = −A2d1−B2r1
C2r1+D2d1

and y = −A2d2−Br2
C2r2+D2d2

. Moreover, if ϕ 6= 0 then

y − x ≥ 0,
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and

−B ∈ [Cy +Ax, (Ax+ Cy + y − x− C2r1 +D2d1
C2r2 +D2d2

y(A+ C)) C2r2 +D2d2
C2r2 +D2d2 − C2r1 −D2d1

].

2.2.4 Duality and semistability on TC

The aim of this subsection is to prove an analogous statement to Lemma 2.111 for σ-
stable objects E with r1 > r2 > 0, where σ is a pre-stability condition on TC . We follow
closely [GJ12] to define the derived dual in this case and to show that it induces an anti-
autoequivalence. We define the duality functor for QCoh(X),n, where X is a non-singular
projective variety. As in [BGP96, Sec. 3.2], we use the duality to study σ-stable objects for
pre-stability conditions σ on TC .

We now consider the following functor

Hom(,OX) : Coh(X)→ Coh(X),

which is a left exact and contravariant functor. As Coh(X) does not have enough projec-
tives, in order to compute the right derived functor, we use an adapted class for Hom(,OX).
For the definition of adapted class see [Huy06, Rem. 2.51]

Lemma 2.113. [Huy06, Prop. 3.26] Every bounded complex E of coherent sheaves is
isomorphic to a bounded complex of locally free sheaves in Db(X).

Remark 2.114. If E is a bounded acyclic complex of locally free sheaves, thenHom(E,OX)
is acyclic.

As a consequence, the class of locally free sheaves in Coh(X) is adapted for the left exact
functor Hom(−,OX). By [Huy06, Rem. 2.51] we can define the right derived functor. More-
over, if F ∈ Komb(X), then Hom(F,OX) is also bounded. As a consequence, we obtain
the following functor.

D = RHom(−,OX) : Db(X)op → Db(X). (2.42)

Lemma 2.115. [Kuz17, Sec. 2.3] The functor

D = RHom(−,OX) : Db(X)op → Db(X)

is an equivalence of categories and D2 = Id for every E ∈ Db(X).

Let us consider the functor

Hom(−,OX)Qn : QCoh(X),n → QCoh(X),n

(E1, E2, ϕl) 7→ (Hom(E2,OX),Hom(E1,OX)),Hom(ϕl)).

https://arxiv.org/pdf/alg-geom/9401008.pdf
https://arxiv.org/pdf/1708.00522.pdf
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Lemma 2.116. Every bounded object E in Komb(TCoh(X)) is quasi-isomorphic to a com-
plex F ∈ Komb(TCoh(X)) of locally free sheaves.

Proof. It is enough to show that for E = E1
ϕ−→ E2 ∈ TCoh(C) there is F ∈ TCoh(X) of

locally free sheaves with F � E. There are locally-free sheaves Fi and surjective morphisms
Fi

πi−→ Ei for i = 1, 2. Let us consider the triple F1 → F1 ⊕ F2 as the inclusion of the first
component. Note that F1 ⊕ F2 is also locally free. We have the following morphism in
TCoh(C)

F1
π1 //

��

E1

��

F1 ⊕ F2
ϕ◦π1+π2

// E2

, (2.43)

which is clearly surjective.

Remark 2.117. Note that the last lemma holds forQCoh(C),n by choosing (F1, F
⊕n
1 ⊕F2, τi)

where τi are the canonical inclusions.

Since for any bounded acyclic object E ∈ Komb(QCoh(X),n) of locally free sheaves, we have
that Hom(E,OX)Qn is acyclic. As a consequence, the class of objects with locally free
sheaves as components in QCoh(X),n is adapted for the left exact functor Hom(−,OX)Qn
and by [Huy06, Rem. 2.51], we can define the right derived functor

RHom(−,OX)Qn : Db(QCoh(X),n)op → Db(QCoh(X),n).

Remark 2.118. By [GJ12, Cor. 5] if A has enough injecives then QA,n has also enough in-
jectives. Therefore, we could have define RHom(−,−)Qn as a bifunctor as in
[Huy06, Lem. 3.25].

Proposition 2.119. The functor

D1 := RHom(−,OX)Q1 : T op
X → TX

is an equivalence of categories.

Proof. Note that T op
X = 〈Dop

2 , Dop
1 〉. Moreover, we have that

D1
∣∣
Dop

2
: Dop

2 → D1

and
D1
∣∣
Dop

1
: Dop

1 → D2

are equivalences of categories by Lemma 2.115. As D1(Dop
3 ) ⊆ D3, by [Kal11, Lem. 1.3] we

obtain that D1 is an equivalence of categories.

https://arxiv.org/pdf/0812.2519.pdf
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We first study the functor D on Db(C), where C is a curve with g(C) ≥ 1. Let us start
with C(x). By [Huy06, Cor. 3.40], we obtain that D(C(x)) = C(x)[−1] and for a locally
free sheaf E ∈ Coh(C), we obtain that D(E) = E∨ = Hom(E,OC) wich satisfies that

deg(E∨) = −deg(E) and rank(E) = rank(E∨).

Moreover, in general it follows that if E ∈ Db(C) and [E] = [r, d] then [D(E)] = [r,−d].

Let us consider the following torsion pair

Remark 2.120. Let σ = (Z,A) ∈ Stab(Db(C)). We have the following torsion pair on A

T = {E ∈ A | φ(E) = 1},

F = {E ∈ A | Its σ-semistable factors Fi satisfy φσ(Fi) < 1}.

If Cohθ(C) ⊆ TC with θ ∈ [0, 1), we rename the torsion pair given in Remark 2.120 as
Cohθ(C) = (T θσ , F θσ ). Recall that by Remark 1.83, we also have that Cohθ(C) = (Fθ[1], Tθ)
where

Tθ = Pµ(θ, 1] and Fθ = Pµ(0, θ]

in Coh(C).

Remark 2.121. Note that if we have σ1 = (Z1,Cohθ(C)) and σ2 = (Z2,Cohθ(C)) with
0 ≤ θ < 1, then F θσ1 = F θσ2 . Therefore, for any stability condition σ with heart Cohθ(C), we
denote F θσ by F θ.

Definition 2.122. Let σ = (Z(r, d) = Ad + Br + i(Cr + Dd),Cohθ(C)) = Stab(C). We
define

σ∨ = (Z(r, d) = Ad−Br + i(Cr −Dd),Coh1−θ(C)[−1]) ∈ Stab(C).

Remark 2.123. Note that D(Cohθ(C)) 6= Coh1−θ(C)[−1].

Remark 2.124. If E ∈ F θ, then µσ(E) = −µσ∨(D(E)). Precisely, we have Zσ(E) =
−Zσ∨(D(E)).

Example 2.125. Note that σ∨µ = σµ.

Remark 2.126. Let E a µ-stable object in Coh(C) with φ(E) 6= 1. It implies that E is
locally free. Indeed, if E = T (E)⊕F (E), where T (E) and F (E) are the torsion and torsion-
free parts respectively. If T (E) 6= 0 is a subobject of E, then 1 = φ(T (E)) < φ(E) < 1
which is a contradiction to the stability of E.

Lemma 2.127. Let σ = (Z,Cohθ(C)), then D(F θ) = F 1−θ[−1], where F 1−θ[−1] is given
with respect to σ∨.
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Proof. We start by studying the image of Fθ and Tθ under D. Let E be a σ-stable object
with E ∈ Tθ ⊆ Coh(C). Then as E is locally free, we obtain that Hom(E,OC) = E∨. By
definition, deg(E)

rk(E) > − cot(πθ) which implies that

−deg(E)
rk(E) < cot(πθ) = − cot(π − πθ)

and E∨ ∈ F1−θ. If E is a σ-stable object with E ∈ Fθ ⊆ Coh(C) then as E is locally free,
we obtain that Hom(E[1],OC) = E∨[−1]. By definition, deg(E)

rk(E) ≤ − cot(πθ) which implies
that

−deg(E)
rk(E) ≥ cot(πθ) = − cot(π − πθ).

Moreover, if deg(E)
rk(E) < − cot(πθ), then E∨[−1] ∈ T1−θ[−1]. By the Jordan-Hölder filtration,

we can extend this result to any object in Fθ and Tθ. Let E ∈ F θ ⊆ Cohθ(C). We have that
a short exact sequence in Cohθ(C) given by

0→ F [1]→ E → T → 0,

with F ∈ Fθ and T ∈ Tθ. As E ∈ F θ and F θ is closed under subobjects,i.e. any subobject
of an object in F θ, also belongs to F θ. we obtain that F [1] ∈ F θ and by definition T ∈ F θ.
After applying D, we obtain a triangle

D(T )→ D(E)→ D(F [1])→ D(T )[1],

as shown above D(T ) ∈ F1−θ and D(F [1]) ∈ T1−θ[−1], as a consequence

D(E) ∈ Coh1−θ(C)[−1] = (F1−θ, T1−θ[−1]).

Moreover, we get that D(E) ∈ F 1−θ[−1] as D(T ),D(F [1]) ∈ F 1−θ[−1].

Example 2.128. If σµ = (Zµ,Coh(C)), the torsion pair T 0 and F 0 is given precisely by
the subcategory of torsion sheaves and torsion-free sheaves respectively. We also have that

D(Coh(C)) = 〈C(x)[−1],L〉,

for any line bundle L in Coh(C) and any point x ∈ C. Note that 〈C(x)[−1],L〉 is a heart of
a bounded t-structure on Db(C) which does not admit a stability function. Moreover, we
trivially have that D(F 0) = F 0.

We now study D1 on TC . Let σ = (Z,TCohθ(C)) = gl12(σ1, σ2) be a pre-stability condition

on TC with σ1 = σ2g where g = (T, f) ∈ G̃L
+

(2,R) with f(0) = 0 and T−1 =
[
−A B

0 C

]
.
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We now examine the behaviour of σ-stable objects in TCohθ(C) under the anti-autoequivalence
D1.

Lemma 2.129. Let σ = (Z,TCohθ(C)) be a pre-stability condition as above. If
E = E1

ϕ−→ E2 ∈ TCohθ(C)) is σ-stable with φσ(E) < 1, i.e. =(Z(E)) 6= 0, then
E1, E2 ∈ F θ.

Proof. If E1 = 0 or E2 = 0, then it follows from the definition. We assume that E1 6= 0
and E2 6= 0, therefore by the stability of E, we get that ϕ 6= 0. As E2 ∈ Cohθ(C), then we
have a short exact sequence

0→ T2 → E2 → F2 → 0

in Cohθ(C) with T2 ∈ T θ and F2 ∈ F θ. If T2 6= 0, then we have a subobject of the form
0→ T2 of E with φ(0→ T2) = 1, which contradicts the stability of E. Therefore, we have
that T2 = 0 and E2 ∈ F θ. For E1 we also have a short exact sequence

0→ T1 → E → F1 → 0

with T1 ∈ T θ and F1 ∈ F θ. If T1 6= 0, we have a subobject of E of the form T1 → 0, since
there are no morphisms from T θ to F θ. Once again, it contradicts the stability of E and
E1 ∈ F θ.

Definition 2.130. Let σ = (Z,TCohθ(C)) = gl12(σ1, σ2), we define the dual stability
condition on TC as

σ∗ = gl12(σ∨2 , σ∨1 ) = (Z∗,TCoh1−θ(C)[−1]).

Remark 2.131. Let E = E1 → E2 ∈ TCohθ(C), with E1, E2 ∈ F θ then

µσ(E) = −µσ∗(D1(E)).

Moreover, we also have that σ∗ = gl12(σ∨2 , σ∨2 gN 2B
C

).

Example 2.132. If σ = gl12(σµg, σµ), with g = (T, f) ∈ G̃L
+

(2,R), where

T−1 =
[
1 −α
0 1

]

and f(0) = 0, then σ∗ = gl12(σµ, σµg′) with g′ = gN−2α. Note that g′ = g−1. By the
G̃L

+
(2,R)-action, an object E ∈ TCoh(C) is σ∗-stable if and only if it is σ∗g-stable, where

σ∗g = gl12(σµg, σµ).

Lemma 2.133. Let us consider σ = (Z,TCohθ(C)) = gl12(σ1, σ2). An object E is σ-stable
with φσ(E) < 1 if and only if D1(E) is σ∗-stable and φσ∗(D(E)) < 1
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Proof. As in Remark 2.129 we have that E1, E2 ∈ F θ. By Remark 2.127, it follows that
D(E1),D(E2) ∈ F 1−θ[−1]. Then D1(E) = D(E2) → D(E1) ∈ TCoh(C)1−θ[−1] and
φσ∗(D1(E)) < 1. Let us consider Q = Q1 → Q2 ∈ TCoh1−θ(C)[−1], satisfying Q1, Q2 ∈
F 1−θ[−1] and 0→ G→ D1(E)→ Q→ 0 a short exact sequence in TCoh1−θ(C)[−1], where
G = G1 → G2. Note that it is enough to prove that φσ∗(D1(E)) < φσ∗(Q) to show the
stability of D1(E). Indeed, if P = P1 → P2 is an arbitrary quotient of D1(E), either there
is a object Q = Q1 → Q2 with Q1, Q2 ∈ F 1−θ[−1] with P � Q and φσ∗(Q) < φσ∗(P )
or φσ∗(P ) = 1 and we trivially obtain that φσ∗(D1(E)) < φσ∗(P ). We also have that
G1, G2 ∈ F 1−θ[−1] as F 1−θ[−1] is closed under subobjects. Moreover, the duality gives us
a correspondence between short exact sequences on F 1−θ[−1] and F θ. We obtain a short
exact sequence in TCohθ(C) given by 0 → D1(Q) → E → D1(G) → 0. By the stability of
E we obtain that µσ(D1(Q)) < µσ(E) and it follows if and only if µσ∗(D1(E)) < µσ∗(Q).
As a consequence D1(E) is σ∗-stable.

Let σ = gl12(σ2g, σ2) = (Z,TCohθ(C)) as above and E = E1
ϕ−→ E2 a σ-stable object with

φ(E) < 1, ϕ 6= 0 and 0 < C2r2 + D2d2 < C2r1 + D2d1, where [E] = (r1, d1, r2, d2). Note
that we cannot apply Lemma 2.112 directly.

Note that σ = gl12(σ∨2 , σ∨2 gN 2B
C

). After applying the G̃L
+

(2,R)-action and by Lemma 2.133,
we have that E is σ-stable if and only D1(E) is σ′-stable, where σ′ = σ∗g′ = (σ∨2 g′, σ∨2 ) and

g′ = N−2B
C
g−1 = (T ′, f ′) ∈ G̃L

+
(2,R)

with T ′−1 = 1
det(T−1)

[
C B

0 −A

]
.

If σ2 = (Z2(r, d) = A2d2 +B2r2 + i(C2r2 +D2d2),Cohθ(C)), then

σ∨2 = (Z∨2 (r, d) = A2d2 −B2r2 + i(C2r2 −D2d2),Coh1−θ[−1](C)).

If we apply Lemma 2.112 to σ′, we have that if F = F1
ϕF−−→ F2 is σ-stable with

C2 rk(F2)−D2 deg(F2) > C2 rk(F1)−D2 deg(F1)

and ϕF 6= 0, then

−A2 deg(F1) +B2 rk(F1)
C2 rk(F1)−D2 deg(F1) ≤

−A2 deg(F2) +B2 rk(F2)
C2 rk(F2)−D2 deg(F2) .

Note that [D1(E)] = [r2,−d2, r1,−d1]. As a consequence, we obtain that D1(E) satisfies

C2 rk(D(E1))−D2 deg(D(E1)) > C2 rk(D(E2))−D2 deg(D(E2)),
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because C2r2 +D2d2 < C2r1 +D2d1. We now can apply Lemma 2.112 to σ′ and we obtain

A2d2 +B2r2
C2r2 +D2d2

≤ A2d1 +B2r1
C2r1 +D2d1

which is precisely
−A2d1 −B2r1
C2r1 +D2d1

≤ −A2d2 −B2r2
C2r1 +D2d2

.

Moreover, we obtain the following result, which gives us necessary conditions to have
σ-stable objects.

Lemma 2.134. Let σ = (Z,TCohθ(C)) = gl12(σ, σ2) be a pre-stability condition on TC
with Z2(d2, r2) = A2d2 +Br2 + i(C2r2 +D2r2) and σ1 = σ2g, were g = (T, f) ∈ G̃L

+
(2,R)

and T−1 =
[
−A B

0 C

]
.

If there is a σ-semistable object with C2r1 +D2d1 > C2r2 +D2d2 > 0 then

Cy +Ax ≤ −B,

where x = −A2d1−B2r1
C2r1+D2d1

and y = −A2d2−Br2
C2r2+D2d2

. Moreover, if ϕ 6= 0 then

y − x ≥ 0,

and

−B ∈ [Cy +Ax,Ax+ Cy + y − x− C2r2 +D2d2
C2r1 +D2d1

y(A+ C) C2r1 +D2d1
C2r1 +D2d1 − C2r2 −D2d2

].

Corollary 2.135. If σα is defined as in Remark 2.98 on TC and E is a α-stable object
with [E] = (r1.d1, r2, d2) and r1 6= r2, then α ∈ [d2

r2
− d1

r1
, (d2
r2
− d1

r1
)(1 + r1+r2

|r2−r1|)].

In [BGP96] and [Sch03], it was shown that quasi-projective moduli spacesMα(r1, d1, r2, d2)
of σα-stable holomorphic triples of exist. Moreover, if r1 + r2 and d1 + d2 are coprime and
α is generic thenMα(r1, d1, r2, d2) is projective.

Proposition 2.136. [BGP96, Thm. 6.1] A necessary condition forMα(r1, r2, d1, d2) to be
non-empty is

1. 0 ≤ αm ≤ α ≤ αM if r1 6= r2,

2. 0 ≤ αm ≤ α if r1 = r2,
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where

αm = d2
r2
− d1
r1

and

αM = (1 + r2 + r1
|r2 − r1|

)αm, for r1 6= r2.

Remark 2.137. Note that Corollary 2.135 agrees with the necessary conditions for the
existence of σα-stable objects of Proposition 2.136.

Remark 2.138. In the next chapter, we show that all the CP-glued pairs on TC , where
g(C) ≥ 1 satisfy the HN-property and we use Lemma 2.111 and Lemma 2.134 to prove the
support property.



3 Bridgeland stability conditions of
holomorphic triples over curves

Let C be a nonsingular projective curve over C with g(C) ≥ 1. We study TCoh(C) i.e.
the category of holomorphic triples over C. The aim of this section is to describe com-
pletely the stability manifold Stab(TC). In the process, we prove that all CP-glued pairs
σ constructed in Section 2.2 on TC are in fact Bridgeland stability conditions. In order to
describe Stab(TC) we follow the steps of [Bri08]. In Section 3.1 we first construct additional
pairs via tilting, as a consequence we obtain discrete pre-stability conditons. In Section 3.2
we show that all Bridgeland stability conditions in Stab(TC) have to be given by the already
constructed pairs, either by CP-gluing of by tilting. In Section 3.3 we prove the support
property and finally in Section 3.4 we use Bridgeland’s deformation result to describe topo-
logically the stability manifold and to extend the HN-property to the non-discrete cases.
This chapter appears in [MRRHR19] as joint work with Eva Martínez Romero and Arne
Rüffer.

3.1 Constructing pre-stability conditions via tilting

In this section we construct pre-stability conditions in Stab(TC) whose hearts are not given
by Proposition 2.66. We follow the steps of [Bri08, Lem. 6.1], i.e. we are going to use
weak stability functions on TCoh(C), in the sense of [Rud97], to obtain torsion pairs on
TCoh(C) via truncation of the HN-filtrations. After tilting, we will obtain hearts that
admit Bridgeland stability functions.

Remark 3.1. The intuition of this constructions comes from Proposition 3.40. This propo-
sitions gives us a description of the torsion pair of TCoh(C), which after tilting will give
us a heart of a pre-stability condition. We decided to start with the construction of the
torsion pair to follow the order of [Bri08] and to make the structure of this chapter cleaner.

We define the following homomorphism:

Z : Z4 → C (3.1)
(r1, d1, r2, d2) 7→ D1d1 + (C1 − 1)r1 + i(r1 + r2),

93
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whereD1, C1 ∈ R, andD1 < 0.We define the phase of an element E, for every E ∈ TCoh(C)
with E 6= 0→ T, where T is a torsion sheaf, as

λ(E) = (1/π) arg(Z([E])) ∈ (0, 1].

Lemma 3.2. Let 0 → A → B → C → 0 be a short exact sequence where A,B,C ∈
TCoh(C) and A,B,C 6= 0→ T, where T is a torsion sheaf, then

λ(A) < λ(B) ⇐⇒ λ(B) < λ(C) and λ(A) > λ(B) ⇐⇒ λ(B) > λ(C).

Proof. As the Grothendieck group is additive with respect to short exact sequences in
TCoh(C), after applying the homomorphism Z, we obtain that Z([B]) = Z([A]) + Z([C]).
In addition, the image of the classes of the triples A,B and C under Z lies inside H∪R<0.

Consequently, the argument of a sum of complex numbers in H∪R<0 satisfies precisely the
conditions above.

For a triple E = E1
ϕ−→ E2 ∈ TCoh(C), let T (E)i be the torsion part and F (Ei) is the

torsion-free part of of Ei for i = 1, 2. By the functoriality of the torsion part, we obtain
T (E) = T (E1)→ T (E2) and the following short exact sequence

0 //

��

T (E1) //

t
��

E1 //

ϕ

��

F (E1)

f
��

// 0

��

0 // T (E2) // E2 // F (E2) // 0,

(3.2)

where F (E) = F (E1)→ F (E2) = E/T (E).

Definition 3.3. An triple E = E1
ϕ−→ E2 ∈ TCoh(C) is called torsion-free if T (E)i = 0,

for i = 1, 2.

Definition 3.4. Let E ∈ TCoh(C) a triple. We define the torsion-free triple of

E = E1
ϕ−→ E2 as F (E) = F (E1) f−→ F (E2).

Definition 3.5. A torsion-free triple E ∈ TCoh(C) is called λ-semistable if for all non-zero
subobjects F ⊆ E we have λ(F ) ≤ λ(E).

We now show that the λ-semistable objects admit HN-filtration. The proof goes along the
line of the classical proof for µ-stability on curves.

Lemma 3.6 (HN-filtration for λ-stability.). Let F = F1
ϕ−→ F2 ∈ TCoh(C) be a torsion-

free object, then there is a unique Harder-Narasimhan filtration i.e. there is an increasing
filtration

0 ⊆ E1 ⊆ E2 · · · ⊆ En−1 ⊆ En = F

http://www.mathe2.uni-bayreuth.de/stoll/lecture-notes/vector-bundles-Faltings.pdf
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where Gi = Ei/Ei−1 is λ-semistable for each i = 0, . . . , n and

λ(G1) > λ(G2) > · · · > λ(Gn−1) > λ(Gn).

Moreover, this filtration is unique.

Proof. If F is λ-semistable, there is nothing to prove. Let us consider the objects
E ⊆ F. Note that E is also torsion-free. Take the object E1 with maximal λ(E1) among all
the subobjects of F and with maximal imaginary part among all the subobjects of F with
maximal λ-phase. This object exists because the phase is bounded and the fact that there
are only finitely many options for =(λ(G)) with G ⊆ F. Indeed, the boundedness follows
from Riemann–Roch and the correspondence between slope and phase.

As a consequence, the subobject E1 is necessarily λ-semistable. Moreover, note that F/E1

is torsion free. Indeed, If F/E1 is not torsion free we could find a subobject E′ ⊆ F, with
F/E′ torsion-free and λ(E) < λ(E′). We also have that for all E with 0 6= E/E1 ⊆ F/E1,

we get λ(E/E1) < λ(E1). If not, we will have that λ(E/E1) ≥ λ(E1), by Lemma 3.2 it
follows that λ(E1) ≤ λ(E) with =(Z(E)) > =(Z(E1)), which is a contradiction. We now
apply the same construction to F/E1. We get a filtration

0 ⊆ E1 ⊆ E2 · · · ⊆ En−1 ⊆ En = F

such that the Gi = Ei/Ei−1 are λ-semistable.

We recall the following torsion pair in Coh(C), because it plays a role in the proof of the
following lemma.

Remark 3.7. We consider the torsion pair (T1,F1) = Coh(C), where B ∈ T1 if the
HN-factors of its torsion-free part satisfy

−D1d1 − (C1 − 1)r1
r1

> − cot(3π/4)

and B ∈ F1 if it is a torsion-free sheaf, whose HN-factors satisfy

−D1d1 − (C1 − 1)r1
r1

≤ − cot(3π/4).

This torsion pair is given by truncating the Harder-Narasimhan filtration with respect to
σ1 = (Z(r, d) = D1d+ (C1 − 1)r + ir,Coh(C)) in Stab(C).

Under the same assumptions of Lemma 3.6, we prove the following lemma.

