Johannes-Müller-Centrum für Physiologie, Universitätsmedizin Berlin (Charité) Sinnes- und Entwicklungsphysiologie Leitung: Prof. Dr. Rosemarie Grantyn

Differential regulation of glutamatergic and GABAergic synaptogenesis by BDNF and PRG-1

Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.)

beim Fachbereich Biologie, Chemie and Pharmazie der Freien Universität Berlin

vorgelegt von

Bhumika Singh

geb. 13. März 1978, New Delhi, India

Gutachter

Prof. Dr. Rosemarie Grantyn Prof. Dr. Randolf Menzel

Date of disputation: December 05, 2005

TABLE OF CONTENTS

ACKNOWLEDGEMENTS						
ZUSAMMENFASSUNG						
						INTRODUCTION
1.	DEND	RITE FORMATION AND MORPHOLOGY	10			
	1.1	Cellular mechanisms of dendrite growth	10			
	1.2	The synaptotropic hypothesis of dendrite growth	11			
	1.3	Neurotrophinergic control of dendrite growth	12			
	1.4	Other molecular factors influencing dendrite growth	12			
	1.5	Intracellular mechanisms of dendrite growth regulation	14			
2.	SYNA	PTOGENESIS	16			
	2.1	Pre- and postsynaptic differentiation: a short overview				
	2.2	Synapse stabilization and elimination	17			
	2.3	The balance of excitation and inhibition	19			
3.	CELLU	JLAR AND MOLECULAR MECHANISMS THROUGH THE ACTION OF BDNF				
	3.1	Neurotrophins: an overview				
	3.2	Expression and release of BDNF				
	3.3	BDNF expression in neurodegenerative disorders				
4.		PSE REARRANGEMENT: ROLE OF PRG-1				
	4.1	Post-lesion degenerative changes				
	4.2	Plasticity-related gene-1 (PRG-1)				
	4.3	Lysophosphatidic acid: a challenge for synapse stabilization?	26			
AIMS OF	THE ST	TUDY	27			
MATERI	ALS AN	D METHODS	29			
1.	MATE	RIALS	29			
	1.1	Chemicals	29			
	1.2	Solutions	29			
	1.3	Primers and restriction enzymes	31			
	1.4	Plasmids and cDNA				
	1.5	Competent cells	32			
	1.6	Antibodies and blocking agents				
	1.7	Consumables and special appliances	32			
	1.8	Software	33			
	1.9	Animals	33			

2.	METHODS				
	2.1	Genotyping	35		
	2.2	Plasmid preparation	35		
	2.3	RNA isolation	39		
	2.4	Real-time RT-PCR	40		
	2.5	Cell culture	41		
	2.6	Transfection	42		
	2.7	Immunocytochemistry	43		
	2.8	Fluorescence microscopy	43		
	2.9	Data presentation and statistical analysis	44		
RESULT	rs		45		
1.	EXPER	IMENTAL MODEL	45		
	1.1	Selection of tissue and cells	45		
	1.2	Cell culture and transfection paradigm	45		
	1.3	Quantification of neuronal survival	46		
	1.4	Parameters studied	47		
	1.5	Identification of dendrites	48		
	1.6	Definition of synaptic terminals	48		
2.	ACTIO	N OF NEUROTROPHINS (BDNF, NGF AND NT-3)	49		
	2.1	Comparison of the effects of BDNF, NGF and NT-3	49		
	2.2	Exogenous BDNF alters mRNA expression of presynaptic proteins and TrkB	50		
3.	LOCAI	ACTION OF TRANSFECTED BDNF	54		
	3.1	BDNF-expression drastically alters the dendrite morphology of transfected hippocampal neurons	54		
	3.2	BDNF-expression increases the number of synaptophysin I-positive terminals	57		
	3.3	BDNF-expressing neurons receive a larger number of glutamatergic but a smaller number			
		of GABAergic terminals	57		
	3.4	BDNF shifts the excitatory-to-inhibitory (E/I) ratio of synaptic terminal number	61		
	3.5	Comparison of synaptogenesis in wild type and BDNF-deficient neurons	61		
4.	RELAT	TIONSHIP BETWEEN DENDRITE MORPHOLOGY AND SYNAPTIC INPUT	64		
	4.1	Effects of neurotrophin receptor block on dendrite morphology and synaptic terminal number			
	4.2	Effects of glutamate receptor block on dendrite morphology and synaptic terminal number			
	4.3	Relationship between dendrite growth and glutamatergic synaptic input			
5.	ROLE	OF PRG-1 IN SYNAPSE DEVELOPMENT			
	5.1	PRG-1 overexpression prevents LPA-induced loss of synapses			
	5.2	Synapse type-specific effects of PRG-1 on glutamatergic and GABAergic synapses			
	5.3	Suppression of PRG-1 results in synapse loss	74		
DISCUSS	ION		77		
1.	EXPER	IMENTAL MODEL	78		
2.	2. LOCAL EFFECTS OF TRANSFECTED BDNF vs GENERAL EFFECTS OF EXOGENOUS BDNF				

