
*For correspondence:

c.neumann@charite.de

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 12

Received: 08 October 2019

Accepted: 10 February 2020

Published: 10 February 2020

Reviewing editor: Satyajit Rath,

Indian Institute of Science

Education and Research (IISER),

India

Copyright Tizian et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

c-Maf restrains T-bet-driven programming
of CCR6-negative group 3 innate
lymphoid cells
Caroline Tizian1,2†, Annette Lahmann3†, Oliver Hölsken1,2, Catalina Cosovanu1,2,
Michael Kofoed-Branzk1,2, Frederik Heinrich4, Mir-Farzin Mashreghi4,
Andrey Kruglov5,6, Andreas Diefenbach1,2, Christian Neumann1,2*

1Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases
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Abstract RORgt+ group 3 innate lymphoid cells (ILC3s) maintain intestinal homeostasis through

secretion of type 3 cytokines such as interleukin (IL)�17 and IL-22. However, CCR6- ILC3s

additionally co-express T-bet allowing for the acquisition of type 1 effector functions. While T-bet

controls the type 1 programming of ILC3s, the molecular mechanisms governing T-bet are

undefined. Here, we identify c-Maf as a crucial negative regulator of murine T-bet+ CCR6- ILC3s.

Phenotypic and transcriptomic profiling of c-Maf-deficient CCR6- ILC3s revealed a hyper type 1

differentiation status, characterized by overexpression of ILC1/NK cell-related genes and

downregulation of type 3 signature genes. On the molecular level, c-Maf directly restrained T-bet

expression. Conversely, c-Maf expression was dependent on T-bet and regulated by IL-1b, IL-18

and Notch signals. Thus, we define c-Maf as a crucial cell-intrinsic brake in the type 1 effector

acquisition which forms a negative feedback loop with T-bet to preserve the identity of CCR6-

ILC3s.

Introduction
Tissue-resident, RORgt-dependent group 3 innate lymphoid cells (ILC3s) protect mucosal surfaces

against infections and maintain the integrity of the epithelial barrier by secretion of cytokines such as

IL-17 and IL-22 (Sonnenberg et al., 2012; Gronke et al., 2019; Hernández et al., 2015;

Zheng et al., 2008; Gladiator et al., 2013; Satoh-Takayama et al., 2008; Zenewicz et al., 2008).

In mice, ILC3s consist of two major subsets, CCR6+ ILC3s that include lymphoid tissue inducer (LTi)

cells and CCR6- ILC3s that can differentiate to cells expressing type 1 effector molecules, such as

IFN-g and the natural cytotoxic receptor NKp46 (Sawa et al., 2010; Klose et al., 2013). Functionally,

fetal LTi and adult LTi-like CCR6+ ILC3s are essential for lymphoid organ development (Sun et al.,

2000; Eberl et al., 2004), while NKp46+ CCR6- ILC3s are implicated in type 1 inflammatory immune

responses and thus may also have pathogenic functions during intestinal inflammation (Klose et al.,

2013; Powell et al., 2012; Buonocore et al., 2010; Bernink et al., 2013; Vonarbourg et al., 2010;

Rankin et al., 2016; Song et al., 2015).
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The transcription factor (TF) RORgt is strictly required for the development of all ILC3s, as mice

deficient for RORgt lack all ILC3 subsets (Eberl et al., 2004; Sanos et al., 2009). RORgt also controls

the functionality of ILC3s by regulating the production of effector cytokines, such as IL-17 and IL-22

(Ivanov et al., 2006; Rutz et al., 2013). Interestingly, CCR6- ILC3 co-express RORgt and the master

regulator of type 1 immunity, T-bet. T-bet is key to the differentiation of NKp46+ CCR6- ILC3s, as

those cells fail to develop in mice lacking the gene encoding T-bet, Tbx21 (Klose et al., 2013;

Rankin et al., 2013). Importantly, T-bet not only contributes to NKp46+ CCR6- ILC3 development,

but an increasing T-bet gradient enables functional plasticity of NKp46+ CCR6- ILC3s by instructing

a type 1 effector program in ILC3s (Klose et al., 2013; Sciumé et al., 2012; Klose et al., 2014;

Cella et al., 2019). Tunable T-bet expression in NKp46+ CCR6- ILC3s serves as a dynamic molecular

switch from a type 3 to a type 1 phenotype (Klose et al., 2013). Once T-bet expression reaches a

sufficient level, it can also act as a repressor of RORgt, resulting eventually in a full conversion of

ILC3s to ILC1-like cells (referred to as ILC3-to-1 plasticity) (Vonarbourg et al., 2010; Cella et al.,

2019; Bernink et al., 2015). Thus, the balance between RORgt versus T-bet expression dictates the

fate and function of CCR6- ILC3s (Fang and Zhu, 2017).

Importantly, the molecular mechanisms controlling the dynamic and quantitative co-expression of

RORgt and T-bet in CCR6- ILC3s are largely undefined. Several extrinsic signals were shown to pro-

mote or restrain T-bet-dependent plasticity, most prominently cues from the microbiota, IL-23, IL-7

and Notch signaling (Klose et al., 2013; Sanos et al., 2009; Rankin et al., 2013; Viant et al., 2016;

Chea et al., 2016). Moreover, exposure to pro-inflammatory cytokines, such as IL-12, IL-15 and IL-

18, was reported to further support transdifferentiation to an ILC1-like fate (Vonarbourg et al.,

2010; Bernink et al., 2015; Satoh-Takayama et al., 2010). However, despite this, the intrinsic

molecular mediators governing ILC3 plasticity have not been discovered yet.

In the past, our group and others could identify the AP-1 TF c-Maf as a central regulator of

RORgt+ CD4+ T cells, including RORgt+ Foxp3+ Treg cells (Neumann et al., 2019; Xu et al., 2018;

Wheaton et al., 2017), RORgt+ Th17 cells (Ciofani et al., 2012; Aschenbrenner et al., 2018;

Tanaka et al., 2014) and RORgt+ gd T cells (Zuberbuehler et al., 2019), both in mouse and human.