Lemma 3.8. Let φ = 3/4. There is a torsion pair (T ,F) on the category TCoh(C) de-
fined as follows: E ∈ T if the Harder-Narasimhan λ-semistable factors Ai of F (E) satisfy
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λ(Ai) > φ and i!(E) ∈ Coh(C). We say that E ∈ F if i∗(E) is torsion-free and the Harder-
Narasimhan factors Ai of F (E) satisfy λ(Ai) ≤ φ or i∗(E) = 0.

Proof. Note that if E ∈ T , by our definition of T and the correspondence between slope
and phase, we have that F (E) satisfies

−D1d1 − (C1 − 1)r1
r1 + r2

> − cot(3π/4),

i.e.
−D1d1 − C1r1 − r2 > 0. (3.3)

where here di = deg(F (E)i) and ri = rank(F (E)i), for i = 1, 2.

We show that (T ,F) is a torsion pair of TCoh(C). We first prove that HomTC (T ,F) = 0.
By our definition of stability we have that HomTC (E,F ) = 0, for all objects E ∈ T and
F ∈ F that are torsion-free.

Let E = E1
ϕ−→ E2 ∈ T and G = G1 → G2 ∈ F .

Let us consider the following short exact sequences as in the triangle (3.2)

0→ T (E)→ E → F (E)→ 0

and
0→ T (G)→ G→ F (G)→ 0.

By definition of F , we have that F (G) ∈ F and as i∗(G) is torsion-free, we get i∗(T (G)) = 0
and T (G) ∈ F . Then it is enough to show HomTCoh(C)(E,G) = 0 for G = 0→ H, for any
H ∈ Coh(C) and G = G1 → G2 ∈ F where G1, G2 are torsion-free.

Case 1: G ∈ F a torsion-free triple. By definition F (E) ∈ T , then by stability we have
HomTCoh(C)(F (E), G) = 0. Also

HomTCoh(C)(T (E), G) = 0

as G is torsion-free. Therefore, it follows HomTCoh(C)(E,G) = 0.

Case 2: G = 0→ H.

We have
HomTC (E,G) = HomTC (E, j∗(j!(G))),

by adjointness

HomTC (E, j∗(j!(G))) = HomDb(C)(j∗(E), j!(G)) = HomDb(C)(Ker(ϕ)[1], H) = 0,

because j∗(E)[1] = i!(E) = Ker(ϕ) ⊕ Coker(ϕ)[1] is in Coh(C), which implies that
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Coker(ϕ) = 0.

We now prove that for every E ∈ TCoh(C) there is a short exact sequence

0→ T → E → F → 0,

with T ∈ T and F ∈ F respectively. Note that for a torsion-free object E, by Lemma 3.6,
there is a short exact sequence

0→ T → E → F → 0,

with T torsion-free such that the HN-factors Ai of T satisfy that λ(Ai) > 3
4 and

F = F1
f ′−→ F2 ∈ F also torsion-free. Note that T = T1

t′−→ T2 is not necessarily sur-
jective, however we have the following claim.

Claim 3.9. Either Coker(t′) = 0 or Coker(t′) is a torsion sheaf.

Proof. Because of Lemma 3.6. It is enough to show the statement for a λ-semistable object
T ∈ T . Let us assume that Coker(t′) 6= 0. Note that t′ 6= 0. Indeed, if t′ = 0, then as
T2 6= 0, we have that 0→ T2 is a subobject and a quotient, which implies by semistability
that λ(T ) = 1

2 < 3
4 . It gives us a contradiction. Then Img(t′),Coker(t′) 6= 0, and as a

consequence we have two short exact sequences:

0 //

��

0 //

��

T1 //

t′

��

T1

0
��

// 0

��

0 // Img(t′) // T2 // Coker(t′) // 0

(3.4)

and

0 //

��

T1 //

t′

��

T1 //

t′

��

0

��

// 0

��

0 // Img(t′) // T2 // Coker(t′) // 0

. (3.5)

If rk(Coker(t′)) > 0, then by λ-semistability of T, we obtain λ(T ) = 1
2 <

3
4 , which gives us

a contradiction. Therefore, we have that Coker(t′) is a torsion sheaf.

We obtain the following short exact sequence
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0 //

��

T1 //

t′

��

E1 //

ϕ

��

F1

��

// 0

��

0 // Img(t′) // E2 // F ′2
// 0

. (3.6)

Note that T ′ := T1
t′−→ Img(t′) is in T . Indeed, let us consider the last short exact sequence

in its HN-decomposition 0 → E → T ′ � A → 0 with A = A1 → A2 a λ-semistable
torsion free sheaf. We want to show that λ(A) > 3

4 . Note that E is also a subobject of
T, as a consequence we consider the short exact sequence 0 → E → T → T/E → 0.
We have that T/E is a quotient of T and therefore λ(F (T/E)) > 3

4 . We also have that
3
4 < λ(F (T/E)) = λ(A).

0 //

��

0 //

��

F1 //

f ′

��

F1

��

// 0

��

0 // Coker(t′) // F ′2
g
// F2 // 0

(3.7)

and F is the torsion-free part of F1
f ′−→ F ′2 and it implies that F1

f ′−→ F ′2 ∈ F .

Therefore, if E1 → E2 is torsion-free. The triangle (3.6) gives us the decomposition of E in
〈T ,F〉.

Let E = E1
ϕ−→ E2 ∈ TCoh(C). Let us consider again the short exact sequence

0 //

��

T (E1) //

t
��

E1 //

ϕ

��

F (E1)

f

��

// 0

��

0 // T (E2) // E2 // F (E2) // 0.

(3.8)

Since F (E) is torsion-free, as mentioned before there is a short exact sequence

0→ T
′ → F (E)→ F ′ → 0,

with T ′ ∈ T and F ′ ∈ F . Explicitely

0 //

��

T ′1
l1 //

t′

��

F (E1) g1
//

f

��

F ′1

f ′

��

// 0

��

0 // T ′2
l2 // F (E2) g2

// F ′2
// 0.

(3.9)
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After choosing a splitting Ei = F (Ei)⊕ T (Ei), for i = 1, 2, we have a morphism

l : F (E1) ↪→ E1
ϕ−→ E2 → T (E2).

We now define the following morphism:

β1 : T ′1 ⊕ T (E1)

[
l1 0
0 id

]
−−−−−−→ F (E1)⊕ T (E1),

We obtain the following short exact sequence:

0 //

��

T ′1 ⊕ T (E1) β1
//

ϕ◦β1
��

F (E1)⊕ T (E1)
(g1,0)

//

ϕ

��

F
′
1

l′

��

// 0

��

0 // Img(ϕ ◦ β1) i // F (E)2 ⊕ T (E2) // G // 0.

(3.10)

Note that ϕ(x, y) = (f(x), l(x) + t(y)), for (x, y) ∈ F (E1)⊕ T (E1).

We claim that
T ′1 ⊕ T (E1) ϕ◦β1−−−→ Img(ϕ ◦ β1) ∈ T and F ′1

l′−→ G ∈ F .

Indeed, note that we have the following decompositions:

0 //

��

T (E1) //

t
��

T ′1 ⊕ T (E1) //

ϕ◦β1
��

T ′1

t′

��

// 0

��

0 // Ker(π) // Img(ϕ ◦ β1) π // T ′2
// 0.

(3.11)

Note that, by the triangle (3.9), we have that π : Img(ϕ ◦ β1) ⊆ T ′2 ⊕ T (E2) → T ′2 is
just the projection. Note that we abused the notation by ignoring the inclusion l2. As
Ker(π) = Img(ϕ ◦ β1 |Ker t′⊕T (E1)) is given by the points (0, x) ∈ Img(ϕ ◦ β1) ⊆ T ′2 ⊕ T (E2)
and we can see it as a subset of ⊆ T (E)2. Thus, Ker(π) is a torsion sheaf and by definition
T ′2 is torsion-free. As a consequence, the torsion-free part of

T ′1 ⊕ T (E1) ϕ◦β1−−−→ Img(ϕ ◦ β1) ∈ T

is T ′1
t′−→ T ′2.

Analogously, we have the following decomposition:
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0 //

��

0 //

��

F ′1
//

l′

��

F ′1

f ′

��

// 0

��

0 // Ker([g2, 0]) i // G
[g◦g2,0]

// F ′2
// 0.

(3.12)

We first check that [g2, 0] is well-defined. As G = F (E2) ⊕ T (E2)/ Img(ϕ ◦ β1), then if
(x, y) ∈ Img(ϕ◦β1), there are (x′, y′) ∈ T ′1⊕T (E1) which satisfy (f(x′), l(x′)+t(y′)) = (x, y).
Note that f(x′) ∈ T ′2, therefore g2(f(x′)) = 0. Since g2 is surjective, we have that [g2, 0] is
clearly surjective.

We now check that
Ker([g ◦ g2, 0]) = T2 ⊕ T (E2)/ Img(ϕ ◦ β1)

and i([x]) = ([0, x]). Let [(x, y)] ∈ G. If (g ◦ g2)(y) = 0, then g2(y) ∈ Coker(t′). As the
standard projection p : T ′2 → Coker(t′) is surjective there is y′ ∈ T ′2 such that p(y′) = g2(y).

Moreover, we have that (f(y′), x)− (0, l(y′)− x) ∈ Img(ϕ ◦ β1), as

ϕ ◦ β1(y′, 0) = (f(y′), l(y′)).

As a consequence, Ker([g2]) is a torsion sheaf. We now obtain that the torsion-free part of
F ′1

l′−→ G is the same as the one F ′1 → F ′2 and it implies that F ′1
l′−→ G ∈ F .

After tilting with respect to the torsion pair of Lemma 3.8 we obtain the following heart

Ar = {E ∈ TC | H i(E) = 0 for i 6= 1, 0, H1(E) ∈ T and H0(E) ∈ F},

where r = arg(C1+D1i)
π ∈ (−1, 0]. It has a corresponding torsion pair Ar = 〈F , T [−1]〉.

We now define a stability function Zr on Ar such that the pair (Zr,Ar) is a Bridgeland
stability condition.

Remark 3.10. The CP-glued property for pre-stability conditions is not invariant under
the G̃L

+
(2,R)-action. If we have σ = gl12(σ1, σ2) a pre-stability condition and we act by

σ−1
2 = g2 ∈ G̃L

+
(2,R) and we we obtain a non CP-glued pre-stability condition, then the

heart of σg2 is going to be given by Ar. See Subsection 3.2.1.

We now define

Zr : Z4 → C (3.13)
(r1, d1, r2, d2) 7→ A1d1 +B1r1 − d2 + i(D1d1 + r1C1 + r2),
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where M =
[
−A1 B1

−D1 C1

]
with det(M) > 0, det(M + I) > 0, A1, B1, C1, D1 ∈ R and D1 < 0.

Remark 3.11. Note that if E ∈ TCoh(C) is a λ-semistable torsion-free triple, then
λ(E) > 3

4 if and only if =(Zr(E)) < 0. Moreover, λ(E) ≤ 3
4 if and only if =(Zr(E)) ≥ 0.

If we consider the same C1, D1 as above for the construction of Ar, we obtain the following
lemma.

Lemma 3.12. The group homomorphism Zr is a stability function on Ar

Proof. First of all, we show that the image of E ∈ Ar under Zr lies in H ∪ R<0.

Let E ∈ T , then we consider the short exact sequence 0→ T (E)→ E → F (E)→ 0. Note
that by definition F (E) ∈ T . Indeed, because of the right exactness of Coker(−) we obtain
that i!(E) ∈ Coh(C) implies that i!(F (E)) ∈ Coh(C).

We prove now that Zr(E[−1]) ∈ H∪R<0.We first show that Zr(F (E)[−1]) ∈ H∪R<0. It is
enough to assume that F (E) is λ-semistable and then it follows directly from the analogous
equation to 3.3. Note that Zr(T (E)[−1]) ∈ H∪R<0. Indeed, as rk(T (E1)) = rk(T (E2)) = 0,
then deg(T (E1)) ≥ 0 if T (E1) 6= 0 and =(Zr((T (E)[−1])) = −deg(T (E1))D1 > 0, as
D1 < 0. Since Z is additive with respect to short exact sequences we obtain that
Z(E[−1]) ∈ H ∪ R<0. If deg(T (E1)) = 0, then T (E1) = 0, and F (E1) ∼= E1, thus

=(Zr(F (E)[−1])) = =Zr(E[−1]) > 0.

We now show that if E ∈ F , then Zr(E) ∈ H ∪ R<0. Once again we consider the short
exact sequence 0 → T (E) → E → F (E) → 0. As i∗(E) is a torsion-free sheaf, we get
i∗(T (E)) = 0 and T (E) = 0 → T (E2), where T (E2) is a torsion sheaf. Once again note
that by definition T (E) ∈ F and F (E) ∈ F . Then, it suffices to show that our claim follows
for T (E) and F (E). Clearly Zr(T (E)) = −deg(T (E2)) < 0, as T (E2) is a torsion-sheaf.

Let F (E) ∈ F a torsion-free λ−semistable object. If F (E) satisfies λ(F (E)) < 3/4, then
−D1d1 − C1r1 − r2 < 0 and Z(E) lies in the upper-half plane.

We now assume that F (E) = F (E1) f−→ F (E2) in F is a torsion-free object with
D1d1 + r1C1 + r2 = 0. It suffices to show our statement for F (E) a λ-semistable object. We
now prove that A1d1 +B1r1 − d2 < 0.

First note that if F (E1) = 0, then 0 = D1d1 + r1C1 + r2 = r2 and it implies F (E) = 0.

If F (E2) = 0, then D1d1 + r1C1 = 0, and

A1d1 +B1r1 − d2 = A1d1 +B1r1 < 0,

because det(M) > 0.
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Therefore, we assume F (E1) and F (E2) 6= 0.

Claim 3.13. If F (E1), F (E2) 6= 0, then rk(Coker(f)) = 0.

Proof. If Coker(f) 6= 0, then we have the following short exact sequence

0 //

��

F (E1) id //

f

��

F (E1) //

f

��

0

��

// 0

��

0 // Img(f) // F (E2) // Coker(f) // 0.

(3.14)

If rk(Coker(f)) 6= 0, then by Lemma 3.2 and by the λ-semistability of F (E), we have that
3/4 = λ(F (E)) ≤ 1/2, which gives us a contradiction.

Note that λ(F (E1)→ Img(f)) = λ(F (E)), and moreover

[F (E)] = [F (E1)→ Img(f)] + (0, 0, 0, d′′2),

where d′′2 = deg(Coker(f)) > 0, d′′1 = deg(Img(f)) and d2 = deg(F (E2)). As

A1d1 +B1r1 − d2 = A1d1 +B1r1 − d′′1 − d′′2 < A1d1 +B1r1 − d′′1

and F (E1) → Img(f) ∈ F , as it is a subobject of F (E), the it is enough to show our
statement for torsion-free objects F (E1) f−→ F (E2) ∈ F with Coker(f) = 0.

Therefore, we assume that Coker(f) = 0. Hence, we have F (E) = F (E1) � F (E2). As a
consequence, we get

r1 = rk(F (E1)) ≥ rk(F (E2)) = r2.

Since K = i∗(i!(F (E))) = Ker(f)→ 0 is a subobject of F (E) in TCoh(C) and F is closed
under subobjects, it implies that K ∈ F . Since [i∗(i!(E))] = [K] = (r1 − r2, d1 − d2, 0, 0),
where d1 = deg(F (E1)) and d2 = deg(F (E2)), it follows that

−D1(d1 − d2)− C1(r1 − r2) ≤ 0. (3.15)

By hypothesis
−D1d1 − r1C1 = r2.

Therefore, after replacing −D1d1 − C1r1 in Equation (3.15), we obtain

D1d2 ≤ −(C1 + 1)r2. (3.16)

We want now to show that A1d1 +B1r1 − d2 < 0. First note that d1 = r2+C1r1
−D1

, we obtain
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A1d1 +B1r1 − d2 = A1
r2 + r1C1
−D1

+ r1B1 − d2

= ( 1
−D1

)(A1r2 + r1A1C1 − r1B1D1 +D1d2).

Since −D1 > 0, it is enough to show that A1r2 +r1A1C1−r1B1D1 +D1d2 < 0. By Equation
(3.16), we obtain

A1r2 + r1A1C1 − r1B1D1 +D1d2
3.16
≤ A1r2 + r1C1A1 − r1B1D1 − (C1 + 1)r2

= r2(A1 − C1 − 1)− r1(det(M)).

Since −r1 ≤ −r2 and det(M) > 0, we obtain

r2(A1 − C1 − 1)− r1(det(M)) ≤ r2(A1 − C1 − 1)− r2(det(M))
= r2(−Tr(M)− 1− det(M))
= r2(−det(M + I)) < 0,

as det(M + I) > 0.

Since Zr is additive with respect to short exact sequences we obtain that Zr(E) ∈ H∪R<0

for E ∈ F .

We now show that the pair defined above satisfies the Harder-Narasimhan property when-
ever A1, B1, C1, D1 ∈ Q. In Section 3.4, we prove that the Harder-Narsimhan property holds
for all A1, B1, C1, D1 ∈ R.

Lemma 3.14. If A1, B1, C1, D1 ∈ Q, the pair (Zr,Ar) is a pre-stability condition.

Proof. We follow the steps of [Bri08, Prop. 7.1]. First note that by [BM11, Prop. B.2], it
is enough to show that if E ∈ Ar and

0 ⊂ L1 ⊂ L2 . . . ⊂ Li ⊂ . . . ⊂ E,

where Li belongs to the full subcategory P ′(1) of objects with phase one, the sequence
stabilizes. As Li ∈ Ar = (F , T [−1]), we consider the short exact sequence

0→ Fi → Li → Ti[−1]→ 0,

where Fi ∈ F and Ti ∈ T . As =Zr(Li) = 0, we obtain that =Zr(Ti[−1]) = 0. Note that it
implies that Ti = 0. Indeed, by definition the torsion part T (Ti) and the torsion-free part

https://arxiv.org/pdf/math/0307164.pdf
https://arxiv.org/pdf/0912.0043.pdf
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F (Ti) of Ti satisfy that =Zr(T (Ti)) < 0 and =Zr(F (Ti)) < 0, if T (Ti)1 6= 0, then they are
non-zero. If T (Ti)1 = 0, then =(Zr(Ti)) = =(Z(F (Ti))) < 0. Therefore, we obtain that
P ′(1) ⊆ F ⊆ TCoh(C), as TCoh(C) is Noetherian, our result follows.

Remark 3.15. Note that the pre-stability condition σr = (Zr,Ar) given above is discrete.
By Lemma 1.58 it is also locally finite.

Remark 3.16. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14.
Note that i∗(C(x))[−1], l∗(C(x))[−1] and j∗(C(x)) are in Ar and j∗(C(x)) is stable of phase
one. Indeed, as Zr(j∗(C(x))) = −1, and j∗(C(x)) is a simple object in F , then j∗(C(x)) is
σ-stable of phase one.

Lemma 3.17. We have that

Coh2(C) ⊆ Ar and Cohr1(C) ⊆ Ar and Cohr3
3 (C) ⊆ Ar

where r3 =
acot(C1+1

D1
)

π .

Proof. First of all, note that Coh2(C) ⊆ F ⊆ Ar. We consider the torsion pair
Coh(C) = (T1,F1) of Remark 3.7, which also induces the heart Cohr1(C) after a right tilting,
i.e. Cohr1(C) = (F1, T1[−1]). Let E ∈ Coh1(C) be a µ-semistable object. If E = i∗(C(x)),
then by Remark 3.16, we have E[−1] ∈ Ar. We assume that E is torsion free. As the only
possible subobjects or quotients of E are in Coh1(C), we have that E is µ-semistable if and
only if it is λ-semistable. It follows directly from the definition of T and F that

i∗(T1) ⊆ T and i∗(F1) ⊆ F .

We also consider a torsion pair Coh(C) = (T3,F3), as in Remark 1.83, such that after
taking the right tilt Cohr3(C) = (F3, T3[−1]). Let E ∈ Coh3(C) be a µ-semistable object.
We have that E = l∗(C(x)) ∈ Ar by Remark 3.16. We assume that E is torsion free. We
start with E ∈ l∗(T3). We consider its HN-factors Ai, where i = 0, . . . ,m, and

λ(A1) > λ(A2) > . . . > λ(Am).

To show that E ∈ T , it is enough to show that λ(Am) > 3
4 , i.e. −D1d

′
1 − C1r

′
1 − r′2 > 0,

where rk((Am)i) = r′i and deg((Am)i) = d′i and Am = (Am)1 � (Am)2, because Am is a
quotient of E. We have that E � l∗((Am)1). By the µ-semistability

µ((Am)1) = d′1
r′1
≥ d1
r1

= µ(E)

equivalently
−D1d

′
1 − C1r

′
1

r′1
≥ −D1d1 − C1r1

r1
.
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As E ∈ T3, we have that −D1d1−C1r1
r1

> 1. Since r′2 ≤ r′1, we obtain

−D1d
′
1 − C1r

′
1 − r′2 ≥ −D1d

′
1 − C1r

′
1 − r′1 > 0.

As a consequence l∗(T3) ⊆ T . Analogously, we prove that l∗(F3) ⊆ F .

3.2 The stability manifold Stab(TC)

Lemma 1.73 is the main tool to prove that C(x) is a σ-stable object for every σ ∈ Stab(C)
and every x ∈ C. In this section, we prove the analogous statement for TC , to give a
characterization of every σ ∈ Stab(TC) in terms of C(x). In Subsection 3.2.1, we follow
closely the steps of [Bri08, Lem. 10.1] to describe all the possible hearts appearing on pre-
stability conditions on TC . We finally prove that every pre-stability condition on TC has to
be given by one of the already constructed pairs in Lemma 3.14 or Section 2.2 i.e. either
by CP-gluing or by tilting.

Remark 3.18. Due to the assumption that g(C) ≥ 1, if HomCoh(C)(E,A) 6= 0, then
HomCoh(C)(E,A⊗ωC) 6= 0. If f is a non-zero morphism in HomCoh(C)(E,A), we denote by
fC the non-zero morphism in HomCoh(C)(E,A⊗ ωC) associated to f.

Lemma 3.19. If there is a distinguished triangle in TC of the form

E1 //

ϕE

��

X //

��

A1

ϕA

��

// E1[1]

ϕE [1]
��

E2 // 0 // A2
l // E2[1]

(3.17)

with X ∈ Coh(C) and Hom≤0
TC (E,A) = 0, then E1, A1 ∈ Coh(C).

Proof. First of all note that l2 := j!(l) is an isomorphism in Db(C). We now consider the
functor F : TC → Mor(Db(C)) defined as F (E1

ϕE−−→ E2) = E1
[ϕE ]−−−→ E2 at the level of

objects. For Φ in HomTC (E,F ), by 2.40, we get the commutative square

E1
i∗(Φ)

//

[ϕE ]
��

F1

[ϕF ]
��

E2
j!(Φ)

// F2

(3.18)

in Db(C), which is in fact a morphism in Mor(Db(C)).

Claim 3.20. The functor F : TC → Mor(Db(C)) is full.
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Proof. Let (ϕ1, ϕ2) ∈ HomMor(Db(C))(F (E), F (G)), with E,G ∈ TC . By definition we have
the commutative diagram

E1
ϕ1
//

[ϕE ]
��

G1

[ϕG]
��

E2
ϕ2
// G2.

(3.19)

Note that we obtain a commutative square in TC given by

i∗(E1) tE //

ϕ1
��

j∗(E2)[1]
ϕ2
��

i∗(G1) tF // j∗(G2)[1].

(3.20)

By taking cones of the horizontal arrows and using Remark 2.46, we obtain that there is a
morphism Φ ∈ HomTC (E,F ) with F (Φ) = (ϕ1, ϕ2).

By [Huy06, Corollary 3.15], for every G ∈ Db(C), we have that G = ⊕i∈ZGi[−i] with
Gi = H i(G) ∈ Coh(C). We also have the canonical morphisms (which come from the
genuine chain maps)

Gα[−α] iα−→ G
πβ−→ Gβ[−β],

for α, β ∈ Z. Moreover, note that if we have a morphism ψ : G1 → G2 in Db(C), then
H i(ψ)[−i] = π2

i ◦ ψ ◦ i1i : Gi1[−i]→ Gi2[−i].

For G = G1
ϕG−−→ G2 ∈ TC we get that F (G) ∈ HomDb(C)(⊕iGi1[−i],⊕iGi2[−i]), with

Gij ∈ Coh(C), for j = 1, 2 and i ∈ Z. Due to the fact that Coh(C) has homological
dimension one, there is a non-zero morphism tG

i from Gi1[−i]→ Gi2[−i]⊕Gi−1
2 [−i+ 1] to

G1
ϕG−−→ G2 in Mor(Db(C)). We construct the morphism

A1
πi◦[ϕA]

//

[ϕA]
��

Ai2[−i]
idC [−i]

//

id
��

Ai2[−i]⊗ ωC
l[−i]⊗ωC

//

l[−i]⊗ωC
��

Ei+1
2 [−i]⊗ ωC

��

tiSTC (E)

// E2 ⊗ ωC [1]

[iE ]
��

A2
πi // Ai2[−i] // Ei+1

2 [−i]⊗ ωC // C(ϕE)i+1[−i]⊕ C(ϕE)i[−i+ 1]⊗ ωC // C(ϕE)[1]

in Mor(Db(C)). Note that the morphism idC is given by Remark 3.18.

