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1 Introduction 

In this project, skeletal muscle tissue-specific functional analysis of neurofibromin I protein 

associated myopathy in animal models is performed. The overall scientific objective is to 

elucidate the mechanism of Nf1 deletion-dependent prenatal muscle development defect as 

well as the postnatal myopathy seen in the mouse model from a cellular and molecular level. 

This study will generate first pre-clinical knowledge about the pathomechanism of muscular 

weakness in NF1 patients, for which scare data are available so far. Furthermore, it will 

increase our understanding of Nf1 downstream signaling events and the involvement of 

signaling components in pathological processes, as the results obtained in this project might 

be transferable to the function of Nf1 in other cellular contexts. Therapeutic options for skeletal 

muscle abnormality are still limited currently because of the poor understanding of its 

pathogenesis. Using the animal model,  whether Nf1 muscle defect can be therapeutically 

prevented or attenuated will be tested. We envision that deciphering the mechanism of the 

observed NF1 muscle phenotype will yield further advancements in the treatment of 

musculoskeletal aspects of the Neurofibromatosis type I. 

  Skeletal muscle system 
  Development of Skeletal muscle  

Vertebrate limb skeletal muscle derives from progenitors originating in the somites. The 

earliest myogenic marker in mouse was identified by analyzing the expression pattern of paired 

domain transcription factors Pax3. Pax3 is initially expressed in the presomitic mesoderm 

(PSM) during the segmentation process. Followed by newly formed dermomyotome, the 

committed myotomal cells or muscle progenitors could express Pax3/Pax7, Myod, Myf5, and 

they migrate into the limb buds at around  E9.5, then decreased expression during myogenic 

differentiation (Fig. 1.1). Besides, not all muscle progenitors go into differentiation fate,  there 

are still some Pax3+ cells in proliferation state and give rise to Pax7+ cells, these cells are the 

source of the second wave muscle fiber formation apart of which are also maintained for adult 

muscle stem cell pool10. Lineage tracing analysis with a Pax3Cre KI allele reveals that Pax3+ 

progenitors can give rise to embryonic, fetal as well as adult skeletal muscle tissue, which also 

strongly indicated that adult limb muscle satellite cells are somitic origin11. Gabrielle Kardon’s 

lab using avian somite labeling experiments, and they show that almost all limb satellite cells 

are derived from the somites11,12. Besides, with two Pax3Cre mouse models, they also 

characterized the genetic origin of these satellite cells10,11,13,14. In general, limb myogenesis 

follows four significant phases. The first step is the embryonic myogenesis stage. It starts at 

E10.5 and lasts until E13.5. During this stage, the mononuclear myocytes will start to express 
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differentiation markers such as myogenin, Mrf4, and also start to fuse, give rise to multi-

nucleated primary muscle fibers, which is also called the first wave of muscle fiber formation15. 

The second stage is the fetal myogenesis. It is also called the second wave of muscle fiber 

formation, which occurs between E14.5 and E17.516,15. At this time point, some of the high 

proliferating muscle progenitors will leave their cell cycle and fuse with the existing primary 

fibers or form new fibers by themselves (de-novo formation). At the later stage of fetal 

myogenesis, the basal lamina will be fully formed. Therefore the Pax7+ cells will go out of the 

cell cycle gradually become quiescent and stay in their stem cell niche underneath the basal 

lamina. This process is also called neonatal myogenesis. The progenitors are mainly 

responsible for the repair of adult myofibers which caused by injury or exercise. After 

stimulation, the progenitors will re-enter the cell cycle to start asymmetric cell division for self-

renew and myogenic markers expression for myotube fusion simultaneously. It is the so-called 

adult muscle myogenesis process17. 

 
 

 

 

 

 

   Fiber type formation during skeletal muscle development 

 Skeletal muscle is composed of different muscle fibers, and its proportion is highly dynamic. 

One of the reasons that contribute to this diversity might be heterogeneous of the muscle 

progenitor population18; It can also be influenced by the continuous wave of muscle fiber 

formation during embryonic development and the separation of slow and fast fibers during the 

perinatal stage and fiber type reprogramming during postnatal development12. Under mouse 

muscle fiber formation context, most of the early muscle progenitors contribute to slow fibers. 

Figure. 1.1. Paraxial mesoderm differentiation towards skeletal muscle. 
The diagram outlines the differentiation of paraxial mesoderm gradually to skeletal muscle. From left to 

right:  On top shows the developmental sequence,  the middle shows cell types, and the bottom shows 
gene markers. aPSM, anterior presomitic mesoderm; pPSM, posterior presomitic mesoderm; Emb, 

embryonic; NMPs, neuromesodermal progenitors3. 
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This biological process happens between E9.5 and E13.519. Literature shows at around E16, 

the formation of fast fiber can be first detected from transcripts level, for protein expression as 

the turn over time is longer than transcripts it is even later20. During the first week of postnatal 

muscle development, these fibers can further give rise to several different fast relative fiber 

isoforms, including MHC-2A, MHC-2X, MHC-2B21. The previous paper shows that isolation 

and culture of mouse early embryonic myoblast, these cells can only differentiate into slow 

fibers. However, late embryonic myoblast behaves oppositely. Besides, researchers also show 

that satellite cells attached with fast fibers can only differentiate into fast fibers during in vitro 

cell culture, and interestingly satellite cells isolated from slow fibers can differentiate into both 

fiber types. The exact regulation mechanism of these cells is still a mystery and needs more 

effort on it. The perinatal period is a critical time point for fiber type diversification featured by 

the formation of adult fast type myosin heavy chain (MHC) isoforms and its subtypes of MHC. 

Until now, during development, how these embryonic and fetal fibers get reprogrammed and 

form different muscle fiber types is still unclear. Anne-Françoise Richard and her colleagues 

used specific gene knock out mouse model proved that at E18.5, Sox6/Nfix and its target 

genes Six1/Six4 could regulate glycolysis and oxidative phosphorylation metabolism genes 

expression thus repress the formation of slow fibers which might be one of the molecular 

mechanism of muscle fiber type formation at fetal stage22,23. Six1 is mainly expressed in adult 

fast-twitch fiber nuclei. Interestingly just opposite with fetal stage, at the embryonic stage, Sox6 

positively regulated slow fiber formation through Mef2c24. At the prenatal stage, the percentage 

of slow fibers reach their highest level. With time past fiber type reprogramming will happen 

gradually until the adult stage. Fast fibers play a dominant role for adult mouse, and slow fibers 

predominantly left in few muscles as the soleus25,26.  

 Metabolism of skeletal muscle system 

During postnatal development, skeletal muscle is one of the most important organs and 

accounts for 30 - 50% of human body mass. Most of the glucose that ingested from food will 

be used by muscle cells and then provide energy for body moving. Different types of muscle 

fibers within the tissue have been distinguished according to SDH (succinate dehydrogenase) 

staining assay, the myosin ATPase assay (ATP staining), or α-glycerophosphate 

dehydrogenase (αGPD) assay. Based on histochemical staining, immunostaining, various 

myosin heavy chain (MYH) expression pattern, and myosin ATPase activity, skeletal muscle 

fibers can be separated into several sub-families27. Totally speaking, muscle fibers can be 

divided into slow-twitch fibers, also being called red muscle or Type I (Myh7) muscle, which 

has a higher content of mitochondrial and smaller cross-section area. More blood vessels to 

supply oxygen and the increased levels of myoglobin that is also the reason why they have 
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red color and being called red muscle. They generate ATP through the transfer of electrons to 

O2 by a sequential electron carrier located in mitochondrial. High energy molecules, including 

NADH and FADH2, which are produced by glycolysis, fatty acid oxidation, and citric acid cycle, 

are the primary source of these electrons. In contrast with slow fiber, fast-twitch fibers, also 

being called white muscle or type II muscle, just have different properties. This fiber group can 

also be separated into three subgroups: 2A (Myh2), 2X (Myh1), 2B (Myh4).  Despite there are 

no type 2B fibers in humans, the proportion of slow fibers is much higher in humans than 

mouse28. Take gastrocnemius muscle as an example, the proportion of type I fibers in mouse 

is around 8% - 10%, but in human, the distribution of fast and slow fibers are almost equal. For 

fast fibers, they generate energy mainly through glycolytic metabolism29. At rest status, glucose 

from blood will be transferred into muscle cytoplasm through Insulin-dependent Glut4 

transporter. After several steps of enzymatic reactions, one molecule of glucose can be 

transformed into two pyruvates yielding two ATP, two NADH in the process. In slow fibers 

Pyruvate will be changed into Acetyl–CoA and goes into the citric cycle for two CO2, three 

NADH, and one FADH2. After mitochondrial electronic transport chain, in total, one molecule 

of glucose can generate 30-32 ATP. However, fast fibers mainly rely on glycolysis alone 

without TCA cycle and electron transport chain. Compared with glycolysis (2 ATP), the TCA 

cycle is a much more efficient way to generate energy. However, researchers also prove that 

glycolysis is not mainly for energy production; its primary function is to provide biomaterials for 

rapid high proliferating cells to sustain their protein and DNA synthesis rate30, which is also 

why even with sufficient oxygen, activated cells still prefer to use glycolysis30. For different fiber 

types, their mitochondrial content reduces gradually from type I to type II, and their insulin-

stimulated glucose uptake ability is also following this pattern (I > IIA > IIX > IIB/X ≈ IIB)31-33. 

Several research groups used different methods to separate real slow and fast fibers followed 

by single fiber microarray analysis or proteomics analysis. Gene ontology (GO) analysis of 

transcriptome data showed GO terms for Mitochondrial, Contractile fiber part, Ribosome are 

highly enriched in type I fibers. KEGG pathway analysis showed pathways including Ribosome, 

Cardiac muscle contraction, Oxidative phosphorylation, Fatty acid metabolism are enriched in 

type I fibers. GO and KEGG pathway enriched in type IIb fibers, including Glycolysis, 

Proteolysis, Insulin signaling pathway, and Wnt signaling pathway34. One of the common 

diseases related to the muscle fiber is Sarcopenia, especially in aged individuals, the 

phenomenon of this disease is patients will gradually lose their muscle mass and strength 

followed by decreased performance as well as self-renew capacity reduction. One character 

was noticed that this change is fiber type-dependent. It starts with type 2 fast fiber loss, and 

atrophy leads to a smaller diameter of type 2 fibers, thus influence the quality of people's life35. 

The first identified metabolic myopathy is McArdle Disease, also being called glycogen storage 

disease type V (GSD-V). This disease was caused by deficiency and activity loss of 
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myophosphorylase, which impairs glycogen breaks down, thus caused skeletal muscle 

carbohydrate metabolism disorder. Until now, several animal models have been established, 

including sheep and mice. Thomas O. Krag et al. used 20 weeks McArdle mice showed 

comparable muscle physiology with human patients. The muscle contraction ability of mutant 

mice was affected by the degeneration of structure relative proteins because of glycogen 

accumulation. Also, mutation mainly influences glycolytic muscles as they mainly rely on 

glucose metabolism, and these fast fibers are much more resistant to be fatigued. Therapies 

used to help patients to manage this disease include specifically attention with food rich with 

carbohydrate more creatine supplement and drink or eat a certain amount of sucrose before 

taking exercise36,37.  

   Hypertrophy and atrophy of skeletal muscle 

Skeletal muscle is highly dynamic and heterogeneous. Muscle mass and muscle strength can 

directly influence its biological functions, thus influence life quality. One of the reasons for 

muscle dynamic is skeletal muscle mass is regulated by both intrinsic (genetic and sex) and 

external stimulation (nutrition and training variables). Before the mouse grows into an adult 

stage, especially at the beginning of the first three postnatal weeks, skeletal muscle weight 

increased several times, and this is mainly from the muscle hypertrophy38.  During this period, 

muscle hypertrophy is mainly induced by myofibril to increase its diameter, thus lead to bigger 

muscle fiber size. How could myofibril have such a dramatic size increase?  One way for 

skeletal muscle to regulate its muscle mass is by keeping the balance between contractile 

protein synthesis and degradation39. For juvenile individuals, dramatically muscle hypertrophy 

will sustain until they reach the point of adult time.  In this time, the protein synthesis rate is 

much higher than its degradation rate.  Also, a large amount of myoblast generated from 

activated muscle stem cells will incorporate into existing muscle fibers. In order to maintain the 

essential nuclear domain size, fibers with more nuclear will stimulate more protein synthesis 

and make fibers diameter grow fast. In theory, the number of muscle fibers has been 

predetermined during the embryo development stage. That is to say, only muscle fiber quality 

can be increased instead of quantity during postnatal skeletal muscle development. For adult 

animals, endurance exercise has proved to get muscle more stronger by increasing muscle 

strength, protein synthesis, and the ability of aerobic metabolism through activating muscle 

mitochondrial enzyme activity40.  

Over the past years, several signaling pathways involved in muscle hypertrophy have been 

identified. One of them is the pathway induced by insulin-like growth factor I (IGF-1). IGF-1 

controls muscle mass by directly activate the phosphatidylinositol-3 kinase (PI3K)/Akt pathway 

through its downstream targets to control the protein synthesis rate. Overload stimulates 



Introduction 

6 

 

muscle protein synthesis is also in this way41. Another critical signal pathway involved in both 

muscle protein synthesis and muscle metabolism control is mTOR signaling.  

Heterodimeric complex composed by tuberous sclerosis complex-1 and -2 proteins (TSC1/2) 

is an critical regulator of mTOR signaling and it could integrate different growth factors and cell 

energy status together into mTOR pathway especially for mTORC142. Specific site 

phosphorylated AKT is a negative regulator of TSC1/2 (tuberous sclerosis complex-1 and -2 

proteins); thus, PI3K/AKT works as a positive regulator of the mTOR pathway43. Amino acid 

could activate the mTOR pathway directly by stimulated p70S6K and promote protein 

synthesis rate44. Loss of mTOR function through knock out RAPTOR contributes to sever 

muscle atrophy，reduction of muscle oxidative capacity and also fiber type shift to type 2 fast 

fibers45. Constitute activation of mTOR lead to a higher glycolysis rate and lower PGC-1a 

expression, which is a master regulator of mitochondrial genesis46. Paul A. Dutchak et al. also 

showed that knock out NPRL2, which is a component of GATOR1 complex functions as a 

negative regulator of mTORC1 under the context of amino acid insufficiency could constitutive 

activate mTORC1 signaling in both fed and fasted states. Muscle fibers from these knockout 

mice show a fiber type shift from slow oxidative to fast glycolytic composition with enhanced 

glucose tolerance ability. Furthermore, the depletion of NPRL2 induces aerobic glycolysis and 

suppresses glucose entry into the TCA cycle47. Besides, the mTOR pathway could also be 

regulated by another master of muscle energy deficiency sensor, namely AMPK48. AMPK is a 

heterotrimeric protein complex consisting of a catalytic α and regulatory β and γ subunits. Two 

isoforms of α (α1 and α2) and β (β1 and β2)  and three isoforms of γ (γ1, γ2, and γ3) subunit 

have been identified49. In skeletal muscle, there are two types of AMPKa (1, 2). Researchers 

proved that AMPKa1regulate muscle size through the control of mTORC1 signaling activity. 

AMPKa1 functions as a negative regulator of the mTOR pathway, thus reduce protein 

synthesis rate leads to smaller muscle size48. Instead of being activated by energy deprivation 

through LKB1 in Ampka2, Ampka1 is mainly activated through low-intensity contraction and 

also oxidative stress. How AMPK signaling combined with the mTOR pathway to regulate the 

adult skeletal muscle mass and metabolism is shown in figure.1.2. AMPKa2 plays a 

predominant role in regulating muscle metabolic adaption50. Interestingly AMPK γ3 is mainly 

expressed in fast glycolytic fibers; the ablation and overexpression of this gene do not influence 

the content and activity of mitochondrial in resting skeletal muscle. However, overexpression 

of a single nucleotide mutation of AMPKγ3 can significantly promote the biogenesis of 

mitochondrial through increasing the expression of PGC-1α in glycolytic skeletal muscle. 

Activation of AMPK by AICAR in rat glycolytic epitrochlearis muscle promotes translocation of 

glucose transporter 4 (Glut4), thus increase glucose uptake51. The effect is exercise dependent 

and Insulin-PI3K signaling independent. However, in oxidative soleus muscle, even though 
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AICAR can still activate AMPK, there is no glucose uptake induced. This phenomenon 

indicated that AMPK- mediated glucose uptake is likely fiber type dependent49. 

 

 
 
 
 

 

Opposite with muscle hypertrophy is muscle atrophy. It is defined as partial or completed loss 

of muscle weight due to the degeneration of muscle fibers. Muscle atrophy could be divided 

into different types based on reasons that caused atrophy. Pathology, disuse, and normal 

aging atrophy are the most common atrophy types. Pathological conditions causing muscle 

atroph, includ cancer cachexia, sepsis, and AIDS52. Even though there is a group of genes that 

could be inversely regulated by hypertrophy and atrophy, the skeletal muscle atrophy has its 

unique regulation mechanism, including a higher protein degradation rate, and this was 

induced at least partly by activation of ubiquitin-proteasome pathway (UPP)35. Interestingly 

muscle atrophy also could activation of the precise transcription process, which is not the 

converse process of muscle hypertrophy. 

The central role of the UPP system for protein degradation and protein turn over has been 

thoroughly studied in the past two decades. Component of this system includes three enzymes 

E1 (Ub-activating enzyme), E2 (Ub conjugating proteins), and E3 (Ub-protein ligase). This 

processing is energy-dependent for ubiquitin activation and removes of ubiquitin chain. Among 

these three reaction process enzymes, E3 is always being considered as the most important 

one. This ligase could only recognize specific target protein substrates and catalyzes the 

reaction. Once the target protein gets labeled with Polyubiquitin chains, this destined 

degradation protein could be recognized by 26S proteasome, then ubiquitin will be removed, 

and the target protein will be linearized and digested into small peptides. Finally, these peptides 

Figure. 1.2. Regulation of muscle mass through signaling pathway/nutrition/exercise regulated muscle 

hypertrophy and muscle atrophy1. 
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will be degraded into amino acids in the cytoplasm or being used directly for antigen 

presentation53 . In skeletal muscle tissues, two genes encoding E3 ligase have been identified, 

which are Muscle Ring Finger1 (MuRF1) and Muscle Atrophy F-box (MAFbx), also being called 

Atrogin-1 respectively54. Even though both of them are E3 ligase, how could they recognize 

their specific target protein is still unclear. Intensive research showed that MAFbx prefers to 

interact with certain myogenic transcription factors such as MyoD and myogenin, thus implies 

it might be involved in muscle cells differentiation process. Besides, transcription factor 

myogenin could also regulate MAFbx expression implies it is a feedback regulation of muscle 

size control55-57. Different from MAFbx, MuRF1 tend to interact with myosin heavy chain (MHC) 

related proteins and glucose metabolism proteins such as PDH, PDK2, and PDK458. In 

conclusion, research about the exact roles of MAFbx and MuRF1, how they chose their 

substrates and pathways how they get regulated in a particular context is still a mysterious and 

need a long way to go for research. 

 Muscle stem cells 
 Development of muscle stem cells 

Muscle stem cells were identified in 1961 by Mauro A59.  These somatic stem cells reside 

beneath the basal lamina of mature muscle fibers; thus, they are also being called muscle 

satellite cells. Recent research about muscle stem cells and their related diseases are mainly 

based on gene-modified animal models, among which mice are the most popular ones. 

E9.5~E10.5, for the dermomyotome cells, they can give rise to myocyte, and Pax7+ specific 

cells, both of them have the ability of proliferation and differentiation and contribute to the 

formation of primary myofibers at embryonic stage (E10.5~E13.5). These Pax7+ cells 

proliferate and fuse with the secondary myofibers at fetal myogenesis stage. During this stage, 

some of the Pax7+ cells exit from the cell cycle gradually, and only after E17.5, when the basal 

laminar completely formed, these progenitors found their final anatomical position thus being 

called satellite cells60.  At the postnatal stage for the first three weeks, muscle weight increase 

rapidly through muscle hypertrophy and nuclear muscle addition, then muscle nuclear domain 

will double, and satellite cell numbers decrease for 2~3 times61. Upon injury, adult skeletal 

muscle has the ability of regeneration through the muscle stem cells. This small collection of 

mono-nucleated cells located beneath the basal lamina of every myofiber. SCs exist lifelong 

even though the regenerative ability will decrease with the influence of age and disease62.  

Satellite cells have two different states: quiescent and activated. Most of the time, muscle is a 

stable tissue, and satellite cells just sit in quiescence state, but after stimulating with the 

disease, injury, exercise, the regeneration process will be activated. Through proliferation, SCs 

form a pool of myoblast and then finally differentiate into terminally committed myocytes and 
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fuse into multinucleate myofibers. For the transition process between quiescent and activated 

states, it is regulated strictly. Quiescent satellite cells express Pax7 and lack the expression of 

myogenic determination proteins such as MyoD63. Delta/Notch pathway plays a critical role in 

the stage transition of satellite cells. Its regulation is dosage and context-dependent. During 

the early embryo myogenesis (E12.5 - E18.5) stage, the Notch pathway maintains muscle 

progenitors in high proliferation status at the expense of differentiation64. At E18.5, activated 

Notch signaling keeps on blocking differentiation of muscle progenitors. However, 

unpredictably it has a strong negative influence on their proliferation rate. Consistent with the 

lower proliferation rate, expression of cell cycle inhibitor p57 kip2 (cdkn1c) is up65.  At E12.5, 

most of the muscle progenitors are p57 negative and in the active proliferating state. At E18.5, 

there is a dramatic increase of p57 and a severe reduction of proliferation. Deletion of Notch 

ligand Dll1 or RBPJ in muscle cells leads to premature differentiation of muscle progenitors, 

muscle satellite cell pool depletion, and dramatic muscle hyptrophy64. The function of the Notch 

pathway during puberty muscle development is still needed to be discovered. Young-Yun Kong 

et al. showed that for pubertal muscle development, sex hormones secreted by testis and 

Ovary can induce myofibers to express Mib1, which contributes to ubiquitylation and trans-

endocytosis of the Notch ligands followed by activation of Notch pathway in cycling juvenile 

muscle progenitors promote them into adult quiescent satellite cells. This is also the first direct 

proof that the Notch pathway works to drive juvenile muscle satellite cells to go into quiescent 

state66. Literature showed that freshly isolated satellite cells keep the highest Notch activity, 

and it declines during myogenic proliferation and differentiation process.  It implied the 

dominant role of the Notch pathway to keep adult muscle satellite cells in quiescent state67-70.  

Forkhead box 3 (Foxo3) as a  transcription factor initiates the transcription of Notch receptors 

(Notch 1-4). When Notch receptors are binding with Notch ligands Delta-like (Dll1, Dll4) / 

Jagged (Jag 1/ Jag 2), the intracellular domain of Notch (NICD) will be cleaved and migrates 

to the nucleus. RBP-J, a DNA binding protein, will be released from its corepressor complexes 

and interacts with NICD and recruits a coactivator complex, including MAML-1, p300/CBP, 

CSL, et al., resulting in the transcriptional activation of Notch target genes71. Three bHLH 

transcriptional factors Hes1, Hey1, Heyl, are well-known mediators of Notch functions. 

Interestingly, for Hey1 or Heyl single-gene knockout mice, there is no phenotype gets observed 

from both satellite cells and the muscle regeneration rate. However, for double knockout mice, 

a strong phenotype including muscle satellite cell pool exhaustion and regeneration defect are 

noticed. It suggests that muscle satellite cells require Hey1 and Heyl for entry into and also 

maintain their quiescence72,73. Hes1 is a transcription repressor. It controls postnatal muscle 

growth by suppressing muscle stem cell differentiation. Ines Lahmann et al. showed that Hes1 

drives oscillatory MyoD expression and keeps cells in a proliferative state instead of 

differenatiation74. 
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Besides, recent data from several other groups also showed the function of the Delta-Notch 

pathway in metabolism regulation. However,  it seems like this regulation is highly dynamic 

under a particular biological context. Notch pathway was found from drosophila, and in 

drosophila cells, it functions as an activator of the Warburg effect for cells glycolytic shift. Target 

genes of the Notch pathway include activators of glucose uptake and glycolysis pathway 

enzymes. Besides, it could also repress the TCA cycle enzymes expression. Conversely, data 

from mouse macrophages showed hyperactivation of the Notch pathway contributes to 

mitochondrial oxidative phosphorylation genes expression. Under the context of endothelial 

cells and mesenchymal progenitors, the Notch pathway could suppress glucose metabolism 

and oxidative phosphorylation simultaneously by downregulation of glycolysis and 

mitochondrial complex I relative genes. However, the exact mechanism for different effects of 

Notch signaling on glucose metabolism is still not known, they likely reflect the variant 

epigenetic landscape and signaling pathway network in all these cells types75-77. 

Except for the Notch pathway, many other influence factors could also regulate muscle satellite 

cell activity. Tristertraprolin (TTP) is an RNA binding protein. It binds to the mRNA of MyoD 

and promotes its degradation78. MicroRNA miR31 works with mRNA of Myf5 to form RNA 

granule and inhibit its translation79. P27KIP1 functions as a negative regulator of cyclin-

dependent kinase80. All of these factors work together to stop proliferation and differentiation 

ability and keep satellite cells in a quiescent state. Influenced by muscle damage or disease, 

fibroblast growth factor (FGF2) will be secreted, and it works as a positive regulator p38MAPK 

followed by inhibit TPP activity and increase the translation of MyoD. As a transcription factor, 

MyoD can regulate the expression of cell division cycle 6 (Cdc 6), thus increase cell 

proliferation81. Myf5 is another critical activation regulator, after trauma, expression of miR-31 

will decrease, and the RNA granule will also dissociate and increase the expression of Myf5 

protein and the transcription of its target genes. In aged mice, FGFR-1-p38MAPK signaling 

pathway can down-regulate muscle satellite cells self-renew ability82. In geriatric muscle stem 

cells, depression of p16INK4a (Also called Cdkn2a) switch reversible quiescence into 

senescence83. CARM1 a histone acetyltransferase, it functions through increase transcription 

ability of Pax7 to Myf5 gene84. Sprouty1 (Spry1) is a negative regulator of the FGF2 signaling 

pathway, thus inhibits cell proliferation and helps cell quiescence state maintenance. 
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In recent years there are several groups proved that imprinted genes like Peg3, Mest, Cdkn1c, 

and Dlk1 could also regulate muscle size and weight through muscle stem cells. The 

constitutive loss function of Peg3 leads to muscle mass reduction and also reduced muscle 

fiber numbers. Deletion of Peg3 in muscle satellite cells resulting in speed up of proliferation 

and differentiation rate is coupled with increased mitochondrial function85. 

At present, people can isolate SCs based on their biomarkers, the expression of the paired 

box of transcription factors (Pax3, Pax7 ) has been generally accepted as the main feature, 

but Pax3 is downregulated after birth in most of the muscles. An experiment of gene knockout 

in mice proved that Pax7 is necessary for SCs maintenance and self-renewal86. All the SCs 

can be distinguished by Pax7, and it seems they are homogeneous. However, an increasing 

number of molecules markers of SCs proved that they are a heterogeneous population. With 

the help of Myf5-Cre: Rosa26-YFP mice, Kuang et al. found that satellite cells division in an 

asymmetric manner87. Myf5 belongs to the family of myogenic regulatory factors, which start 

express in muscle progenitor cells at E10.5 and reach the peak at E12.588. Pax7+ cells can 

divide into two groups: Pax7+/Myf5- cells, around 10% of total satellite cells; they are mainly 

responsible for self-renewal. Thus, they are also being called satellite stem cells. For at least 

90 % of Pax7+/Myf5+ cells, they performed their ability of differentiation, and they are also being 

called satellite myogenic cells89. The latest progress from Brack lab demonstrated that a 

discrete population of Pax3+ satellite cells exist. This population can be used as reserve 

satellite cells as they have lower reactive oxygen species (ROS) level, which can help for sever 

Figure. 1.3. Classical view of muscle myogenesis. 
a. For adult healthy muscle fibers, satellite cells are maintained in their stem cell niche in a quiescent state. The 
quiescent satellite cells are only Pax7 expressed without myogenic determination protein MyoD. Satellite cells 
get activated by muscle injury and go for proliferation with the expression of both Pax7 and MyoD. A sub-
population of activated satellite cells start differentiation by inducing the expression of MyoG and block the 
expression of Pax7. Ultimately fuse for muscle fiber repairation. Another subpopulation of activated could go 
back to the quiescent state by inhibiting MyoD expression. They will stay as back up for future muscle repair. b. 
Transcription signature of satellite cells in a different state. FOXO3, Forkhead box protein 3; HMT, histone 
methyltransferase; MYF5, Myogenic factor 5 ; Sirt1, Sirtuin 1; Spry1, Sprouty 1; TTP, Tristetraprolin8. 
 



Introduction 

12 

 

stress90. Just followed this paper, Relaix lab also showed in muscle satellite cells Pax3 

expression can help satellite cells deal with the environmental stress through mTORC1 

dependent G-alert response91. Work from these two groups proves the existence of reserve 

satellite cells in adult skeletal muscle, and these satellite cells have higher stress tolerance. 

Other critical factors can also regulate the process of muscle regeneration, just like Myf5, MyoD 

can be expressed in the upstream of myogenic, and they can compensate with each other 

from the function analysis. In the downstream of myogenesis, Myogenin and MRF4 will be 

stimulated as a marker for muscle cell terminally differentiation92. It has been proved that the 

combination of CD45-,  Sca1-, Mac1-, CXCR4+, ß1-integrin+ can get both phenotype and 

functionality appropriate large populations of adult satellite cells93. 

 

  
 
 
 

 

  Satellite cell niche 

Satellite cell niche consists of ECM, vascular, neural networks, various types of surrounding 

cells (e.g., fibroblast, immune cells, pericytes, PICs), and various diffusible molecules (e.g., 

TGFβ1, Wnt, IGF, and FGF). It is defined as anatomic locations that can regulate muscle 

regeneration, maintenance, and repair after trauma or disease. The dynamic interactions 

between satellite cells and their niche can specifically protect them from depletion, uncontrolled 

proliferation, and regulate their homeostasis94. Researchers proved that the property of muscle 

Figure. 1.4. Principal markers are currently used for satellite cell identification4. 
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progenitors and muscle satellite cells is different. Fetal muscle progenitors have a higher 

proliferation rate with more Pax7 expression, and they have better regeneration efficiency but 

lower fusion ability.  Most of the adult satellite cells are out of the cell cycle and stay in a 

quiescent state. Data showed the property might be satellite cell niche dependent. During 

embryo development, tenascin-C is the main component of the extracellular matrix (ECM). The 

tenascin-c expression will decrease gradually, fibronectin and Col VI will increase over time. 

For the adult stem cell niche, Col VI becomes the critical ECM component and plays a critical 

role in muscle stem cell maintenance and muscle regeneration95. A recent study through RNA-

seq analysis showed the muscle injury response in three distinct phases within 3-24 hours of 

chemokines for recruiting immune cells to get secreted and reach the peak, which initiated an 

initial inflammatory phase. Genes involved in satellite cell proliferation and differentiation peak 

at 72 hours after injury indicated a mitogenic phase. Followed by the myoblast fusion and new 

muscle fiber regeneration demonstrated a differentiation phase. Even though the exact 

function of the ECM component in myogenesis is still unclear, component remolding happened 

during the three phases after injury96. Aging-related processes dramaticcally altered the 

muscle satellite cell nice and can inevitably impair the maintenance and regenerative ability of 

skeletal muscle tissue. Laura Lukjanenko et al. demonstrated a substantial reduction of 

fibronectin (FN) in aged stem cell niche lead to a severe reduction of muscle satellite cell 

number as well as their regeneration capability. Knockout of FN in young mice recapitulate the 

aging phenotype. Signaling pathway analysis show FN deletion leads to a significantly down-

regulated p38 mitogen-activated protein kinase pathway and integrin-mediated signaling 

through focal adhesion kinase because of inadequate attachment to the niche97. Besides, FN 

can regulate Wnt7 signaling through which influence satellite cell expansion, decrease the 

differentiation ability of myoblasts in vitro, but laminin functions in the opposite way98.  Valentina 

Flamini et al. demonstrated that compared with satellite cells attached with muscle fibers, 

dispersed cells regulate their cell proliferation and differentiation with a different signaling 

pathway. Primary myoblasts cultured in vitro without their native stem cell niche regulate the 

transcriptional activation for cell fate transition through the Erk1/2 pathway. With decreased 

ERK1/2 activity, primary myoblasts stop proliferation and start differentiation. Myoblasts 

cultured with fiber regulate the process through increased activity of Trp53. It suggested that 

the satellite cell niche regulates the balance between self-renew and differentiation might 

through p53 pathway99. Apart from this, research from Meryem B. Baghdadi et al. indicated a 

new mechanism of the Notch signaling pathway in satellite cells quiescence maintenance in a 

cell-autonomous manner which involved in the production of ECM molecules. Using antibodies 

of RBPJ and NICD for chromatin immunoprecipitation sequencing from C2C12 cells showed 

they bound at the enhancers of Col5a1, Col5a3, Col6a1, and Col6a2 loci, RBPJ knockout mice 

show deregulation of these collagen genes. Furthermore, Col V deleted mice show a depletion 
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of the satellite cell pool because of the cell cycle re-entry, which is a phenotype reminiscent of 

RBPJ knockout mice. For the downstream signaling, the Calcitonin receptor is identified as the 

target of Col V as the administration of calcitonin derivative can fully rescue the phenotype of 

satellite cells caused by Col V deletion. To sum up, a Notch-Col V-Calcitonin receptor signaling 

cascade that maintains satellite cells in a quiescent state in a cell-autonomous fashion is 

identified. This is also the first time that illustrates how the Notch pathway regulates satellite 

cell quiescent state through regulation of ECM component100. Besides, there are also 

enormous quantities of factors from the satellite cell niche that can regulate the activity of 

satellite cells. What we have known, such as transforming growth factor-ß (TGF-ß) secreted 

by immune cells, can deplete satellite cells and prevent the regeneration efficiency (Fig. 1.5). 

 

 
 

 

 

 

 

 

Figure. 1.5. Satellite cell niche and regulatory factors. 
A Immuostaining of a mitotic satellite cell. The satellite cell is labeled with a yellow fluoresce and DNA in blue. 
B Schematic of environmental cues influencing a satellite cell in its niche.  FGF, fibroblast growth factor; HGF, 
hepatocyte growth factor; IGF, insulin-like growth factor; MGF, mechano-growth factor; NO, nitric oxide; TGF, 
transforming growth factor6. 
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 Muscle stem cell epigenetic signature 

Epigenetics is a term that appeared around the 1990s, which was used to describe a stable 

inheritable phenotype change without alternation of the DNA sequence101. Related epigenetic 

modification including DNA methylation, histone modification, gene imprinting, X chromosome 

silencing102. DNA epigenetic status change could influence its compaction ability, thus lead to 

euchromatin and heterochromatin. Euchromatin is less packed chromatin with more DNA 

expose. During the cell cycle, interphase cells need to growth instead of division; thus, more 

gene transcription activity will happen and also more protein production.  Heterochromatin is 

tightly packed chromatin. It consists of constitutive heterochromatin and facultative 

heterochromatin. Constitutive heterochromatin keeps in highly condensed status because of 

repetitive DNA sequences. It functions in maintaining chromosome structure. Facultative 

heterochromatin could transit from condensed status to decondensed status, thus regulate 

gene expression103. Histone deacetylation and histone di or tri methylation work in 

heterochromatin status change. Enhancer of zeste homolog 2 (EZH2) is a histone 

methyltransferase enzyme. As the catalytic of Polycomb Repressive complex II (PRC2), it 

represses genes expression through epigenetic modification of H3K27.  Research proves that 

Ezh2 maintains an essential phase of muscle satellite cell expansion but does not regulate 

terminal differentiation104. Immunostaining with specific antibodies showed it expressed in both 

quiescent muscle stem cells (Pax7+/Myf5-) and activated muscle progenitor cells (Pax7+/Myf5+). 

Co-staining of Pax7 with H3K27me3 also confirmed at p8 more than 80% of Pax7+ cells are 

Figure. 1.6. The satellite niche and regulatory factors  
Left: The quiescent SC senses the stiffness through integrins and expresses matrix proteins to maintain its 

extracellular matrix (ECM). Within this matrix, growth factors and signaling molecules are sequestered, 

maintaining the ''quiet'' state. Center: In response to injury, matrix proteases degrade the components of the 
basal lamina, which results in the release of signaling molecules to activate the SC. Daughter cells begin to 

differentiate. Right: In the aged niche, matrix components accumulate to form a denser and thicker basal 

lamina. The stiffness sensing and sequestration of signaling molecules may be affected by this change7. 
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H3K27me3 positive105. EZH2 knockout mice showed reduced muscle stem cell numbers, 

reduced muscle mass, decreased cross-section area. Chip sequencing data from EZH2 knock 

out and control satellite cells showed p16INK4a, which functions to block cell cycle is the 

potential target for the activation of satellite cell, and the decreased satellite cell numbers could 

be rescued by knockdown of p16INK4a in EZH2 null satellite cells. Interestingly EZH2 only 

regulates activated satellite cell proliferation without any influence for satellite cells self-renew 

and differentiation104.  Following this, to get global epigenetics profile of H3K27me3 in satellite 

cells, Chip sequencing with H3K27me3 antibody showed compared with activated satellite 

cells (ASC) quiescent satellite cells (QSC) keep in a more permissive chromatin state with 

fewer genes being epigenetically repressed by H3K27me3. This paper also showed that the 

H3K27me3 level increased during satellite cells activation106. H3K4me3 is stable between 

quiescent and activated muscle stem cells.  However, facultative heterochromatin marker 

H3K27me3 is much lower in quiescent MuSCs. During activation, its tri-methylation level 

increases dramatically; however, with differentiated muscle fibers, this tri-methylation pattern 

decreases again106. H4K20me3 marks constitute heterochromatin. Its modification is just on 

the contrary with H3K27me3107.  It suggests that activated MuSCs contain a high level of 

facultative heterochromatin and a low level of constitutive heterochromatin and are primed to 

undergo a rapid switch to high constitutive heterochromatin following differentiation. 

 

 Muscle stem cell metabolism and epigenetic modification 

As the primary source of muscle regeneration in adult injured or trauma skeletal muscle 

systems, muscle stem cells are always out of their cell cycle and stay in a quiescent state once 

being activated they will go into proliferation state. The function of various transcription factors 

such as myogenic regulatory factors (MRF) has been extensively studied88,108. However, 

regulators from the microenvironment and how they could interact with each other, especially 

for metabolism byproduct still need to get more attentation100. In the past decade, metabolism 

was treated as a passive way only for energy production instead of cell state (quiescent 

activated or differentiated) and cell identity (lineage commitment) regulation. However, recent 

research showed local nutrition supplement, and central cell metabolism is capable of 

providing temporal regulation of histone and DNA modifications, thus regulate transcription 

through the supplement of some histone and DNA key modification metabolites, including 

acetyl-CoA, nicotinamide adenine dinucleotide, a-ketoglutarate and S-Adenosylmethionine 

(SAM) among others2,109,110. Just like other kinds of somatic stem cells, satellite cells need the 

energy to sustain life activity. Cells in different statues of their energy-demanding are also 

different. Different from the quiescent SCs, proliferating and differentiation SCs must get 
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enough biomass to synthesize new proteins, nucleotides, and phospholipids for rapid cell 

division and growth. As we know, ATP breaks down is an effective way for cells to get energy 

and maintain internal homeostasis. ATP can be generated in two different locations inner cells, 

cytoplasm through glycolysis (2ATP), and mitochondrial via oxidative-phosphorylation 

(OXPHOS) (32-36ATP). Rely on which way to generate energy mainly determined by 

substrate, the concentration of oxygen, and the demand for energy.  Compared with OXPHOS, 

glycolysis is a fast but less efficient way for ATP generating; meanwhile, its side pathways 

such as pentose phosphate pathway and one-carbon cycle can also provide building blocks 

for nucleotides and SAM as methyl donner for DNA and histone methylation modification.  A 

summary of how metabolic and epigenetic modification of histone markers change during 

quiescent muscle stem cell activation was shown in the following figure (Fig. 1.6). 

 

 
 

 

 

 

 

 

 

Figure. 1.7.  Metabolic and epigenetic transition during satellite cell activation. 
From metabolism, compared with proliferating muscle progenitors, quiescent satellite cells have lower 

mitochondrial density and mainly rely on fatty acid oxidation for energy production. From the epigenetic 
perspective, the four well-studied histone modification ways including symbolizes of transcription activation: 

H4K16 ac, H4K20me3, and H3K4me3 and transcription repressive: H3K27me3. H3K4me3 is not influenced 

affected by cellular status. H3K27me3 and H4K16ac are showing a similarly increased pattern in the process 
of cell state change. This implies the function of each modification way is highly dependent on cells' 

transcriptional status. H4K20me3 level decreased during activation. In general, during the process of cell state 

transition, its chromatin status shift from constitutive heterochromatin to facultative heterochromatin9. 



Introduction 

18 

 

Stem cells undergo metabolic reprogramming and use different metabolic substrates during 

differentiation. In recent years research about stem cell metabolism is becoming a central issue, 

and many important discoveries have been made. Most of the results were achieved in 

hematopoietic stem cells, which always stayed in a quiescent state in the hypoxic niche. Once 

the environment is changed, the stem cells will be activated and differentiated into different 

blood types. Quiescent HCS gets its energy via glycolysis, and this is also necessary for 

quiescent state maintaining. Through analyzing metabolomics of HCS and the progenitors, it 

was found the main difference is that HCS can get fructose-1, 6-bisphosphate accumulated, 

which means a high rate of glycolysis. This way is also HIF1α dependent. HIF1α is a nuclear 

transcription factor through increasing the transcription of PDK2 and PDK4. It can prevent the 

pyruvate from go into TCA cycle111. Conditional knockout of Ptpmt1(Protein Tyrosine 

Phosphatase Mitochondrial 1) in HSC showed a metabolism switch from glycolysis to 

mitochondrial respiration and the metabolism shift is necessary for HSC activation and 

differentiation112.  Little is known about how the metabolism will change for different statues of 

satellite cells. When it is in quiescent, the number of activated mitochondrial is limited, and it 

generates energy mainly through fatty acid metabolism, the advantage of this metabolism way 

is it can reduce the production of reactive oxygen species effectively. With the restriction of 

SCs, previous investigations are mainly performed on C2C12 myoblasts. Data prove that 

proliferating myoblasts rely on glycolysis, but for differentiating myoblasts, both the density of 

mitochondrial and OXPHOS activity will increase dramatically. This process is also relying on 

signal pathways such as AMPK and SIRT1. Nevertheless, for differentiated myotubes, the 

activities of these two proteins are down-regulated.  James G. Ryall et al. show that during 

satellite cells activation, satellite cells shift energy generation from fatty acid oxidation to 

glycolysis which leads to a decreased concentration of cytoplasmic NAD+. This decreases the 

activity of the NAD+-dependent histone deacetylase activity of sirtuin1 (Sirt1)  thus promoting 

the acetylation of H4K16 and increase satellite cells differentiation genes expression113 . Both 

SIRT1 knockdown and inhibitor treatment can significantly increase H4K16 acetylation and 

MyoD expression. It suggests that metabolic shift might regulate muscle genes expression 

through Sirt1 dependent H4K16 acetylation. For double confirmation, skeletal muscle-specific 

knockout of the Sirt1 mouse model is used, combined using RNA-seq and ChIP-seq to profile 

gene expression and SIRT1 dependent H4K16 acetylation localization across the genome to 

determine links between SIRT1-H4K16ac and satellite cell activation genes expression. SIRT1 

knockout satellite cells exhibit increased global H4K16ac, precocious activation, and 

differentiation genes regulated by H4K16ac, including Mylk2, MyoD, MyoG. Besides, defects 

in skeletal muscle development and regeneration following injury are also noticed. This work 

connects metabolic cues with satellite cell activation genes expression via epigenetic 

regulation (Figure 1.7). Machado et al. developed a protocol of in vivo fixation of muscle tissues 
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before FACS sorting. The advantage of this technique is to permit to analyze truly quiescent 

satellite cells without considering the cell status change during enzyme digestion and another 

isolation artefact. It is also confirmed the high enrichment of fatty acid oxidation genes in 

quiescent satellite cells114. However, why quiescent satellite cells prefer to use fatty acid 

metabolism to generate energy is still needs to be elucidated. 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, another research group, through comparing the epigenetic profiles of quiescent 

satellite cells from young and old mice observed that epigenetic changes accumulate and may 

lead to a functional decline in quiescent stem cells. These findings highlight the importance of 

chromatin mapping in understanding the unique features of stem cell106. The latest research 

Figure 1.8.  In adult skeletal muscle, metabolic reprogramming promotes satellite cell activation. 
In quiescent satellite cells, the metabolism way of fatty acid oxidation instead of glycolysis leads to an NAD+ 

concentration increase in the cytoplasm. As a substrate for sirtuins in muscle stem cell context, it could work 
together with other sirtuins regulators such as calorie restriction and sirtuin-activating compounds to enhance 

the enzyme activity of Sirt1. Activation of Sirt1 could remove the histone acetylation and make chromatin in a 

more compact status and prevent transcription initiation. In the case of external stimulation such as injury and 
aging. Satellite cells will undergo metabolic reprogramming and shift their metabolism way from fatty acid 

oxidative phosphorylation to glycolysis. Thus contribute to decreased NAD+ and also Sirt1 activity followed 

by increased histone acetylation level and less compact chromatin status. Then the genes involved in cell 

proliferation and muscle differentiation will be transcripted, and satellite cells will go for differentiation. STACs 

= sirtuin-activating compounds; CR = Calorie restriction2. 
. 
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on pig muscle metabolism found the hypomethylation status of PMM (oxidative) and LDM 

(glycolysis) muscle are different. PMM muscle showed the characteristic of hypo-methylation, 

the central different methylated regions were mainly responsible for GTPase regulator activity, 

and the relative signaling pathways that are involved115. We know the importance and dramatic 

epigenetic change during muscle stem cell activation. Varies histone methylation and 

acetylation modification, DNA methylation, are all enzyme catalase reactions. Then the 

question will be, where do the substrates for these enzymatic reactions come from? 