Specifically, c-Maf was shown to directly bind and regulate key genes of RORgt+ T cells, including IL-

22 and RORgt itself (Tanaka et al., 2014; Zuberbuehler et al., 2019; Rutz et al., 2011). Recently, a

broad transcriptional network analysis also identified c-Maf as an important regulator of the ILC3-

ILC1 balance, although the precise underlying molecular mechanisms have remained unclear

(Pokrovskii et al., 2019).

Here, we demonstrate that c-Maf was essential for CCR6- ILC3s to establish a physiological equi-

librium between type 1 and type 3 effector states. c-Maf directly restrained T-bet expression,

thereby preventing CCR6- ILC3s from acquiring excessive type 1 effector functions. c-Maf expression

itself was dependent on T-bet and tightly correlated with its expression level. Upstream, we identi-

fied IL-1ß- and IL-18-mediated NF-kB, as well as Notch signals, as potent extrinsic enhancers of

c-Maf expression in CCR6- ILC3s. Thus, our data define c-Maf as an integral regulator within the

type 3-to-1 conversion program that acts as a cell-intrinsic gatekeeper of T-bet expression to main-

tain the function and lineage-stability of CCR6- ILC3s.

Results and discussion

c-Maf specifically preserves the type 3 identity of CCR6- ILC3s
Given the pivotal role of c-Maf in CD4+ T cells, we aimed to define its function in ILCs, which share a

similar transcriptional program with T cells (Vivier et al., 2018). We first investigated the expression

pattern of c-Maf in different ILC subsets of the small intestinal lamina propria (siLP) by staining for

c-Maf. This analysis showed that ILC3s expressed higher levels of c-Maf when compared to ILC1s or

ILC2s (Figure 1A, gating strategy see Figure 1—figure supplement 1). Among the ILC3 subsets,

c-Maf was particularly highly expressed by NKp46+ CCR6- ILC3s at levels comparable to RORgt+

CD4+ T cells (Figure 1B). Collectively, these data suggested a potential function of c-Maf in these

cells.

In order to directly study the role of c-Maf in ILC3s, we crossed mice carrying floxed Maf alleles

(Maffl/fl) to mice expressing Cre recombinase driven by the regulatory elements of the Rorc(gt) gene

locus (Rorc-CreTg), thereby generating mice with a specific deletion of c-Maf in RORgt+ ILC3s and T
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cells (RorcCre Maffl/fl). Phenotypic analysis of siLP ILCs revealed decreased frequencies of ILC3s in the

absence of c-Maf, whereas frequencies and total numbers of ILC1s and ILC2s were increased in Rorc-
Cre Maffl/fl mice when compared to littermate controls (Figure 1C). Among ILC3s, we detected a

selective loss of NKp46- CCR6- ILC3s in RorcCre Maffl/fl mice, while total numbers of NKp46+ CCR6-

ILC3s and CCR6+ ILC3s were not significantly changed (Figure 1D).

Thus, c-Maf was selectively required for the maintenance of intestinal NKp46- CCR6- ILC3s. Its

absence in ILC3s resulted in significant changes in the proportions of individual ILC subsets in the

gut. Importantly, flow cytometric intracellular staining also revealed a significant downregulation of
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Figure 1. c-Maf is required to maintain the type 3 phenotype of CCR6- ILC3s. (A) Protein expression of c-Maf by ILC1s, ILC2s and ILC3s isolated from

the siLP of naı̈ve C57BL/6N wild-type mice as measured by flow cytometry (pregated on viable Lin- CD127+ cells). Representative histograms show

c-Maf expression. (B) Representative histograms showing expression of c-Maf by different siLP ILC3 subsets and RORgt+ T cells as comparison. (C)

Frequencies and total numbers of ILC1s, ILC2s and ILC3s from siLP of RorcCre Maffl/fl and control mice as measured by flow cytometry (pregated on

viable Lin- CD127+ cells). Representative flow cytometric profiles of RORgt vs. T-bet and GATA3 expression (left); right, quantification (n = 5–6,

mean ± SEM, *p<0.05, **p<0.01). (D) Total numbers of different siLP ILC3 subsets of RorcCre Maffl/fl and control mice as measured by flow cytometry.

Representative flow cytometric profiles of NKp46 vs. CCR6 expression (left); right, quantification (n = 5–6, mean ± SEM, *p<0.05). (E) Expression of

RORgt by different siLP ILC3 subsets from RorcCre Maffl/fl and control mice. Representative histograms (upper panel) show RORgt expression. Graphs

below show quantification of RORgt gMFI (n = 5–6, mean ± SEM, **p<0.01, ***p<0.001). (F, G) Frequencies of IL-17A and IL-22 positive cells among

different siLP ILC3 subsets of RorcCreMaffl/fl and control mice after ex vivo restimulation with PMA/ionomycin and IL-23. Representative flow cytometric

profiles of IL-17A or IL-22 vs. CCR6 are shown on the left; quantification on the right (n = 4, mean ± SEM, *p<0.05, **p<0.01). Data are representative of

three independent experiments. Statistical differences were tested using an unpaired Students’ t-test (two-tailed).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gating strategy to identify intestinal ILC1s, ILC2s, ILC3s and RORgt+ T cells.
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RORgt protein levels in c-Maf-deficient NKp46+ and NKp46- CCR6- ILC3s, which was not observed in

CCR6+ ILC3s (Figure 1E).

Next, we tested the functionality of c-Maf-deficient ILC3s by assessing their capacity to produce

the type 3 signature cytokines IL-17A and IL-22. In line with the decrease in RORgt expression,

NKp46+ and NKp46- CCR6- ILC3s from RorcCre Maffl/fl mice exhibited significantly reduced frequen-

cies of IL-17A and IL-22 producers after ex vivo restimulation as compared to control cells

(Figure 1F and G). Again, no differences were detected in CCR6+ ILC3s, corroborating the selective

role of c-Maf for the homeostasis and function of CCR6- ILC3s. Notably, c-Maf did not act as a

repressor of IL-22 production in ILC3s, as it was shown for Th17 cells (Rutz et al., 2011), indicating

essential differences in c-Maf function between ILCs and T cells.