We obtain a morphishm A→ STC (E) in Mor(Db(C)). Since F is full, we have a morphism
in HomTC (A,STC (E)). By Serre duality, we obtain

HomTC (A,STC (E)) ∼= HomTC (E,A)∗.

By hypothesis, this morphism has to be zero. This directly implies that idC [−i]◦(πi◦[ϕA]) =
0, because l⊗ ωC is an isomorphism. Since the construction does not depend on the i ∈ Z,
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we obtain that the induced morphism Ai1[−i] idC [−i]◦πi◦[ϕA]◦ii−−−−−−−−−−−→ Ai2[−i]⊗ ωC is zero. Due to
the fact that it is precisely the morphism (πi ◦ [ϕA] ◦ ii)C [−i] in Coh(C)[−i], as in Remark
3.18, we obtain that Ai1

πi◦[ϕA]◦i1−−−−−−→ Ai2 is also zero. The triangle (3.17) in TC induces a long
exact sequence in cohomology and we get

Ai1
∼= //

πi◦[ϕA]◦ii
��

Ei+1
1

πi+1◦[ϕE ]◦ii+1
��

Ai2
∼= // Ei+1

2 ,

as the morphism in the component i in Mor(Db(C)) is precisely the one given by the
cohomology. Therefore πi ◦ [ϕE ] ◦ i1 = 0, for all i 6= −1, 0.

This implies that there is a morphism from Ei1[−i] → Ei−1
2 [−i + 1] to E1

ϕE−−→ E2, which,
moreover, is a split homorphism for i 6= 0, 1. In addition, it provides a split monomorphism
from Ai1[−i]→ Ai−1

2 [−i+ 1] to A1
ϕA−−→ A2 for i 6= −1, 0.

We get the isomorphism

Ai1[−i] //

��

A1 //

ϕA

��

E1[1] //

ϕE [1]
��

Ei+1
1 [−i]

��

Ai−1
2 [−i+ 1] // A2

l // E2[1] // Ei2[−i+ 1]

in Mor(Db(C)), were the morphism of the first row is the isomorphism induced by the long
exact sequence of cohomology of the triangle (3.17).

From the isomorphism above, we construct the morphism

E1[1] //

[ϕE ]
��

Ei+1
1 [−i]

∼= //

��

Ai1[−i] //

��

A1

[ϕA]
��

E2[1] // Ei2[−i+ 1]
∼= // Ai−1

2 [−i+ 1] // A2

in Mor(Db(C)). Once again, since the functor F is full, this needs to be the zero morphism.
As a consequence, we obtain that Ai1[−i], Ai2[−i] are zero for all i 6= 0,−1. We now study
the remaining object in the long exact sequence of cohomology

0 //

��

A−1
1 t1

//

0
��

E0
1

//

��

X //

��

A0
1

0
��

t2
// E1

1
//

��

0

��

0 // A−1
2

∼= // E0
2

// 0 // A0
2
∼= // E1

2
// 0.

(3.21)
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We now show that ti = 0, for i = 1, 2. If t1 6= 0, by Remark 3.18, we obtain a non-zero
morphism t1C : A−1

1 → E0
1 ⊗ ωC . By Serre duality

HomDb(C)(A−1
1 , E0

1 ⊗ ωC) ∼= HomDb(C)(E0
1 [−1], A−1

1 )

and there is a non-zero morphism t′1 : E0
1 [−1]→ A−1

1 . As E0
1 → E0

2 is a direct summand of
E, we get the non-zero morphism

E1 //

ϕE

��

E0
1

t′1[1]
//

��

A−1
1 [1] //

0
��

A1

ϕA

��

E2 // E0
2 0

// A−1
2 [1] // A2

in Mor(Db(C)). As above, this implies that t′1 = 0 and therefore t1 = 0. We now prove that
t2 = 0.

The triangle A1 → A2 → C(ϕA) induces a long exact sequence of cohomology. It follows
that H i(C(ϕA)) = 0 unless i = −1, i.e. C(ϕA) ∈ Coh(C)[1].

Note that A2[−1] → C(ϕA)[−1] → A1 is a short exact sequence in Coh(C), then the
morphism C(ϕA)[−1] πA−−→ A1 is surjective in Coh(C).

Let us assume that t2 6= 0. By Remark 3.18, there is a non-zero morphism t′2 : A1 → E1
1⊗ωC .

We now consider t3 := t′2 ◦ πA in Coh(C). Since πA is surjective and t′2 6= 0, then t3 6= 0.

This induces the morphism Φ: A→ STC (E) given by

A1
t′2 //

ϕA

��

E1
1 ⊗ ωC

i //

��

E1[1]⊗ ωC
ϕE⊗id

//

��

E2[1]⊗ ωC

��

A2 // 0 // 0 // C(ϕE)[1]⊗ ωC

in HomTC (A,STC (E)). Note that i is a split monomorphism. By Serre duality,

HomTC (A,STC (E)) ∼= HomTC (E,A)∗ = 0.

Therefore, we have that Φ = 0. After applying i!, we obtain

i!(Φ) = C(ϕA)[−1] t3−→ E1
1 ⊗ ωC

i−→ E1[1]⊗ ωC ,

which has to be zero. As consequence t3 = 0 and we have a contradiction. Hence, we get
A−1

1 = E1
1 = 0, which implies that A1, E1 ∈ Coh(C).

Remark 3.21. From now one we assume that all pre-stability conditions on TC that we
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considering are locally finite.

Proposition 3.22. Let X be either a skyscraper sheaf C(x) or a line bundle L on C. For
any pre-stability condition σ on TC , if i∗(X) is not σ-semistable, then j∗(X) and l∗(X) are
σ-stable.

Proof. We assume that i∗(X) is not σ-semistable. Therefore, we consider the last triangle
of its Harder-Narasimhan filtration

E // i∗(X) // A // E[1] ,

explicitly

E1 //

ϕE

��

X //

��

A1

ϕA

��

// E1[1]

ϕE [1]
��

E2 // 0 // A2 // E2[1]

, (3.22)

with Hom≤0
TC (E,A) = 0 and A ∈ TC semistable. By Lemma 3.19, we have

E1, A1 ∈ Coh(C), thus we obtain a short exact sequence

0→ E1 → X → A1 → 0

in Coh(C) which is not possible. Hence, either E1 = 0 or A1 = 0.

If E1 = 0, then by adjointness we have

Hom≤0
TC (E,A) = Hom≤0

TC (j∗(E2), A) = Hom≤0
Db(C)(E2, A2) = 0.

As E2[1] ∼= A2, we have Hom≤0
Db(C)(E2, E2[1]) = 0, which is a contradiction.

Therefore, we obtain A1 = 0 and E1 ∼= X. By adjointness we have

Hom≤0
TC (E,A) = Hom≤0

TC (E, j∗(A2)) = Hom≤0
Db(C)(C(ϕE), A2) = 0.

Exactness of the functor j∗ yields the following triangle

C(ϕE) // X[1] // A2 // C(ϕE)[1] .

Since Hom≤0(C(ϕE), A2) = 0, due to Lemma 1.73, the classical GKR lemma for curves, we
get that

C(ϕE)[−1], A2[−1] ∈ Coh(C)

which once again it is not possible. As A2 cannot be zero, we get C(ϕE) = 0 and A2 ∼= X[1].
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This implies that A ∼= j∗(X)[1] and that E ∼= l∗(X) ∈ D3. As a consequence j∗(X) is σ-
semistable.

We now show that l∗(X) is σ-semistable. We proceed by contradiction. If l∗(X) is not
σ-semistable, we examine the last triangle of its HN-filtration

F → l∗(X)→ B → F [1]

where Hom≤0
TC (F,B) = 0 and B is σ-semistable. We first apply the Serre functor and then

we apply the autoequivalence given by tensoring by l∗(ω∗C). We obtain

F2[1] //

ϕ′E
��

X[1] //

��

B2[1]

ϕ′B
��

// F2[1]

ϕ′F [2]
��

C(ϕF )[1] // 0 // C(ϕB)[1] // C(ϕF )[2]

with
Hom≤0

TC (STC (F ),STC (B)) = 0.

Arguing as above, B2 = 0 and F2 ∼= X. Then B ∈ D1 and by adjointness

Hom≤0
TC (F,B) ∼= Hom≤0

TC (F, i∗(B1)) = Hom≤0(F1, B1) = 0.

By applying the classical GKR lemma for curves to the triangle

F1 → X → B1,

we get that B1 = 0 or F1 = 0. As B 6= 0, we get F1 = 0 and B1 ∼= X. Consequently
B ∼= i∗(X) and i∗(X) is σ-semistable, which contradicts our assumption. Therefore l∗(X)
is σ-semistable.

We prove now that l∗(X) and j∗(X) are σ-stable. We start by proving by contradic-
tion that l∗(X) is stable. If l∗(X) is not σ-stable, we consider its Jordan-Hölder fil-
tration. Note that all its σ-stable factors Ai have the same phase φ. We assume that
HomTC (Ai0 , l∗(X)) 6= 0 for a σ-stable factor Ai0 . Therefore by [Huy14, Ex. 1.6], there is a
short exact sequence

0→ E
′ → l∗(X)→ E

′′ → 0,

with E′ and E′′ semistable of phase φ, such that all stable factors of E′ are isomorphic to
Ai0 and HomTC (E′ , E′′) = 0. By the semistability of E′ and E′′ , we get

Hom≤0
TC (E′ , E′′) = 0.

https://arxiv.org/abs/1111.1745
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Arguing as above, i.e. by applying the Serre functor and by tensoring by l∗(ω∗C), we obtain
E
′
2
∼= X and E′′2 = 0 and

Hom≤0(E′1, E
′′
1 ) = 0.

Once again, the classical GKR lemma for curves, implies that E′′1 = 0 or E′1 = 0. Since
i∗(X) is not σ-semistable we have that E′1 6= 0. Therefore, we obtain E′′1 = 0 and E′1 ∼= X.

As a consequence, we have E′′ = 0 which implies that all the stable factors of l∗(X) are
isomorphic to Ai0 . Hence, [l∗(X)] = n[Ai0 ], where n is the number of stable factors. Since
[l∗(C(x))] = (0, 1, 0, 1) and [L] = (1, deg(L), 1, deg(L)), we must have n = 1, i.e. l∗(C(x))
and l∗(L) are stable.

An analogous proof works for the stability of j∗(X). Instead of using the Serre functor, we
use S−1. Consequently, we obtain that j∗(C(x)) and j∗(L) are stable.

We now give several consequences of the last proposition.

Remark 3.23. If X is either C(x) or L as above, we use Proposition 3.22 to prove that
if j∗(X) (l∗(X)) is not σ-semistable, then i∗(X) and l∗(X) (j∗(X) and i∗(X)) are σ-stable.
Meaning that if one of the objects i∗(X), j∗(X), l∗(X) is not σ-semistable then the other
two have to be σ-stable.

Remark 3.24. If i∗(X) is not σ-semistable, where X is either C(x) or L, then by Propo-
sition 3.22, we obtain the HN-filtration for i∗(X). It is given precisely by

X //

ϕ

��

X //

��

0

��

// X[1]

ϕ[1]
��

X // 0 // X[1] // X[1]

.

After applying the Serre functor, we obtain the corresponding HN-filtration for j∗(X) and
l∗(X).

Moreover, we define
φ0
x := φσ(i∗(C(x))) and φ1

L := φσ(i∗(L)),

φ2
x := φσ(j∗(C(x))) and φ3

L := φσ(j∗(L)),

φ4
x := φσ(l∗(C(x))) and φ5

L := φσ(l∗(L)).

If L = OC , then φ1 = φσ(i∗(OC)), φ3 = φσ(j∗(OC)), and φ5 = φσ(l∗(OC)).

Lemma 3.25. If i∗(C(x)) is not σ-semistable, then φ4
x > φ2

x + 1. Similarly, if i∗(L) is not
σ-semistable, then φ5

L > φ3
L + 1.

Proof. If i∗(C(x)) is not σ-semistable, then Remark 3.24 gives explicitly the last triangle
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of its HN-filtration, which implies φ4
x > φ2

x + 1. The same conclusion can be drawn for
i∗(L).

Remark 3.26. After applying the Serre functor to the HN-filtration of i∗(X), we obtain
the analogous results for j∗(X) and l∗(X), i.e.

If l∗(C(x)) is not σ-semistable, then φ2
x > φ0

x.

If l∗(L) is not σ-semistable, then φ3
L > φ1

L.

If j∗(C(x)) is not σ-semistable, then φ0
x − 1 > φ4

x.

If j∗(L) is not σ-semistable, then φ1
L − 1 > φ5

L.

Lemma 3.27. If i∗(X) is strictly σ-semistable, where X is either C(x) or L, then j∗(X)
and l∗(X) are σ-stable. Moreover, a Jordan-Hölder filtration is given by

X //

id
��

X //

��

0

��

// X[1]

id[1]
��

X // 0 // X[1] // X[1]

.

Proof. First note that if i∗(X) is strictly σ-semistable, it implies that j∗(X) and l∗(X) are
σ-semistable. Indeed, if one of them is not σ-semistable by Proposition 3.22 follows that
i∗(X) is σ-stable, which contradicts our assumption.

Let Ai0 be a stable factor such that Hom(Ai0 , i∗(X)) 6= 0. By [Huy14, Ex. 1.6], there is a
short exact sequence

E
′ → i∗(X)→ E

′′
,

with E
′
, E
′′
σ-semistable, such that Hom≤0

TC (E′ , E′′) = 0 and all the stable factors of E′

are isomorphic to Ai0 . By Lemma 3.19, we have E′ ∼= l∗(X) and E
′′ ∼= j∗(X). Since all

the stable factors of l∗(X) are isomorphic to Ai0 , there is a natural number n, such that
[l∗(X)] = n[Ai0 ] in the Grothendieck group. As explained before, it implies that n = 1 and
l∗(X) is stable.

We now prove by contradiction that j∗(X) is stable. We assume that j∗(X) is strictly
σ-semistable. We apply the same reasoning as above, in this case we obtain a short exact
sequence

F
′ → j∗(X)→ F

′′
,

where F ′ ∼= i∗(X), since all the stable factors of F ′ are isomorphic, we obtain that i∗(X) is
stable, which contradicts our hypothesis.

It now makes sense to define the following sets:

Definition 3.28. We define the set Θij of pre-stability conditions on TC for ij = 12, 23 or

https://arxiv.org/abs/1111.1745
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31 as follows:

Θ12 = {σ |i∗(C(x)), j∗(C(x)), i∗(L), j∗(L) stable for all line bundles L ∈ Coh(C) and all x ∈ C } ,
Θ23 = {σ |j∗(C(x)), l∗(C(x)), j∗(L), l∗(L) stable for all line bundles L ∈ Coh(C) and all x ∈ C } ,
Θ31 = {σ | i∗(C(x)), l∗(C(x)), i∗(L), l∗(L) stable for all line bundles L ∈ Coh(C) and all x ∈ C }.

Recall that we assumed that all the pre-stability conditions are locally finite.

Remark 3.29. Note that

STC (Θ12) = Θ23 and STC (Θ23) = Θ31 and STC (Θ31) = Θ12.

Theorem 3.30. If σ is a pre-stability condition on TC , then

σ ∈ Θ12 ∪Θ23 ∪Θ31.

Proof. Let σ be an arbitrary pre-stability condition. We first assume that σ /∈ Θ23 and we
prove that σ ∈ Θ12 or σ ∈ Θ31.

Thus, there is a line bundle L such that j∗(L) or l∗(L) is not σ-stable, or either j∗(C(x))
or l∗(C(x)) is not σ-stable for some x ∈ C.

Assume that there is x ∈ C such that l∗(C(x)) is not σ-stable. We need to show that
σ ∈ Θ12, as it cannot be in Θ31. By Remark 3.23, it follows that j∗(C(x)) and i∗(C(x)) are
σ-stable. We now show that for every line bundle L and every x ∈ C, we have that j∗(X)
and i∗(X) are σ-stable, where X = L or X = C(x).

We prove it by contradiction, assume that there is a line bundle L, such that i∗(L) is not
σ-stable, which implies that j∗(L) and l∗(L) are σ-stable.

Since l∗(C(x)) is not σ-stable, by Remark 3.24 we obtain that its HN-filtration (or its
JH-filtration) is given by

0 //

ϕ

��

C(x) //

��

C(x)

��

// 0

��

C(x) // C(x) // 0 // C(x)[1]

,

which implies that φ2
x ≥ φ0

x. Analogously, since i∗(L) is not σ-semistable, then we get
φ3
L + 1 ≤ φ5

L. Let us consider the morphism C(x)→ L[1] in Db(C), it induces a morphism
j∗(C(x)) → j∗(L)[1]. Since by hypothesis both are stable and not isomorphic, we obtain
that φ2

x < φ3
L + 1.

After applying the Serre functor to the morphism l∗(C(x)) → l∗(L[1]), we obtain a mor-
phism l∗(L)[1] → i∗(C(x))[1]. As both objects are σ-stable and not isomorphic, we get
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φ5
L < φ0

x. We now put all the inequalities together, yielding

φ0
x ≤ φ2

x < φ3
L + 1 ≤ φ5

L < φ0
x,

which is a contradiction. Therefore i∗(L) has to be σ-stable for all line bundles. Analogously
we prove that j∗(L) has to be also stable for all line bundles L.

We now assume that there is a point y ∈ C, such that j∗(C(y)) is not σ-stable. Then, by
Remark 3.23 it implies that i∗(C(y)) and l∗(C(y)) are σ-stable and by the triangle

C(y)[−1] //

��

0 //

��

C(y)

��

// C(y)

��

0 // C(y) // C(y) // 0

,

we obtain φ0
y − 1 ≥ φ4

y.

Note that [i∗(C(x))] = [i∗(C(y))] in the Grothendieck group. As a consequence, we obtain

φ0
x = φ0

y +m,

with m ∈ Z. But as i∗(OC) is σ-semistable and we have non-zero morphisms from i∗(OC)
to i∗(C(x)) to i∗(C(y) and from i∗(C(x)) and i∗(C(y)) to i∗(OC)[1], we obtain

φ1 < φ0
y < φ1 + 1 and φ1 < φ0

x < φ1 + 1,

which implies that
φ0
y = φ0

x.

Since we have a non-zero morphism j∗(OC) → l∗(C(y)), we obtain φ3 < φ4
y and from the

morphism j∗(C(x))→ j∗(OC)[1] we obtain φ2
x < φ3 + 1.

As a consequence, we obtain

φ3 + 1 < φ4
y + 1 ≤ φ0

y = φ0
x ≤ φ2

x < φ3 + 1,

which is a contradiction. Therefore, we obtain that j∗(C(y)) is σ-stable. We analogously
prove it for i∗(C(y)) for all y ∈ C. Then σ ∈ Θ12. The other cases follow analogously.

Corollary 3.31. Let σ be a pre-stability condition on TC , with i∗(C(x)) σ-stable for x ∈ C.
Then, for all y ∈ C, we have that i∗(C(y)) is σ-stable and

φ0
x = φ0

y.

Proof. By Theorem 3.30, we have that if σ ∈ Θ12 or σ ∈ Θ31, it follows directly that
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for all y ∈ C we have that i∗(C(y)) is σ-stable. Note that [i∗(C(x))] = [i∗(C(y))] in the
Grothendieck group. This implies that

φ0
x = φ0

y +m,

with m ∈ Z. But as i∗(OC) is σ-semistable and we have non-zero morphisms from i∗(OC)
to i∗(C(x)) to i∗(C(y) and from i∗(C(x)) and i∗(C(y)) to i∗(OC)[1], we obtain

φ1 < φ0
y < φ1 + 1 and φ1 < φ0

x < φ1 + 1,

which implies that
φ0
y = φ0

x.

If σ ∈ Θ23 and there is y ∈ C, such that i∗(C(y)) is not σ-stable. It implies that φ4
y ≥ φ2

y+1.
As i∗(C(x), j∗(C(x)) and l∗(C(x)) are σ-stable, we get

φ4
x < φ0

x < φ2
x + 1 = φ2

y + 1 ≤ φ4
y,

which is a contradiction, because as explained before φ4
x = φ4

y. Then i∗(C(y)) is σ-semistable
for every y ∈ C. As before

φ0
x = φ0

y +m,

but
φ2
x < φ0

x < φ2
x + 1 and φ2

x < φ0
y < φ2

x + 1,

which implies
φ0
x = φ0

y.

Remark 3.32. Analogously, by using Serre duality, we prove Corollary 3.31 for j∗(C(x))
and l∗(C(x)).

By Corollary 3.31, if i∗(C(x)) is σ-stable for some x ∈ C, then φ0(x) does not depend on
x. We analogously prove the same statement for φ2 and φ4. Therefore, we define

φ0 := φ0
x,

φ2 := φ2
x,

φ4 := φ4
x.

Lemma 3.33. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14.
Then i∗(C(x)) l∗(C(x)) and j∗(C(x)) are σ-stable.
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Proof. By Remark 3.16, we have that i∗(C(x))[−1], l∗(C(x))[−1] and j∗(C(x)) are in Ar
and that j∗(C(x)) is stable of phase one. We now show that i∗(C(x))[−1] is σ-stable. By
contradiction we first assume that i∗(C(x)) is not σ-semistable. As a consequence of Remark
3.26, we have that l∗(C(x)) is σ-stable and φ4 > φ2 + 1, but φ2 = 1 and 1 < φ4 < 2, which
gives a contradiction. If i∗(C(x)) is σ-semistable but not stable, by Lemma 3.27 φ4 ≥ φ2 +1
and we have again a contradiction. The same reasoning works to prove that l∗(C(x))[−1]
is stable.

Lemma 3.34. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14.
Then i∗(OC) and j∗(OC) are σ-stable if and only if φ1 <

3
2 .

Proof. First note that φ1 = φ(i∗(OC)) and φ3 = φ(j∗(OC)) = 1
2 makes sense, as Lemma

3.17 implies that j∗(OC) ∈ Ar and that i∗(OC) is in Ar or in Ar[1]. Moreover, if i∗(OC)
and j∗(OC) are σ-stable, then φ1 < φ3 + 1 = 3

2 , because there is a non-zero morphism
i∗(OC)→ j∗(OC)[1].

We now prove the other direction. We assume that φ1 <
3
2 and that i∗(OC) is not stable.

Then, by Remark 3.26 j∗(OC) and l∗(OC) are stable and

φ5 ≥ φ1 ≥ φ3 + 1 = 3
2 ,

which gives us a contradiction. Analogously, if j∗(OC) is not stable. Then by Remark 3.26
i∗(OC) and l∗(OC) are stable and

φ1 − 1 ≥ φ3 = 1
2 ≥ φ5,

which gives us a contradiction.

Remark 3.35. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14.
We have that i∗(OC), j∗(OC) and l∗(OC) are σ-stable if and only if

1
2 = φ3 < φ5 < φ1 <

3
2 .

Lemma 3.36. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14.
Then j∗(OC) and l∗(OC) are σ-stable and i∗(OC) is not σ-stable if and only if φ1 ≥ 3

2 and
φ5 >

1
2 .

Proof. As i∗(OC) is not stable, by Lemma 3.34 we get φ1 ≥ 3
2 , and since j∗(OC) and l∗(OC)

are σ-stable and there is a non-zero morphism j∗(OC)→ l∗(OC) and 1
2 < φ5.We now prove

the other direction. By Lemma 3.34, we have that either i∗(OC) or j∗(OC) are not σ-stable.
If j∗(OC) is not stable, then, by Remark 3.26 we have that i∗(OC) and l∗(OC) are stable
and φ1 − 1 ≥ φ3 = 1

2 ≥ φ5, which contradicts that φ5 >
1
2 . Therefore, we have that i∗(OC)

is not stable and as a consequence j∗(OC) and l∗(OC) are σ-stable.
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Lemma 3.37. Let σ = (Zr,Ar) be a pre-stability condition constructed in Lemma 3.14,
then i∗(OC) and l∗(OC) are σ-stable and j∗(OC) is not σ-stable if and only if φ1 ≥ 3

2 and
φ5 ≤ 1

2 .

Proof. The proof follows the steps of Lemma 3.36.

3.2.1 Pre-stability conditions in Θ12

We now study pre-stability conditions σ ∈ Θ12. We are going to show that they are given
as the ones the constructed in Lemma 2.85 or in Lemma 3.14.

We first characterize the hearts of the pre-stability conditions in terms of the stability of
the skyscraper sheaves. We study pre-stability conditions satisfying that j∗(C(x)) is stable
of phase one. We separate them into two cases when l∗(C(x)) is not σ-stable and when it
is. If l∗(C(x)) is not σ-stable, then the pre-stability conditions are CP-glued. If l∗(C(x))
is σ-stable, we obtain stability conditions of the form of Lemma 3.12. We follow closely
[Bri08, Prop. 10.1].

We first introduce a lemma that will play a role in the characterization of the heart.

Lemma 3.38. [BM02, Prop. 5.4] Let X be a quasi-projective scheme, take a non-zero
object E of D(X) and let s ≥ 0 be an integer such that for all points x ∈ X,

Homi
D(X)(E,C(x))∗ = 0 unless 0 ≤ i ≤ s.

