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Abstract

In this thesis we present a comprehensive analysis of sensitivity of metabolic chemical
reaction networks, with general kinetics. Sensitivity studies the network response
to perturbations. We consider local perturbations of the network components -
metabolite concentrations or reaction rates - at a dynamical equilibrium. We inves-
tigate the responses in the network, both of the metabolite concentrations and of the
reaction fluxes. Firstly, we describe which components of the network respond, at
all. Secondly, we analyze whether their responses are positive, negative, or whether
the sign depends on the parameters of the system.
Sign changes of the Jacobian determinant play an important overall role both in
sensitivity analysis and in the bifurcation of equilibria. The first part of this thesis
distinguishes reaction network Jacobians with constant sign from the bifurcation
case, where that sign depends on specific values of reaction rates.

Our approach is purely qualitative, rather than quantitative. In fact, our analysis is
based, solely, on the stoichiometry of the reaction network. We do not require any
quantitative information on the reaction rates. Instead, the description is done only
in algebraic terms, and the only data required is the network structure.

Biological applications include detection of multistationarity, enzyme knock-out ex-
periments, and metabolic control.
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I will plainly say: “I thank all my friends”. Plain but deep sentence.

This doctoral thesis has been supported by the Collaborative Research Center 910,
the Berlin Mathematical School and the viennese Erwin Schrödinger Institute.

vii





Contents

1 Preambulum 1

I The Jacobian of metabolic networks 11

2 Good children and bad children 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Cauchy-Binet analysis via Child Selections . . . . . . . . . . . . . . . . 14
2.3 Preliminary examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Good Child Selections . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Bad Child Selections . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Interpretation of the result . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Hunting saddle-node bifurcations . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Example: autocatalytic network . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Factorizable determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 A case study: the central metabolism of E.Coli . . . . . . . . . . . . . . 31

Appendices 35
2.A Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.B Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Sensitivity 41

3 Nonzero response 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Nondegeneracy condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Metabolite perturbation . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1.1 Metabolite response to metabolite perturbation . . . 49
3.3.1.2 Flux response to metabolite perturbation . . . . . . . 52

3.3.2 Reaction perturbation . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2.1 Metabolite response to reaction perturbation . . . . . 54
3.3.2.2 Flux response to reaction perturbation . . . . . . . . . 56
3.3.2.3 Single children . . . . . . . . . . . . . . . . . . . . . . . 57

ix



x CONTENTS

3.3.3 General α-perturbations . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4 Reducing metabolite to reaction perturbations . . . . . . . . . . 59

3.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Signed response 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Twin sisters have opposite influence . . . . . . . . . . . . . . . . 70
4.2.2 Metabolite response . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Monomolecular networks 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Main result: flux response to reaction perturbation . . . . . . . . . . . 83
5.3 Metabolite response to reaction perturbation . . . . . . . . . . . . . . . 86
5.4 Metabolite perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Limitations to influence transitivity 89
6.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 A general counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Metabolite transitivity in monomolecular networks . . . . . . . . . . . 91
6.4 Failure of sign-transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Discussion and open questions 93

Bibliography 98







In the dime stores and bus stations,
People talk of situations,
Read books, repeat quotations,
Draw conclusions on the wall.

Bob Dylan





Chapter 1

Preambulum

The main aim of this thesis is to establish a rational approach to sensitivity analysis
of equilibria for metabolic chemical reaction networks. Sensitivity analysis, loosely
speaking, investigates how a network responds to perturbations.

Let us wander a bit through etymology, first. The word sensitivity forms irregu-
larly from the Latin verb sentire, which means to feel. Main tools of perception are
indeed the senses, from the same etymological root. Sentimental, in English, is a
person who overfeels. The wonderful jazz standard “In a sentimental mood”, by
Duke Ellington, perfectly describes this feature. By extension of the signification,
the Italian word sensitivo has taken on the meaning of medium, clairvoyant, psychic.
Namely, a person who feels something. Literally, thus, sensitivity is the capacity of
a network to feel.

What does a network feel? The network can feel, for example, external intrusions.
Here, we are interested in intrusions, which do not alter the structure of the network.
We can perturb some network components, such as a reaction rate or a metabolite
concentration and we may naturally ask, then, which other components have been
influenced by our direct perturbation, and which have remained unaffected. This
concept applies to a large variety of phenomena. Parameter fluctuations, for in-
stance, can easily be induced both by environmental as well as genetic agents. The
impact of parameter fluctuations on the network is, therefore, a matter of crucial
importance.

More specifically, and for simplicity of presentation, we focus on networks at a dy-
namical equilibrium. Here, dynamical equilibrium means, simply, that metabolite
concentrations are stationary in time. Also for simplicity, at first, we study the
effect of small perturbations. Then, mathematically, the central object of sensitiv-
ity analysis is the sensitivity matrix. This matrix encodes the partial derivatives
of the responsive components with respect to the parameters, at equilibrium. For
a chemical network case, natural responsive components to be considered are the
concentration of chemicals, and the reaction fluxes.
In applications, precise measurements are often very difficult - if not impossible -
and reaction rates remain largely unknown in most specific cases. For this reason,
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we aim for a comprehensive qualitative analysis rather than quantitative numerical
simulations for one or another set of guesswork parameters. Our qualitative analysis
is based on the structure of the network, only.

Various types of sensitivity analysis are common in the frame of chemistry. We
refer to the survey paper [SRTC05] for more detailed references. An interesting
approach, in a deterministic context, has been developed by Shinar, Feinberg, and
co-authors [SAF09, SF10, SF11]. In this body of work, the concept of absolute co-
nentration robustness (ACR) has been introduced. In the authors’ words [SF11],
“a model biochemical system has ACR relative to a particular bio-active molecular
species if [...] the concentration of that species is the same in all of the positive
steady states that the system might admit, regardless of the overall supplies of the
various network constituents”. ACR thus indicates zero sensitivity of the concentra-
tion of a certain species with respect to the other network components. Moreover,
in [SMJF11] Shinar and co-authors were able to derive quantitative bounds on the
entries of the sensitivity matrix for reaction fluxes, in a mass-action kinetics context
and for a regular class of networks.

In parallel, Fiedler and Mochizuki pursued a sensitivity analysis in a more metaboli-
cally oriented context [MF15,FM15], with applications to the central glucose metabolism
of Escherichia Coli. These works, and the generalization [BF18], were the starting
point for the present thesis.

We consider general metabolic chemical reaction networks Γ withM metabolites and
N reactions. For notation, we use labels A,B,C,D, ... for metabolites and 1,2,3, ...
for reactions. We call M the set of metabolites and E the set of reactions, such that
∣M∣ =M and ∣E∣ = N . We use the small letter m ∈ M for a generic metabolite and
the small letter j ∈ E for a generic reaction.

A chemical reaction j is represented as

j ∶ sj1m1 + ... + sjMmM Ð→
j
s̄j1m1 + ... + s̄jMmM , (1.1)

with nonnegative stoichiometric coefficients sj, s̄j ∈ R. In a metabolic context, often,
these coefficients are only 0 or 1. However, the work of this thesis possibly applies
to real stoichiometric coefficients, as well.
A metabolite m is called an input or a reactant of the reaction j, if sjm ≠ 0. Re-
spectively, m is called an output or a product of the reaction j, if s̄jm ≠ 0. We say,
conversely, that a reaction j is outgoing from the metabolite m if m is an input of
reaction j. We say that a reaction j is an ingoing reaction of the metabolite m if m
is an output of the reaction j.
Metabolic systems are intrinsically open systems, that is, they exchange chemicals
with the outside environment by feed and exit reactions. Within our settings, the
constant feed reactions, or inflows, are reactions with no inputs (sj = 0) and the exit
reactions, or outflows, are reactions with no outputs (s̄j = 0).
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Graphically, we represent a reaction

j ∶ A + 2B Ð→
j
C, (1.2)

where we have omitted stoichiometrically zero terms, as follows.

(1.3)

In (1.3), the arrow orientation is inherited from (1.2). The stoichiometric coefficient
2 of metabolite B is indicated as a weight in the lower tail of the directed arrow
j, and stoichiometric coefficients 1 are omitted, as well as non-participating other
reactants. In particular, this graphical representation considers the metabolites as
vertices and the reactions as arrows of the network, and it is one natural represen-
tation widely used in chemistry, biology, and mathematics.

Explicit autocatalytic reactions j are defined as reactions for which a metabolite m
is both an input and an output of the reaction. In symbols, sjm, s̄

j
m ≠ 0, for at least

one metabolite m. Throughout this thesis, we exclude explicit autocatalytic
reactions. In particular, self-loops are not allowed in the graphical representation
of the network.

To construct the M × N stoichiometric matrix S, let us consider any reaction j.
We associate to any stoichiometric coefficient sjm of an input metabolite m of the
reaction j a negative stoichiometric entry of the stoichiometric matrix S, that is:

Smj ∶= −sjm , for m input of j. (1.4)

Conversely, we associate to any stoichiometric coefficient s̄jm of an output metabolite
m of the reaction j a positive stoichiometric entry of S, that is:

Smj ∶= s̄jm , for m output of j. (1.5)

For example, a monomolecular reaction j is a reaction which possesses as input one
single metabolite m1 and as output one single metabolite m2,

m1 Ð→
j
m2. (1.6)

Such a reaction translates into the jth column of the stoichiometric matrix S as

Sj =

j

⎛
⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟
⎠

m1 −1
m2 1
m3 0
... ...
mM 0

. (1.7)
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Here we have indicated the rows by m1, ...,mM , explicitly. With this construction,
in particular, we model a reversible reaction

j ∶ A +B ←→
j
C (1.8)

simply as two irreversible reactions

j1 ∶ A +B Ð→
j1

C and j2 ∶ C Ð→
j2

A +B. (1.9)

Columns associated to feed reactions possess only positive entries and the ones as-
sociated to exit reactions possess only negative entries. All other columns possess
both positive and negative entries.