In summary, these findings demonstrated a crucial requirement of c-Maf in maintaining the type 3

identity of CCR6- ILC3s, including their expression of RORgt, IL-17A and IL-22.

c-Maf suppresses the acquisition of type 1 properties by CCR6- ILC3s
RORgt+ CCR6- ILC3s have the capacity to acquire type 1 effector characteristics, such as IFN-g and

NKp46 expression (Vonarbourg et al., 2010). This differentiation is facilitated by graded co-expres-

sion of T-bet, together with RORgt, enabling functional flexibility during inflammatory immune

responses (Klose et al., 2013; Powell et al., 2012; Bernink et al., 2013; Rankin et al., 2013;

Sciumé et al., 2012). However, the molecular mechanisms governing the T-bet-dependent type 1

programming of CCR6- ILC3s are undefined.

Interestingly, c-Maf expression strongly correlated with T-bet expression in both NKp46+ and

NKp46- CCR6- ILC3s (Figure 2A). More importantly, c-Maf deficiency resulted in strong upregulation

of T-bet and NKp46 expression, both on the population (frequencies) and at single cell level (gMFI),

in CCR6- ILC3s (Figure 2B). These data, together with the selective loss of NKp46- CCR6- ILC3s,

which are considered to contain precursors of NKp46+ CCR6- ILC3s, in RorcCreMaffl/fl mice

(Figure 1D), suggested an amplified type 1 conversion of CCR6- ILC3s in the absence of c-Maf.

In accordance with the increase in T-bet expression, we also detected increased frequencies of

IFN-g producing cells within c-Maf-deficient CCR6- ILC3s as compared to c-Maf-competent control

cells (Figure 2C). Of note, Ki67 staining of c-Maf-deficient CCR6- ILC3s was not altered, ruling out

that proliferative differences facilitated the skewing towards a type 1 phenotype in the absence of

c-Maf (Figure 2—figure supplement 1A).

In addition to the lack of c-Maf expression in ILC3s, RorcCre Maffl/fl mice also harbour a c-Maf-defi-

cient T cell compartment, due to the expression of RORgt during T cell development (Sun et al.,

2000). Moreover, conditional deletion of c-Maf in T cells (Cd4Cre Maffl/fl or Foxp3Cre Maffl/fl) was

reported to cause disturbances in intestinal homeostasis (Neumann et al., 2019; Imbratta et al.,

2019), raising the possibility that changes in the gut microenvironment contributed to the ‘hyper

type 1’ phenotype of CCR6- ILC3s in RorcCre Maffl/fl mice. To interrogate this scenario, we analysed

intestinal CCR6- ILC3s from Cd4Cre Maffl/fl mice. The expression of T-bet by CCR6- ILC3s was not

altered when c-Maf was selectively deleted in T cells, excluding that T cell-dependent alterations

affected the type 1 conversion of ILC3s in RorcCre Maffl/fl mice (Figure 2—figure supplement 1B).

Interestingly, a small subset of CCR6- ILC3s also co-expresses CD4 (ca. 2% of CCR6- ILC3s, Fig-

ure 2—figure supplement 1C). Indeed, c-Maf staining of CD4+ CCR6- ILC3s from Cd4Cre Maffl/fl

mice confirmed c-Maf deletion in a substantial fraction of cells (ca. 50%), allowing us to compare

c-Maf-competent and c-Maf-deficient CCR6- ILC3s within the same mouse (Figure 2—figure supple-

ment 1C). We detected higher expression of T-bet and NKp46 in cells lacking c-Maf as compared to

their c-Maf-expressing counterparts, indicating that the type 1 deviation of c-Maf-deficient CCR6-

ILC3s was a cell-intrinsic phenomenon (Figure 2—figure supplement 1C). Importantly, mixed bone

marrow chimeras of wild-type and c-Maf-deficient cells confirmed the cell-intrinsic function of c-Maf

in restraining T-bet expression (Figure 2D).

Together, these data identified c-Maf as a potent repressor of the T-bet-dependent type 1 con-

version of CCR6- ILC3s. Notably, c-Maf has also been shown to attenuate the differentiation of Th1

cells by a yet-to-be-defined mechanism (Ho et al., 1998), suggesting a broader role of c-Maf in

restraining type 1 immune effector cells.
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Figure 2. CCR6- ILC3s acquire a hyper type 1 phenotype in the absence of c-Maf. (A) Representative flow cytometric profiles of T-bet vs. c-Maf

expression by siLP NKp46+ and NKp46- CCR6- ILC3s. (B) T-bet and NKp46 expression (frequency and gMFI) by siLP CCR6- ILC3s of RorcCreMaffl/fl and

control mice. Representative flow cytometric profiles are shown on the left; quantification on the right (n = 4, mean ± SEM, **p<0.01, ***p<0.001). (C)

Frequency of IFN-g positive cells among siLP CCR6- ILC3s of RorcCreMaffl/fl and control mice after ex vivo restimulation with PMA/ionomycin and IL-23.

Representative flow cytometric profiles are shown on the left; quantification on the right (n = 4, mean ± SEM, ***p<0.001). (D) Analysis of mixed bone

marrow chimeras of CD45.1+ wild-type and CD45.2+ RorcCreMaffl/f (Maf KO) bone marrow cells. Pregated on viable Lin- CD127+ CD90.2+ RORgt+ cells.

Figure 2 continued on next page
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c-Maf globally restrains type 1 and NK cell specific gene programs in
CCR6- ILC3s
To better define c-Maf-dependent gene regulation, we performed RNA sequencing (RNA-seq) of

siLP ILC3s of RorcCreMaffl/fl and control mice. We isolated NKp46+ CCR6- ILC3s and as a comparison

CCR6+ ILC3s for our analysis (sorting strategy see Figure 2—figure supplement 2A). Principal com-

ponent analysis showed that c-Maf-deficient ILC3s clustered separately from their wild-type counter-

parts, demonstrating a unique role of c-Maf in shaping the transcriptome of ILC3s (Figure 2—figure

supplement 2B).