Metabolism intermediate substrate from both glycolysis and TCA cycle could be directly 

transported to the nucleus as a substrate for DNA modification or after enzymatic reaction 

being converted into the substrate for DNA methylation (Fig. 1.8). For example, glycolysis 

product 3-phosphoglycerate could be used as a substrate for enzyme 3-phosphoglycerate 

dehydrogenase (PHGDH) convert into the serine-glycine synthesis pathway. As a denotation 

for its side chain to tetrahydrofolate, serine drive one-carbon metabolism and finally provide 

SAM for DNA methylation. TCA cycle product citrate could be export from the mitochondrial 

matrix then react with Acyl being converted into Acetyl-CoA and works as a substrate of histone 

acetylation. aKG could be used directly for DNA demethylation reaction. To sum up, 

metabolism plays a critical role in DNA and histone modification and also for relative gene 

transcription.  
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  Neurofibromatosis type 1 (NF1) 

Human NF1 is a potent tumor suppressor gene that lies on chromosome 17q11.2. NF1 

encodes a large protein composed of 2818 amino acid named as neurofibromin. 

Neurofibromatosis type 1 (NF1) is a common multi-system autosomal dominant genetic 

disorder caused by mutation of the NF1 gene. It affects one in every 3000 people. Symptoms 

of NF1 include skin pigmentation spots and tumors growth along nerves. Most adult patients 

develop neurofibromas, which is a type of commonly noncancerous nerve tumors that form 

soft bumps on and under the patients skin (Figure. 1.9). But their conditions vary widely among 

individuals. Neurofibromin is a RAS GTPase-activating protein (GAP). It works as negative 

regulator of Ras-MAPK signaling. Ras is an activator of mitogen-activated protein kinase 

(MAPKs). There are at least four different MAPKs in mammals, including extracellular signal-

related kinase (ERK1/2), Jun amino-terminal kinase (JNK1/2/3), p38 proteins and ERK5116. 

Among them, Ras could activate ERK1/2, JNK, and p38117. Under myogenesis context, 

research showed in the C2C12 myoblast cell line, the Notch signaling pathway could inhibit 

p38MAPK activity through induction of MKP-1 (Dusp1), and this induction is RBP-J 

dependent118.  

Experiments conducted on the function of neurofibromin demonstrated that it could enhance 

cell motility via regulating actin filament dynamics through the Rho-ROCK-LIMK2-Cofilin 

signaling pathway. This may partly explain the mechanism of multiple neurofibroma  

formation119. The expression levels of NF1 in different organs and in different development 

stages are also different, and neuronal cells are among the highest. Studies have shown that 

the situation of patients with NF1 mutation depends on its mutation doses. A mouse model 

was used for the brain specifically knock out of Nf1 for one allele, hyperactivated Notch 

Figure. 1.9. A model for how epigenetic modification being regulated by metabolism.  
The substrate of glycolysis 3-Phosphoglycerate could supply serine, which helps to stimulate the one-carbon 
cycle in the cytoplasm. The product of the one-carbon cycle s-adenosylmethionine is a substrate for both DNA 

methyltransferase and histone methyltransferase. Glycolysis product pyruvate could be transferred into the 

mitochondrial matrix and drives the TCA cycle. The product of the TCA cycle citrate could be exported out from 
mitochondrial and acts as a donor of acyl for histone acetylation reactions. Besides, a-ketoglutarate is an 

important cofactor for histone and DNA demethylation. The variance between glycolysis and oxidative 

phosphorylation could influence the cytoplasm NAD+ concentration, thus change the histone acetylation level 
through histone deacetylation enzyme Sirt1. ACL = ATP citrate lyase; aKG = a-ketoglutarate; DNMT = DNA 

methyltransferase; HAT = histone acetyltransferase; HCY = homocysteine; HMT = histone methyltransferase; 

JHDM = Jumonji domain-containing histone demethylase; NADH = nicotinamide adenine dinucleotide; NAM = 
nicotinamide; OAADPr = OAcetyl-ADP-ribose; SAH = S-adenosylhomocysteine; SAM = s-adenosylmethionine; 

TET = ten-eleven translocation methylcytosine dioxygenase9. 
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signaling pathway was detected, and pharmacological inhibition of Notch signaling activity 

could rescue this mouse phenotype. However, if Nf1 was knock out for two alleles, inhibitors 

for MAPK/ MEK, nitric oxide production, and Notch signaling need to be used simultaneously 

to get the same rescue effect compared with only one allele knock out animals. Notch and Ras 

pathways are two of the seven highly conserved signaling pathways during embryo 

development. Widespread research proved the mutual influence between Notch and Ras 

pathway in particular biological contexts and time points. Overexpression of activated Notch 

and Ras, respectively, or at the same time during Drosophila development followed by 

Microarray analysis, compared with the control group, surprisingly, more than 65% of Ras 

target genes are responsive to Notch activation. The effect of Ras activation on Notch output 

is obvious but still needs more pronunciation. In addition, they also mentioned a model that for 

cells receives these two pathways at the same time. The Notch pathway will be more 

responsive than Ras pathway120. In addition, Notch activity on NF1  brain tissue was also being 

tested, and a similar pattern was observed121.  

Thomas De Raedt et al. used an array comparative genomic hybridization method with 51 

malignant peripheral nerve sheath tumors (MPNSTs), which is the most common NF1 related 

malignancy. For patients with Nf1 microdeletion, components of polycomb repressive complex 

2 (PRC2) such as SUZ12 and EED were also being deleted, thus lead to lower H3K27me3 

level and increase proliferation genes expression and contribute to cancer. 79% Nf1 

microdeletion patients lose SUZ12/EED expression, and 34% none Nf1 microdeletion patients 

showed homozygous deletion of SUZ12/EED, 53% of patients without Nf1 microdeletion 

possess one or more PRC2 mutations/deletions. These data suggested PRC2 might play a 

critical role in MPNST pathology. In general, the research revealed an unexpected connection 

between NF1, PRC2 complex, and Ras. It implied that in the further epigenetics-based 

therapeutic strategy could be used for Nf1 relative cancer treatment122.  In addition, Kelly A. 

Diggs-Andrews et al. showed neuronal dysfunction can be influenced by sex in NF1 patients. 

Both patients and genetically modified mice were used for the research. Results showed 

female patients have more severed visual symptoms and need to be treated for visual decline 

compared with their male counterparts, and also only female Nf1 mutation mice exhibited optic 

glioma relative phenotype. It was also noticed that only male mutated mice showed learning 

and memory deficits and increased Ras signaling activity. This implies sex is an important 

prognostic factor for neuron dysfunction in NF1 patients and might be used for interpreting 

clinical research results123. 

NF1 has variable phenotypes, and several organ systems can be affected, besides central and 

peripheral nervous system, skeletal muscle system can also be affected124-126. Clinical 

research demonstrating patients with NF1 always show reduced muscle size and muscle 

weakness. Through conditional gene knock out of Nf1 in early limb bud mesenchyme using 
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Prx1-cre (Nf1Prx1) mouse model, a muscle development defect was detected including fibrosis, 

muscle fiber number reduction, muscle force loss and changed muscle patterning.The 

underlying mechanism is Nf1 knockout impaired the terminal differentiation ability of myoblast 

during early embryo development stage (E12.5-E14.5). Our group proved that neurofibromin 

is necessary for skeletal muscle formation and maintance125. Recent studies suggest that 

Nf1Prx1 mouse (limb specific Nf1 gene conditional knockout mice model), demonstrated an 

increased SDH activity consistent with increased mitochondrial function, expression of fatty 

acid synthase and also hormone leptin. On the contrary, a number of fatty acid transporters in 

this mouse line show the opposite way of expression reduction. These data are the first time 

to suggest a direct link between NF1 and mitochondrial fatty acid metabolism126. 

 

 

 

 

 

 

 

 
 

 

 

 

  Dissertation Objectives 

NF1 patients display muscle phenotype, including muscle mass loss as well as muscle strength 

reduction. Preliminary work from the function of Nf1 on early muscle development has shown 

that Nf1 plays an indispensable role in embryonic development. Mouse models were 

generated to investigate the mechanisms of how Nf1 regulates skeletal muscle development, 

including Nf1Prx1, Nf1Lbx1, Nf1MyoD, Nf1Pax7creER-(T2) and Nf1HSA in our laboratory or in other 

laboratories. However, until now, the pathomechanism behind it is still unclear. 

The Nf1Prx1 mouse model could recapitulate some of the patients' phenotype, but Nf1 is not 

only knocked out in muscle cells but is also knocked out in connective tissue and other cell 

types. Therefore, it's inaccurate to say this was caused by the function of Nf1, specifically in 

muscle tissue. The Nf1Lbx1 mouse model died before birth probably due to the inability of food 

taking. Nf1MyoD mice could survive the longest for six days after birth. These animal models are 

not suitable for postnatal muscle development studies. For Nf1Pax7creER-(T2) mouse model, when 

Tamoxifen was administrated from 8 weeks on, there was no muscle phenotype being 

Fig. 1.10. Skin manifestations in neurofibromatosis Type 15 

Patient with cutaneous neurofibroma and plexiform neurofibroma 
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observed at all, suggesting limitations of this animal model. Nf1HSA mouse model, which 

deleted Nf1 in mature muscle fibers with human alpha-skeletal actin cre, also showed no 

muscle phenotype. Therefore,  a suitable mouse model is needed to study the mechanism of 

how Nf1 regulates muscle cells in vivo.  In this work, the Nf1Myf5 mouse model was used in 

which Nf1 was knocked out in Myf5 expressed muscle progenitor cells and their daughter cells. 

The advantage of this mouse model is that it can survive for about 22 weeks after birth, and it 

also recapitulated NF1 patients' muscle phenotype. With this mouse model, the following 

objectives could be achieved:  

 

Ø Identify the muscle phenotype induced by Nf1 deletion at different postnatal muscle 

developmental stages. 

Ø Find out the mechanism of how this muscle phenotype is regulated by Nf1 deletion. 

Accumulate more knowledge for its involved signaling pathways.  

Ø With specific signaling pathway inhibitors, attempt treatment to ameliorate the mouse 

mutant phenotype. 

Ø As preclinical research, provide more useful clinical targets for neurofibromatosis I 

patients treatment.  

 

Data generated from this project will help reveal the pathogenic mechanisms caused by Nf1 

mutation. Hopefully, in the near future, it could also contribute to improving the life quality and 

life expectancy of NF1 patients. 
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2 Materials 
 Instruments 

Name    Type Supplier 

Sonicator BioruptorTM NextGen Diagenode 

Fridge 4 °C Bosch 

Freezer -20°C Bosch 

Freezer -80°C Thermo 

Thermal PCR cycler ProFlex PCR System Thermo 

Real time PCR cycler ABI Prism HT 7900 Applied Biosystems 

Microwave DO2329 DOMO 

Shaker DRS-12 neoLab 

Thermomixer Thermomixer compact 5350 Eppendorf 

Water bath MD Julabo 

Vortex Microspin FV-2400 Lab4you 

Microscope IX50 Olympus 

Fluercence microscope DMi8 Leica  

Confocal laser scanning 

microscope 

LSM 700 Zeiss 

FACS Aria II SORP BD 

Protein electrophoresis 

equipment 

Mini Bio-Rad 

Protein transfer system Mini Trans-Blot Bio-Rad 

Gel documentation system Fusion FX Spectra Vilber 

Power supply EPS301 Amersham Bioscience 

Nandrop 2000 Thermo Scientific  

Qubit ®Fluorometer Invitrogen 

Bioanalyzer 2100 Agilent 

Centrifuge 5424 Eppendorf 

Tissuelyser LT Qiagen 

Single channel Pippte 2,10,20,100,200,1000 Gilson 
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Cryotome  H560 Microm 

Microtome Cool Cut  HM355S Microm 

Embedding station  EC 350-1&2 Microm  

Dehydration station TP 1020 Leica  

Plate reader  Spectra Max 250 Molecular Devices  

pH meter HI2211 HANNA instruments 

Cell culture incubator  Memmert 

Cell culture hood MSC-ADVANTAGE Unity Lab 

Automated Cell Counter  LunaTM 

Seahorse  XF96 Aglient 

High-Resolution 

FluoRespirometry  

O2k OROBOROS 

Instruments 

Heating plate HI1220 Lecia 

   

 Consumables  

Materials     Type Supplier 

Cell culture plates 96/48/24/12/6 well Costar 

Cell culture plastic pipettes 5,10,25,50 ml SARSTEDT 

Cell strainer 70 VWR 

Cell strainer 40 VWR 

Cover slips 10/12/15 mm DeckGlasser 

Cryotome Blades Disposable Leica 

Glass pipettes 5/10/25/50 ml ibidi 

Glass slides 24 x 60 mm Roth 

Laboratory aluminium foil  30 cm x 150 m Duni 

Laboratory gloves  S/M/L StarLab 

Parafilm 10 cm x 38 m Roth 

Pipette tips 10/200/1000 μl DeckWorks 

Silica beads with indicator Silica Gel Orange, 2 - 5 mm Roth 
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Stainless steel beads  5 mm Qiagen 

Sterile filters  0.2 μm Sigma 

Sterile scalpels  Disposable BD 

Sterile syringes       1/5/10 ml BD 

Transfer membrane  0.45/0.2 μm GE 

8-tube strip and caps  T320 Simport 

96-well plate  MicroAmp Applied Biosystems 

384-well plate AB1384 Thermo 

Whatman paper  150 mm BD 

   

 Chemicals  

Unless stated otherwise, chemicals were obtained from Merck, Roth, Sigma-Aldrich and 

Thermo Fisher. 

Buffers and Solutions 

Buffers    Component 

10x PBS                                                      80g NaCl; 2g KCl; 14.4g Na2PO4; 2.4g KH2PO4; add bidest and 

regulate pH to 7.4; Final volume is 1 Litter.      

10x TBS                                                   24g Tris-Hcl; 5.6 g Tris base; 88g Nacl, dissolve in 900 ml  bidest 

and regulate pH to 7.6; Final volume is 1 Litter. 

PBX   100 ml (10x) PBS stock solution. 1 ml  TritonX-100. Bidest to 1 

Litter.        

PBST 100 ml (10x) PBS stock solution. 1 ml Tween-20. Bidest  to 1 

Litter.      

TBST 100 ml (10x) TBS stock solution. 1 ml Tween-20. Bidest  to 1 

Litter.    

RIPA buffer 50 mM Tris Hcl, pH 8.0; 150 mM Nacl; 1% NP-40; 0.5%  Sodium 

deoxycholate; 0.1% SDS.        

Protein Lysis buffer 1 x Complete Protease Inhibitor; 1 x NaF; fill with RIPA.  

10x Transfer buffer 30.2 g Tris; 144 g Glycine;  Bidest to 1 Liter 

10x Running buffer Tris-base 30 g; Glycine 144 g; SDS 10 g; Bidest to 1 Liter 
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1x Transfer buffer 100 ml (10x) transfer buffer; 200 ml methanol; 700 ml bidest. 

1x Running buffer                                     100 ml (10x) running buffer; 900 ml bidest. 

6 x Protein loading 

buffer                          

3.75 ml 1 M Tris pH 6.8; 1.2 g SDS; 6 ml Glycerol; 0.006 g 

bromophenol blue; 0.462 g DTT; Total volume is 10 ml. 

6 x Orange G DNA 

loading dye 

2 ml 50 x TAE buffer; 0.15 g Orange G, 60 ml Glycerol fill up to 

100 ml    

50 x TAE buffer                                          242g Tris; 18.61 g EDTA; 57.1 g Glacial acetic acid; Add bidest 

water to 1 litter. 

Sonication buffer 0.1% SDS; 1% Triton X-100; 0.1% Na-deoxycholate; 1 mM 

EDTA; 140 mM Nacl; 50 mM Hepes pH 7.9; 1 x    Roche  complete 

Proteinase inhibitor.  

Nacl buffer                                                 0.1% SDS; 1% Triton X-100; 0.1% Na-deoxycholate; 1 mM    

EDTA; 500 mM Nacl; 50 mM Hepes pH 7.9 

Licl buffer                                                 350 mM Licl; 1% IPEGAL CA630; 1% Na-deoxycholate 1mM 

EDTA; 10 mM Tris-Hcl pH 8.0. 

TE buffer                                                  1mM EDTA;  10 mM Tris-Hcl pH 8.0 

Elution buffer                                           1% SDS; 100 mM NaHCO3; 250mM Nacl; 0.5 mg/ml Proteinase 

K. 

Staining solution 1 x PBS, 5% BSA, 0.1 % Triton X-100 

Growth Medium 

 

Differentiation Medium 

 

10% Matrigel 

DMEM, 20% FBS, 1% Glutamin, 1% Penicillin/streptomycin 

DMEM, 2% FBS,1 % Glutamine, 1% Penicillin/streptomycin 

1 ml Matrigel, 9 ml DMEM, store aliquots in the freezer. 

Oil Red O solution 0.5 g Oil Red O in 100 ml isopropanol. 

  

 Enzymes 

Name Company 

Collagenase A Sigma Aldrich 

Proteinase K Boehringer Ingelheim 

Reverse Transcriptase Superscript II  Thermo Fisher Scientific 

Taq polymerase  Fermentas 
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Nextra Tn5 transposase enzyme Agilent 

DNase I Qiagen 

RNaseA Sigma Aldrich 

 

 Reagent Kits  

Name supplier 

Seahorse XF Cell Mito Stress Test Kit                   Agilent 

Seahorse XF Glycolytic Rate Assay Kit                Agilent 

AllPrep DNA/RNA/Protein                                   Qiagen 

Pierce BCA Protein Assay Kit                               Thermo Fisher Scientific 

Reverse Transcription Kit                                      Invitrogen 

Agilent High Sensity DNA kit                                Agilent 

Nextera XT DNA Library Preparation Kit Agilent 

MinElute PCR Purification Kit                                  Qiagen 

NAD/NADH Quantification Kit Sigma Aldrich 

ATP Determination Kit Thermo Scientific 

Lactate Assay Kit Sigma Aldrich 

SYBR Green qPCR Master Mix life Technologies 

GOTaq qPCR Master Mix Promega 

RNeasy Micro Kit Qiagen 

RNeasy Mini Kit Qiagen 

  

 Mouse strains 

Experimental mice used in this project were bred in the animal facility of Max Plank Institute 

for Molecular Genetics by Katja Zill. The following mouse lines have been used: 

¨ Nf1flox/flox mouse line 
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Both exons of 40 and 41 are flanked by LoxP site so that they can be deleted by Cre enzyme-

mediated recombination. This mouse line was first generated in the lab of Luis F. Parda to 

study the function of Nf1 in brain development127, which was kindly provided by Prof. L. Parada. 

¨ Myf5Cre mouse line 

Myf5Cre mouse line was first generated by Tallquist, M.D, to study the function of PDGFA in 

ribs and vertebrae development128. The Cre recombinase DNA sequence was inserted after 

the Myf5 promoter, thus its expression derived by Myf5 expression. This mouse line was kindly 

provided by Prof. C. Birchmeyer. 

HSACre  mouse line 

To see a target gene's function in skeletal muscle lineage, a transgenic mouse line that could 

express the Cre recombinase under the control of the human α-skeletal actin promoter was 

generated129. This mouse line was also provided by Prof. C. Birchmeyer. 

All animals used in this project were kept with a C57BL6 genetic background. Nf1 knockout 

mice were generated by crossing of Nf1flox/flox with Myf5Cre or HSA Cre mice. Mice used in the 

experiment with genotype of Nf1flox/+ Myf5 Cre+ or  Nf1flox/+ HSA Cre+ were considered as control. 

Nf1flox/flox Myf5 Cre+ or  Nf1flox/flox HSA Cre+ were treated as knock out animals. Control mouse is 

always chosen as sex-matched and also the same litter with the knock out animals.  

 

 Software 

Function Name Supplier 

Microscopy imaging Axio Vission Rel. 4.8 Axio Vision Application 

Microscopy imaging ZEN 2010 ZEISS 

Image processing ImageJ Wayne Rusband 

Image processing CorelDRAW X7 Corel Corporation 

Image processing Photoshop CS5 Adobe system 

Image processing Illustrator CS5 Adobe system 

Data analysis and text 

processing 

Excel/Word/Powerpoint Microsoft Office 
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RTqPCR analyses SDS 2.4 Applied Biosystem 

FACS sorting FACS DIVATM 

FACS analyzing data FlowJo BD 

Statistical analyses GraphPad Prism 5 Prism 

Wave Desktop XF96 Agilent 

IGV Desktop  2.4.13 Broad Institute 

GSEA Desktop 3.0             Broad Institute 

R studio Server R studio team 

Prism                   1.0.6 Nuget 

   

 Antibodies 

Primary antibodies 

Name Dilution Species Supplier 

Pax7 1:10 Mouse DSHB 

Pax7 1:100 Guinea pig * 

Ki67 1:500 Mouse BD Bioscience 

Ki67 1:500 Rabbit Abcam 

Col IV 1:500 Goat Millipore 

Laminin 1:1000 Rabbit Sigma 

Myh2 1:50 Mouse DSHB 

Myh4 1:50 Mouse Sigma 

Myh7 1:50 Mouse DSHB 

Desmin 1:1000 Rabbit Merck-Millipore 

MyoD 1:500 Mouse BD Biosciences 

MF20 1:1000 Mouse DSHB 

AMPK 1:1000 Rabbit CST 

p-AMPK(Thr172) 1:1000 Rabbit CST 

Lkb1 1:1000 Rabbit CST 
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Antibodies kindly provided by Prof. C. Birchmeier* 

 

FACS antibodies 

Name Dilution Product information Supplier 

CD31(PECAM1)APC 10 μl /sample Anti-mouse Affymetrix 

CD45 10 μl /sample Anti-mouse BD Bioscience 

Ter119 10 μl /sample Anti-mouse BD Bioscience 

Sca1 5 μl /sample Anti-mouse Affymetrix 

Integrin alpha 7 5 μl /sample Anti-mouse Affymetrix 

 

 

 

p-mTOR 1:1000 Rabbit CST 

p-s6 1:1000 Rabbit CST 

β-Tubulin 1:1000 Mouse CST 

Actin 1:1000 Mouse CST 

p-ERK1/2 1:1000 Rabbit CST 

ERK1/2 1:1000 Rabbit CST 

AKT 1:1000 Rabbit CST 

p-AKT 1:1000 Rabbit CST 

NF1 1:100 Rabbit Bethyl 

H4K16ac 2 μg/sample 

(chipseq) 

Rabbit Merck-Millipore 

H3K27ac 1:1000 (western blot) Rabbit Merck-Millipore 

H3K27me3 2 μg/sample 

(chipseq) 

Rabbit Merck-Millipore 

H3K4me3 2 μg/sample 

(chipseq) 

Rabbit Merck-Millipore 



Materials 

33 

 

 

Secondary Antibodies(Alexa Fluor conjugated) 

Name Host Product information Dilution 

488,568 and 680 Donkey Anti-mouse 1:500 

488,568 and 680 Donkey Anti-rabbit 1:500 

488,568 and 680 Donkey Anti-goat 1:500 

488 and 568 Goat Anti-Guinea pig 1:500 

All purchased from life technologies TM. 

IgG (HRP Conjugated) anti-Rabbit. 

IgG (HRP Conjugated) anti-Mouse. 

 

 Internet Source 

Name Website 

Primer 3.0 http://primer3.ut.ee 

DAVID bioinformatics https://david.ncifcrf.gov 

Ensemble Genome Browser https://www.ensembl.org/index.html 

UCSC Genome Browser https://genome.ucsc.edu 

String https://string-db.org 

 

 Primers 

Primer List for genotyping 

Primer name Primer sequence(5’→ 3’) 

Lbx1_Cre_fw                                                                                                                                  CGCCTTCCTCTCGCACCGTC 
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Primer List for qRT-PCR 

Primer name Primer sequence (5’→3’) 

Lpl_fw TCATCTCATTCCTGGATTAGCA 

Lpl_rev GGCCCGATACAACCAGTCTA 

Fabp3_fw AGGTGGCTAGCATGACCAAG 

Fabp3_rev CTTGACCTTCCGGTCATCTG 

Fabp4_fw CTTTGCCACAAGGAAAGTGG 

Fabp4_rev GTCGTCTGCGGTGATTTCAT 

Il4_fw CTCGTCTGTAGGGCTTCCAA 

Il4_rev TCTGCAGCTCCATGAGAACA 

Il18_fw GGCTGCCATGTCAGAAGACT 
 

Il18_rev GTGAAGTCGGCCAAAGTTGT 

Fgf21_fw ACCTGGAGATCAGGGAGGAT 

Fgf21_rev GAGAGCTCCATCTGGCTGTT 

Fgf6_fw AATTGGGAAAGCGGCTATTT 

Fgf6_rev CTCACCACACCCCGTTCTAC 

Fgf15_fw CGCTACTCGGAGGAAGACTG 

Fgf15_rev TTGGCCTGGATGAAGATGAT 

Lbx1_Cre_rev                                                        GGCAGCCCGGACCGAC 

Myf5_Cre_fw                                                          CGTAGACGCCTGAAGAAGGTCAACCA 

Myf5_Cre_KO_rev ACGAAGTTATTAGGTCCCTCGAC 

Myf5_Cre_WT_rev CACATTAGAAAACCTGCCAACACC 

Nf1_P1 CTTCAGACTGATTGTTGTACCTGA 

Nf1_P2 CATCTGCTGCTCTTAGAGGAACA 

Nf1_P3 ACCTCTCTAGCCTCAGGAATGA 

Nf1_P4 TGATTCCCACTTTGTGGTTCTAAG 

Unspecific_Cre _fw GAGTGATGAGGTTCGCAAGA  

Unspecific_Cre_rev CTACACCAGAGACGGAAATC 
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Fgf2_fw TGTTTCTTCTTTGAACGACTGG 

Fgf2_rev AGTATGGCCTTCTGTCCAGGT 

Leptin_fw TGGCTTTGGTCCTATCTGTCTT 

Leptin_rev TGTCATTGATCCTGGTGACAA 

Tnfa_fw GCTGAGCTCAAACCCTGGTA 

Tnfa_rev TCACAGAGCAATGACTCCAAA 

Adiponectin_fw GGAGATGTTGGAATGACAGGA 

Adiponectin_rev CGAATGGGTACATTGGGAAC 

Resistin_fw TGAAGCCATCGACAAGAAGA 

Resistin_rev CTTCCCTCTGGAGGAGACTG 

Plin1_fw TCACAGCTGCCAATGAGTTG 

Plin1_rev CTTCGAAGGCGGGTAGAGAT 

Tle3_fw TTGCGAAGAGACTGAACACAA 

Tle3_rev CAACTCCGTCATGGTGACCT 

Rip140_fw AGAGCTTGGCTCTGATGTGC 

Rip140_rev CACTGCCCGAGAGGTTAAAG 

Pparg_fw CGAGAAGGAGAAGCTGTTGG 

Pparg_rev TCAGCGGGAAGGACTTTATG 

Pai-1_fw CTCTGGAGACTGAAGTGGACCT 

Pai-1_rev CGATCCTGACCTTTTGCAGT 

Lpin_fw CGTGGATTTGCACATGAAGT 

Lpin_rev CATTCTCGCAGCTCCTTCTG 

Mgll_fw CTCACCTGGTCAATGCAGAC 

Mgll_rev TGTCCAGCCCCTTCAACATA 

DNMT1_fw GAACCCCAGATGTTGACCAG 

DNMT1_rev GGTGTCGACAGGACACAGGT 

DNMT3a_fw ACTTGGAGAAGCGGAGTGAA 

DNMT3a_rev TTCTGGTGGGGTCTCAGTTC 

Notch1_fw AGGCAAATGCCTCAACACAC 

Notch1_rev CATTGGAACTCCCCAATCTG 
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Hey1_fw CCGACGAGACCGAATCAATA 

Hey1_rev TTTTCAGGTGATCCACAGTCA 

Myh3_fw GGACGCTGGAGGATCAAAT 

Myh3_rev AAAATGGATGCGGATGAACT 

Hoxc9_fw TCGCTCATCTCTCACGACAA 

Hoxc9_rev AGGACGGAAAATCGCTACAG 

TCF21_fw GCTCTCCAAGCTGGACACTC 

TCF21_rev TCACCACTTCCTTCAGGTCA 

Rb_fw TGAAGAACCCGAATTTATTGC 

Rb_rev TGCTGCGATAAAGATGCAGA 

C/EBPa_fw TGCTGGAGTTGACCAGTGAC 

C/EBPa_rev CCTTGACCAAGGAGCTCTCA 

Angiotensin_fw AGCATCCTCCTCGAACTCAA 

Angiotensin_rev GGCTGCTCAGGGTCACAT 

Lipe_fw CCGTTCCTGCAGACTCTCTC 
   

Lipe_rev ACGCAACTCTGGGTCTATGG 

CD36_fw TCCTTGAAGAAGGAACCACTG 
 

CD36_rev TGTTCTTTGCCACGTCATCT 

Hes1_fw TCATCAAAGCCTATCATGGAGA 

Hes1_rev AGGTGCTTCACAGTCATTTCC 

DNMT3b_fw  GACGTCGAGCATCATCTTCA 
 

DNMT3b_rev CTGCATCCACCTGTGTGGTA 

Notch3_fw AGGGCCAGAACTGTGAAGTC 

Notch3_rev AGGGCACTGGCAGTTGTAAG 

Spry1_fw TAGGTCAGATCGGGTCATCC 

Spry1_rev TTCGCAGATGAACTTGTGCT 

ATP2a1_fw CTGACCGAAAGTCAGTGCAA 
 

ATP2a1_rev GGTGGATTTGATGGAGAGGA 

Acta1_fw  GATCTGGCACCACACCTTCT 

Acta1_rev ACATACATGGCAGGCACGTT 
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CPT1b_fw TCTGTGTCCGTCTCCTGTCC 

CPT1b_rev CCATGCGGTAATATGCTTCA 

CPT2_fw GCTGCCTATCCCTAAACTTGAA 

CPT2_rev CAATGCCGTTCTCAAAATCC 

Pfkl_fw TTCGACCGGAACTATGGGAC 

Pfkl_rev CGATCACACAGGCTGAGTCT 

Pfkfb1_fw TGATGCCACCAACACTACCA 

Pfkfb1_rev CTGCAATGATGTCTGGGTCA 

Eno3_fw AAATCTTCGCCCGGGAAATC 

Eno3_rev TGCTTCATAGATACCCGTGGA 

Myh4_fw CAGAGTCACCTTCCAGCTCA 

Myh4_rev TGATTTCACCTTGACTGACGT 

Myh1_fw CGGGAAGACTGTGAACACGA 

Myh1_rev CGTTCCCAAAGGCCTCCA 

Myh2_fw ACCCTCCCAAGTACGACAAG 
 

Myh2_rev TACACCGGCAGCCATTTGTA 

Myh7_fw AGCTGGGAAGACTGTCAACA 
 

Myh7_rev CCAAAGGCCTCCAGAGCA 

Camk2a_fw CAGGGACACCTGGATACCTC 
 

Camk2a_rev GCTGGTCTTCATCCCAGAAC 

Tnc_fw GCCTGCACCTGAAGGTCTAA 

Tnc_rev GGAGGTCTCTGGTCTCCTCA 

Col1a2_fw CCGTGCTTCTCAGAACATCA 

Col1a2_rev GCCCTCAGCAACAAGTTCA 

Col5a3_fw CCTGGGGTGTGCATAGAGAC 
 

Col5a3_rev GGACACTGAGAAGGCTGGAC 

Col5a1_fw CACCGAATTGCTCTCAGTGT 

Col5a1_rev CTATTATGGGGTGGTCACTGC 

Col6a3_fw GTGGCTCAGTATGCAGACACT 

Col6a3_rev GTCCAGAGAAGATCCCGTGT 
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Cfd_fw CAAGCGATGGTATGATGTGC 

Cfd_rev ATTGCAAGGGTAGGGGTCTC 

Fgfr4_fw CTACTGGACACACCCCCAAC 

Fgfr4_rev CAGTGGATGGTAGGCATGG 

Park7_fw TTGCACTAGCCATTGTGGAG 

Park7_rev CTCCACAATGGCTAGTGCAA 

Rcan1_fw CTGCACAAGACCGAGTTCCT 

Rcan1_ rev GAACTGTTTGTCGGGATTGG 

Rcan2_fw CAGCCATCCCAAATCTGC 

Rcan2_rev GCTGTGGAGGTGCCAAAT 

Rcan3_fw TTTCGCAGAGTGAGGATCAA 

Rcan3_rev GGGTTGTGGTGGCAGTAAGT 

Gdf15_fw GCTTCCAGGACCTGCTGAG 

Gdf15_rev GGTTGACGCGGAGTAGCAG 

Myoz1_rw GGAGCTGTCCCTTCTTACCA 
 

Myoz1_rev AGCTGTCTCCAGCTGTCCTC 

p21_fw CAGCCTCTCTCGGGGATTC 

p21_rev TTCGACGCCTTGTTCTCCT 

Ucp3_fw  GATGCCTACAGAACCATCGC 

Ucp3_rev AGGTCACCATCTCAGCACAG 

Gremlin_fw CATACACTGTGGGAGCGTTG 

Gremlin_rev CTGGACTCAAGCACCTCCTC 

p27_fw GCGGTGCCTTTAATTGGGTC 

p27_rev TCTTCTGTTCTGTTGGCCCT 

ucp1_fw GTCAGAATGCAAGCCCAGAG 

ucp1_rev ACCAGCTCTGTACAATTGATGA 

ucp2_fw GCACTGTCGAAGCCTACAAG 
 

ucp2_rev TCAGCACAGTTGACAATGGC 

Sln_fw GGTGTGCAATCACAAGTCCT 

Sln_rev  ACGAGGAGCCACATAAGGAG 
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Glut1-fw GTGGAGCCCTAGGCACACT 

Glut1-rev CAGCAGAGGCCACAAGTCT 

Glut4-fw TGGGAACACTCAACCAACTG 

Glut4-rev GACAGAAGGGCAGCAGAATC 

Hk2-fw GTTTGACCACATTGCCGAAT 

Hk2-rev CACGCCACTGGACTTGAAC 

Pfkm-fw ACGTGACCAAGGCTATGGAT 

Pfkm-rev GACTGGGGGTCTGACATGAG 

Ldha-fw ACTTGGCGGATGAGCTTG 

Ldha-rev GCGGTGATAATGACCAGCTT 

Myc-fw CTCTCCTTCCTCGGACTCG 

Myc-rev GGTTTGCCTCTTCTCCACAG 

Gapdh-fw AAGGTCATCCCAGAGCTGAA 

Gapdh-rev TCAGTGGGCCCTCAGATG 

Dll1_fw GGTGTGATGACCAACATGGA 

Dll1-rev GACAACCTGGGTATCGGATG 

Jag1_fw TGAGCATGCTTGTCTCTCTGA 

Jag1_rev CCCCCATGGGAACAGTTATT 

Calcr_fw AGCCCAACTCCAGTTCTTCA 

Calcr_rev TCCTTCATAAGAGGGCAACTG 

 

 Ladders 

Size marker Company 

Page Ruler™ Plus Prestained 10-250kDa  

Protein Ladder                                   

Thermo Scientific™ 

 

1kb DNA ladder                                         Fermentas 

100bp bp DNA ladder                                  Fermentas 
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  Medium and supplements for cell culture 

Name    Supplier 

MEK Inhibitor U0126 Promega 

Jagged1 (JAG1) AdipoGen 

DAPT Sigma-Aldrich 

LNAME Sigma-Aldrich 

TSA * 

SAHA * 

DMEM Gibco 

FBS Gibco 

DPBS Gibco 

Glutamin Gibco 

Penicillin/streptomycin Gibco 

Matrigel Corning 

Gelatin Sigma 

Poly-lysine Millpore 

Oligomycin Roth 

FCCP Roth 

Antimycin A Roth 

Rotenone Roth 

2-DG Sigma Aldrich 

Trypsin Gibco 

* Kindly provided by Prof. Dr. med. Britta Siegmund 
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3 Methods 
 Molecular Biological Methods 
  Genomic DNA isolation 

Unless noted otherwise, genomic DNA was isolated from p21 mouse tail tips. p7 mice used 

for experiment tail tips were cut at p5. Centrifuge at maximum speed for 2 min at room 

temperature to allow the tips to drop to the bottom of the ep. 50 μl QuickExtractTM genomic 

DNA isolation solution was used for each sample. All samples were incubated at 65 °C in a 

Thermomixer and shaken at 350 rpm for 6 minutes, after that the temperature was changed to 

98° C and incubated for another 2 minutes. All samples got centrifuged again and let the gDNA 

solution cooldown on ice, and they were ready as the template for genotyping PCR. Take 2μl 

as a template and keep the rest in the fridge for back up. 

 

  Total RNA isolation from tissue and cells 

Total RNA isolation from muscle tissue 

For the dissected P21 mice, the entire TA muscle was removed and put into a 1.5 ml tube, 

followed by liquid nitrogen snap frozen. Put all samples on dry ice then put autoclaved pre-

cooled grinding beads inside each tube. 350 μl RLT buffer was added into each tube, TissLyser 

was used for homogenization.  Keep the setting for muscle tissue as 60 Hz, 30sec for twice. 

Samples were put on ice for 3 min in the middle and then centrifuged at 12000 rpm for 10 min 

at 4 °C. The supernatant was transferred to a new ep. The following steps were performed 

based on the underlying RNA isolation protocol from the RNeasy Mini Kit (Qiagen).  

Total RNA isolation from cells 

For fresh FACS - sorted muscle progenitor cells, cells were centrifuged at 500 g x 5 min after 

FACS. Remove supernatant immediately and the following steps performed with the protocol 

provided by RNeasy Micro Kit (Qiagen). For cultured cells, wash cells first before put lysis 

buffer (RLT). Following steps performed based on protocol provided by RNeasy Mini Kit 

(Qiagen).  

The total mRNA could be stored at -80°C for several months or do the reverse transcription 

immediately, and the cDNA was stored at -20°C for real-time qPCR. 
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  Polymerase chain reaction for genomic DNA 

To investigate the genotype of experimental animals, PCRs were performed using genomic 

DNA isolated from the tail tip of p21 animals. Different PCR protocols were used for different 

mouse strains.  

 

Nf1flox/flox PCR 

For the genotyping of Nf1flox/flox, three independent PCR reactions were performed 

simultaneously. Their PCR products were P2(280bp), P3(480bp), and P4(350bp), respectively. 

The PCR product of P2 refers to the Nf1 allele was exercised by Cre recombinase-mediated 

recombination. The PCR binds of P3 means unexercised by Cre and also unfloxed. The binds 

of P4 means unexercised by Cre but floxed. These three PCR results were combined to obtain 

the correct Nf1flox/flox mouse genotype. 

 

PCR mix for one reaction                                                      PCR cycler Program 

 

              

 

Myf5Cre PCR  

To identify Nf1 knock out mice, Myf5cre PCR was also performed. A product of the size in 603 

bp refers to the Myf5 allele without Cre insertion. The target bind size of 400 bp indicates the  

Myf5cre allele with Cre insertion. Nf1flox/flox Myf5cre+ PCR results identified target mutant animals. 

Nf1flox/+Myf5cre+  genotype were used as control animals. Nf1flox/+ Myf5cre- were considered as 

wild type animals. 

 

Amount Reagent 

 2 μl                                Genomic DNA                             

2,5 μl                          PCR buffer 10x                                 

3.5 μl                            dNTPs (1.25 mM)                              

1 μl                             Primer fw (Nf1_P1) 10 mol/μl                

1 μl                             Primer rev 10 pmol/μl                                

0,5 μl                           Taq polymerase 

14.5 μl A. bidest 

Temperature Time Cycle 

94 °C               5 min             1x 

94 °C                  30 sec 35x 

50 °C                  30 sec        

72 °C                   1:00 min 10 sec 

72 °C                   7 min            1x 

4 °C                       ∞ 



Methods 

43 

 

 

 

PCR mix for one reaction                                                           PCR cycler  Program 

 

 

 

HSAcre PCR 

To specifically knock out Nf1 in mature muscle tissues, HSA cre mice were used for matting 

with Nf1 flox/flox mice. The expected genotype PCR bind size for HSA Cre is 650bp. Mutant 

animals were identified by Nf1flox/flox HASCre+. 

PCR mix for one reaction                                                                 PCR cycler  Program 

Amount Reagent 

2 μl                                Genomic DNA                             

2,5 μl                          PCR buffer 10x                                 

2 μl                            dNTPs (1.25 mM)                              

1 μl                             Unspecific_Cre_fw 10 pmol/μl                               

1 μl                             Unspecific_Cre_rev 10 pmol/μl                 

0,5 μl                           Taq polymerase 

16 μl A. bidest 

 

Amount Reagent  

2 μl                                Genomic DNA                             

2,5 μl                          PCR buffer 10x                                 

2 μl                            dNTPs (1.25 mM)                              

2 μl                             Myf5_Cre_fw 10 pmol/μl                 

1 μl                             Myf5_Cre_WT_rev 10 pmol/μl        

1 μl                             Myf5_Cre_KO_rev 10 pmol/μl        

0,5 μl                           Taq polymerase 

13 μl A. bidest 

1 μl Magnesium chloride 25 mM 

Temperature Time Cycle 

95°C               5 min             1x 

95 °C                  40 sec  

59 °C                  1:00 min      35x 

72 °C                   1:00 min  

72 °C                   7 min            1x 

4 °C                    ∞  

Temperature Time Cycle 

94°C               5 min             1x 

94 °C                  30 sec  

55 °C                  30 sec       35x 

72 °C                   1:00 min  

72 °C                   7 min            1x 

4 °C                    ∞  
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  cDNA synthesis  

The concentration of total mRNA isolated from myoblasts, muscle tissue, and adipose tissue 

was measured by Nanodrop2000. 1 μg of mRNA was used for one reverse transcription 

reaction.  For RNA isolated from muscle stem cells, all RNA was used for reverse transcription. 

The cDNA solution volume for each reaction was maintained at 40.5 μl with Rnase free water 

and 2 μl of Rnasin. 

 

Master Mix for one reaction                                             Program for the thermal PCR cycler 

  

 

 

The total volume for each reaction was 100 μl. Complementary DNA (cDNA) was stored at -

20°C or start with real-time qPCR immediately. 

 

  Quantitative polymerase chain reaction (qPCR) 

Syber-Green-based method was used for real-time qPCR. Dilute the cDNA with Rnase free 

water with 1:10 for RNA isolated from muscle tissue, myoblasts, or 1:3 for RNA isolated from 

muscle stem cells. 6 μl of diluted cDNA was used for each PCR reaction as a template. 5 μl 

forward primer and 5 μl reverse primers (100 µM stock solution)  were diluted with 322.5 μl 

Rnase free water. 3 μl of the primer mix and 9 μl Syber-Green-Mix were put into each well of 

the 384 well plates. The total qPCR reaction volume was 18 μl. All reactions were performed 

in triplicate; wells with 6 μl water instead of template were used as blank control for each gene. 