	2.1	Changes in dendrite morphology: effects of transfected BDNF vs. exogenous BDNF	79
	2.2	Changes in the number of synaptophysin I positive terminals: effects of transfected BDNF vs	
		exogenous BDNF	80
3.	CHANG	GES IN THE EXCITATORY-TO-INHIBITORY RATIO OF SYNAPTIC TERMINAL NUMBER	80
	3.1	Possible mechanisms of BDNF action on synaptic terminal numbers	81
	3.2	Possible consequences of increased E/I ratio of synaptic terminal numbers	85
4.	ACTIV	ITY-DEPENDENCY OF DENDRITE MORPHOLOGY AND SYNAPTOGENESIS	87
	4.1.	Receptor specific control of dendrite branching and initiation by BDNF	87
	4.2.	Effects of glutamate receptor blockers on BDNF-induced changes in dendrite morphology	88
5.	ROLE (OF PRG-1 IN SYNAPTOGENESIS	89
	5.1.	Preferential formation or stabilization of excitatory synapses in dependence on PRG-1	89
	5.2.	Possible mechanism of action of PRG-1	90
	5.3	A role for PRG-1 in dendritogenesis?	91
	5.4	Possible functions for PRG-1	91
CONCLU	USIONS		93
REFERE	NCES		95
ABBREV	IATIONS	S AND ACRONYMS	110
LIST OF	FIGURE	S AND TABLES	112
ERKLÄF	RUNG		114
CHRRIC	TILLIM V	ITAF	115

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Prof. Dr. Rosemarie Grantyn, my PhD supervisor, for giving me the opportunity for doctoral training in her lab. I thank her for showing enormous patience and sharing her wealth of knowledge at frequent times. Her critique and suggestions helped me improve my judgment of the results and possible interpretation. Her quest for perfection and thoroughness will always be a stimulating source of inspiration for me. Her guidance and encouragement leaves me in a lifelong debt of gratitude.

I earnestly thank Prof. Dr. Randolf Menzel for co-supervising my thesis work and for taking time and interest in this research. I am grateful to him also for guiding me through the required formalities in the pursuit of my research.

I am also grateful to Prof. Dr. Uwe Heinemann for giving me the opportunity to receive an all-round academic training in the Graduate College 238 and to participate in the many conferences, in Berlin and elsewhere. I honor his interest and suggestions for my research work.

I thank Prof. Alfredo Rodríguez-Tébar for inviting me to his lab in Madrid and Dr. Angeles Arévalo for training me there in the technique of quantitative PCR. Both made many helpful suggestions and inspired me by their discussions and, in great part, by their previous contributions to the field of neurotrophin research.

I thank Dr. Jochen C. Meier for providing me training in the prime techniques involved in this project. I am immensely grateful to him for sharing his expertise in the field of molecular and cell biology and for giving critical suggestions on the thesis.

I thank Dr. Christian Henneberger for performing supporting experiments for the project and advising on the thesis. The regular discussions with him helped me view this field of research from varied perspectives.

I also thank Dr. Sergei Kirischuk for his valuable comments on some of my experiments.

My special thanks is accorded to Ms. Karin Przezdziecki, with whom I exchanged a lot of experimental and technical knowledge during long hours of experiments. Her boundless patience and generosity helped clear the language barrier between us and allowed in enormous ease, with which we communicated and solved problems together.

I am deeply grateful to Ms. Kerstin Rückwardt for always being there with a helping hand. I have no words for her tremendous cooperation and positive outlook in undertaking a responsibility, in lab or outside.

My sincere gratitude also goes to Ms. Ulrike Neumann for all her technical help during the project. I highly appreciate her initiative and cooperation at all times.

I would also like to extend my thankyou to Mr. David Betances for being a great teammate in the experimental evaluation schedule. I am sincerely grateful to him for listening to and sharing the technical problems I would come across.

I wish to express my thanks to Ms. Andrea Schütz, who had always been there by my side, through my times of ventures in the administration. Her comforting temperament along with her helpful nature had always made things easier.

I am also grateful to Mr. Knut Kirmse, Mr. Jan Walter and Mr. Jan Akyeli, the predoctoral students in our group, for their kindness and cordiality.

I take pleasure once again to thank all the lab members for being great colleagues and being approachable any time I had any question.

I am also grateful to Dr. Anja Bräuer and Prof. Dr. Robert Nitsch for providing me with the PRG-1 and siRNA constructs.

I would like to express my acknowledgment to all my friends with whom I shared many happy times. I also thank them for their help and support and for giving me a wonderful company in Berlin that I will cherish forever.

I am thankful to everybody in my family back home, in India, for their much needed cooperation.

My deepest gratitude is for my dear husband, Ranjeet, whose immeasurable patience and unending support has made this feat possible and truly worthwhile.

Above all, I owe this accomplishment to my parents, Mrs. Karuna Singh and Mr. Ram Singh Nim, whose incessant encouragement and cheer for this project was as indispensable as ever.

Bhumika Singh