We identified 941 genes as differentially expressed (FC > 1.5, p-value < 0.05) between c-Maf-

deficient and control NKp46+ CCR6- ILC3s (Figure 2E, Supplementary file 1). Interestingly, only ca.

30% of these genes (294 genes) were also found to be differentially expressed in CCR6+ ILC3s (Fig-

ure 2—figure supplement 2C, Supplementary file 2), indicating a distinct function of c-Maf in

NKp46+ CCR6- ILC3s. Consistent with our flow cytometry data, we detected a striking enrichment of

type 1 and NK cell-related genes (e.g. Tbx21, Ifng, Nos2, Klri2, Klrc1, Klrc2, Gzmb, Gzmd, Fasl) in

c-Maf-deficient NKp46+ CCR6- ILC3s (Figure 2E). In line with this, Bcl6 and Irf8, both recently

described as crucial transcription factors promoting ILC1/NK cell gene programs (Pokrovskii et al.,

2019; Adams et al., 2018), were also significantly upregulated in the absence of c-Maf in NKp46+

CCR6- ILC3s (Figure 2E, Figure 2—figure supplement 2D and E). Conversely, several type 3 effec-

tor genes (e.g. Il17a, Il17f, Il17re, Ccl20) were downregulated in NKp46+ CCR6- ILC3s upon c-Maf-

deficiency (Figure 2E).

To better understand the global c-Maf-dependent changes in gene expression programs, we per-

formed gene set enrichment analysis (GSEA). Given the strong upregulation of type 1 and NK cell

features in c-Maf-deficient CCR6- ILC3s, we made use of published RNA-seq data comparing ILC1s

and NK cells with CCR6- ILC3s (Pokrovskii et al., 2019). In detail, we created sets of genes that

were most highly overexpressed in ILC1s or NK cells, thereby defining ILC1 and NK cell gene signa-

tures that distinctly separated those lineages from CCR6- ILC3s. Importantly, when applied to GSEA,

both gene signatures were significantly enriched in c-Maf-deficient NKp46+ CCR6- ILC3s

(Figure 2F), indicating a global shift in gene expression towards an ILC1/NK cell phenotype.

In summary, these data demonstrated that c-Maf was essential to globally balance type 1 and

type 3 gene programs within CCR6- ILC3s. This function of c-Maf was specific to NKp46+ CCR6-

ILC3s as opposed to CCR6+ ILC3s, most likely due to the particularly high c-Maf expression and the

selective accessible of type 1 gene loci in these cells (Pokrovskii et al., 2019; Shih et al., 2016). In

the absence of c-Maf, NKp46+ CCR6- ILC3s downregulated type 3 effector genes, while overex-

pressing numerous genes encoding for type 1 and cytotoxic effector molecules. The latter finding is

particularly interesting, since NKp46+ CCR6- ILC3s are largely considered to be non-toxic cells

(Melo-Gonzalez and Hepworth, 2017). Nevertheless, NKp46+ CCR6- ILC3s share a considerable

transcriptional overlap with ILC1s, which also exhibit a degree of cytotoxic capacity

(Robinette et al., 2015; Cortez and Colonna, 2016). Thus, c-Maf-deficiency may result in marked

cytotoxicity of NKp46+ CCR6- ILC3s. More work is needed to precisely define the role of c-Maf for

ILC3 functionality during homeostasis and in the context of intestinal inflammation.

Figure 2 continued

Recipient mice were CD90.1 positive. Representative flow cytometric profiles of T-bet vs. CCR6 expression are shown left; quantification on the right

(n = 7, mean ± SEM, **p<0.01). All statistical differences were tested using an unpaired Students’ t-test (two-tailed). (E) NKp46+ CCR6- ILC3s were

sorted from siLP of RorcCreMaffl/fl and control mice and subjected to RNA sequencing. Vulcano plot showing comparison of gene expression between

c-Maf-deficient and control NKp46+ CCR6- ILC3s. Data represent the combined analysis of three biologically independent samples. Genes considered

significant (FC > 1.5, FDR < 0.05) fall into the grey background, while selected genes are highlighted in red. (F) Gene set enrichment plots showing

enrichment of ILC1 and NK cell signature genes in c-Maf-deficient vs. control NKp46+ CCR6- ILC3s (FDR < 0.01). Normalized enrichment score (NES).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. c-Maf cell-intrinsically restrains the type 1 conversion of CCR6- ILC3s.

Figure supplement 2. RNA-Seq analysis of intestinal NKp46+ CCR6- ILC3s and CCR6+ ILC3s.
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c-Maf restrains T-bet expression by directly repressing the Tbx21
promoter
The strong upregulation of T-bet expression in c-Maf-deficient CCR6- ILC3s raised the possibility

that c-Maf acted as a direct repressor of T-bet, thereby restraining the type 1 differentiation pro-

gram. Indeed, in silico analysis identified Maf response elements (MARE) within the Tbx21 promoter,

as well as in a conserved distant Tbx21 enhancer (Kataoka et al., 1994; Yang et al., 2007), both

regions accessible in NKp46+ CCR6- ILC3s as evidenced by ATAC-sequencing (Shih et al., 2016;

Figure 3A and B).

In order to study the transcriptional activity of c-Maf at these sites, we cloned the Tbx21 pro-

moter alone or in conjunction with the Tbx21 enhancer upstream of a luciferase reporter

(Figure 3C). Indeed, the Tbx21 promoter showed strong transcriptional activity when compared to a

promoterless control vector (Figure 3D). The Tbx21 enhancer further increased this activity when

cloned upstream of the Tbx21 promoter (Figure 3D). Importantly, upon exogenous overexpression

of c-Maf, we detected a strong de-repression of the reporter signal when we mutated the MARE

sites within the Tbx21 promoter (Figure 3B and E). Notably, mutating the Tbx21 enhancer did not

result in further increase of reporter activity, indicating that c-Maf facilitated its suppressive function

mainly by acting on the Tbx21 promoter (Figure 3B and E).