All primers used in real-time qPCR were designed using Primer 3.0 online software. The 

sequence of target genes was found by the ENSEMBL genome browser. β-Actin, Gapdh were 

used as housekeeping genes for target genes relative expression normalization. Reactions 

and data collection was performed using the 7900 HT Fast Real-Time PCR Cycler and SDS 

2.4 data analysis system, respectively. 

  Next-Generation Sequencing (RNAseq) 

Temperature Time   

25°C 10 min 

48 °C                 30 min 

95 °C 5 min 

4 °C ∞ 

Amount                             Reagent                  

10 μl                          10x Buffer 

22 μl                25mM Mgcl2 

20 μl dNTPs 

5 μl         Random Hexamer /Oligo (dT) 

2.5 μl Reverse Transcriptase 
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Total RNA was isolated from fresh FACS sorted muscle progenitor cells. Both forelimb and 

hind limbs of muscle from p7 (7 days postnatal) Nf1flox/floxMyf5cre+ (mutant), Nf1flox/+/Myf5cre+ 

(control) animals were taken for digestion and each  condition for two animals.  After FACS 

sorting,  total RNA was isolated immediately with the Qiagen RNA isolation Micro kit.  For RNA 

isolated from p21 TA muscle, The entire TA muscle was used, and the Qiagen RNA isolation 

Mini kit was chosen. The quantity and quality of RNA were tested with  Nanodrop2000 and 

bioanalyzer, respectively. All samples were sent to the MPIMG sequencing facility for library 

preparation and next-generation sequencing.  

 

 Cell culture 
  Muscle stem cell culture 

3.2.1.1 Isolation and culture of muscle stem cells 
Separation of muscle satellite cells was accomplished by a well-established fluorescence-

activated cell sorting (FACS) method130. In short, mice were killed with a high concentration of 

carbon dioxide (CO2), and skeletal muscle tissue was separated from both hind limbs and 

forelimbs. The muscle was cut into small pieces followed by 2 mg/ml collagenases A (stock 

solution 100 mg/ml) digestion for 1.5 hours with 37 °C rotates at 450 rpm. Check the digestion 

efficiency with a sterile syringe and 20 mm needles in the middle. Homogeneous tissue mixture 

with a syringe, until no large pieces tissue visible. The enzyme digestion was stopped with 

PBS, wash cells twice with PBS and centrifuge with 300 g for 5 min at room temperature. 

Remove tissue aggregate with 70 um cell strainer. Re-suspend cells in HBSS and stain cells 

underneath the foil paper on ice for 30 min with the following antibodies. For lineage positive 

sorting, membrane markers CD31, CD45, Ter119 (CD31, a marker for endothelial cells, 

platelets, macrophages and Kupffer cells, granulocytes, lymphocytes, megakaryocytes, and 

osteoclasts; CD45, a marker for Leukocytes; Ter119, erythroid cell marker), Sca-1 (stem cell 

antigen-1)  and Integrin-7α (muscle cells marker) were used for staining. The cells were 

washed twice with HBSS and sorted by FACS Aria II SORP (BD) machine. Integrin-7α 
+/CD31−/CD45−/Sca1− cells were taken as muscle stem cells.  

Coverslips were coated in a cell culture plate with 10 % Matrigel for 30 minutes under cell 

culture incubator. Centrifuge sorted muscle stem cells with 500 g for 5 min and resuspend cells 

with proliferation medium (DMEM / 20% FBS). Culture cells in proliferation medium and change 

medium for every 48 h. 
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3.2.1.2 Immunolabeling of proliferating and differentiating muscle stem cells 
Freshly sorted satellite cells were cultured in proliferation medium for 48 h to test proliferation 

rate. Differentiation medium (DMEM with 2 % horse serum or 2 % FBS) was used for 48 h to 

test differentiation ability. The proliferating or differentiated cells were washed with PBS and 

then fixed at 4% PFA for 10 min at room temperature. The cells were washed with PBS for 3 

x 5min on a shaker. Permeabilize cells at room temperature with 0.1% Triton X-100 in PBS for 

5 min. Rewash cells with PBS for 3 x 5 min. To block non-specific binding of antibodies, cells 

were incubated with 5% BSA in PBX at RT for 1 h. Primary antibodies (different combination 

of Pax7, MyoD, Ki67, Desmin, MF20) were diluted with blocking buffer. The dilution rate for 

each antibody was shown in the material section. Incubate cells in a humidified chamber 

overnight at 4 °C. The next day decants the staining solution and washes cells with PBS 3 x 

10 min. Incubate cells with secondary antibodies, and DAPI diluted with PBS in the black box 

at RT for 1 h. Wash cells with PBS 3 x 10 min and mounting coverslips with a drop of mounting 

medium. Store in the dark at RT for 3 h and allow the coverslips to dry. Imaging coverslips 

under a fluorescence microscope. 

 

3.2.1.3 Immunolabeling of cytospin muscle stem cells 
For cytospin, poly-L-lysine was used (1:100 dilution with bidest ) to coat the coverslips for 1 

hour at room temperature. Rinse coverslips with sterile H2O 3 x 5 min. Let coverslips dry under 

the cell culture hood. The cells were counted and brought to a concentration of approximately 

5 x 105 cells/ml. Put 100 ul cell suspension on top of each coverslip. Let cells stand at 4° C for 

1 h. Spin at 50 g  for 5 min. Followed by the standard ICC staining procedure described above. 

 

3.2.1.4 RNA/protein/genomic DNA isolation from muscle stem cells 
All Prep DNA / RNA / Protein Mini Kit from Qiagen was used for simultaneous isolation of 

genomic DNA, total RNA, and protein from  p7 muscle stem cells sorted by FACS. One million 

cells were used for one sample. Pellet one million cells by centrifuging for 5 min at 500 x g at 

4° C, carefully remove all supernatant.  

Add 350 μl of Buffer RLT pipet thoroughly to mix, pass the lysate at least 5 times through a 

blunt 20-gauge needle (0.9 mm diameter) fitted to an RNase-free syringe. Transfer the 

homogenized lysate to an All Prep DNA spin column placed in a 2 ml collection tube. Close 

the lid gently centrifuge for 30 s at 8000 g. Place the All Prep DNA spin column in a new 2 ml 

collection tube, and store on ice for later DNA purification steps.  

Use the flow-through for RNA purification. Add 250μl pure ethanol to the flow-through, mix well 

by pipetting. Transfer up to 700 μl of the sample to an RNeasy spin column placed in a 2 ml 
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collection tube. Close the lid gently and centrifuge for 15 s at 8000 g. Transfer the flow-through 

to a 2 ml tube for protein purification. 

Add 700 μl Buffer RW1 to the RNeasy spin column. Close the lid gently and centrifuge for 15 

s at 8000g to wash the spin column membrane. Discard the flow-through. Add 500 μl Buffer 

RPE to the RNeasy spin column. Close the lid gently and centrifuge for 15 s at 8000 g to wash 

the spin column membrane. Discard the flow-through. Add 500 μl Buffer RPE to the RNeasy 

spin column. Close the lid gently and centrifuge for 2 min at 8000 g to wash the spin column 

membrane. Place the RNeasy spin column in a new 1.5 ml collection tube. Add 30 μl RNase-

free water directly to the spin column membrane. Close the lid gently, centrifuge for 1 min at 

8000 x g to elute the RNA. 

Add 600 μl of Buffer APP to the flow-through for protein purification, mix vigorously, and 

incubate at room temperature for 10 min to precipitate protein. Centrifuge at full speed for 10 

min, and carefully decant the supernatant. Add 500 μl of 70 % ethanol to the protein pellet. 

Centrifuge at full speed for 1 min and thoroughly remove the supernatant. Dry the protein pellet 

for 10 min at room temperature. 

Add 30 μl Buffer ALO and mix vigorously to dissolve the protein pellet. Incubate for 5 min at 

95°C, then cool the sample to room temperature. Centrifuge for 1 min at full speed and store 

the protein lysis at –20°C, use the supernatant for SDS-PAGE and western blotting. 

Add 500 μl Buffer AW1 to the All Prep DNA spin column. Close the lid gently and centrifuge 

for 15 s at 8000 x g (10,000 rpm) to wash the spin column membrane. Discard the flow-through. 

Add 500 μl Buffer AW2 to the All Prep DNA spin column. Close the lid gently and centrifuge 

for 2 min at full speed to wash the spin column membrane. Place the All Prep DNA spin column 

in a new 1.5 ml collection tube. Add 40 μl Buffer EB (preheated to 70°C) directly to the spin 

column membrane and close the lid. Incubate at room temperature for 2 min, and then 

centrifuge for 1 min at 8000 g (10,000 rpm) to elute the DNA. 

The quality and quantity of mRNA and genomic DNA were measured with Nanodrop 2000. For 

mRNA ratio of OD260 / OD280 is around 2. For genomic DNA ratio of OD260/OD280 is around 1.8. 

Store total mRNA at -80°C for several months, or do the reverse transcription immediately 

store the cDNA at -20°C for qPCR. Keep the genomic DNA  and protein at -20°C.  

 

3.2.1.5 Muscle stem cell culture with ligand treatment 
Freshly FACS sorted muscle stem cells for in vitro cell culture. One day before the experiment, 

coat 24 well plate with 10% Matrigel at 37 °C for 30 min, remove the supernatant, and put Jag1 

ligand on top or PBS only for control leave at room temperature overnight. The next day starts 

muscle prepping in the early morning as described before, making sure during the experiment 

keep all cells on ice and avoid any freezing step. Calculate cell numbers for 3 x 105 cells/well 
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and put them in the culture immediately. 4 days later, harvest cells and do RNA isolation 

followed by real-time qPCR for Notch target genes, myogenesis genes, glycolysis genes, and 

oxidative phosphorylation genes expression detection. 

 

3.2.1.6 Seahorse real time metabolism test for muscle stem cells 
Seahorse XF96 extracellular flux analyzer is used to measure OCAR and ECAR for freshly 

FACS sorted p7 satellite cells. The protocol was kindly shared by Dr. James G. Ryall before 

the method paper was published131. The essential modification being performed based on our 

experiment platform. 

Generally speaking, on day 1, hydrate the cartridge sensor with 200 μl calibrant solution in 

each well of cartridge plate, put the plate with the sensor in 37 °C incubator without CO2, and 

leave it overnight. To avoid evaporation, wrap the plate with parafilm. 

Turn on XF96 Analyzer logged in, design personal assay protocol, and make sure to leave four 

wells as blank control for background normalization, save the assay protocol. Then run the 

software, leave it there overnight to make sure the inside temperature is 37°C during the real 

assay time. 

On day 2, dissect p7 mice in the early morning take all muscle from both forelimbs and hind 

limbs prepare single-cell solution and stain with specific antibodies for FACS. Make sure 

satellite cells are always in the ice cod medium during the whole process. Meantime coat XF96 

cell culture microplate with 10% Matrigel (1mg / ml) for 1h at 37°C, prepare assay medium and 

adjust pH to 7.4, warm medium, and all the rest solution to 37°C, filter before use. After FACS 

count, the cell numbers accurately pelleted cells with 500 x g for 5min resuspend with warm 

assay medium and put cells into XF96 cell culture microplate, 5x104 cells in 180 ul assay 

medium for each well. Centrifuge the cell culture plate 200x g for 5 minutes, observe cells 

under a microscope make sure all cells are evenly distributed. Put the microplate into a no-

CO2 incubator for 45 minutes. 

 Make stock solutions from glycolysis stress test kit, including oligomycin, glucose, and 2-DG 

with pre-warmed assay medium. The concentration is just following the website protocol 

provided by the kit. Load compound in sensor cartridge in the following way: port one: glucose 

20 μl; port two: oligomycin 22 μl, and port three: 2-DG 25 μl. Open the saved wave software 

start run. Place the loaded sensor cartridge on top of the utility plate, then click ready after 

calibration load the cell culture plate and run the assay. 
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  Primary myoblasts culture 

3.2.2.1 Primary myoblasts isolation 
Nf1Myf5 and control mouse (n=3 for each group) were killed by exposure to high concentrations 

of carbon dioxide gas at postnatal day 21. Spray the whole mouse and autoclaved dissection 

tools with 70% ethanol. Remove skin with sharp scissors and forceps from both hind-limbs to 

expose muscle. Take target muscle bundles including tibialis anterior (TA), gastrocnemius, 

soleus, quadriceps, and extensor digitorum longus (EDL) muscles from one hind-limb and 

place them into one 3.5 mm cell culture dish with 3 ml PBS. Repeat above operation takes all 

muscles from the other hind-limb and put them into another 3.5 mm cell culture dish. Transfer 

washed muscles into 2 ml ep and mince muscles with forceps and scissors. One tube with 

muscles from one hind-limb. The stock solution of Collagenase A (100 mg/ml) was diluted into 

a working solution (2 mg/ml) with DMEM. Add 1ml digestion solution into each tube and mix 

well, then incubate on a Thermomixer at 37 °C and 450 rpm for 1.5 hours. In the middle test, 

the digestion efficiency with a blunt 20 - gauge needle (0.9 mm diameter) stops digestion with 

growth medium when a single cell solution can be released by a needle. The transfer sample 

into 50 ml falcon makes a whole solution volume as 25 ml. Centrifuge at 300 g for 5 min, 

remove supernatant and resuspend the pellet with 2 ml growth medium, afterward the sample 

was pipetted through a 70 μm cell strainer into 50 ml falcon followed by another 2 ml growth 

medium to rinse the strainer. All falcons have centrifuged at room temperature 2000 rpm for 5 

min. Remove supernatant and resuspend the cell pellet in standard growth medium and seed 

the cell mixture onto 0.1% gelatin-coated 10 cm dish. Check cells under a microscope and 

keep all the dishes in a 37 °C CO2 incubator for another 72 hours. 

 

3.2.2.2 Primary myoblasts culture 
Trash cell culture medium and gently wash attachment cells twice with PBS. Split cells by 

adding 3 ml of 0.25 % trypsin-EDTA and incubate in a CO2 incubator for 3min, check under 

the microscope to make sure all cells have been detached add 7ml growth medium to stop the 

trypsinization. Transfer all solution into a new none coated dish and place at 37 °C in a CO2 

incubator for 45 min. During this step, larger cells like fibroblast will attach with a cell culture 

dish, and the target cell population is still suspended in the cell culture medium. In the 

meantime, coat a new cell culture dish with gelatin and transfer suspend cells into the new 

dish. Pre-plating should be performed every 36 - 48 h until > 98% myoblast purity is achieved. 

Purity should be measured with immunostaining for Pax7 and MyoD antibodies. Purity = Pax7+% 

MyoD+% + Pax7+% MyoD-%.  

The purified primary myoblast should be cultured in growth medium and change the medium 

every other day. To avoid premature differentiation and fusion of primary myoblast, make sure 
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cells are split before they reach 70% confluence. Gelatin coated dishes need to be used during 

the whole culture process. Just like the regular cell lines, myoblast could be trypsinized and 

collected in freezing medium then kept in liquid nitrogen or -80 °C for future use. The capacity 

for proliferation and differentiation should be maintained when thawed and cultured again.  For 

differentiation of primary myoblast, plate cells in the desired confluence, keep in mind the 

differentiation medium could only being changed until the confluence is between 90%-95%. 

Wash cells with PBS before the medium were changed because cell size in different cell 

passages varies, so the number of cells in each cell culture plate should be put based on their 

own experience. The lower passage, the smaller cell size. The differentiation medium should 

be changed every 48h. Small myotubes could be observed at 48h. Bigger and mature 

myotubes will be ready for the following experiment at 72-96h.  

 

3.2.2.3 Immunostaining of primary myoblasts and myotubes 
24 well cell culture plate with 12 mm coverslips was used for cell purity and differentiation 

ability test. Trash cell culture medium and wash with PBS. Fix cells with an appropriate amount 

of 4% PFA at room temperature for 10 min. Cells should be covered by PFA. Remove PFA 

and wash cells gently with PBS for three times, followed by cell permeabilization, incubate cells 

with PBX (0.3% Triton X-100) at room temperature for 10min. Wash cells with PBS for three 

times and block cells with 5% BSA in PBS  at room temperature for 1h. Prepare primary 

antibody mixture in blocking solution. Pax7 (DSHB) 1:25, MyoD (BD Pharmingen™) 1:100, 

Desmin (R&D Systems) 1:200,  MF20 (DSHB) 1:100,  Ki67 (BD Pharmingen™). To save 

antibodies, drop 30 μl antibody mixture on parafilm membrane invert 12 mm coverslip on top, 

make sure cells are fully covered with antibody solutions. Incubate primary antibody at 4 °C 

overnight or room temperature for 2-3 h (put the parafilm into a black box with moisture 

environment make sure the antibody mixture will not cause evaporation). Take coverslips put 

back to 24 well plate wash with PBX for three times, 5min for each time at room temperature 

on a shaker. Prepare Alexa Fluor® fluorescent secondary antibodies to dilute with PBS in 

1:500 and DAPI (1:1000). Incubate secondary antibody and DAPI in 24 well plates in a black 

box or covered with foil paper for one h at room temperature. Remove secondary antibody 

wash with PBX for three times at room temperature, 10 min for each time on a shaker. Check 

under the fluorescent microscope if there are still background, wash the cells longer. Mount 

coverslips with mount solution leave at room temperature let them dry for 3h. Take pictures for 

the next step. 
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3.2.2.4 Inhibitors and ligand treatment for primary myoblasts 
To establish the in vitro cell culture model and study about the signaling pathways involved in 

vivo. Primary myoblasts were used combined with different inhibitors and ligand treatment to 

get a mimic of in vivo environment. Split and culture primary myoblasts in proliferation medium 

in advance two days. One day before the real experiment, start coat the 24 well cell culture 

plate with 100 μl Jagged1 ligand. The concentration of the stock solution is 0.5 mg/ml in PBS, 

and the concentration of a working solution is 5 ng/μl. Dilute the stock solution with 1:100 in 

PBS. Leave the coated plate at 4°C overnight. Take the plate out and remove the supernatant 

the next day before culture cells on top. For activating Notch signaling, cells need to be cultured 

with a ligand for at least 48 hours. 

To investigate the underlying mechanism of activation of Ras/ERK and Notch pathway, during 

the notch activation time add panHADC inhibitor TSA (1 mg/ml) use with 1:1000 dilution; Nitric 

oxide synthesis inhibitor L-NAME (concentration of stock solution is 50 mg/ml) was used with 

1:92 to get the final concentration of 2 mM of working solution. To inhibit the Ras/ERK pathway, 

the U0126 was used to inhibit MEK activity specifically. The stock concentration is 10 mM, and 

it was used in 1:1000 during cell culture time. All these inhibitors were treated cells for 24 hours 

to see the function during myoblasts stage and also put them inside the differentiation medium 

in order to see their function for myoblasts differentiation. Primary myoblasts form control and 

mutant mice were cultured without any treatment or only with ligand activator were used a 

control cell. Once reach a specific treatment time point, isolate total RNA from all these cells 

and do reverse transcription followed by qPCR to see the expression level of Notch target 

genes, and also metabolism relative genes expression. To double-check the effect of these 

signaling on primary myoblast proliferation and differentiation, cells with the same treatment 

were cultured on coverslips and fix the cells and do immunocytochemistry with specific 

antibodies like muscle stem cell marker Pax7, proliferation marker Ki67, differentiation marker 

like myosin heavy chain et al. Imaging the staining with fluorescence microscope and calculate 

the proliferation rate, differentiation index or fusion index. 

 

 Biochemical Methods 
 Protein isolation from cells and muscle tissue 

Protein isolation from cells  

RIPA buffer with freshly added cOmplete Mini Protease Inhibitor Tablets (7x stock solution) 

and serine/threonine phosphatase inhibitors NaF (1:1000) was used as a protein lysis buffer. 

Wash cultured cells with PBS and trypsin them with 0.25 % trypsin-EDTA in the cell culture 

incubator for 3 min stop trypsinization by adding an equal volume of cell culture medium. 
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Transfer cell solution into 15 ml tube and centrifuge for 5 min at 4°C. Check volume of cell 

pellet adds protein lysis buffer directly, the volume of lysis buffer is based on experience, vortex 

dramatically for two times, 5 min for each time. In the middle, put samples on ice for 5 min. 

Centrifuge with the highest speed at 4°C for 10 min. Supernatant needs to be transferred into 

a new protein low binding tube.   

 

Protein isolation from tissues 

Lysis buffer was prepared as described before. Take samples out from -80°C  with dry ice. Put 

auto calved grinding bead into each tube. From experience 10 mg tissue with 1 ml lysis buffer, 

the final protein concentration is around 1 mg/ml. Use TissueLyser for homogenization and 

keep the setting as 60 HZ for 1 min for twice. Stop in the middle and put the samples on ice 

for 5min. Centrifuge at 4°C with full speed for 20 min. Transfer supernatant to a new tube.    

 

  Protein concentration determination 

Take 2 μl for total protein concentration measurement. Pierce BCA Protein Assay Kit was used, 

and protein light absorption at 562 nm was measured with an ELISA reader. Protein 

concentration was calculated based on the equation generated from the BCA standard curve 

and the dilution rate of samples. Dilute the samples with 6 x SDS protein loading buffer and 

make the final protein concentration to 1.5 μg/μl. Incubate the samples at 95°C for 5 min to 

completely denature the protein. Store samples at -20°C for SDS gel running. 

  SDS PAGE 

Charged proteins in mixtures were separated based on their molecular mass, SDS-PAGE 

(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was used. The concentration of 

separation gel was choose depending on the mass of target proteins. For p-mTOR (289 KD), 

7.5 % polyacrylamide gel was used. For protein size between 200 KD and 250 KD,  8% gel 

was used. For protein mass, less than 200 KD, and more than 40 KD, 10% gel was used. For 

protein size, smaller than 40 KD 12% separation gel was used. For assembling gel, 4% 

concentration was used. Gels were prepared according to the following protocols 

Stacking Gel (4 gels)                   4% 

Bidest                  9 ml 

30 % Acrylamide                 1.98 ml 

0.5 M Tris (pH 6.8)                 3.78 ml 
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10 % SDS                 150 μl 

10 % APS                  75 μl 

TEMED                  15 μl 

  

Pour resolving gel and put 100% ethanol on top to make the gel smooth, 30 min later trash 

ethanol add stacking gel and insert comb in, wait for another 30 min let the gel polymerization. 

Add running buffer into gel chamber load protein and also protein ladder. The amount of protein 

depends on target protein abundance. Gel running settlement is 80 v, 30 min for stacking gel 

and 120 v, 1.5 h for separation gel. 

 Western blot 

During the gel running time, prepare transfer buffer and store at -20°C.  There are two methods 

for transferring: wet transfer and semi-dry transfer. Here wet transfer was used for all western 

blot experiments. Recipe for 1 L wet transfer buffer is 100 ml 10 x transfer buffer, 700 ml 

double-distilled (ddH2O or bidest) water, and 200 ml methanol.  Keep the transfer buffer bottle 

at -20°C until use. Stop gel running when the dye in front runs to the bottom of the gel. Remove 

the stacking gel and measure the size of separation gel, cut 6 filter sheets, and one PVDF 

(polyvinylidene fluoride) membrane based on the separation gel size. Activate the PVDF 

membrane with pure methanol for 30 sec and then equilibrating the membrane in a 1x transfer 

buffer for 3 minutes. Wet the sponge and filter sheets in a 1x transfer buffer. Make a transfer 

sandwich in the following order: sponge, three filter sheets, gel, PVDF membrane, and another 

three filter papers. Make sure that there are no air bubbles between the gel and the PVDF 

membrane. Remove the bubbles and extra transfer buffer with a glass rod. Put the sandwich 

into the transfer equipment also with the icebox. For larger size protein, get the whole transfer 

apparatus on ice to make sure the heat production during transfer will not influence the transfer 

process. Take the transfer buffer out from -20°C and add transfer buffer to the apparatus, 

ensure that the sandwich is covered with the buffer. Place electrodes on top of the sandwich, 

Resolving Gel (4 gels)                7.5 %                10 %               12 % 

Bidest            14.56 ml                10 ml             8.38 ml 

30 % Acrylamide                7.5 ml               8.3 ml                 10 ml 

1.5 M Tris (pH 8.8)                 7.5 ml             6.25 ml              6.25 ml 

10 % SDS               300 μl              250 μl               250 μl 

10 % APS               150 μl              125 μl               125 μl 

TEMED                  15 μl             12.5 μl              12.5 μl 



Methods 

54 

 

ensuring that the PVDF membrane is between the gel and a positive electrode. 

Transmembrane for larger size protein needs to put the whole apparatus into one icebox. For 

larger size, protein transfer buffer is different from the normal one. Tris (5.8 g/L) and glycine (2 

g/L) in distilled water without methanol were used for the transfer process. Run the 

transmembrane process at 100 V for 1 h. Take the membrane out and stain it with ponceau 

for 10 min with a shaker wash the membrane with PBST and see the transfer efficiency. 

Remove all staining bands and block the membrane with 5 % milk powder in TBST (block with 

5 % BSA for phosphor site detection) in a shaker for one h at room temperature.  At the same 

time, prepare the primary antibody mix to dilute with a blocking solution. Incubate the primary 

antibody overnight in the cold room with a shaker. The next day removes the primary antibody 

wash the membrane with TBST 3 times 10 min for each time. Incubate the secondary antibody 

for one hour at room temperature wash again three times with TBST with 10 min for each time. 

Use freshly prepared ECL solution put it on top of the membrane incubate for 1 min, eradicate 

the solution, and take pictures with the western blot gel document system. 

 

 Agarose gel electrophoresis 

Prepare agarose gel 30 min before PCR running finish. EtBr was added in 1:10000.  The 

concentration of gel depending on the size of the target binds. Leave the gel under the hood 

for at least 20 min. After finishing the PCR step, remove 8-strip tubes from PCR cycler. Put 5 

μl  6x DNA loading buffer and mix for each sample. Loading samples and put the 100 bp DNA 

ladder into the well. Run the gel with a 1 x TAE buffer for 120 V 30 min. Detect target binds 

with UV machine or with the Gel documentation system. 

 

 Mass spectrometry 

Pre-cool all dissection tools and vials with screw caps on dry ice, weigh empty vials take whole 

TA muscle from Hind limbs of Nf1flox/flox/Myf5Cre+ (Mut), Nf1flox/flox/Myf5Cre- (Het) and Nf1flox/+/Myf5 
Cre- (Wt).  Weigh vials again with samples, keep all samples on dry ice with precooled disruption 

bead. Add lysis buffer containing 3 M GdmCL, 5 mM TCEP, 20 mM 2-Chloracetamide, 50 mM 

Tris pH 8.5 shortly before Fast Prep. To avoid proteolytic activities, tissues were homogenized 

with a Fast Prep -24 immediately. Total 2 x for 60 sec 4 M/s, after each 60 sec put samples on 

the ice, take a rest for 5 min. (Notice that Fast Prep can only work with solution volume more 

than 1 ml otherwise vials will be broken) ; Shake for 15 min at 95°C with 750 rpm; Sonicate for 

15 min in the ultrasonic water bath. Transfer the whole sample lysates to a new 2 ml protein 
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low binding tube (Eppendorf, Germany). Send all samples to the MPIMG Mass spectrometry 

facility for further processing. 

 

 High-Resolution FluoRespirometry 

This experiment has collaborated with Dr. Mario Ost from the German Institute of Human 

Nutrition. In short, our 5 weeks control and knockout mice were transferred to their lab in 

advance for one day before the experiment starts. In the early morning dissected the mice took 

targeted muscle bundles, here we used EDL and Soleus as represent for glycolytic fiber and 

oxidative fiber. For the rest of the tissue, protein and RNA was taken for other analysis. High-

Resolution FluoRespirometry was used for mitochondrial respiration analysis. Briefly, gently 

dissected muscle EDL and Soleus muscle was put into ice-cold biopsy preservation medium 

(BIOPS) immediately, followed by permeabilization with saponin (50 μg/ ml) at 4 °C for 30 min. 

Wash fibers with mitochondrial respiration medium (MiR05, 110 mM sucrose, 60 mM K-

lactobionate, 0.5 mM EGTA, 3 mM MgCl2, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 

pH 7.1 and 0.1 % fatty acid-free BSA) at 4 °C for 10 min and keep all samples on ice before 

analysis. 

The basic principle of this method is to analyze the respiratory capacity at 37 °C in a hyper 

oxygenated environment with multiple substrate uncouplers. The following substrate 

concentrations: 2 mM Malate + 5 mM Pyruvate (LEAK respiration), 5 mM ADP (N-OXPHOS 

capacity), 10 μM cytochrome c (integrity of outer mt-membrane), 10 mM glutamate (N-

OXPHOS capacity), 10 mM succinate (NS-OXPHOS capacity), 0.5 μM FCCP (NS-ETS 

capacity, ETSCI&CII), 0.5 μM rotenone (S-ETS capacity, ETSCII), 2.5 μM antimycin A 

(residual oxygen consumption, ROX). Oxygen flux levels were normalized to wet muscle 

weight of dry blotted fiber bundles. 

 

 Histology 
 Sample preparation 

Pick up the mice that need to be used with a particular time point based on the requirement of 

the project. Kill the mice with a high concentration of  CO2. For newborn mice, take a tail tip for 

genotyping. For p21 and even older mice, also take iBAT, cBAT, psWAT as well. Weigh all 

these tissues before the next step. For forelimbs and hindlimbs kept for histological staining, 

dissect mice with sterile tools remove skin and fur carefully. Drop isopentane temperature with 

liquid nitrogen until half-frozen take the container out and leave it on dry ice. Use forceps put 
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dissected mouse tissue with Tragacanth matrix and cork plate (labeled probably) directly into 

cold isopentane for 10 seconds, then transfer samples with dry ice and store at -80°C before 

sectioning. 

 

 Sectioning 

Take samples out from -80°C and keep samples on dry ice. Before start sectioning, check 

cryotome, make sure that the inside and blade temperature is -20°C. The cork plate was 

attached to the metal plate with the TissueTek medium. Set section thickness at 10 μm. Put 

super frost slides on to 37 °C heating plate. After collecting sections were kept on a heating 

plate for another 30 min. Pack up all slides put silica beads to keep slides dry and sealed box 

with tape. Use slides directly for immunostaining or store them at -80°C. 

 

 IHC 

Slides fixation 

Take slides out from -80 °C leave slides at room temperature for two h or put on a 37°C heating 

plate for 30 min. Rehydrate slides with PBS for 10 min. Trash PBS put a slides box with pre-

cooled methanol into -20°C for 10 min. Then wash slides with PBS to remove methanol 

residues. 

 

Antigen Retrieval 

Sections staining with Pax7 or co-staining with Pax7 need to do antigen retrieval with the 

following method: use bidest water with 2 mM EDTA as an antigen retrieval solution. Cook the 

solution to 95°C with a water bath, put slides directly inside wait for 10 min. Take slides box 

out, leave at room temperature for 30 min. Let sections cool down. After this step, wash slides 

with PBS to remove EDTA. 

 

Blocking unspecific binding site 

Surround samples with DAKO pen and wash with PBS. Add 50 μl TSA or 5 % BSA  blocking 

buffer on top, leave the slides at room temperature for 1h. 

 

Primary antibody incubation 

Dilute primary antibody with blocking buffer. Working concentration of primary antibodies 

depending on the recommendation of the antibody and also previous antibody test experiment. 
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For antibodies like Lamin, ColIV, Rabbit, ki67 (1:1000 dilution) was used. For antibodies from 

DSHB like Pax7, 1:10 was used, fiber type relative antibodies 1:100 was used. Remove 

blocking buffer and wash slides with PBS for one time. Put DAKO pen surrounding samples 

again and wash them with PBS again. Put 50 ul diluted primary antibody on top of each sample 

and incubate at the cold room with shaker overnight. For Pax7 staining, take slides out and 

leave at room temperature for another 2 h before the washing step.  

 

Secondary antibody incubation 

The next day, take slides out from the cold room. Remove the primary antibody and wash with 

PBX for three times 10 min for each time. Dilute secondary antibodies and DAPI with PBS in 

1:500. Put the DAKO pen again and wash with PBS. Put 50 ul diluted secondary antibodies 

on top of each sample and incubate at room temperature with shaker for 1 h. 

 

Imaging 

After secondary antibodies and DAPI incubation, remove the solutions, and wash slides with 

PBX for 3 x 10 min. Mount slides with Fluor mount-G®, and let slides dry at room temperature 

for at least 2 h. Imaging slides with LSM 700 confocal microscopy and all images processed 

with ZEN (blue edition) software. For further images cropping and merging Photoshop CS5 

were used. 

 Hematoxylin & Eosin staining 

Fix slides with 4 % PFA at RT for 10 min, wash slides with PBS for 10 min. Incubate slides 

with Hematoxylin for 1 min. Rinse slides for 5 min in running tap water. Eosin staining for 30 

sec and washed with H2O. Dehydrate slides by incubating for 5 min each in 70 % EtOH – 80 % 

EtOH – 90 % EtOH - 100 % EtOH – Xylene. Dry slides completely. Wet slides with Xylene and 

mount slides with Permount. 

 Oil Red O staining 

Lipid droplet on frozen muscle tissue sections was detected by Oil Red O staining. Firstly, take 

frozen sections out and leave them at room temperature for 1 h. Wash slides with PBS for 5 

min before staining. Rinse slides with 60% isopropanol for 10 min followed by incubation with 

Oil Red O staining solution for 15 min. Then rinse slides with 60% isopropanol for 10 min and 

wash with PBS before mounting and imaging. 
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 Epigenetic analysis 
 ChIPmentation 

CHIPmentation is a method that combines chromatin immunoprecipitation followed by 

sequencing with Tn5 transposase ('tagmentation') during library preparation. This method was 

first published on Nature methods in 2015 by Christoph Bock et al132. The following protocol is 

specifically for muscle progenitors which were modified based on protocols from the lab of Karl 

Lenard Rudolph (Leibniz Institute for Age Research), Kaestner (University of Pennsylvania), 

Christoph Bock (Research Center for Molecular Medicine of the Austrian Academy of Sciences) 

Briefly, 200,000 fresh FACS sorted p7 muscle progenitors were used for each sample. Fixing 

cells with 1% formaldehyde for 10min at room temperature. Quench formaldehyde by adding 

Glycine to a 125 mM final concentration at room temperature for 5min. Sonicate cells with 

Bioraptor in sonication buffer, setting "high," 15x (30 sec on/30 sec off), short spin down, and 

again 15x (30 sec on/30 sec off). Fragment size is around 250 bp for histones. Add antibody 

(H3K4me3, H3K27me3, H4K16ac) and incubate on a rotator at 4°C overnight. Blocking Protein 

A/G beads with 0.1% BSA/RIPA at 4°C overnight. Incubate chromatin and beads at 4°C for 2 

h rotating. Wash beads with RIPA-LS (2x), RIPA-HS (2x), RIPA-Licl (2x),10 mM Tris pH8 (1x). 

2xTD buffer (12.5 µl), nuclease-free water (11.5 µl), Tn5 enzyme (1 µl) were used as 

tagmentation buffer for each sample. Incubate 10 minutes at 37°C. Inactivate Tn5 with 

RIPA-LS on ice for 5min. Wash beads with RIPA-LS (2x) and TE (2x). De-crosslinking with 

Proteinase K at 65°C overnight. Purify eluate by adding 1.8:1 SPRI cleanup and eluting in 20 

μl EB (10 mM Tris pH 8.5). 

Library amplification 

Set up pre-amplification 

20 μL DNA 

2.5 μL primer 0 (25 μM stock) 

2.5 μL primer X (25 μM stock); this primer is unique for each sample 

25 μL NEB Next High-Fidelity 2× PCR Master Mix 

 

Run following program 

• 1 cycle                        5 min   72 °C 

                                               30 sec   98 °C 

• 5 cycles                      10 sec   98 °C 

                                               30 sec   63 °C 

                                               60 sec   72 °C 

Store reactions on ice 
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Set up side-reaction to determine correct number of amplification cycles 

5 μL of previous reaction mix 

0.25 μL primer 0 (25 μM stock) 

0.25 μL primer X (25 μM stock); this primer is unique for each sample 

3 μL H2O 

1.5 μL 10× SYBR Green I 

5 μL NEB Next High-Fidelity 2× PCR Master Mix 

 

Run following program on qPCR cycler 

1 cycle           30 sec    98 °C 

20 cycles       10 sec    98 °C 

                      30 sec    63 °C 

                      60 sec    72 °C 

Determine the number of additional cycles N needed for library amplification 

Select plot that shows fluorescence vs. cycle number 

Choose cycle number that corresponds to ≈ 1/3 of maximal fluorescence intensity.(Ct+1~2) 

 

Run following program with the remaining 45 μL of reaction 

1 cycle         30 sec    98 °C 

18 cycles     10 sec    98 °C 

                    30 sec    63 °C 

                    60 sec    72 °C 

AMPureXP beads were used to remove primer dimers and size selection. 

Determine library concentration using the Qbit (2 μl) and quality control library with a Bio-

analyzer (1 μl). The concentration is around 2 ng/ μl, and the chromatin size is around 275 bp. 

Samples are ready for the sequencing facility. Illumina high output sequencing with Nextera 

sequencing adapters was used.  

 

 MeDIP sequencing 

Methylated DNA immunoprecipitation, coupled with next-generation sequencing, was used for 

genomic DNA methylation identification. 200,000 FACS sorted muscle progenitors were used 

for each sample, and genomic DNA was isolated with Qiagen AllPrep DNA/RNA/Protein Mini 

Kit. Chromatin concentration was measured with Qbit. Samples were sent to the sequencing 

facility for the following steps. 

 



Methods 

60 

 

 Statistical analysis 

 RT-qPCR and immunostaining were performed with at least 3 mice for each genotype. 

Quantification was generated from at least four sections per animal. Two-tailed Student's t-test 

was used for p-value calculation. Significance is shown in the diagrams with stars. The 

standard error was calculated and displayed in the bar chart. The number of animals used in 

each experiment is indicated in each figure legend. For data from TA muscle, Z-Score was 

calculated for heatmap visualization. For RNAseq, after sequencing, the fastq raw data were 

mapped to mouse genome 9 using STAR RNAseq aligner, and gene differential expression 

analysis was performed with DEseq 2. Genes that were significantly up and down-regulated 

were submitted to DAVID 6.8 bioinformatics or Gene Set Enrichment Analysis (GSEA) for gene 

ontology (GO) and KEGG pathway analysis. Heatmap visualization was generated with R 

ggplot2. 
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4 Results 
 Skeletal muscle-specific Nf1 knock out mouse model. 
 The efficiency of Nf1 deletion on muscle progenitors and their daughter cells. 

From clinical studies, one of the common features of individual NF1 patients is the reduction 

of muscle weight and muscle weakness, which is also consistent with preclinical research 

studies using mouse models shown the function of Nf1 in muscle development and muscle 

metabolism125,126. To elucidate the pathogenesis of the Nf1 deleted skeletal muscle system, a 

specific Nf1 knock out mouse model with the Cre/LoxP system was used in this project. Nf1 
flox/flox mice127 were crossed with Myf5Cre allele to introduce Nf1 knock out in specific Myf5 

expressing muscle progenitors and their descendants. According to the latest mouse genome 

annotation system, exons, 40 and 41 of Nf1 have been flanked by flox site, which is essential 

for encoding GTPase activator protein associated domain (GRD). 

RNA was isolated from tibialis anterior muscle (TA)  of p21 mice, and p7 FACS sorted muscle 

progenitors from control (Nf1flox+Myf5+) and Nf1Myf5 (Nf1flox/floxMyf5+) animals respectively. Whole 

transcriptome analysis was performed. Nf1 gene knock out efficiency was evaluated by 

RNAseq results from both p7 muscle progenitors and p21 muscle tissue, and the sequencing 

reads number (RPKM) from control, and Nf1Myf5 samples were compared. Data confirmed the 

knockout of flox flanked exons 40 and 41, and the knock out efficiency was 77.7% and 71.5%, 

respectively (Fig. 4.1A, C). For double confirmation, real-time qPCR was used, the knock out 

efficiency was also confirmed by qPCR, primers designed on exon 40 and 41 were used (Fig. 

4.1B). To see the expression of Nf1 from the protein level a primary antibody against the C-

terminal of Nf1 protein was used for western blot. Nf1Myf5 primary myoblasts isolated by 

preplating showed almost no Nf1 protein expression. Interestingly, once the differentiation 

medium was changed, and myoblasts started differentiation, expression of Nf1 gradually 

decreased also in control samples from day 1 to day 3 (Fig. 4.1D). This indicates a function for 

Nf1 in early myoblast differentiation. The efficiency of Nf1 knock out  on primary myoblasts 

was tested with real-time qPCR, and primers target exons 40 and 41 were used. Similar to 

relative mRNA expression with muscle progenitors and muscle tissue, Nf1 was also 

significantly down-regulated in Nf1Myf5 primary myoblasts (Fig. 4.1E).  

 

Conclusions: 
Transcriptome analysis of p21 muscle tissue and p7 FACS sorted muscle progenitors 

combined with real-time qPCR double confirmation showed exons 40 and 41 of Nf1 had been 

efficiently knocked out in both progenitors and muscle tissue. In vitro culture of primary 
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myoblasts showed that in Nf1Myf5 mice, Nf1 had been deleted on the protein level. Furthermore, 

in wild type cells, Nf1 expression declined during myoblast differentiation. Therefore the Nf1Myf5 

mouse model is suitable for further Nf1 function analysis during postnatal muscle development. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Nf1 was efficiently deleted in Nf1flox/floxMyf5 Cre skeletal muscle.  
A Exons of 40 and 41 were deleted in p21 muscle tissue. Total mRNA was isolated from Control 

(n=2) and Nf1Myf5 (n=2) TA muscle, followed by whole transcriptome analysis (RNAseq). RNAseq 

reads were mapped with mouse genome 9 with STAR RNA-seq aligner. The figure shows Nf1 
expression reads number for exons  40 and 41 in the UCSC genome browser. Scale bar = 1kb. B 

Real-time qPCR confirmation for figure A and C. The top shows RNA expression level of Nf1 (exons 

40 and 41) from TA muscle of p21 Nf1Myf5 (n=3) and control (n=3) animals. The bottom shows the 
RNA expression level of Nf1 (exons 40 and 41) from FACS-isolated muscle progenitors of p7 Nf1Myf5 

(n=3) and control (n=3) animals. C  Nf1(exon 40 and 41) was deleted in p7 muscle progenitors. FACS 

sorted muscle progenitors from Control (n=2), and Nf1Myf5 (n=2) animals were used for mRNA 
isolation immediately followed by whole transcriptome analysis (RNAseq). The figure shows exons 

40 and 41 of Nf1 reads number in the UCSC genome browser. Scale bar = 1kb. D  Nf1 protein was 

only detected in primary myoblast. Nf1 protein was isolated from p21 Nf1Myf5 (n=3) and control (n=3) 
primary myoblasts through the preplating method and cultured in proliferation medium. The first day 

after adding differentiation medium was considered as Day1. E Efficiency of Nf1 knockout in primary 

myoblasts. Real-time qPCR was performed with mRNA isolated from control (n=3) and Nf1Myf5 (n=3) 
primary myoblasts. Primers designed for exons  40 and 41. ** P ≤ 0.01, *** P ≤ 0.001. p21= postnatal 

3 weeks; p7 = postnatal one week. 
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 Nf1Myf5 mice suffered from myopathy. 
 The phenotype of Nf1Myf5 mice. 

The weight of the control and Nf1Myf5 mice was measured every day from postnatal day five on 

until 12 weeks old to observe the effects of Nf1 knockout on postnatal muscle development. 

Interestingly, one phenomenon was noticed that at p0 (the first day of birth), the difference 

between these two groups was hard to tell, genotype PCR was needed to identify the knockout 

mice. With time passed, the difference between Nf1Myf5 and control animals can be told, in 

particular, from p6 on. For the mouse body size,  the group of Nf1Myf5 animals is relatively 

smaller in both postnatal one week and 12 weeks (Fig. 4.2A). These smaller animals were 

then labeled, and genotype PCR was performed for double confirmation to make sure these 

mice were knockout animals from their genetic background. From the overall review, at p6, the 

average weight of the Nf1Myf5 group is 2.235 g, and that is 3.2075 g for the control group. The 

ratio between control and Nf1Myf5 mice is 1.43, and there is a significant difference. As the 

animal grows, the difference in their body weight is also increased. Under normal skeletal 

muscle development circumstances, postnatal 21 is considered as the time point that muscle 

hypertrophy change from mainly depending on nuclear insertion to protein synthesis. At p21, 

the ratio difference between these two groups reaches 2.03. Typically 12 weeks mice are 

considered as mature mice; from this time point on, the skeletal muscle system will reach its 

homeostasis133. For mature mice, the average weight of the knockout group is 13.3 g, and that 

of the control group is 31.7 g. The ration between knockout and control group is 3.6 (Fig. 4.2C). 