Then E is quasi-isomorphic to a complex of locally free sheaves of the form

0→ Ls → Ls−1 → · · · → L0 → 0.

In particular, E has homological dimension at most s.

Lemma 3.39. Let σ = (Z,A) be a pre-stability condition such that i∗(C(x)) is σ-stable,
j∗(C(x)) is σ-stable of phase one and l∗(C(x)) is not σ-stable.

We assume that i∗(C(x))[n] ∈ A. If E = E1
ϕ−→ E2 ∈ A, then H i(E1) = 0, unless

i = −n−1,−n. Also H i(E2) = 0 unless i = 0 and H i(C(ϕ)) = 0, unless i = −n−1,−n−2, 0.

Proof. First note that n ≥ 0, because l∗(C(x)) is not σ-stable. Indeed, it implies that
φ0 − φ2 ≤ 0. As φ2 = 1 we have φ0 ≤ 1, also 0 < φ(i∗(C(x))[n]) = φ0 + n ≤ 1. Combining
the inequalities above, we get n ≥ 0.

Let E ∈ A be a stable element with phase 0 < φ(E) < 1. As j∗(C(x)) is stable we have
that Homi

TC (E, j∗(C(x))) = 0, for all i < 0. By adjointness, we have

0 = Homi
TC (E, j∗(C(x))) = Homi

Db(C)(C(ϕ),C(x)).

https://arxiv.org/pdf/math/9908022.pdf
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Moreover, by stability we have Homi(i∗(C(x))[n], E) = 0, for all i < 0. By adjointness and
Serre duality in Db(C), we get

0 = Homi
TC (i∗(C(x))[n], E) = Homi

Db(C)(C(x)[n], C(ϕ)[−1]) = Homn−i+2
Db(C) (C(ϕ),C(x))∗,

i.e. Homj
Db(C)(C(ϕ),C(x)) = 0 for j > n+ 2. Therefore, we obtain Homi(C(ϕ),C(x)) = 0,

unless 0 ≤ i ≤ n + 2. By Lemma 3.38, it follows that C(ϕ) is isomorphic to a complex of
locally-free sheaves and

H i(C(ϕ)) = 0 unless − n− 2 ≤ i ≤ 0. (3.23)

Similarly, by the stability Homi(E, i∗(C(x))[n]) = 0, for all i < 0. By adjointness,

0 = Homi
TC (E, i∗(C(x))[n]) = Homi

Db(C)(E1,C(x)[n]) = Homi+n
Db(C)(E1,C(x)),

i.e. Homj
Db(C)(E1,C(x)) = 0 for j < n.

Since l∗(C(x)) is not σ-semistable then, from its HN-filtration, it follows that φ2 ≥ φ4 ≥ φ0,

it implies that
l∗(C(x))[n] ∈ P(0, n+ 1],

because j∗(C(x)) ∈ P(0, 1] and i∗(C(x))[n] ∈ P(0, 1]. As a consequence, we have

Homi(l∗(C(x))[n], E) = 0,

for all i < 0. By adjointness and Serre duality in Db(C), we get

0 = Homi
TC (l∗(C(x))[n], E) = Homi

Db(C)(C(x)[n], E1) = Homn+1−i
Db(C) (E1,C(x))∗,

i.e. Homj
Db(C)(E1,C(x)) = 0 for j > n + 1. Note that SC(C(x)) = C(x)[1] for every curve.

Consequently, we obtain Homi(E1,C(x)) = 0 unless n ≤ i ≤ n + 1. By Lemma 3.38, we
have that E1 is isomorphic to a length two complex of locally-free sheaves and

H i(E1) = 0 unless i = −n,−n− 1. (3.24)

We now prove a similar result for E2. In this case we use that j∗(C(x)) is stable of phase
one.

First of all, by the same reasoning as above l∗(C(x)) ∈ P(−n, 1]. Hence, we get

Homi(E, l∗(C(x))) = 0,
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for all i < 0. By adjointness, we obtain

0 = Homi
TC (E, l∗(C(x))) = Homi

Db(C)(E2,C(x)).

In addition, since j∗(C(x)) is stable of phase 1, we get Homi
TC (j∗(C(x)), E) = 0 for i ≤ 0.

By adjointness and Serre duality in Db(C), we have

0 = Homi
TC (j∗(C(x)), E) = Homi

Db(C)(C(x), E2) = Hom1−i
Db(C)(E2,C(x))∗,

i.e. Homj
Db(C)(E2,C(x)) = 0 for j > 0. Thus, we obtain Homi(E2,C(x)) = 0, unless i = 0.

By Lemma 3.38, we have that E2 is isomorphic to a length one complex of locally-free
sheaves and

H i(E2) = 0 unless i = 0. (3.25)

The triangle E1 → E2 → C(ϕ) induces a long exact sequence in cohomology

· · · → H i(E1)→ H i(E2)→ H i(C(ϕ))→ · · · .

As a consequence, we have that

H i(C(ϕ)) = 0 unless − n− 2,−n− 1, 0. (3.26)

If E � j∗(C(x)) is σ-stable with φ(E) = 1, we analogously obtain that

H i(E1) = 0 unless i = −n− 1 and H i(E2) = 0 for all i.

It implies that
H i(C(ϕ)) = 0 unless i = −n− 2

and that E1 is torsion free.

Lemma 3.40. Let σ = (Z,A) be a pre-stability condition such that l∗(C(x)), i∗(C(x)) are
σ-stable and j∗(C(x)) is σ-stable of phase one. Then, for E = E1

ϕ−→ E2 ∈ TC we have

1. If E ∈ A, then H i(Ej) = 0, unless i = 0, 1, for j = 1, 2. Also H i(C(ϕ)) = 0, unless
i = −1, 0. Moreover, H−1(C(ϕ)), H0(E1) are torsion-free.

2. If E is stable of phase one, then either E = j∗(T ), where T ∈ Coh(C) a torsion sheaf,
or E ∈ TCoh(C) with H0(C(ϕ)) = 0. We have that E1 and E2 are torsion-free.

3. TCoh(C) ⊆ P(0, 2]

4. The pair
T = TCoh(C) ∩ P(1, 2] and F = TCoh(C) ∩ P(0, 1]

defines a torsion pair of TCoh(C). Moreover, the heart A is the corresponding tilt.
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Proof. First note that i∗(C(x))[−1], l∗(C(x))[−1] ∈ A. Indeed, since there is a non-zero
morphism i∗(C(x))→ j∗(C(x)[1]) and both elements are stable, we obtain φ0 < φ2 + 1 = 2.
We now consider the non-zero morphism j∗(C(x))→ l∗(C(x)). Since both objects are stable,
as above it implies 1 = φ2 < φ4. Analogously we have a non-zero map l∗(C(x))→ i∗(C(x)).
It follows that 1 < φ4 < φ0 < 2. Therefore, we obtain 1 < φ4 < 2 and 1 < φ0 < 2.

We start by proving part one. Let E ∈ A be a stable element with phase 0 < φ(E) < 1. As
j∗(C(x)) is stable we have that Homi

TC (E, j∗(C(x))) = 0, for all i < 0. By adjointness, we
have

0 = Homi
TC (E, j∗(C(x))) = Homi

Db(C)(C(ϕ),C(x)).

Moreover, by stability we have Homi(i∗(C(x))[−1], E) = 0, for all i < 0. By adjointness
and Serre duality in Db(C), we get

0 = Homi
TC

(i∗(C(x))[−1], E) = Homi
Db(C)(C(x)[−1], C(ϕ)[−1]) = Hom1−i

Db(C)(C(ϕ),C(x))∗,

i.e. Homj
Db(C)(C(ϕ),C(x)) = 0 for j > 1. Therefore, we obtain Homi(C(ϕ),C(x)) = 0,

unless 0 ≤ i ≤ 1. By Lemma 3.38, it follows that C(ϕ) is isomorphic to a length two
complex of locally-free sheaves and

H i(C(ϕ)) = 0 unless i = −1, 0. (3.27)

Similarly, by stability Homi(E, i∗(C(x))[−1]) = 0, for all i < 0. By adjointness,

0 = Homi
TC (E, i∗(C(x))[−1]) = Homi

Db(C)(E1,C(x)[−1]) = Homi−1
Db(C)(E1,C(x)).

Once again, by stability Homi(l∗(C(x))[−1], E) = 0, for all i < 0. By adjointness and Serre
duality in Db(C), we get

0 = Homi
TC

(l∗(C(x))[−1], E) = Homi
Db(C)(C(x)[−1], E1) = Hom−i

Db(C)(E1,C(x))∗,

i.e. Homj
Db(C)(E1,C(x)) = 0 for j > 0. Note that SC(C(x)) = C(x)[1] for every curve.

Consequently, we obtain Homi(E1,C(x)) = 0 unless −1 ≤ i ≤ 0. By Lemma 3.38, we have
that E1 is isomorphic to a length two complex of locally-free sheaves and

H i(E1) = 0 unless i = 0, 1. (3.28)

We prove a similar result for E2. In this case we use that j∗(C(x)) is stable of phase one.
First of all, as above by stability Homi(E, l∗(C(x))[−1]) = 0, for all i < 0. By adjointness,
we obtain

0 = Homi
TC (E, l∗(C(x))[−1]) = Homi

Db(C)(E2,C(x)[−1]) = Homi−1
Db(C)(E2,C(x)).
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In addition, since j∗(C(x)) is stable of phase 1, we get Homi
TC (j∗(C(x)), E) = 0 for i ≤ 0.

By adjointness and Serre duality in Db(C), we have

0 = Homi
TC (j∗(C(x)), E) = Homi

Db(C)(C(x), E2) = Hom1−i
Db(C)(E2,C(x))∗,

i.e. Homj
Db(C)(E2,C(x)) = 0 for j > 0. Thus, we obtain Homi(E2,C(x)) = 0, unless

−1 ≤ i ≤ 0. By Lemma 3.38, we have that E2 is isomorphic to a length two complex
of locally-free sheaves and

H i(E2) = 0 unless i = 0, 1. (3.29)

This concludes the proof of the first part.

We now proceed to prove the second part. Let E ∈ P(1) be a stable object, which is not
isomorphic to j∗(T ), where T is a torsion sheaf. We have that HomTC (E, j∗(C(x))) = 0,
which implies Homi

Db(C)(C(ϕ),C(x)) = 0, unless i = 1. By Lemma 3.38,

H i(C(ϕ)) = 0 unless i = −1.

Since the phase of E is one, we have that Homi
TC (E, i∗(C(x))[−1]) = 0, for i ≤ 0. It follows

that Homi
TC (E1,C(x)) = 0 unless i = 0. By Lemma 3.38,

H i(E1) = 0 unless i = 0.

Once again, by stability Homi(E, l∗(C(x))[−1]) = 0, for i ≤ 0. It implies that
Homi(E2,C(x)) = 0 unless i = 0. By Lemma 3.38,

H i(E2) = 0 unless i = 0.

This completes the proof of the second part.

For the third part, we assume that E ∈ TCoh(C). If F ∈ P((2,∞)), then by the first
part F ∈ D≤−2 ⊆ D≤−1, where (D≤0, D≥0) is the standard t-structure. Consequently,
we have 0 = HomTC (D≤0, D≥1) = Hom(D≤−1, D≥0), therefore HomTC (F,E) = 0. Analo-
gously, we have that if B ∈ P(≤ 0), then B ∈ D≥1. As HomTC (D≤0, D≥1) = 0, we obtain
HomTC (E,B) = 0. It follows that E ∈ P(0, 2].

We now prove the fourth part. Let E ∈ TCoh(C). By the third part of the statement, there
is a triangle

A→ E → B → A[1],

where A ∈ P(1, 2] and B ∈ P(0, 1]. It induces triangles

i∗(A)→ i∗(E)→ i∗(B)→ i∗(A)[1],
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j!(A)→ j!(E)→ i!(B)→ i!(A)[1],

and
j∗(A)→ j∗(E)→ j∗(B)→ j∗(A)[1].

We obtain a long exact sequence

→ H−1(i∗(A))→ H−1(i∗(E))→ H−1(i∗(B))→ H0(i∗(A))→ H0(i∗(E))→ H0(i∗(B))

→ H1(i∗(A))→ H1(i∗(E))→ H1(i∗(B))→ 0.

By (3.28), we have H i(i∗(B)) = 0 unless i = 0, 1 and H i(i∗(A)) = 0 unless i = −1, 0.
Taking the long exact sequence, we obtain that H−1(i∗(A)) = H1(i∗(B)) = 0. This implies
that i∗(A), i∗(B) ∈ Coh(C).

Analogously, by (3.29), we have j!(A), j!(B) ∈ Coh(C) and we obtain A,B ∈ TCoh(C).

Moreover, if A ∈ T , we have additional information. Indeed, by (3.27), we have
H i(j∗(B)) = 0 unless i = −1, 0 and H i(j∗(A)) = 0 unless i = −2,−1. After taking the long
exact sequence we obtain H i(j∗(A)) = 0 unless i = −1. As a consequence, if A = A1

g−→ A2,

it follows that Coker(g) = 0 and
A = A1 � A2.

By applying Serre duality of doing exactly the same proof under the new hypothesis, we
obtain the following results.

Lemma 3.41. Let σ = (Z,A) be a pre-stability condition such that j∗(C(x)), i∗(C(x)) are
σ-stable and i∗(C(x)) is σ-stable of phase one. Then, for E = E1

ϕ−→ E2 ∈ TC we have

1. If E ∈ A, then H i(Ej) = 0, unless i = −1, 0, for j = 1, 2. Also H i(C(ϕ)) = 0, unless
i = −1, 0. We also have that H−1(E1), H−1(E2) are torsion-free.

2. If E is stable of phase one, then either E = i∗(T ), where T ∈ Coh(C) is a torsion sheaf,
or E ∈ H31 with H0(E1) = 0. Moreover, we have that E2 and C(ϕ) are torsion-free.

3. H31 ⊆ P(0, 2]

4. The pair
T = H31 ∩ P(1, 2] and F = H31 ∩ P(0, 1]

defines a torsion pair of H31. Moreover, the heart A is the corresponding tilt.

Lemma 3.42. Let σ = (Z,A) be a pre-stability condition such that i∗(C(x)), j∗(C(x)) are
σ-stable and l∗(C(x)) is σ-stable of phase one. Then, for E = E1

ϕ−→ E2 ∈ TC we have

1. If E ∈ A, then H i(E1) = 0, unless i = 0, 1 and H i(E2) = 0, unless i = 0,−1. Also



123 Chapter 3. Bridgeland stability conditions of holomorphic triples over curves

H i(C(ϕ)) = 0, unless i = −1, 0. We also have that H−1(C(ϕ)), H−1(E2) are torsion-
free.

2. If E is stable of phase one, then either E = l∗(T ), where T ∈ Coh(C) a torsion sheaf,
or E ∈ H23 with H0(E2) = 0 and H0(E1) torsion-free sheaves.

3. H23 ⊆ P(0, 2]

4. The pair
T = H23 ∩ P(1, 2] and F = H23 ∩ P(0, 1]

defines a torsion pair of H23. Moreover, the heart A is the corresponding tilt.

Remark 3.43. See Remark 2.76 for the definition of H23 and H31.

We study now the orbit of σ ∈ Θ12 under the action of G̃L
+

(2,R) in order to choose a
simpler representative.

Proposition 3.44. For every σ ∈ Θ12, there is g ∈ G̃L
+

(2,R) such that for σg = (Z,A)
we can find stability conditions

σ1 = (Z1,Cohr(C)) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

with Cohr1(C) ⊆ A and r > −1, Coh2(C) ⊆ A, Z
∣∣
D1

= Z1 and Z
∣∣
D2

= Zµ.

Proof. By the stability of i∗(C(x)) and i∗(OC), we have φ1 < φ0 < φ1 + 1. Therefore we
can find an orientation preserving transformation M : R2 → R2 satisfying that

(A,D) 7→ (−1, 0)
(B,C) 7→ (0, 1),

where Z(i∗(C(x)) = A+Di and Z(i∗(OC)) = B+Ci. There is an increasing function f : R→
R that satisfies f(x + 1) = f(x) + 1 with f(1) = φ0,

f(1/2) = φ1, whose restriction to S1 agrees with the restriction of T := M−1 to S1. We ob-
tain
(T, f) ∈ G̃L

+
(2,R). The stability condition σ′ := σ(T, f) satisfies

Z
′(r1, d1, 0, 0) = −d1 + r1i and Coh1(C) ⊆ A′ ,

where σ′ = (Z ′ ,A′). Indeed, we have

i∗(C(x)) ∈ P(φ0) = P(f(1)) = P ′(1),
i∗(OC) ∈ P(φ1) = P(f(1/2)) = P ′(1/2),
i∗(L) ∈ P(φL) = P(f(tL)) = P ′(tL),
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with tL ∈ (0, 1). Therefore, all skyscraper sheaves and line bundles in Coh1(C) are in
P ′(0, 1]. Since any object in Coh1(C) admits a filtration with quotients either isomorphic
to skyscraper sheaves or to line bundles, we obtain Coh1(C) ⊆ A′ .

As the action of G̃L
+

(2,R) on the set of pre-stability conditions preserves the stability of
the objects and j∗(C(x)), j∗(OC) are σ-stable, we have φ3 < φ2 < φ3 + 1 in σ′ . Therefore,
we can find g1 = (T1, f1) ∈ G̃L

+
(2,R), such that σ′′ := σ′(T1, f1) satisfies Z ′′

∣∣∣
D2

= Zµ and
Coh2(C) ⊆ A′′ .

Moreover, if we consider σ1 = (Z1,Cohr(C)) ∈ Stab(C) with f1(0) = r ∈ R, which under
our correspondence with G̃L

+
(2,R) is (T1, f1) ∈ G̃L

+
(2,R), then σ

′′ also satisfies that
Z
′′
∣∣∣
D1

= Z1 and Cohr1(C) ⊆ A′′ . Indeed, by definition Z
′′ = T−1

1 ◦ Z ′ . Consequently, we

can assert that Z ′′
∣∣∣
D1

= T−1
1 ◦ Zµ.

We now show that Cohr1(C) ⊆ A′′ , where f1(0) = r = n+ θ, and n ∈ Z and θ ∈ [0, 1). We
prove it in several steps. We first show that Coh1(C)[n] ⊆ P(−1, 1]. Then, we construct a
torsion pair of Coh1(C)[n] and we compare it with Coh(C)[n] = 〈Tθ[n],Fθ[n]〉, which is the
torsion pair given in Remark 1.83.

We first show that i∗(C(x)[n]) ∈ A′′ . Note that f1(φ0) = 1, because

i∗(C(x)) ∈ P ′(1) = P ′′(f−1
1 (1)) = P ′′(φ0)

and f1(−n) = θ.

We apply f−1
1 to the following inequality

θ < 1 ≤ θ + 1

and we obtain
− n < φ0 ≤ −n+ 1, (3.30)

which is equivalent to i∗(C(x)[n]) ∈ A′′ .

Note that −n < 2. Indeed, let us consider the non-zero morphism i∗(C(x)) → j∗(C(x))[1].
By the stability of i∗(C(x)) and j∗(C(x)) in σ′′ , we get φ0 < φ2 + 1. As φ2 = 1, it implies
that φ0 < 2. By Equation (3.30), we obtain

−n ≤ 1.

Claim 3.45. f1(0) = r > −1

Proof. Since r = n+ θ and n ≥ −1, we obtain r ≥ −1. We just need to prove that r 6= −1.
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We prove it by contradiction. Assume that r = −1. Then if

Z1(r1, d1) = A1d1 +Br1 + (C1r1 +D1d1)i,

we get D1 = 0. By the stability of i∗(C(x)) and j∗(C(x)) in σ′′ , we get φ0 < 2. But, by the
definition of Z1, we obtain φ0 = φ(i∗(C(x))[−1]) + 1 = 2, which is a contradiction.

We now study line bundles L.

Note that f1(φL) = tL, with tL ∈ (0, 1) because

i∗(L) ∈ P ′(tL) = P ′′(f−1(tL)) = P ′′(φL).

The proof falls naturally into two cases:

Case 1: θ < tL ≤ θ + 1

We apply f−1
1 to the following inequality

θ < tL ≤ θ + 1

and we obtain
− n < φL ≤ −n+ 1, (3.31)

which is equivalent to i∗(L[n]) ∈ A′′ .

Case 2: θ − 1 < tL ≤ θ

We apply f−1
1 to the following inequality

θ − 1 < tL ≤ θ

and we obtain
− n− 1 < φL ≤ −n, (3.32)

which is equivalent to i∗(L[n+ 1]) ∈ A′′ .

Claim 3.46. Coh1(C) ⊆ P(−1, 1]

Proof. We just proved that all line bundles and the the skyscraper sheaves are in
P(−n− 1,−n+ 1], therefore Coh1(C)[n] ⊆ P(−1, 1]. We set

T1 = Coh1(C)[n] ∩ P(0, 1] and F1 = Coh1(C)[n] ∩ P(−1, 0].

Claim 3.47. 〈T1,F1〉 is a torsion pair of Coh1(C)[n].
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Proof. The proof falls naturally into two cases:

Case 1: l∗(C(x)) is not σ′′-stable.

Let E ∈ Coh(C). We have E[n] ∈ Coh(C)[n]. Since Coh1(C)[n] ⊆ P(−1, 1], there are
elements T ∈ P(0, 1] and F ∈ P(−1, 1] such that

0→ T → i∗(E)[n]→ F → 0.

We want to show that T, F ∈ Coh1(C)[n].

We apply the long exact sequence in cohomology and we obtain

· · · → H i(T1)→ H i(E[n])→ H i(F1)→ · · · .

By Lemma 3.39, we have that H i(T1) = 0 unless i = −n,−n − 1 and H i(F1) = 0 unless
i = −n,−n+ 1. Then, we obtain that H i(T1) = H i(F1) = 0 unless i = −n.

We also obtain the long exact sequence

· · · → H i(T2)→ 0→ H i(F2)→ · · · .

Since H i(T2) = 0 unless i = 0 and H i(F2) = 0 unless i = 1, we obtain that T2 = F2 = 0.

Therefore, we obtain T, F ∈ Coh1(C)[n] as desired. As a consequence, we have that
Coh1(C)[n] = (T1,F1) and T1,F1[1] ⊆ A′′ .

Case 2: l∗(C(x)) is σ′′-stable.

Note that the stability of l∗(C(x)) implies, as proved in Lemma 3.40, that n = −1 and that
l∗(C(x))[−1] ∈ A′′ .

Let E ∈ Coh(C). We have E[−1] ∈ Coh(C)[−1]. Since Coh1(C)[−1] ∈ P(−1, 1], there are
elements T ∈ P(0, 1] and F ∈ P(−1, 1] such that

0→ T → i∗(E)[−1]→ F → 0.

We want to show that T, F ∈ Coh1(C)[−1].

We apply the long exact sequence in cohomology and we obtain

· · · → H i(T1)→ H i(E[−1])→ H i(F1)→ · · · .

By Lemma 3.40, we have H i(T1) = 0 unless i = 0, 1 and H i(F1) = 0 unless i = 1, 2. Then,
we obtain that H i(T1) = H i(F1) = 0 unless i = 1.
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We also obtain the long exact sequence

· · · → H i(T2)→ 0→ H i(F2)→ · · · .

Since H i(T2) = 0 unless i = 0, 1 and H i(F2) = 0 unless i = 1, 2 we obtain that
T2 = F2 = 0.

We now proceed to prove that Cohr1(C) ⊆ A′′ .

We now show that T1 = Tθ and F1 = Fθ It is enough to show that Tθ ⊆ T1 and Fθ ⊆ F1,

where Coh(C) = (Tθ,Fθ) is the torsion pair described in Remark 1.83 (up to shift) and
θ 6= 0.

Let E ∈ Coh(C) be a slope stable torsion free sheaf, such that E[n] ∈ Coh(C)[n]. Let

0→ T → i∗(E)[n]→ F → 0

be the triangle induced by the torsion pair (T1,F1). Since i∗(F [1]) ∈ A′′ and i∗(T ) ∈ A′′ ,
then =(Z)(i∗(T )) > 0, which implies µ(T [−n]) > − cot(θπ) and =(Z)(i∗(F )) ≤ 0, which
implies µ(F [−n]) ≤ − cot(θπ). Since E is stable and

0→ T [−n]→ E → F [−n]→ 0

is a triangle in Coh(C), we get

µ(T [−n]) < µ(i∗(E)) < µ(F [−n])

which is a contradiction. Then, either T = 0 or F = 0. it follows that E[n] ∈ T1 or
E[n] ∈ F1.

Clearly if µ(E) > − cot(θπ), then E[n] ∈ T1 and if µ(E) < − cot(θπ), then i∗(E)[n] ∈ F1.

The only missing case is if µ(E) = − cot(θπ). By the stability of i∗(C(x)) and i∗(OC), we
obtain that

det
[
−A1 B1

−D1 C1

]
> 0.

It follows that Z(i∗(E)[n]) ∈ R>0 and i∗(E)[n] ∈ F1.