Thus, these data identified the Tbx21 promoter as a c-Maf-responsive region through which

c-Maf directly controls T-bet expression.

c-Maf expression in CCR6- ILC3s is dependent on T-bet
Despite the fact that c-Maf acted as a direct repressor of T-bet, we observed strong correlation of

c-Maf expression with T-bet expression in CCR6- ILC3s (Figure 2A). This finding let us hypothesize

that c-Maf expression was co-regulated with T-bet expression as part of the type one conversion

program. To explore this hypothesis, we studied c-Maf expression in CCR6- ILC3s from T-bet-defi-

cient mice. Indeed, in the absence of T-bet, c-Maf expression was strongly reduced when compared

to T-bet-sufficient cells (Figure 3F), indicating that T-bet positively regulated its own repressor to

establish an equilibrated state within the ILC3-to-ILC1 continuum.

In silico analysis of the Maf locus using ATAC-Seq (Shih et al., 2016) and T-bet ChIP-Seq

(Gökmen et al., 2013) data further identified a striking overlap of T-bet binding peaks with open

chromatin regions in NKp46+ CCR6- ILC3s within two conserved non-coding sequences (CNS-0.5

and CNS-1) upstream of Maf, suggesting that T-bet directly controlled c-Maf expression in CCR6-

ILC3s (Figure 3—figure supplement 1).

IL-1b- and IL-18-mediated NF-kb and Notch signalling promote c-Maf
expression in CCR6- ILC3s
Next, we aimed to identify signals that control c-Maf expression in CCR6- ILC3s. Several cytokines

were shown to regulate the differentiation and function of T-bet+ CCR6- ILC3s, including IL-1ß, IL-

12, IL-15, IL-18 and IL-23 (Klose et al., 2013; Vonarbourg et al., 2010; Bernink et al., 2015; Satoh-

Takayama et al., 2010). Thus, we short-term stimulated sort-purified NKp46+ CCR6- ILC3s with

these cytokines in vitro and subsequently assessed their Maf expression by qPCR. Among all tested

conditions, the pro-inflammatory IL-1 family cytokines IL-1ß and IL-18 stood out as potent inducers

of Maf expression (Figure 3G). IL-1ß/IL-18 stimulation also induced Ifng and Il22 expression (Fig-

ure 3—figure supplement 2A). In fact, c-Maf-deficient NKp46+ CCR6- ILC3s expressed more Ifng in

response to IL-1ß/IL-18 as compared to controls (Figure 3—figure supplement 2A), functionally

connecting c-Maf expression downstream of these stimuli with the control of the type 1 effector

response.

Since both IL-1ß and IL-18 signal via NF-kb and a conserved NF-kb binding site is present within

CNS-0.5 upstream of Maf (Figure 3—figure supplement 1C and D), we hypothesized that NF-kb is

involved in regulation of c-Maf expression downstream of IL-1ß/IL-18. Indeed, pharmacological inhi-

bition of NF-kb signalling completely abrogated the cytokine-mediated induction of c-Maf expres-

sion (Figure 3H). In addition to IL-1ß/IL-18, we found that IL-12 suppressed Maf expression

(Figure 3G). However, IL-12 did not interfere with the IL-1ß/IL-18-mediated c-Maf induction nor was

c-Maf expression altered in NKp46+ CCR6- ILC3s from Il12a-/- mice as compared to controls (Fig-

ure 3—figure supplement 2B and C), questioning a dominant role of IL-12 in c-Maf regulation.
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Figure 3. c-Maf directly represses T-bet as part of a negative feedback loop. (A) Representative ATAC sequencing tracks across the Tbx21 locus of

NKp46+ ILC3s (Shih et al., 2016). The Tbx21 promoter and enhancer regions are highlighted in red (Yang et al., 2007). ATAC sequencing tracks were

visualized using the WashU browser from the Cistrome project (Mei et al., 2017). (B) Positioning of putative Maf response elements (MARE) within the

Tbx21 promoter and enhancer (highlighted in blue). Depicted sequences represent selected regions of the Tbx21 promoter and enhancer. Mutated

Figure 3 continued on next page
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Of note, the cytokine-mediated induction of Maf expression was accompanied by a concomitant

decrease in Tbx21 expression (Figure 3—figure supplement 2D). Yet, this suppression was inde-

pendent of NF-kb and c-Maf, since Tbx21 expression was similarly suppressed by IL-1ß/IL-18 upon

NF-kb inhibiton and in c-Maf-deficient NKp46+ CCR6- ILC3s (Figure 3—figure supplement 2E and

F). Taken together, these data demonstrate that, besides their reciprocal regulation, c-Maf and

T-bet expression level are further critically controlled by cytokine signals.

In addition to cytokines, we also tested Notch signals as a potential extrinsic cue controlling both

type 1 conversion of and c-Maf expression by ILC3s. Indeed, Notch was shown to be necessary for

the induction and maintenance of T-bet and NKp46 expression in CCR6- ILC3s (Rankin et al., 2013;

Viant et al., 2016). Similarly, we could recently identify Notch signalling as a potent inducer of

c-Maf expression in T cells (Neumann et al., 2019; Neumann et al., 2014). To test the role of Notch

we cultured purified NKp46+ CCR6- ILC3s on OP9 or OP9-DLL1 stromal cells, the latter ectopically

express the Notch ligand Delta-like 1 (DLL1). As reported earlier, Notch signals were essential to

drive type 1 conversion of NKp46+ CCR6- ILC3s, as evidenced by reduction and loss of NKp46

expression in the absence of Notch (Figure 3I). Importantly, c-Maf showed a similar expression pat-

tern, being significantly reduced in NKp46+ CCR6- ILC3s cultured on OP9 cells as compared to cells

cultured on OP9-DLL1 cells (Figure 3J). This downregulation of NKp46 and c-Maf expression in the

absence of continuous Notch signalling was independent of potential survival promoting effects of

Notch (Figure 3—figure supplement 3), establishing a molecular link between Notch signalling and

type 1 conversion of NKp46+ CCR6- ILC3s.