Let xm(t) be the time evolution of the concentration of the metabolite m. The
isothermal dynamics of the vector x ∈ RM of the concentrations is described by the
system of differential equations

ẋ = f(x) ∶= Sr(x). (1.10)

The M × N matrix S is the stoichiometric matrix constructed above. The N -
dimensional vector r(x) represents the reaction rates as functions of x: the kinetics
of the system. The feed reactions are represented by constant functions. That is:

rjf (x) ≡Kjf , (1.11)

for a feed reaction jf . Throughout this thesis, we pose the following as-
sumptions on the reaction rates r(x):

1. We assume the reaction rates rj(x) to depend only on those concentrations xm
such that the metabolite m is an input metabolite of reaction j. In particular,

∂rj(x)
∂xm

≡ 0, unless m is an input of j. (1.12)

Moreover, we use the notation rjm for the nonzero partial derivatives, i.e.,

rjm ∶= ∂rj(x)
∂xm

≠ 0 (1.13)

if m is an input of reaction j.

2. We consider strictly positive monotone reaction rate functions rj(x) ∈ C1, for
every j = 1, ...,N :

rj(x) > 0 for x > 0, (1.14)

and, for the nonzero partial derivatives rjm, strictly positive slopes

rjm > 0. (1.15)

This monotonicity restriction is indeed satisfied for most, but not all, chemical
reaction schemes. Without any constraint on the sign of rjm, we will not be
able to predict the sign of sensitivity, of course.
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With these assumptions, all required information of the network is completely en-
coded in the stoichiometric matrix S, only. This fact perfectly suits with our initial
intent to develop a theory requiring solely the structure of the network as a data.
In particular, we do not specify the mathematical form of the kinetics. Chemical
kinetics is a hugely vast field of study; for further reading, and better reference, see
the encyclopedia [CCK].

Great effort in the mathematical community has been spent in finding network char-
acterizations of the existence and the uniqueness of equilibrium solutions of (1.10).
See the account of Horn and Jackson [HJ72], for example, and the comprehensive
book by Martin Feinberg [Fei19], for an extensive reference.
With our approach, we do not address this question at all. In fact, throughout
this thesis, we assume the existence of a dynamical equilibrium x∗ that
solves

0 = f(x∗) ∶= Sr(x∗). (1.16)

The assumption of the existence of a dynamical equilibrium is not smoothly untrou-
bled. In particular, linear constraints have been implicitly imposed on the reaction
rates r, because of (1.16). Note that these constraints do not necessarily fix the
precise value of an equilibrium x∗, and can be considered posed a priori, so that the
existence of the equilibrium is an assumption on the reaction rates r, only. Here, our
analysis is based entirely on the derivatives rjm of the reaction rates and we do not
want to be concerned by the constraints (1.16). To avoid this, we must assume a cer-
tain independence of the derivatives rjm from the reaction rates themselves, at the
equilibrium. In particular, at the equilibrium, we require the possibility of choosing
freely the value of any rjm, independently from each other and from the constraints
Sr = 0. In this sense, the partial derivatives rjm can be considered positive free
parameters. This requires a certain mathematical complexity of the reaction rates
rj. In fact: too mathematically ‘simple’ kinetics fail to satisfy this assumption. As
an example, for polynomial mass-action kinetics, the value of rj(x) and rjm(x) are
related, a priori, at any value x, and for any j and m. In particular, the theory de-
veloped here does not apply to mass-action kinetics. In contrast, Michealis-Menten
kinetics satisfy our independence assumption [Fie19].

In general, the value and even the existence of a positive equilibrium x∗ depends on
the constant feed reactions. However, practically, the constant rates disappear once
differentiated. Consequently, the feed reactions do not play a role in our analysis,
once we have assumed a priori existence of an equilibrium. For this reason, we will
often avoid mentioning feed reactions, at all, especially when formulating examples.
As a disclaimer, any of our examples should be intended enlarged with suitable feed
reactions, for a feasible case of equilibrium analysis.

As mentioned above, a sensitivity analysis of equilibria, within our settings, has been
started in 2015 by Fiedler and Mochizuki in a biological [MF15] and a mathematical
paper [FM15]. This analysis, and the subsequent work with Brehm [BF18], was re-
stricted to perturbation of reaction rates, and left untouched the case of metabolite
concentrations perturbation. Their main interest was to develop a mathematical the-
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ory able to model enzyme knock-out experiments on the central glucose metabolism
of Escherichia Coli. The experimental paper for their reference was the fundamental
contribution [INB+07] by Ishii et al., which investigated the responses of Escherichia
Coli to genetic perturbations of knock-out type. The biological paper [MF15] out-
lined the modeling approach and symbolically computed the responses for a model
of the central metabolism of Escherichia Coli.

The approach of Fiedler and Mochizuki used the Implicit Function Theorem (IFT) to
address targeted reaction rate perturbations. They considered a perturbed version
of the equilibrium system (1.16) of the form

0 = Srε(x∗), where rε(x) = r + εej∗ . (1.17)

Above, ej∗ indicates the j∗-th unit vector in RN . In this way, only the reaction rate of
j∗ is perturbed (targeted perturbation). For small ε, and under a mild nondegeneracy
condition, the IFT guarantees the existence of a family of equilibrium solutions x∗(ε)
for the perturbed equation (1.17). By differentiation of (1.17) with respect to ε,

Mochizuki and Fielder defined the metabolite response δxj
∗
m′ of m′ to a perturbation

of reaction j∗ as

δxj
∗
m′ ∶=

∂x∗m′(ε)
∂ε

∣
ε=0

, (1.18)

and the flux response Φj∗
j′ of reaction j′ to a perturbation of reaction j∗ as

Φj∗
j′ ∶=

∂rj′(x∗(ε))
∂ε

∣
ε=0

. (1.19)

These responses constitute the entries of the sensitivity matrix. The nondegeneracy
condition of the standard IFT requires the Jacobian matrix

G ∶= fx, (1.20)

to be nonsingular:

detG ≠ 0. (1.21)

The first part of this thesis studies in detail the sign properties of detG, see Chapter
2. Throughout the second part, Chapters 3-6, we assume the nondegeneracy con-
dition (1.21). See Section 3.2 for a detailed discussion on this assumption, from a
network point of view.

In practice, the computation of the responses (1.18) and (1.19) requires intense
computational effort. Interestingly, the responses computed in [MF15] showed an
unexpected and intriguing pattern feature, with a high number of zero responses
(sparsity of sensitivity) and interrelated responses.
The mathematical companion paper [FM15] started from this intuition, highlight-
ing the algebraic structures responsible for those patterns. The analysis, there,
was restricted to the simpler case of monomolecular networks, which allowed a full
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description in terms of directed graphs. The nonzero response of m′, j′, to a per-
turbation of j∗ has been called nonzero influence of j∗ on m′, j′, and it has been
denoted with the graphical representation

j∗ ↝m′ , j∗ ↝ j′ . (1.22)

In particular, transitivity of flux influence

j∗ ↝ j′ and j′ ↝ j′′ ⇒ j∗ ↝ j′′ (1.23)

was established, for the monomolecular case. The transitivity statement (1.23) looks
deceptively simple but turned out to be a delicate topic. In fact, the perturbation
spreads also along other components of the network, and this effect needs to be taken
in account. In particular, for example, the present thesis shows, in 6.2, how tran-
sitivity does not hold in the case of metabolite influence for general multimolecular
networks:

m∗ ↝m′ and m′ ↝m′′ /⇒ m∗ ↝m′′. (1.24)

The pattern formation has been further studied by Okada and co-authors in [OM16,
OM17, OTM18]. Connections with the existing sensitivity and robustness theory,
as developed by Shinar and co-authors, has been investigated by Sasha Siegmund
in his Master’s Thesis [Sie16]. In the Master’s Thesis [Vas16], and in a following
joint paper with Matano [VM17], we have given a more elegant formulation, in
the monomolecular case, of the transitivity result of [FM15] and we have described

the structure of the influenced sets I(j∗) ∶= {j′ ∶ Φj∗
j′ ≠ 0}. In 2018, Brehm and

Fiedler [BF18] addressed, with similar settings, the multimolecular case, again only
for reaction rates perturbation. They achieved an algebraic description of the re-
sponses and established transitivity of flux influence (1.23) also for this general case.
The main tool of the analysis in [BF18] are the Child Selections. A Child Selection
map J is an injective map from the metabolite set M to the reaction set E, associ-
ating to any input mother metabolite m an output child reaction j, outgoing from
m. A Child Selection identifies reshuffled square minors SJ of the stoichiometric
matrix, whose mth column corresponds to the stoichiometric column of the reaction
j = J(m). Child Selections, and in particular the minors SJ, play a central role in
the analysis of the present work.

This thesis was started with two explicit goals:

1. Completing the analysis for the new case of perturbation of the concentration
of metabolites.

2. Addressing the question of the sign of the responses.

Chapter 3 and 6 are concerned with the first goal.
In fact, in Chapter 3 a complete analysis of nonzero sensitivity has been done. It is
not restricted to targeted perturbations of single components, but investigates any
vector perturbation case. Consequently, the analysis covers both cases of pertur-
bation, (metabolite concentrations and reaction rates) and both cases of response



8 CHAPTER 1. PREAMBULUM

(metabolite concentrations and reaction fluxes). The response of metabolite con-
centrations to a perturbation of concentrations has been identified with the inverse
of the Jacobian matrix, with opposite sign. This is in accordance with the ecology
community, which studied similar problems. See for example [Yod88] and [Nak92],
where the sensitivity matrix for ‘food webs ’ and ‘flow networks ’ has been studied.
Interestingly, Section 3.3.4 argues that a metabolite perturbation can be reduced to
a reaction perturbation, from a mathematical perspective. In fact: a perturbation
of a metabolite m∗ corresponds identically to a perturbation of an artificially added
exit reaction j0

m∗ from m∗, with reverted sign.
Chapter 6 concentrates on the transitivity problem for the missing case of metabo-
lite perturbation and shows, with a simple counterexample, that the Brehm-Fiedler
result [BF18] does not extend to any other case of influence.