If θ = 0, then T θ1 = Coh(C)[n] and Fθ1 = 0. Since r ∈ Z, we obtain

Z1(r, d) = A1d1 +Br1 + (Cr1)i,

i.e. D1 = 0. It implies that for all E ∈ Coh(C)[n] we have =(Z)(i∗(E)) ≥ 0. As a conse-
quence T1 = Coh1(C)[n]. Therefore Cohr1(C) ⊆ A′′ .

Remark 3.48. Let us consider σ ∈ Θ12 and g′ = (T ′, f ′) ∈ G̃L
+

(2,R). By Proposition
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3.44, there is g = (T, f) ∈ G̃L
+

(2,R) such that for σg = (Z,A) we can find stability
conditions

σ1 = (Z1,Cohr(C)) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

with Cohr1(C) ⊆ A and r > −1, Coh2(C) ⊆ A. Note that the proof of the inclusion of
the hearts in A depends only on the stability of i∗(C(x)) and j∗(C(x)) for all x ∈ C and
i∗(L) and j∗(L), for every line bundle L. As a consequence, we obtain that σgg′ = (Z ′,A′)
satisfies that

Cohf◦f
′(0)

1 (C) ⊆ A′ and Cohf
′(0)

2 (C) ⊆ A′.

The following lemma gives us some CP-glued stability conditions in Θ12.

Lemma 3.49. Let σ = (Z,A) ∈ Θ12, such that there are stability conditions

σ1 = (Z1,Cohr(C)) = (T1, f1) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

with Cohr1(C) ⊆ A, Coh2(C) ⊆ A, and Z
∣∣
D1 = Z1 and Z

∣∣
D2 = Zµ. If f1(0) = r ≥ 0, then

σ = gl12(σ1, σµ).

Proof. Since σ1 and σ2 satisfy gluing conditions i.e f1(0) ≥ f2(0) = 0, then there is
σ12 = gl12(σ1, σ2) ∈ Stab(TC). It follows directly from Proposition 2.85 that σ = σ12.

We now study pre-stability conditions σ = (Z,A) ∈ Θ12. For

σ1 = (Z1,Cohr(C)) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

we have Cohr1(C) ⊆ A, Coh2(C) ⊆ A, Z
∣∣
D1 = Z1, Z

∣∣
D2 = Zµ, and

−1 < r = n+ θ = f1(0) < 0,

where n ∈ Z and θ ∈ [0, 1) and σ1 is given by (T1, f1) under the correspondence with
G̃L

+
(2,R).

Claim 3.50. l∗(C(x)) is σ-stable.

Proof. We prove it by contradiction. Assume that l∗(C(x)) is not stable. By Remark
3.26 it implies that φ0 − φ2 ≤ 0. Since φ2 = 1 in σ, then φ0 ≤ 1. We also know that
−n < φ0 ≤ −n + 1, because Cohr1 ⊆ A. After combining these equations, we have n ≥ 0.
Therefore n+ θ = f1(0) ≥ 0, which contradicts our assumption.

3.2.2 Pre-stability conditions in Θ23 and Θ31

We have the analogous statement of Proposition 3.44 for Θ23 and Θ31. We leave the proof
to the reader, since it follows exactly the same steps as the result for Θ12.
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Proposition 3.51. For every σ ∈ Θ23, there is a g ∈ G̃L
+

(2,R) such that for σg = (Z,A)
we can find stability conditions

σ3 = (Z3,Cohr(C)) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

with Cohr3(C) ⊆ A, Coh2(C) ⊆ A, r < 0, Z
∣∣
D3 = Z3 and Z

∣∣
D2 = Zµ.

Proposition 3.52. For every σ ∈ Θ31, there is a g ∈ G̃L
+

(2,R) such that for σg = (Z,A)
we can find stability conditions

σ3 = (Z3,Cohr3(C)) and σ1 = (Z1,Cohr1(C)) ∈ Stab(C)

with Cohr3
3 (C) ⊆ A, Cohr1

1 (C) ⊆ A, with r3 − r1 > 0, Z
∣∣
D3 = Z3, Z

∣∣
D1 = Z1 and

M3 −M1 = I.

3.2.3 Non-gluing pre-stability conditions

We now study pre-stability conditions σ on TC satisfying that i∗(C(x)) and l∗(C(x)) are
stable, where j∗(C(x)) is stable with phase one and j∗(OC) has phase 1/2. Note that as
proved in Lemma 3.40, we have l∗(C(x))[−1] ∈ A. We use Lemma 3.40 to prove that these
stability coditions are precisely given by the pair (Z,Ar) constructed in Lemma 3.14.

Lemma 3.53. Let σ = (Z,A) be a pre-stability condition on TC such that i∗(C(x)), l∗(C(x))
are σ-stable and the object j∗(C(x)) and j∗(OC) are in A and are also σ-stable with

Z([j∗(C(x))]) = −1 and Z([j∗(OC)]) = i.

Then σ is given by the pairs constructed in Lemma 3.14.

Proof. It suffices to show the statement for σ ∈ Θ12, the other two cases follow analogously.
By Proposition 3.44, there are stability conditions

σ1 = (Z1,Cohr(C)) and σ2 = (Zµ,Coh(C)) ∈ Stab(C),

such that Cohr1(C) ⊆ A and Coh2(C) ⊆ A, with Z
∣∣
D1 = Z1 and Z

∣∣
D2 = Zµ. Note that

−1 < f1(0) < 0, where σ1 = (T1, f1) ∈ G̃L
+

(2,R). First of all we show that Z is given
by Proposition 3.13. Our stability function Z is completely determined by Z1 and Zµ,

therefore it has the following form

Z(r1, d1, r2, d2) = Ad1 +Br1 − d2 + i(Cr1 +Dd1 + r2).
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We define

M := T−1
1 =

[
−A B

−D C

]
.

Since σ1 is a stability condition, we have that det(M) > 0. As −1 < f1(0) < 0, then
D = m0 sin(φ0π), where m2

0 = (A2 + D2). By Lemma 3.40, we obtain 1 < φ0 < 2 and
D < 0.

We now show that det(M+I) > 0. If Tr(M) ≥ 0, there is nothing to prove as det(M+I) =
det(M) + Tr(M) + 1 > 0.

Claim 3.54. If Tr(M) < 0, then l∗(OC) is σ-stable.

Proof. We assume that −A + C < 0 and that l∗(OC) is not σ-stable. Then φ1 − φ3 ≤ 0.
By hypothesis φ3 = 1/2 and 0 < φ1 < 2. Therefore, we have 0 < φ1 ≤ 1/2, which implies
B > 0, C ≥ 0, as B = m1 cos(φ1π) and C = m1 sin(φ1π), with m2

1 = B2 +C2. Since D < 0,
it implies BD ≤ 0. As det(M) = −AC + BD > 0, we obtain −AC > 0. As a consequence
−A > 0 and −A+ C > 0, which contradicts our assumption.

Under the assumption that Tr(M) < 0, we have that l∗(OC) is σ-stable. Since l∗(C(x))
and l∗(OC) are stable, we obtain φ5 < φ4 < φ5 + 1 which is equivalent to the fact that
det(M + I) > 0, as we have shown in Lemma 1.85.

We consider the torsion pair (T ,F) = TCoh(C) given in Lemma 3.40. We are going to show
that it is equal to the torsion pair (T ′ ,F ′) given by Lemma 3.8. Note that j∗(C(x)) ∈ F .
It is enough to show that T ′ ⊆ T and F ′ ⊆ F .

Let us take a torsion-free λ-semistable object E = E1 → E2 ∈ T ′, which by definition
satisfies λ(E) > 3/4. There is a short exact sequence

0→ T → E → F → 0,

with T ∈ T and F = F1 → F2 ∈ F . By Lemma 3.40 and Lemma 3.8 we have that
i!(E), i!(T ) ∈ Coh(C). It follows that i!(F ) ∈ Coh(C).

As F1 is torsion-free and F1 � F2, then F 6= 0 → G2, where G2 is a torsion sheaf. We
apply Lemma 3.2 and we obtain that

3/4 < λ(E) ≤ λ(F ) ≤ 3/4,

which gives us a contradiction and it implies that E ∈ T .

Let us take a λ-semistable torsion-free object E = E1 → E2 ∈ F ′, and by definition
λ(E) ≤ 3/4. We start with the case λ(E) < 3/4. There is a short exact sequence

0→ T → E → F → 0,
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with T ∈ T and F ∈ F . We get λ(T ) ≥ 3/4 and λ(F ) ≤ 3/4. If T 6= 0, then by
λ-semistability

3/4 ≤ λ(T ) ≤ λ(E) < 3/4,

which give us a contradiction and it implies that E ∈ F.

Let us take a torsion-free λ-semistable object E = E1
ϕ−→ E2 ∈ F ′ with λ(E) = 3/4.

Consider the short exact sequence

0→ T → E → F → 0,

with T ∈ T and F ∈ F . Note that

3/4 ≤ λ(T ) ≤ λ(E) = 3/4,

so that
3/4 = λ(T ).

We show that T = 0.

If T = T1
ϕ′−→ T2, we get T [−1] ∈ P ′(1). Moreover by Lemma 3.40, we have that P ′(1) ⊆

TCoh(C) which implies directly that T = 0.

Note that for all torsion-free objects E ∈ T ′ , after using its Harder-Narasimhan filtration,
we obtain that E ∈ T . Analogously for E ∈ F ′ .

If E ∈ T ′ is not a torsion-free object, we consider its decomposition

0→ T → E → F → 0

in (T ,F). As E ∈ T ′ and T ′ is closed under quotients, we get F ∈ T ′. But as we proved
in Lemma 3.12 =(Zr(E)) = =(Z(E)) < 0 for every object E ∈ T ′, then =(Z(F )) < 0. But
F ∈ A then =(Z(F )) ≥ 0. Which gives us a contradiction. As a consequence F = 0, and
we obtain that E ∈ T .

If E ∈ F ′ , by definition of F ′ , we have that F (E) ∈ F ′ and therefore F (E) ∈ F . Moreover,
as i∗(E) is torsion-free, we obtain that T (E) ∈ Coh2(C) ⊆ F . Therefore, we obtain that
E ∈ F .

Consequently T = T ′ and F = F ′ .

Remark 3.55. Under the assumption of the last proposition, for σ ∈ Θ12 we can define
a third stability condition σ3 = ((M + I)−1, f3) ∈ Stab(C), where the integer part of
f3(0) = r3 is −1. As explained before to characterize σ3 it is enough to give f3 : R/2Z →
R/2Z, which is determined by (M+I)−1 and the integer part of f3(0). Note that by Lemma
3.17 Cohr3

3 (C) ⊆ A.
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Proposition 3.56. Let σ be pre-stability condition in Θ12. There is an element
g ∈ G̃L

+
(2,R) such that σg is given by a CP-glued pre-stability condition or one constructed

by tilting in Subsection 3.1.

Proof. After applying Proposition 3.44, it follows directly from Lemma 3.49 and Lemma
3.53.

3.2.4 Characterising CP-glued pre-stability conditions in Θ12

Note that the CP-glued pre-stability conditions are not invariant under the G̃L
+

(2,R)-
action. As a consequence, it makes sense to define the following sets. Recall that Θi is the
set consisiting of pre-stability conditions, for i = 1, 2 or 3, which are, up to the action of
G̃L

+
(2,R), CP-glued with respect to the semiorthognal decomposition 〈Di,

⊥Di〉.

Claim 3.57. The set Θ1 ⊆ Θ12

Proof. It follows directly from Proposition 2.85.

The aim of this section is to characterize the sets Θi inside Θ12 i.e. to study CP-glued pre-
stability conditions up to the G̃L

+
(2,R)-action. It is a remarkable fact that the description

is completely given in terms of linear algebra. Moreover, we use this classification to prove
the support property, i.e. to prove that already constructed pre-stability conditions are
Bridgeland stability conditions.

Condition (*): If σ ∈ Θ12 satisfies that there are stability conditions σ1 = (Cohr1(C), Z1)
and σ2 = (Coh2(C), Zµ) ∈ Stab(C) with Cohr1(C) ⊆ A, Coh(C)2 ⊆ A, and Z

∣∣
C1 = Z1 and

Z
∣∣
C2 = Zµ. Let f1(0) = n + θ, with n ∈ Z and θ ∈ [0, 1), we say that it satisfies condition

(*). Let σ ∈ Θ12. By Proposition 3.44, we have that there is g ∈ G̃L
+

(2,R), such that σg
satisfies condition (*).

Under condition (*), we define f12(σ)(x) = f1(x)− x.

From now on we assume that σ satisfies condition (*) and σ1 = (T, f1). If f12(σ)(0) ≥ 0 by
Proposition 3.49, we already know that σ ∈ Θ1. We now assume f12(σ)(0) < 0. We would
like to understand when σ ∈ Θ12 is in Θi, for i = 1, 2, 3.

Recall that by Remark 3.55 there is also σ3 = (Z3,Cohr3(C)) with Z
∣∣
D3 = Z3 and

Cohr3
3 (C) ⊆ A, and we can also define

f23(σ)(x) = x− f3(x) and f31(σ)(x) = f2(x)− f1(x).

The following lemma characterizes Θ1 inside Θ12.
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Lemma 3.58. Let σ as in (*), such that f12(σ)(0) < 0. There is a t ∈ R such that
f12(σ)(t) = 0 if and only if σ ∈ Θ1.

Proof. Assume that there is t ∈ R such that f12(σ)(t) = 0. Since f2(t) = t, it implies that
f1(t) = t. Let g = (Ktπ, ftπ) ∈ G̃L

+
(2,R). We would like to show that σg = gl12(σ1g, σ2g).

Since f1◦ftπ(0) = f1(t) = t and f2◦ftπ(0) = f2(t) = t, as a consequence f12(σg)(0) = 0 and
it follows directly from Lemma 2.86 that σg = gl12(σ1g, σ2g). Therefore, we obtain σ ∈ Θ1.

We now assume that σ ∈ Θ1, i.e. that there is g ∈ G̃L
+

(2,R) such that σg satisfies
gluing conditions for σ1g and σ2g. Without losing generality, we take g = (Klπ, flπ) ∈
G̃L

+
(2,R), with l ∈ R Thus, f1(l) = (f1 ◦flπ)(0) ≥ (f2 ◦flπ)(0) = flπ(0) = l. By hypothesis

f12(σ)(0) < 0, but also f12(σ)(l) ≥ 0. Since f12(σ)(x) is a continuous function, there is a
t ∈ R that satisfies f12(σ)(t) = 0, as we desired.

Remark 3.59. [Fixed point] Since in our case f12(σ)(x) = f1(x) − x, then f12(σ)(x) = 0
if and only if there is x ∈ R such that f1(x) = x. After using that the restrictions of f1 and
T to S1 agree, the search of points x ∈ R such that f1(x) = x reduces to the study of the
eigenvectors of T.

Let

M := T−1 =
[
−A B

−D C

]
.

We now study the characteristic polynomial p(x) = x2 − Tr(M)x+ det(M) of M. It plays
an important role in determining if σ ∈ Θi for some i = 1, 2, 3. The sign of the discriminant
∆(M) = Tr(M)2 − 4 det(M) of p(x) tells us about the existence of real eigenvalues.

Proposition 3.60. If f12(σ)(0) < 1, the discriminant of ∆(M) = Tr(M)2 − 4 det(M) is
non-negative and the eigenvalues are positive, then σ = (Z,TCohl(C)), with l ∈ R and
−1 < l ≤ 1. Moreover σ ∈ Θ1.

Proof. Since ∆(M) ≥ 0, it guarantees the existence of real eigenvalues. By hypothesis
the eigenvalues are positive. The same follows for T1. Let λ ∈ R be an eigenvalue of T1

and v ∈ R2 its corresponding eigenvector. We obtain T1v = λv. Let us consider the polar
coordinates of v = (m cos(φ),m sin(φ)) with φ ∈ (−π, π] and m ∈ R>0.

We claim now that σg ∈ Θ1, where g = (Kφ, fφ) ∈ G̃L
+

(2,R).

First of all we consider σ1g = (T1Kφ, f1 ◦ fφ). Let us show that f1 ◦ fφ(0) = φ/π. By
the correspondence between f1 ◦ fφ and T1Kφ over S1, it suffices to compute T1Kφv0,

where v0 = (1, 0). We have (T1Kφ)v0 = T1(1/m)v. Since (cos(φ), sin(φ)) is an eigenvector,
we get (T1Kφ)v0 = λ/mv. Consequently, if we study the induced map f1 : S1 → S1, where
S1 = (−1, 1], we obtain f = (f1◦fφ)(0) = f1(φ/π) = φ/π. Therefore, (f1◦fφ)(0) = φ/π+2k
over R with k ∈ Z.
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Due to the fact that f is an increasing continuous function and −1 < φ/π < 1, we have
that −2 < f(−1) < φ/π+ 2k < f(1) = f(0) + 1 < 2 and it implies k = 0, k = 1 or k = −1.
If k = 1, then −2 < φ/π + 2 < 2 and 1 < φ/π + 2 < 3. It follows that −1 < φ/π < 0 and
−2 < f(φ/π) < 1, i.e. −2 < φ/π + 2 < 1. This clearly forces −4 < φ/π < −1, which is
impossible. If k = −1, then −2 < φ/π − 2 < 2 and −3 < φ/π − 2 < −1. It implies that
0 < φ/π < 1 and −1 < f(φ/π) < 2, i.e. −1 < φ/π − 2 < 2. This forces 1 < φ/π < 4, which
is impossible. As a consequence k = 0.

We now consider σ2g = (Kφ, fφ). By definition fφ(0) = φ/π.

As a consequence f12(σg) = 0. By Lemma 2.85, it is clear that

σg = (Z,TCohφ(C)) = gl12(σ1g, σ2g).

Remark 3.61. Note that since det(M) > 0, we have that both eigenvalues have the same
sign, i.e. they are both positive or both negative.

Remark 3.62. Note that from Lemma 3.60 and Remark 3.59, we obtain that if σ ∈ Θ12

satisfies (*), then σ ∈ Θ1 if and only if the eigenvalues of M are positive.

Remark 3.63. Note that by Lemma 3.58, if ∆(M) < 0, then σ can never be in Θ1.

The study of negative eigenvalues of M is closely related to studying the other gluing cases
appearing in Θ12.

Under the assumption that the discriminant ∆(M) = Tr(M)2 − 4 det(M) of M is non-
negative and that the eigenvalues λ1, λ2 of M are both negative we prove the following
lemmas.

Lemma 3.64. If det(M + I) > 0, then there are just two options

λ1, λ2 < −1 and λ1, λ2 > −1.

Proof. It is well-known that det(M + I) = det(M) + 1 + Tr(M). Since the eigenvalues of
M are negative, we also know that Tr(M) < 0. The proof falls naturally into two cases:

Case 1: Tr(M)/2 < −1.

From the quadratic formula, it follows that one of the eigenvalues is λ1 = Tr(M)−
√

∆(M)
2 <

−1. We want to show that the other eingenvalue staisfies λ2 = Tr(M)+
√

∆(M)
2 < −1. Note

that −Tr(M) − 2 > 0. As −det(M) < Tr(M) + 1, after multiplying by 4 and adding
Tr(M)2, we obtain

Tr(M)2 − 4 det(M) < Tr(M)2 + 4 Tr(M) + 4.
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After taking square roots, we obtain Tr(M)+
√

∆(M)
2 < −1.

Case 2: 0 > Tr(M)/2 > −1.

We already know that λ1 and λ2 are negative. Therefore, it suffices to show that λ2 =
Tr(M)−

√
∆(M)

2 > −1. Note that Tr(M) + 2 > 0. Analogously, we get Tr(M)−
√

∆(M)
2 > −1.

Case 3: If Tr(M)/− 2 = −1 As before we obtain

Tr(M)2 − 4 det(M) < Tr(M)2 + 4 Tr(M) + 4
∆(M) < 0,

which contradicts our hypothesis. Therefore, this case does not appear.

Since the pre-stability conditions in Θ2 or Θ3 satisfy that l∗(L) is stable for all line bundles
L ∈ Coh(C). In order to determine which σ ∈ Θ12 are in Θ2 or Θ3 we need to study the
stability of l∗(L).

Lemma 3.65. Let σ = (Z,A) be a pre-stability condition as in (*). Let L ∈ Coh(C) be a
line bundle with deg(L) = d ≤ −CD . The object l∗(L) is stable in σ if and only if

−Dd2 − (A+ C)d−B > 0 (3.33)

holds.

Proof. Since deg(L) = d ≤ −CD we have i∗(L) ∈ A.

Assume that l∗(L) is stable. By considering the triangle

j∗(L) // l∗(L) // i∗(L) // j∗(L)[1]

we obtain φ3
L < φ1

L. By the correspondence between slope and phase, the equation

d <
−Ad−B
Dd+ C

holds for all d ≤ −CD .

We now assume inequality (3.33) holds for deg(L) = d ≤ − cot(πθ). By the triangle

j∗(L) // l∗(L) // i∗(L) // j∗(L)[1] ,
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we have that l∗(L) ∈ A. By using inequiality (3.33) and the correspondence between phases
and slope we obtain

φ3
L < φ1

L.

By Lemma 3.27, we have that l∗(L) is stable.

Remark 3.66. The discriminant of the quadratic equation Dd2 + (A + C)d + B is given
by (A+ C)2 − 4BD = ∆(M), i.e. it is the same discriminant of p(x).

Claim 3.67. Let L be a line bundle. If i∗(L)[−1] ∈ A, then l∗(L) is stable.

Proof. Assume that l∗(L) is not stable. Therefore by Lemma 3.27 we have that φ1
L−φ3

L ≤ 0.
As 0 < φ3

L ≤ 1, it implies φ1
L ≤ 1, which contradicts our hypothesis. Indeed, if i∗(L)[−1] ∈

A, then 1 < φ1
L ≤ 2.

Lemma 3.68. If λ1, λ2 < 0, then inequality (3.33) holds for all d ≤ − cot(θπ).

Proof. Let us consider the polynomial

q(x) = Dx2 + (A+ C)x+B.

As the discriminant of q(x) is also ∆(M) ≥ 0, we get that q(x) has real roots µ1, µ2 ∈ R.
We assume that µ1 ≤ µ2. It is enough to show that for µ1 ≥ −C

D . Indeed, if −CD ≤ µ1

and d < −C
D then q(x) < 0. As 0 > 2λ1 = (−A + C) −

√
∆(M), we obtain the following

inequality

C

−D
<
−(A+ C)−

√
∆(M)

2D = µ1,

as we wanted to prove.

Corollary 3.69. If λ1, λ2 < 0, then l∗(L) is σ-stable for all line bundles L. Moreover, σ is
in Θ23 and Θ31.

Proof. It follows directly from Lemma 3.65, Lemma 3.67 and Lemma 3.68.

Lemma 3.70. There is a t ∈ R such that f31(σ)(t) = 1 if and only if σ ∈ Θ3.

Proof. Assume that there is t ∈ R such that f31(σ)(t) = 1. Note that f12(σ)(0) < 0 implies
that f31(σ)(0) < 1.

We have that f3(t)−f1(t) = 1. Let g = (Ktπ, ftπ) ∈ G̃L
+

(2,R). We would like to show that
σg ∈ Θ3. Since f1 ◦ ftπ(0) = f1(t) = f3(t)− 1 and f3 ◦ ftπ(0) = f3(t), then f31(σg)(0) = 1.
As l∗(L) is stable for any line bundle L ∈ Coh(C), by Lemma 3.69, it follows directly from
Lemma 2.86 that σg = gl31(σ3g, σ1g). Therefore, we obtain σ ∈ Θ3.
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We now assume that σ ∈ Θ3, i.e. that there is g ∈ G̃L
+

(2,R) such that σg satisfies the
gluing conditions. Without losing generality, we take g = (Klπ, flπ) ∈ G̃L

+
(2,R), with

l ∈ R. Thus, we obtain f3(l) = (f3◦flπ)(0) ≥ (f1◦flπ)(0) = flπ(0)+1 = l+1. By hypothesis
f31(σ)(0) < 1, but also f31(σ)(l) ≥ 1. Since we have that f31(σ)(x) is a continuous function,
there is a t ∈ R that satisfies f31(σ)(t) = 1, as we desired.

Proposition 3.71. If λ1, λ2 < −1, then σ ∈ Θ3.

Proof. By Lemma 3.53, we have that σ is one of the stability conditions constructed in
Lemma 3.14. By Lemma 3.17 and by Remark 3.55 we have that there is r3 ∈ (−1, 0) and a
stability condition σ3 = (Cohr3(C), Z3) ∈ Stab(C) such that Cohr3

3 (C) ⊆ A and Z
∣∣
D3

= Z3.

We want to rotate σ to obtain a stability condition in Θ3. By hypothesis, the eigenvalues
of T are negative and −1 < 1

λ1
, 1
λ2
< 0. Therefore, the eigenvalues of T3 are positive. We

denote them by β1, β2. Indeed, as the eigenvalues of M3 = M1 + I are precisely 1
λi

+ 1 and
they are positive, then β1, β2 are positive.

Let vi ∈ R2 be the corresponding eigenvector of βi. We obtain T3vi = βivi. Let us consider
the polar coordinates of vi = (mi cos(θi),mi sin(θi)) with θi ∈ [−π, π) and mi ∈ R>0.