Through comparing the body weight, it suggests that over time, myopathy caused by Nf1 

deficiency appears to get worse and worse, and the longest living knockout mice, in the end, 

die between 22 and 23 weeks. 

Following the bodyweight reduction in Nf1Myf5 mice, to see how the skeletal muscle system 

gets affected, after mouse dissection, all the relative muscle bundles from the hind limbs of the 

mice were taken separately. Firstly, all of them were weighed, and the weight of Nf1Myf5 muscle 

and control muscle was compared. The muscle mass of Nf1Myf5 animals is severely decreased 

compared with the control group. The muscle mass from Gas (gastrocnemius muscle) and TA 

(tibialis anterior muscle) are shown here, and the muscle mass of the knockout group is 

reduced by around 17.7 mg and 14 mg, respectively (Fig. 4.2B). Besides, during the muscle 

dissection process, the color of these muscle bundles in the knockout group appeared darker 

red instead of pink-red in the control group. It implied that the composition of the muscle fiber 

types might be different and also its energy production capability. 
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Literature showed that during development, brown adipose tissue is also derived from Myf5+ 

progenitors134. To check if Nf1 deletion also affects brown adipose tissue, during muscle 

dissection, both brown and white adipose tissue were also taken and weighed. 12 weeks 

Nf1Myf5 and control animals were used for white and brown adipose tissue analysis. In addition 

to the reduction of muscle mass, severely decreased white adipose weight in Nf1Myf5 mice 

during postnatal muscle development is also observed. Specific white and brown adipose 

weight was normalized with their whole mouse body weight. Interestingly, there was no change 

in the ratio of interscapular brown adipose tissue (iBAT), constitutive brown adipose tissue 

(cBAT), and subscapular brown adipose tissue (sBAT). However, the ratio of posterior 

subcutaneous white adipose tissue (psWAT), anterior subcutaneous white adipose tissue 

(asWAT), and retroperitoneal white adipose tissue (rWAT) were significantly reduced in the 

Figure 4.2 Muscle phenotype caused by Nf1 deletion.  
A Photographs show reduced body size of Nf1Myf5 mouse. Mouse pictures were taken from postnatal 
one week and 12 weeks Nf1Myf5 and Control mice. B Nf1Mfy5 mice show reduced muscle mass. The 

top pictures were taken from Gas and TA muscle of 7 weeks Nf1Myf5 and control mice. The bottom 

column chart shows Gas and TA muscle weight difference between 7 weeks Nf1Myf5 (n=3) and 
Control (n=3) muscle weight. C Body weight reduction of Nf1Myf5 mice during postnatal development. 

Bodyweight from p6 to twelve weeks Nf1Myf5 (n=4) and control (n=4) mice were measured. Student-

t-test was used for statistical analysis. p*<0.05. p**<0.01. P***<0.001; TA= Tibialis anterior. Gas = 
Gastrocnemius.  
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Nf1Myf5 group, especially for psWAT (Fig. 4.4A). As the most critical storage place for lipid 

droplets, white adipose tissue could provide free fatty acid for muscle metabolism. The weight 

loss of white adipose tissue indicates that muscle of Nf1Myf5 mice might have a higher demand 

for fatty acid oxidative phosphorylation. Histology of white adipose tissue shows a severe 

reduction of lipid droplet storage in Nf1Myf5 mice; no marked difference is observed for brown 

adipose tissue (Fig. 4.4C). Intramuscular fat infiltration was analyzed by OilRed O staining, 

and there is no difference between control and Nf1Myf5 mice at both one week as well as 12 

weeks mice (Fig. 4.4B). Nf1 deletion therefore only influences skeletal muscle but not brown 

adipose tissue in the Nf1Myf5 mouse model. Possibly, reduction of white adipose tissue is 

caused by impaired skeletal muscle homeostasis. 

 
 

 

 

 

 

 
 

Figure 4.3 Adipose tissue phenotype caused by Nf1 deletion.  
A White adipose tissue weight loss in 12 weeks Nf1Myf5 (n=4) and control (n=4) mice animals. B No 
intramuscular fatty infiltration in both groups was observed. OilRed O staining was performed on postnatal 

one week and 12 weeks control, Nf1Myf5 hindlimb cryosections C, Nf1 deletion only affects white adipose 
tissue. Hematoxylin and Eosin staining of  12 weeks Control, and Nf1Myf5 psWAT and iBAT cryosections. 

Student-t-test was used for statistical analysis. p*<0.05. p**<0.01;  iBAT= Interscapular brown adipose 

tissue. sBAT= subscapular brown adipose tissue. cBAT= Cervical brown adipose tissue. asWAT= Anterior 
subcutaneous white adipose tissue. psWAT= Posterior subcutaneous white adipose tissue. rWAT= 

Retroperitoneal white adipose tissue.  

= Posterior subcutaneous white adipose tissue. rWAT= Retroperitoneal white adipose tissue.  



Results 

66 

 

Conclusions: 
In particular, the deletion of Nf1 in muscle progenitors and their progeny contribute to severe 

myopathy, which mainly includes a decrease in the mass of skeletal muscle and white adipose 

tissue, thereby reducing body weight and also body size of Nf1Myf5 mice which is a kind of 

recapitulate the skeletal muscle phenotype that suffered by NF1 patients. It suggests that Nf1 

is critical for postnatal skeletal muscle development and worth for further mechanism studies. 

 

 Nf1Myf5 mice showed fiber type shift from fast to 
intermediate/slow fiber. 

 Increased intermediate/slow fiber relative genes expression and decreased fast 
fiber relative genes expression in Nf1Myf5 TA muscle.  

As Nf1Myf5 mice suffer from massive muscle weight loss during the first several weeks postnatal 

muscle development, to elucidate the underlying mechanism, TA muscles from p21 Nf1Myf5 

and control animals were used for mRNA isolation followed by whole transcriptome 

sequencing analysis (RNAseq). Previous literature has shown that during skeletal muscle 

development, the content of fiber types is in a dynamic state until the animal is adult. The 

proportion of slow fiber reached a peak during the embryonic period. After birth, the activity of 

the animal became more and more active, and the content of slow fibers became smaller and 

smaller until the mouse matured at around 12 weeks and most of the slow fibers are only found 

in soleus muscle. Thus, three weeks of postnatal mice were used. After sequencing, genes 

that were significantly up and down-regulated were submitted to DAVID 6.8 bioinformatics and 

also Gene Set Enrichment Analysis (GSEA) for gene ontology (GO) and KEGG pathway 

analysis. Downregulated genes were primarily enriched in GO terms such as DNA - template 

transcription, positive regulation of transcription from RNA polymerase II promoter, and 

glycogen metabolism process. In contrast, up-regulated genes were mainly belonging to GO 

terms such as oxidation-reduction process, fatty acid metabolic process, and fatty acid beta-

oxidation (Fig.4.8D). Because muscle metabolism is controlled by muscle fiber type, firstly 

muscle fiber component genes, including different muscle isoforms of myosin heavy chain, 

were checked. There are two skeletal muscle fiber types, Type I and Type II. Type I fibers are 

mainly composed of myosin heavy chain 7 (Myh7). Type II fibers can be classified into type II-

A and type II B fibers, which are composed of myosin heavy chain 1/2 (Myh1, Myh2) and 4 

(Myh4), respectively. RNAseq data showed that the expression of Myh1 and Myh2 were 

upregulated, and the expression of Myh4 was the downregulated. The average RPKM of Myh4 

in Nf1Myf5 samples was only half of that in the control group. On the other hand, the RPKM of 
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Myh1/2 was doubled in Nf1Myf5 samples. Besides, expression changes of genes such as 

components of the sarcomere and calcium signaling pathway were also being noticed. Fast 

fiber-related genes such as Actin alpha3 (Actn3), Atp1b2, Calsequestrin1 (Casq1), Fhl3, 

Mybpc2, Myl1, Mylpf, Parvalbumin (Pvalb), Tpm1 were all went down in Nf1Myf5 TA muscle. 

The exact opposite is the increased expression level of slow fiber-related genes, including 

Actin alpha 2 (Actn2), Ca++ ATPase (Atp2a2), Calsequestrin2 (Casq2), Mb, Mybpc1, Myl2, 

Myl12a, Myomesin3 (Myom3), Myomesin1 (Myom1), Myozenin2 (Myoz2), Troponin, 

cardiac/slow skeletal (Tnnc1), Troponin I skeletal slow 1 (Tnni1), Troponin1 (Tnnt1). The 

molecular signature from Nf1Myf5 and control TA muscles indicated that the muscle metabolic 

properties in Nf1Myf5 animals might be different from the control muscle135,34. It suggests a fiber 

type transition from fast to slow intermediate fibers in Nf1Myf5 mice (Fig. 4.4A). For double 

confirmation, primers specific for different muscle component isoforms, including Myh2, Myh4, 

Myh7, and MyoZ2, were used for the real-time qPCR test ( Fig. 4.4B). This confirmed that  

Nf1Myf5 TA muscle has more intermediate and slow fiber component genes expression, 

whereas the fast fiber component gene Myh4 is significantly decreased in Nf1Myf5 mice. 

 

 
 
 

 

 

 

 

 

 

 

Figure 4.4 Nf1 deletion leads to muscle fiber type shifted from fast glycolytic fiber to 
intermediate/slow oxidative fiber. 
 A Increased slow/intermediate genes expression (left) and decreased fast fiber component genes 
expression (right) in p21 Nf1Myf5 TA muscle. Differential gene expression analysis was performed 

with DEseq 2, for padj <0.001 were used as significantly different. Z-score was calculated based on 

the raw RPKM reads. B Real time qPCR confirmation for RNAseq data. Total RNA was isolated from 
Nf1Myf5 (n=3)  and control (n=3) p21 TA muscle tissue. Myh7, Myh2, Myh4, and MyoZ were chosen 

as target genes. Student-t-test was used for statistical analysis. p**<0.01 
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 Increased ratio of intermediate/slow fiber in Nf1Myf5 TA muscle. 

However, except for the transcription level, genes expression from protein level was also 

checked with specific antibodies for immunostaining. First of all, the whole hindlimb 

cryosections were taken from a time series postnatal muscle development stages, including 

one week, two weeks, three weeks. Co-staining for sections with Myh7, lamA primary 

antibodies, and DAPI were performed, followed by imaging and calculation of slow fiber 

percentage in each muscle bundle. Immuno-staining shows the underlying trend for fiber type 

transition during postnatal muscle development is slow to intermediate to fast fibers, which is 

similar to literature published before (Fig. 4.5). In the first week after birth, there was no 

significant difference between Nf1Myf5 and control animals in the proportion of slow fibers being 

detected, and slow fibers were evenly distributed in all kinds of muscle bundles. The 

percentage of slow fibers in control mice is around 13.2%, 21.3%, 60.8%  in TA, EDL, and 

Soleus muscle, respectively (Fig. 4.5A). Interestingly, one week later, a global reduction of 

slow fibers happened in control mice, and the percentage of slow fibers dropped to 8.7 %, 

11.3%, and 38.6% in TA, EDL, and Soleus muscle. Besides, the difference occurred with more 

slow fibers in Nf1Myf5 animals in TA, EDL, and Soleus muscle at p14 (Fig. 4.5B).   

This was also confirmed by immunostaining data from three weeks of mice. Compared with 

control animals, p21 Nf1Myf5 mice showed a significantly increased slow fiber component in TA 

muscle. The proportion of slow fibers in Nf1Myf5 TA muscle increased from 4.5% to 5.5%. 

Interestingly, from the staining except for fibers located within the muscle bundles  which are 

easy to tell. A large proportion of slow fibers were also observed in the periphery of muscle, 

which was difficult to tell which muscles they belong to (Fig. 4.5C). Since immunostaining only 

shows the protein expression in the in situ state. Considering staining from different layers of 

tissue might also influence the analysis. Therefore, the protein was isolated from the whole TA 

muscle of p21 Nf1Myf5 and control animals. Primary antibodies against Myo-slow (Myh7) and 

Myo-fast (Myh4) were used, respectively. β-actin was used as a housekeeping protein. The 

gray value of each band was measured with ImageJ.  All settings are the same for all the 

measurements. The ratio of the gray value between the target band with its housekeeping 

band was used as the relative protein expression level. The relative expression of Myo-slow in 

Nf1Myf5 samples increased from 0.56 to 1.52. For Myofast, the relative expression reduced from 

0.98 to 0.45 compared with the control samples (Fig. 4.6A). Therefore, western blot data also 

supports the fiber type transition from fast fibers to slow fibers in Nf1Myf5 mice.  
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To observe the fiber type composition of adult mice, primary antibodies against real slow fibers, 

and also type II A fibers were co-stained with LamA and DAPI, and then the ratio of type II A 

fibers (Myh2+) in TA, EDL and Soleus muscle was calculated. Immunostaining data showed 

that for 12 weeks of adult mice, slow fibers were mainly located in the soleus muscle (Fig. 

4.6B). An increase in the proportion of Type II A fibers in 12 weeks Nf1Myf5 mice was observed. 

Compared with the control sections, the proportion of Type IIa fibers in Nf1Myf5 TA muscle 

increased from 5% to 9%. In EDL muscle,  it increased from 8% to 16%. In Soleus,  it increased 

Figure 4.5 Fiber type shift caused by Nf1 deletion initiate from p14. 
 A，B, C Nf1 deletion leads to an increased proportion of slow fiber from p14 on. Immunostaining was 

performed on hindlimb cryosections of p7, p14 and p21 Nf1Myf5 (n=3) and control (n=3) mice. Antibodies 

against Typ I fiber and basal lamina were used for staining. Quantification was based on the ration between 
Myo-slow positive and total fiber numbers in each defined muscle bundle. Student-t-test was used for 

statistical analysis.  p*<0.05.  Scale bar is 500 μm and 200 μm for p7 staining. 

 



Results 

70 

 

from 30% to 40%. In short, the data showed that the expression level of Myh2 is significantly 

higher in all of these three muscle bundles (Fig. 4.6B, C).  Other than this, the cross-section 

area (CSA) in the Nf1Myf5 group was also more prominent in twelve weeks' soleus muscle, 

which peaked at 1600 μm2, and in the control group, it peaked between 1200 and 1400 μm2 

(Fig. 4.6D). It suggested Nf1 deletion changed the metabolism way, and slow fibers are more 

functional for energy compensatory. It is in contrast with reduced muscle weight in Nf1Myf5 

animals, and implicated that myopathy caused by Nf1 deletion is associated with muscle fiber 

type. 

 

Conclusions: 
Data from this section showed that Nf1Myf5 mice have a slower fiber type reprogramming (slow 

to fast) process during postnatal muscle development, which was confirmed by both 

transcriptome analysis and immunostaining combined with western blot from protein level. 

Besides, it was also confirmed at different stages of development (juvenile and adult) the effect 

from Nf1 deletion was also different. It suggests that a fiber type shift may be involved in 

myopathy of Nf1Myf5 mice.  



Results 

71 

 

 
 

 

 
 
 
 
 
 
 

 

Figure 4.6 Increased intermediate/slow fibers in Nf1Myf5 TA muscle from the protein level.  
A Increased Myo-slow expression in Nf1Myf5 TA muscle. Myoslow and Myofast antibodies were used for 
western-blot. Image J was used for gray value measurement and relative quantification. β actin was used as a 

housekeeping protein(n=3). B,C Increased type II A fibers in Nf1Myf5 adult muscle. Cryosections generated from 

12 weeks control (n=3) and Nf1Myf5 (n=3) mouse. Antibodies were specific for type I slow fiber, type II-A, and 
basal lamina was used for labeling. Quantification was based on the ratio between type II-A positive and total 

fiber number in each defined muscle bundles.  D The increased cross-section area of type I fibers within Soleus 

muscle in Nf1Myf5 mice. ZEN software was used for CSA measurement. Student-t-test was used for statistical 
analysis. p*<0.05. p**<0.01. The scale bar is 500 μm. 
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 Nf1Myf5 mice have a metabolism shift from glycolysis to fatty acid 
oxidative phosphorylation.  

 Reduced glucose catabolic process in Nf1Myf5 TA muscle. 

Fiber type is typically determined by fiber contractile and metabolic properties. Therefore, 

followed by the fiber type shift, metabolic relative genes in Nf1Myf5 and control mice were 

checked. First, in order to avoid the bias from statistical analysis, the entire gene list without 

DEseq2 analysis was submitted to GSEA (Gene Set Enrichment Analysis). Interestingly, 

Glucose Catabolic Process was highly enriched in control samples (Fig. 4.7A). After checking 

the enrichment details, glycolysis relative genes appeared. Since the expression level of genes 

is highly variable, for better visualization with heatmap, Z-score from these significantly altered 

expression genes were calculated based on the standard deviation of RPKM and the mean of 

each gene. The main glycolysis process rate-limiting enzymes and activators were down-

regulated in Nf1Myf5 samples. 

In general, RNAseq data show that glycolysis relative genes expression is much higher than 

that of fatty acid metabolism genes. It implied that fast glycolytic fibers play a dominant role in 

p21 TA muscle, and also the higher efficiency of glucose metabolism compared to fatty acid 

oxidative phosphorylation for energy production. Globally reduction of glycolysis genes in 

Nf1Myf5 TA muscle and these enzymes include Enolase 3 (Eno3), a specific skeletal muscle 

isoform acting as a glycolytic enzyme, which catalyzes the reversible conversion of 2-

phosphoglycerate to phosphoenolpyruvate. The expression of Eno3 in the fast fibers was also 

demonstrated to be higher. 6-phosphofructokinase, muscle type (Pfkm) converts 

phosphofructokinase to phosphorylate fructose-6-phosphate and then cleaves into 

glyceraldehyde-3-phosphate, which is the rate-limiting step in the glycolysis pathway. 

Phosphorylase b kinase regulates subunit alpha, skeletal muscle isoform (Phka1), a key 

enzyme in glycogen metabolism. Lactate dehydrogenase (Ldha) muscle isoform catalyzes the 

conversion of lactate to pyruvate and back because it converts NAD+ to NADH and back. 

Interestingly, enzymes catalyzing glycolysis final production pyruvate into acetyl-CoA was 

repressed by upregulation of pyruvate dehydrogenase kinase (Pdk2/4) (Fig.4.7B). Considering 

the reduction of glycolysis in Nf1 deleted muscle fibers then the concentration of blood glucose 

from the heart of animals was measured. Actually, there is no difference being detected 

(Fig.4.7C). Besides, insulin signaling pathway related markers were also tested to see the 

influence of Nf1 knockout on glucose uptake in muscle fibers. Interestingly, there is no 

difference I IRS1 phosphorylation detected (Fig.4.7D). It suggested that even with a decreased 

glucose consumption, the boold glucose concentration is still stable and animal body might 

has compensatory way to regulate the glucose homeostasis. 
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Conclusions: 
Data from this part implied a reduction in the glucose catabolic process in the TA muscle of 

Nf1Myf5 mice, which includes the decomposition of muscle glycogen, the entire glycolysis 

process, and the conversion of the glycolysis product pyruvate to the TCA cycle for further 

oxidative phosphorylation. However, no alteration of insulin regulated signaling pathway and 

blood glucose concentration was detected. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Reduced glucose catabolic genes expression in Nf1Myf5 TA muscle. 
A GSEA analysis shows Gene Ontology enriched for glucose catabolic term in Control TA muscle. 
GSEA desk was used for enrichment analysis. B Decreased glycolytic enzymes expression in Nf1Myf5 

TA muscle. C No difference for blood glucose concentration. D No alteration for insulin signaling. 

A,B Total mRNA was isolated from the p21 TA muscle of Nf1Myf5 (n=2) and control (n=2) mice. P 
adjust value was used to identify the significantly different expression genes. Genes involved in the 

glucose metabolism process were normalized by Z-score calculation and showed in a heatmap with 

R studio. For genes, padj <0.001 were treated as significantly changed expression. C: Blood from 
the heart of mice was take and measured. N=7 mice. D: Protein isolated from p21 TA muscle. 

Antibodies against IRS1 (ser 636/639), IRS1 (Ser 1101), pAKT (ser 473) and actin were used. N=3 

mice. Gray value was measured with ImagJ and Student-t-test was performed. 
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 Nf1 deletion leads to increased fatty acid metabolism genes expression in  TA 
muscle. 

During muscle contraction, skeletal muscle can use both glucose and free fatty acids to 

generate ATP and maintain energy homeostasis. With decreased glucose metabolism activity, 

how animals maintain their energy balance is a question popped up. It is well known that fatty 

acid metabolism is an effective way to produce energy compared to glucose metabolism. In 

skeletal muscle, 90% of energy production is fatty acid oxidative phosphorylation136. Then all 

fatty acid metabolism relative genes were checked from the RNAseq list to see if Nf1Myf5 mice 

have higher fatty acid metabolism to compensate for the reduction in glucose metabolism. In 

skeletal muscle, the free fatty acid is transferred to muscle fibers via fatty acid-binding proteins 

and Cd36. The genes from fatty acid-binding protein (Fabps) family and Cd36 were all up-

regulated (Fig. 4.8A). These genes work together to transfer long-chain free fatty acid from 

plasma into muscle fibers, and then the next step free fatty acids are converted into acyl-CoA 

catalysts by long-chain fatty acyl-CoA synthetase (Acsl1), which then is shipped from the 

cytoplasm into the mitochondria. 

For double confirmation, RNA isolated from p21 Nf1Myf5 and control muscle tissue was used 

for real-time qPCR analysis. The significant up-regulated fatty acid metabolism genes showed 

similar expression patterns, including the free fatty acid transporters Fabp3, Fabp4, and Cd36. 

Mitochondrial transmembrane transporters Cpt2 and Cpt1b (Fig. 4.8B). Besides, Il6 was also 

used for qPCR as literature showed that Il6 could selectively stimulate fatty acid metabolism 

in human and animal skeletal muscle137. Its expression was significantly increased in the 

Nf1Myf5 TA muscle (Fig. 4.8B). Except for RNA expression, protein expression was also 

checked with proteomics analysis. Protein isolated from the TA muscle of p21 

Nf1Myf5 ,heterozygous (Het) and control mice were used for sample preparation. Significantly 

changed proteins from proteomics analysis were submitted for KEGG pathway analysis, the 

increased proteins expressed in Nf1Myf5 TA muscles were mainly enriched for fat digestion and 

absorption pathway (Fig. 4.8C top). Also, pathways, including PPAR signaling and oxidative 

phosphorylation, were enriched in Nf1Myf5 TA muscle (Fig. 4.8C bottom).  

As mitochondrial have an outer layer membrane and an inner layer membrane, this 

transmembrane transport requires the support of carnitine palmitoyltransferase (Cpt1/2). After 

these acyl-CoA enters the mitochondrial and find their position, beta-oxidation of the fatty acids 

will begin. A series of enzymes control the process, the initiation step is the break down of fatty 

acid into acetyl-CoA. For this process, enzymes involved mainly include dehydrogenase family 

(Acads, Acadm, and Acadl), enoyl-CoA hydratase (Echs1), 3-hydroxy acyl-CoA 

dehydrogenase (Hadh), Acetoacetyl-CoA thiolase (Acaa2, Hadhb). Finally, the acetyl-CoA 

produced by the fatty acid beta-oxidation will enter the TCA cycle. After the enrichment analysis, 
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GO terms for fatty acid catabolic process and fatty acid beta-oxidation using acyl CoA 

dehydrogenase were highly enriched in Nf1Myf5 TA muscle (Fig. 4.8D). The gene details behind 

these GO terms were checked and shown with Heatmap (Fig. 4.8A). Briefly speaking, Nf1 

deletion contributes to increased fatty acid metabolism genes expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Increased fatty acid metabolism genes expression in Nf1Myf5 TA muscle. 
A Increased fatty acid metabolism genes expression caused by Nf1 knockout in TA muscle. Total mRNA 

was isolated from the p21 TA muscle of Nf1Myf5 (n=2) and control (n=2) animals, respectively. P adjust value 
was used to identify the significantly differentially expressed genes. Genes involved in fatty acid metabolism 

process were normalized by Z-score calculation and showed in a heatmap with R studio. B A similar 

expression pattern of selected fatty acid metabolism genes was confirmed by real-time qPCR. Total RNA 
was isolated from p21 TA muscle tissue of Nf1Myf5 (n=3) and Control (n=3) animals. Two tail student-t-test 

was used for statistical analysis. p*<0.05. p**<0.01. P***<0.001; C Proteomics analysis showed increased 

fatty acid metabolism protein expression. TA muscle of p21 Nf1Myf5 (n=3) and control (n=3) animals was used 
for protein isolation. Two tail student-t-test was performed for statistical analysis. Differently expressed 

proteins were used for KEGG pathway analysis. Graphpad Prism was used for the graph generation. D Fatty 

acid oxidation was enriched explicitly in the Nf1Myf5 TA muscle. The whole RNAseq gene list was submitted 
to GSEA for enrichment analysis.   
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 Increased Oxidative Phosphorylation ability in Nf1Myf5 TA muscle. 

With reduced glucose catabolism, including glucose glycolytic and glucose oxidative 

phosphorylation, the question is, how does the skeletal muscle of Nf1Myf5 animals maintain their 

energy homeostasis? In contrast to glucose metabolism genes expression, GSEA analysis 

revealed that GO terms such as electron transport chain, a hallmark of oxidative 

phosphorylation, and mitochondrial protein complex were highly enriched in Nf1Myf5 TA muscle 

(Fig. 4.9C). Once the details of these two GO terms being detected, relative enzymes 

responsible for the citric acid cycle (TCA cycle) and electron transport chain (ETC) being 

observed. There are eight enzymes catalyze the TCA cycle: Citrate synthase (Cs), Aconitase 

(Aco), Isocitrate dehydrogenase (Idh), α-Ketoglutarate dehydrogenase (Ogdh), Succinyl-CoA 

synthetase (Sucl), Succinate dehydrogenase (Sdh), Fumarase (Fh), Malate dehydrogenase 

(Mdh). The expression level of all of these genes was significantly higher in Nf1 knockout mice. 

The final step of ATP generation is the transfer of all high energy electrons within NADH and 

FADH2 produced by the TCA cycle and glycolysis to the electron transport chain (ETC). The 

components of ETC mainly include five protein complexes located on the inner mitochondrial 

membrane. 

The data also show that the expression of mitochondrial complex component genes was 

globally increased.  It includes mitochondrial complex I, NADH: ubiquinone oxidoreductase 

(Nduf family); mitochondrial complex II, succinate dehydrogenase (Sdh family); mitochondrial 

complex III, Ubiquinol–cytochrome c oxidoreductase (Uqcr family); Complex IV, cytochrome c 

oxidase (Cox family) and complex V, ATP synthase (Atp5 family) (Fig. 4.9A). From the 

transcriptome level, a large group of oxidative genes was up-regulated, and some were also 

confirmed by proteomics analysis from protein level (Fig. 4.9B). Due to the limitations of the 

method, a total of approximately 3000 proteins were detected in all samples. Since the 

expression difference from the protein of the entire TA muscle was small, and the variance 

among samples was significant compared with the difference. Thus not so many proteins were 

detected as significantly changed. However, proteins responsible for Citrate Cycle and 

OXPHOS were still enriched from GO analysis. These double confirmed proteins for TCA cycle 

enzymes and components of the electron transport chain were significantly up-regulated in the 

Nf1Myf5 muscle. In short, the data strongly indicate that skeletal muscle of Nf1Myf5 mice show 

decreased glucose metabolism and require increased fatty acid oxidative phosphorylation for 

energy compensation. However, a group of proteins termed as Antioxidative stress was 

noticed as significantly down-regulated in Nf1Myf5 TA muscle. It implies that Nf1Myf5 mice might 
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increase the reactive oxygen species (ROS) production, thus suffer from oxidative stress (Fig. 

4.9B). 

Although all data from RNA and protein expression support the idea of a metabolic shift in 

Nf1Myf5 skeletal muscle, how these muscles work in vivo still needs to be tested. Thus the High-

Resolution FluoRespirometry assay was used to test the real-time metabolic rate of muscle 

bundles. For slow oxidative fibers, soleus muscle was selected, and EDL muscle was selected 

for glycolytic fast type fibers. The oxygen consumption rate for Nf1Myf5 and control tissue was 

measured simultaneously by coupling with several different kinds of metabolic substrates and 

specific inhibitors of the electron transport chain. Generally, soleus muscle has a higher 

oxidative phosphorylation rate than EDL muscle. Both EDL and Soleus muscle from Nf1Myf5 

mice kept a higher oxygen consumption rate, which also means higher oxidative 

phosphorylation capacity in Nf1Myf5 muscle. Especially for the soleus muscle, because soleus 

muscle is mainly composed of slow fibers and also mainly rely on oxidative phosphorylation to 

generate energy, thus its standard deviation is much smaller than EDL muscle. However, 

glycolytic muscle also has a higher trend for OXPHOS and significantly improved efficiency for 

mitochondrial complex I and II, at the same time, higher electron transport efficiency (ETS) 

(Fig. 4.9D). To sum up, Nf1Myf5 muscle tissue shifts its metabolic preference from glycolysis to 

fatty acid oxidative phosphorylation from both the molecular level and also actual function. 

 

Conclusions: 
Knock out of Nf1 increased intermediate/slower fiber type and a decrease in the proportion of 

fast fibers. The results in this section showed that Nf1Myf5 skeletal muscle had reduced the 

glucose catabolism process while simultaneously increased the digestion/degradation process 

of fatty acid and also increased the fatty acid oxidative phosphorylation activity. It is not only 

from transcriptional and protein levels but also from the activity of the real-time metabolic 

function. It can show the role of Nf1 in the regulation of muscle metabolism. 
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Figure 4.9 Increased Oxidative Phosphorylation ability in Nf1Myf5 muscle. 
A Increased TCA cycle enzyme and oxidative phosphorylation gene expression in Nf1Myf5 mice. Z-Score of 

significantly differentially expressed genes was calculated. R studio was used for heatmap data visualization. 
Padj<0.01 genes were considered as significant. B Proteomics shows increased TCA cycle and OXPHOS 

proteins expression in Nf1Myf5 TA muscle. Decreased antioxidative stress proteins were also shown. Protein 

isolated from p21 Nf1Myf5 (n=3) and control (n=3) and wild type TA muscle. C RNAseq data shows Nf1Myf5 TA 
muscle GSEA analysis enriched for oxidative phosphorylation, electron transport chain, and mitochondrial 

protein complex. The full gene list was submitted to GSEA enrichment analysis. D Nf1Myf5 muscle showed 

increased real-time oxidative phosphorylation ability. Real-time metabolism test (High-Resolution 
FluoRespirometry assay) for live Soleus and EDL muscle fiber. Oxygen consumption rate was showed in here 

as an indicator of tissue oxidative phosphorylation ability (n=7 for each group). Student-t-test was used for 

statistical analysis. p*<0.05. p**<0.01. P***<0.001 
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 Nf1Myf5 mice has energy deficiency and reduced catabolic 
process. 

 Increased AMPK/Pparg/Pgc1 α signaling in Nf1Myf5 muscle. 

Since the efficiency of fatty acid oxidative phosphorylation to generate ATP is much higher, 

then the question is whether such metabolic compensation is sufficient for Nf1 knockout mice? 

The skeletal muscle system is a large organ that consumes ATP during muscle contraction in 

body rest and activates status. Catalyzed by ATPase, ATP is degraded to ADP  and release 

energy during exercise. Via the adenylate kinase (Adk) reaction, ADP, in turn, is, in part, 

reconverted to ATP and AMP. Therefore, the ratio between ADP/AMP and ATP is a good 

indicator of tissue energy balance138. In order to sense and regulate the change in energy 

status, an enzyme called 5' AMP-activated protein kinase (AMPK) would be activated. AMPK 

consists of three distinct subcomponents: a catalytic α subunit, a regulatory β, and γ subunit. 

AMPK is activated by phosphorylation of the α subunit at Thr172 site. 

Once activated, AMPK functions to regulate mitochondrial biogenesis, increase translocation 

of Glut4 for glucose metabolism, and also free fatty acid transporters such as Cd36 and Fabps 

to localize on the plasma membrane, thereby stimulating fatty acid metabolism. 

Phosphorylated AMPK α (Thr172) in Nf1Myf5 and control muscle lysate was then detected by 

western blot with its antibody. Significantly higher levels of p-AMPK in Nf1Myf5 mice indicate 

that energy deficiency is still present in Nf1Myf5 mice (Fig. 4.10A). This may also explain why 

the phenotype of Nf1Myf5 mice is getting worse and worse and dying around 22 weeks. Besides, 

this metabolic shift can also explain the phenotype that Nf1Myf5 mice suffer from a reduction of 

white adipose tissue weight. The downstream target of AMPK dependent signaling pathway in 

skeletal muscle system is mainly Pparg/PGC1 α139, which controls fatty acid metabolism and 

mitochondrial biogenesis140. Peroxisome proliferator-activated receptor gamma (Pparg) has 

been recognized as a  positive regulator of free fatty acid and glucose metabolism in both 

human and mouse skeletal muscle141,142. Firstly, real-time qPCR was performed for Pparg, 

Pgc1α, and Lipoprotein lipase (Lpl). Lpl is highly expressed in both skeletal muscle and white 

adipose tissue. The enzyme acts to hydrolyze plasma triglycerides to free fatty acids. In 

adipose tissue, it controls the storage of fatty acids in the form of triglycerides143. Interestingly, 

a decrease in the expression of Lpl in white adipose tissue was observed in Nf1Myf5 animals, 

which suggests that fewer triglycerides were stored in white adipose tissue, and this might be 

a reason of white adipose tissue-specific mass loss (Fig. 4.10B). Real-time qPCR also showed 

that compared with control animals, the expression of Pparg and Pgc1α increased for more 

than four and two times, respectively, in TA muscle of Nf1Myf5 animals. Besides, the expression 
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of Lpl increased more than two times (Fig. 4.10C). This implied that the triglyceride hydrolysis 

process in the muscle of Nf1Myf5 animals is also increased. 

 Literature suggests that activation of Pparg in skeletal muscle can induce the production of 

adiponectin, thus boost muscle cells' insulin sensitivity144. The expression of the level of 

Adiponectin (Adipoq) was also detected by real-time PCR, and it was more than two times 

higher in Nf1Myf5 mice (Fig. 4.10C). A primary antibody against Pparg was used to detect the 

expression of Pparg from the protein level. Due to the presence of two Pparg isoforms, Pparg1 

and Pparg2, the molecular weights are 50 KDa and 55 KDa, respectively. Studies have also 

shown that Pparg1 is the dominant one in skeletal muscle, and Pparg2 is mainly expressed in 

white and brown adipose145. Here, total Pparg protein expression was detected in postnatal 

young (two weeks) and young adult mice (7 weeks) using Western blot. Pparg1 expression 

was reduced in adult mice compared to younger mice, suggesting that younger mice require 

more fatty acids to maintain their energy homeostasis (Fig. 4.10C). It may also be related to 

the fiber type transition from slow fibers to fast fibers during postnatal skeletal muscle 

development. In addition, data showed that two isoforms of Pparg being detected, Pparg2 

expression was low and could even be ignored in skeletal muscle. Nf1Myf5 muscles consistently 

maintained high Pparg1 expression compared to control mice. This can be used as direct 

support for increased fatty acid metabolism in Nf1Myf5 muscle tissue.  

In summary, all of the data in this part implies at the molecular level. The underlying 

mechanism might be a decrease in glucose metabolism in muscle fibers lead to an energy 

deficiency of Nf1Myf5 muscle. This energy stress activates AMPK signaling lading to up-

regulation of Pparg1 and Pgc1α expression and also their target genes such as the oxidative 

phosphorylation genes to meet the energy compensation and maintains energy homeostasis. 

This compensation appears not to be enough, thus causing the phenotype to become severe 

and severe until the animals die around 22 weeks of age. 
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 Decreased protein synthesis and increased protein degradation rate of Nf1Myf5 
muscle. 

As Nf1Myf5 animals suffered from energy depletion, theoretically to save energy, animals will 

reduce all energy-consuming activities, such as anabolic relative processes, and increase 

catabolic processes through specific signaling pathways. As a primary regulator of metabolic 

homeostasis, AMPK blocks anabolism by negatively regulating the mTOR pathway and 

increase fatty acid catabolism48. In addition, protein synthesis is also a critical way of postnatal 

muscle hypertrophy. Since previous data showed that Nf1Myf5 mice have a fiber type-specific 

muscle mass reduction, it is necessary to examine the protein synthesis rate in Nf1Myf5 skeletal 

muscle. Phosphorylated mTOR (ser2448) level is a good indicator of protein synthesis rate, 

for double check, here its downstream target p-s6 (ser235/ser236) was also detected. The 

relative protein phosphorylation level of p-mTOR and p-s6 in Nf1Myf5 TA muscle reduced from 

Figure 4.10. Increased fatty acid oxidative phosphorylation in the Nf1Myf5 muscle might be 
AMPK/Pgc1α signaling dependent. 
A Hyperactivation of AMPK signaling in Nf1Myf5 TA muscle. Protein isolated from p21 Nf1Myf5 (n=4) and 
control (n=4) TA muscle. Primary antibodies against AMPKα and pAMPKα (Thr172) were used. The 

relative protein level was calculated by western blot bands' gray value normalization. The ratio between 

the phosphorylated band and its unphosphorylated band was used as a relative protein level. B,C 
Increased Pparg, Pgc1α,Lpl and Adipoq expression in Nf1Myf5 TA muscle. Total mRNA was isolated from 

p21 Nf1Myf5 (n=3) and control (n=3) TA muscle. ∆∆Ct method was used for relative RNA expression 

calculation. D Increased Pparg1 expression in Nf1Myf5 TA muscle. Total protein was isolated from two 
weeks and seven weeks Nf1Myf5 and Control mice, respectively. β-tubulin was used as a housekeeping 

protein. Two isoforms of Pparg were detected at a size of 50 kDa and 55 kDa, respectively. Two-tailed 

student t-test was performed by GraphPad prism.  p**<0.01. P***<0.001; 
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1.1 to 0.55 and 1.5 to 0.98, respectively, compared to control animals. A significant reduction 

of both phosphorylated mTOR and p-S6 levels indicated a lower rate of protein synthesis in 

p21 Nf1Myf5 TA muscle (Fig. 4.11A, C). Besides, significantly down-regulated proteins from 

Nf1Myf5 TA muscle proteomics data were also enriched for Translation. These proteins mainly 

include ribosome component proteins and protein translational regulatory enzymes (Fig. 

4.11B). 

Interestingly, another enriched term named as the component of proteasome 26s subunit also 

caught the attention. Since protein synthesis and degradation need to be precisely controlled, 

and always in a balanced manner, especially for adult skeletal muscle. During muscle 

development, the rate of protein synthesis is higher than protein degradation, which contributes 

to postnatal muscle hypertrophy. Increased proteasome 26s subunit proteins expression 

indicated a higher rate of protein degradation in Nf1Myf5 TA muscle (Fig. 4.11B). 
  

  
 

 

 

 

 

 

 

 
 
 
 

Figure 4.11 Reduced  protein synthesis rate of Nf1Myf5 mice 
A, C Reduced mTOR signaling in Nf1Myf5 TA muscle. Protein isolated from p21 Nf1Myf5 (n=3) and control 
(n=3) TA muscle. Primary antibodies against p-mTOR (Ser2448) and p-S6 (ser235/ser236) were used. 

Western blot bands' gray value was measured with ImageJ; Relative protein expression level was calculated 

by the gray value ratio between each target band and the housekeeping band. Student-t-test was used for 
statistical analysis. p*<0.05. P***<0.001; B, D Nf1Myf5 TA muscle has decreased protein translation and 

increased protein degradation rate. Proteomics data from p21 Nf1Myf5 (n=3) TA muscle and control (n=3) 

groups. Significant up and down-regulated proteins were enriched mainly for protein translation and 
proteasome 26s component subunits.  

 



Results 

83 

 

Conclusions: 
Even though fatty acid oxidative phosphorylation is an efficient way to generate energy, 

reduced glucose metabolism still cannot be adequately compensated in Nf1Myf5 muscle, and 

Nf1Myf5 mice still suffer from energy deprivation indicated by hyperactivation of 

AMPK/Pparg/Pgc1α signaling to stimulate mitochondrial biogenesis and oxidative 

phosphorylation. It results in a reduction in energy expenditure processes, such as protein 

synthesis (as indicated by decreased mTOR activity) and increased energy production activity, 

such as protein degradation (represented by increased expression of the proteasome 26s 

component subunits). This may explain the reduction of muscle and white adipose mass in 

Nf1Myf5 animals. With the ongoing energy deficiency cannot be covered. Thus these knockout 

mice suffered more and more and finally died around 22 weeks. How Nf1 regulates fiber type, 

and metabolic transformation needs to be understood in the following studies. 

 

 Nf1Myf5 muscle phenotype was regulated in Nf1/Ras/ERK 
independent way. 

 Hyperactivation of Ras-ERK1/2 activity was only detected in Nf1Myf5 primary 
myoblast instead of Nf1Myf5 muscle tissue. 

Neurofibromin functions as a GTPase activator, which means it is a negative regulator of Ras-

ERK signaling. Numerous papers have shown that mutations of the Nf1 gene will lead to 

hyperactivation of ERK pathway in different biological contexts146,147. Considering all the 

phenotypes that were obtained from Nf1Myf5 skeletal muscle, then the next question is whether 

this change occurs in the Nf1-Ras-ERK signaling dependent manner in muscle context. 

Therefore, the pERK1/2 antibody was used to detect p-ERK1/2 activity by Western blot. In 

general, p-ERK2 was much stronger than pERK1 in skeletal muscle lysate. 

Interestingly, for both pERK1 and pERK2, no difference was detected between Nf1Myf5 and 

control TA muscles (Fig. 4.12A). This was unexpected, however Nf1 expression in muscle 

progenitors, primary myoblasts and myotubes had indicated that Nf1 was expressed only 

before muscle differentiation (Fig. 4.1). For skeletal muscle tissue, the expression level of Nf1 

was very low, so its function on Ras/ERK signaling may be ignored. It can also explain why 

there was no change in ERK activity. In addition, the Nf1floxHSAcre mouse model that 

specifically knock out Nf1 in mature muscle tissue also did not show any muscle phenotype148, 

indicating that Nf1 does not play a role in mature muscle tissue. Except for this mouse model, 

Pax7-creER(T2) induced Nf1 knockout in adult mouse satellite cells did not result in any 

muscle phenotype, it also supported the negligible function of Nf1 in mature skeletal muscle 
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stem cells, at least in the time frame analyzed in this study149. This indicates that Nf1 may play 

a role during myogenesis, in myogenic progenitors. ERK1/2 signaling activity was measured 

on fresh FACS sorted P7 muscle progenitors. The purity of Pax7+  cells after FACS was 

approximately 94% (not shown here); This was consistent with the purity of FACS sorted 

muscle progenitors from other research groups130,150. All positive cells of Pax7, pERK1/2, and 

DAPI were used for relative fluorescence intensity measurements. A significant increased 

ERK1/2 phosphorylation was detected in P7 Nf1Myf5 muscle progenitors (Fig. 4.12B). 

 

Conclusions: 
Data from this section showed that the myopathy caused by fiber type and a metabolic shift 

was independent of Nf1/Ras/ERK1/2 signaling in muscle fibers. It was confirmed by a mouse 

model of Nf1 knockout in mature muscle tissue, and also there was no change in ERK signaling 

activity in Nf1Myf5 muscle tissue. It suggests that Nf1 can only regulate biological processes 

before progenitors differentiation. In short, the muscle phenotype suffered by Nf1Mf5 mice was 

derived from undifferentiated muscle progenitors or myoblasts, rather than directly from the 

function of Nf1 in mature muscle fibers. Therefore, subsequent regulation ways were focused 

on muscle progenitors.  