The sign analysis of the responses is more involved. First of all, the responses turn
out to be rational functions of the rjm variables. Because of the Implicit Function
Theorem approach, the rational function response presents the Jacobian determinant
of the system as the denominator. It is then clear that a sign analysis has firstly to
deal with the sign of the Jacobian determinant in the following sense:

When does the sign of the Jacobian determinant depend on the parameters rjm?
(1.25)

This and similar questions abound in the literature, both for mass-action and for
more general kinetics. However, most of the results are directed towards finding
sufficient conditions for the Jacobian to be of fixed sign, that is, which does not
depend on the parameters rjm. Fundamental concepts as deficiency [Fei87, Fei95],
injectivity [GN65,CF06,BDB07,BC10], and concordance [SF12,SF13] have been de-
veloped towards this purpose. In particular, saddle-node bifurcations are excluded.
In contrast, the first part of this thesis, Chapter 2, fully characterizes, on a graphi-
cal level, the answer to the question (1.25). In particular we distinguish good Child
Selections, whose associated minor SJ does not affect the sign, from bad Child Selec-
tions, which produce a possible change of sign in the determinant, with consequent
instability and bifurcation phenomena. Moreover, in Section 2.6, we find bifurcation
parameters responsible for a change of sign of the determinant. This last result hints
at the possibility of saddle-node bifurcations, caused by such bifurcation parameters.

Chapter 4 addresses the question of the sign of the responses. A major role is played,
in this context, by certain elementary kernel vectors v of the stoichiometric matrix
S, see Theorem 4.2.2. Kernel vectors of such type are always associated with a
Child Selection J, in the sense that nonzero entries of the vector are always in con-
nection with reactions obtained as image of a fixed Child Selection map. Moreover,
they need to be elementary in the sense that their support, i.e. nonzero entries, is
minimal. That is, their support does not properly contain the support of any other
kernel vector. Objects of this kind have firstly been studied mathematically by
Rockafellar [Roc69] in the sixties, and recently by Klamt and co-authors [KRG+17]
in a metabolic context.
In some cases, this kernel analysis alone is not sufficient, see Theorem 4.2.3. Here,
we find that the sign of the responses is related to cokernel vectors of some minors
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SJ. It is well known that cokernel vectors of the whole stoiochiometric matrix iden-
tify conservation laws. Cokernel vectors of some minors of S may be interpreted as
conservation laws for the subsystem identified by that minor. However, note that
our analysis excludes conservation laws for the entire system, a priori, because of
the nondegeneracy assumption (1.21).
Intuitively, if the sign of the Jacobian depends on the parameters rjm, the sign of
the responses in the system is expected to depend on those parameters as well. Sur-
prisingly, this is not always the case, as Example II of Section 4.3 shows.

Finally, the ‘singleton’ Chapter 5 illustrates our sign sensitivity theory for the much
simpler class of monomolecular networks. The description is in terms of directed
paths in the network. For example, Theorem 5.4.1 addresses the case of a metabolite
perturbation of m∗, and states that the response of an element p, either metabolite
or reaction, is nonzero if and only if p is reachable from m∗ via a directed path, in
the usual graph theory sense. Moreover, the responses are always positive.

Last, but not least, our work has been driven with the hope to find some realistic bio-
logical explanations. On one hand, indeed, often the explanation of real phenomena
has been left to mere simulations, for lack of interpretation and structural under-
standing. On the other hand, applied mathematics is sometimes too self-centered
in finding in applications a selfish reason to unfold itself.
In our opinion, the explanations should rather give us insights on how certain real
biological phenomena happens, or at least honestly attempt to. It is our hope that
this thesis behaves exactly in this direction.
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Part I

The Jacobian of metabolic
networks

11





Chapter 2

Good children and bad children

2.1 Introduction

The Jacobian matrix of a dynamical system plays a central role in the stability
analysis of equilibria. The sign of its eigenvalues is an indication of stability and
a change of sign of its determinant hints therefore to a change of stability and to
bifurcation phenomena.

For the metabolic chemical reaction system

ẋ = f(x) ∶= Sr(x), (2.1)

the Jacobian matrix reads
fx = SR =∶ G. (2.2)

The reactivity matrix R of the partial derivatives is an N ×M matrix, whose entries
Rjm are given by:

Rjm ∶= ∂

∂xm
rj(x) =

⎧⎪⎪⎨⎪⎪⎩

rjm if
∂rj(x)
∂xm

≠ 0

0 otherwise
. (2.3)

The entry Rjm is nonzero, i.e. Rjm = rjm, if and only if the metabolite m is an input
of the reaction j. The algebraic structure of G is thus completely characterized by
the network structure, only. In particular, we may consider a matrix of the type of
G as a purely linear algebra object. Consider indeed S to be any M ×N real matrix,
and let us define the negative sign-pattern S− of S as

S−mj =
⎧⎪⎪⎨⎪⎪⎩

0 if Smj ≥ 0

rmj if Smj < 0
, (2.4)

with rmj > 0 strictly positive symbolic entry. In this way, the algebraic structure of
the matrices (S−)T and R coincides. Now, defining G as

G ∶= S(S−)T , (2.5)

the algebraic form of the abstract G = S(S−)T and of the Jacobian G = SR is iden-
tical.

13
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The leading question of this chapter is the following:

When is detG of fixed sign?

That is:

When - for any choice of positive parameters rjm - does the determinant carry the
same sign?

In the continuation of this chapter we provide answers to this question. In particular,
in Section 2.2, we introduce Child Selections and we use the Cauchy-Binet formula
to expand the Jacobian determinant in a polynomial, in which each monomial sum-
mand is associated to a Child Selection. Depending on the sign of the coefficients
of these monomials, each Child Selection is abstractly classified in good or bad. The
coexistence of a good and a bad Child Selection characterizes the condition of inde-
terminate sign Jacobian. We provide motivating examples in Section 2.3. In Section
2.4, the main Theorem 2.4.1 abstractly characterizes whether a given Child Selection
is good or bad and Section 2.5 translates this abstract condition into a pure network
condition. Consequently, Section 2.6 uses the developed concepts to find a bifurca-
tion parameter responsible for a change of sign in the Jacobian determinant, with
possible consequent bifurcation phenomena. Section 2.7 contains some arguments
regarding the eigenvalues of the system. Section 2.8 analyzes in detail an example
of an autocatalytic network. The case in which the Jacobian determinants admits
a factorization is briefly studied in Section 2.9. The last Section 2.10 contains an
example of an application for the central metabolism of E.Coli.
This thesis wants to be a contribution for applications in metabolic network theory,
mainly. For this reason, we have left a more general version of Theorem 2.4 in Ap-
pendix 2.A and some computational considerations in Appendix 2.B.

Works in an analogous direction have been pursued by many people, see for a chem-
ical/metabolic perspective [BDB07, BC10, MC13, BR11] and for a purely linear al-
gebra approach [JKVdD77,BS09,LOvdD18], among others.

2.2 Cauchy-Binet analysis via Child Selections

The first definition, due to Brehm and Fiedler [BF18], is crucial for the entire thesis.

Definition 2.1 (Child Selections, mothers, children). A Child Selection is an injec-
tive map J ∶ M Ð→ E, which associates to every metabolite m ∈ M a reaction j ∈ E
such that m is an input metabolite of reaction j.
We call the reaction j = J(m) child of m, and the metabolite m = J−1(j) mother of
the reaction j.

Remark 1. Equivalently, a Child Selection is an injective map J ∶ MÐ→ E such that
J(m) = j with strictly negative stoichiometric entry Smj < 0, for every m.

Remark 2. It is possible that a metabolite m is an input of j but not a mother of
j, due to injectivity of Child Selections. Indeed, consider the following example:
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(2.6)

In this minimal case, metabolite B is an input of reaction 1, but never a mother. In
fact, 1 is the only outgoing reaction from metabolite A. Therefore, due to injectivity,
J−1(1) = A.

For a matrix A, we use the notation AEF to denote the submatrix of A consisting of
columns E and rows F . For simplicity of notation, we omit the braces {m} for single
elements, so that, for example, Sj indicates the jth column and Sm indicates the
mth row of S. The following Jacobian analysis, based on the Cauchy-Binet formula,
is developed from a previous result in [BF18].

Proposition 2.2.1. Let G be a network Jacobian, in the above settings. Then:

detG =∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m, (2.7)

where SJ is the matrix whose mth column is the J(m)th column of S.

Proof. We apply the Cauchy-Binet formula on G = SR to obtain:

detG = ∑
∣E ∣=M

detSE ⋅ detRE = ∑
∣E ∣=M

detSE (∑
π

sgn(π) ⋅ ∏
m∈M

rπ(m)m). (2.8)

Here π indicates a permutation of M elements and sgn(π) is the signature (or parity)
of π. Note that ∏m∈M rπ(m)m ≠ 0 if and only if there is an associated Child Selection
J such that rJ(m)m = rπ(m)m, for every m. In particular, the sum runs non trivially
only for the selected minors SE such that the set E is the image of M through a
Child Selection J. Now,

∑
∣E ∣=M

detSE (∑
π

sgn(π) ⋅ ∏
m∈M

rπ(m)m) = ∑
E=J(M)

detSE (∑
J

sgn(J) ⋅ ∏
m∈M

rJ(m)m)

=∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m.
(2.9)

Last step is the observation:

detSE=J(M) ⋅ sgn(J) = detSJ. (2.10)

Remark 3. Note that, by construction, SJ
mm < 0, for any Child Selection J and any

metabolite m.

Remark 4. If there are no Child Selections, at all, then det(G) ≡ 0 for any choice of
parameters rjm.

We state a classification of Child Selections, according to the sign of the determinant
of the reshuffled minor SJ.
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Definition 2.2 (Child Selection behavior). Let J be a Child Selection.
We say that J is good, or J well-behaves, if sign(detSJ) = (−1)M .
We say that J is bad, or J ill-behaves, if sign(detSJ) = (−1)M−1.
If detSJ = 0, we say that J zero-behaves.
Moreover, we define the behavior coefficient β as

β(J) = sign(detSJ). (2.11)

That is,

β(J) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−1)M if J well-behaves

(−1)M−1 if J ill-behaves .

0 if J zero-behaves

The choice of the terminology has been done carefully. In fact, in a metabolic net-
work context, important classes of Child Selections well-behave, see Section 2.5. For
instance, acyclic Child Selections well-behave. Moreover, a ‘stable’ Child Selection
J, in which all the eigenvalues of SJ are negative, well-behaves. Note, however, that
the classification is not strictly related with stability, but only with the sign parity
of eigenvalues.