We now claim that σg ∈ Θ3, where g = (Kθi , fθi) ∈ G̃L
+

(2,R).

First of all, consider σ3g = (T3Kθi , (f3 ◦ fθi)). Let us show that f3 ◦ fθi(0) = θi/π. By the
correspondence between (f3 ◦ fθi) and T3Kθi over S1, it suffices to compute T3Kθiv0, where
v0 = (1, 0). We have (T3Kθi)v0 = T3(1/mi)vi. Since (cos(θiπ), sin(θiπ)) is an eigenvector,
we get

(T3Kθi)v0 = βi1/mvi.

As βi ≥ 0, it implies that if we study the induced map f3 : S1 → S1, where S1 = (−1, 1],
we obtain (f3 ◦ fθi)(0) = f3(θi/π) = θi/π.

Consequently, we get (f3◦fθ)(0) = f3(θ/π) = θ/π+2k with k ∈ Z. Due to the fact that f3 is
an increasing continuous function, we have that −1 < θi/π < 1 implies −1 < θi/π+ 2k < 2
and k = 0. Therefore, we have (f3 ◦ fθi)(0) = f3(θi/π) = θi/π.

We now consider σ1g. Similarly we show that (f1 ◦ fθi)(0) = θ1− 1. By the correspondence
between (f1 ◦ fθ) and T1Kθi over S1, it suffices to compute T1Kθiv0, where v0 = (1, 0). We
have (T1Kθi)v0 = T1(1/mi)vi. Since (cos(θi), sin(θi)) is an eigenvector, we get

(T1Kθi)v0 = αim

vi
.

As αi < 0, if we study the induced map f1 : S1 → S1, where S1 = (−1, 1], we have two
cases:

Case 1: If −1 < θi/π < 0, then (f1 ◦ fθi(0)) = f1(θi/π) = θi + 1. Consequently, we obtain
(f1 ◦ fθ)(0) = f1(θi/π) = θi/π+ 1 + 2k with k ∈ Z. Due to the fact that f1 is an increasing
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continuous function, we have that −1 < θi/π < 0 implies −2 < θi/π + 2k + 1 < 0 and the
only possible option is k = −1.

Case 2: If 0 < θi/π < 1, then (f1 ◦ fθi)(0) = f1(θi/π) = θi − 1. Consequently, we obtain
(f1 ◦ fθ)(0) = f1(θi/π) = θi/π− 1 + 2k with k ∈ Z. Due to the fact that f1 is an increasing
continuous function, we have that 0 < θi/π < 1 implies −1 < θi/π + 2k − 1 < 1 and the
only possible option is k = 0.

Therefore, we have (f1 ◦ fθi)(0) = f1(θi/π) = θi/π − 1. It implies that f31(σg) = 1. By
Lemma 3.70 we have that σ ∈ Θ3. We compute f12(σg) = −1 and f23(σg) = 0. We now
have gluing conditions for the semiorthogonal decomposition 〈D3, D1〉 and by Lemma 2.86
we obtain σg = g31(σ3g, σ1g).

Remark 3.72. Note that from Proposition 3.71 and Lemma 3.70, we obtain that if σ ∈ Θ12

satisfies (*), then σ ∈ Θ3 if and only if the eigenvalues λ1, λ2 of M are < −1.

Lemma 3.73. Let σ as above, i.e. such that f12(σ)(0) < 0. There is a t ∈ R such that
f23(σ)(t) = 1 if and only if σ ∈ Θ2.

Proof. The proof goes exactly as the one of Lemma 3.70.

Proposition 3.74. If 0 > λ1, λ2 > −1, then σ ∈ Θ2.

Proof. The proof goes exactly as the one of Proposition 3.71.

Remark 3.75. Note that from Proposition 3.74 and Lemma 3.73, we obtain that if σ ∈ Θ12

satisfies (*), then σ ∈ Θ2 if and only if the eigenvalues λ1, λ2 of M satisfy 0 > λ1, λ2 > −1.

Remark 3.76. Note that if σ ∈ Θ12 satisfies (*), then either σ ∈ Θ1 or σ ∈ Θ12 ∩ Θ23.

Indeed, if the eigenvalues of M are positive, we have that σ ∈ Θ1. If the eigenvalues are
negative, it follows from Corollary 3.69. If ∆(M) < 0, if follows from Lemma 3.65. This
remark is useful when studying Θ23(or Θ31); because either σ ∈ Θ2 or σ ∈ Θ12 ∩Θ23. Thus
we can use our classification inside Θ12 to understand Θ23.

Remark 3.77. Note that if σ ∈ Θ23, then by Proposition 3.52, up to the action we can
find stability conditions

σ3 = (Z3,Cohr(C)) = (T3, f3) and σ2 = (Zµ,Coh(C)) ∈ Stab(C)

with Cohr3(C) ⊆ A, Coh2(C) ⊆ A, r < 0, Z
∣∣
D3 = Z3 and Z

∣∣
D2 = Zµ. If i∗(C(x)) is σ-stable

for x ∈ C and ∆(M3) < 0, with M3 := T−1
3 , by following the steps of Lemma 3.65 we can

show that i∗(L) is σ-stable for all line bundles L. As a consequence, by Lemma 3.53, we
have that σ is given, up to the action, by a pre-stability condition constructed in Lemma
3.14. Moreover, M3 = I+M, theM appearing in Lemma 3.14 and ∆(M) = ∆(M+3) < 0.
Analogously for the case σ ∈ Θ31.
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Theorem 3.78. For all pre-stability conditions σ on TC , we have that

σ ∈ Θ1 ∪Θ2 ∪Θ3 ∪ Γ,

where Γ is the set of pre-stability condition, which up to the G̃L
+

(2,R)-action is given by
Lemma 3.14 with ∆(M) < 0. Moreover, note that Γ ⊆ Θij , where ij = 12, 23, 31.

Proof. By Theorem 3.30, we have that σ ∈ Θ12∪Θ23∪Θ31. By Serre duality, it is enough to
check for σ ∈ Θ12. By Proposition 3.44, we have that up to the action of G̃L

+
(2,R), there

are σ1 = (Cohr1(C), Z1) = (T, f) and σ2 = (Coh2(C), Zµ) ∈ Stab(C) with Cohr1(C) ⊆ A,
Coh(C)2 ⊆ A, and Z

∣∣
D1 = Z1, Z

∣∣
D2 = Zµ with f(0) ≥ −1. We reduce to the study of

these pre-stability conditions, because the sets Θi and Γ, for i = 1, 2, 3, are defined up to
the G̃L

+
(2,R)-action. If f(0) ≥ 0, then by Lemma 3.49 σ ∈ Θ1. If −1 < f(0) < 0, we

classify these pre-stability conditions in two sets if ∆(M) ≥ 0 or ∆(M) < 0. If ∆(M) < 0
then σ ∈ Γ. If ∆(M) ≥ 0, with positive eigenvalues then by Lemma 3.60 we get σ ∈ Θ1. If
the eigenvalues are smaller that −1, then by Proposition 3.71 we have that σ ∈ Θ3 and if
the eigenvalues are between 0 and −1 by Proposition 3.74, we obtain that σ ∈ Θ2.

Remark 3.79. Note that by Lemma 3.58, Lemma 3.70 and Lemma 3.73 we have that

Θi ∩Θj = ∅ and Θi ∩ Γ = ∅

for i, j ∈ {1, 2, 3}.

If we see the set Θij as the i vertex of a triangle, where ij = 12, 23, 31, the Serre functor
SC acts as a rotation. The following diagram describes Stab(C).

3.3 Support property for TC, with g(C) ≥ 1

In this section, we prove the support property for the already constructed pre-stability
conditions. We start by studying CP-glued pre-stability conditions σ = gl12(σ1, σ2) on
TC = 〈D1, D2〉, with σi = (Zi,Ai) ∈ Stab(Db(C)), for i = 1, 2. By Theorem 1.75 there is
always g = (T, f) ∈ G̃L

+
(2,R), such that σ1 = σ2g that satisfies f(0) ≥ 0. Therefore, the

proof of the support property falls naturally into the cases f(0) ≥ 1 and 1 > f(0) ≥ 0.
More precisely by Remark 2.105 and Theorem 3.78 we reduce the proof of the support
property to three cases. Namely, in Lemma 3.80 we prove it for pre-stability conditions
satisfying that f(0) ≥ 1, in Lemma 3.83 we prove it for CP-glued pre-stability condition
with A1 = A2, and in Lemma 3.86 for CP-glued pre-stability conditions with negative
discriminant. Finally, in Subsection 3.3.2 we prove it for σ ∈ Γ.

We use the inequalities proved in Subsection 2.2.3 to study the σ-semistable objects in our
pre-stability conditions. These inequalities follow closely the steps of [BGP96, Sec. 3]. In
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Subsection 3.3.2 we prove the support property under the assumption that g(C) = 1, for
non-gluing pre-stability conditions with ∆(M) < 0. We conjecture that for g(C) > 1 the
same result holds.

3.3.1 Support property for CP-glued pre-stability conditions

We start by proving the support property for pre-stability conditions with a stronger or-
thogonality condition.

Lemma 3.80. If the pair σ = (Z,A) = gl12(σ1, σ2) is a CP-glued pre-stability condition
satisfying that

Hom≤1
TC (i∗A1, j∗A2) = 0

or equivalently f(0) ≥ 1, then it satisfies the support property and as consequence it is a
Bridgeland stability condition.

Proof. We use the following notation Z1([E]) = Z1([i∗(E)]) and Z2([E]) = Z2([j!(E)]).

First note that we can linearly extend Z and the homomorphism induced by the exact
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functors i∗, j! to N (TC)⊗ R ∼= R4. We define the quadratic form

Q : N (TC)⊗ R→ R,

as
Q(v) = =(Z1(v))=(Z2(v)) + <(Z1(v))<(Z2(v)),

where <(α) and =(α) are the real and the imaginary parts of α ∈ R4 respectively.

By the linearity of Z, it is clear that Q is a quadratic form. We first show that it is negative
definite on

Ker(Z) = {v ∈ R4 | <(Z1(v)) = −<(Z2(v)) and =(Z1(v)) = −=(Z2(v))}.

Indeed,
Q(v) = −=(Z1(v))2 −<(Z1(v))2 ≤ 0,

for v ∈ Ker(Z). Note that Q(v) = 0, implies that Zi(v) = 0, for i = 1, 2. Then v = 0 as
rank(N (Db(C)) = 2.

Let E = E1
ϕ−→ E2 be a σ-semistable object.

Claim 3.81. ϕ = 0.

Proof. As σ is a CP-glued pre-stability condition, by the definition of gl12(A1,A2), we have
that E1 ∈ A1 and E2 ∈ A2. As ϕ ∈ HomDb(C)(E1, E2) = HomTC (i∗(E1), j∗(E2)[1]) and by
hypothesis HomTC (i∗(E1), j∗(E2)[1]) = 0, we obtain that ϕ = 0.

Note that by the definition of a CP-glued heart, we have i∗(E1), j∗(E2) ∈ A. As ϕ = 0,
we have i∗(E1) ⊆ E and also E � i∗(E). It follows that φ(i∗(E)) = φ(E). Analogously
for j∗(E2). Then, we get φ(i∗(E1)) = φ(j∗(E2)). If =(Z1(E)) = 0, then it implies that
=(Z(E)) = 0 and =(Z2(E)) = 0. It follows that <(Z1(E)),<(Z2(E)) < 0 and

Q(E) = <(Z1(E))<(Z2(E)) > 0.

Analogously for =(Z2(E)) = 0.

We now assume that =(Z1(E)),=(Z2(E)) 6= 0. By the correspondence between slope and
phase, we obtain

−<(Z1(E))
=(Z1(E)) = −<(Z2(E))

=(Z2(E)) .

As a consequence

Q(E) = =(Z1(E))=(Z2(E)) + <(Z1(E))<(Z2(E)) ≥ 0.

Indeed, as =(Z1(E)),=(Z2(E)) > 0, by hypothesis, then <(Z1(E)),<(Z2(E)) have the same
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sign and <(Z1(E))<(Z2(E)) ≥ 0.

Let σ = (Z,A) = gl12(σ1, σ2), with σi = (Zi,Ai) ∈ Stab(C), be a pre-stability condition,

such that there is g = (T, f) ∈ G̃L
+

(2,R) with σ1 = σ2g and T−1 =
[
−A B

0 C

]
. Note that

by the definition of the G̃L
+

(2,R)-action we obtain H = A1 = A2. Moreover, we have that

<(Z1(F )) = −A<(Z2(F )) +B=(Z2(F ))
=(Z1(F )) = C=(Z2(F ))

for all F ∈ H.

Remark 3.82. Under the following notation

d2 = −<(Z2(j!(E))) , d1 = −<(Z2(i∗(E))),

and
r2 = =(Z2(j!(E))) and r1 = =(Z2(i∗(E))),

for E ∈ A, we obtain

Z2([E]) = −d2 + r2 and Z1([E]) = Ad1 +Br1 + i(Cr1).

We now prove the support property for this type of pre-stability conditions. We first recall
a torsion pair that plays a role in the proof.

Lemma 3.83. Let σ = (Z,A) = gl12(σ1, σ2) be a pre-stability condition, such that there is

g = (T, f) ∈ G̃L
+

(2,R) with σ1 = σ2g and T−1 =
[
−A B

0 C

]
. Then σ satisfies the support

property and therefore it is a Bridgeland stability condition.

Proof. First note that we can linearly extend Z to N (TC)⊗ R ∼= R4.

We denote Z1([E]) = Z1([i∗(E)]) and Z2([E]) = Z2([j!(E)]). As mentioned before, since
i∗ and j! are exact, they induce homomorphisms on the Grothendieck groups. We use the
notation given above for elements v ∈ N (TA)⊗ R, i.e. Z1(v) and Z2(v). We claim that for
δ = −CA

B2 > 0, the pre-stability condition σ satisfies the support property with the quadratic
form Q : N (TA)⊗ R→ R, defined as

Q(v) = −<(Z1(v))=(Z2(v) +=(Z1(v))<(Z2(v)) +=(Z1(v))=(Z2(v)) + δ(<(Z1(v))<(Z2(v))

where <(α) and =(α) are the real and the imaginary parts respectively and v ∈ Rn.
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Remark 3.84. Under the notation of Remark 3.82, we obtain that

Q(v) = −Ad1r2 − Cd2r1 −Br1r2 + Cr1r2 + δ(−Ad1d2 −Bd2r1).

We first show that it is negative definite on

Ker(Z) = {v ∈ Rn | <(Z1(v)) = −<(Z2(v)) and =(Z1(v)) = −=(Z2(v))}.

In fact

Q(v) = <(Z2(v))=(Z2(v))−=(Z2(v))<(Z2(v))−=(Z2(v))=(Z2(v))− δ(<(Z2(v))<(Z2(v))
= −=(Z2(v))2 − δ(<(Z2(v))2) < 0

if v 6= 0. Note that if Q(v) = 0, for v ∈ Ker(Z), then Zi(v) = 0 for i = 1, 2. It follows that
v = 0, as rank(N (Db(C))) = 2.

Let E = E1
ϕ−→ E2 be a σ-semistable object. We consider the following short exact sequence

0 //

��

0 //

��

E1 //

ϕ

��

E1

��

// 0

��

0 // E2 // E2 // 0 // 0.

(3.34)

If E1 = 0 or E2 = 0, we clearly have that Q([E]) = 0.

If =(Z1(E)) = 0, it follows that −<(Z1(E)) > 0. We claim that =(Z2(E)) = 0. Indeed,
after considering the decomposition of E2 with respect to the standard torsion (T ,F) pair
given in Remark 2.120 on A, we have that there is a subtriple T2 = 0→ T (E2) of E, such
that =(Z2(T2)) = 0. If T2 6= 0

1 = φ(T2) ≤ φ(E) ≤ 1,

which implies that φ(E) = 1, thus =(Z2(E)) = 0. If T2 = 0, then E2 ∈ F and the morphism
ϕ = 0, as E1 is in T. It implies that E1 → 0 is a subtriple and once again we obtain that

1 = φ(E1 → 0) ≤ φ(E) ≤ 1.

So, φ(E) = 1 and =(Z2(E)) = 0 and it implies that E = 0. We obtain that =(Z2(E)) = 0
and −<(Z2(E)) > 0. Hence, we get

Q(E) = δ(<(Z1(E))<(Z2(E))) > 0.
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If =(Z2(E)) = 0, then −<(Z2(E)) > 0. By the short exact sequence above, we obtain that

1 = φ(0→ E2) ≤ φ(E1 → 0) ≤ 1.

It implies =(Z1(E)) = 0 and −<(Z1(E)) > 0. As a consequence, we get

Q(E) = δ(<(Z1(E))<(Z2(E))) > 0.

We now assume =(Z1(E)),=(Z2(E)) 6= 0. If ϕ = 0, then E = i∗i
∗(E) ⊕ j∗(j!(E)). By the

semistability of E, we have

−<(Z2(E))
=(Z2(E)) = −<(Z1(E))

=(Z1(E)) .

Then
−<(Z1(v))=(Z2(v) + =(Z1(v))<(Z2(v)) = 0

and <(Z1(v))<(Z2(v)) > 0. As a consequence, we have

Q(v) = =(Z1(v))=(Z2(v)) + δ(<(Z1(v))<(Z2(v))) ≥ 0.

Therefore, we also assume ϕ 6= 0

Let y = −<(Z2(E)))
=(Z2(E)) and x = −<(Z2(j∗i∗(E))

=(Z2(j∗i∗(E))) . Note that =(Z1(E)) 6= 0, implies
=(Z2(j∗i∗(E))) 6= 0. After dividing Q([E]) by =(Z2(E))=(Z2(j∗i∗(E))) and by Equation
(2.30), we obtain that Q(v) ≥ 0 if and only if

−Ax− Cy −B + C + δ(−Axy −By) ≥ 0.

First note that by the semistability of E and Lemma 2.111 we have that Cy + Ax ≤ −B
and 0 ≤ y − x.

Our proof falls naturally into two cases:

Case 1: y ≥ 0. As C > 0, it implies that 0 ≤ Cy ≤ −Ax− B. Then −Axy − By ≥ 0 and
since −Ax− Cy −B + C ≥ 0, we get that Q([E]) ≥ 0.

Case 2 If y < 0, then x < y < 0. Moreover if −Ax−B ≤ 0, we have that −Axy−By ≥ 0,
and we argue as before. If 0 < −Ax−B, as −A > 0 we get 0 < −Ax−B ≤ −Ay−B < −B.
Then Cy ≤ −Ax−B ≤ −B and B

−A < y < 0. Let us consider the following function
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f : (0,−B)× ( B
−A

, 0) → R

(x, y) 7→ −Ax− Cy −B + C

−Axy −By
.

We show now that f(x, y) < −δ for all (x, y) ∈ (0,−B) × ( B
−A , 0). Note B ≤ −Ax − Cy.

Then 0 < C ≤ −Ax−Cy−B+C. Also B
−A ≤ y, after multiplying both sides of the equation

by (−Ax−B) > 0, we obtain

B

−A
(−Ax−B) ≤ y(−Ax−B),

Bx+ B2

A
< y(−Ax−B).

As xB > 0, we get B2

A < y(−Ax−B). Therefore, we obtain

−A
−B2 >

1
y(x+ α) .

It follows that
f(x, y) < C

y(x+ α) <
−CA
−B2 .

Since δ = −CA
B2 , we have that f(x, y) < −δ. Hence, we get

−Ax− Cy −B + C

y(−Ax−B) < −δ.

As a consequence, we finally obtain −Ax− Cy −B + C + δ(−Axy −By) > 0

Support property for CP-glued stability conditions with negative discriminant

Let σ = (Z,A) = gl12(σ1, σ2) be a pre-stability condition, where σ1 = (Z1,A1) and
σ2 = (Z2,A2), such that there is g = (T, f) ∈ G̃L

+
(2,R) with σ1 = σ2g where (T, f)

satisfies that M := T−1 =
[
−A B

−D C

]
with

∆(M) = Tr(M)2 − 4 det(M) = (A+ C)2 − 4BD < 0

and 0 < f(0) < 1.

Claim 3.85. Let E = E1
ϕ−→ E2 be a σ-semistable object with =(Z2(E1)) < 0. Then

E1 ∈ A2[1]
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Proof. Note that by the definition of gluing E2 ∈ A2. By Claim 2.106, we have that for
all h ∈ G̃L

+
(2,R), the object σh is a CP-glued pre-stability condition. As σ1 = σ2g, if

we act by g−1
1 , then σ′ = σg−1 = gl12(σ2, σ2g

−1
1 ) = (Z ′,A′). Since E is σ′-semistable, then

E ∈ A′[n] for some n. By Lemma 2.66, we obtain E1 ∈ A2[n], because A2 is equal to
P1(f−1(0), f−1(1)] = P2(0, 1], where Pi gives us the slicing of σi, for i = 1, 2. As 0 ≤ f(0) <
1, then −1 < f−1(0) < 0 and 0 < f−1(1) < 1. Then we obtain that A2 ⊆ P1(−1, 1], which
implies n = 0, 1. As

=(Z2(E1)) < 0,

we get that E1 ∈ A2[1].

Lemma 3.86. Let σ = (Z,A) be as above. Then σ is a Bridgeland stability condition.

Proof. We just need to prove that it satisfies the support property. Note that we can extend
Z to N (TA)⊗ R ∼= R4.

We claim that σ satisfies the support property with respect to the following quadratic form

Q : R4 → R

v → −=(Z2(j!(v))))<(Z2(i∗(v))) + =(Z2(i∗v)))<(Z2(j!(v)).

We use the following notation

d1 = −<(Z2(i∗(v))) and r1 = =(Z2(i∗(v)))

and
d2 = −<(Z2(j!(v))) and r2 = =(Z2(j!(v))).

Note that r2 ≥ 0.

We first show that Q is negative definite on

Ker(Z) = {v ∈ R4 | <(Z2(j!v)) = −<(Z1(i∗v)) and =(Z2(i ∗ v)) = −=(Z1(j!v))}.

Note that

Z1(w) = −A<(Z2(w)) +B=(Z2(w)) + i(−D<(Z2(w)) + C=(Z2(w))),

with w ∈ R2

Q(v) = =(Z1(i∗v))<(Z2(i∗(v)))−=(Z2(i∗(v)))<(Z1(i∗(v))
= −(Cr1 +Dd1)d1 − (Ad1 +Br1)r1

= −Dd2
1 + (A+ C)d1r1 +Br2

1 < 0.
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Indeed, as 0 ≤ f(0) = t < 1 and t < 1 < t + 1, it implies that D > 0. Morever since
∆(M) = (A + C)2 − 4BD < 0, then B > 0 and −Dd2 − (A + C)dr − Br2 < 0 for all
(r, d) ∈ R2. If (r, d) = 0, it implies that v = 0.

Now let E = E1
ϕ−→ E2 ∈ A be a σ-semistable object. We show that Q([E]) ≥ 0. First of

all, if [E] = v ∈ N (TA) with =(Z2(v)) = 0, then <(Z2(v)) < 0 and after considering the
following short exact sequence in A

0 //

��

0 //

��

E1 //

ϕ

��

E1

��

// 0

��

0 // E2 // E2 // 0 // 0,

(3.35)

we obtain 1 = φ(0 → E2) ≤ φ(E1 → 0) ≤ 1. Then φ(E1 → 0) = 1, and it implies that
Cr1 +Dd1 = 0 and r1 ≤ 0, because of Remark 1.83. As −d2 < 0 then

Q([E]) = −d2r1 ≥ 0.

If r1 = 0, as Cr1 +Dd1 ≥ 0, then Dd1 ≥ 0 and d1 ≥ 0. Therefore, we have

Q([E]) = d1r2 ≥ 0.

Let us now assume that r2, r1 6= 0. From the exact sequence (3.35) and the correspondence
between slope and phase, we obtain

d2
r2
≤ −Ad1 +Br1 + d2

Cr1 +Dd1 + r2
,

which is equivalent to

−Dd1d2 − Cr1d2 −Ad1r2 −Br1r2 ≥ 0.

We define x = d1
r1

and y = d2
r2
. Let us consider two cases:

Case 1: r1 > 0. Since by definition Cr1 + Dd1 ≥ 0, then C + Dx ≥ 0. Moreover we have
C +Dx > 0. Indeed, if C +Dx = 0, we get E1 ∈ A2[1] and r1 ≤ 0, which contradicts our
assumption. By (3.35), we obtain

y ≤ −Ax−B
Dx+ C

.

As ∆(M) < 0 and D > 0, then for all t ∈ R we have that Dt2 + (A+ C)t+ B > 0. Thus,
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we obtain Dx2 + (A+ C)x+B > 0, which implies

x >
−Ax+B

Dx+ C
.

Finally, we get
x > y

or equivalently Q([E]) = d1r2 − d2r1 > 0.

Case 2: r1 < 0. We claim that ϕ = 0. Indeed, by Claim 3.85, we have that E1 ∈ A2[1].
Then

ϕ ∈ HomDb(A)(E1, E2) = 0,

as A2 is the heart of a bounded t-structure in Db(A).