 
 

 

 
 
 
 

Figure 4.12 Muscle phenotype of Nf1Myf5 mice is Ras/ERK1/2 independent. 
A No difference for ERK signaling in Nf1Myf5 and control TA muscle. Protein isolated from p21 TA muscle was 

used, primary antibodies against  pERK1/2 and ERK1/2 were used. Gray value for each blot bind was measured 

with ImageJ, and the relative protein level means the ratio between p-ERK and corresponding ERK. N=3; B 
Increased ERK signaling in Nf1Myf5 muscle progenitors. Cytospin p7 muscle progenitors co-stained with Pax7 

and pERK1/2. Relative fluorescence intensity was measured through ImageJ. N=4. 200 cells from each animal 

were measured from random pictures. Student-t-test was perfprmed. p**<0.01. Scale bar is 100 μm. 
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 Nf1Myf5 mice have a depletion of muscle stem cell pool during 
postnatal muscle development. 

 Muscle progenitors’ number decreased dramatically in Nf1Myf5 mice. 

So far, all previous data still cannot explain the muscle phenotype suffered by Nf1Myf5 mice. As 

we deleted Nf1 in Myf5 expressing muscle progenitors, the behavior of these knockout muscle 

progenitors was checked in vivo. During post-natal muscle development, the number of muscle 

stem cells gradually decreases.  At the first three weeks after birth, only a small population of 

muscle stem cells remains, which are the genuinely quiescent stem cells that can be retained 

in their stem cell pool to mediatemuscle damage repair62.  

Since Nf1 is a tumor suppressor gene, a higher proliferation rate and increased, Nf1Myf5 muscle 

progenitors were expected. Initially, only Ki67 with DAPI staining was used on the p21 whole 

hind limb muscle sections. Surprisingly, there was a dramatic reduction of Ki67 expression on 

Nf1Myf5 sections. For the control sections, approximately 50% of the cells were still in a 

proliferative state, but on the Nf1Myf5 sections, there were almost no proliferating cells left (Fig. 

4.13A).  A wide variety of cell populations exist in the skeletal muscle system. Then the next 

question is why these cells leave their cell cycle, and what are these cells? 

To see the influence specific for muscle progenitors, cryosections were taken from the hind 

limbs of Nf1Myf5 and control mice. Immunostaining was performed for sections from a time 

series of whole hindlimb sections from E18.5, one week, two weeks, and three weeks until 12 

weeks of adult mice. Specific target protein expression was detected by co-staining of the stem 

cell marker Pax7 and components of the muscle basement membrane, collagen type IV (ColIV) 

for stem cell location identification, and DAPI for nuclear detection. Pax7 positive cells 

combined with their correct location and positive nuclear staining were treated as muscle stem 

cells. After counting and statistical analysis, at E18.5, a significant increase in the number of 

muscle progenitors in knockout animals was observed, with an average of 15.3 muscle 

progenitors per 100 myotubes, compared with that of 10.8 in control animals. Interestingly, the 

total progenitors' number decreased in both Nf1Myf5 and control muscle after birth over time, 

but for Nf1Myf5 muscle, this depletion was faster than the control muscle. At one week after birth 

(P7), there was no stem cell number difference detected between knockout and control animals. 

Both have around ten progenitors per 100 myotubes. From two weeks onwards, the number 

of progenitors in the Nf1Myf5 group reduced dramatically, with about six stem cells per 100 

myotubes, until at postnatal three weeks when most of the stem cells are in a quiescent state 

(Fig. 4.13B).  

To understand why muscle progenitors number reduced in Nf1Myf5 mice, Co-staining of Pax7, 

Ki67, ColIV, and DAPI was performed, combined the stem cell marker expression with their 
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cellular location to observe the proliferative capacity of Nf1Myf5 Pax7+ progenitors. However, co-

staining of the proliferation markers Ki67 and Pax7 showed a significant decrease in 

proliferation rate in Nf1Myf5 muscle progenitors compared to control animals (Fig. 4.13C, D). It 

implied that the properties of progenitors had changed dramatically before and after birth. In 

addition, MyoD was co-stained with Ki67 and DAPI, but unfortunately, with the limitation of 

antibody, it never worked. Literature showed that in the embryo stage, muscle progenitors are 

in a proliferative state to expand the muscle stem cell pool151. The muscle stem cell niche 

formed before birth, and then these muscle progenitors will enter their niche and gradually 

become quiescent. During this process, the number of muscle stem cells will decrease 

dramatically until p21151. Immunostaining data also showed that even in 12 weeks of adult 

muscle tissue, there was still a small number of progenitors in a proliferative state. Immuno-

staining data suggests that the effect of Nf1 deletion on muscle progenitors may be due to 

muscle stem cell niche. Before the formation of muscle stem cell niche, Nf1 deletion leads to 

cells in a more activated state, and then they were more difficult to enter their stem cell niche, 

thus leading to a gradual loss of muscle stem cells during postnatal muscle development. 
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 Nf1Myf5 muscle progenitors have a stronger quiescent signature. 

Following such dramatic change of Nf1Myf5 postnatal muscle stem cell numbers, to elucidate 

the underlying mechanism, more experiments need to be performed on muscle stem cells. 

Considering the limitations of antibodies, the number of muscle stem cells and the number of 

mutant animals, thus further study of muscle stem cell properties, freshly isolated p7 muscle 

stem cells through FACS sorting were used, followed by cytospin and immunostaining of cells 

with specific markers to reflect the in vivo state of these cells. First, it is necessary to detect 

whether this cytospin and in vitro staining can be used to mimic the in vivo state of these cells, 

co-immunostaining of muscle stem cell marker Pax7, proliferation marker Ki67 and nuclear 

detector DAPI was performed to observe the expression level of Pax7 and their proliferation 

rate. FACS sorted cells were mainly composed of Pax7+ muscle stem cells (94%). Thus the 

relative fluorescence units for Pax7 were measured. Nf1Myf5 muscle stem cells have 

significantly higher Pax7 expression compared to control cells (Fig. 4.14A). In combination with 

published literature, to check whether signaling pathways involved in muscle stem cells 

quiescent and activation regulation got affected by Nf1 deletion, with the limitation of the p-

mTOR antibody for immunostaining, downstream of the mTOR signaling pathway, p-s6k was 

used for cytospin immunostaining. A severe reduction of the p-S6k level was detected in Nf1Myf5 

muscle stem cells (Fig. 4.14B). In addition, the stem cell size of freshly sorted cells was also 

measured, and it showed a much smaller cell diameter in Nf1Myf5 muscle stem cells (Fig. 4.14C). 

This is supported by the literature that compared with cells inactivation state, quiescent muscle 

stem cells have lower pS6k/mTOR activity and also smaller cell size152. Protein isolated from 

muscle stem cells was used to test the p-p70s6k (Thr389) level with western blot. It also 

showed that the phosphorylation level of p70s6k was reduced from 0.8 to 0.38 in Nf1Myf5 

muscle stem cells (Fig. 4.14D).  

Figure 4.13 Nf1Myf5 mice suffered from the depletion of muscle stem cells pool during postnatal muscle 
development.   
A Global reduction of proliferation rate in Nf1Myf5 muscle tissue. Sections were taken from p21 hind limbs Ki67 

was used as a proliferation marker, and DAPI was used to identify nuclear. B A stem cell depletion caused by 
their decreased proliferation rate. Cryosections were taken from the time series development stage. Pax7 was 

used as a muscle stem cell marker, and Ki67 was used as a proliferation marker, ColIV was used to identify 

the location of muscle progenitor cells and DAPI for nuclear. Imaging was performed  with LSM700 confocal 
microscope on whole hindlimb sections. The image was processed, and targeted cells were counted with ZEN 

software. GraphPad was used to generate a graph. N=4 animals. Student-t-test was used for statistical 

analysis. p*<0.05. p**<0.01. P***<0.001. A, scale bar is 100 μm. C, scale bar is 20 μm. 
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Figure 4.14 Nf1Myf5 muscle progenitor cells have a stronger quiescent signature.  
A Nf1Myf5 progenitors showed increased Pax7 expression and reduced proliferation rate. p7 muscle from both 

forelimbs and hindlimbs was taken from Nf1Myf5 and control animals. After made tissue into single-cell 

suspension specific markers being used to identify muscle stem cells followed by FACS. Freshly sorted cells 

were taken for cytospin immediately followed by co-immunostaining for Pax7/Ki67/DAPI. After mounting slides 
imaging with confocal LSM700. Keep all setting the same between control and Nf1Myf5 group. The relative 

fluorescence unit was measured by Image J with randomly chosen pictures. N=4 animals. B  Reduced pS6k 

level in Nf1Myf5 muscle progenitors. Co-immunostaining of Pax7/pS6k/DAPI. C Cell size reduction of Nf1Myf5 
progenitors. Freshly FACS sorted progenitors were fixed and imaging with a light microscope. N=3 animals and 

200 cells from each animal were measured. D Reduced p-p70s6k level in Nf1Myf5 muscle progenitors. Protein 

was isolated from p7 freshly FACS muscle stem cells. The primary antibody against p-p70s6k (Thr389) was 
used to detect mTOR signaling activity. β-actin was used as a housekeeping protein. The gray value was 

measured for each target band, and they were normalized with their housekeeping band. N=3 for each animal 

group. Student-t-test was used for statistical analysis. p**<0.01. P***<0.001. A, scale bar is 20 μm. B, scale bar 
is 100 μm. 
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Conclusions: 
Nf1Myf5 skeletal muscle has more muscle progenitors before birth, but Nf1 deficiency leads to 

the depletion of muscle stem cells during postnatal muscle development. The p7 Nf1Myf5 

muscle stem cells have higher stem cell marker expression and lower mTOR signaling activity. 

Putting all of these data together, it implied that p7 Nf1Myf5 muscle stem cells showed a much 

stronger shift towards the quiescent state. This may explain why the number of muscle stem 

cells in Nf1Myf5 mice are reduced during postnatal development. More experiments are required 

to examine this conclusion. 

 

 Nf1Myf5 muscle progenitors keep a different property in vivo and 
in vitro. 

 Higher proliferation rate and lower differentiation ability of Nf1Myf5 muscle 
progenitors. 

Previous data showed that p7 Nf1Myf5 muscle progenitors have decreased proliferation rate in 

vivo and more quiescent signature freshly upon isolation. To observe whether these cells can 

still retain this property during in vitro cell culture. Fresh FACS-sorted muscle stem cells were 

immediately cultured with Matrigel-coated coverslips in a 48-well plate with proliferation 

medium. After 48 hours, the cultured cells were washed with PBS, then fixed and 

immunostained. Interestingly, even without staining,  increased numbers of Nf1Myf5 muscle 

progenitors can be observed. Co-staining of Ki67/MyoD and Pax7/Ki67 have also confirmed 

this phenotype. For cultured Nf1Myf5 muscle progenitors, co-staining of myoblast marker MyoD, 

and proliferation marker Ki67, the proliferation rate of Nf1Myf5  progenitors increased from 0.58 

to 0.82 (Fig. 4.15A). Co-staining of stem cell marker Pax7 with Ki67 showed the proliferation 

rate of these stem cells increased from 0.41 to 0.62 (Fig. 4.15B). Therefore, it was confirmed 

that Nf1Myf5 muscle progenitors lost their in vivo characteristics during the in vitro cell culture, 

and they turned to a different manner. Followed by an increased proliferation rate in Nf1Myf5 

progenitors, the differentiation ability of these cells was examined. 

Due to the different proliferation rates of muscle progenitors, to avoid the effect of cell number 

on cell differentiation, the same number of fresh FACS-sorted muscle progenitors were seeded 

onto Matrigel-coated coverslips in a 48- well plate and allowed them to attach with the 

coverslips overnight with proliferation medium. The differentiation medium was changed the 

next day and waiting for another 48 hours for cell differentiation. Primary antibodies against 

myosin heavy chain (MF20) and myoblast marker MyoD were used for co-immunostaining. It 

seems that even though the differentiation medium was changed, Nf1Myf5 muscle progenitors 
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were still in proliferation state because it has more DAPI positive nuclei. MF20 staining showed 

that in control muscle progenitors, after 48 hours differentiation, multinucleated myotubes were 

observed. 

 

 
 

 

 

 

 

 

 

Figure 4.15 Higher proliferation rate and lower differentiation ability of Nf1Myf5 muscle progenitors. 
A, B Higher proliferation rate of Nf1Myf5 FACS-isolated myogenic progenitors. All muscles from both forelimbs 

and hindlimbs of p7 Nf1Myf5 and control animals were used. After 48 hours of culture, cells were fixed, and the 

primary antibody against Ki67 and MyoD were used to identify the proliferation rate of Nf1Myf5 myoblast. After 

24 hours of culture, Pax7 and Ki67 co-immunostaining was performed to see the proliferation rate of Nf1Myf5 
muscle progenitors. C Decreased differentiation ability of Nf1Myf5 muscle progenitors. N=4 animals, each 

condition three wells were performed. Cells were counted with Zen software, and GraphPad was used for graph 

and statistical analysis. Two tailed student-t-test was used for statistical analysis. p**<0.01. P***<0.001. Scale 
bar is 20 μm 
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In contrast, the Nf1Myf5 muscle progenitors, even with more cells, their differentiation was still 

in the initial state. Counts for nuclear with myosin heavy chain positive staining showed that a 

differentiation index of around 0.58 in control muscle progenitors, but for Nf1Myf5 muscle 

progenitor cells, the rate was only around 0.18 (Fig 4.15C). In summary, the data from this 

section showed that once Nf1Myf5 muscle stem cells left their in vivo environment, it was 

impossible to maintain their in vivo properties. Some influencing factors from their living 

environment may play a dominant role.  

 

 

 In vitro property of Nf1Myf5 muscle progenitors was Nf1 regulated Ras/ERK1/2 
signaling dependent. 

Due to Nf1Myf5 muscle progenitors have different properties in vivo and in vitro, the following 

experiments were designed to understand how they were regulated. First, signaling involved 

in promoting the proliferation rate of Nf1Myf5 muscle progenitors was identified. Owing to the 

limitations of Nf1Myf5 animals, especially the low number of muscle progenitors obtained by 

FACS, and high demands of muscle progenitors cultured in vitro, rimary myoblasts isolated by 

the pre-plating method were used. After several rounds of pre-plating, the purity of primary 

myoblasts was identified by co-immunostaining of stem cell marker Pax7, myoblast marker 

MyoD and nuclear detector DAPI, only Pax7 positive, only MyoD positive and Pax7/MyoD 

double-positive cells were considered as primary myoblasts. The ratio between primary 

myoblasts and the total number of nuclei was treated as the purity of primary myoblasts. After 

counting, data showed that the purity of primary myoblasts in the control group was 89%, and 

that was even higher in the Nf1Myf5 group. This was sufficient for the following experiments to 

demonstrate the molecular mechanism of  Nf1 function in muscle progenitors. Three animals 

were used for Nf1Myf5 and control, respectively. The first experiment with these primary 

myoblasts was to culture them in proliferation medium and differentiation medium to confirm 

the effect of Nf1 on myoblast proliferation and differentiation.  Co-staining of MyoD, Ki67, and 

DAPI was performed to detect the proliferative rate. Each Ki67, MyoD double-positive cells, 

was regarded as a proliferating myoblast; the proliferation rate of the two groups was 

calculated. Compared to control cells, the proliferation rate from Nf1 deleted cells increased 

from around 60% to more than 80%, which also confirmed a higher proliferation rate of FACS 

sorting Nf1Myf5 muscle progenitors (Fig. 4.16A). 

For the underlying signaling mechanism, the first effect caused by Nf1 deletion was the hyper-

activation of ERK1/2 signaling (Fig. 4.12C). Therefore, ERK signaling was blocked by its 

upstream pMEK1/2 inhibitor U0126. Literature showed that stronger ERK1/2 promotes C2C12 
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myoblast proliferation and blocks its differenatiation153. In differentiation medium, primary 

myoblasts gradually leave the cell cycle. For vehicle treatment cellsthere was still a significant 

number of cells (16%) in the proliferative state for Nf1Myf5 primary myoblasts after 48 hour 

culture in differentiation medium. Compared to the control, Nf1Myf5 primary myoblasts have a 

significantly higher proliferation rate, and the loss of Nf1 leads to an increase in the proliferation 

rate in the differentiation medium from 3% to 16%. Differentiation staining with Desmin showed 

that only 5% of the cells in Nf1Myf5 myoblasts were Desmin positive, while in control cells, it 

was about 78%. 

 Interestingly, when the MEK1/2 inhibitor U0126 was added to the medium, after 48 hours 

differentiation, the proliferating cells in both groups were reduced to 2%, especially in Nf1Myf5 

cells that was dropped from 16% to 2%, and the differentiation index increased from 5% to 

74%. It implied that U0126 could ultimately rescue the phenotype caused by Nf1 deletion in 

primary myoblasts (Fig.4.16B). This indicated that in vitro, Nf1 controls muscle progenitors 

proliferation and differentiation in a Ras-ERK1/2 signaling dependent way. Nf1 deletion leads 

to hyperactivation of ERK1/2, and stronger ERK1/2 signaling maintains primary myoblasts in 

the cell cycle, thereby blocking its differentiation. However, this still can not explain the 

phenomenon that in vivo Nf1Myf5 progenitor numbers and proliferation rates are decreased,  

and they show stronger quiescent stem cell signature. The dramatic difference between in vivo 

and in vitro showed the importance of the environment for cell properties. So far, primary 

myoblasts are not suitable for in vitro mimic experiments. New signaling pathways from the 

muscle stem cells niche need to be found and apply for in vitro cell culture. 

 
Conclusions: 
Nf1Myf5 progenitors show opposite behavior in vivo and in vitro. Earlier quiescence was 

observed in vivo; conversely, once taken out of their in vivo environment, Nf1Myf5 progenitors 

showed an increased high proliferation rate and a significant reduction of differentiation ability 

compared to the control cells. This phenomenon is regulated by hyperactivation of Ras/ERK1/2 

signaling caused by Nf1 deletion. It means that the function of Nf1 in myocyte regulation is the 

highly dependent on the cellular environment. 
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 P7 Transcriptome analysis indicates that Nf1Myf5 muscle 
progenitors shifted to quiescence earlier. 

 Increased quiescent and decreased activation relative genes expression in 
Nf1Myf5 muscle progenitors. 

Nf1 deletion results in excessive activation of Ras/ERK1/2 signaling, thus helping to increase 

the rate of proliferation and reduce the ability to differentiate for cells in vitro culture. However, 

why it works oppositely in vivo still needs to be understood. To answer this question and also 

have an essential impression of how this regulation works in vivo,  transcriptome analysis with 

fresh FACS sorted p7 muscle progenitors from control and Nf1Myf5 mice was performed. Due 

to the limitation of muscle stem cell numbers, both forelimbs and hind limbs were used. The 

entire transcriptome gene list from control and Nf1Myf5 progenitors was submitted to GSEA 

(Gene Site Enrichment Analysis) for GO ( Gene Ontology) and KEGG pathway analysis to 

avoid the bias caused by statistical analysis. 

All details about these genes were then checked, and a total of 38 activating genes were 

enriched, including sarcoplasmic/endoplasmic reticulum calcium ATPase (Atp2a1, Atp2a2), 

Myogenin (Myog), Myosin heavy chain 3 (Myh3) in control muscle progenitors, which showed 

Nf1Myf5 muscle progenitors had reduced activation signature compared to control cells. All 

RPKM from these genes were obtained, for better visualization, all of these genes were 

transformed with Log2[RPKM]. After transformation, their expression levels are shown in the 

heatmap (Fig. 4.17A). Conversely, a large cluster of genes was enriched in Nf1Myf5 muscle 

progenitors were extracellular matrix (ECM) components, which means these muscle 

progenitors expressed more ECM component genes than control cells. As a major constitutive 

of the muscle stem cell niche, these ECM components play a critical role in the steady-state 

maintenance of muscle stem cells. Except for supplying scaffolds and giving biomechanical 

support, including mechanical transduction and stiffness of muscle stem cells, many critical 

signaling pathways are also intermediate by the interactions between muscle stem cells and 

Figure 4.16 In vitro property of Nf1Myf5 muscle progenitors was Nf1 regulated Ras/ERK1/2 signaling 
dependent. 
A Higher proliferation rate of Nf1Myf5 primary myoblast. B Increased proliferation rate and decreased 

differentiation ability was Ras/ERK1/2 signaling dependent. Primary myoblast from hindlimbs of p21 control and 

Nf1Myf5 animals were isolated by pre-platting protocol. Cells were cultured in proliferation and differentiation 
medium, immunostaining of Ki67/MyoD/DAPI was used for proliferation rate detection. After changed to 

differentiation medium, MEK1/2 inhibitor U0126 was also added. The same amount of DMSO was used as 

Vehicle Control. After imaging with confocal LSM700 cells were counted with ZEN software and GraphPad was 
used for graph and statistical analysis. Two tails student-t-test was used for statistical analysis. p**<0.01. 

P***<0.001. A, scale bar is 100 μm. B, scale bar is 20 μm. 
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ECM154. The stage-specific role of ECM components has been identified during muscle 

development95. Here, the heatmap showed ECM components, including collagen family such 

as ColV, ColVI, and Tnc expression is significantly increased in Nf1Myf5 muscle progenitors, 

which implied higher quiescent signature in these cells. Besides, increase expression of stem 

cell imprinted genes was also observed in Nf1Myf5 muscle progenitors (Fig. 4.17B). Pw1/Peg3 

has been shown to keep muscle stem cells in quiescent, and also suppress mitochondrial 

activity to regulate satellite cell metabolism85, significantly increased expression of Peg3 in 

Nf1Myf5 muscle progenitors was observed. Furthermore, increased expression of Cdkn1c, a cell 

cycle negative regulator of suggests a reduction of proliferation rate in Nf1Myf5 muscle 

progenitors (Fig. 4.17B).  

Selected genes representative for muscle progenitor quiescence and activation were chosen 

for qPCR expression confirmation analysis. Nf1Myf5 muscle progenitors have higher quiescent 

genes expression and lower activation genes expression in agreement with RNAseq analysis 

(Fig. 4.17C). Combined with the recent immunostaining data, Nf1Myf5 p7 muscle progenitors 

showed a quiescent signature compared to control cells. Combined with the recent 

immunostaining data, Nf1Myf5 p7 muscle progenitors showed a quiescent signature compared 

to control cells. The genes labeled for MyoD target genes were highly enriched in control 

muscle progenitors (Fig. 4.17D). Putting these transcriptome data together, even though Nf1 

regulated cancer signaling was indicated by KEGG analysis, this does not appear to play a 

dominant role in the biological background of muscle stem cells, at least if these cells are in 

vivo within their stem cell niche. 
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Figure 4.17 Increased quiescent and decreased activation genes expression in Nf1Myf5 muscle 
progenitors.  
A, B Decreased Activation genes, and Increased ECM component, imprinted and quiescent genes 

expression in Nf1Myf5 muscle progenitors. C qPCR confirmation of RNAseq analysis. D MyoD target genes 

were enriched in Control muscle progenitors. Muscle progenitors isolated from p7 Nf1Myf5 and Control 
forelimbs and hindlimbs by FACS. N=2 for RNAseq analysis and N=3 for qPCR confirmation. DEseq 2 for 

differential gene expression analysis. Gene list was submitted to GSEA for GO and KEGG analysis. 

Log2[RPKM] was used for the heatmap, and a heat map was generated from R studio with the package 
of ggplot2. Two tails student-t-test was used for statistical analysis. p*<0.05  p**<0.01 P***<0.001 
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 Metabolism shut down of Nf1Myf5 muscle progenitors. 

Like all other cell types，muscle progenitor cells demand energy expenditure to perform the 

necessary reactions to maintain cell homeostasis. Different cell states hpwever strongly alter 

their metabolic requirements. It is clear that for quiescent, proliferating, and differentiating 

muscle stem cells, their demand for energy production are also very different. Proliferating and 

differentiating muscle stem cells need to produce a tremendous amount of biomass, such as 

nucleotides, phospholipids, and proteins, to meet the requirement of rapid cell division and 

growth155. The previous data showed that Nf1Myf5 muscle progenitors acquired a much stronger 

quiescent signature. Thus the metabolism processes of these cells were also examined in the 

RNAseq data. Subsequently, the enriched KEGG pathway for significantly down-regulated 

genes was checked. This time, the first one appeared was the metabolic pathway, which has 

232 genes involved. Under this KEEG term, the sub-terms include glycolysis/gluconeogenesis 

and oxidative phosphorylation suggesting a global downregulation of metabolism for Nf1 

knockout cells (Fig. 4.18A). Hereafter, all these single genes expression level was checked, 

heat map based on original RPKM for each gene with log 2 transformation was used for 

visualization. There were 20 glycolytic-related genes, and 29 oxidative phosphorylation genes 

(components of the mitochondrial complex and enzymes for TCA cycle) were enriched, 

respectively. These Glycolysis/Gluconeogenesis genes include Phosphoglycerate Kinase1 

(Pgk1), a glycolytic enzyme that catalyzes the conversion of 1,3-diphosphoglycerate to 3-

phosphoglycerate. Lactate dehydrogenase A (Ldha) is one of the components Lactate 

dehydrogenase A, which functions to catalyze the inter-conversion of pyruvate and L-lactate 

accompanied by the mutual conversion of NADH and NAD+. The enolase 3 (Eno3) muscle 

isoenzyme catalyzes the reversible conversion of 2-phosphoglycerate to phosphoenolpyruvate. 

Triosephosphate isomerase (Tpi1) can be used to catalyze the isomerization of glyceraldehyde 

3-phosphate (G3P) and dihydroxyacetone phosphate (Dhap) in glycolysis and 

gluconeogenesis. Phosphoglycerate mutase (Pgam), which catalyzes the internal transfer of 

a phosphate group from C-3 to C-2, resulting in the conversion of 3-phosphoglycerate (3PG) 

to 2-phosphoglycerate (2PG) through a 2,3-bisphosphoglycerate intermediate. Besides, 

enzymes like Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), AldolaseA (Aldoa), 

Dihydrolipoamide S-Acetyltransferase (Dlat), 6-phosphofructokinase muscle type (Pfkm), 

Pyruvate dehydrogenase kinase (Pdk), Aldehyde Dehydrogenase3 (Aldh3a) and Alcohol 

Dehydrogenase7 (Adh7) were also significantly down-regulated in Nf1Myf5 muscle progenitors 

(Fig. 4.18B). It implied that Nf1Myf5 muscle progenitors have a stronger quiescent signature and 

decreased proliferation rate. Therefore they also reduced the supply for biomass with reduced 

glycolysis process.  
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It has been documented that quiescent muscle stem cells prefer to use fatty acid to pyruvate 

oxidation to obtain energy. Therefore, genes involved in fatty acid metabolism were also 

checked. For instance, fatty acid-binding protein4 (Fabp4), cluster of differentiation 36 (Cd36), 

carnitine palmitoyltransferase 1B (Cpt1b), Lipase E (Lipe), enoyl-CoA Hydratase 1 (Ech1), 

Acetyl-CoA Acyltransferase 2 (Acaa2), acyl-Coenzyme A dehydrogenase (Acadm), 

Hydroxyaryl-CoA Dehydrogenase (Hadh) et al. However, for these genes expression， there 

was no similar pattern such as globally up or down-regulated in Nf1Myf5 muscle progenitors, so 

it was hard to say the impact of Nf1 deletion on fatty acid metabolism. Contrary to expectations, 

genes component for the electron transport chain was highly enriched in control muscle 

progenitors, which revealed an overall reduced oxidative phosphorylation and electron 

transport chain component genes expression in Nf1 knockout  muscle progenitors. The 

electron transport chain is primarily a component of five protein complexes located on the inner 

mitochondrial membrane. The data pointed out that the Nduf family genes constitute for 

mitochondrial complex I, the Sdh family component of mitochondrial complex II, the Uqcr family 

for mitochondrial complex III, the Cox family for Complex IV were all significantly down-

regulated in Nf1Myf5 muscle progenitor cells (Fig. 4.18C, D). It implied that these progenitors 

might also have reduced oxidative phosphorylation activity.  
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 Reduced glycolytic ability and decreased H4K16ac in Nf1Myf5 muscle progenitors. 

Seahorse XF metabolic analysis method was used to see the real-time metabolic rate of these 

progenitors. The key parameters used to define glycolytic activity are Glycolysis, Glycolytic 

Capacity, and Glycolytic Reserve. Glycolysis means the procedure that glucose was converted 

into pyruvate. During the metabolic test, it refers to the ECAR value after the addition of a full 

amount of glucose. Glycolytic capacity refers to the maximum ECAR that was measured after 

oxidative phosphorylation was effectively turned off by the injection of Oligomycin, therefore 

the capacity of cells to generate energy through glycolysis will reach a maximum. The glycolytic 

reserve means the capability of cells to react to their energy demand, here it refers to the 

Figure 4.18 Metabolism shut down of Nf1Myf5 muscle progenitors. 
A Enriched Glycolysis_Gluconeogenesis and Oxidative phosphorylation pathway in control muscle 

progenitors. B Decreased glycolysis genes expression in Nf1Myf5 muscle progenitors. C, D Reduced TCA 

cycle and electron transport chain component genes expression in Nf1Myf5 muscle progenitors. FACS-
isolated muscle progenitors from p7 forelimbs and hindlimbs were used for RNA isolation. Gene list was 

submitted to GSEA for GO and KEGG analysis. Padj< 0.001 was considered significant. Log2[RPKM] was 

used for the heatmap, and a heat map was generated from R-studio with the package of ggplot2. N=2 for 
control and Nf1Myf5 animals.  
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stimulated ECAR caused by 2-DG injection. Nf1Myf5 muscle progenitors have a significantly 

lower glycolysis rate, reduced glycolytic capacity, and also glycolytic reserve. Compared with 

control cells, the glycolysis rate reduced from 12 to 4 mPH/Min, glycolytic capacity reduced 

from 18 to 7 mPH/Min, and glycolytic reserve dropped from 7 to 2 mPH/Min (Fig.  4.19A). When 

the glycolysis rate was measured, the basal oxygen consumption rate (OCR) was also 

measured simultaneously. For Nf1Myf5 muscle progenitors, the basal OCR was reduced from 

20 to 15 pmol/Min with a  p-value of 0.109 (Fig. 4.19B). Thus Nf1Myf5 muscle progenitor cells 

ahow a reduction of glycolysis rate and a slight decrease of oxidative phosphorylation rate. 

This is in line with a decreased energy demand of quiescent cells. 

 Literature shows that metabolism reprogramming to glycolysis contributes to the activation of 

satellite cells, and it mainly depends on the glycolysis substrate NAD+ level. As the activity of 

the H4K16 deacetylation enzyme Sirt1 is NAD+ level regulated, then H4K16ac might be used 

as an indicator of progenitors status2 caused by glycolysis rate reduction in Nf1Myf5 muscle 

progenitors. Co-immunostaining was performed to check the in vivo muscle progenitors' 

H4K16ac modification level for p7 and 12 weeks of muscle tissue. First, Cytospin of P7 FACS 

sorted muscle progenitors were stained with Pax7 and H4K16ac antibody. A global relative 

fluorescence unit (RFU) of H4K16ac was measured in both Control and Nf1Myf5 muscle 

progenitors. After statistical analysis, a significant reduction of H4K16ac progenitors was 

observed in Nf1Myf5 mice. The RFU reduced from 16900 to 11000 (Fig. 4.19C). For double 

check, muscle cryosections from p7 and 12 weeks mice were also used for immunostaining. 

H4K16ac and Pax7 double-positive cells were counted. It also shows a severe reduction of 

double-positive cells in the Nf1Myf5 muscle. For p7 mice, it was reduced from 38% to 12%, and 

for 12 weeks mice, it was reduced from 16.5% to 5.5% in Nf1Myf5 cryosections (Fig. 4.19D). It 

suggests that Nf1 deletion leads to a decreased glycolysis rate; thus, the NAD+ level  likely was 

increased. This signal was transformed to chromatin by decreased H4K16 acetylation 

modification, due to increased Sirt1 activity. This in turn likely suppresses satellite cell 

activation genes expression2. To see H4K16 acetylation on a genome-wide level, 

chipmentation analysis for H4K16ac was performed. After MACS2 peak calling, signals were 

enriched for 10kb up and downstream of the transcription start site (TSS). The enrichment plot 

showed Nf1Myf5 muscle progenitors has a reduction of signal enrichment suggested a 

decreased transcription activity in these cells. Data also showed a global reduction of H4K16ac 

enrichment for myogenesis genes expression, thus promote p7 muscle progenitors into a 

quiescent state (Fig. 4.19E).  Here reduced H4k16ac enrichment around Myh3 was shown as 

an example (Fig. 4.19F). 
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Conclusions: 
In this part, transcriptome data illustrated and double confirmed the former immunostaining 

results that p7 Nf1Myf5 muscle progenitors have a stronger quiescent signature. With reduced 

activation genes expression, and increased quiescent genes expression, including ECM 

component genes, muscle stem cell imprinted genes, and signaling pathway for quiescence 

maintenance. The quiescent signature was also supported by the metabolism preference of 

Nf1Myf5 progenitors with a severe reduction of glycolysis and a slightly decreased oxidative 

phosphorylation ability form both transcription level and real-time metabolism test. Besides, as 

glycolysis can also regulate gene expression with its substrate NAD+ concentration, a global 

reduction of H4K16ac enrichment for up and downstream of transcription start site suggest 

through metabolism change the muscle progenitors activation genes expression was also 

down-regulated in Nf1Myf5 mice. In summary, Nf1 deletion drives muscle progenitors into 

quiescent state earlier during postnatal muscle development. 
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Figure 4.19 Nf1 deletion leads to a reduction of both glycolysis and oxidative phosphorylation. 
A,B Nf1Myf5 muscle progenitors decreased the glycolysis and oxidative phosphorylation activity. C Reduction of 

H4K16ac in Nf1 knockout cells. D Decreased H4K16ac positive progenitors during postnatal development.  

E,F Reduced enrichment for DNA bound to H4K16 acetylation around Transcription Start Site (TSS). A, B 

Muscle progenitors FACS sorted from p7 mice. ECAR and OCR were measured with glycolysis stress kit. N=3 

mice and 12 wells for each experiment. C progenitors were cytospin followed by co-immunostaining of H4K16ac 

and Pax7. N=3 mice and 200 cells/animal. D Sections from p7 and 12 weeks hindlimbs. Antibodies against 
Pax7, H4K16ac, ColIV were used. N=3 mice. E progenitors were fixed, followed by chipmentation with the 

H4K16ac antibody. N=2 mice. Student-t-test was used for statistical analysis. p*<0.05 p**<0.01 P***<0.001. C, 

scale bar is 100 μm. D, scale bar is 20 μm and 100 μm. 
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 Nf1 deletion lead to muscle progenitors epigenetic modification change to a 
more quiescent state. 

4.9.4.1 Chromatin hypermethylation of Nf1Myf5 muscle progenitors. 
Nf1Myf5 muscle progenitors showed stronger quiescent signature as well as decreased 

glycolysis rate. Muscle phenotype also showed a fiber type shift from fast glycolytic to slow 

oxidative fibers, and the decreased hypertrophy rate seems only influenced fast fibers. Besides, 

the expression of Nf1 is extremely low on muscle tissue. Thus the curious point is whether 

muscle progenitors control the muscle phenotype in a certain way that it can be transferred to 

mature muscle fibers? With this idea, when checking the transcriptome data from muscle 

progenitors, the expression of a gene family named DNA methyltransferase was significantly 

increased in Nf1Myf5 muscle progenitors attracted the attention (Fig. 4.20A). It implied an 

increased methylation level of chromatin in Nf1Myf5 muscle progenitors. Followed by this, 

genomic DNA was isolated from Nf1Myf5 and Control muscle progenitors, and MeDIP 

sequencing was performed to check the methylation status in both groups. After analysis, there 

were 253 hypermethylated DMRs and 35 hypomethylated in Nf1Myf5 progenitors. 100 and 11 

of them located within CpG islands, respectively (Fig. 4.20B). 

Interestingly, for these hypermethylated sites, myosin light chain 1 (Myl1) which expressed in 

fast skeletal muscle and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 (Pfkfb1) an 

activator of the skeletal muscle glycolysis pathway and an inhibitor of the gluconeogenesis 

pathway were observed (Fig. 4.20C). It suggested that the expression of these two genes in 

muscle progenitors might be decreased. Transcriptome data was checked, combined with 

qPCR analysis. The results showed that the expression of both Myl1 and Pfkfb1 dropped 

significantly in Nf1Myf5 muscle progenitors (Fig. 4.20C). DNA methylation is considered as a 

stable epigenetic modification mark, and it can be maintained for multiple cell divisions. During 

development and cell differentiation, this modification is relatively dynamic, but methylation 

patterns can be retained in the form of epigenetic memoryIn the case of Nf1Myf5 progenitors, it 

could be possible that the hypermethylation and decreased expression of Myl1 and Pfkfb1 in 

progenitors, once these cells fused with fibers, may also cause the decreased expression of 

these genes thus influence the fiber type and metabolism way of mature muscle fibers. 

 



Results 

105 

 

 
 
 
 
 
 
 

 

 

 

 

 

4.9.4.2 Decreased H3K27me3 in Nf1Myf5 muscle progenitors 
Except for DNA methylation, histone modification marker H3K27 trimethylation (H3K27me3) 

was checked in Nf1Myf5 muscle progenitors and also muscle tissues. Published literature 

showed that compared with activated satellite cells, the H3K27me3 modification level is much 

lower in quiescent state, and the chromatin is mainly in a permissive state106. As Nf1 knockout 

muscle progenitors shifted to a more quiescent state; thus, the modification status of 

H3K27me3 was also tested. Firstly, as a convenient and efficient way, immunostaining was 

performed on FACS sorted muscle progenitors and also TA muscle cryosections with 

Figure. 4.20 Chromatin Hypermethylation of Nf1Myf5 muscle progenitors. 
A Increased DNA methyltransferase enzymes expression in Nf1Myf5 muscle progenitors. B Hypermethylation 

status of Nf1Myf5 progenitors chromatin. C Methylation peaks upstream of Myl1 and Pfkfb1 transcription start 

site in Nf1Myf5 progenitors. D Decreased expression of Myl1 and Pfkfb1 in Nf1Myf5 muscle progenitors. A 
Transcriptome analysis of p7 Nf1Myf5 and Control muscle progenitors. N=2 for each group of animals and 

Padj< 0.001 was considered significant. B, C MeDIP sequencing for Nf1Myf5 and Control muscle progenitors.  

DMRs = differentially methylated regions. N=3 for each group of animals. D Expression of Myl1 and Pfkfb1 
in p7 muscle progenitors detected by transcriptome analysis (n=2) and double confirmed by qPCR (n=3). 

Two tails Student-t-test was used for statistical analysis. p**<0.01. P***<0.001. 
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antibodies against H3K27me3, Pax7, and DAPI. Relative fluorescence units (RFU) analysis 

showed that for progenitors, the H3K27me3 modification level was significantly decreased(Fig. 

4.21A). Besides, both immunostaining and western-blot analysis confirmed the reduction of 

H3K27me3 also on mature muscle tissues (Fig. 4.21A, B). Chipmentation was performed with 

an antibody against H3K27me3 to check the precise H3K27me3 level of a specific genetic 

locus. After mapping the reads with mouse genome nine and MACS2 peak calling, peak signal 

was enrichment with the length of 10 kb for both up and downstream of transcription start site 

(TSS). Data showed a severe reduction of H3K27me3 in Nf1Myf5 muscle progenitors (Fig. 

4.21C). Epigenetic status of Pax7 was shown, and it indicated that increased Pax7 expression 

in Nf1Myf5 muscle progenitors might be caused by decrease of the repressive histone 

modification marker of H3K27me3 (Fig. 4.21D). With the above experiments, it could be shown 

that Nf1 deletion changed the chromatin status of muscle progenitors. 

 

Conclusions 
Nf1 knockout in muscle progenitors changed its epigenetic modification status, including 

increased DNA methylation level and a decreased H3K27me3. This change might regulate the 

expression of muscle stem cell-related genes such as Pax7 and also progenitor's 

differentiation genes expression such as Myl1. 
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Figure. 4.21 Reduction of H3K27me3 of Nf1Myf5 muscle progenitors chromatin.  
A, B Reduced H3K27me3 in Nf1Myf5 progenitors and also muscle tissues. C Decreased enrichment of H3K27me 

signal within 10kb up and dow of transcription start site in Nf1Myf5 progenitors. D Increased Pax7 expression in 

Nf1Myf5 progenitors might be H3K27me3 dependent. A FACS sorted muscle progenitors were used for cytospin 
followed by immunostaining with antibodies against Pax7, H3K27me3. Sections from 12 weeks hindlimbs were 

used for staining. N=3 for each group of animals. RFU was measured for at least 200 cells from each animal. B 

Western blot was performed with an H3K27me3 antibody on 12 weeks of muscle lysates (N=3). C, D 
Chipmentation was performed with the H3K27me3 antibody. FACS sorted p7 muscle progenitors were used 

(N=2). Two tails Student-t-test was used for statistical analysis. P***<0.001. Scale bar 100 μm and 20 μm. 
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 Stronger quiescent signature of Nf1Myf5 muscle progenitors was 
Delta-Notch signaling pathway dependent. 
 Nf1Myf5 muscle progenitors showed hyper-activation of Delta-Notch signaling. 

The entire transcriptome analysis can provide general information about the cell status in the 

process of checking myogenesis and quiescent related gene expression. An exciting 

observation was that a group of genes up-regulated in Nf1Myf5 muscle progenitors were 

components of Delta-Notch signaling, and they were enriched for Notch1 target genes during 

GO and KEGG analysis (Fig. 4.22A). It suggests that Nf1Myf5 muscle progenitors have 

hyperactivation of the Notch signaling pathway. These genes include Notch target genes such 

as Pax7, Hes1, Hey1, Heyl, Col6a3, and Col5a3, Notch ligand genes Dll1 and Jag1, 

andexpression of Notch1/3. A recent paper showed reciprocal signaling by Notch–Collagen 

V–Calcr retains muscle stem cells in their niche and keeps them in quiescence100. The 

expression of Calcr was also increased in Nf1Myf5 muscle progenitors. Since Notch pathway 

regulates muscle stem cells to enter a quiescent state by modulating the composition of ECM 

components and its activation also requires ligands from their living environment, then it is a 

promising pathway to explain why Nf1Myf5 progenitors showed a different cellular properties in 

vivo with the muscle stem cell niche and in vitro with Matrigel culture.   

Activation of Notch signaling requires binding of the ligands with the receptors. Typically, Notch 

ligands are expressed primarily on neighboring cells or muscle fibers, but for the culture of 

muscle progenitors and primary myoblasts, they cannot attach to each, or they will differentiate, 

which might be why Nf1 knockout cells behave entirely in two different directions in vitro and 

in vivo. To test this, cell culture plates were pre-coated with specific Notch ligand Jag1 before 

muscle progenitors from FACS sorted Nf1Myf5 and Control animals were seeded on top. They 

were divided into four groups, which were Control, Nf1Myf5, Control_Jag1, Nf1Myf5_Jag1. The 

Control and Nf1Myf5 group were cultured only on Matrigel-coated plates. The Control_Jag1, 

Nf1Myf5_Jag1 groups were cultured with plates coated with Matrigel and also Notch ligand Jag1. 

After 48 hours of Notch ligand treatment in proliferation medium, mRNA was isolated, followed 

by reverse transcription, cDNA was used as the template, and primers were designed based 

on the Notch pathway target genes for real-time qPCR analysis. 2-∆∆Ct was calculated for target 

gene relative expression analysis. Data shows that Jag1 treatment stimulated Delta-Notch 

signaling in both groups. Without Jag1 treatment, no difference was observed for Notch target 

genes expression between Nf1Myf5 and Control cells, indicating that activation of the Notch 

pathway is highly environment-dependent. With ligand treatment, all related Notch target 

genes expression increased for approximately two-fold in Control cells, suggesting that ligand 

treatment was successful. However, in the Nf1Myf5_Jag1 treatment group, it increased by four 
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to six-fold, which points out that Nf1 deleted muscle progenitors are more sensitive to the 

activation of the Notch pathway. The qPCR analysis data can nicely mimic the data generated 

by transcriptome analysis of muscle progenitors. It Indicates that in vitro culture using Notch 

pathway ligand allows cells to behave more like in vivo status and in vivo, Nf1Myf5 muscle 

progenitors have hyperactivation of Delta-Notch signaling (Fig. 4.22B). 