At this point, the reader may wonder whether Definition 2.2 is well-posed. That
is, whether the behavior of a Child Selection depends on the specific labeling of the
network. Section 2.5, Remark 8, clarifies this point, assuring the well-posedness of
the definition.

With Definition 2.2, the following straightforward Corollary to Proposition 2.2.1 is
derived.

Corollary 2.2.2. The Jacobian detG is of fixed sign if and only if there are no two
Child Selections J1 and J2 such that J1 is good and J2 is bad.

Stoichiometric matrices of metabolic networks are sparse. Indeed, usually, metabolic
reactions are at most bimolecular and many of them are monomolecular. We see in
the continuation of this chapter that this sparsity feature constitutes a reason why
it is likely to find good Child Selections, easily, in real metabolic networks. The
moral interpretation or Corollary 2.2.2, then, is that the Jacobian is of fixed sign
if there are no bad Child Selections, for real network examples. In this sense, the
presence of bad Child Selections is a strong indication of a possible sign change of
the determinant, and it becomes important to be able to recognize them.

2.3 Preliminary examples

In this subsection we present six examples: three of good Child Selections and three
of bad.
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2.3.1 Good Child Selections

Example G1: monomolecular Child Selections
A monomolecular Child Selection consists only of monomolecular reactions j of
the form

j ∶ m1 Ð→
j
m2, (2.12)

where one single metabolite input m1 is converted into a different single metabo-
lite output m2. The stoichiometry of these networks is particularly simple. In
fact, columns Sj of the stoichiometric matrix S have at most one negative entry
−1 and one positive entry +1. Columns Sj

0
m associated to outflow exit reactions

j0
m

j0
m ∶ mÐ→

j0m
(2.13)

have only a negative entry −1, located in the mth row. For an extensive discussion
on monomolecular networks, see Chapter 5.
Monomolecular Child Selections are never bad. In fact, because of the simple
stoichiometry structure of S, if detSJ ≠ 0 we can implement a simple Gaussian
elimination to obtain the M -dimensional identity matrix − IdM. Clearly then,

detSJ = det(− IdM) = (−1)M . (2.14)

Alternatively, a more abstract argument is provided by the Gershgorin disk The-
orem (see [Ger31] and Section 2.7). In particular, for monomolecular networks,
the Jacobian is always of fixed sign.

Example G2: Child Selection without cycles
This is a specific example, for which the computation is done directly. How-
ever, it points at a general feature: all acyclic Child Selections well-behave, see
Corollary 2.5.2.

SJ =

J(A) J(B) J(C)
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 0 0
B 1 −1 0
C 1 0 −1

, detSJ = (−1)3 = −1. (2.15)
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Example G3: Child Selection with cycles

SJ =

J(A) J(B) J(C)
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 1 0
B 0 −1 1
C 1 −1 −1

, detSJ = (−1)3 = −1. (2.16)

2.3.2 Bad Child Selections

Example B1: autocatalytic Child Selection
Didn’t we exclude autocatalysis from our analysis? Yes, we had excluded explicit
autocatalytic reactions such as, for example,

AÐ→
j

2A. (2.17)

However, it is straightforward to insert an intermediate metabolic step B in the
above reaction j. In this way, the system does not possess an explicit autocat-
alytic reaction anymore and it is completely admissible in our approach. Thus
it becomes:

(2.18)

This Child Selection ill-behaves:

SJ =
J(A) J(B)

[ ]A −1 2
B 1 −1

, detSJ = (−1)2−1 = −1. (2.19)

Example B2: reverse arrow orientation of Example G3
We take the above example G3 and revert the orientation of all reactions. We
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obtain the following Child Selection:

(2.20)

This Child Selection, opposite in sign to Example G3, ill-behaves.

SJ =

J(A) J(B) J(C)
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 0 1
B 1 −1 0
C 1 1 −1

, detSJ = (−1)3−1 = +1. (2.21)

Example B3: double cycle
(2.22)

SJ =

J(A) J(B) J(C) J(D) J(E)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 0 1 0 0
B −1 −1 0 0 0
C 0 −1 −1 1 0
D 1 0 0 −1 0
E 0 1 0 0 −1

, detSJ = (−1)5−1 = +1. (2.23)

2.4 Main result

In metabolic networks, stoichiometric coefficients are mostly 0 and 1. For this rea-
son, in this section we assume that S has entries Smj ∈ {−1,0,1}. By 2.2, Remark 3,
then, the diagonal entries of the reshuffled minor SJ are SJ

mm ≡ −1, for any m. We
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comment in the dedicated Appendix 2.A about the generalization to stoichiometric
matrices with general entries Smj ∈ R.

Here, via a structural analysis of detSJ, we characterize whether the given Child
Selection J well-behaves or ill-behaves. Note, however, that the importance of the
result is mainly revealed in its interpretation, see Section 2.5.

The Leibniz expansion formula for the determinant, applied to SJ, reads

detSJ =∑
π

sgn(π) ∏
m∈M

SJ
π(m)m. (2.24)

Again, π indicates permutations of M elements and sgn(π) is the signature of π.
Let

E(π) ∶= sgn(π) ∏
m∈M

SJ
π(m)m (2.25)

denote the summand associated to the permutation π in the Leibniz expansion. For
example, denoting as Id the identity permutation,

E(Id ) = (−1)M . (2.26)

Let π ≠ Id be a permutation such that E(π) ≠ 0. Combinatorially, the permutation
π can be expressed as the product of ϑ disjoint permutation cycles ci of length li > 1,

π =
ϑ

∏
i=1

ci. (2.27)

Definition 2.3 (good/bad-completions, good/bad-cycles). Given a Child Selection
J, we call π a good-completion if

∏
m∶π(m)≠m

SJ
π(m)m = (−1)ϑ. (2.28)

We call π a bad-completion if

∏
m∶π(m)≠m

SJ
π(m)m = (−1)ϑ−1. (2.29)

Again, ϑ is the number of cycles in the permutation expansion. If π consists of a
single cycle c, i.e. for ϑ = 1, we call the good (resp. bad)-completion a good(resp.
bad)-cycle.

We clarify in the next Section 2.5 what does a completion complete, as it requires
some further arguments. Firstly, given the above definition, we state the main result
of this section.

Theorem 2.4.1. Let J be a Child Selection and let G and B be the number of good
and bad completions, respectively. Then, in the sense of Definition 2.2,

1. The Child Selection J well-behaves if G > B − 1.

2. The Child Selection J ill-behaves if G < B − 1.

3. The Child Selection J zero-behaves if G = B − 1.
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Proof. The proof follows an idea of Banaji and Craciun [BC10]. Firstly note:

(detSJ)(−1)M =(detSJ) E(Id )
=∑

π

E(π)E(Id )

=1 + ∑
π≠Id

E(π)E(Id ).
(2.30)

Let h be the number of elements m such that π(m) ≠ m. That is, h is the number
of elements of π which are not fixed points of the permutation, but belong to a
permutation cycle.

E(π)E(Id ) = sgn(π)(∏
m∈M

SJ
π(m)m) sgn(Id ) ∏

m∈M
SJ
mm

=
⎛
⎝ ∏
m∶π(m)=m

(SJ
mm)2

⎞
⎠

ϑ

∏
i=1

sgn(ci)
⎛
⎝ ∏
m∶π(m)≠m

(SJ
π(m)mS

J
mm)

⎞
⎠

= (−1)h
ϑ

∏
i=1

sgn(ci) ∏
m∶π(m)≠m

SJ
π(m)m

= (−1)ϑ ∏
m∶π(m)≠m

SJ
π(m)m.

(2.31)

The steps above are made noting that (SJ
mm)2 ≡ 1, for any m and that, for a cycle

c of length `, sgn(c)(−1)` = −1. We conclude the proof by observing that

(−1)ϑ ∏
m∶π(m)≠m

SJ
π(m)m = 1 (-1, respectively) (2.32)

if π is a good-completion (bad-completion, respectively). This yields to the identity

detSJ(−1)M = 1 + G − B, (2.33)

which proves the Theorem.

2.5 Interpretation of the result

The Metabolite-Reaction graph (MR-graph) is an undirected bipartite graph with
two sets of vertices, given by the metabolites m1, ...,mM and the reactions j1, ..., jE,
respectively. For a metabolite m participating in a reaction j, edges e = (m,j) are
adjacent to a metabolite vertex m and a reaction vertex j. With this construction,
then, edges in the MR-graph are in one-to-one relation with the nonzero entries of
stoichiometric matrix S. In particular, with Smj < 0 of

j ∶ m + ...Ð→
j
... (2.34)

in mind, we call negative the edges e = (m,j) where m is input to j. Conversely,
with Smj > 0 of

j ∶ ...Ð→
j
m + ... (2.35)
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in mind, we call positive the edges e = (m,j) where m is output to j. See Figure
2.1 for a comparison between different kinds of representation graphs for the same
network. Under the name Species-Reaction graph (SR-graph), this was considered
by [CF06] and others.

We proceed with two definitions and a proposition.

Definition 2.4 (J-selected edges). For any Child Selection J, we call the negative
edges e = (m,J(m)) in the MR-graph to be J-selected.

Remark 5. In particular, J-selected edges are such that the corresponding stoichio-
metric entry lies on the diagonal of SJ.

Remark 6. Injectivity of a Child Selection J directly implies that two J-selected
edges e1 and e2 never share a vertex, in the MR-graph.

Definition 2.5 (Completion Cycle). For a Child Selection J, a completion cycle in
the MR-graph is a cycle of length 2l, ` ≤M , such that ` edges are J-selected.

Remark 7. Equivalently, because of Remark 6 above, a completion cycle is a cycle
in the MR-graph of length 2l, such that ` J-selected edges alternate with ` non
J-selected edges.

Proposition 2.5.1. For any given Child Selection J, there is a one-to-one corre-
spondence between completion cycles and nonzero permutation cycles, that is, cycles
c such that

∏
m∶ c(m)≠m

SJ
c(m)m ≠ 0. (2.36)

Proof. Let us consider the computation (2.31) in the proof of Theorem 2.4.1. Con-
sider, for simplicity, a single cycle permutation π = c and concentrate on the expres-
sion

∏
m∶ c(m)≠m

SJ
c(m)mS

J
mm. (2.37)

Note that the diagonal elements SJ
mm and SJ

c(m)c(m) represents J-selected edges.