Concluding remarks
Collectively, our study adds c-Maf as a novel key factor to the complex transcriptional network that

governs the differentiation and function of ILC3s. In line with the emerging concept that co-expres-

sion and cross-regulation of multiple master regulators determines the fate and function of ILCs

(Fang and Zhu, 2017), we have uncovered an essential negative feedback loop between c-Maf and

T-bet, which restrains the type 1 conversion of ILC3s. Given the antagonism between T-bet and

RORgt, the c-Maf-dependent suppression of T-bet also indirectly stabilizes RORgt expression, thus

preserving the type 3 identity of ILC3s. In addition, c-Maf may also directly contribute to RORgt

expression in ILC3s, as it has been reported for T cells (Tanaka et al., 2014; Zuberbuehler et al.,

2019). Our data supports and extends the findings of a very recent report that was released after

completion of this manuscript (Parker et al., 2020).

Figure 3 continued

sequences are shown in lower lines in red. (C) Schematic representation of plasmids containing the Tbx21 promoter/enhancer linked to the firefly

luciferase reporter gene (Luc). Blue dots indicate MARE sites within the Tbx21 promoter and enhancer region. (D) Relative luciferase activity (RLU) of

different reporter constructs driven by the Tbx21 promoter alone or in combination with an enhancer sequence compared to a promoterless (w/o)

control vector (pGL3 basic) (n = 3, mean ± SEM, *p<0.05, ***p<0.001). (E) Analysis of c-Maf-dependent suppression of luciferase activity. The MARE

sites within the Tbx21 promoter or the Tbx21 promoter and enhancer were mutated in the Tbx21 enhancer/promoter construct. Comparison of RLU

between unmutated and mutated Tbx21 enhancer/promoter constructs upon c-Maf overexpression (n = 3, mean ± SEM, ***p<0.001). All reporter assay

data are pooled from three independent experiments. (F) Expression of c-Maf by siLP CCR6- ILC3s from T-bet-deficient (T-bet-/-) and -sufficient (T-bet+/

+) mice. Representative flow cytometric profiles are shown on the left; graph on the right shows quantification of c-Maf gMFI (n = 4, mean ± SEM,

***p<0.001). (G–H) Sort-purified siLP NKp46+ CCR6- ILC3s from RorcCre R26EYFP mice were cultured in vitro for 36 hr in the presence of IL-7/SCF (w/o) or

IL-7/SCF plus indicated cytokines. Subsequently, Maf expression was measured by qPCR (n = 4, mean ± SEM, *p<0.05, **p<0.01, ***p<0.001). In one

condition the NF-kb inhibitor BMS-345541 (BMS) was added at 1 mM to the culture. Data are pooled from two independent experiments each with two

replicate wells. (I) Sort-purified siLP NKp46+ CCR6- ILC3s from RorcCre R26EYFP mice were cultured in the presence of IL-7/SCF on OP9 or OP9-DLL1

stromal cells as indicated. After 12 days, cells were analysed by flow cytometry for the cell surface expression of NKp46. Representative contour plots

are shown on the left (pregated on CCR6- ILC3s); graph on the right shows quantification of the frequency of NKp46+ cell among CCR6- ILC3s (n = 10,

mean ± SEM, ***p<0.001). Data are pooled from two independent experiments with 4 to 6 replicate wells. (J) Expression of c-Maf by NKp46+ CCR6-

ILC3s cultured on OP9 or OP9-DLL1 cells. Representative histogram is shown left; graph on the right shows quantification of c-Maf gMFI (n = 10,

mean ± SEM, ***p<0.001). All statistical differences were tested using an unpaired Students’ t-test (two-tailed).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Evidence for direct binding of T-bet to Maf in NKp46+ ILC3s.

Figure supplement 2. Cytokine-mediated regulation of c-Maf and T-bet expression.

Figure supplement 3. Notch signaling maintains NKp46 and c-Maf expression in NKp46+ CCR6- ILC3s independent of cell proliferation.
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Materials and methods

Animals
To generate conditional c-Maf-deficient mice, RorcCre mice or Cd4Cre mice were crossed to Mafflox

mice (provided by C. Birchmaier, MDC, Berlin, Germany) (Wende et al., 2012). Cd4Cre (Lee et al.,

2001), RorcCre (Eberl and Littman, 2004), R26EYFP (Srinivas et al., 2001) and T-bet-deficient mice

(Szabo et al., 2002) were described before. Il12a-/- mice were kindly provided by U. Schleicher,

Erlangen. All mice were on a C57BL/6 background and bred and maintained under specific patho-

gen-free conditions at our animal facilities (FEM Charité Berlin, Germany). All animal experiments

were in accordance with the ethical standards of the institution or practice at which the studies were

conducted and were reviewed and approved by the responsible ethics committees of Germany

(LAGeSo Berlin, I C 113 – G0172/14) and Russia.

Antibodies
A list of antibodies used in this study is provided in Supplementary file 3.

Cell isolation from small intestine and flow cytometry
Small intestinal tissue was treated with HBSS buffer (without calcium and magnesium) containing 5

mM EDTA and 10 mM HEPES (pH 7.5) at 37˚C for 30 min to remove epithelial cells, minced and

digested in HBSS buffer (with calcium and magnesium) containing 10 mM HEPES, 4% FCS, 0.5 mg/

ml Collagenase D, 0.5 mg/ml DNaseI (Sigma), 0.5 U/ml Dispase (BD) with constantly stirring at 37˚C

for 30 min. The supernatant was filtered and the remaining tissue was mashed through a 70 mm

mesh. siLP cells were separated using a 40%/80% step-gradient (Percoll solution, GE Healthcare).

Flow cytometry was performed according to previously defined guidelines (Cossarizza et al., 2019).