In addition, experiments with Jag1 treatment were also performed for immunostaining to check 

if the aberrantly increased proliferation rate of Nf1Myf5 muscle progenitors in vitro can be 

rescued. Freshly FACS sorted cells were cultured with both matrigel and Jag1 coated 

coverslips in Control and Nf1Myf5 cells. After cultured in proliferation medium for 48 hours, cells 

were fixed and co-stained with Pax7/Ki67/desmin and DAPI. Pax7 and DAPI double-positive 

cells were counted to observe the effect of ligand treatment on the expression of muscle stem 

cell marker genes. After counting and statistical analysis, the relative fluorescence units of 

Pax7 increased from 1800 to 2500 compared to control cells (Fig. 4.22C). It indicated that Jag1 

treatment increased Pax7 expression, especially in Nf1Myf5 muscle progenitors. The 

proliferation rate of Pax7 positive cells was calculated, both Ki67 and Pax7 positive cells were 

considered to be proliferating muscle progenitors. Data showed that the proliferation rate of 

Nf1Myf5 cells decreased from 84% to 65% with Jag1 treatment. It indicated that Jag1 treatment 

could decrease cell proliferation rate, particularly in Nf1Myf5 progenitors (Fig. 4.22C). 

Interestingly, one phenomenon was noticed that without Jag1 treatment, after 48 hours of 

culture, large amount of progenitors were also Desmin positive, indicating that early 

differentiation has started, but only a small population of Desmin positive progenitors were 

detected in Nf1Myf5 group in line with the MF20 staining presented earlier (Fig. 4.15C). With 

Jag1 treatment, there were almost no Desmin positive cells in both groups detected, implying 

that Notch signaling can promote progenitors to shift into a stem cell-like state and suppress 

their differentiation (Fig. 4.22C, D). 

In summary, it can be concluded that Nf1Myf5 muscle progenitors shifted towards quiescent 

earlier in vivo, concomitant to a hyperactivation of the Delta-Notch signaling pathway. 
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Figure 4.22 Nf1Myf5 muscle progenitors showed hyper-activation of Delta-Notch signaling.  

A Notch target gene expression is enriched in Nf1Myf5 progenitors. Transcriptome analysis for FACS sorted p7 

muscle progenitors. GSEA analysis was performed with gene expression list. N=2 animals. B Jag1 ligand results 

in hyperactivation of the Notch pathway in Nf1Myf5 cells, indicated by increased expression of Notch 
downstream target genes. Freshly FACS sorted muscle progenitors cultured in proliferation medium with/wo 

Jag1 treated Matrigel-coated plate. Real-time qPCR was performed, and primers were designed for Notch 

signaling relative genes (N=3 animals). C Notch signaling activation increased Pax7 expression and decreased 
progenitors' proliferation rate. D Decreased proliferation rate of Nf1Myf5 myoblast. Freshly FACS sorted muscle 

progenitors were cultured with Jag1 treated Matrigel-coated plate for 48 hours. Primary antibodies against Pax7, 

Ki67, Desmin and MyoD, Ki67, Desmin were used for staining respectively and DAPI for nuclear identification. 
Pax7/Ki67 and MyoD/Ki67 double-positive cells were counted for proliferation analysis. B Student-t-test was 

used for statistical analysis. p*<0.05. p**<0.01. P***<0.001. The scale bar is 20 μm. 
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 Hyper activation of Delta-Notch signaling pathway in Nf1Myf5 muscle progenitors 
is mediated through NO-ERK-Notch Signaling 

To elucidate the mechanism how Nf1 deletion regulates the activation of the Notch pathway, 

an in vitro experiment was performed. From the literature and our qPCR results, the Notch 

pathway can be hyperactivated in vitro culture for 48 hours with Jag1 treatment. In 

oligodendrocyte, the mutation of Nf1 leads to hyperactivation of the Delta-Notch pathway 

through ERK regulated nitric oxide production121.  Nitric oxide is a messenger and functions in 

most tissues and organs. No-cGMP-PKG signaling is a classical pathway found enriched 

hereby in diverse backgrounds121,156-158. Significantly up-regulated genes from RNAseq were 

submitted for KEGG analysis. the first pathway with the smallest p-value is Protein digestion 

and absorption followed by ECM-receptor interaction, focal adhesion, cell adhesion molecules, 

and PI3K-Akt signaling pathway. Pathways in cancer were also enriched, which means as a 

tumor suppressor gene, Nf1 knockout may lead to activation of cancer relative signaling, such 

as PI3K-Akt signaling (Fig. 4.23A). Interestingly, the cGMP-PKG signaling was also enriched 

in Nf1Myf5 muscle progenitors indicate that activation of ERK/MAPK in Nf1Myf5 muscle 

progenitors might also induce the secretion of nitric oxide thus drive the activation of cGMP-

PKG signaling (Fig. 4.23A).  

Therefore, an in vitro cell culture model was established with Jag1, ERK/MAPK signaling 

pathway inhibitor U0126, nitric oxide production inhibitor LNAME treatment. After 48 hours of 

culture and treatment, mRNA was isolated from the treatment and control group. Pax7, Hes1, 

Hey1 and Myog were analyzed by qPCR analysis. Without Jag1 treatment, Pax7 expression 

was 1.56 times higher in Nf1Myf5 primary myoblasts, and Hes1 expression was 1.43 times 

higher, but there was no difference in Hey1 expression. With Jag1 treatment, the relative 

expression difference of these genes increased to 2.59, 1.82, and 1.38, respectively. They 

were all significantly up-regulated compared to the group without Jag1 treatment, which double 

confirmed that Nf1Myf5 primary myoblasts are more sensitive to the Notch pathway. 

With nitric oxide synthase inhibitor LNAME treatment, for Nf1Myf5 / Jag1 primary myoblasts, the 

expression of Pax7, Hes1 and Hey1 were reduced to 0.77, 0.98 and 0.97, respectively, which 

implies NO inhibitor can eliminate the effect of Notch pathway activation. After treatment with 

ERK inhibitor U0126, the difference was even reduced to 0.7, 0.35, and 0.52, respectively. The 

expression of MyoG was not different in Nf1Myf5 primary myoblasts with or without Jag1 

treatment, which was only 0.43 and 0.49 compared to their control cells. With LNAME 

treatment, MyoG expression increased to 2.48 compared to control. By U0126 treatment, the 

expression of MyoG was even higher, to 4.39 times of the control. In summary, Jag1 treatment 

increased the expression of Pax7, Hes1, and Hey1 in Nf1Myf5 primary myoblasts, thus blocking 

the myogenic process (Fig. 4.23B). Nf1Myf5 primary myoblasts were more activated by Notch 
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ligand compared to control cells. NO inhibitor and ERK1/2 inhibitor block Notch hyperactivation 

caused by Jag1 treatment in Nf1Myf5 primary myoblasts. This suggests that Nf1 deletion leads 

to stronger ERK1/2 activity in vivo, and ERK signaling can increase the production of nitric 

oxide, thereby contributing to activation of the Notch pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Hyperactivation of Delta-Notch signaling pathway in Nf1Myf5 muscle progenitors via NO-
ERK-Notch Signaling 
A Activation of cGMP-PKG in Nf1Myf5 muscle progenitors. DAVID bioinformatics was used for KEGG 

enrichment for significantly up-regulated genes (N=2). B Nitric oxide can block Notch signaling activation. A 

Transcriptome analysis of p7 Nf1Myf5 muscle progenitors. Primary myoblast were isolated from Nf1Myf5(n=3) 
and Control (n=3) animals. Fold change means Nf1Myf5 divided by Control. Blank = cultured control and Nf1Myf5 

primary myoblast without any treatment; Jag1 = Notch ligand Jag1 treatment for both Control and Nf1Myf5 cells; 

Jag1/LNAME = both groups of cells were cultured with Jag1, LNAME was used for Nf1Myf5 cells and vehicle 
was used for control cells; Jag1/U0126 means both groups of cells were cultured with Jag1, U0126 was used 

for Nf1Myf5 cells and vehicle was used for control cells. N=3 for each group of animals. N=3 wells for each 

treatment condition. Two tail Student-t-test was used for statistical analysis. p*<0.05. p**<0.01. P***<0.001 
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  Notch signaling could repress glycolysis and oxidative phosphorylation genes 
expression. 

My results support the notion that the Notch pathway might drive early postnatal muscle 

progenitors into a quiescent state, and the metabolism profiling of activated muscle progenitors 

and quiescent muscle stem cells is also different. For proliferating muscle progenitors, they 

need to rely on glycolysis to generate biomass for a new synthesis of proteins and DNA, but 

for quiescent muscle stem cells, they rely primarily on fatty acid metabolism to produce 

energy155. To observe whether the Notch pathway can also block the expression of glycolytic-

related genes, FACS isolated wild type p14 muscle progenitors were cultured on Matrigel-

coated plates with/without Jag1 treatment. RNA was isolated, followed by reverse transcription 

and real-time qPCR, specific primers for glycolytic genes, including Pfkfb1, Pfkfb3, Ldha, Pfkm, 

Eno3, Hk2 were selected. Furthermore, the Notch target genes Pax7, Hes1, and Hey1 were 

used as control indicators of in vitro activation of the Notch pathway. Oxidative phosphorylation 

genes such as Ndufv1 and Mtco1 expression were also detected by qPCR. As shown in Figure 

4.24. Expression of Pax7, Hes1, and Hey1 increased by 2.58, 3.24, and 2.14 fold compared 

to the Control, confirming efficient activation of Notch signaling. 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase (PFKFBs) could strongly promote glucose utilization by 

increasing fructose-2,6-bisphosphate levels. It has four tissue type isoforms and Pfkfb1 and 

Pfkfb3 are mainly expressed in muscle tissue. Interestingly, glycolytic and oxidative 

phosphorylation genes were decreased by Jag1 treatment compared to untreated cells, 

especially for the expression of Pfkfb1 and Pfkfb3 with ratios of 0.41 and 0.51, respectively. 

 

 
 

 

 
 
 
 

Figure 4.24 Notch pathway represses glycolysis and oxidative phosphorylation genes expression in 
early postnatal myogenic progenitors. 
Significantly down-regulation of glycolysis and oxidative phosphorylation genes expression upon Notch pathway 

activation. Freshly FACS sorted muscle progenitors cultured with Matrigel-coated plate with/wo Jag1 treatment.  
Each condition has triplicate, RNA was isolated, followed by reverse transcription and real-time qPCR with 

primers of Notch target genes, glycolysis, and oxidative phosphorylation genes. Student-t-test was used for 

statistical analysis. p*<0.05. p**<0.01. P***<0.001 
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Conclusions: 
As a tumor suppressor gene, Nf1 knockout leads to the activation of cancer-associated 

pathways, which also include Delta-Notch signaling in different biological backgrounds121,147. 

Under the muscle progenitors biological context, in the embryonic phase, most of these muscle 

progenitors are proliferating to expand the stem cell pool to support fetal and postnatal muscle 

growth. A pivotal time point is the formation of muscle stem cells niche at around E17.5151. 

After this time point, activated muscle progenitors consecutively need to enter either into their 

niche and gradually become quiescent or start to differentiate and incorporate with existing 

muscle fibers for muscle hypertrophy. The function of the Notch pathway has changed before 

and after the muscle stem cell niche formation. The Notch pathway promotes muscle 

progenitor's proliferation before niche formation, but after stem cell niche formation, the 

function of the Delta-Notch pathway changed from promoting proliferation to inhibit proliferation 

through Notch-Collagen V-CALCR signaling100. Hyperactivation of this pathway in Nf1Myf5 

animals leads to a gradual decrease in satellite cell numbers, and a reduction of muscle mass  

Here it was confirmed that Nf1 deletion leads to hyperactivation of Ras/ERK signaling, which 

stimulates the Delta-Notch pathway by producing nitric oxide in Nf1Myf5 muscle progenitors and 

a stronger Notch pathway inhibits the expression of glycolytic and oxidative phosphorylation-

related genes thus drive cells into a quiescent state. 

 

  Nf1Myf5 muscle phenotype could be rescued with Delta-Notch 
specific inhibitor (DAPT) injection. 
 Increased progenitor numbers and body weight of DAPT injected Nf1Myf5 mice. 

As Nf1Myf5 progenitors have stronger Notch signaling activity and it might drives muscle 

progenitors go into a quiescent state, thus causing progenitors depletion, then the next 

question is if Notch pathway gets suppressed with specific chemical inhibitor, whether the 

satellite cell pool exhaustion that Nf1Myf5 mice suffered can be rescued. Thus, a common γ-

secretase inhibitor DAPT was used for subcutaneous injection into Nf1Myf5 animals from 

postnatal day 6. The injection was performed every three days until p21. Nf1Myf5 mice with 

Placebo injection were used as control. Animals were dissected at p21, and hindlimb 

cryosections were taken, followed by Pax7, Ki67, ColIV, and DAPI co-immunostaining. Whole 

section tile-scan were taken, and progenitor numbers within each muscle bundles were 

counted. As data shown in Figure 4.25A. Compared with Placebo injected Nf1Myf5 mice, DAPT 

injection significantly increased progenitor cell numbers within TA, EDL, and Soleus muscle 
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bundles. Besides, the increased progenitor number might be caused by an increased 

proliferation rate of these cells, as data showed in the quantification of Ki67 positive Pax7 cells 

(Figure 4.25A).  In addition, expression of Notch pathway-related genes such as Notch1/3, 

Col5a3, Col6a3, Hes1, and Hey1 was detected by qPCR analysis for double confirmation of 

DAPT inhibition function for the Notch pathway. Compared with the Control group, the 

expression of Notch pathway-related genes were all more than 50% down-regulated (Fig. 

4.25B). In short, DAPT injection can block the Notch signaling pathway to a physiological level, 

and satellite cell pool depletion that Nf1Myf5 mice suffered can be rescued by DAPT injection.  

For postnatal muscle hypertrophy, the insertion of nuclear plays a dominant role, especially 

when the mice are younger than p21. Nf1Myf5 mice showed a severe reduction of muscle cross-

section area. The cross-section area was measured in both Nf1Myf5_Placebo and Nf1Myf5_DAPT to 

see the influence of  DAPT injection for fiber hypertrophy. Data showed compared with control, 

DAPT injection significantly increased CSA of muscle fibers (Fig. 4.25C). During muscle 

dissection, The entire mouse body weight and the weight of psWAT were also measured from 

both control and DAPT injection groups. Data also showed a significant increase in both body 

weight and psWAT weight in DAPT injected mice. 

 

Conclusions: 
Notch inhibitor DAPT injection could rescue the muscle satellite cell pool depletion that Nf1Myf5 

suffered. Also, it can improve the life status of Nf1Myf5 mice by increasing their muscle mass, 

white adipose weight, and the whole bodyweight. It double confirmed that the satellite cell pool 

depletion phenotype of Nf1Myf5 mice is dependent on the hyperactivation of Delta-Notch 

signaling. 
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Figure 4.25 DAPT injection partially rescued the phenotype of Nf1Myf5 mice. 
A DAPT injection increased Nf1Myf5  progenitors proliferation rate and numbers. B DAPT injection block Notch 

pathway-related gene expression. C Increased cross-section area in DAPT injected Nf1Myf5 mice. D Body weight 
and white adipose tissue weight gain by DAPT injection. A p21 hindlimb sections from DAPT and Placebo 

injected mice. Co-staining with Pax7, Ki67, ColIv, and nuclear. Pax7 positive cells were considered as satellite 

cells. Ki67/Pax7 double-positive cells were used for proliferation rate measurement. B: mRNA was isolated from 
Nf1Myf5_DAPT and Nf1Myf5_Placebo TA muscle, respectively, N=4 animals. Two tails Student-t-test was used for 

statistical analysis. p*<0.05. p**<0.01. P***<0.001. The scale bar is 40 μm. 
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5  Discussion 

Myopathy could severely influence the patient's life quality and lifespan. To better identify 

whether the Nf1-associated myopathy is generated from the effects of other organs or from 

the skeletal muscle system itself,tissue-specific gene knock out with the loxP-Cre system is a 

useful gene-editing tool for this purpose. As a tumor suppressor gene, the mutation of Nf1 will 

cause Neurofibromatosis type I, which is characterized by skin coloring and growth of tumors 

along with the nervous system. Although the symptoms of this disease vary widely, a common 

phenomenon that NF1 patients suffered is muscle weakness and reduced muscle mass. 

Several research groups around the world are working on the project of how Nf1 regulates the 

development of the skeletal muscle system. So far, people have not clearly understood how 

this regulation occurs. Therefore, in this work, a skeletal muscle-specific knockout animal 

model was used to study the behind mechanism of myopathy caused by mutation of Nf1 in 

muscle tissue. 

 

 Evaluation of Nf1Myf5 mouse model. 

Several mouse lines were used in our lab and also other labs to investigate the effect of Nf1 

knock out on skeletal muscle development.  Mouse phenotype caused by Nf1 deletion from 

different mouse strains can be compared using the published data. Nf1flox/flox mice crossed 

with Cre recombinase under specific promoters including Lbx1, Prx1, Pax7, Myf5, MyoD, and 

HSA have generated different Nf1 knock out mouse models. Previous literature showed when 

Nf1 was knockout in Prx1 expressing cells, which resulted in severe muscular dystrophy, 

characterized by increased muscle fibrosis and decreased embryo myoblast differentiation. 

Besides, since Prx1 is expressed in early limb bud mesenchyme, the proliferation rate of 

muscle connective tissue also increased, and an increase of connective tissue can be 

observed from E16.5. All of these changes are accompanied by hyperactivation of the Nf1-

dependent MAPK (mitogen-activated protein kinase) signaling pathway. In summary,  this 

paper showed that Nf1 is critical for skeletal muscle system development159. The disadvantage 

of this mouse model is that  Nf1 knockout is not specific for muscle tissue, fibroblast, osteocytes, 

chondrocytes, stromal cells, and tenocytes could also being affected160.  

Lbx1, together with Pax3 and c-met, are co-expressed in embryonic muscle precursors. Our 

previous work with the Nf1Lbx1 mouse model showed no phenotype for embryonic muscle 

patterning and growth defect, but a reduction in muscle size was observed between E14.5 and  

E18.5148. In addition, the paper also showed that Lbx1 is expressed in both myogenesis and 
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neurogenesis process64,161. Here our Lbx Cre mice used the BAC (bacterial artificial 

chromosome) method to make the gene Cre activity selective to limb muscle tissue64. We 

visualized the Lbx Cre by crossing the mice with mTmG reporter mouse, and we did not see 

any Cre activity in neuron cells148.  Nf1Lbx1 mice die after birth likely due to respiratory problems; 

Thus it is not a good animal model for postnatal research to mimic NF1 children patients.  

The Pax7-creERT2 transgenic mouse was used to generate the Nf1Pax7-creERT2 animal model and 

study the function of Nf1 in adult muscle149. Tamoxifen was injected from 8 weeks old mice. 

Satellite cells give a regular and universal contribution to postnatal muscle hypertrophy even 

without any injury and damage. Studies have shown that for mice between the ages of 6-12 

months, there are still a certain amount of nuclei nserted into existing myofibers162. No 

phenotype was observed in Nf1Pax7-creERT2 mice, including body weight, muscle weight, and also 

myopathy identified by the histological method. From the muscle function part, there is also no 

impairment. This might be due to the penetration efficiency of tamoxifen and the activation of 

Cre activity in the target cell population. Besides, 8 weeks might be too short for satellite cells 

under homeostatic status and the allele being used could also influence the results. Further 

protocol modifications for the tamoxifen injection are still under processing149.  

Another group used the Nf1MyoD mouse model to study the function of Nf1 during postnatal 

muscle development. For this mouse model, severe muscle phenotypes include the 

accumulation of lipid droplets intramyocellular and an increase in oxidative metabolic enzyme 

activity suggesting a function of Nf1 in mitochondrial fatty acid metabolism126.  Compared with 

the OilRed O staining that was performed on Nf1Myf5 sections with a tilescan imaging, there 

was no lipid droplet observed at all in Nf1Myf5 muscle. However, some lipid droplet smear was 

observed in muscle tissue close to muscle-adjacent layer fat tissue, suggesting that  that the 

observation of Sullivan et al may reflect an artefact generated from adipose tissue. In addition, 

this mouse model also has neonatal lethality126. Therefore, a proper mouse model to study the 

function of  Nf1 in postnatal muscle development is urgent.  

Here, Nf1Myf5 mouse model was used, the efficiency of Nf1 knockout is around 80% off 

specifically for exons 40 and 41 from RNA level for muscle progenitors and also for their 

offsprings from both RNA and protein level. The Ras/ERK signaling, which can be negatively 

regulated by Nf1, plays an important role in myoblast proliferation and differentiation. Published 

literature shows that the proliferating C2C12 myoblasts maintains relatively high Ras signaling 

activity during proliferation, but for differentiation the signaling need to be repressed163. The 

researchers also showed NF1Prx1 satellite cells has differenatiation defect125. The critical point 

for this mouse model is even with strong myopathy, animals can still survive until p160, thus 

provide the opportunity to study Nf1 function for postnatal muscle development. 
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 Nf1 deletion lead to skeletal muscles development defect 

Nf1Myf5 mice reduced body weight during postnatal development. Previous studies from clinical 

research have noted that Neurofibromatosis Type 1 (NF1) patients have an increased chance 

of developing tumors along human central and peripheral nervous systems164. Regarding the 

function of Nf1 in muscle development, the first in vivo mouse model was Nf1prx1. In this work, 

Nf1 was deleted in the mouse embryo mesenchymal cells. The phenotype of the mouse model 

includes severe myopathy characterized by disruption of muscle pattern and decreased ability 

of embryonic myoblast differentiation. Besides, muscle fibrosis was also observed. Since 

mesenchymal cells can give rise to varies cell types, including osteoblasts, chondrocytes, 

myocytes, and also adipocytes,  Nf1 knock out in different tissue might bring an additive effect 

on this strong muscle phenotype159.  

For Nf1Myf5 mice, the previous data showed there was no influence for muscle patterning and 

also myoblast differentiation during the embryonic stage, but the growth retardation was 

observed from E18.5 on and was strengthened over time148. In this study, Nf1 was found to be 

critical for mouse postnatal muscle development. Reduced mouse body size and weight can 

be observed from early birth on, and the difference is getting bigger and bigger during postnatal 

muscle development. As an essential feature of myopathy is a reduction of muscle mass. The 

muscle mass of Nf1Myf5 mice is also significantly decreased. The only mouse model that was 

reported for the function of Nf1 in postnatal muscle development is Nf1MyoD mice. Unfortunately, 

this model showed around 50% body weight reduction and neonatal lethality. Surprisingly, 

there was no difference detected in the knockout mice, except for lipid droplets were observed 

in their muscle sections126. It implied that the animal’s body system is complicated, and further 

experiments still need to be performed for this mouse model. 

Literature showed that Myf5+ cells could give rise to brown adipose cells by upregulating 

expression of Prdm16 and repressing myogenic genes expression165. In Nf1Myf5 mice, no 

difference was detected for iBAT, sBAT, and cBAT for both weight and HE staining. However, 

a significant reduction of psWAT and rWAT weight was noticed. Skeletal muscle is critical for 

glucose and fatty acid metabolism and white adipose tissue functions as the energy storage 

site. Reduced white adipose tissue weight suggests a change of muscle metabolism in Nf1Myf5 

mice. The acute myopathy suffered by Nf1Myf5 mice resulted in a decrease in body size and 

weight, loss of muscle mass, and also white adipose tissue weight. In short, myopathies of 

Nf1Myf5 mice can recapitulate the muscle phenotype of NF1 patients. 
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 Nf1 deletion leads to muscle metabolic defects 
 Loss of Nf1 results in fiber type shift towards slow/intermediate fibers  

With a strong myopathy that was observed, to get a better understanding of how Nf1 deletion 

affects muscle tissues, a whole transcriptome profiling was used for p21 Nf1Myf5 and control 

animals. Since TA muscle consists of both slow and fast fibers at p21, thus p21 TA muscle 

can was used for fiber type properties and metabolic-related studies29. Interestingly, in Nf1Myf5 

mice, all of the fast fiber component genes expression was reduced, whereas the intermediate 

slow fiber genes were up-regulated.  

With the implication of fiber type conversion from RNAseq analysis,  the protein expression 

level was detected through specific primary antibodies staining. For slow fibers, time-series 

staining was performed from postnatal 1 week until 12 weeks old mice. A growing number of 

studies have found that during postnatal development, the composition of fiber type slowly 

transforms from slow oxidative fibers to fast glycolytic fibers29. For 12 weeks old animals, there 

was almost no slow fiber left in TA and EDL muscle. All the slow fibers only located in the 

soleus area. For three weeks old animals, data showed a significant increase in type I fiber 

composition in Nf1Myf5 TA muscle. Then it is curious how this transformation happened? Is 

there any difference at an even earlier stage? Immunostaining from one week and two weeks 

postnatal sections shows increased type I fiber from two weeks on. For 12 weeks old animals, 

since there is almost no type I fiber left in TA muscle, more type IIa fibers in Nf1Myf5 mice was 

detected. Besides, western-blot also double confirmed the increased Myoslow and decreased 

of Myofast expression in Nf1Myf5 TA muscle. 

A growing body of literature has examined the cause of skeletal muscle fiber shift and the 

related diseases135,166,167. Since 1996, Olanzapine has been administered intramuscularly as 

an antipsychotic. In recent years, side effects include metabolic inflexibility, hyperglycemia, 

adiposity, and diabetes have been reported. To observe the effect of this chemical on skeletal 

muscle, RNAseq was performed with Olanzapine infusion for 24 h in rat gastrocnemius muscle. 

It showed that Olanzapine could rapidly influence the transcriptome of these animals, causing 

the composition of muscle fibers shift towards fast fibers, which are more susceptible to atrophy 

and also chronic metabolism side effects. Type 2 diabetes is a prevalent metabolism 

associated disease. The research was conducted on patients with type 2 diabetes showed that 

patients have a 16% reduction for slow fibers and 49% increase of fast fibers as compensation 

for changes in glucose metabolism in the body168. Until now, almost all literature shows slow 

fibers shift towards fast fibers, such as disuse atrophy, microgravity, and related diseases. In 

contrast, endurance exercise with oxygen, chronic low-frequency stimulation, and aging 

usually contribute to fast to slow isoform transition34. Proteomics data demonstrated a rapid 
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fast to slow contractile transformation process during animals and human skeletal muscle 

aging. This might be caused by muscle wasting, induced by loss of motor neurons, nutritional 

deficiency, decreased expression of growth hormones, and chronic inflammation, even though 

precise regulation mechanism is still not clear. Some researchers support idea with selective 

atrophy of fast fibers during aging35,34,46.  

In summary, different methods were used to examine the fiber type component protein 

expression in Nf1Myf5 and control animals. Although the data shows a trend of fiber type 

transition from fast to slow/intermediate, the underlying mechanism is still unclear. In addition, 

some classical histochemical assays such as ATPase and SDH staining could also be used 

for double confirmation. 

 

 Loss of Nf1 results in metabolism shift towards oxidative phosphorylation  

Human skeletal muscle fiber types were identified by biochemical and histology analysis in 

more than 50 years ago169. The definition primarily depends on their combination of 

morphology, contraction, and metabolic properties. Slow fibers mainly relying on oxidative 

phosphorylation for energy production. In contrast, fast fibers selectively depending on glucose 

glycolysis to produce energy170. Due to the fiber type switching of Nf1Myf5 mice, it also showed 

a reduction of glycolytic genes expression. There are two predominant substrates for skeletal 

muscle oxidative phosphorylation metabolism and ATP production, namely glucose and free 

fatty acids. How to choose which substrate to use is highly flexible in both humans and animals. 

For the human in a resting state, only 20% of the blood’s glucose can enter the skeletal muscle, 

60% of which can ultimately be oxidatively phosphorylated by the TCA cycle to produce energy. 

This process consumes 7% of the body’s total intake of oxygen. In short, human in resting 

state, glucose is not the primary fuel for skeletal muscle metabolism171. Compared with humans, 

mice are much smaller, more activate. It should be more dependent on glucose than humans, 

which is also a key point when referring to a metabolic-related animal model172.  

Nf1Myf5 animals showed significantly decreased glycolytic genes expression. To maintain 

energy production and homeostasis, free fatty acids consumption should be increased. Since 

Nf1Myf5 mice reduced glucose consumption, then the question is, where does the glucose in 

the food go? Do Nf1Myf5 mice have diabetes? For glucose uptake, there are mainly two 

regulation ways. One way is insulin-dependent, in a post-meal state, with the increased 

concentration of glucose in the blood, insulin will be secreted by the β-cells, which promote 

glucose uptake into skeletal muscle. Upon binding to its receptor, insulin can trigger a cascade 

of signaling pathways and promote Glut4 translocation from cytoplasm to cell membrane for 

skeletal muscle glucose uptake. The signaling dependent on insulin is primarily PI3/AKT 
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cascade, which can act as a regulator of protein translation, stress resistance, and 

maintenance of systemic stability. The other way of skeletal muscle glucose uptake is muscle 

contraction dependent. During exercise, muscle contraction contributes to a change of 

ADP/ATP levels, which in turn activates AMPK signaling. Besides, Calcium, Nitric oxide, and 

Reactive Oxygen Species (ROS) can also help stimulate glucose uptake32.  

If the reduced glycolysis activity in Nf1Myf5 mice is Insulin dependent needs to checked. 

Modification of insulin receptor substrate (IRS) and p-ATK was detected to observe the 

activation of the insulin-dependent signaling pathway. However, no difference was detected  

between Nf1Myf5 and control TA muscle. It implied that Nf1 deletion does not influence the 

insulin signaling. Besides, NF1 patients and Nf1Myf5 mice also do not show any insulin 

resistance or obesity phenotype. In order to answer the question of glucose fate in Nf1Myf5 mice, 

the glucose concentration of the blood from the animal heart was measured, and also there 

was no difference. Animals always need to keep blood sugar levels steady, and the mouse 

liver plays a dominant role in glucose homeostasis maintaining. Glucose uptake in mice can 

be used for hepatic glycogen synthesis in an insulin-dependent manner173. In short, the 

reduction in skeletal muscle glucose uptake may be balanced by other organs in Nf1Myf5 mice.  

With the reduced glucose metabolism in Nf1Myf5 skeletal muscle, how to maintain its energy 

homeostasis needs to be discussed.  

Since the skeletal muscle system can use both glucose and fatty acids to generate ATP, thus 

Nf1Myf5 mice need to have energy compensation for animal survival. As an alternative substrate, 

using of free fatty acid should be increased in Nf1Myf5 mice. The data showed a global increased 

expression for all free fatty acid metabolism enzymes. Besides, some of these genes 

expressions were also confirmed by mass spectrometry from the protein level. GSEA analysis 

indicated that metabolism was converted from glycolysis to oxidative phosphorylation. Based 

on the enrichment gene sets name, the oxidative phosphorylation genes were highly enriched 

in Nf1Myf5 mice and also fatty acid metabolism genes. As the initiating chemical for the TCA 

cycle, acetyl-CoA can be produced primarily from carbohydrates, free fatty acids. Between 

meals, free fatty acids can be released by adipose tissue, which was stored as triglycerides. 

In the first step, free glycerol needs to be generated with the help of lipases. Then free fatty 

acids will enter the bloodstream. Different organs have different free fatty acid transporters, in 

the skeletal muscle system, CD36 plays a leading role in the transfer of free fatty acids. After 

transferred into cells, the reaction happened to make fatty acyl-adenylate and finally give a 

fatty acyl-CoA, which was transferred to mitochondrial with the help of CPT1/2,  fatty acid beta 

oxidative phosphorylation will start to generate NADH and FADH2 for the TCA cycle. 

Interestingly, Lpl, a rate-limiting enzyme for triglyceride hydrolysis, was also observed 

increased expression in Nf1Myf5 skeletal muscle and decreased expression in psWAT. Lpl is 
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expressed in a tissue-type specific manner. The expression on adipose tissue contributes to 

the storage of triglycerides in adipose tissue. But on skeletal muscle tissue, it stimulates the 

beta-oxidation of free fatty acids174. It also implied a decrease in triglyceride storage from food 

in white adipose tissue and an increase of fatty acid using in skeletal muscle of Nf1Myf5 mice. It 

is just fit with the white adipose tissue weight loss that Nf1Myf5 mouse suffered. In conclusion, 

Nf1Myf5 mice showed a global increased fatty acid metabolism and mitochondrial enzyme genes 

expression. To make it even more precise, future experiments may focus on real-time 

metabolic testing with a metabolism chamber, which can efficiently measure animal food intake, 

energy expenditure, and physical activity simultaneously and non-invasively.  

It is well known that oxidative phosphorylation (OXPHOS) is a robust and efficient way to 

generate energy. High energy compounds (NADH, FADH2) in the redox state produced by 

glycolysis and TCA cycle can be transferred from the cytoplasmic and mitochondrial matrix to 

the mitochondrial inner membrane. An electron transport chain consisting of five mitochondrial 

complexes works to transfer electrons from the donner to the receptor, while at the same time, 

a proton gradient drives the synthesis of ATP. In theory, with reduced glycolysis ability, the 

NADH produced by the process, should also be decreased. Then the expression of OXPHOS 

component genes was checked. Surprisingly, a globally increased expression of these genes 

was detected, and some of them got even confirmed from the protein level with proteomics 

analysis.  

The increased OXPHOS efficiency can be explained as a compensation for reduced ATP 

production by glycolysis. It also implied more NADH or FADH2 was generated by the TCA cycle. 

There are ten steps in the TCA cycle, and the rate-limiting enzymes include citrate synthase, 

isocitrate dehydrogenase and α-Ketoglutarate dehydrogenase. In theory, glucose metabolism 

was reduced, the TCA cycle component enzymes expression should be increased, or the 

enzyme activity should be increased. RNAseq data showed all rate-limiting enzymes 

expression level increased in Nf1Myf5 muscle tissue. Some of these genes expression were 

also confirmed from the protein level by proteomic analysis. For such complicated series of 

enzyme-catalyzed reactions, only with enzymes expression was still far away to conclude  

Nf1Myf5 mice have increased TCA cycle activity and also OXPHOS, but data generated from 

enzymes and component genes expression could at least give some indications. For further 

confirmation, the TCA cycle metabolism assay kit might be used to see the functions of the 

enzymes of isolated mitochondria.  

All of the above data suggested that Nf1Myf5 mice have increased fatty acid oxidative 

phosphorylation activity. In order to check the real metabolic function of skeletal muscle from 

Nf1Myf5 mice, a real-time metabolic test was performed with EDL and Soleus muscle, which 

represent glycolytic muscles and oxidative muscles, respectively. The efficiency of 
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mitochondrial complex I/II and also the efficiency of the entire electron transport chain were 

significantly increased in Nf1Myf5 EDL and Soleus muscle.  

In summary, combining the transcriptome analysis, proteomics data, and real-time metabolism 

test suggested that Nf1Myf5 skeletal muscle have a metabolic transformation from glucose 

metabolism to fatty acid metabolism.  

 Loss of Nf1 results in energy deficiency and reduced protein synthesis 

Nf1Myf5 muscle tissue reduced its glucose catabolic process and increased the ability of fatty 

acid oxidative phosphorlyation. To check the energy compensation efficiency, one major 

phosphorylation site within the catalytic subunit of AMP-activated kinase (AMPK α, Thr172) 

was detected. Nf1Myf5 muscle showed an increased phosphorylation level of AMPK, which 

indicated the energy deficiency is still exist and the internal energy metabolism is still not in a 

steady-state. A large body of the literature indicated that AMPK has emerged as a master 

regulator of skeletal muscle metabolism. It acts as an activator for glucose uptake, fatty acid 

β-oxidation, and mitochondrial biogenesis1,51,175,176. Genes expression involved in muscle 

metabolism is strictly regulated through certain signaling pathways175. In addition, former work 

with human skeletal muscle single fiber analysis showed that the isoform of AMPK also 

depends on fiber type. For the α1 isoforms, mainly in the type I and type IIa fibers, for isoform 

α2, is mainly expressed in type IIa and fast fiber49. The antibodies used here detect both 

isoforms simultaneously. For further experiments, new methods such as capillary 

nanoimmunoassay and mass spectrometry analysis can be used to observe which isoforms 

are specifically activated, and see if this energy deficiency is fiber type-dependent. 

As one of the key energy sensors, AMPK triggers the transcriptional process through its 

mediator, the peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1α 

(PGC-1α). A mouse model with skeletal muscle-specific overexpression and deletion showed 

that PGC1α could positively regulate mitochondrial number and function, thereby shifting fast 

fiber to slow fiber140,166. As a transcriptional co-activator, it works directly with different 

transcription factors, including MEF2, NRF1, NRF2, ERRα, Pparg, to initiate mitochondrial 

respiratory chain enzymes, mitochondrial fatty acid oxidation pathway enzymes transcription177. 

The data showed that the expression level of Pparg and Pgc1α increased significantly in Nf1Myf5 

skeletal muscle. The expression level of Pparg was also confirmed on the protein level. The 

energy sensor AMPK dependent signaling pathway Pparg/Pgc1α might be involved in the 

metabolism shift from glycolysis to fatty acid oxidative phosphorylation 

Until now，many pieces of evidence have illustrated the direct effects of energy deprivation 

on skeletal muscle turn over47,178. As AMPK is responsible for inner energy homeostasis 

maintaining51. It could repress the ATP consumption anabolic processes (e.g protein and fatty 
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acid synthesis) and stimulate ATP generation catabolic processes179. Thus, with the energy 

deficiency phenotype that Nf1Myf5 skeletal muscle acquired, the protein synthesis and protein 

degradation signaling pathways were also detected with certain antibodies or primers. 

Upstream activators of  mTOR signaling include mechanical overload and amino acid induction, 

negative regulators include muscle atrophy inducing pathways, as well as energy 

deprivation180. AMPK is a negative regulator of mTOR signaling which plays a vital role in 

skeletal muscle mass maintenance48. It controls both anabolic and catabolic signaling, thus 

contribute to the muscle hypertrophy and muscle atrophy181,182.  Phosphorylated mTOR at ser 

2448 was significantly reduced in Nf1Myf5 skeletal muscle. Besides, the mTOR target p-s6 

kinase at site ser 235/236 was also decreased, indicating that Nf1Myf5 mice show reduced 

mTOR signaling-dependent protein synthesis rate. In fact, more experiments are still need to 

be performed such as westernblot to detect the phosphorylation level of 4E-BP1 (Thr37/46) 

another downstream target of mTOR signaling and phosphorylation level of eEF2 (Thr56), one 

indicator for protein translation enlongation183,184. 

Other than this, proteomics data with gene ontology analysis showed the GO terms enriched 

for translation in wild type and heterozygous control animals,. This mainly includes the 

ribosome components and the aminoacyl-tRNA synthetase. In contrast to protein synthesis, 

the components of the proteasome 26s subunit proteins were significantly increased in Nf1Myf5 

muscle. The ubiquitin-proteasome system is the major site for protein degradation. Atrogin-1 

and MuRF-1 are E3 ubiquitin ligases expressed in skeletal muscle and may alo be involved in 

the regulation of the protein degradation process, and more qPCR tests still need to be 

performed. 

This part implied that Nf1Myf5 muscle mass loss might be caused by energy deficiency induced 

hyper activation of AMPK pathway and a decrease of protein synthesis regulated by mTOR 

signaling and also an increase in protein degradation process. 

 

 Muscle phenotype caused by Nf1 deletion is Nf1/Ras/ERK 
signaling pathway independent. 

Stimulation of the Ras/MAPK/ERK signal pathway can promote anabolism and mitogenic 

activity117,185.  It is a key regulator of skeletal muscle growth through transduce growth factor 

mediated singalings such IGF1-Akt signaling186. Besides, genetically modified mice with a 

consititute activation of ERK signaling in both myoblasts and mature muscle fibers showed an 

induction of fiber type switch from fast glycolytic type II to slow oxidative type I phenotype and 

also a protection from muscular dystrophy187. Nf1 acts as a negative regulator of MAPK 
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pathway, theoretically, it’s deletion can contribute to hyperactivation of the signaling. Thus 

Nf1Myf5 mice should have healthier state. However, Nf1Myf5 mice suffered from the phenotype 

that is just the opposite. Therefore, the activity of ERK signaling was detected with the phos-

ERK1/2 antibody, surprisingly, there was no difference between Nf1Myf5 and control muscles. 

It suggested that Nf1 deletion does not alter the activity of Ras/MAPK/ERK signaling in skeletal 

muscle. It is supported by the the Nf1HSA mouse model, which Nf1 was specifically knockout in 

mature muscle tissue with human alpha-skeletal actin Cre. This mouse model does not show 

any overt muscle phenotype148. The human protein atlas illustrates that Nf1 is expressed at a 

very low protein level in the skeletal muscle system; In addition, the Ras/MAPK/ERK signaling 

can being influenced by many other factors, such as hormones and energy status. Even though 

the low expression of Nf1 could still influence the MAPK signaling, the effect might also be 

compensated. Thus, the impact caused by Nf1 deletion may be ignored under this 

circumstance188,189. ERK activity was also tested from muscle progenitors, and immunostaining 

showed a significant increased ERK1/2 phosphorylation level in Nf1Myf5 muscle progenitors. 

Besides, previous data also showed that Nf1 protein could be detected in primary myoblasts, 

but after differentiation, its expression level went to even lower. This may be the cause of the 

phenotype difference between the Nf1Myf5 and the Nf1HSA mouse models. In addition, it also 

implied the muscle phenotype of Nf1Myf5 mice might be caused by defects in muscle progenitors, 

rather than the function of Nf1 directly in mature muscle tissues. Interestingly, even without 

alteration of ERK signaling in muscle tissues, a fiber type change from fast to slow still could 

be observed, which remind that underlying regulators should come from the muscle 

progenitors.  

Thus the following question is, how does the hyperactivation of ERK1/2 signaling affect the 

development of myogenic progenitors in vivo? ERK1/2 signaling is one of the most intensively 

studied pathways for both proliferation and differentiation regulation185,190,191. In vivo chick 

embryo development studies indicated that FGF-ERK signaling activity decreased with 

myogenic differentiation192, blockage of this signaling pathway with certain inhibitors can 

accelerate chick myogenic differentiation, and inhibiting MAPK/ERK signaling or ERK nuclear 

translocation can also induce robust myogenic differentiation192. ERK located within nuclear 

works to promote proliferation and ERK located in the cytoplasmic responsible for 

differentiation. In addition, the situation is also the same as the in vitro culture of mouse satellite 

cells192. Besides, a mouse model of Ptpn11 (a MAPK/ERK signaling maintenance regulator) 

knockout in muscle progenitors, showed only in postnatal myogenic stem cells, decreased 

activity of ERK1/2 activity contribute to reducing proliferation and increasing cell cycle 

retraction193. It also implied the function of ERK1/2 signaling transduction is highly biological 
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context dependent193. Therefore, the next question is, how does the increased ERK1/2 activity 

affect the muscle progenitors of Nf1Myf5 animals? 

 

 Nf1 deletion leads to muscle progenitors into quiescent through 
MAPK/ERK/NO/Notch signaling. 

 Depletion of muscle stem cell pool during postnatal muscle development 

As the muscle phenotype caused by Nf1 deletion might be transmitted from Nf1-deficient 

muscle progenitors. Therefore, the Pax7+ cells were detected with time series immunostaining. 

Interestingly, knockout Nf1 results in a global reduction of proliferating cells in p21 muscle 

tissues. As muscle tissues are composed of varies cell types, it seems that Nf1 deletion in 

muscle cells can also influence other cell types anabolic process. Unexpectedly, for Pax7+ 

cells, there are still significantly more progenitors in the Nf1Myf5 muscle at E18.5, but it changed 

to the opposite after delivery. The number of Pax7+ cells decreased more rapidly than control, 

which is caused by a large amount of Nf1 knockout cells left their cell cycle and behaved more 

like quiescent stem cells. During postnatal development, most juvenile satellite cells are still in 

the cell cycle, they are in symmetric or asymmetric cell division, and a cell from asymmetric 

cell division can exit the cell cycle and become quiescent muscle stem cell87. This gradual 

process starts form the early birth until the mouse matures (around 12 weeks). Muscle stem 

cells constitute ∼30% of the muscle nucleus of neonate mice, and it decreases with age to ∼4% 

for adults and ∼2% in the senile (29 – 30 months) mice92.  