Sc(m)m shares the same column (i.e., reaction vertex) with SJ
mm and the same row

(i.e., metabolite vertex) with SJ
c(m)c(m). Following the order of the cycle c in the

Expression (2.37) leads to the desired identification.

It becomes now clear what the word ‘completion’ refers to. In fact, any completion
cycle is constructed by completing ` J-selected elements to a cycle of length 2l in
the MR-graph. In this sense, a good-completion π = ∏ϑ

i=1 ci can be seen, in the
MR-graph, as a collection of ϑ completion cycles ci, such that the number of good-
cycles has the same parity of ϑ. Respectively, a bad-completion is a collection of ϑ
completion cycles, such that the number of good-cycles has opposite parity of ϑ.

Remark 8. Obviously, being a network structure, the definition of a completion
cycle does not depend on the specific labeling of the network. Proposition 2.5.1,
together with Theorem 2.4.1, guarantees in particular that also Definition 2.2 does
not depend on any labeling and, thus, is well-posed.

Finally, we list some consequences of Theorem 2.4.1, useful for applications.
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Examples BIOLOGICAL
MR-GRAPH
Biological

MR-GRAPH
Combinatorial MATRIX

1

J(A) J(B) J(C)
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A -1 0 1
B 1 -1 0
C 1 1 -1

2

J(D) J(E) J(F)
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

D -1 1 0
E -1 -1 0
F 1 0 -1

Figure 2.1: For two examples of Child Selections, four different ways of representa-
tion: biological, MR-Graph (in a biological shape), MR-graph (in a combinatorial
shape), matrix. Note that, when labeled, the four representations are equivalent. In
the MR-graphs, negative edges J-selected are indicated with a dotted-dashed line,
the sparse dotted line indicates negative edges not J-selected, the continuous line in-
dicates positive edges. In the combinatorial shape, the edges J-selected are the hori-
zontal ones. Example 1 possesses two completion cycles: c1 = A−J(A)−C−J(C)−A
and c2 = A − J(A) −B − J(B) −C − J(C) −A, both bad. Example 2 possesses only
one good completion cycle: c =D −J(D)−E −J(E)−D. Consequently, Example 1
represents a bad Child Selection, and Example 2 represents a good one.
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Corollary 2.5.2 (Examples of application). The following statements hold true:

1. Acyclic Child Selections well-behave;

2. A Child Selection containing one good-cycle, and no other cycles, well-behaves;

3. A Child Selection containing one bad-cycle, and no other cycles, zero-behaves;

4. A Child Selection containing two intersecting bad-cycles, and no other cycles,
ill-behaves;

5. Any given nonzero Child Selection of a network which possesses only monomolec-
ular reactions and one single bimolecular reaction

j ∶ A +B Ð→
j
C (2.38)

well-behaves.

Proof. We only sketch the proofs.
1-4) The statements are a simple check via Formula (2.33).
5) We have seen in the preliminary Example G1 that nonzero monomolecular Child
Selections well-behaves. This can be easily seen, by the above MR-graph point
of view, as all possible completion cycles in a monomolecular network are disjoint
and bad. In particular, in a monomolecular network, either G = B = 0 in the case
of acyclic Child Selections, or G = B − 1 in the case of Child Selections containing
cycles. The underlying combinatorial argument for disjoint cycles is made explicit
in the Appendix 2.B. Note that, adding one single bimolecular reaction of the form
of (2.38) to a monomolecular network, we only add the possibility to have good-
cycles. For analogous combinatorial reasons as sketched above, then, G − B does
not decrease after adding such a bimolecular reaction. In particular, then, since any
nonzero monomolecular Child Selection well-behaves, any nonzero Child Selection of
a network which possesses only monomolecular reactions and one single bimolecular
reaction as (2.38) well-behaves.

2.6 Hunting saddle-node bifurcations

Here, we give a simple network condition under which there is the possibility, for
certain parameters, of a saddle-node bifurcation of equilibria. We also identify
bifurcation parameters responsible for the change of sign of the determinant and
consequent change of stability of any equilibrium.

Theorem 2.6.1 (Change of Stability). Suppose there exist two Child Selections
J1, J2, and a metabolite mb, such that J1(mb) ≠ J2(mb) and J1(m) = J2(m) for
any m ≠ mb. Assume moreover that J1 well-behaves and J2 ill-behaves. Then the
Jacobian determinant of G takes the form

detG = (arJ1(mb)mb
− brJ2(mb)mb

)rJ1(mn+1)mn+1 ...rJ1(mm)mm + ... , (2.39)

where the omitted terms can be chosen arbitrarily small, and a, b are coefficients of
the same sign. In particular, the parameter

ξ = arJ1(mb)mb
− brJ2(mb)mb

(2.40)
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may serve as a bifurcation parameter for the bifurcation of nontrivial equilibrium
solutions of the system (2.1).

Theorem 2.6.1 does not require to fix an equilibrium and it holds in more general set-
tings. Nevertheless, for simplicity, we are thinking here of an equilibrium situation.
The parameter ξ = arJ1(mb)mb

− brJ2(mb)mb
is ‘localized’ in a single metabolite mb. In

fact, the change of stability is driven by the difference between the derivatives with
respect to the same metabolite mb of the reaction rates of two child reactions of mb

itself. This suggests a simple biological scheme for modifying the unstable dimension
of the equilibrium.

To prove Theorem 2.6.1, we introduce some concepts, first. The set of Child Selec-
tions {J} carries a natural integer-valued distance d.

Definition 2.6. Let J1, J2 be two Child Selections. We define the distance d(J1,J2)
as the number of metabolites m ∈ M such that J1(m) ≠ J2(m).
It is straightforward to verify that d is a distance on the set of Child Selections. We
consider now Child Selections at distance d = 1. These are Child Selections J1, J2

such that J1(mb) ≠ J2(mb) for a single metabolite mb and J1(m) = J2(m) for any
m ≠mb different from mb, as in Theorem 2.6.1. Clearly:

detSJ1∏
m

rJ1(m)m + detSJ2∏
m

rJ2(m)m

= rJ1(m1)m1
⋅ ...(detSJ1rJ1(mb)mb

+ detSJ2rJ2(mb)mb
)... ⋅ rJ1(mm)mm

(2.41)

If we further assume that J1 and J2 are such that one well-behaves and the other
ill-behaves we have:

detSJ1rJ1(mb)mb
+ detSJ2rJ2(mb)mb

= a ⋅ rJ1(mb)mb
− b ⋅ rJ2(mb)mb

, (2.42)

with a and b constants of the same sign.

By the mere fact that d is an integer-valued distance, any other Child Selection
satisfies

d(Jk,J1), d(Jk,J2) ≥ 1, for any k ≠ 1,2. (2.43)

In particular, we have the following Lemma:

Lemma 2.6.2. Let J1 and J2 be Child Selections at distance d = 1, that is, J1(mb) ≠
J2(mb) and J1(m) = J2(m) for any m ≠mb. For any other Child Selection Jk, there
is a metabolite mk such that Jk(mk) ≠ J1(mk) and Jk(mk) ≠ J2(mk).
Moreover if d(Jk,J1) = d(Jk,J2) = 1, then mk =mb.

Proof. Let us consider any mk such that J1(mk) ≠ Jk(mk). If J2(mk) ≠ Jk(mk), we
are done. Assume then that J2(mk) = Jk(mk). By construction, mk =mb. Consider
now any m̃k such that J2(m̃k) ≠ Jk(m̃k) and remember that J1(m) = J2(m) for
any m ≠mb. We conclude that J1(m̃k) ≠ Jk(m̃k). Otherwise, we would have found
two metabolites mk and m̃k such that J1(mk) ≠ J2(mk) and J1(m̃k) ≠ J2(m̃k),
contradicting d(J1,J2) = 1.



26 CHAPTER 2. GOOD CHILDREN AND BAD CHILDREN

In the above argument, note that if J2(mk) = Jk(mk), then d(J1,Jk) ≥ 2. Hence,
if d(J1,Jk) = d(J2,Jk) = 1 we conclude that J1(mb) ≠ J2(mb) ≠ Jk(mb) and hence
mk =mb.

We are now ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. Let J1 and J2 be Child Selections, as above. In particular,
distance d(J1,J2) = 1. By Lemma 2.6.2, for any other Child Selection Jk ≠ J1,J2

we can find mk such that

J1(mk),J2(mk) ≠ Jk(mk). (2.44)

We can consider, then, an ε-small choice of reaction rate parameter such that

rJk(mk)mk
< ε. (2.45)

Then, for this ε-choice of reaction rates,

detG = (arJ1(mb)mb
− brJ2(mb)mb

)rJ1(mn+1)mn+1 ...rJ1(mm)mm + ε. (2.46)

The parameter ξ = arJ1(mb)mb
− brJ2(mb)mb

becomes then a bifurcation parameter for
the sign of the Jacobian determinant.

Remark 9. The mere existence of two Child Selections with opposite behavior
good/bad at a distance d > 1 does not always imply the existence of two Child
Selections at distance d = 1. We illustrate this in the following concluding example:

S =
1 2 3 4

[ ]A −2 −1 1 2
B 1 1 −1 −1

, (2.47)

In this abstract example there are four Child Selections:

1. J13 = {J13(A) = 1,J13(B) = 3};

2. J14 = {J14(A) = 1,J14(B) = 4};

3. J23 = {J23(A) = 2,J23(B) = 3};

4. J24 = {J24(A) = 2,J(B)24 = 4}.

J13 well-behaves, J14, J23 zero-behave, and J24 ill-behaves. Note that d(J13,J24) = 2
and their behavior is opposite, but all other Child Selections (J14 and J23) zero-
behave. Therefore we cannot find two Child Selections with opposite behavior at
distance d = 1. In this example above, and in analogous situations, however, it is still
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possible to find a bifurcation parameter, albeit more involved than the parameter ξ
in (2.40). In such a network, in fact, we may consider the parameter

χ = rJ13(A)rJ13(B) − rJ24(A)rJ24(B). (2.48)

Analogously as in Theorem 2.6.1, for a suitable choice of reaction rates, the Jacobian
determinant changes sign as the bifurcation parameter χ does. This parameter
depends on two metabolites A and B, since the two Child Selections J13 and J24,
opposite in behavior, are such that d(J13,J24) = 2. In particular, the complexity of
the parameter is given by the distance of the two considered Child Selections.