In detail, single-cell suspensions were stained with different antibodies (Supplementary file 3). For

cytokine analysis, cells were restimulated with PMA (Sigma, 10 ng/ml), ionomycin (Sigma, 1 mg/ml)

and IL-23 (50 ng/ml) for 5 hr in TexMACS medium (Miltenyi Biotec) containing 10% FCS. After 1 hr

of stimulation, Brefeldin A (Sigma, 5 mg/ml) was added to block cytokine secretion. For intracellular

staining of cytokines and transcription factors, cells were first stained for surface markers and dead

cells were labeled with Fixable Viability Dye eFluor780 (eBioscience). After that, cells were fixed in

Fix/Perm buffer (eBioscience) at 4˚C for 1 hr, followed by permeabilization (eBioscience) at 4˚C for 2

hr in the presence of antibodies. Cells were acquired with a BD LSRFortessa X-20 and analysis was

performed with FlowJo (Tree Star) software.

RNA-seq analysis
NKp46+ CCR6- ILC3s and CCR6+ ILC3s were sorted from the siLP of 8–12 weeks old RorcCre Maffl/fl

or littermate Maffl/fl control mice using a BD FACSAria sorter (sorting strategy Figure 2—figure sup-

plement 2A). RNA was isolated with the RNeasy Micro kit from Qiagen according to the manufac-

turer‘s protocol. RNA libraries were prepared using the Smart-Seq V4 Ultra low Input RNA kit

(Takara Clontech). Sequencing was performed on an Illumina Nextseq 500 generating 75 bp paired-

end reads. Three biological replicates of each subset were sequenced. Raw sequence reads were

mapped to the mouse GRCm38/mm10 genome with TopHat2 (Kim et al., 2013) in very-sensitive

settings for Bowtie2 (Langmead and Salzberg, 2012). Gene expression was quantified either by

HTSeq (Anders et al., 2015) for total RNA or featureCounts (Liao et al., 2014) for mRNA and ana-

lyzed using DESeq2 (Love et al., 2014). A cut-off (FC > 1.5 and p-value < 0.05) was applied for call-

ing differentially expressed genes. Furthermore, differentially expressed genes were filtered for

‘gene_type = protein_coding’ before further analysis.

Gene set enrichment analysis (GSEA)
GSEA was performed using the GSEA tool from the Broad Institute. Gene sets used in this study

were generated by taking the top upregulated genes (log2FC > 2) from published differential gene

expression analysis of RNA-seq data comparing ILC1s or NK cells with CCR6- ILC3s

(Pokrovskii et al., 2019).
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Luciferase reporter assay
HEK293T cells were transfected with the pGL3 basic luciferase plasmid (Promega) containing the

T-bet promoter alone or the T-bet promoter in combination with an upstream enhancer region

(Yang et al., 2007), or the empty pGL3 basic in combination with an internal control pRL-TK Renilla

plasmid (Promega). The T-bet enhancer/promoter plasmid was described before (Hosokawa et al.,

2013) and kindly provided by H. Hosokawa (Tokai University, Japan). In order to assess gene regula-

tion by c-Maf, putative Maf responsive elements in the promoter and enhancer were mutated using

the Q5 Site-Directed Mutagenesis Kit (New England Biolabs). In addition to mutated reporter plas-

mids, cells were co-transfected with c-Maf coding sequence in pMSCV. Luciferase activity was mea-

sured on a SpectraMax i33 microplate reader (Molecular Devices) after 24 hr using dual luciferase

assay system (Promega). Luciferase activity was determined relative to Renilla.

In vitro stimulation of NKp46+ CCR6- ILC3s with cytokines
CD45+ Lineage- (Lineage: anti-CD19, anti-Gr-1, anti-CD3, anti-CD5) RORgtfm+ CD127+ NKp46+

CCR6- cells were sort-purified from the siLP of 11–14 week old RorcCre R26EYFP mice. Sorted cells

were transferred in complete RPMI medium to a 96 U bottom well plate at a density of 15.000 cells/

well. Subsequently cells were cultured in the presence of IL-7 (20 ng/ml) and SCF (20 ng/ml) plus dif-

ferent cytokines (IL-1ß, IL-12, IL-15, IL-18, IL-23; each at 20 ng/ml) for 36 hr before mRNA analysis.

For blocking NF-kb activation, BMS-345541, a selective inhibitor of IkB kinase (Burke et al., 2003),

was added at a concentration of 1 mM to the culture.

In vitro culture of NKp46+ CCR6- ILC3s on OP9-DLL1 cells
CD45+ Lineage- (Lineage: anti-CD19, anti-Gr-1, anti-CD3, anti-CD5) RORgtfm+ CD127+ NKp46+

CCR6- cells were sort-purified from the siLP of 11–14 week old RorcCre R26EYFP mice. Sorted cells

were transferred in complete RPMI medium to OP9 or OP9-DLL1 cells at a density of 10.000 cells/

well and cultured in the presence of IL-7 (20 ng/ml) and SCF (20 ng/ml) for 12 days before flow cyto-

metric analysis. OP9 cells are murine stromal cells derived from OP/OP mice used as feeder cells in

lymphocyte differentiation assays. OP9-DLL1 cells are transfected with Notch ligand delta-like-1

(Schmitt and Zúñiga-Pflücker, 2002). Prior to adding isolated lymphocytes, confluent feeder cells

were treated with 5 mg/ml Mitomycin C (Sigma) for 3 hr at 37˚C and subsequently seeded on a 96

flat bottom well plate at a density of 50.000 cells/well.

Bone marrow chimeras
Bone marrow cells from wild-type CD45.1+ CD90.2+ C57BL/6 and CD45.2+ CD90.2+ RorcCre Maffl/fl

mice were mixed in a 1:1 ratio and intravenously injected into sub-lethally irradiated CD90.1+ wild-

type recipient mice. Small and colonic lamina propria of reconstituted mice were analysed 6 weeks

after cell transfer.

qPCR
mRNA for real-time qPCR was isolated with the RNeasy Plus Micro Kit according to the manual of

the manufacturer (QIAGEN). Reverse transcription was done with the High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems) as it is described in the manufacturer’s protocol. qPCR was

performed using a Quant Studio five system (Applied Biosystems) and the SYBR Green PCR Master

Mix Kit (Applied Biosystems). The mRNA expression is presented relative to the expression of the

housekeeping gene hypoxanthine-guanine phosphoribosyl-transferase (HPRT). Real-time qPCR

primer can be found in Supplementary file 4.