Given the function of ERK signaling in the proliferation and differentiation of muscle stem cells 

after birth, the Nf1Myf5 muscle progenitors phenotype was opposed to the expectation. In theory, 

the Nf1Myf5 muscle should have more progenitors instead of the opposite way. Due to the high 

dynamics and flexibility of the internal muscle system and a large amount of influencing factors 

may also be involved. In addition, ERK1/2 signaling itself with different dosages and biological 

background; Its function is also different. Nf1Myf5 muscle progenitors showed stronger 

quiescent characteristics compared with control cells. Immunostaining for cytospin FACS 

sorted Pax7+ cells suggested Nf1 deletion increased Pax7 expression and simultaneously 

decreased their proliferation. Since literature shows that mTORC1 controls the transition of 

muscle stem cells from a quiescent state to activated state and p-S6 kinase and P-p70s6k are 

the downstream target of mTORC1194. Decreased p-S6 kinase and P-p70s6k levels in Nf1 

knockout Pax7+ cells were observed. Thus mTORC1 signaling pathways might be involved in 

the regulation of muscle stem cell quiescent induced by Nf1 deletion. Nf1Myf5 muscle 

progenitors have stronger ERK1/2 activity but reduced mTOR signaling activity. Normally, the 
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biological functions of these two signaling pathways are similar, namely promoting cell survival, 

cell proliferation, and cell motility195,196. Under certain circumstance, these two pathways can 

both positively cross talk but also show negative cross inhibition197-200.  

In order to make the activated signaling pathway by Nf1 knockout more clear, Nf1Myf5 

progenitors were taken out for in vitro cell culture. Interestingly, Nf1 deletion caused opposite 

properties for in vitro cell culture.  When in vitro cell culture was performed, even though the 

differentiation medium has been changed, these cells always maintain a high proliferation rate 

and delay for differentiation. It might be explained by once cells are taken out, the remaining 

influencing factors from the in vivo environment will also disappear. Then for Nf1Myf5 muscle 

progenitors, the only difference from control cells is that its ERK1/2 activity leads to an 

increased rate of proliferation, which is in line with the previously reported functions of 

ERK/MAPK signaling153. Upon inhibition of MEK/ERK1/2 signaling, Nf1 deleted proliferating 

myoblasts can be driven out of their cell cycle and start to differentiate like Control cells. The 

in vitro properties of Nf1 knockout muscle progenitors and primary muscle myoblasts this 

clearly are Ras/ERK1/2 signaling dependent.  

Muscle satellite cells are heterogeneous populations. At a particular developmental stage, their 

molecular marker expression and also their cellular properties are also different. During 

embryonic development, both Pax3 and Pax7 directly bind to the enhancer and promoter of 

Myf5 and MyoD, respectively, and regulate their expression201. Even though Pax3 was only 

expressed in the early embryonic stage, knockout of Pax3 induced an increase in Pax7 

expression as compensation14. For double knockout animals, the progenitors will undergo 

apoptosis without any muscle formation14. The function of Pax3 and Pax7 is mainly to maintain 

the proliferative properties of progenitors and repress their terminal differentiation. Anyone of 

them is sufficient to induce a myogenic process in mouse embryonic stem cells. 

Pax3 is mainly responsible for the embryogenic myogenesis, especially the migration of 

progenitor cells in the limbs. Pax7 primarily contributes to fetal myoblasts and later muscle 

satellite cells14,202. After birth, Pax3 was sharply downregulated, the muscle progenitors are 

mainly Pax7+ cells, but this population is also not unique. From p1 to p21, a large number of 

juvenile muscle satellite cells undergo proliferation, differentiation, and fusion with existing 

muscle fibers for nuclear-inserted muscle hypertrophy. How to maintain the stability of the stem 

cell pool for further risks such as injury and exercise is a complicated process. Recent studies 

have shown that for adult satellite cells only about 10% solely Pax7+ cells can enter a quiescent 

state, and this process is regulated by planar cell polarity, which dependent on WNT signaling, 

allowing cells to be in a planar orientation, thereby enhancing the symmetric division for muscle 

stem cell pool maintenance87,203. Only cells attached with the basal lamina can go into a real 

quiescent state, which may be related to the stiffness of the basal lamina. That might also 
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explain specially designed hydrogel could promote the survival of satellite cells during 

regeneration transplantation204. Although satellite cells play a dominant role in muscle 

regeneration and muscle hypertrophy, the effects of other cell types are also significant in this 

process. In the early stages of regeneration, macrophages can positively regulate  p38MAPK 

signaling by secreting of growth factors, including TNF, IL-6, and TGF beta, to induce 

myoblasts to enter a terminally differentiated state205. Besides, FAPs can also contribute to the 

final differentiation of myoblasts206. The mechanisms involved in reversible quiescence 

regulation is also different between MyoD positive and negative cells. For MyoD positive cells, 

studies showed that the up-regulation of Spry1 could block the ERK signaling and induces 

cells to return to a quiescent state. However, Spry1 knockout myoblasts can also maintain a 

stem cell pool homeostatic, implied an alternative way of quiescent reversion exists207. For the 

MyoD negative cell population, most of which are Pax7+Myf5- cells, the return to quiescent is 

regulated by Tie2 dependent activation of ERK signaling to promote expression of Pax7. It 

suggests that the role of ERK signaling in modulating satellite cells enter quiescence is time 

and context dependent208. Combined all, it implied a highly complex regulatory network of 

satellite cells through extrinsic ways. 

When culturing cells in vitro, many extrinsic signaling pathways, including Notch, Wnt, and 

ECM, are mostly abrogated. In addition, the stiffness of the coated cell culture plate is also 

different from the in vivo status. Only excessive activation of Ras/ERK signaling caused by Nf1 

deletion is left and contribute to different cellular properties. In order to elucidate the in vivo 

mechanism, more culture conditions need to be used to simulate the in vivo state. Satellite cell 

culture with their attached fibers combined with signaling pathway inhibitors may be an 

excellent solution to solve this problem. However, given the limitations of single fiber separation 

and culture protocol, for example, most protocols use older than 6-week-old mice, which 

means that almost all satellite cells are in the quiescent state, which is more helpful for 

quiescent satellite cells activation studies209,210. Furthermore, this experiment is intricacy that 

it works for adult mice, for mice younger than p21, it is almost impossible to obtain intact single 

fibers, especially from Nf1 knockout mice with reduced muscle mass. Therefore, the in vitro 

cell culture model is not sufficient to see the function of Nf1 on postnatal muscle development, 

and new methods need to be employed in the future. 

 

 Muscle progenitors shift towards quiescent from transcripts level 

Previously generated data makes the function of Nf1 on muscle progenitors a mystery of 

conflict. Whole transcriptome analysis of Nf1 deleted muscle progenitors was performed to get 

a more precise and more basic overview. Nf1 deletion leads to a global induction of muscle 



Discussion 

130 

 

stem cell quiescent genes expression and downregulation of muscle stem cell activation gene. 

In total, 38 activation genes were significantly down-regulated in Nf1Myf5 muscle progenitors. 

For the quiescent signature, a large number of genes from the ECM component were detected. 

The muscle satellite cells are located between the apical sarcolemma and basement 

membrane (ECM) of the terminally differentiated muscle fibers. The basement membrane is 

composed of two layers, the internal layer is called the basal lamina, and the external layer is 

named reticular lamina. Although resident fibroblasts have always been recognized as a 

significant contributor to the production of ECM components, muscle stem cells can also 

synthesize and secrete different classes of ECM components, suggesting that they have a 

direct role in their own niche regulation211-214. During myogenesis, to satisfy the functional 

requirement of muscle progenitors, the ECM component is always in the process of remodeling 

until muscle stem cells enter a quiescent state7. Thus, the stem cell niche composed of ECM 

components plays a critical role in maintaining a balance between quiescence and activation. 

In the quiescent state, ECM proteins work to repress mitosis and differentiation of muscle stem 

cells95. Once the muscle is damaged, the components of the basal lamina will be degraded by 

matrix metalloproteinase, and the activated satellite cells with relative growth factors and 

signaling molecules will be liberated for damage repair213. Nf1Myf5 muscle progenitors increased 

their ECM component genes expression, particularly for ColIV, ColV , ColVI, and Tnc, which 

implied the higher quiescent signature of these progenitors. Except for ECM component genes, 

another group of genes belonging to the term of imprinted genes also increased their 

expression in Nf1Myf5 muscle progenitors. Previous work has shown that imprinted genes are 

predominantly expressed in adult somatic stem cells215,216. In muscle, the imprinted gene 

Pw1/Peg3 could regulate skeletal muscle growth, satellite cell metabolic state and self-

renewal85. Except for Peg3 and Dlk1, the function of another imprinted gene as a critical cell 

cycle inhibitor, Cdkn1c, is in line with a decrease in the proliferation rate of these progenitors. 

In conclusion, with increased expression of quiescent relative genes and decreased 

expression of activation related genes, transcriptome analysis demonstrated the quiescent 

signature of Nf1Myf5 progenitors in a more compressed and convincible way. 

In hematopoietic stem cells, imprinted genes control their quiescence through a negatively 

regulated PI3K-mTOR pathway and inhibit their mitochondrial metabolism217. Following this 

point, a global reduction of glycolysis enzymes was observed in Nf1Myf5 progenitors, and 

glycolysis metabolism activity was also significantly reduced. Interestingly, except for glycolytic 

genes, the expression of mitochondrial metabolic genes in Nf1Myf5 muscle progenitors was also 

slightly lower, indicating that Nf1Myf5 progenitors with higher quiescent signature might also 

need less energy expenditure. Quiescent satellite cells use fatty acid oxidative phosphorylation 

to generate energy155, and no difference in these genes expression was detected in Nf1Myf5 
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muscle progenitors. So far, it has been thought that activated satellite cells mainly use 

glycolysis and quiescent satellite cells mainly dependent on fatty acid oxidative metabolism218. 

However, in vivo, satellite cells are a mixed population that has cells of different statuses: 

quiescent cells, activating cells, and intermediate cells. For these juvenile progenitors, the 

intermediate cells are dominant. They can use both ways of energy production. Even though 

they have reduced rates of glycolysis and oxidative phosphorylation, the energy requirement 

of these cells with a higher quiescent signature might also be satisfied219.  

Not so many investigations have been performed on juvenile muscle progenitor's metabolism. 

Thus, it might be an exciting point. A precious method for investigating dynamic metabolic 

changes is the use of stable isotope-labeled substrates for metabolic flux analysis. It can be 

used in future experiments. In addition, a paper published by Vittorio Sartorelli’s lab showed 

that cellular metabolism could regulate the expression of myogenic genes through epigenetic 

modifications of a specific histone marker, which first involves a metabolic process, epigenetic 

modifications, and myogenesis genes expression. In short, activated satellite cells use 

glycolysis to maintain their energy stability while simultaneously obtaining the biomass needed 

for cell division.With an increased glycolysis rate, the NAD+ will be converted to NADH. During 

this process, the concentration of NAD+ in cytoplasm will decrease. Thus the histone 

deacetylase enzyme Sirt1, whose activity is NAD+ level-dependent, will also decrease. Then 

its target H4K16 acetylation will increase. Acetylation of lysine 16 on the tail of histone H4 

undermines the interaction of H4 with H2A, which disrupts the higher order of chromatin 

structure and makes transcription factors more accessibility to DNA and activates myogenesis 

gene transcription2,220.  

Nf1 deletion leads to progenitors show higher quiescent signature as well as a less energy 

production. Decreases glycolysis activity very likely caused the reduced the H4K16 acetylation 

level, thus repressed myogenesis-related genes transcription.   
 
 

 Stronger quiescent signature is MAPK/ERK/NO/Notch signaling dependent. 

Apart from the expression difference in stem cell activating genes, ECM component genes, 

and stem cell imprinted genes. Another set of genes under the GO term of  Delta-Notch 

signaling was also noticed. Since both the Notch receptor and the ligand are transmembrane 

proteins, this signaling needs to have cell-to-cell interactions. Once this signaling pathway is 

activated, the intracellular domain of Notch (NICD) will be cleaved and enter the nucleus, as a 

transcription co-activator combined with RBPJ induces Notch target genes expression221. The 

function of the Notch pathway is profoundly cellular environmental dependent. The literature 
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showed that during embryonic development, a large number of muscle progenitor cells are still 

proliferating, and Pax7 is highly expressed, and these cells have high expression of Notch 

receptors. At this time point, the Notch pathway promotes the proliferation of muscle 

progenitors151. Using the transgenic Notch reporter mouse model RBP-J Pax7CreERtm, 

Thomas A. Rando’s lab showed that Notch signaling was activated and played a critical role in 

satellite cell quiescent state maintenance67,68. In the first few weeks of postnatal muscle 

development, muscle progenitor cells gradually enter a quiescent state, how does the Notch 

pathway play a role in this process? Can activated satellite cells drive back into a quiescent 

state? To answer this question, another paper in 2016 showed that sex hormones could 

establish a reserve pool of quiescent muscle stem cells by inducing myofibers to express Mind 

bomb 1 (Mib1) during puberty, which activates the Notch pathway in proliferating juvenile 

satellite cells and driving them into adult quiescent satellite cells66.  

In this project, for Nf1Myf5 animals, an increased number of muscle progenitor cells was 

observed at E18.5, which can be explained by the activation of the Notch pathway to promote 

the proliferation rate of Nf1Myf5 muscle progenitor cells prenatally. In the first three weeks after 

birth, Nf1Myf5 muscle progenitors gradually decreased, eventually leading to the depletion of 

adult stem cell pool. This would fit with hyperactivation of the Notch pathway to drive these 

activated muscle progenitor cells into a quiescent state. Considering the activation of Notch 

pathway needs cell-cell contact, once the cells being taken out and cultured in vitro the function 

of this pathway may have been abrogated. Especially for muscle stem cell culture, to avoid 

differentiation, they cannot attach with each other. Thus the Notch pathway is accidentally 

completely removed. This is also fit why in vitro cell culture of Nf1Myf5 muscle progenitors and 

Nf1Myf5 primary myoblasts, their quiescent signature disappeared, with the only activation of 

ERK activity, they proliferate much faster and are unable to differentiate even with 

differentiation medium. In vitro myoblasts culture with MEK inhibitor treatment could block the 

proliferation and promote the differentiation of Nf1Myf5 primary myoblasts. For muscle 

progenitors cultured with Notch ligand Jag1 could also repress the proliferation rate especially 

in Nf1 deleted progenitors. Besides with ligand treatment the expression pattern of Notch target 

genes and quiescent related genes could also be recapitulated for in the vivo status. Thus 

hyper activation of Notch pathway regulated by Nf1 deletion could explain the aberrant 

behavior of muscle progenitors during development as well as in vitro cell culture. 

The effect of Nf1 deletion is the excessive activation of Delta-Notch signaling. However, the 

underlying mechanism  is still unclear. Previous literature has shown that in pancreatic cancer 

cells, activation of MEK/ERK signaling can promote the expression of the Notch target gene 

Hes1, and inhibition of the Notch pathway can block MEK/ERK-induced Hes1 expression. It 

suggests that the MEK/ERK signaling can positively regulate Notch signaling under this 
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biological background222. In human glioblastomas patients and established mouse models, it 

was observed that nitric oxide drives the activation of the Notch pathway via the cGMP/PKG 

signaling pathway. Loss of function experiments also showed that without NO production, 

Notch signaling was repressed in vivo, and the lifespan of the mouse model was also 

prolonged. The paper showed that NO/cGMP/PKG signaling promotes tumor cells in the 

perivascular niche to behave in a stem cell-like character157. NF1 patients always suffer from 

learning deficits because of neurological disabilities. The researchers showed that in Nf1 

mutant oligodendrocytes, excessive activation of MAPK signaling leads to an overproduction 

of nitric oxide, thus contribute to over activation of Notch signaling. In vivo mouse model, 

injections were used for pathway rescue experiments with single or combination of inhibitors 

(including MEKi, L-NAME, and GSI (DAPT)) to confirm the function of MAPK/NO/NOTCH 

signaling in neuronal cells121.  

GO analysis for RNAseq data from muscle progenitors showed profoundly enriched terms of 

cGMP/PKG signaling in Nf1Myf5 progenitors. As nitric oxide activates NO-guanylyl cyclase, 

which functions in increase synthesis of cGMP from GTP, thus activate PKG 

phosphotransferase activity and initiate a cascade of reactions, namely cGMP/PKG 

signaling223. With enriched cGMP/PKG signaling caused by Nf1 deletion, muscle progenitors 

might also be affected by nitric oxide. To test it, the in vitro progenitor cell culture model was 

used with the combination of Notch pathway activation (Jag1 treatment), ERK1/2 signaling 

repression (U0126 treatment), and nitric oxide production inhibition (LNAME treatment). Under 

the Notch pathway activation condition, ERK1/2 inhibitor can actively improve the myogenic 

differentiation of muscle progenitors and reduce their proliferative capacity, while reducing the 

expression of Pax7 and Notch target genes such as Hes1 and Hey1, suggesting the  

cooperative function of ERK signaling in Notch pathway activation in muscle progenitors. Block 

of nitric oxide production can also repressed the Notch target genes expression and promotes 

myogenic differentiation indicating nitric oxide also plays a role in Notch pathway activation. 

The Notch pathway is one of the fundamental signaling pathways in developmental and cancer 

research. In recent years, more and more research groups are paying attention to the role of 

the Notch pathway in metabolic regulation. Since the Notch pathway is always activated in 

stem cells and cancer cells, it always works with the state transitions of these cells224-227. The 

metabolic shift from oxidative phosphorylation to oxygen-independent glycolysis is a common 

phenomenon of tumor growth and invasion, known as the Warburg effect30. Studies have 

shown that both the inactivated and activated Notch pathway can induce glycolytic switch 

through PI3/AKT signaling or a p53 dependent pathway, respectively228. This conclusion 

reveals the role of the Notch pathway in the maintenance of energy homeostasis in breast 

cancer cells228. Also, it has been shown that for pre-T cells, activation of Notch also promotes 
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glycolysis through the PI3/AKT signaling pathway77. For neuronal cells, the literature showed 

that the Notch pathway might not regulate glycolysis at an early embryonic stage during 

zebrafish neuron development but positively regulates glucose transporter expression and 

negatively regulate Hk2 expression during late developmental stages. It means that the 

function of the Notch pathway for glycolysis regulation is highly environmentally dependent 

during development229. For mesenchymal progenitor cells, the Notch pathway represses 

glucose metabolism by down regulating glycolytic related genes, including Pfkfb 2,3,4, Eno 2,3, 

and Ldha. It also inhibits the expression of mitochondrial complex I component genes, such as 

Ndufaf2, Ndufc1, Ndufaf4, Ndufs5. Thus Notch pathway block differentiation ability of 

mesenchymal progenitors by controlling their metabolism230. Nf1 knockout in muscle 

progenitors leads to excessive activation of the Notch pathway and also at the same time with 

globally shut down of glucose metabolism, a phenomenon similar to that of mesenchymal 

progenitor cells230. For double-check, in vitro muscle progenitors culture with or without Jag1 

was used to detect the role of the Notch pathway for metabolic regulation in myogenesis 

context. Here, the data showed hyperactivation of the Notch pathway could repress glycolysis 

and oxidative phosphorylation genes expression also in muscle progenitors. 

Nf1Myf5 muscle progenitors showed a hyperactivation of the Delta-Notch pathway.  The next 

interesting point is if the Notch pathway gets blocked in vivo with a specific pathway inhibitor, 

then what will happen for these Nf1Myf5 muscle progenitors? To answer this question, firstly, a 

suitable Notch pathway inhibitor needs to be found. A large amount of Notch pathway inhibitors 

has been used in recent years, and some of them are just under clinical research231,232. The 

most promising Notch pathway targeted therapies were clinical treatment with γ-secretase 

inhibitors (GSIs), even though these inhibitors are none-specific and have off-target side 

effects233.  Almost all the adverse effects were Notch-mediated, and these could be conquered 

by dose-limiting and intermittent admiration234. Based on the published literature, one member 

of the GSIs family was chosen here, which was DAPT. DAPT has been widely used in Notch 

pathway research including for explant culture for presomitic mesoderm/early somite, somite, 

forelimb bud with DAPT to study the function of the Notch pathway in fate determination during 

cells migrate from the somite to the limb. It has been proved that the Notch pathway drives 

dermomyotomal progenitors to vascular instead of skeletal muscle fate in such early embryo 

development stage235. In vitro cell culture for fibro-adipogenic progenitors (FAPs) with DAPT 

showed that the Notch pathway negatively regulates FAPs differentiation both in vivo and in 

vitro but for FAPs isolated from MDX mice they are insensitive to Notch pathway236. iPSC cells 

generated from Duchenne muscular dystrophy patient induced into myoblast with DAPT 

treatment to inhibit the Notch pathway could induce robust and faster myogenic differentiation, 

which aligns with the function of the Notch pathway for stem cell maintaining237. DAPT was 
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also used for in vivo Notch pathway inhibition in the Duchenne Muscular Dystrophy mouse 

model, dystrophy/utrophin double knock out mice. With data showed stem cell pool depletion 

in patients and also mouse model caused by hyperactivation of the Notch pathway. Thus, 

DAPT was injected as an in vivo Notch inhibitor. Data showed for dKO mice Notch pathway 

inhibition led to down-regulation of Notch pathway-related genes, including Notch1/3, Hes1, 

Hey1. On the contrary, myogenesis genes for Pax7 and MyoD expression increased 

dramatically. Compared with the dKO mouse without DAPT, the satellite cells increased two 

times238.  

The problem that bothers is how to define the dosage and time point of these injections, as the 

function of the Delta-Notch pathway is always dosage-dependent. With DAPT injection, Notch 

pathway-related genes expression was decreased to a medium level, but not abrogated.  In 

line, the data showed that with DAPT injection, a strong increase of muscle progenitors was 

observed, and muscle progenitors proliferation rate was also increased. DAPT injection 

resulted in increased muscle fiber size and also mouse body weight and white adipose tissue 

weight. The quality of DAPT injected Nf1Myf5 mouse is much better than control animals. p21 

mouse was dissected for relevant analysis. In the future, if more mice could be used, the life 

span of these animals will be measured. Hopefully, longer survive time for DAPT injected mice 

could be observed.   

 

 

 Nf1 deletion lead to epigenetic modification status change. 

Nf1 knockout mice show severe metabolic related myopathy, which might be caused by the 

reduction of glucose glycolysis in muscle fibers and as compensation AMPK signaling induced 

fatty acid oxidative phosphorylation genes expression.  As the function of Nf1 in mature muscle 

tissue appears to be very limited according to its low expression, and no differences in 

MAPK/ERK signaling in Nf1Myf5 muscle. In addition, Nf1 deletion in muscle fiber with the Nf1HSA 

mouse model also showed no muscle phenotype148. Besides, a decreased glycolysis activity 

is also observed in Nf1 knockout muscle progenitors. Thus the myopathy caused by fiber type 

and metabolism change very likely is already lying down in muscle progenitors and further 

transmitted to muscle fibers. Thus epigenetic chromatin modification, including DNA and 

histone modification, as a persistence over cell generations (epigenetic memory) might be a 

possible mechanism.  

Methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic 

modification way, which typically reduces gene expression when located within a promoter or 

enhancer region239. DNA methyltransferase (DNMTs) and demethyltransferase (TETs) family 
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members mediate DNA methylation and demethylation activity. As the substrates of these 

enzymes are derived from cell metabolism, such as methyl-group is from glycolysis byproduct 

3-P-Glycerate initiated one-carbon cycle product SAM. Tet demethylation relies mainly on TCA 

cycle intermediate α-ketoglutarate9,240. Furthermore, DNA methylation is always considered as 

more stable during cell division241. Interestingly, in Nf1 deleted muscle progenitors, a global 

significantly increased expression of DNMTs family genes, including Dnmt1, Dnmt3a, and 

Dnmt3b were observed. It suggested that Nf1 knockout might drive a DNA methylation status 

change. To see global DNA methylation changes including myogenesis loci, MeDIP-Seq was 

performed. Globally increased DNA methylation was detected in Nf1Myf5 muscle progenitors. 

Hypermethylation of fast fiber specific gene Myosin light chain 1 (Myl1) and glycolysis activate 

gene 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 (Pfkfb1) in Nf1 knockout 

progenitors were noticed. The expression of both genes was commonly decreased in muscle 

progenitors as well as muscle fibers. Nf1Myf5 mice showed reduced fast fiber component genes 

expression and also glycolysis genes expression in mature muscle fibers, it suggested that 

these two genes might be the potential targets for further analysis. Previous DNA methylation 

analysis showed that it functions for the production of specific cell lineages during 

embryogenesis by downregulation of global gene expression. Demethylation for lineage 

differentiation genes drives the activation of lineages formation103,242. Under myogenesis 

context, early work has shown that during quiescent muscle stem cell activation, a reduction 

of TETs and DNMT3a and induction of DNMT1 isoforms was observed implied function of DNA 

methylation for satellite cells activation243. Compared with muscle progenitors, a dramatic 

decrease in the DNA hypermethylation in mature muscle fibers was noticed244-246. For 

epigenetic memory, researchers for the first time, reported that adult human skeletal muscle 

keeps an epigenetic memory of earlier muscle hypertrophy induced by acute and chronic 

anabolic stimulation. Seven weeks loading, seven weeks unloading, and seven weeks 

reloading was performed, gene expression and methylation profiling were analyzed. This 

resulted in a doubling of CpGs hypomethylation after reloading compared with earlier loading. 

AXIN1, GRIK2, CAMK4, TRAF1 might be the epigenetic memory genes during this process. 

However, these genes are mostly not well studied for muscle hypertrophy247. 

Except for DNA methylation analysis, as one of the best-studied histone modification markers, 

H3K27me3 was also analyzed with the chipmentation method. Data showed that Nf1 knockout 

leads to decreased H3K27me3 levels from both progenitors and muscle tissue. It was 

suggested that tumor necrosis factor alpha via P38 alpha activates EZH2, a component of 

polycomb repressive complex2 (PRC2). PRC2 deposits the repressive marker H3K27me3 on 

the Pax7 gene leading to a reduction of Pax7 expression, which is necessary for satellite cell 

differentiation and muscle regeneration205. Mice with EZH2 specifically knockout in satellite 
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cells showed a reduction of Pax7+ cells which is associated with the impaired proliferation in 

satellite cells and a postnatal skeletal muscle defects105. Jennifer M. Pell et al. also showed 

EZH2 is mainly required for the proliferation state of muscle satellite cells and there is no 

influence for terminal differentiation genes expression104. Liu et al. showed that compared with 

quiescent satellite cells, activated progenitors have a higher H3K27me3 level indicated a role 

of H3K27me3 on satellite cells activation106.  A global reduction of H3K27me3 expression in 

Nf1 deleted muscle progenitors also includes the decreased H3K27me3 enrichment around 

the transcription start site of stemness marker Pax7, the increased pax7 expression drive these 

progenitorss into a stronger quiescent status. 

In short, an epigenetic status change was detected in Nf1 deleted muscle progenitors. This 

change may contribute to decreased fast fiber specific gene (Myl1) and glycolysis activator 

gene (Pfkfb1) expression. It might also influence these two gene expressions once progenitors 

differentiated into myofibers. Besides, a decreased H3K27me3 level also match with the 

stronger quiescent signature in Nf1 deleted muscle progenitors.  
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6 Summary and outlook 

Summary 

The ultimate purpose of this project was to elucidate the function and underlying mechanism 

of neurofibromin I during postnatal skeletal muscle development. Neurofibromin I is a tumor 

suppressor protein that works as a GTPase activator (GAP) through negative regulate  the 

canonical Ras-MAPK-ERK signaling. Mutation of the Nf1 gene leads to a reduction of 

neurofibromin I, which causes an autochrosomal dominated genetic disorder named 

neurofibromatosis type I (NF1). Clinical features have been reported in NF1 patients, including 

pathological changes of the musculoskeletal system, particularly reduction of muscle mass 

and muscle strength. 

In this project, it is the first time that a muscle-specific Nf1 knock out mouse model was used 

for functional analysis of Nf1 during postnatal muscle development. Nf1Myf5 mice showed a 

gradual loss of muscle weight, which recapitulates the patient phenotype. Nf1 deletion in 

muscle progenitors leads to muscle stem cell pool depletion. Nf1/ERK/NO/Delta-Notch 

signaling is involved in the regulation of this phenotype. The results suggest that loss of Nf1 in 

muscle progenitors results in the hyper activation of Ras/ERK signaling, and ERK signaling via 

Nitric Oxide leads to a stronger stimulation of the Delta-Notch pathway. During early postnatal 

muscle development, activation of the Notch pathway drives progenitors out of cell cycle and 

go gradually to quiescent. For Nf1Myf5 muscle progenitors stronger Delta-Notch pathway 

contribute to the earlier transition of this process and satellite cell pool depletion. The quiescent 

signature of Nf1 deleted progenitors was identified from transcription of quiescent genes, 

reduction of glycolysis activity and also epigenetic change. 

Nf1 knockout mice showed a metabolism defect of glucose glycolysis and sever energy 

deficiency. As compensatory, energy sensor AMPK stimulated fatty acid oxidative 

phorsphorlyation which might through Pparg/Pgc1a signaling, accompanied by suppressed 

protein synthesis rate and increased the degradation process. In addition, a fiber type transition 

from fast to intermediate slow fibers was also detected. As Nf1 functions specifically before 

myoblasts differentiation. Thus the metabolic myopathy caused by Nf1 deletion should be 

generated from muscle progenitors. 

One possible explanation might be Nf1 deletion caused the epigenetic modification status 

change, in a certain way the change can be remembered by the nucleus of satellite cells even 

after they differentiated into mature muscle fibers. The reduction of glycolysis genes 
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expression in both progenitors and mature muscle fibers is a good indicator. However, a further 

intensive study still needs to be performed to find the potential target mechanism.  

Zusammenfassung 

Das Ziel dieses Projekts war die Aufklärung der Funktion und des zugrunde liegenden 

Mechanismus von Neurofibromin I während der postnatalen Skelettmuskelentwicklung. 

Neurofibromin I ist ein Tumor- Suppressor, der als GTPase-Aktivator (GAP) durch negative 

Regulierung des kanonischen Ras-MAPK-ERK- Signals wirkt. Eine Mutation des Nf1-Gens 

führt zu einer Reduktion von Neurofibromin I, was eine autosomal-dominante genetische 

Erkrankung namens Neurofibromatose Typ I (NF1) verursacht. NF1- Patienten zeigen 

verschiedene klinische Merkmale, darunter pathologische Veränderungen des 

Bewegungsapparats, insbesondere eine Verringerung der Muskelmasse und der Muskelkraft. 

In diesem Projekt wurde zum ersten Mal ein muskelspezifisches Nf1-Knock-out-Mausmodell 

für die Funktionsanalyse von Nf1 während der postnatalen Muskelentwicklung verwendet. 

Nf1Myf5-Mäuse zeigten einen allmählichen Verlust des Muskelgewichts, was den Phänotyp 

der Patientin rekapituliert. Die Nf1- Deletion in Muskelvorläuferzellen führt zu einer 

Erschöpfung des Muskelstammzell-Pools, was durch eine Dysregulation des 

Nf1/ERK/NO/Delta-Notch-Signalwegs verursacht wurde. Die Ergebnisse deuten darauf hin, 

dass der Verlust von Nf1 in den Muskelvorläuferzellen zu einer Überaktivierung des Ras/ERK-

Signals führt, und das ERK-Signal über NO führt zu einer stärkeren Stimulation des Delta-

Notch-Signalwegs. Während der frühen postnatalen Muskelentwicklung treibt die Aktivierung 

des Notch-Signalwegs die Vorläuferzellen aus dem Zellzyklus heraus und in die Quieszenz 

hinein. Bei den Nf1Myf5- Muskelvorläuferzellen zeigt sich eine gesteigerte Induktion dieses 

Prozesses, gezeigt durch Transkriptomanalyse, epigenetische Analyse und metabolische Flux 

Analyse, was schließlich zur Erschöpfung des Satellitenzell-Pools führt. 

Eine Transkriptomanalyse der Nf1-Knockout-Mäuse deutete einen Defekt der Glykolyse im 

Muskel an, gleichzeitig zeigten die Tiere Zeichen eines Energiemangels. Demgegenüber war 

der Fettsäuremetabolismus erhöht, zusammen mit erhöhtem Pparg/Pgc1a-Signaling. Eine 

Inhibition des mTOR Signalwegs ist der wahrscheinliche Grund für eine verringerte 

proteinsynthese. Zusätzlich wurde auch ein Fasertyp-Übergang von schnellen glycolytischen 

zu schnellen oxidativen Fasern festgestellt. Diese Defekte wurden jedoch nicht von einer 

Funktion von Nf1 im Muskel, sondern von seiner Funktion in Vorläuferzellen ausgelöst. Daher 

stellt diese Arbeit die Hypothese auf, dass die Nf1-Deletion in Vorläuferzellen eine 

epigenetische Veränderung verursachte, die nach der Differenzierung zu Muskelfasern 
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beibehalten wird. Der Mechanismus dieses epigenetischen Gedächtnisses muss in weiteren 

Studien identifiziert werden. 

Outlook 

With the energy production change for fatty acid oxidative phosphorylation, feed the Nf1Myf5 

animals with food rich for fatty acid will be tested to see the influence for life status. 

With MEK inhibitor injection there is no phenotype change in the mouse model of other lab. 

Notch signaling inhibitor might be used for clinical injection in the future. 

More stable epigenetic markers will be tested and the potential epigenetic memory target 

genes will be chosen for function analysis. 

The role of Nf1 in epigenetic modification will be explored. 

Inhibitors of epigenetic modification might be used on the Nf1Myf5 mouse model. 

 

 



References 

142 

 

7 References 

1 Thomson, D. M. The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and 
Regeneration. Int J Mol Sci 19, doi:10.3390/ijms19103125 (2018). 

2 Ryall, J. G. et al. The NAD(+)-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into 
Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell stem cell 16, 171-183, 
doi:10.1016/j.stem.2014.12.004 (2015). 

3 Chal, J. & Pourquié, O. Making muscle: skeletal myogenesisin vivoandin vitro. Development 
144, 2104-2122, doi:10.1242/dev.151035 (2017). 

4 Almeida, C. F., Fernandes, S. A., Ribeiro Junior, A. F., Keith Okamoto, O. & Vainzof, M. Muscle 
Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016, 1078686, 
doi:10.1155/2016/1078686 (2016). 

5 Dunning-Davies, B. M. & Parker, A. P. Annual review of children with neurofibromatosis type 
1. Arch Dis Child Educ Pract Ed 101, 102-111, doi:10.1136/archdischild-2014-308084 (2016). 

6 Bentzinger, C. F., von Maltzahn, J. & Rudnicki, M. A. Extrinsic regulation of satellite cell 
specification. Stem Cell Res Ther 1, 27, doi:10.1186/scrt27 (2010). 

7 Thomas, K., Engler, A. J. & Meyer, G. A. Extracellular matrix regulation in the muscle satellite 
cell niche. Connect Tissue Res 56, 1-8, doi:10.3109/03008207.2014.947369 (2015). 

8 Almada, A. E. & Wagers, A. J. Molecular circuitry of stem cell fate in skeletal muscle 
regeneration, ageing and disease. Nat Rev Mol Cell Biol 17, 267-279, doi:10.1038/nrm.2016.7 
(2016). 

9 Ryall, J. G. & Lynch, G. S. The molecular signature of muscle stem cells is driven by nutrient 
availability and innate cell metabolism. Curr Opin Clin Nutr Metab Care 21, 240-245, 
doi:10.1097/MCO.0000000000000472 (2018). 

10 Gros, J., Manceau, M., Thome, V. & Marcelle, C. A common somitic origin for embryonic muscle 
progenitors and satellite cells. Nature 435, 954-958, doi:10.1038/nature03572 (2005). 

11 Schienda, J. et al. Somitic origin of limb muscle satellite and side population cells. Proc Natl 
Acad Sci U S A 103, 945-950, doi:10.1073/pnas.0510164103 (2006). 

12 Hutcheson, D. A., Zhao, J., Merrell, A., Haldar, M. & Kardon, G. Embryonic and fetal limb 
myogenic cells are derived from developmentally distinct progenitors and have different 
requirements for beta-catenin. Genes Dev 23, 997-1013, doi:10.1101/gad.1769009 (2009). 

13 Murphy, M. & Kardon, G. Origin of vertebrate limb muscle: the role of progenitor and myoblast 
populations. Curr Top Dev Biol 96, 1-32, doi:10.1016/B978-0-12-385940-2.00001-2 (2011). 

14 Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M. A Pax3/Pax7-dependent population 
of skeletal muscle progenitor cells. Nature 435, 948-953, doi:10.1038/nature03594 (2005). 

15 Kassar-Duchossoy, L. et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-
mutant mice. Nature 431, 466-471, doi:10.1038/nature02924 (2004). 



References 

143 

 

16 Pownall, M. E., Gustafsson, M. K. & Emerson, C. P., Jr. Myogenic regulatory factors and the 
specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18, 747-783, 
doi:10.1146/annurev.cellbio.18.012502.105758 (2002). 

17 Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from 
the adult muscle satellite cell niche. Cell 122, 289-301, doi:10.1016/j.cell.2005.05.010 (2005). 

18 Biressi, S., Molinaro, M. & Cossu, G. Cellular heterogeneity during vertebrate skeletal muscle 
development. Dev Biol 308, 281-293, doi:10.1016/j.ydbio.2007.06.006 (2007). 

19 Sacks, L. D. et al. Regulation of myosin expression during myotome formation. Development 
130, 3391-3402, doi:10.1242/dev.00541 (2003). 

20 Messina, G. et al. Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 
140, 554-566, doi:10.1016/j.cell.2010.01.027 (2010). 

21 Schiaffino, S., Carlo Reggiani. Myosin isoforms in mammalian skeletal muscle. . J Appl Physiol 
77(2), 493-501 (1994). 

22 Richard, A. F. et al. Genesis of muscle fiber-type diversity during mouse embryogenesis relies 
on Six1 and Six4 gene expression. Dev Biol 359, 303-320, doi:10.1016/j.ydbio.2011.08.010 
(2011). 

23 Niro, C. et al. Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene 
program in the mouse primary myotome. Dev Biol 338, 168-182, 
doi:10.1016/j.ydbio.2009.11.031 (2010). 

24 Taglietti, V. et al. Nfix Induces a Switch in Sox6 Transcriptional Activity to Regulate MyHC-I 
Expression in Fetal Muscle. Cell reports 17, 2354-2366, doi:10.1016/j.celrep.2016.10.082 
(2016). 

25 Valéria Augusto, C. R. P. & Campos, G. E. R. Skeletal muscle fiber types in C57BL6J mice. Braz. 
J. morphol. Sci 21(2), 89-94 (2004). 

26 Agbulut, O., Noirez, P., Beaumont, F. & Butler-Browne, G. Myosin heavy chain isoforms in 
postnatal muscle development of mice. Biology of the Cell 95, 399-406, doi:10.1016/s0248-
4900(03)00087-x (2003). 

27 Michael H. Brooke, M., Kenneth K. Kaiser, Denver. Muscle Fiber Types: How Many and What 
Kind? Arch Neurol 23, 369-379 (1970). 

28 Talbot, J. & Maves, L. Skeletal muscle fiber type: using insights from muscle developmental 
biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip 
Rev Dev Biol 5, 518-534, doi:10.1002/wdev.230 (2016). 

29 Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol Rev 91, 1447-
1531, doi:10.1152/physrev.00031.2010 (2011). 

30 Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the 
metabolic requirements of cell proliferation. Science 324, 1029-1033, 
doi:10.1126/science.1160809 (2009). 

31 Mackrell, J. G., Arias, E. B. & Cartee, G. D. Fiber type-specific differences in glucose uptake by 
single fibers from skeletal muscles of 9- and 25-month-old rats. J Gerontol A Biol Sci Med Sci 
67, 1286-1294, doi:10.1093/gerona/gls194 (2012). 



References 

144 

 

32 Alvim, R. O., Cheuhen, M. R., Machado, S. R., Sousa, A. G. P. & Santos, P. C. J. L. General aspects 
of muscle glucose uptake. Anais da Academia Brasileira de Ciências 87, 351-368, 
doi:10.1590/0001-3765201520140225 (2015). 

33 Peter H. Albers, A. J. T. P., Jesper B. Birk, Dorte E. Kristensen, Birgitte F. Vind, Otto Baba, Jane 
Nøhr, Kurt Højlund, and Jørgen F.P. Wojtaszewski. Human Muscle Fiber Type– Specific Insulin 
Signaling: Impact of Obesity and Type 2 Diabetes. Diabetes 64, 485-497, doi:10.2337/db14-
0590/-/DC1 (2015). 

34 Ohlendieck, K. Proteomic Profiling of Fast-To-Slow Muscle Transitions during Aging. Front 
Physiol 2, 105, doi:10.3389/fphys.2011.00105 (2011). 

35 Cohen, S., Nathan, J. A. & Goldberg, A. L. Muscle wasting in disease: molecular mechanisms 
and promising therapies. Nat Rev Drug Discov 14, 58-74, doi:10.1038/nrd4467 (2015). 

36 Krag, T. O. et al. Differential Muscle Involvement in Mice and Humans Affected by McArdle 
Disease. J Neuropathol Exp Neurol 75, 441-454, doi:10.1093/jnen/nlw018 (2016). 

37 Real-Martinez, A. et al. Low survival rate and muscle fiber-dependent aging effects in the 
McArdle disease mouse model. Sci Rep 9, 5116, doi:10.1038/s41598-019-41414-8 (2019). 

38 White, R. B., Biérinx, A.-S., Gnocchi, V. F. & Zammit, P. S. Dynamics of muscle fibre growth 
during postnatal mouse development. BMC Developmental Biology 10, 21, doi:10.1186/1471-
213X-10-21 (2010). 

39 Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B. & Sandri, M. Mechanisms regulating skeletal 
muscle growth and atrophy. FEBS J 280, 4294-4314, doi:10.1111/febs.12253 (2013). 

40 Kelly, N. A. et al. Novel, high-intensity exercise prescription improves muscle mass, 
mitochondrial function, and physical capacity in individuals with Parkinson's disease. J Appl 
Physiol (1985) 116, 582-592, doi:10.1152/japplphysiol.01277.2013 (2014). 

41 Sue C. Bodine, T. N. S., Michael Gonzalez, William O. Kline, Gretchen L. Stover, Roy Bauerlein, 
Elizabeth Zlotchenko, Angus Scrimgeour, John C. Lawrence†, David J. Glass  and George D. 
Yancopoulos. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can 
prevent muscle atrophy in vivo. NATURE CELL BIOLOGY 3, 1014-1019 (2001). 

42 Huang, J. & Manning, B. D. The TSC1-TSC2 complex: a molecular switchboard controlling cell 
growth. Biochem J 412, 179-190, doi:10.1042/BJ20080281 (2008). 

43 Cai, S. L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane 
partitioning. J Cell Biol 173, 279-289, doi:10.1083/jcb.200507119 (2006). 

44 Glass, D. J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 
37, 1974-1984, doi:10.1016/j.biocel.2005.04.018 (2005). 

45 Bentzinger, C. F. et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes 
metabolic changes and results in muscle dystrophy. Cell Metab 8, 411-424, 
doi:10.1016/j.cmet.2008.10.002 (2008). 

46 Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-
1α transcriptional complex. Nature 450, 736-740, doi:10.1038/nature06322 (2007). 



References 

145 

 

47 Dutchak, P. A. et al. Loss of a Negative Regulator of mTORC1 Induces Aerobic Glycolysis and 
Altered Fiber Composition in Skeletal Muscle. Cell Rep 23, 1907-1914, 
doi:10.1016/j.celrep.2018.04.058 (2018). 

48 Mounier, R. et al. Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10, 
2640-2646, doi:10.4161/cc.10.16.17102 (2011). 

49 Tobias, I. S. et al. Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: 
advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 124, 840-849, 
doi:10.1152/japplphysiol.00894.2017 (2018). 

50 Wim Derave, H. A., Jacob Ihlemann, Lee A. Witters, Søren Kristiansen, Erik A. Richter, and 
Thorkil Ploug. Dissociation of AMP-Activated Protein Kinase Activation and Glucose Transport 
in Contracting Slow-Twitch Muscle. DIABETES 49, 1281-1287 (2000 ). 

51 Long, Y. C. & Zierath, J. R. AMP-activated protein kinase signaling in metabolic regulation. J Clin 
Invest 116, 1776-1783, doi:10.1172/JCI29044 (2006). 

52 Bonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis Model 
Mech 6, 25-39, doi:10.1242/dmm.010389 (2013). 

53 Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome 
pathway in normal and disease states. J Am Soc Nephrol 17, 1807-1819, 
doi:10.1681/ASN.2006010083 (2006). 

54 Bodine, S. C. & Baehr, L. M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and 
MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307, E469-484, 
doi:10.1152/ajpendo.00204.2014 (2014). 

55 Tintignac, L. A. et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol 
Chem 280, 2847-2856, doi:10.1074/jbc.M411346200 (2005). 