2.7 Eigenvalues

In this section we analyze the relation between the structure of the Jacobian matrix
G and its eigenvalues. By (2.2), the Jacobian G can be decomposed as G = SR.
Hence,

Gm1m2 = Sm1R
m2 , (2.49)

where Sm1 is the mth
1 row of the stoichiometric matrix S, associated to the metabolite

m1. An entry Sjm1 is nonzero iff the metabolite m1 participates, as input or as
output, in the reaction j. The vector Rm2 is the mth

2 column of the reactivity matrix
R, associated to the metabolite m2. An entry Rm2

j is nonzero iff the metabolite m2

participates as input in the reaction j. In particular, let Ω(m) indicate the set of
outgoing reactions from m. Our settings exclude explicit autocatalysis, therefore
Sjm < 0, always, for any outgoing reaction j of m. Thus the element on the mth

diagonal entry of the Jacobian matrix G is

Gmm = SmRm = ∑
j ∈Ω(m)

−rjm, (2.50)

and, in particular, it is strictly negative, if m participates in at least one reaction as
input.

We recall the Gershgorin disk theorem [Ger31]. This elementary result provides a
useful estimate for the eigenvalues of matrices. For a given square real matrix A,
the mth Gershgorin disk Dm is defined as disk in the complex plane centered at Amm
with radius rm = ∑j≠m ∣Amj ∣. The theorem, then, reads as follows:

Theorem 2.7.1 (Gershgorin, 1931). For a given real square matrix A, any eigen-
value λi lies in at least one Gershgorin disk.

Consequently, in a metabolic network within our settings, all Gershgorin disks are
centered in the negative half-plane, independently from the choice of the reaction
rates. For example, if a metabolite m participates only in monomolecular reactions,
the entire corresponding Gershgorin disk Dm is confined in the nonpositive half-
plane. Indeed, Dm is centered at Gmm = −∑j ∈Ω(m) rjm, with radius

rm = ∑
m≠j

∣Gmj ∣ ≤ ∣ ∑
j ∈Ω(m)

rjm ∣ = ∣Gmm∣. (2.51)

Two corollaries follow. We omit the straightforward proofs.
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Corollary 2.7.2. The real part of any eigenvalue of a monomolecular network is
nonpositive. In particular, assuming nondegeneracy of the network, i.e. detG ≠ 0,
the real part of any eigenvalue of a monomolecular network is strictly negative, and
any possible equilibrium stable.

Corollary 2.7.3. Suppose there is an outflow from a single metabolite m̃. That
is, m̃ participates in an outflow exit reaction j0

m̃ such that Sj
0
m̃ = −em̃. Then, for

any fixed choice of rates rjm, with j ≠ j0
m̃, there is always a choice of the outflow

parameter rj0m̃m̃ such that an eigenvalue λ has strictly negative real part.

Fully open networks are defined as networks such that from each metabolite there
is an outflow exit reaction. Corollary 2.7.3 directly implies that there always exist a
choice of reaction rates, for which any possible equilibrium of a fully open network
is stable.

2.8 Example: autocatalytic network

In this section we analyze a simple network, consisting of two metabolites and three
reactions. The network graph is

(2.52)

and it has equations

⎧⎪⎪⎨⎪⎪⎩

Ȧ = −r1e(A) − r1a(A) + 2r2(B)
Ḃ = r1a(A) − r2(B)

. (2.53)

The Jacobian determinant reads

G = [ −r1eA − r1aA 2r2B

r1aA −r2B
] , (2.54)

with stoichiometric matrix S and reactivity matrix R being

S =
1e 1a 2

[ ]A −1 −1 2
B 0 1 −1

and R =

A B
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

1e r1e 0
1a r1a 0
2 0 r2s

. (2.55)

There are two Child Selections, depending on whether the metabolite A chooses the
exit reaction 1e or the autocatalytic reaction 1a.
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1. J1e = {J1e(A) = 1e;J1e(B) = 2}. This Child Selection well-behaves. Indeed:

SJ1e =
1e 2

[ ]A −1 2
B 0 −1

, detSJ1e = +1 (2.56)

2. J1a = {J1a(A) = 1a;J1a(B) = 2}. This Child Selection ill-behaves. Indeed

SJ1a =
1a 2

[ ]A −1 2
B 1 −1

, detSJ1a = −1 (2.57)

Because J1e and J1a have opposite behavior, the sign of the Jacobian determinant
of G is indeterminate,

detG = (r1eA − r1aA)r2B. (2.58)

The determinant crosses zero when r1eA = r1aA. In such a simple case, we can
explicitly compute the eigenvalues λ1,2 as roots of the characteristic polynomial Pλ:

Pλ = λ2 − trGλ + detG = λ2 + (r1eA + r1aA + r2B)λ + (r1eA − r1aA)r2B, (2.59)

and they have the form:

λ1,2 =
1

2
[±

√
(r1eA + r1aA + r2B)2 − 4(r1eA − r1aA)r2B − r1eA − r1aA − r2B]. (2.60)

One of the two eigenvalues is always strictly negative. The other eigenvalue changes
sign when the determinant itself does. That is, at value r1eA = r1aA. A one-parameter
bifurcation happens at r1eA = r1aA , a simple eigenvalue crosses zero and the stability
of a possible equilibrium changes.

2.9 Factorizable determinant

Proposition 2.2.1 implies that a network Γ of M metabolites, which possesses only
one single Child Selection J, has a Jacobian determinant of the form:

detG = detSJ ∏
m∈M

rJ(m)m. (2.61)

Here detSJ becomes a scalar coefficient of the multilinear monomial ∏m∈M rJ(m)m of
degree M in the variables rJ(m)m. In particular, the determinant can be factorized
into M independent factors, each of them corresponding to one metabolite m ∈ M.

Let us now consider any network such that, for all Child Selections J,

detSJ ≡ (−1)M . (2.62)
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In particular, any Child Selection well-behaves. For instance, this is the case of
acyclic monomolecular reaction networks. In this case the Jacobian determinant
reads:

detG =∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m = (−1)M∑
J

∏
m∈M

rJ(m)m = (−1)M ∏
m∈M

( ∑
J(m)

rJ(m)m),

(2.63)
where the sum ∑J(m) runs over all the possible children of the metabolite m. In this
situation, the determinant is factorizable into M linear subspaces and each of the
subspaces depends only on a single metabolite m, as above. In this specific case,
each of the linear factors is strictly positive, for any choice of reaction rates. In
particular, no eigenvalue can cross zero, and the determinant is always of fixed sign.

The cases described above do not exhaust the casuistry of such factorizations. There
are much more diverse examples. Consider, for instance,

S =

1 2 3 4 5 6
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

A −1 −1 0 0 1 1
B 0 1 −1 0 0 0
C 0 1 1 −1 −1 0
D 0 0 0 1 0 −1

(2.64)

The Jacobian determinant factorizes:

detG = (r1A − r2A)r3B(r4C + r5C)r6D. (2.65)

Here, the linear subspace (r1A − r2A), corresponding to metabolite A, crosses zero
when r1A = r2A. This allows the determinant to change sign, hinting at saddle-node
bifurcations. In such cases, there is no need to restrict to some ε-small choice of
parameters of the system, as in Theorem 2.6.1. In fact: for any choice of the other
parameters, the determinant changes sign when r1A = r2A.

On the other hand, extremely simple examples may possess a Jacobian determinant,
which does not factorize:

S =
1 2 3 4

[ ]A −1 −1 1 0
B 0 1 −1 −1

(2.66)
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In fact, detG = r1Ar3B + r1Ar4B + r2Ar4B does not factorize.

Therefore, a general interesting question arises:

For which networks, is the Jacobian determinant factorizable?

Equivalently:

For which stoichiometric matrices S does the multilinear polynomial

P ∶=∑
J

detSJ ∏
m∈M

rJ(m)m factorize as P =∏
m

( ∑
J(m)

a(J,m)rJ(m)m)?

where a(J,m) are constants depending on J and m.

Abstractly considering the space of multilinear polynomials P of degree M , this is
seldom the case. However, stoichiometric matrices of metabolic networks are non-
generic, being highly sparse, with few integer entries, only.
These questions, in an algebraic context, have a long history. In fact, they date
back to the late 19th century, with the groundbreaking works by Paul Albert Gor-
dan and Alexander von Brill [Gor94] in Germany and Jacques Hadamard [Had99]
in France. In these early works, an abstract characterization of algebraic forms fac-
torizing over linear factors was derived. For a more recent reference, see reference
book [GKZ08] and the chapter about Chow Varieties there. Recent investigations
of similar concepts have been done by Yonghui Guan in his doctoral thesis [Gua16]
and in [Gua18]. There, connections have been found with the famous conjecture P
vs NP , in its algebraic version, firstly posed by Valiant [Val79].

We pose a last question. Let us assume that the Jacobian determinant factorize
linearly as above.

Which is the relation between the linear subspace ∑J(m) a(J,m)rJ(m)m and the
eigenvalue λm?

We do not address any of these questions here, leaving them to future work.

2.10 A case study: the central metabolism of E.Coli

The central metabolism of E.Coli consists of different and interconnected parts. In
particular, the upper part comprises the so-called Pentose phosphate pathway and
the Glycolysis. The bottom ‘cyclic’ part includes the Tricarboxylic acid cycle and
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Figure 2.2: This
figure has been taken
from [BF18] and the
graphical represen-
tation is courtesy of
Anna Karnauhova.
Inflow feed reaction
is named f1. Outflow
exit reactions are
labeled d1 − d6 and
dd1 − dd9. Here,
for image simplicity,
a reversible arrow
reaction m ←→ m̃
encodes two different
opposite reactions.
Metabolites PEP ,
PY R and CO2 have
been graphically
repeated, for sake of
clarity of the picture.

the Glyoxylate cycle. We skip here more detailed biological explanation.