Statistical analysis
Data are the mean with SEM and summarize or are representative of independent experiments as

specified in the text. Statistical analyses were performed using Prism software (GraphPad) with two-

tailed unpaired Student’s t test (except RNA-seq data).
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Universitätsmedizin Berlin. We thank Irene Mattiola, Christoph S N Klose, Fabian Guendel-Rojas,

Mario Witkowski, Pawel Durek and Katrin Lehmann for discussion, technical and experimental help

and proofreading of the manuscript.

Additional information

Funding

Funder Grant reference number Author

Deutsche Forschungsge-
meinschaft

Priority Program 1937
"Innate Lymphoid Cells"

Andreas Diefenbach
Christian Neumann

European Regional Develop-
ment Fund

ERDF 2014-2020 Frederik Heinrich
Mir-Farzin Mashreghi

European Regional Develop-
ment Fund

EFRE 1.8/11 Mir-Farzin Mashreghi

Russian Science Foundation 17-74-20059 Andrey Kruglov

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Caroline Tizian, Annette Lahmann, Data curation, Formal analysis, Validation, Investigation, Method-

ology, Designed and performed experiments, Analysed data; Oliver Hölsken, Formal analysis, Valida-

tion, Investigation, Methodology, Designed and performed experiments, Analysed data; Catalina

Cosovanu, Formal analysis, Methodology, Performed experiments, Analysed data; Michael Kofoed-

Branzk, Methodology, Provided discussion, Proofread the manuscript; Frederik Heinrich, Formal

analysis, Methodology, Performed computational analyses of 16S rRNA-seq data; Mir-Farzin Mashre-

ghi, Resources, Supervision, Supervised sequencing experiments, Provided reagents and equipment

for their execution; Andrey Kruglov, Resources, Methodology, Assisted in chimera experiments;

Andreas Diefenbach, Conceptualization, Resources, Supervision, Funding acquisition, Provided cru-

cial reagents, Contributed to the design of the study, Proofread the manuscript; Christian Neumann,

Conceptualization, Resources, Data curation, Formal analysis, Supervision, Funding acquisition, Vali-

dation, Investigation, Visualization, Methodology, Project administration, Conceived the project,

Designed and performed most experiments, Analysed the data, Generated the figures and wrote

the manuscript with the input of all co-authors

Author ORCIDs

Oliver Hölsken https://orcid.org/0000-0001-6086-9275

Mir-Farzin Mashreghi https://orcid.org/0000-0002-8015-6907

Christian Neumann https://orcid.org/0000-0003-2202-1876

Ethics

All animal experiments were in accordance with the ethical standards of the institution or practice at

which the studies were conducted and were reviewed and approved by the responsible ethics com-

mittees of Germany (LAGeSo Berlin, I C 113 – G0172/14) and Russia.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.52549.sa1

Tizian et al. eLife 2020;9:e52549. DOI: https://doi.org/10.7554/eLife.52549 12 of 17

Short report Immunology and Inflammation

https://orcid.org/0000-0001-6086-9275
https://orcid.org/0000-0002-8015-6907
https://orcid.org/0000-0003-2202-1876
https://doi.org/10.7554/eLife.52549.sa1
https://doi.org/10.7554/eLife.52549


Author response https://doi.org/10.7554/eLife.52549.sa2

Additional files
Supplementary files
. Supplementary file 1. Differentially expressed genes between c-Maf-deficient and -sufficient

NKp46+ CCR6- ILC3s. NKp46+ CCR6- ILC3s were sorted from siLP of RorcCreMaffl/fl and control mice

and subjected to RNA sequencing. 941 genes were identified as differentially expressed (FC >1.5,

p-value<0.05). Data represent the combined analysis of three biologically independent samples.

. Supplementary file 2. Genes differentially expressed in c-Maf-deficient NKp46+ CCR6- and NKp46-

CCR6+ ILC3s. NKp46+ CCR6- ILC3s and NKp46- CCR6+ ILC3s were sorted from siLP of RorcCreMaffl/

fl and control mice and subjected to RNA sequencing. 294 genes were found to be differentially

expressed (FC >1.5, p-value<0.05) in both subsets.

. Supplementary file 3. List of antibodies used in this study.

. Supplementary file 4. qPCR Primer used in this study.

. Transparent reporting form

Data availability

Sequencing data supporting the findings of this study have been deposited in the Gene Expression

Omnibus (GEO) database under the GEO accession number: RNA-Seq: GSE143867.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Caroline Tizian,
Annette Lahmann,
Oliver Hölsken, Cat-
alina Cosovanu, Mi-
chael Kofoed-
Branzk, Frederik
Heinrich, Mir-Farzin
Mashreghi, Andrey
Kruglov, Andreas
Diefenbach, Chris-
tian Neuman

2020 c-Maf restrains T-bet-driven
programming of CCR6-negative
group 3 innate lymphoid cells

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE143867

NCBI Gene
Expression Omnibus,
GSE143867

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Pokrovskii M, Hall
JA, Ochayon DE, Yi
R, Chaimowitz NS,
Seelamneni H, Car-
riero N, Watters A,
Waggoner SN,
Littman DR, Bon-
neau R, Miraldi ER

2019 Gene expression (RNA-seq) of
innate lymphoid cells of the small
intestine (SI) and large intestine (LI)
lamina propria

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE116092

NCBI Gene
Expression Omnibus,
GSE116092

Gökmen MR, Dong
R, Kanhere A, Po-
well N, Perucha E,
Jackson I, Howard
JK, Hernandez-
Fuentes M, Jenner
RG, Lord GM

2013 ChIP-seq analysis of T-bet in WT
mice (Th1 cells)

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE77695

NCBI Gene
Expression Omnibus,
GSE40623

Shih HY, Sciumè G,
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