It implies that i∗(E1) ⊆ E, but it is also true that E � i∗(E1). Therefore φ(E) = φ(E1 →
0). Analogously j∗(E2) ⊆ E and E � j∗(E2), it follows that φ(E) = φ(0 → E2). As a
consequence, we have φ(E1 → 0) = φ(0→ E2).

If φ(E1 → 0) = 1, then φ(0 → E2) = 1 and r2 = 0. Note that we considered this case
already. Therefore, we assume φ(E1 → 0) < 1 and Cr1 +Dd1 > 0. We obtain

d2
r2

= −Ad1 −Br1
Cr1 +Dd1

.

As before, for all t ∈ R, we obtain Dt2 + (A + C)t + B > 0 and it implies that
Dx2 + (A+ C)x+B > 0. Then (Dx+ C)x > −Ax−B. Since Dd1 + Cr1 > 0, we obtain
Dx+ C < 0 and

x <
−Ax−B
Dx+ C

= y.

Hence x < y or equivalently Q([E]) = d1r2 − d2r2 > 0.

We now use Remark 2.105 to prove that all CP-glued prestability conditions on TC satisfy
the support property.

Proposition 3.87. If the pair σ = (Z,A) on TC is a pre-stability condition with
σ = gl12(σ1, σ2), then it satisfies the support property and therefore, it is a Bridgeland sta-
bility condition.

Proof. By the transitivity of the G̃L
+

(2,R)-action on Stab(C), there is g = (T, f) ∈ G̃L
+

(2,R)
with (Z1,A1) = σ1 = σ2g and σ2 = (Z2,A2).

The proof falls naturally into the following cases:

Case 1: If f(0) ≥ 1, then it follows directly from Lemma 3.80.

Case 2: If 0 ≤ f(0) < 1 and ∆(M) ≥ 0, then we have the existence of real eigenvalues
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λ1, λ2 ∈ R. As det(T−1) > 0, then we have that the eigenvalues are both positive or both
negative.

If λ1, λ2 ≥ 0, then by Lemma 2.103 there is h ∈ G̃L
+

(2,R), such that σh satisfies the
conditions of Lemma 3.83. Since the support property is stable under the G̃L

+
(2,R)-action,

we have that σ has the support property.

If λ1, λ2 ≤ 0, then by Lemma 2.104 there is h ∈ G̃L
+

(2,R), such that σh satisfies the
conditions of Lemma 3.80. Since the support property is stable under the G̃L

+
(2,R)-action,

we have that σ has the support property.

Case 3: If 0 < f(0) < 1 and ∆(M) < 0, then this case follows directly from Lemma 3.86.

Remark 3.88. By Remark 1.69, after applying Serre duality, we have that any pre-stability
condition σ ∈ Θi, with i ∈ {1, 2, 3} satisfies the support property. By Theorem 3.78, we
just need to prove the support property for σ ∈ Γ.

We showed that all the CP-glued pre-stability conditions, up to the G̃L
+

(2,R)-action,
satisfy the support property. We now prove the support property for σ ∈ Γ just when
g(C) = 1. For g(C) > 1, we conjecture that it is also satisfied. We start by studying the
σ-semistable objects in the pre-stability conditions in Lemma 3.14 under the assumption
that g(C) ≥ 1.

Semistability on non-gluing pre-stability conditions

We now study σ-semistable objects, where σ = (Z,A) satisfies that i∗(C(x)), l∗(C(x)) are
σ-stable and j∗(C(x)) is σ-stable of phase one. After applying the G̃L

+
(2,R)-action on σ

the objects i∗(C(x)), j∗(C(x)) and l∗(C(x)) are always σ-stable. Therefore, we can use the
description of the hearts given in Lemma 3.40, Lemma 3.41 and Lemma 3.42 to prove that
all σ-semistable objects have a particular form.

Lemma 3.89. If E = E1
ϕ−→ E2 ∈ A is σ-semistable then

1. E ∈ TCoh(C) or

2. E ∈ H23[−1] or

3. E ∈ H31[−1].

Proof. First note that there are elements g1, g2 ∈ G̃L
+

(2,R) with δi = σgi = (Wi,Bi) for
i = 1, 2, such that δ1 satisfies that i∗(C(x)) is δ1-stable of phase one, j∗(C(x)), l∗(C(x)) are
δ1-stable and δ2 satisfies that l∗(C(x)) is δ2-stable of phase one and j∗(C(x)), i∗(C(x)) are
δ2-stable. As E ∈ A, by Lemma 3.40, we obtain that E satisfies that its cohomology has
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the following form

0 // 0 //

��

H0(E1) //

��

H1(E1) //

��

0

0 // 0 //

��

H0(E2) //

��

H1(E2) //

��

0

0 // H−1(C(ϕ)) // H0(C(ϕ)) // 0 // 0.

(3.36)

Note that for an object G = G1
ψ−→ G2 ∈ B1, by Lemma 3.41 its cohomology has the

following form:
0 // H−1(G1) //

��

H0(G1) //

��

0

0 // H−1(G2) //

��

H0(G2) //

��

0

0 // H−1(C(ψ)) // H0(C(ψ)) // 0

(3.37)

and if G = G1
ψ−→ G2 ∈ B2, by Lemma 3.42 its cohomology has the following form:

0 // 0 //

��

H0(G1) //

��

H1(G1) //

��

0

0 // H−1(G2) //

��

H0(G2) //

��

0 //

��

0

0 // H−1(C(ψ)) // H0(C(ψ)) // 0 // 0.

(3.38)

Remark 3.90. The diagrams above are non-commutative. We just use them as it is easier
to visualize the cohomology of the objects.

As E is δi-semistable we have that E ∈ Bi[n], for i = 1, 2 and n ∈ Z, where the only possible
cases are n = 1, 0,−1,−2. We study all the different cases.

Case 1: E ∈ A ∩B1[−2] ∩ B2[−2]. Since the intersection is trivial, then E = 0.

Case 2: E ∈ A∩B1[−2]∩B2[−1]. The intersection is contained in Coh3(C)[−1], it implies
E ∈ H23[−1].

Case 3: E ∈ A ∩ B1[−2] ∩ B2. The intersection is trivial.

Case 4: E ∈ A ∩ B1[−2] ∩ B2[1].The intersection is trivial.
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Case 5: E ∈ A ∩ B1[−1] ∩ B2[−2]. The intersection is trivial.

Case 6: E ∈ A ∩ B1[−1] ∩ B2[−1]. The intersection has the following form

0 // 0 //

��

0 //

��

H1(E1) //

��

0

0 // 0 //

��

H0(E2) //

��

H1(E2) //

��

0

0 // 0 // H0(C(ϕ)) // 0 // 0.

(3.39)

This implies that E ∈ H23[−1].

Case 7: E ∈ A ∩ B1[−1] ∩ B2. The intersection has the following form

0 // 0 //

��

H0(E1) //

��

H1(E1) //

��

0

0 // 0 //

��

H0(E2) //

��

0 //

��

0

0 // 0 // H0(C(ϕ)) // 0 // 0,

(3.40)

and E ∈ H31[−1].

Case 8: E ∈ A ∩ B1[−1] ∩ B2[1]. The intersection is trivial.

Case 9: E ∈ A ∩ B1 ∩ B2[−2]. The intersection is trivial.

Case 10: E ∈ A ∩ B1 ∩ B2[−1]. The intersection is contained in Coh2(C) and therefore
E ∈ TCoh(C).

Case 11: E ∈ A ∩ B1 ∩ B2. We have that E has the following form

0 // 0 //

��

H0(E1) //

��

0 //

��

0

0 // 0 //

��

H0(E2) //

��

0 //

��

0

0 // H−1(C(ϕ)) // H0(C(ϕ)) // 0 // 0.

(3.41)

It implies that E ∈ TCoh(C).

Case 12: If E ∈ A ∩ B1 ∩ B2[1]. The intersection is contained in Coh1(C), then
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E ∈ TCoh(C).

Case 13: If E ∈ A∩B1[1]∩B2[i], with i = −2,−1, 0, 1. The intersection A∩B1[1] is trivial,
therefore E = 0.

3.3.2 Support property for non-gluing pre-stability conditions with negative
discriminant and g = 1

We consider pre-stability conditions σ = (Z,A) as constructed in Lemma 3.14 with ∆ < 0,
i.e. there is σ1 = (Z1,Cohr1

1 (C)) = (T, f) ∈ G̃L
+

(2,R) such that Cohr1
1 (C) ⊆ A and

Z
∣∣
Cohr1

1 (C) = Z1, with −1 < f(0) < 0. We assume ∆(M) < 0, where M = T−1. Under the
assumption that g(C) = 1, these pre-stability conditions satisfy the support property and
as a consequence they are Bridgeland stability conditions.

Since ∆(M) < 0, after applying the G̃L
+

(2,R)-action we never obtain a CP-glued pre-
stability condition, because f(θ) < θ for all θ ∈ R. However, under the assumption g = 1,
the quadratic form induced by the Euler bilinear form

−χ(E,E) = d2r1 − d1r2

is negative definite on Ker(Z) as in Lemma 3.86. Therefore, it is a good candidate for being
a quadratic form appearing in the support property.

We now prove some useful statements about A.

Lemma 3.91. If F ∈ Coh(C) is µ-stable, then i∗(F ), j∗(F ) and l∗(F ) are σ-stable.

Proof. The proof goes along the lines of Proposition 3.22. If F is µ-stable, it is either a
skyscraper sheaf of a torsion-free sheaf. In Proposition 3.22, we have already proved the
statement for skyscraper sheaves, therefore we assume that F is torsion-free and r > 0.
Let us assume that i∗(F ) is not σ-semistable. Then, we consider the last triangle of its
Harder-Narasimhan filtration

E1 //

ϕE

��

F //

��

A1

ϕA

��

// E1[1]

ϕE [1]
��

E2 // 0 // A2 // E2[1]

, (3.42)

which satisfies Hom≤nTC (E,A) = 0, with n ≤ 0. By Lemma 3.17 we have that
HomDb(C)(E1, A1) = 0 and E1, A1 ∈ Coh(C). By Serre duality on C, we get
HomDb(C)(A1, E[1]) = 0, which implies that the short exact sequence

0→ E1 → F → A1 → 0
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splits. As F is µ-stable, it is indecomposable. Therefore, either E1 = 0 or A1 = 0. Following
exactly the same steps as in Lemma 3.22 with X = F, we show that A1 = 0 and j∗(F ), l∗(F )
are σ-stable. As in Lemma 3.24, the last triangle of the HN-filtration of i∗(F ) is given by

F //

ϕ

��

F //

��

0

��

// F [1]

ϕ[1]
��

F // 0 // F [1] // F [1]

,

and it implies that φ(l∗(F )) > φ(j∗(F )) + 1. As j∗(F ) ∈ Coh2(C) ⊆ A, then

1 < φ(j∗(F )) + 1 ≤ 2,

which implies that 1 < φ(l∗(F )). Moreover, note that φ(l∗(F )) < 2. By the stability of
l∗(C(x)) we have that 1 < φ4 < 2 and we also have a non-zero morphism l∗(F )→ l∗(C(x)).

By Lemma 3.17 we have that Cohr3(C) ⊆ A, so that l∗(F )[−1] ∈ A. Moreover, by the
correspondence between slope and phase, we have that

φ(j∗(F )) = d

r
<

Ad+Br − d
−Cr −Dd− r

= φ(l∗(F )[−1]),

which implies
−Dd2 − (A+ C)dr −Br2 < 0

and induces a contradiction, because ∆(M) = (A+C)2−4BD < 0 andD,B < 0. Therefore,
we obtain that i∗(F ) is σ-semistable. We now assume that i∗(F ) is striclty-semistable, by
Remark 3.27 we obtain exactly the same contradiction. Therefore, we get that i∗(F ) is
σ-stable. Analogously, we prove that j∗(F ) and l∗(F ) are σ-stable.

Lemma 3.92. If F ∈ Coh(C) is µ-semistable, then i∗(F ), j∗(F ) and l∗(F ) are σ-semistable.

Proof. If F = C(x), the statement is already proved by Lemma 3.33. Therefore, we assume
that F is torsion-free. Let us consider a JH-filtration of F with respect to µ. Note that all the
µ-stable factors Ai, for i = 0, · · · , n, have the same slope µ(F ). By Lemma 3.91, we obtain
that j∗(Ai) is σ-stable in A. As Z

∣∣
Coh2(C) = Zµ, we have that φ(j∗(Ai)) = φ(j∗(F )) = λ,

with λ ∈ R. Since the category P(λ) is closed under extensions, we obtain that j∗(F ) is
σ-semistable. Note that since F is µ-semistable, then i∗(F ) is in A or in A[1] and l∗(F ) is
in A or in A[1]. Analogously, the same conclusion can be drawn for i∗(F ) and l∗(F ).

Lemma 3.93. We have that A ∩D2 = Coh2(C).

Proof. Let E ∈ A. By Lemma 3.40, we obtain that the cohomology of E has the following
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form
0 // 0 //

��

H0(E1) //

��

H1(E1) //

��

0

0 // 0 //

��

H0(E2) //

��

H1(E2) //

��

0

0 // H−1(C(ϕ)) // H0(C(ϕ)) // 0 // 0.

(3.43)

If E ∈ D2, then H0(E1) = H1(E1) = 0. By considering the long exact sequence of cohomol-
ogy 0→ H−1(C(ϕ))→ H0(E1)→ H0(E2)→ H0(C(ϕ))→ H1(E1)→ H1(E2)→ H1(C(ϕ))→ 0, in-
duced by the triangle E1

ϕ−→ E2 → C(ϕ)→ E1[1], we obtain thatH−1(C(ϕ)) = H1(E2) = 0.
It implies that E ∈ Coh2(C).

In order to prove the support property, we study for every λ ∈ (0, 1] the abelian category
P(λ).

Lemma 3.94. Let E = E1
ϕ−→ E2 ∈ TCoh(C) be a σ-semistable object in A. Then

HomTC (E,E[2]) = 0.

Proof. First note that E ∈ TCoh(C) ∩ A = F , where A = (F , T [−1]) as in Lemma 3.40.
By Serre duality

HomTC (E,E[2]) = HomTC (E[2],STC (E))∗ = Hom(E[1], E2 → C(ϕ))∗.

It suffices to prove that Hom(E[1], E2 → C(ϕ)) = 0.

Let us consider the following triangle

0 //

��

E2 //

��

E2

��

// 0

��

C(ϕ) // C(ϕ) // 0 // C(ϕ)[1].

(3.44)

It induces a long exact sequence

· · · → HomTC (E[1], j∗(C(ϕ)))→ HomTC (E[1],STC (E)[−1])→ HomTC (E[1], i∗(E2)))→ · · · .

Therefore, it is enough to prove that

HomTC (E[1], i∗(E2)) = 0 and HomTC (E[1], j∗(C(ϕ))) = 0.
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By adjointness
HomTC (E[1], i∗(E2)) = HomDb(C)(E1[1], E2) = 0

as E1, E2 ∈ Coh(C) and Coh(C) is the heart of a bounded t-structure in Db(C).

We now prove that
HomTC (E[1], j∗(C(ϕ))) = 0.

Case 1: If Ker(ϕ) = 0, we obtain that C(ϕ) = Coker(ϕ) and by adjointeness we get

HomTC (E[1], j∗(C(ϕ))) = HomTC = HomDb(C)(Coker(ϕ)[1],Coker(ϕ)) = 0,

as Coker(ϕ) ∈ Coh(C) and Coh(C) is the heart of a bounded t-structure.

Case 2: Ker(ϕ) 6= 0

It is enough to show that φ(E) + 1 > φ+(j∗(C(ϕ))). Let us compute φ+(j∗(C(ϕ))). By
Claim 3.93 we have that A ∩D2 = Coh2(C), so j∗(C(ϕ)) /∈ A. As a consequence, we first
need to consider its filtration in the t-structure induced by A, given by

0 j∗(Ker(ϕ))[1] j∗(C(ϕ))

j∗(Ker(ϕ))[1] j∗(Coker(ϕ))
.

By definition, φ+(j∗(C(ϕ))) = φ+(j∗(Ker(ϕ))) + 1. Let us consider the HN-filtration

0 ⊆ H1 ⊆ H2 · · · ⊆ Hn−1 ⊆ Hn = j∗(Ker(ϕ))

of j∗(Ker(ϕ)) inA with respect to σ.Note that by Lemma 3.92 if F ∈ Coh(C) is µ-semistable
then j∗(F ) is also σ-semistable. Yherefore if we consider the HN-filtration of Ker(ϕ) with
respect to µ, as Coh2(C) ⊆ A and Z

∣∣
Coh2(C) = Zµ, it will give us the HN-filtration of

j∗(Ker(ϕ)) in A with respect to σ. By the uniqueness of the HN-filtration, we deduce that
Hi ∈ Coh2(C), for all i = 0, · · · , n. Moreover, we have that H1 6= 0 is σ-semistable and

φ(H1) = φ+(j∗(Ker(ϕ))) = φ+(j∗(C(ϕ)))− 1.

Let H1 = 0→ F1, with F1 ∈ Coh(C). By definition F1 ⊆ Ker(ϕ).

As Ker(ϕ)→ 0 is a subobject of E in TCoh(C) and F is closed under subobjects, we obtain
that F1 → 0 ∈ F ⊆ A. By Lemma 3.92, as F1 is µ-semistable, i∗(F1) is also σ-semistable.
Moreover, we have a non-zero morphism i∗(F1) → E. As they are both σ-semistable it
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implies that
φσ(i∗(F1)) ≤ φσ(E).

Let d = deg(F1) and r = rank(F1). By the definition of F , we get that Ker(ϕ) and therefore
F1 is torsion-free and r > 0. As i∗(F1) ∈ F , we also have that Cr +Dd ≥ 0.

Claim 3.95. φ(H1) < φ(i∗(F1)).

Proof. We consider two cases, the first one is Cr1 +Dd1 = 0 In this case φ(i∗(F1)) = 1. As
r1 > 0, it implies φ(H1) < 1. Therefore, we obtain

φ(H1) < φ(i∗(F1)).

The second case is Cr1 +Dd1 > 0. In this case

d

r
<
−Ad−Br
Cr +Dd

if and only if Dd2 + (A+ C)dr + Br2 < 0. Due to the fact that ∆(M) < 0 and D,B < 0,
we obtain that

Dx2 + (A+ C)xy +By2 < 0

for all x, y ∈ R. By the correspondence between slope and phase, we obtain that

φ(H1) < φ(i∗(F1)).

As a consequence, we have

φ+(j∗(C(ϕ)))− 1 = φ(j∗(F1)) < φ(E)

as we wanted to prove.

We now use Serre duality to obtain the same results for the σ-stable objects E ∈ H23[−1],
H31[−1].

Lemma 3.96. Let E = E1
ϕ−→ E2 ∈ H31[−1] be σ-semistable object in A. Then

HomTC (E,E[2]) = 0.

Proof. Let us consider the STC [−1] ∈ Aut(TC). We compute β = STC [−1](σ) = (W ′,B′2).
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The Serre functor induces an isomorphism of the Grothendieck group given by

STC [−1] : Z4 → Z4

(r1, d1, r2, d2) 7→ (r2, d2, r2 − r1, d2 − d1)

and
W ′(r1, d1, r2, d2) = Z ◦ (STC [−1])−1(r1, d1, r2, d2).

Therefore, we obtain

W ′(r1, d1, r2, d2) = A(d1 − d2) +B(r1 − r2)− d1 + i(D(d1 − d2) + C(r1 − r2) + r1).

Note that β satisfies that l∗(C(x)) is β-stable of phase one and j∗(C(x)) and i∗(C(x)) are
β-stable. The shape of B′2 is given in Lemma 3.42. Moreover STC [−1](E) ∈ TCoh(C).

There is g ∈ G̃L
+

(2,R), such that β′ := βg = (Z ′,A′) satisfies that j∗(C(x)) is β′-stable of
phase one. We have that STC [−1](E) ∈ A′ or STC [−1](E) ∈ A′[−1], because STC [−1](E)
is β′-semistable and TCoh(C) ⊆ P ′(0, 2], where P ′ is the slicing induced by β′. Since
STC [−1](E) ∈ B′2, then by Lemma 3.89, Case 11, we obtain that
STC [−1](E) ∈ A′. We compute Z ′ explicitly.

Let g = (
[
A −B
D −C

]
, f ′) with f ′(0) = arg(A+ iD).

Then, we obtain that Z ′ = −M−1 ◦W ′ = −T ◦W ′. Therefore

Z ′(r1, d1, r2, d2) = C + α

α
d1 + B

α
r1 − d2 + i(A− α

α
r1 + D

α
d1 + r2).

As a consequence, we obtain that β′ is one of the stability conditions constructed in Lemma
3.13 with

M ′ =
[
−C−α
α

B
α

−D
α

A−α
α

]
,

where α = det(M) > 0. Note that ∆(M ′) = ((A+ C)2 − 4BD) 1
α2 < 0.

Thus, we now can apply Lemma 3.94 to β′ and STC [−1](E). We obtain that

HomTC (STC [−1](E),STC [−1](E)[2]) = 0.

Since STC [−1] is an autoequivalence, we finally obtain

HomTC (E,E[2]) = 0.
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Lemma 3.97. Let E = E1
ϕ−→ E2 ∈ H31[−1] be a σ-semistable object in A. Then

HomTC (E,E[2]) = 0.

Proof. The proof goes along the lines of Lemma 3.96.

Corollary 3.98. If E is σ-stable, then

HomTC (E,E[2]) = 0.

Proof. It follows directly from Lemma 3.89, Lemma 3.94, Lemma 3.96, and Lemma 3.97.

Now we compute the Euler form for all σ-stable objects.

Lemma 3.99. If E is a σ-stable object, then −χ(E,E) = d2r1 − d1r2 ≥ 0.

Proof. The proof falls naturally into two cases:

Case 1: [ϕ] = 0. It implies that either E1 = 0 or E2 = 0. If not it would contradict that E
is σ-stable. It clearly follows that −χ(E,E) = 0.

Case 2: [ϕ] 6= 0. As E ∈ A and A is the heart of a bounded t-structure, we have that
HomTC (E,E[n]) = 0 for all n < 0. By Corollary 3.98 we have that HomTC (E,E[2]) = 0 and
by Lemma 2.78 we have that TCoh(C) has homological dimension 2, which implies, after
applying the Serre functor, that H23[−1] and H31[−1] also have homological dimension 2.
Therefore, it follows that HomTC (E,E[n]) = 0 for n ≥ 2. As a consequence, we obtain

−χ(E,E) = −homTC (E,E) + homTC (E,E[1]).

As E is σ-stable, it follows that −homTC (E,E) = −1. To prove our claim, it suffices to
show that homTC (E,E[1]) > 0.

By Serre duality
HomTC (E,E[1]) = Hom(E[1],STC (E))∗

where STC (E) = E2[1] iE [1]−−−→ C(ϕ)[1]. Then, it implies that there is a non-zero morphism
E → STC (E)[−1], given by

E1
[ϕ]

//

ϕ

��

E2

iE
��

E2
iE // C(ϕ).

(3.45)

As a consequence, we have homTC (E,STC (E)) > 0, and therefore homTC (E,E[1]) > 0 and

−χ(E,E) = d2r1 − d1r2 > 0.
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Proposition 3.100. Let σ = (Z,A) be a pre-stability condition as in Lemma 3.14 with
∆(M) < 0. Then it satisfies the support property and therefore it is a Bridgeland stability
condition.

Proof. We claim that σ satisfies the support property with respect to the following quadratic
form

Q : R4 → R

(r1, d1, r2, d2) 7→ d2r1 − d1r2.

We first show that Q is negative definite on

Ker(Z) = {(r1, d1, r2, d2) | d2 = Ad1 +Br1 and r2 = −Cr1 −Dd1}.

Let (r1, d1, r2, d2) ∈ Ker(Z), then

Q(r1, d1, r2, d2) = (Ad1 +Br1)r1 − d1(−Cr1 −Dd1),
= Dd2

1 + (A+ C)d1r +Br2
1 < 0

as −1 < f(0) = r < 0, we have that 1 < φ0 ≤ 2. Since D = m sin(φ0π), with m ∈
R>0, then D < 0. Morever since ∆(M) = (A + C)2 − 4BD < 0, then B < 0 and
Dd2

1 + (A + C)d1r1 + Br2
1 < 0 for all (r1, d1) ∈ R2. Let E = E1

ϕ−→ E2 be a σ-semistable
object. By [BMS16, Lem. A.6] it is enough to show that Q(E) ≥ 0 for σ-stable objects. By
Claim 3.99 we have that d2r1 − d1r2 ≥ 0.

Remark 3.101. For the support property for g > 1, we would need to prove Lemma 3.94.
But it would not be enough as we cannot use directly the Euler form

−χ(E,E) = d2r1 − d1r2 − (1− g)(r2
1 + r2

2 − r1r2),

because it is not negative definite on KerZ .

Conjecture 3.102. Let g > 1 and σ as above, then the pre-stability condition σ satisfies
the support property with respect to the quadratic form

Q(r1, d1, r2, d2) = d2r1 − d1r2.