In this section we analyze the network of the central metabolism of Escherichia Coli
in Figure 2.2. This network representation is mainly based on the original model
proposed by Ishii et al. in [INB+07] with the modifications suggested by Nakahigashi
et al. in [NTI+09]. Moreover, in biology papers, ‘obvious’ outflows exit reactions are
frequently omitted. This is the case of reactions d1−d6, here. For our mathematical
analysis, however, we are bound to include them as well. Note, indeed, that these
reactions are the only outgoing reactions of their input metabolites. In particular,
their omission would result in an infinite production of their input metabolites and
in a mathematical degeneracy of the network.

The network possesses 30 metabolites and 58 reactions. The number of Child Se-
lections is of the order of 107. Nevertheless, we can provide interesting biological
insights without computing such a huge amount of Child Selections. In the same
spirit as Section 2.6, and along its lines, we find here two Child Selections J1 and
J2 with opposite behavior, at distance d(J1,J2) = 1. That is, J1(mb) ≠ J2(mb) for
one single metabolite mb, and J1(m) = J2(m) for all others metabolite m ≠ mb.
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BIOLOGICAL MR-GRAPH (Biological)

Figure 2.3

This situation, via Theorem 2.6.1, provides a bifurcation parameter responsible for
a change of sign in the Jacobian determinant and possible consequent saddle-node
bifurcations of equilibria.

To find the two Child Selections J1 and J2 as above, we start by attachin certain
child reactions j to certain mother metabolites m. We do this arbitrarily, and only
for sake of exemplification. Many other choices and analogous constructions are of
course possible.
Let us fix the children of the metabolites PEP , PY R, and CO2 to be their respective
exit reactions, that is:

1. J1(PEP ) = J2(PEP ) = dd6;

2. J1(PY R) = J2(PY R) = dd7;

3. J1(CO2) = J2(CO2) = d6.

These constraints allow us to consider the upper part (Pent. Phosph. Pathway
- Glycolysis) and the bottom bart (Tricarboxylic acid cycle - Glyoxylate cycle) as
separate and independent. In fact, any Child Selection J satisfying the above con-
straints 1-3, identifies reshuffled minors SJ, which are block diagonal. This shows
that certain qualitative arguments on the dynamics of the central metabolism may
be inferred, separately, from the biological components of the network. For example,
for a block diagonal Jacobian matrix in our settings, indeterminate sign determinant
of one block trivially implies indeterminate sign determinant for the entire matrix.
In particular, we may concentrate on the bottom part of the network, only assuming
that J1 = J2 in the upper part.

In Figure 2.3, focusing on the bottom part of the network, we have depicted the
chosen subnetwork possessing precisely only the two Child Selections J1 and J2.
We identify the metabolite mb, such that J1(mb) ≠ J2(mb), as ICT = mb. Indeed,
any other metabolite m ≠ ICT possesses a single Child J1(m) = J2(m), and only
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ICT possesses two child reactions: reaction 19 and reaction 26. Let us call J1

the Child Selection such that J1(ICT ) = 19 and J2 the Child Selection such that
J2(ICT ) = 26. In particular, since J1(m) = J2(m) for any m ≠ ICT , the two Child
Selections are at distance 1, i.e. d(J19,J26) = 1. With this choice of Child Selections,
metabolites Lactate, Acetate, and Ethanol result disconnected from the rest of the
network and have consequently been omitted here.

By looking at the MR-graph representation, we can easily conclude that J1 well-
behaves and J2 ill-behaves.
Note indeed that J1 does not contain any completion cycle, and therefore well-
behaves. In fact, this Child Selection contains only one network cycle c = MAL −
23 − OAA − 17 − AcCoa − 27 −MAL, which is not a completion cycle as the edge
AcCoa − 27 is not J1-selected.
On the other hand, the completion cycles structure of J2 is identical to the one of
Example B2 of Section 2.3, which had provided a simple and recognizable pattern
of an ill-behaving Child Selection network. In fact, this Child Selection possesses
only two bad completion cycle c1 and c2:

1. c1 = ICT − 26 −Glyoxylate − 27 −MAL − 23 −OAA − 17 −CIT − 18 − ICT ;

2. c2 = ICT −26−SUC −21−FUM −22−MAL−23−OAA−17−CIT −18−ICT .

Since it possesses only two intersecting bad completion cycles, the Child Selection
J26 ill-behaves.
In particular, in accordance to Theorem 2.6.1, the parameter

ξ = r19mb
− r26mb

, (where mb = ICT ), (2.67)

controls a change of sign of the Jacobian determinant of the entire system, for a
certain region of parameters.

Remark 10. The choice of reaction 19 and 26 basically highlights the difference
between the Tricarboxylic acid cycle (reaction 19) and the Glyoxylate cycle (reaction
26). Our analysis suggests how the control of certain dynamical properties of the
metabolism of a cell can be derived from its network structure.
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2.A Generalizations

Although most stoichiometric entries in metabolic networks are {-1,0,+1}, it is
worthwhile to provide a more general version of Theorem 2.4. To this purpose, let
SJ be a real M ×M matrix such that SJ

mm < 0 for any m. Firstly, let us generalize
the definition of good/bad-completion as follows:

Definition 2.7 (good/bad-completions, good/bad-cycles - General form). In the
same notation as Section 2.4, let π = ∏ϑ

i=1 ci ≠ Id be a nonzero permutation, i.e.
E(π) = sgn(π)∏m∈M SJ

π(m)m ≠ 0.

We call π a good-completion if

sign( ∏
m∶π(m)≠m

SJ
π(m)m) = (−1)ϑ. (2.68)

We call π a bad-completion if

sign( ∏
m∶π(m)≠m

SJ
π(m)m) = (−1)ϑ−1. (2.69)

Above, ϑ again indicates the number of cycles in the permutation expansion. If
ϑ = 1 we call the good(resp. bad)-completion a good(resp. bad)-cycle.

For a given completion π ≠ Id such that E(π) ≠ 0, let the value of π be

val(π) = ∏
m∶π(m)≠m

∣SJ
π(m)m∣
∣SJ
mm∣ . (2.70)

In particular, note that

val(π) =
ϑ

∏
i=1

val(ci). (2.71)

The general version of Theorem 2.4.1 reads as follows:

Theorem 2.A.1 (General version). Let J be a Child Selection.
Let G̃ be

G̃ = ∑
π good

val(π) (2.72)

and let B̃ be
B̃ = ∑

π bad

val(π). (2.73)

Then:

35
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1. The Child Selection J well-behaves if G̃ > B̃ − 1.

2. The Child Selection J ill-behaves if G̃ < B̃ − 1.

3. The Child Selection J zero-behaves if G̃ = B̃ − 1.

Proof. The proof is analogous to the proof of Theorem 2.4. The only difference is
that we start with a quotient. Indeed:

detSJ

E(Id ) = 1 + ∑
π≠Id

E(π)
E(Id ) (2.74)

Now

E(π)
E(Id ) =

sgn(π)∏M
m=1 S

J
π(m)m

∏M
m=1 S

J
mm

=
∏ϑ
i=1 sgn(ci)∏m∶π(m)≠m S

J
π(m)m

(−1)h∣∏m∶π(m)≠m S
J
mm∣

=(−1)ϑ ∏
m∶π(m)≠m

SJ
π(m)m

∣SJ
mm∣ = (−1)G/B val(π).

(2.75)

Where h is the number of elements of π that belong to a cycle and (−1)G/B is 1 if π
is good and −1 if π is bad. This leads to the desired equality

detSJ

E(Id ) = 1 + G̃ − B̃, (2.76)

which proves the Theorem. Indeed, the sign of the lefthand side is positive, nega-
tive, zero if and only if the Child Selection well-behaves, ill-behaves, zero-behaves,
respectively.

Remark 11. We could have started also the proof of Theorem 2.4 with the same ratio
argument (2.74). Indeed, for entries SJ

mj = {−1,0,+1}, a ratio argument is the same
as a product argument, of course. In our opinion, however, the product argument
illustrated better the concepts leading to MR-graph and completion cycles.

2.B Computational aspects

In relation to the computation (2.74), this appendix contains a simplifying result.
Let π be a nonzero permutation, i.e. E(π) = sgn(π)∏m∈M SJ

π(m)m ≠ 0. Let us assume

moreover that π = ∏ϑ
i=1 ci with ϑ ≥ 2. Let now π′ ⊆ π, that is, all ci cycles of π′ are

also cycles of π. We are concerned with the following question:

Is it always necessary to compute all E(π), independently of each other?

The following proposition provides an answer.

Proposition 2.B.1. For a permutation π = ∏ϑ
i=1 ci, the following two statements

hold true:

1. If there exists at least one cycle ci satisfying:
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(a) ci is a bad-cycle,

(b) val(ci) = 1,

then,

∑
π′⊆π

E(π)
E(Id ) = −1. (2.77)

2. If all cycles ci satisfy:

(a) ci is a good-cycle,

(b) val(ci) = 1,

then,

∑
π′⊆π

E(π)
E(Id ) = 2ϑ − 1. (2.78)

Proof. With a little abuse of notation, we use now ci to refer directly to

∏
m∶ ci(m)≠m

SJ
ci(m)m

∣SJ
mm∣ . (2.79)

1. Let us assume, without loss of generalities, that c1 = 1. That is, c1 is the
bad-cycle with val(c1) = 1. Consider the sum ∑π′⊆π E(π)

E(Id ) written in following
form:

ϑ′ = 1 -1 −c2 −c3 ... −cϑ
ϑ′ = 2 +1⋅c2 +1⋅c3 ... +1⋅cϑ +c2c3 ... cϑ−1cϑ
ϑ′ = 3 -1⋅c2c3 ... -1⋅cϑ−1cϑ ...
ϑ′ = ... ...
ϑ′ = ϑ − 1 ... (−1)ϑ−1c2c3...cϑ
ϑ′ = ϑ (−1)ϑ1⋅c2c3...cϑ

(2.80)

Clearly, ∑π′⊆π E(π)
E(Id ) is obtained by summing the above rows. Note that each

row ϑ′ > 1 appears with opposite sign on the right side of the previous row
ϑ′ − 1. Hence, easy cancellations lead to the result ∑π′⊆π E(π)

E(Id ) = −1

2. The second claim is a well-known property of Pascal triangle. Indeed, we have:

∑
π′⊆π

E(π)
E(Id ) =

ϑ

∑
ϑ′=1

(ϑ
ϑ′

)(−1)ϑ′(−1)ϑ′ =
ϑ

∑
ϑ′=1

(ϑ
ϑ′

) = 2ϑ − 1. (2.81)

Remark 12. For the case in which the stoichiometric matrix has only the values
SJ
mj = {−1,0,+1}, Proposition 2.B.1 always applies.
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We explain with the following example the use we can make of Proposition
2.B.1. We consider a Child Selection J with six metabolites.