56 Jogo, M., Shiraishi, S. & Tamura, T. A. Identification of MAFbx as a myogenin-engaged F-box 
protein in SCF ubiquitin ligase. FEBS Lett 583, 2715-2719, doi:10.1016/j.febslet.2009.07.033 
(2009). 

57 Macpherson, P. C., Wang, X. & Goldman, D. Myogenin regulates denervation-dependent 
muscle atrophy in mouse soleus muscle. J Cell Biochem 112, 2149-2159, 
doi:10.1002/jcb.23136 (2011). 

58 Foletta, V. C., White, L. J., Larsen, A. E., Leger, B. & Russell, A. P. The role and regulation of 
MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461, 325-335, 
doi:10.1007/s00424-010-0919-9 (2011). 

59 Mauro, A. Satellite cells of skeletal muscle fibres. J Biophys Biochem Cyto (1961). 

60 Marino, S. & Di Foggia, V. Invited Review: Polycomb group genes in the regeneration of the 
healthy and pathological skeletal muscle. Neuropathol Appl Neurobiol 42, 407-422, 
doi:10.1111/nan.12290 (2016). 

61 Mclennan, M. Z. a. I. During Secondary Myotube Formation, Primary Myotubes Preferentially 
Absorb New Nuclei at Their Ends. DEVELOPMENTAL DYNAMICS (1995). 

62 Relaix, F. & Zammit, P. S. Satellite cells are essential for skeletal muscle regeneration: the cell 
on the edge returns centre stage. Development 139, 2845, doi:10.1242/dev.069088 (2012). 



References 

146 

 

63 Kanisicak, O., Mendez, J. J., Yamamoto, S., Yamamoto, M. & Goldhamer, D. J. Progenitors of 
skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol 332, 
131-141, doi:10.1016/j.ydbio.2009.05.554 (2009). 

64 Vasyutina, E. et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to 
generate satellite cells. Proc Natl Acad Sci U S A 104, 4443-4448, 
doi:10.1073/pnas.0610647104 (2007). 

65 Zalc, A. et al. Antagonistic regulation of p57(kip2) by Hes/Hey downstream of Notch signaling 
and muscle regulatory factors regulates skeletal muscle growth arrest. Development 
(Cambridge, England) 141, 2780-2790, doi:10.1242/dev.110155 (2014). 

66 Kim, J. H. et al. Sex hormones establish a reserve pool of adult muscle stem cells. Nat Cell Biol 
18, 930-940, doi:10.1038/ncb3401 (2016). 

67 Bjornson, C. R. R. et al. Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle 
Stem Cells. Stem Cells 30, 232-242, doi:10.1002/stem.773 (2012). 

68 Mourikis, P. et al. A critical requirement for notch signaling in maintenance of the quiescent 
skeletal muscle stem cell state. Stem Cells 30, 243-252, doi:10.1002/stem.775 (2012). 

69 Wen, Y. et al. Constitutive Notch Activation Upregulates Pax7 and Promotes the Self-Renewal 
of Skeletal Muscle Satellite Cells. Molecular and Cellular Biology 32, 2300-2311, 
doi:10.1128/mcb.06753-11 (2012). 

70 Rando, I. M. C. a. T. A. The Regulation of Notch Signaling Controls Satellite Cell Activation and 
Cell Fate Determination in Postnatal Myogenesis. Developmental Cell 3, 397-409 (2002). 

71 Giaimo, B. D., Oswald, F. & Borggrefe, T. Dynamic chromatin regulation at Notch target genes. 
Transcription 8, 61-66, doi:10.1080/21541264.2016.1265702 (2017). 

72 Noguchi, Y. T. et al. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem 
cells: HeyL requires Hes1 to bind diverse DNA sites. Development 146, 
doi:10.1242/dev.163618 (2019). 

73 Fukada, S. et al. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite 
cells and to maintain satellite cell numbers. Development 138, 4609-4619, 
doi:10.1242/dev.067165 (2011). 

74 Lahmann, I. et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of 
activated muscle stem cells. Genes Dev 33, 524-535, doi:10.1101/gad.322818.118 (2019). 

75 Slaninova, V. et al. Notch stimulates growth by direct regulation of genes involved in the 
control of glycolysis and the tricarboxylic acid cycle. Open Biol 6, 150155, 
doi:10.1098/rsob.150155 (2016). 

76 Bi, P. & Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 
26, 248-255, doi:10.1016/j.tem.2015.02.006 (2015). 

77 Ciofani, M. & Zuniga-Pflucker, J. C. Notch promotes survival of pre-T cells at the beta-selection 
checkpoint by regulating cellular metabolism. Nat Immunol 6, 881-888, doi:10.1038/ni1234 
(2005). 

78 Hausburg, M. A. et al. Post-transcriptional regulation of satellite cell quiescence by TTP-
mediated mRNA decay. Elife 4, e03390, doi:10.7554/eLife.03390 (2015). 



References 

147 

 

79 Crist, C. G., Montarras, D. & Buckingham, M. Muscle satellite cells are primed for myogenesis 
but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP 
granules. Cell Stem Cell 11, 118-126, doi:10.1016/j.stem.2012.03.011 (2012). 

80 Chakkalakal, J. V. et al. Early forming label-retaining muscle stem cells require p27kip1 for 
maintenance of the primitive state. Development 141, 1649-1659, doi:10.1242/dev.100842 
(2014). 

81 Zhang, K., Sha, J. & Harter, M. L. Activation of Cdc6 by MyoD is associated with the expansion 
of quiescent myogenic satellite cells. J Cell Biol 188, 39-48, doi:10.1083/jcb.200904144 (2010). 

82 Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-
renewal in skeletal muscle of aged mice. Nat Med 20, 265-271, doi:10.1038/nm.3465 (2014). 

83 Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. 
Nature 506, 316-321, doi:10.1038/nature13013 (2014). 

84 Kawabe, Y., Wang, Y. X., McKinnell, I. W., Bedford, M. T. & Rudnicki, M. A. Carm1 regulates 
Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell 
divisions. Cell Stem Cell 11, 333-345, doi:10.1016/j.stem.2012.07.001 (2012). 

85 Correra, R. M. et al. The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite 
cell metabolic state, and self-renewal. Sci Rep 8, 14649, doi:10.1038/s41598-018-32941-x 
(2018). 

86 Buckingham, M. Skeletal muscle progenitor cells and the role of Pax genes. C R Biol 330, 530-
533, doi:10.1016/j.crvi.2007.03.015 (2007). 

87 Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment 
of satellite stem cells in muscle. Cell 129, 999-1010, doi:10.1016/j.cell.2007.03.044 (2007). 

88 Biressi, S. et al. Myf5 expression during fetal myogenesis defines the developmental 
progenitors of adult satellite cells. Dev Biol 379, 195-207, doi:10.1016/j.ydbio.2013.04.021 
(2013). 

89 Gunther, S. et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term 
maintenance of adult muscle stem cells. Cell Stem Cell 13, 590-601, 
doi:10.1016/j.stem.2013.07.016 (2013). 

90 Scaramozza, A. et al. Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable 
of Clonal Expansion under Stress. Cell Stem Cell 24, 944-957 e945, 
doi:10.1016/j.stem.2019.03.020 (2019). 

91 Der Vartanian, A. et al. PAX3 Confers Functional Heterogeneity in Skeletal Muscle Stem Cell 
Responses to Environmental Stress. Cell Stem Cell 24, 958-973 e959, 
doi:10.1016/j.stem.2019.03.019 (2019). 

92 Motohashi, N. & Asakura, A. Muscle satellite cell heterogeneity and self-renewal. Front Cell 
Dev Biol 2, 1, doi:10.3389/fcell.2014.00001 (2014). 

93 Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction 
enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515-519, 
doi:10.1016/j.stem.2012.04.002 (2012). 



References 

148 

 

94 Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075-1079, 
doi:10.1038/nature04957 (2006). 

95 Tierney, M. T. et al. Autonomous Extracellular Matrix Remodeling Controls a Progressive 
Adaptation in Muscle Stem Cell Regenerative Capacity during Development. Cell Rep 14, 1940-
1952, doi:10.1016/j.celrep.2016.01.072 (2016). 

96 Aguilar, C. A. et al. Transcriptional and Chromatin Dynamics of Muscle Regeneration after 
Severe Trauma. Stem Cell Reports, doi:10.1016/j.stemcr.2016.09.009 (2016). 

97 Lukjanenko, L. et al. Loss of fibronectin from the aged stem cell niche affects the regenerative 
capacity of skeletal muscle in mice. Nat Med 22, 897-905, doi:10.1038/nm.4126 (2016). 

98 Bentzinger, C. F. et al. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell 
Stem Cell 12, 75-87, doi:10.1016/j.stem.2012.09.015 (2013). 

99 Flamini, V. et al. The Satellite Cell Niche Regulates the Balance between Myoblast 
Differentiation and Self-Renewal via p53. Stem Cell Reports 10, 970-983, 
doi:10.1016/j.stemcr.2018.01.007 (2018). 

100 Baghdadi, M. B. et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem 
cells in their niche. Nature 557, 714-718, doi:10.1038/s41586-018-0144-9 (2018). 

101 Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of 
epigenetics. Genes Dev 23, 781-783, doi:10.1101/gad.1787609 (2009). 

102 Esteller, M. Epigenetics in evolution and disease. Lancet 372, S90-S96 (2008). 

103 Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 
301, 798-802, doi:10.1126/science.1086887 (2003). 

104 Woodhouse, S., Pugazhendhi, D., Brien, P. & Pell, J. M. Ezh2 maintains a key phase of muscle 
satellite cell expansion but does not regulate terminal differentiation. J Cell Sci 126, 565-579, 
doi:10.1242/jcs.114843 (2013). 

105 Juan, A. H. et al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional 
identity of skeletal muscle stem cells. Genes Dev 25, 789-794, doi:10.1101/gad.2027911 
(2011). 

106 Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and 
chronological aging. Cell Rep 4, 189-204, doi:10.1016/j.celrep.2013.05.043 (2013). 

107 Boonsanay, V. et al. Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-
Dependent Facultative Heterochromatin Formation. Cell Stem Cell 18, 229-242, 
doi:10.1016/j.stem.2015.11.002 (2016). 

108 Blum, R., Vethantham, V., Bowman, C., Rudnicki, M. & Dynlacht, B. D. Genome-wide 
identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26, 2763-2779, 
doi:10.1101/gad.200113.112 (2012). 

109 Shen, H., Xu, W. & Lan, F. Histone lysine demethylases in mammalian embryonic development. 
Exp Mol Med 49, e325, doi:10.1038/emm.2017.57 (2017). 

110 Chatterjee, A. et al. MOF Acetyl Transferase Regulates Transcription and Respiration in 
Mitochondria. Cell 167, 722-738 e723, doi:10.1016/j.cell.2016.09.052 (2016). 



References 

149 

 

111 Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell 
cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49-61, 
doi:10.1016/j.stem.2012.10.011 (2013). 

112 Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required 
for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62-74, 
doi:10.1016/j.stem.2012.11.022 (2013). 

113 Ryall, James G. et al. The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch 
into Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell Stem Cell 16, 171-183, 
doi:10.1016/j.stem.2014.12.004 (2015). 

114 Machado, L. et al. In Situ Fixation Redefines Quiescence and Early Activation of Skeletal Muscle 
Stem Cells. Cell Rep 21, 1982-1993, doi:10.1016/j.celrep.2017.10.080 (2017). 

115 Shen, L. et al. Genome-wide landscape of DNA methylomes and their relationship with mRNA 
and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep 6, 32186, 
doi:10.1038/srep32186 (2016). 

116 Lufen Chang, M. K. Mammalian MAP kinase signaling cascades. Nature (2001). 

117 Chen, G., Hitomi, M., Han, J. & Stacey, D. W. The p38 pathway provides negative feedback for 
Ras proliferative signaling. The Journal of biological chemistry 275, 38973-38980, 
doi:10.1074/jbc.M002856200 (2000). 

118 Kondoh, K., Sunadome, K. & Nishida, E. Notch signaling suppresses p38 MAPK activity via 
induction of MKP-1 in myogenesis. The Journal of biological chemistry 282, 3058-3065, 
doi:10.1074/jbc.M607630200 (2007). 

119 Ozawa, T. et al. The neurofibromatosis type 1 gene product neurofibromin enhances cell 
motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol 
Chem 280, 39524-39533, doi:10.1074/jbc.M503707200 (2005). 

120 Hurlbut, G. D., Kankel, M. W. & Artavanis-Tsakonas, S. Nodal points and complexity of Notch-
Ras signal integration. Proceedings of the National Academy of Sciences of the United States 
of America 106, 2218-2223, doi:10.1073/pnas.0812024106 (2009). 

121 Lopez-Juarez, A. et al. Oligodendrocyte Nf1 Controls Aberrant Notch Activation and Regulates 
Myelin Structure and Behavior. Cell reports 19, 545-557, doi:10.1016/j.celrep.2017.03.073 
(2017). 

122 De Raedt, T. et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-
based therapies. Nature 514, 247-251, doi:10.1038/nature13561 (2014). 

123 Diggs-Andrews, K. A. et al. Sex Is a major determinant of neuronal dysfunction in 
neurofibromatosis type 1. Ann Neurol 75, 309-316, doi:10.1002/ana.24093 (2014). 

124 Cornett, K. M., North, K. N., Rose, K. J. & Burns, J. Muscle weakness in children with 
neurofibromatosis type 1. Dev Med Child Neurol 57, 733-736, doi:10.1111/dmcn.12777 
(2015). 

125 Kossler, N. et al. Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol 
Genet 20, 2697-2709, doi:10.1093/hmg/ddr149 (2011). 



References 

150 

 

126 Sullivan, K. et al. NF1 is a critical regulator of muscle development and metabolism. Hum Mol 
Genet 23, 1250-1259, doi:10.1093/hmg/ddt515 (2014). 

127 Zhu, Y. et al. Ablation of NF1 function in neurons induces abnormal development of cerebral 
cortex and reactive gliosis in the brain. Genes Dev 15, 859-876, doi:10.1101/gad.862101 
(2001). 

128 Michelle D, T., Karin E, W., Hellström., M. & Soriano., P. Early myotome specification regulates 
PDGFA expression and axial skeleton development. Dev.Camb.Engl 127, 5059-5070 (2000). 

129 Pierre Miniou, D. T., Tony Frugier, Natacha Roblot, Marianne Le Meur and Judith Melki*. Gene 
targeting restricted to mouse striated muscle lineage. Oxford University Press 27 (1999). 

130 Gromova, A., Tierney, M. T. & Sacco, A. FACS-based Satellite Cell Isolation From Mouse Hind 
Limb Muscles. Bio-protocol 5, e1558, doi:10.21769/BioProtoc.1558 (2015). 

131 Ly, C. H. & Ryall, J. G. in Skeletal Muscle Development   (ed James G. Ryall)  61-73 (Springer 
New York, 2017). 

132 Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input 
ChIP-seq for histones and transcription factors. Nat Methods 12, 963-965, 
doi:10.1038/nmeth.3542 (2015). 

133 Pawlikowski, B., Pulliam, C., Betta, N. D., Kardon, G. & Olwin, B. B. Pervasive satellite cell 
contribution to uninjured adult muscle fibers. Skelet Muscle 5, 42, doi:10.1186/s13395-015-
0067-1 (2015). 

134 Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967, 
doi:10.1038/nature07182 (2008). 

135 Lynch, C. J., Xu, Y., Hajnal, A., Salzberg, A. C. & Kawasawa, Y. I. RNA sequencing reveals a slow 
to fast muscle fiber type transition after olanzapine infusion in rats. PLoS One 10, e0123966, 
doi:10.1371/journal.pone.0123966 (2015). 

136 Francesco Zurlo, K. L., Clifton Bogardus, and Eric Ravussin. Skeletal Muscle Metabolism Is a 
Major Determinant of Resting Energy Expenditure. Journal of Clinical Investigation 86, 1423-
1427 (1990). 

137 Munoz-Canoves, P., Scheele, C., Pedersen, B. K. & Serrano, A. L. Interleukin-6 myokine signaling 
in skeletal muscle: a double-edged sword? FEBS J 280, 4131-4148, doi:10.1111/febs.12338 
(2013). 

138 Richter, E. A. & Ruderman, N. B. AMPK and the biochemistry of exercise: implications for 
human health and disease. Biochem J 418, 261-275, doi:10.1042/BJ20082055 (2009). 

139 Jiandie Lin, H. W., Paul T. Tarr, Chen-Yu Zhang, Zhidan Wu, Olivier Boss, Laura F. Michael, Pere 
Puigserver, Eiji Isotani, Eric N. Olson, & Bradford B. Lowell, R. B.-D., Bruce M. Spiegelman. 
Transcriptional co-activator PGC-1a drives the formation of slow twitch muscle fibres. Nature 
418, 797-801, doi:10.1038/nature00936 (2002). 

140 Zhang, L. et al. Skeletal Muscle-Specific Overexpression of PGC-1alpha Induces Fiber-Type 
Conversion through Enhanced Mitochondrial Respiration and Fatty Acid Oxidation in Mice and 
Pigs. Int J Biol Sci 13, 1152-1162, doi:10.7150/ijbs.20132 (2017). 



References 

151 

 

141 Phua, W. W. T., Wong, M. X. Y., Liao, Z. & Tan, N. S. An aPPARent Functional Consequence in 
Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 19, 
doi:10.3390/ijms19051425 (2018). 

142 Norris, A. W. et al. Muscle-specific PPARγ-deficient mice develop increased adiposity and 
insulin resistance but respond to thiazolidinediones. Journal of Clinical Investigation 112, 608-
618, doi:10.1172/jci17305 (2003). 

143 Mary C. SUGDEN, M. J. H., Rachel M. HOWARD. Changes in lipoprotein lipase activities in 
adipose tisue,heart and skeletal muscle during continuous or interrupted feeding. Biochem. J. 
292, 113-119 (1993). 

144 Amin, R. H., Mathews, S. T., Camp, H. S., Ding, L. & Leff, T. Selective activation of PPARgamma 
in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-
induced insulin resistance. Am J Physiol Endocrinol Metab 298, E28-37, 
doi:10.1152/ajpendo.00446.2009 (2010). 

145 Medina-Gomez, G. et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue 
expandability and peripheral lipid metabolism. PLoS Genet 3, e64, 
doi:10.1371/journal.pgen.0030064 (2007). 

146 Sanchez-Ortiz, E. et al. NF1 regulation of RAS/ERK signaling is required for appropriate granule 
neuron progenitor expansion and migration in cerebellar development. Genes Dev 28, 2407-
2420, doi:10.1101/gad.246603.114 (2014). 

147 Chen, Y. H., Gianino, S. M. & Gutmann, D. H. Neurofibromatosis-1 regulation of neural stem 
cell proliferation and multilineage differentiation operates through distinct RAS effector 
pathways. Genes Dev 29, 1677-1682, doi:10.1101/gad.261677.115 (2015). 

148 Grohmann, J. The role of the tumour suppressor Nf1 in growth and metabolism of skeletal 
muscle cells, Technische Universität Berlin, (2014). 

149 Summers, M. A., Mikulec, K., Peacock, L., Little, D. G. & Schindeler, A. Limitations of the Pax7-
creER(T2) transgene for driving deletion of Nf1 in adult mouse muscle. Int J Dev Biol 61, 531-
536, doi:10.1387/ijdb.170182as (2017). 

150 Liu, L., Cheung, T. H., Charville, G. W. & Rando, T. A. Isolation of skeletal muscle stem cells by 
fluorescence-activated cell sorting. Nat Protoc 10, 1612-1624, doi:10.1038/nprot.2015.110 
(2015). 

151 Mourikis, P., Gopalakrishnan, S., Sambasivan, R. & Tajbakhsh, S. Cell-autonomous Notch 
activity maintains the temporal specification potential of skeletal muscle stem cells. 
Development 139, 4536-4548, doi:10.1242/dev.084756 (2012). 

152 Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 
to GAlert. Nature 510, 393-396, doi:10.1038/nature13255 (2014). 

153 Jones NC1, F. Y., Rosenthal RS, Olwin BB. ERK1/2 is required for myoblast proliferation but is 
dispensable for muscle gene expression and cell fusion. J Cell Physiol 186, 104-115 (2001). 

154 Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: A dynamic microenvironment for 
stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects 1840, 2506-2519, 
doi:10.1016/j.bbagen.2014.01.010 (2014). 



References 

152 

 

155 Ryall, J. G. Metabolic reprogramming as a novel regulator of skeletal muscle development and 
regeneration. FEBS J 280, 4004-4013, doi:10.1111/febs.12189 (2013). 

156 Carreira, B. P. et al. Differential contribution of the guanylyl cyclase-cyclic GMP-protein kinase 
G pathway to the proliferation of neural stem cells stimulated by nitric oxide. Neurosignals 21, 
1-13, doi:10.1159/000332811 (2013). 

157 Charles, N. et al. Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like 
Character in PDGF-Induced Glioma Cells. Cell Stem Cell 6, 141-152, 
doi:10.1016/j.stem.2010.01.001 (2010). 

158 Wozniak, A. C. & Anderson, J. E. Nitric oxide-dependence of satellite stem cell activation and 
quiescence on normal skeletal muscle fibers. Dev Dyn 236, 240-250, doi:10.1002/dvdy.21012 
(2007). 

159 Kossler, N. et al. Neurofibromin (Nf1) is required for skeletal muscle development. Human 
Molecular Genetics 20, 2697-2709, doi:10.1093/hmg/ddr149 (2011). 

160 Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a 
Prxl enhancer. Genesis 33, 77-80, doi:10.1002/gene.10092 (2002). 

161 Sieber, M. A. et al. Lbx1 acts as a selector gene in the fate determination of somatosensory 
and viscerosensory relay neurons in the hindbrain. J Neurosci 27, 4902-4909, 
doi:10.1523/JNEUROSCI.0717-07.2007 (2007). 

162 Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat 
Commun 6, 7087, doi:10.1038/ncomms8087 (2015). 

163 Tonks, A. M. B. a. N. K. Regulation of Distinct Stages of Skeletal Muscle Differentiation by 
Mitogen-Activated Protein Kinases. Science 278, 4 (1997). 

164 Gutmann, D. H., Parada, L. F., Silva, A. J. & Ratner, N. Neurofibromatosis type 1: modeling CNS 
dysfunction. J Neurosci 32, 14087-14093, doi:10.1523/JNEUROSCI.3242-12.2012 (2012). 

165 An, Y. et al. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells 
and Brown Adipocytes. Developmental Cell 41, 382-391.e385, 
doi:10.1016/j.devcel.2017.04.012 (2017). 

166 Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy 
in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282, 30014-30021, 
doi:10.1074/jbc.M704817200 (2007). 

167 N., H. Muscle fibre types: their role in health, disease and as therapeutic targets. OA Biology 
01, 7 (2013). 

168 Oberbach A, B. Y., Lehmann S, Niebauer J, Adams V, Paschke R. Altered fiber distribution and 
fiber-specific glycolytic and oxidative enzyme activ- ity in skeletal mus. Diabetes Care 29, 5 
(2006). 

169 BergstrÖM, J. H., Eric. Muscle Glycogen Synthesis after Exercise : an Enhancing Factor localized 
to the Muscle Cells in Man. Nature 210, 309-310, doi:10.1038/210309a0 (1966). 

170 Zierath, J. R. & Hawley, J. A. Skeletal muscle fiber type: influence on contractile and metabolic 
properties. PLoS Biol 2, e348, doi:10.1371/journal.pbio.0020348 (2004). 



References 

153 

 

171 Reubin Anders, G. C., Kenneth L.Zierler. The quantitatively minor role of carbohydrate in 
oxidative metabolism by skeletal muscle in intact man in the basal state. Measurment of 
oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin 
Invest. 35, 671-682 (1956). 

172 Chandrasekera, P. C. & Pippin, J. J. Of rodents and men: species-specific glucose regulation and 
type 2 diabetes research. ALTEX 31, 157-176, doi:10.14573/altex.1309231 (2014). 

173 Liu, M. et al. Liver Plays a Major Role in FGF-21 Mediated Glucose Homeostasis. Cell Physiol 
Biochem 45, 1423-1433, doi:10.1159/000487568 (2018). 

174 Goldberg, I. J., Eckel, R. H. & Abumrad, N. A. Regulation of fatty acid uptake into tissues: 
lipoprotein lipase- and CD36-mediated pathways. J Lipid Res 50 Suppl, S86-90, 
doi:10.1194/jlr.R800085-JLR200 (2009). 

175 Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) 
action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 
104, 12017-12022, doi:10.1073/pnas.0705070104 (2007). 

176 Kishton, R. J. et al. AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to 
Control T-ALL Cell Stress and Survival. Cell Metab 23, 649-662, doi:10.1016/j.cmet.2016.03.008 
(2016). 

177 Jung, S. & Kim, K. Exercise-induced PGC-1alpha transcriptional factors in skeletal muscle. Integr 
Med Res 3, 155-160, doi:10.1016/j.imr.2014.09.004 (2014). 

178 Lindqvist, L. M., Tandoc, K., Topisirovic, I. & Furic, L. Cross-talk between protein synthesis, 
energy metabolism and autophagy in cancer. Curr Opin Genet Dev 48, 104-111, 
doi:10.1016/j.gde.2017.11.003 (2018). 

179 Jorgensen, S. B., Richter, E. A. & Wojtaszewski, J. F. Role of AMPK in skeletal muscle metabolic 
regulation and adaptation in relation to exercise. J Physiol 574, 17-31, 
doi:10.1113/jphysiol.2006.109942 (2006). 

180 Lin, S. S. & Liu, Y. W. Mechanical Stretch Induces mTOR Recruitment and Activation at the 
Phosphatidic Acid-Enriched Macropinosome in Muscle Cell. Front Cell Dev Biol 7, 78, 
doi:10.3389/fcell.2019.00078 (2019). 

181 Castets, P. et al. mTORC1 and PKB/Akt control the muscle response to denervation by 
regulating autophagy and HDAC4. Nat Commun 10, 3187, doi:10.1038/s41467-019-11227-4 
(2019). 

182 Rion, N. et al. mTOR controls embryonic and adult myogenesis via mTORC1. Development 146, 
doi:10.1242/dev.172460 (2019). 

183 Thomson, D. M., Fick, C. A. & Gordon, S. E. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 
signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J 
Appl Physiol (1985) 104, 625-632, doi:10.1152/japplphysiol.00915.2007 (2008). 

184 Bodine, S. C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and 
can prevent muscle atrophy in vivo. Nature Cell Biology 3, 1014-1019, doi:10.1038/ncb1101-
1014 (2001). 



References 

154 

 

185 Haston, S. et al. MAPK pathway control of stem cell proliferation and differentiation in the 
embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. 
Development 144, 2141-2152, doi:10.1242/dev.150490 (2017). 

186 Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB 
pathway: insights from genetic models. Skeletal Muscle 1, 4, doi:10.1186/2044-5040-1-4 
(2011). 

187 Boyer, J. G. et al. ERK1/2 signaling induces skeletal muscle slow fiber-type switching and 
reduces muscular dystrophy disease severity. JCI Insight 5, doi:10.1172/jci.insight.127356 
(2019). 

188 Slack, C. Ras signaling in aging and metabolic regulation. Nutr Healthy Aging 4, 195-205, 
doi:10.3233/NHA-160021 (2017). 

189 Katz, M., Amit, I. & Yarden, Y. Regulation of MAPKs by growth factors and receptor tyrosine 
kinases. Biochim Biophys Acta 1773, 1161-1176, doi:10.1016/j.bbamcr.2007.01.002 (2007). 

190 Elia, D., Madhala, D., Ardon, E., Reshef, R. & Halevy, O. Sonic hedgehog promotes proliferation 
and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. 
Biochim Biophys Acta 1773, 1438-1446, doi:10.1016/j.bbamcr.2007.06.006 (2007). 

191 Yang, J., Zhang, X., Wang, W. & Liu, J. Insulin stimulates osteoblast proliferation and 
differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 28, 334-341, 
doi:10.1002/cbf.1668 (2010). 

192 Michailovici, I. et al. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle 
stem/progenitor cells. Development 141, 2611-2620, doi:10.1242/dev.107078 (2014). 

193 Griger, J. et al. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. Elife 6, 
doi:10.7554/eLife.21552 (2017). 

194 Zhang, P. et al. mTOR is necessary for proper satellite cell activity and skeletal muscle 
regeneration. Biochem Biophys Res Commun 463, 102-108, doi:10.1016/j.bbrc.2015.05.032 
(2015). 

195 Meng, D., Frank, A. R. & Jewell, J. L. mTOR signaling in stem and progenitor cells. Development 
145, doi:10.1242/dev.152595 (2018). 

196 Ma, X., Chen, H. & Chen, L. A dual role of Erk signaling in embryonic stem cells. Exp Hematol 
44, 151-156, doi:10.1016/j.exphem.2015.12.008 (2016). 

197 Dai, J., Bercury, K. K. & Macklin, W. B. Interaction of mTOR and Erk1/2 signaling to regulate 
oligodendrocyte differentiation. Glia 62, 2096-2109, doi:10.1002/glia.22729 (2014). 

198 Zhang, W. et al. Aurora-A/ERK1/2/mTOR axis promotes tumor progression in triple-negative 
breast cancer and dual-targeting Aurora-A/mTOR shows synthetic lethality. Cell Death Dis 10, 
606, doi:10.1038/s41419-019-1855-z (2019). 

199 Wang, Y., Zhu, L., Kuokkanen, S. & Pollard, J. W. Activation of protein synthesis in mouse 
uterine epithelial cells by estradiol-17beta is mediated by a PKC-ERK1/2-mTOR signaling 
pathway. Proc Natl Acad Sci U S A 112, E1382-1391, doi:10.1073/pnas.1418973112 (2015). 



References 

155 

 

200 Sunayama, J. et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the 
maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 28, 
1930-1939, doi:10.1002/stem.521 (2010). 

201 Bajard, L. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly 
activates Myf5 in muscle progenitor cells in the limb. Genes & Development 20, 2450-2464, 
doi:10.1101/gad.382806 (2006). 

202 Darabi, R. et al. Assessment of the Myogenic Stem Cell Compartment Following 
Transplantation ofPax3/Pax7-Induced Embryonic Stem Cell-Derived Progenitors. Stem Cells 
29, 777-790, doi:10.1002/stem.625 (2011). 

203 Le Grand, F., Jones, A. E., Seale, V., Scime, A. & Rudnicki, M. A. Wnt7a activates the planar cell 
polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4, 535-
547, doi:10.1016/j.stem.2009.03.013 (2009). 

204 Gilbert, P. M. e. a. Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in 
Culture. Science 329, 1078-1081 (2010). 

205 Palacios, D. et al. TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links 
inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7, 455-469, 
doi:10.1016/j.stem.2010.08.013 (2010). 

206 Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate 
myogenesis. Nat Cell Biol 12, 153-163, doi:10.1038/ncb2015 (2010). 

207 Shea, K. L. et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem 
cell pool during regeneration. Cell Stem Cell 6, 117-129, doi:10.1016/j.stem.2009.12.015 
(2010). 

208 Abou-Khalil, R. et al. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle 
satellite cell self-renewal. Cell Stem Cell 5, 298-309, doi:10.1016/j.stem.2009.06.001 (2009). 

209 Anderson, J. E., Wozniak, A. C. & Mizunoya, W. Single muscle-fiber isolation and culture for 
cellular, molecular, pharmacological, and evolutionary studies. Methods Mol Biol 798, 85-102, 
doi:10.1007/978-1-61779-343-1_6 (2012). 

210 Lim, C. L., Ling, K.-H. & Cheah, P.-S. Isolation, cultivation and immunostaining of single 
myofibers: An improved approach to study the behavior of satellite cells. Journal of Biological 
Methods 5, doi:10.14440/jbm.2018.219 (2018). 

211 Light, N. & Champion, A. E. Characterization of muscle epimysium, perimysium and 
endomysium collagens. Biochemical Journal 219, 1017-1026, doi:10.1042/bj2191017 (1984). 

212 Allen J. Bailey, D. J. R., Trevor J. Sims and Victor C. Duance. Meat Tenderness: 
Immunofluorescent Localisation of the Isomorphic Forms of Collagen in Bovine Muscles of 
Varying Texture. J. Sci. Food Agric 30, 203-210 (1979). 

213 Fry, C. S., Kirby, T. J., Kosmac, K., McCarthy, J. J. & Peterson, C. A. Myogenic Progenitor Cells 
Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy. 
Cell Stem Cell 20, 56-69, doi:10.1016/j.stem.2016.09.010 (2017). 

214 Chapman, M. A., Mukund, K., Subramaniam, S., Brenner, D. & Lieber, R. L. Three distinct cell 
populations express extracellular matrix proteins and increase in number during skeletal 



References 

156 

 

muscle fibrosis. Am J Physiol Cell Physiol 312, C131-C143, doi:10.1152/ajpcell.00226.2016 
(2017). 

215 Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult 
haematopoietic stem cell quiescence. Nature 500, 345-349, doi:10.1038/nature12303 (2013). 

216 Zacharek, S. J. et al. Lung stem cell self-renewal relies on BMI1-dependent control of 
expression at imprinted loci. Cell Stem Cell 9, 272-281, doi:10.1016/j.stem.2011.07.007 (2011). 

217 Qian, P. et al. The Dlk1-Gtl2 Locus Preserves LT-HSC Function by Inhibiting the PI3K-mTOR 
Pathway to Restrict Mitochondrial Metabolism. Cell Stem Cell 18, 214-228, 
doi:10.1016/j.stem.2015.11.001 (2016). 

218 Andrea Repele, R. L., Simon Eaton, Luca Urbani, Paolo De Coppi and Michelangelo Campanella. 
Cell metabolism sets the differences between subpopulations of satellite cells (SCs). BMC Cell 
Biology 14:24, 1-7 (2013). 

219 Coller, H. A. The paradox of metabolism in quiescent stem cells. FEBS Lett 593, 2817-2839, 
doi:10.1002/1873-3468.13608 (2019). 

220 Zhang, R., Erler, J. & Langowski, J. Histone Acetylation Regulates Chromatin Accessibility: Role 
of H4K16 in Inter-nucleosome Interaction. Biophys J 112, 450-459, 
doi:10.1016/j.bpj.2016.11.015 (2017). 

221 Vasyutina, E., Lenhard, D. C. & Birchmeier, C. Notch Function in Myogenesis. Cell Cycle 6, 1450-
1453, doi:10.4161/cc.6.12.4372 (2007). 

222 Tremblay, I., Pare, E., Arsenault, D., Douziech, M. & Boucher, M. J. The MEK/ERK pathway 
promotes NOTCH signalling in pancreatic cancer cells. PLoS One 8, e85502, 
doi:10.1371/journal.pone.0085502 (2013). 

223 Clara De Palma, F. M., Sarah Pambianco, Emma Assi, Thierry Touvier, Stefania Russo,, Cristiana 
Perrotta, V. R., Silvia Carnio, Valentina Cappello, Paolo Pellegrino, Claudia Moscheni, Maria 
Teresa Bassi, Marco Sandri, Davide Cervia and Emilio Clementi & Deficient nitric oxide 
signalling impairs skeletal muscle growth and performance: involvement of mitochondrial 
dysregulation. Skeletal Muscle 4:22, 1-21 (2014). 

224 Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437-2447, 
doi:10.1634/stemcells.2005-0661 (2006). 

225 Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles of Notch 
signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30, 
3489-3498, doi:10.1523/JNEUROSCI.4987-09.2010 (2010). 

226 Pajcini, K. V., Speck, N. A. & Pear, W. S. Notch signaling in mammalian hematopoietic stem 
cells. Leukemia 25, 1525-1532, doi:10.1038/leu.2011.127 (2011). 

227 Xiao, W., Gao, Z., Duan, Y., Yuan, W. & Ke, Y. Notch signaling plays a crucial role in cancer stem-
like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin 
Cancer Res 36, 41, doi:10.1186/s13046-017-0507-3 (2017). 

228 Landor, S. K. et al. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through 
distinct mechanisms. Proc Natl Acad Sci U S A 108, 18814-18819, 
doi:10.1073/pnas.1104943108 (2011). 



References 

157 

 

229 Kuwabara, S., Yamaki, M., Yu, H. & Itoh, M. Notch signaling regulates the expression of 
glycolysis-related genes in a context-dependent manner during embryonic development. 
Biochem Biophys Res Commun 503, 803-808, doi:10.1016/j.bbrc.2018.06.079 (2018). 

230 Lee, S. Y. & Long, F. Notch signaling suppresses glucose metabolism in mesenchymal 
progenitors to restrict osteoblast differentiation. J Clin Invest 128, 5573-5586, 
doi:10.1172/JCI96221 (2018). 

231 Massard, C. et al. First-in-human study of LY3039478, an oral Notch signaling inhibitor in 
advanced or metastatic cancer. Ann Oncol 29, 1911-1917, doi:10.1093/annonc/mdy244 
(2018). 

232 Ran, Y. et al. gamma-Secretase inhibitors in cancer clinical trials are pharmacologically and 
functionally distinct. EMBO Mol Med 9, 950-966, doi:10.15252/emmm.201607265 (2017). 

233 Espinoza, I. & Miele, L. Notch inhibitors for cancer treatment. Pharmacol Ther 139, 95-110, 
doi:10.1016/j.pharmthera.2013.02.003 (2013). 

234 Al Jaam, B. et al. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in 
Pofut1cax/cax mice. Open Biol 6, doi:10.1098/rsob.160211 (2016). 

235 Mayeuf-Louchart, A. et al. Notch regulation of myogenic versus endothelial fates of cells that 
migrate from the somite to the limb. Proc Natl Acad Sci U S A 111, 8844-8849, 
doi:10.1073/pnas.1407606111 (2014). 

236 Marinkovic, M. et al. Skeletal muscle fibro-adipogenic progenitors of dystrophic mice are 
insensitive to NOTCH-dependent regulation of adipogenesis. bioRxiv, doi:10.1101/223370 
(2017). 

237 Choi, I. Y. et al. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy 
Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Rep 15, 2301-2312, 
doi:10.1016/j.celrep.2016.05.016 (2016). 

238 Mu, X. et al. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset 
of histopathology in muscular dystrophy. Hum Mol Genet 24, 2923-2937, 
doi:10.1093/hmg/ddv055 (2015). 

239 Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. 
Neuropsychopharmacology 38, 23-38, doi:10.1038/npp.2012.112 (2013). 

240 Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics 
and epigenetics. Nat Cell Biol 19, 1298-1306, doi:10.1038/ncb3629 (2017). 

241 Li, Q., Eichten, S. R., Hermanson, P. J. & Springer, N. M. Inheritance Patterns and Stability of 
DNA Methylation Variation in Maize Near-Isogenic Lines. Genetics 196, 667, 
doi:10.1534/genetics.113.158980 (2014). 

242 Jin, W., Peng, J. & Jiang, S. The epigenetic regulation of embryonic myogenesis and adult 
muscle regeneration by histone methylation modification. Biochem Biophys Rep 6, 209-219, 
doi:10.1016/j.bbrep.2016.04.009 (2016). 

243 Laker, R. C. & Ryall, J. G. DNA Methylation in Skeletal Muscle Stem Cell Specification, 
Proliferation, and Differentiation. Stem Cells Int 2016, 5725927, doi:10.1155/2016/5725927 
(2016). 



References 

158 

 

244 Carrio, E. et al. Deconstruction of DNA methylation patterns during myogenesis reveals specific 
epigenetic events in the establishment of the skeletal muscle lineage. Stem Cells 33, 2025-
2036, doi:10.1002/stem.1998 (2015). 

245 Consalvi, S., Sandona, M. & Saccone, V. Epigenetic Reprogramming of Muscle Progenitors: 
Inspiration for Clinical Therapies. Stem Cells Int 2016, 6093601, doi:10.1155/2016/6093601 
(2016). 

246 Davegardh, C. et al. Abnormal epigenetic changes during differentiation of human skeletal 
muscle stem cells from obese subjects. BMC Med 15, 39, doi:10.1186/s12916-017-0792-x 
(2017). 

247 Seaborne, R. A. et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. 
Sci Rep 8, 1898, doi:10.1038/s41598-018-20287-3 (2018). 

 

 
  



References 

159 

 

  



Abbreviation 

160 

 

8 Abbreviation  

A. bidest     Aqua bidest 

Acad1 Acyl CoA dehydrogenase  

Ampk AMP-activated protein kinase 

ANOVA Analysis of Variance 

asWAT         Anterior subcutaneous white adipose tissue 

bp   Base Pairs 

BAT Brown adipose tissue 

BSA              Bovine serum albumin 

Ca2+ Calcium ion 

cBAT Cervical brown adipose tissue 

cDNA           Complementary DNA 

Col IV           Collagen type IV 

Cpt Carnitine palmitoyl transferase 

Cre Causes recombination 

CSA Cross sectional area 

DAPI             4',6-diamidino-2-phenylindole  

DAPT N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine  

t-butyl ester 

DEPC Diethyl pyrocarbonate 

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleotide 

E Embryo 

ECAR Extracellular acidification rate  

ECL Enhanced chemiluminescence 

ECM Extracellular matrix 

EDL Extensor digitorum longus 
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EDTA Ethylene-Diamine-Tetra-Acetic acid 

e.g.               For example 

Erk Extracellular signal regulated kinase 

EtOH Ethanol 

ETC Electron transport chain 

Fab Fragment antigen-binding 

Fabp Fatty acid binding protein 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum 

FBS Fetal bovine serum    

Fgf   Fibroblast growth factor 

Fig.                  Figure 

 fw                    Forward 

g                      Gram 

GAP                GTPase activating protein     

Gas                 Gastrocnemius 

GDP               Guanosine-5`-diphosphate   

GO                Gene Ontology 

GSEA        Gene Set Enrichment Analysis 

GTP               Guanosine-5`-triphosphate 

Het Heterozygous 

HRP               Horse-Radish Peroxidase 

HSA               Human alpha-Skeletal Actin 

iBAT             Intrascapular brown adipose tissue 

Idh                Isocitrate dehydrogenase 

IHC                Immunohistochemistry 

Il6                  Interleukin 6 

Jag1               Jagged 1 

kb                   Kilo-bases 

kDA               Kilo-Dalton 
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KEGG Kyoto Encyclopedia of genes and genomes 

KO                Knock-out 

LamA Laminin type A 

loxP Locus of X-over P1 

Lpl                Lipoprotein Lipase 

μ   Micro (prefix) 

MAPK Mitogen activated protein kinase 

MEK            MAP/ERK kinase 

MeOH Methanol 

mol               Moles 

MRF             Muscle regulatory factor 

mtCO1         Mitochondrially Encoded Cytochrome C Oxidase I 

mTOR Mechanistic Target of Rapamycin Kinase 

Mut Mutant 

mRNA Messenger RNA 

MyEmb Embryonic myosin 

Myf Myogenic factor 

MyHc            Myosin heavy chain 

MyoD Myogenic differentiation 

Myog Myogenin 

Nf1                 Neurofibromin 

NF1 Neurofibromatosis I 

NS Not significant 

OCR   Oxygen consumption rate 

OXPHOS Oxidative phosphorylation 

P Postnatal day  

PAGE    Polyacrylamide gel electrophoresis 

Pax    Paired box 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 
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PFA Paraformaldehyde 

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase 

Pgc1α Peroxisome proliferator activated receptor gamma Coactivator 

1 alpha 

Pparg Peroxisome proliferator-activated receptor gamma 

psWAT Posterior subcutaneous 

qPCR   Quantitative PCR 

Ras   Rat sarcoma 

Rcf   Relative centrifugal force 

Rev   Reverse 

RFU   Relative fluorescence units 

rpm    Revolutions per minute 

RPKM Reads per kilobase of transcript 

rRNA   Ribosomal RNA 

RTK Receptor Tyrosine Kinase 

RT-PCR                   Reverse transcription PCR 

rWAT Retroperitoneal 

S Soleus 

sBAT subscapular Brown Adipose Tissue 

SD Standard deviation 

SDH   Succinate dehydrogenase 

SDS   Sodium dodecyl sulfate 

SEM Standard error of the mean 

TCA Tricarboxylic acid cycle 

TA Tibialis anterior 

Taq                           Thermus aquaticus 

TB Triceps brachii 

TEA   Triethanolamine 

Tris Tris-(hydroxymethyl-)aminoethane 

TSA Tyramine signal amplification 
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UV Ultraviolet 

WAT White adipose tissue 

WB Western blot 

Wnt Wingless-related MMTV integration site 

WT Wild-type 
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