Theorem 3.103. Let g = 1 and σ ∈ Θ12 be a pre-stability condition. Then it satisfies the
support property and therefore it is a Bridgeland stability condition.

Proof. If σ ∈ Θi, it follows directly from Proposition 3.87 and if σ ∈ Γ, then it follows from
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Proposition 3.100.

3.4 Topological description of S12

It is now our purpose to study the topology of Stab(TC), we proceed by defining the following
sets

S12 ={σ ∈ Stab(TC) |i∗(C(x)), j∗(C(x)), i∗(OC), j∗(OC) σ-stable for all closed points x ∈ C},
S23 ={σ ∈ Stab(TC) |j∗(C(x)), l∗(C(x)), j∗(OC), l∗(OC) σ-stable for all closed points x ∈ C},
S31 ={σ ∈ Stab(TC) | i∗(C(x)), l∗(C(x)), i∗(OC), l∗(OC) σ-stable for all closed points x ∈ C}.

Throughout the whole section, we assume that every pre-stability σ ∈ Γ is also a Bridge-
land stability condition, i.e. it satisfies the support property. The aim of this section is
to prove that S12 is an open, connected four dimensional complex manifold. The proof
goes along the lines of [Bri08, Prop. 9.4]. It is based on the well-behaved wall and
chamber decompositions of the space of stability conditions. See [BM11, Prop. 3.3] or
[Bri08, Prop. 9.3]. We first proof that Sij ∩ Stab†(TC) is open in a connected component
Stab†(TC) of Stab(TC) Afterwards, we prove that Stab(TC) is connected, thus the sets Sij
are open in Stab(TC).

Lemma 3.104. The set S12 ∩ Stab†(TC) is open in Stab†(TC).

Proof. Let S = {i∗(C(x)), j∗(C(x)), i∗(OC), j∗(OC) | x ∈ C} ⊆ TC . First note that the
classes of i∗(C(x)), j∗(C(x)), and i∗(OC) and j∗(OC) in K(TC) are primitive. By [BM11,
Prop. 3.3], we have a well-behaved wall and chamber decomposition. We consider the set
Θ† of points σ ∈ Stab†(TC) at which all objects of S are σ-stable. We now prove that Θ†

is open. Let B ⊆ Stab†(TC) be a compact set, we show that

F = {σ ∈ B | not every E ∈ S is stable in σ}

is a closed set. As in [Bri08, Prop. 9.4] we show that F = ∪nj=0C̄j , where each Cj is a
chamber in which some E ∈ S is not stable.

Take a chamber C ⊆ B in which some E ∈ S is not stable, we want to prove that C̄ ⊆ F.

By [BM11, Prop. 3.3] for every stability condition σ in the closure of C, the object E cannot
be σ-stable then σ ∈ F.

Take now σ ∈ F. There is an object E ∈ S which is not stable. We have two cases to
consider: If E is stricly semistable, we can find stability conditions λ arbitrarily close to σ
such that E is unstable. Then σ lies in the closure of a chamber where E is unstable. If E
is not semistable, then there is an open neighbourhood of σ where E is not semistable and
then it lies in a chamber where E is not stable. Therefore, we have Θ† is open.
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We now introduce the following notation:

Let g1, g2 ∈ G̃L
+

(2,R), with g1 = (T1, f1) and g2 = (T2, f2). We denote by

Mi = T−1
i =

[
−Ai Bi

−Di Ci

]
for i = 1, 2.

Let us consider the subset

P12 = {(σ1, σ2) ∈ G̃L
+

(2,R)2 | φ0 < φ2 + 1, φ1 < φ3 + 1 and if φ0 > φ2, then det(M1 +M2) > 0},

where f1(0) = n + θ1, f2(0) = m + θ2 where n,m ∈ Z and θ1, θ2 ∈ [0, 1), where ρ(σ1) =
(m0,m1, φ0, φ1) and ρ(σ2) = (m2,m3, φ2, φ3). As we explained in Lemma 1.85.

Remark 3.105. For σ ∈ S12, we consider

φ0 = φ(i∗(C(x))) and φ1 = φ(i∗(OC))
φ2 = φ(j∗(C(x))) and φ3 = φ(j∗(OC)). (3.46)

Lemma 3.106. For every σ ∈ S12, we have that

φ1 < φ0 < φ1 + 1 and φ3 < φ2 < φ3 + 1.

Proof. It follows directly from the stability of i∗(C(x)), i∗(OC) and j∗(C(x)), j∗(OC).

Since every σ ∈ S12 satisfies

φ1 < φ0 < φ1 + 1 and φ3 < φ2 < φ3 + 1,

then by Lemma 1.85 for (m0,m1, φ0, φ1), where

m0 =| Z(i∗(C(x))) | and m1 =| Z(i∗(OC)) |

and for (m2,m3, φ2, φ3), where

m2 =| Z(j∗(C(x))) | and m3 =| Z(j∗(OC)) |

we obtain two stability conditions σ1 = (Z1,A1) = (T1, f1) and

σ2 = (Z2,A2) = (T2, f2) ∈ Stab(C)

respectively. We define π(σ) = (σ1, σ2).
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We define the following map

π : S12 → P12 (3.47)
σ 7→ (σ1, σ2).

Note that
Z
∣∣
D1

= Z1 and Z
∣∣
D2

= Z2,

as m0 and φ0 characterizes Z(i∗(C(x))) and Z1(C(x)). Analogously, it works for the re-
maining objects.

Remark 3.107. Note that G̃L
+

(2,R) acts freely on P12. It is enough to check that
(σ1g, σ2g) ∈ P12, where g = (T, f) ∈ G̃L

+
(2,R) and (σ1, σ2) ∈ P12. We define

σ′i = (T ′i , f ′i) = σig, for i = 1, 2. Let f ′1−1(1) = φ′0 and f ′2−1(1) = φ′2. Since φ0 > φ2 + 1 and
by definition of the action we have that f(φ′0) = φ0 and f(φ′2) = φ2, then φ′0 > φ′2, as f−1

is an increasing continuous function. We analogously prove that φ′1 < φ′3 + 1. We now have
T ′i = Ti ◦ T for i = 1, 2, and

det(T−1 ◦M1 + T−1 ◦M2) = det(T−1) det(M1 +M2) > 0.

Then, we get that (σ1g, σ2g) ∈ P12.

Lemma 3.108. The map π is well-defined, continuous, open and G̃L
+

(2,R)-equivariant.

Proof. First note that G̃L
+

(2,R) also acts freely on S12. As π is defined in terms of the
slicing we clearly have a continuous map from S12 to G̃L

+
(2,R)× G̃L

+
(2,R). We now show

that π is also G̃L
+

(2,R)-equivariant. Indeed, let g = (T, f) ∈ G̃L
+

(2,R) and σ = (Z,A) ∈
S12. We show that π(σg) = (σ1g, σ2g).

Let σ′ = σg. By definition of the G̃L
+

(2,R)-action,

φσ′(i∗(C(x))) = f−1(φ0) and φσ′(i∗(OC)) = f−1(φ1).

As i∗(C(x)) ∈ A[n], for some n ∈ Z, then m′0 =| Z ′(i∗(C(x)) | and m′1 =| Z ′(i∗(OC)) | .
Under the isomorphism given in Lemma 1.85 the preimage of (m′0,m′1, f−1(φ0), f−1(φ1)) is
precisely σ1g. We prove analogously that the preimage of (m′2,m′3, f−1(φ2), f−1(φ3)) is σ2.

We now show that (σ1, σ2) ∈ P12. First we prove that n−m ≥ −1. Since i∗(C(x)), j∗(C(x))
are stable and we have a non-zero morphism i∗(C(x)) → j∗(C(x))[1], it follows that
φ0 − φ2 < 1.

If φ0 > φ2, then by Lemma 3.27 we get that l∗(C(x)) is stable. We show now that in this
case det(M1 + M2) > 0. By Proposition 3.44 and the analogous proposition for Θ23 and
Θ31, we obtain that there is g ∈ G̃L

+
(2,R) such that by acting by g we obtain a stability
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condition σ
′ = σg such that π(σ′) = (σ1g, σµ). Let σ1g = (T ′ , f ′) and M

′ = T
′−1

. By
Lemma 3.53, we have det(M ′ + I) > 0.

Note that M ′ = M−1
2 M1, therefore

0 < det(M−1
2 M1 + I) = det(M−1

2 ) det(M1 +M2).

As φ3 < φ2 < φ3 + 1, we obtain det(M2) > 0. It implies det(M1 + M2) > 0. Moreover, as
i∗(OC) and j∗(OC) are σ-stable and there is a non-zero morphism i∗(OC) → j∗(OC)[1], it
directly implies that φ1 < φ3 + 1. Consequently, we obtain that π is well defined.

We now show that π is a local homeomorphism. We have already that

π′ : S12 → GL+(2,R)2

is a local homeomorphism, where π′ maps each stability condition to its stability function.
We consider the following covering

p : G̃L
+

(2,R)2 → GL+(2,R)2

(σ1, σ2) 7→ (Z1, Z2).

By Theorem 1.66 for every σ ∈ S12 there is an open set Uσ, such that π′ : Uσ → π′(Uσ)
is a covering. As p : p−1(π′(Uσ)) → π′(Uσ) is also a covering and p ◦ π = π′, then
π : Uσ → p−1(π′(Uσ)) has to be a covering and as a consequence a local homeomorphism. As
P12 is an open subset of G̃L

+
(2,R)2, then we get that π is also a local homeomorphism.

In order to prove that the map π is in fact a homeomorphism, we study the action of
G̃L

+
(2,R) on S12. As G̃L

+
(2,R) acts freely on S12, we define a section of the action

V12 = {σ ∈ S12 | π(σ) = (σ1, σ2) such that σ2 = σµ}

Claim 3.109. If σ ∈ V12 and π(σ) = (σ1, σµ) with 0 ≤ f(0), then σ ∈ Θ12.

Proof. Indeed, if l∗(C(x)) is not σ-stable, then by Theorem 3.30 we have σ ∈ Θ12. We
assume that l∗(C(x)) is σ-stable, since i∗(C(x)) and j∗(C(x)) are also σ-stable, we obtain
that φ2 < φ4 < φ0 < φ2 + 1. By the definition of σ, we have φ2 = 1, then 1 < φ0 < 2 and
it follows that n = −1 and f(0) < 0, which is a contradiction.

Claim 3.110. If σ ∈ V12 and π(σ) = (σ1, σµ), with σ1 = (T, f) ∈ G̃L
+

(2,R) and
0 > f(0) > −1, then l∗(C(x)) is σ-stable.

Proof. If l∗(C(x)) is not σ-stable, then by Remark 3.24 we have φ0 − φ2 ≤ 0. Since φ2 = 1,
we obtain φ0 ≤ 1. If n is the integer part of f(0), then −n < φ0 ≤ 1, and it follows n ≥ 0,

https://math.stackexchange.com/questions/681438/morphism-between-covering-spaces
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which is a contradiction.

The image of V12 under π is contained in

L12 = {(σ, σµ) ∈ G̃L
+

(2,R)2 | f(0) > −1, 3/2 > f−1(1/2) and iff(0) < 0 then det(M + I) > 0}.

Abusing the notation we see L12 as a subset of G̃L
+

(2,R).

Claim 3.111. The subset L12 ⊂ G̃L
+

(2,R) is open and connected.

Proof. We define
U1 = {g ∈ G̃L

+
(2,R) | f(0) > 0}

and

U2 = {g ∈ G̃L
+

(2,R) | 1/2 > f(0) > −1 , det(M + I) > 0 and f−1(1/2) < 3/2},

which are open sets in G̃L
+

(2,R) as det : G̃L
+

(2,R) → R>0 is a continuous function. We
obtain L12 = U1∪U2. Indeed, U1∪U2 ⊆ L12. Now if g ∈ L12, the only case that is not trivial
is if f(0) = 0. In this case −A,C ∈ R>0. It follows that Tr(M) ≥ 0. As a consequence, we
get det(M + I) > 0 and g ∈ U2, hence that L12 is an open subset of G̃L

+
(2,R).

We define Y ⊆ R4 as follows: We say that (m0,m1, φ0, φ1) ∈ Y if

mi > 0, φ0 < 2 , φ1 <
3
2 , φ1 < φ0 < φ1 + 1

and if
1 ≤ φ0 < 2 and 0 < φ1 <

3
2 , then δ(m0,m1, φ0, φ1) > −1,

where

δ : R>0 × R>0 × (1, 2)× (0, 3
2) → R (3.48)

(m0,m1, φ0, φ1) 7→ m0m1 sin((φ0 − φ1)π)−m0 cos(φ0π) +m1 sin(φ1π).

Note that Y is connected, because although f is defined in terms of trigonometric functions,
it is restricted to intervals where it behaves well.

Claim 3.112. The following map

ρ : L12 → Y (3.49)

(T, f) 7→ (m0,m1, f
−1(1), f−1(1

2))

where m0 = |A+Di|,m1 = |B + Ci| is a homeomorphism.
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Proof. Since we defined ρ in the same way as the homeomorphism given in Lemma 1.85,
in order to show that ρ is a homeomorphism, it suffices to show that Y is the image of
L12 under the map defined in Lemma 1.85. First of all we prove that it is well-defined.
Let σ1 ∈ L12. Clearly m0,m1 > 0. Since f(0) > −1 and f−1 is an increasing map, as a
consequence ß0 > f−1(−1) and we have

2 > f−1(1).

It also implies

f−1(1/2) < f−1(1) < 2 and f−1(1/2) < f−1(1) < f−1(3/2) = f−1(1/2) + 1.

By assumption f−1(1/2) < 3/2.

If f(0) ≥ 0, then 1 ≤ f−1(1). We just need to consider the case −1 < f(0) < 0. In this case
1 < f−1(1) < 2 and 0 < f−1(1/2) < 3/2. By the correspondence between f−1 and M, we
have that det(M + I) > 0 if and only if δ(m0,m1, f

−1(1), f−1(1/2)) > −1. Indeed, since

A+Di = m0(cos(f−1(1)π) + i sin(f−1(1)π) (3.50)

and
B + Ci = m1(cos(f−1(1/2)π) + i sin(f−1(1/2)π),

we obtain
det(M + I) = δ(m0,m1, f

−1(1), f−1(1/2)) + 1.

It follows that L12 is connected.

Proposition 3.113. The map

π : V12 → L12 (3.51)
σ 7→ σ1,

is a homeomorphism.

Proof. First we prove that π is injective. Let σ = (Z,A), τ = (W,B) ∈ V12, such that
π(σ) = π(τ) = σ1. If 0 ≤ f(0), by Claim 3.109, we obtain σ, τ ∈ Θ12. By Lemma 3.49, the
stability conditions are completely characterized by σ1 and σ2 = σµ i.e. σ = gl12(σ1, σ2) = τ.

If 0 > f(0) > −1, by Claim 3.110, we have that l∗(C(x)) is stable. In Lemma 3.53 we
described this type of stability conditions and its hearts. As by definition Z = W and
d(P,Q) < 1, where P and Q are the slicing of σ and τ respectively, then σ = τ .
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Thus, by Lemma 3.108 we already have a homeomorphism onto the image of V12. We now
prove that it is in fact onto. By Lemma 3.104 and Lemma 3.108 the image of V12 is open.
Since L12 is also connected, it is enough to prove that π(V12) is closed. Moreover, it contains
a dense subset as the image of the discrete stability conditions constructed in Section 2.2
and Lemma 3.14. We prove it by contradiction. Assume that π(V12) is not close and let us
take a τ1 = (Z,A) in the boundary of π(V12) which does not belong to the image. Note that
there is τ ′ = (Z ′ ,A′) = π(σ′) ∈ π(V12), where σ′ = (W ′,B′), sufficiently close to τ1 such
for W = Z(r1, d1) + Zµ(r2, d2), we have that QW ′ restricted to KerW is negative definite,
where QW ′ is the quadratic form given by the support property satisfied by σ′.

Consider the open subset of Hom(Z4,C), consisting in homomorphisms whose kernel is
negative definite with respect to QW ′ and let U be the connected component containing
W ′. Then as in [BMS16, Proposition A.5], there is a continuos function C : U → R>0

such that C(Y ) ∈ R>0 satisfies that ||v||C(Y ) < |Y (v)| for v ∈ R4 with QW ′(v) ≥ 0, an
appropiate norm in R4 and |−| the Euclidean norm in C. Then there is 0 < ε < 1

8 , such that
|W −W ′ |∞ ≤ sin(πε)C(W ′). As a consequence we have that |W −W ′ |∞ < sin(επ) |W

′(E)|
||[E]|| ,

which implies ||W −W ′||σ′ < sin(πε).

By Bridgeland’s deformation Theorem 1.65, there is a stability condition σ = (W,B) in the
neighbourhood of σ′ . This also implies that σ belongs to

S12 := {σ ∈ Stab(TC) : j∗(C(x)), i∗(C(x)), j∗(OC), i∗(OC) are σ-semistable}.

We now show that σ is in fact in S12. It is possible to choose τ ′ appropriately, such that σ
is in a desired wall. We now assume the object j∗(C(x)) is σ-semistable but not stable and
j∗(C(x)) ∈ Pσ(1). By Lemma 3.27 the Jordan-Hölder filtration is given by

i∗(C(x))[−1]→ j∗(C(x))→ l∗(C(x)),

all with the same phase. Therefore, we obtain i∗(C(x))[−1] ∈ Pσ(1). It implies that
W
∣∣
D1

= Z = Ad+Br+iCr. It follows that τ1 is a stability condition given by (Z,Coh(C)[n]),
for n ∈ Z. By the definition of L12 we have that f(0) = n ≥ 0. As a consequence τ1 and σµ
satisfy the CP-gluing conditions. Moreover σ1 = gl12(τ1, σµ) is a discrete stability condi-
tion, by Corollary 2.90 and by Lemma 3.83 a Bridgeland stability condition in V12 satisfying
π(σ1) = τ1. We obtain a contradiction.

We now choose τ ′ such that σ satisfies that i∗(C(x)) is semistable, but not stable. By
Lemma 3.27 the Jordan-Hölder filtration is given by

l∗(C(x))→ i∗(C(x))→ j∗(C(x))[1],

all with the same phase. By continuity j∗(C(x)) ∈ P(1), as a consequence i∗(C(x)) ∈ P(2).
It implies τ1 is a stability condition over a curve is given by (Z,Coh(C)[n]), with n ≥ 0,
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which gives us a contradiction.

We now choose τ ′ such that σ satisfies that i∗(OC) is semistable, but not stable. By Lemma
3.27 the Jordan-Hölder filtration is given by

l∗(OC)→ i∗(OC)→ j∗(OC))[1],

all with the same phase. By continuity j∗(OC) ∈ P(1/2), as a consequence i∗(OC) ∈ P(3/2).
It implies that W

∣∣
D1

= Z = Ad + i(Cr + Dd) with C < 0. We go back to τ1 = (T, f) ∈

G̃L
+

(2,R). If f(0) ≥ 0, the CP-gluing conditions are satisfied and σ1 = gl12(τ1, σµ) is a
CP-glued pair. As B = 0, the conditions of Proposition 2.94 are also satisfied and σ1 is a
stability condition. Therefore, π(σ1) = τ1 and we obtain a contradiction. If 0 > f(0) > −1,
the fact that φ(i∗(OC)) = 3/2, contradicts f−1(1

2) < 3
2 .

We now choose τ ′ such that σ satisfies that j∗(OC) is semistable, but not stable. By Lemma
3.27 the Jordan-Hölder filtration is given by

i∗(OC)[−1]→ j∗(OC)→ l∗(OC)),

all with the same phase. By continuity j∗(OC) ∈ P(1/2), as a consequence i∗(OC)[−1] ∈
P(1/2) and we conclude the proof along the lines of the last paragraph.

We finally obtain π(V12) = L12.

Corollary 3.114. The map

π : S12 → P12 (3.52)
σ 7→ (σ1, σ2)

is a homeomorphism.

We can finally prove the Harder-Narasimhan property for non-discrete stability conditions.

Proposition 3.115. The pairs σ = (Z,A) constructed in Remark 2.79 with the semior-
thogonal decomposition 〈D1, D2〉 and the pairs σ = (Zr,Ar) given in Lemma 3.12 with
f−1(1

2) < 3
2 are Bridgeland stability conditions.

Proof. Whenever σ1 = (T1, f1) = (Z1,A1) ∈ Stab(C) and σ2 are discrete we have already
shown that it gives us a Bridgeland stability condition. It is enough to show it whenever
σ2 = σµ. Let σ = gl12(σ1, σµ) be a CP-glued pair. As f1(0) ≥ 0, we get (σ1, σµ) ∈ L12.

Therefore, there is a stability condition τ ∈ V12 such that π(τ) = (σ1, σ2). By Claim 3.109,
we obtain τ ∈ Θ12 and by Lemma 3.49, we have that τ = gl12(σ1, σ2) = (Z,A). As a
consequence the pair (Z,A) gives a Bridgeland stability condition.
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Let σ = (Zr,Ar). If we consider σ1 as in Lemma 3.12 with f−1(1
2) < 3

2 . We get that
−1 < f1(0) < 0 and by hypothesis det(M1 + I) > 0, we have that (σ1, σµ) ∈ L12. As a
consequence, there is a stability condition τ ∈ V12 such that π(τ) = (σ1, σ2). By Claim
3.110, we obtain that l∗(C(x)) is τ -stable. Therefore by Lemma 3.53, we have that τ is
given precisely by the construction in

Remark 3.116. If σ = (Zr,Ar) is a pre-stability condition given in Lemma 3.12 with
f−1(1

2) ≥ 3
2 , then either i∗(OC) is not stable or j∗(OC) is not stable. Then σ is in S23 or

in S31. Precisely, by Lemma 3.34, Lemma 3.36 and Lemma 3.37 if φ5 >
3
2 then j∗(OC) and

l∗(OC) are σ-stable, and if φ5 < 1/2 then l∗(OC) and i∗(OC) are σ-stable. As a consequence,
all the already constructed pairs in Lemma 3.12 are Bridgeland stability conditions.

Theorem 3.117. The space of stability conditions Stab(TC) = S12∪S23∪S31 is a connected,
four dimensional complex manifold.

Proof. Since V12 is connected, it implies that S12 is also connected. Moreover
S12 ∩ S23 = S23 ∩ S31 = S12 ∩ S31 is not empty, so Stab(TC) is connected.



Zusammenfassung

In Kapitel 1 geben wir eine Einführung in grundlegende Konzepte. Wir untersuchen ver-
schiedene Eigenschaften einer triangulierten Kategorie D und abelscher Unterkategorien
von D mit Hilfe von T-Strukturen und Torsionspaaren. Als nächstes geben wir einen
Überblick über die wichtigen Konzepte der semiorthogonalen Zerlegung und des Serre-
Funktors. Das Hauptaugenmerk von Abschnitt 1.2 liegt auf einer umfassenden Diskussion
der Bridgeland-Stabilitätsbedingungen. In Kapitel 2 studieren wir die Stabilitätsmannig-
faltigkeit Stab(Db(QA,n)). In Abschnitt 2.1 beschäftigen wir uns mit der beschränkten
abgeleiteten Kategorie der Darstellungen des n-Kronecker-Köchers über einer abelschen
Kategorie TA,n := Db(QA,n) und konstruieren verschiedene semiorthogonale Zerlegungen
von TA,n. Wir beweisen die Existenz des Serre-Funktors und geben eine explizite Beschrei-
bung für den Fall n = 1. In Abschnitt 2.2 konstruieren wir Prestabilitäts-Bedingungen auf
TA,n und geben konkrete Beispiele von CP-verklebten Prestabilitäts-Bedingungen auf der
Kategorie TCoh(X), wobei hierX eine glatte projektive Kurve, Fläche oder 3-Mannigfaltigkeit
bezeichnet. In Kapitel 3 untersuchen wir TCoh(C), die Kategorie der holomorphen Tripel
über einer glatten projektiven Kurve C über C mit Geschlecht g(C) ≥ 1.Das Ziel dieses
Kapitels ist es eine vollständige Beschreibung der Stabilitätsmannigfaltigkeit Stab(TC) zu
geben. Darüber hinaus beweisen wir das alle CP-verklebten Paare σ sogar Bridgeland-
Stabilitätsbedingungen sind. Um Stab(TC) zu beschreiben folgen wir der Konstruktion in
[Bri08]. In Abschnitt 3.1 konstruieren wir zusätzliche Paare mit Hilfe von Kipp-Theorie
und erhalten als Konsequenz diskrete Prestabilitäts-Bedingungen. In Abschnitt 3.2 zeigen
wir, dass alle Bridgeland Stabilitätsbedingungen in Stab(TC) durch bereits konstruierte
Paare gegeben sind, entweder durch CP-kleben oder kippen. InAbschnitt 3.3 beweisen
wir die Unterstützungs-Eigenschaft und schlussendlich in benutzen wir in Abschnitt 3.4
Bridgelands Deformationsresultat um eine topologische Beschreibung der Stabilitätsman-
nigfaltigkeit zu erhalten und die HN-Eigenschaft auf den nicht-diskreten Fall zu übertragen.
Dieses Kapitel erscheint in [MRRHR19] als kollaborative Arbeit mit Eva Martínez Romero
und Arne Rüffer.
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