The matrix SJ is given by:

SJ =

J(A) J(B) J(C) J(D) J(E) J(F )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 1 0 0 0 0
B 1 −1 0 1 0 0
C 1 0 −1 1 0 0
D 0 0 1 −1 0 1
E 0 0 1 0 −1 1
F 0 0 0 0 1 −1

, (2.82)

and its determinant, brutally computed, is detSJ = (−1)6−1 = −1. In particular,
the Child Selection J ill-behaves. We want here to show how it is possible to
use Proposition 2.B.1 to greatly simplify the computation of the determinant.

The graph of the Child Selection J is

(2.83)

and the MR-graph is
(2.84)

This Child Selection possesses six completion cycles:

1. c1 ∶= A − J(A) −B − J(B) −A
2. c2 ∶= C − J(C) −D − J(D) −C
3. c3 ∶= E − J(E) − F − J(F ) −E
4. c12 ∶= A − J(A) −C − J(C) −D − J(D) −B − J(B) −A
5. c23 ∶= C − J(C) −E − J(E) − F − J(F ) −D − J(D) −C
6. c123 ∶= A−J(A)−C −J(C)−E −J(E)−F −J(F )−D−J(D)−B−J(B)−A

From which, combinatorially, we have the list of all nonzero permutations π ≠ Id :

1. π123 ∶= c123

2. π12 ∶= c12

3. π12,3 ∶= c12 ⋅ c3

4. π23 ∶= c23

5. π1,23 ∶= c1 ⋅ c23

6. π1,2,3 ∶= c1 ⋅ c2 ⋅ c3

7. π1,2 ∶= c1 ⋅ c2

8. π1,3 ∶= c1 ⋅ c3

9. π2,3 ∶= c2 ⋅ c3

10. π1 ∶= c1

11. π2 ∶= c2

12. π3 ∶= c3
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In this example, all stoichiometric entries SJ
mj are {-1,0,1}. In particular,

E(Id ) = 1 and val(ci) = 1 for any i. Moreover, all edges not J-selected are
positive, with stoichiometric entry Smj = +1. Therefore we can apply point 1 of
Proposition 2.B.1, since all cycles are bad cycles with val(ci) = 1.
Let us consider permutation π1,2,3. Note that it contains permutations
π1,2, π2,3, π1,3, π1, π2, π3. Thus, via Proposition 2.B.1:

E(π1,2,3) + E(π1,2) + E(π2,3) + E(π1,3) + E(π1) + E(π2) + E(π3) = −1. (2.85)

We still have to compute E(π12,3), E(π1,23), E(π12,3), E(π123), E(π12), E(π23).
We use again Proposition 2.B.1 on π1,23 and π12,3, that is

E(π1,23) + E(π1) + E(π23) = −1, (2.86)

and
E(π12,3) + E(π12) + E(π3) = −1. (2.87)

Note that we had already included in the computation E(π1) and E(π3).

In conclusion, for the given example, the computation of the determinant is given
by the following expression:

detSJ = 1 + ∑
π≠Id

E(π)

= 1 + ∑
π⊆π1,2,3

E(π) + ∑
π⊆π12,3

E(π) + ∑
π⊆π1,23

E(π) + E(π123) − E(π1) − E(π3)

= 1 + −1 − 1 − 1 − 1 + 1 + 1 = −1

(2.88)

The last computation has been made observing that c123, c1, c3 are all bad
cycles, i.e., E(π123) = E(π1) = E(π3) = −1.

In this example, we have been able to reduce a computation of twelve permu-
tations to a computation of three single-cycle permutations. The argument has
been supported only by an observation of the completion cycles of the network.
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Part II

Sensitivity
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Chapter 3

Nonzero response

3.1 Introduction

For metabolic chemical reaction networks, sensitivity studies the response to external
perturbations of the dynamical system

ẋ = Sr(x). (3.1)

Here, the analysis is done at a positive dynamical equilibrium x∗, which solves

0 = Sr(x∗). (3.2)

We recall that we assume the existence of an equilibrium x∗, throughout, and that
we consider strictly positive reaction rates r(x), such that rj(x) depends only on
those concentrations xm for which m is an input metabolite to reaction j. For
the present nonzero response analysis, only, we do not require monotonicity of the
reaction rates rj(x). The sign of the responses is treated in the dedicated Chapter 4.

In this chapter we address the sensitivity question at its basics:

Which components of the system respond - qualitatively - to external perturbations?

That is:
Which components of the system do respond, at all? (3.3)

Although the question (3.3) is practically a zero/nonzero question, the results in
this chapter also constitute the first step for the sign analysis. Hence, this chapter
should be considered as a general introduction to sensitivity analysis of equilibria,
for the system (3.1).
However, let us not rush with conclusions and interpretations ante tempore, and let
us proceed slowly and in order: step by step. Firstly: what do we mean by exter-
nal perturbations? Simply put, any network consists of M vertices and N arrows.
Here, vertices represent metabolite concentrations and arrows represent reactions.
Our analysis aims to be qualitative and structural, in the sense that it is solely based
on the network structure, which we leave untouched and unaltered throughout. This
yields only to two possible targets of an external perturbation, namely the network

43
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components: vertices (metabolites concentrations) or arrows (reactions).

Two apparently distinct questions emerge from the mist: the response of the net-
work to a metabolite perturbation, and the response of the network to a reaction
perturbation.

The techniques used for addressing both questions are very similar, and one question
can be reduced to the other. For the sake of consistency, we have merged both
questions into one. The one perturbed equation, which we consider, reads as follows:

0 = Srε(x∗) + εµ, (3.4)

where
rε = r + ερ. (3.5)

Above, the positive scalar perturbation parameter ε > 0 controls a reaction pertur-
bation vector ρ ∈ RN and a metabolite perturbation vector µ ∈ RM .
The vector ρ indicates which reaction rates are perturbed, and the mutual linear
ratio of the perturbation on different reactions. We refer to this as a reaction per-
turbation. Respectively, the vector µ indicates which metabolite concentrations are
perturbed and the mutual linear ratio of the perturbation on different metabolite
concentrations. We refer to this as a metabolite perturbation.
Naturally, it is possible to consider the question of a reaction perturbation sepa-
rately from the question of a metabolite perturbation, simply by considering µ = 0
(reaction perturbation) or ρ = 0 (metabolite perturbation). The first original ac-
count by Fiedler and Mochizuki [FM15] studied the reaction perturbation case µ = 0
for monomolecular networks, tackling the problem with different techniques than
the ones used here. We rather follow the approach developed by Brehm and Fiedler
in [BF18], where the authors used Child Selections to study the nonzero response
of general networks to targeted reaction perturbations, only.

Let us start by defining the perturbation vector α ∈ RE+M to be α ∶= (ρ,µ). For an
element p ∈ M∪E of the network, either a metabolite or a reaction, the correspond-
ing entry αp > 0 corresponds to a positive perturbation, αp < 0 corresponds to a
negative perturbation, and αp = 0 corresponds to no perturbation at all. As before,
α indicates the mutual linear ratio of the perturbation on different components. We
refer to this as an α-perturbation.

The objects of study, here, is the equilibrium response of the network to ε-small
perturbations at a positive dynamical equilibrium x∗. Vaguely, this means that we
study the algebraic form of the differentiated components of equation (3.4), with
respect to ε, at ε = 0. There are only two ‘responsive’ components: metabolite
concentrations x and reaction fluxes r(x). Therefore, the objects of study of our
sensitivity analysis are:

1. The metabolite concentration response:

δxα ∶= ∂x
∗

∂ε
∣
ε=0

(3.6)
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2. The reaction flux response:

Φα ∶= ∂rε(x∗)
∂ε

∣
ε=0

= ρ +R δxα (3.7)

Here, R is again the matrix of the partial derivatives rjm introduced in (2.3).

Moreover, we say that a metabolite m′ (or a reaction j′) is influenced by an α-
perturbation if (δx)αm′ ≠ 0 ((Φ)αj′ ≠ 0, resp.), algebraically, and we denote this by

α ↝m′ (α ↝ j′, resp.). (3.8)

Here, algebraically means precisely as a rational function of the partial derivatives
rjm. It is crucial to clarify this as much as possible, with no fear of being pedan-
tic. In fact, the responses are rational functions of the partial derivatives rjm, as
the continuation of this chapter shows. Non-identically zero rational functions of
parameters may be zero for some values of the parameters. Algebraically nonzero
means that the rational function itself of those parameters is non-identically zero.
Since our analysis is qualitative, we will not be able to predict a quantitative zero
for certain specific reaction rates. Rather, we are only interested in the zeros for
all parameters. All statements about any response δxα and Φα must be intended in
this algebraic sense, even if we omit to specify it.

The core tool of analysis here is the Implicit Function Theorem (IFT). Under mild
nondegeneracy assumptions, the IFT guarantees the existence of a family of equi-
librium solutions x∗(ε) to equation (3.4), for sufficiently small ε perturbations.

In particular, the following equality holds, by implicit differentiation:

0 = ∂

∂ε
(Srε(x∗(ε)) + εµ) = S(ρ +Rδxα) + µ. (3.9)

From the equality (3.9), we obtain the fundamental relation

S(Φα) = −µ. (3.10)

Remark 13. In the case of a pure reaction perturbation (i.e., µ = 0), equation (3.10)
becomes

S(Φρ) = 0. (3.11)

This implies a necessary condition of influence: if any reaction j′ is influenced by
some reaction perturbation, we have that

∃v ∈ kerS such that vj′ ≠ 0. (3.12)

Above, vj′ indicate the j′-th entry of the vector v.

We have not forgotten - of course - that the IFT only holds under a nondegeneracy
assumption. Indeed, the determinant of the Jacobian matrix of the unperturbed
system has to be nonzero, that is,

detSR ≠ 0. (3.13)
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Throughout the continuation of this thesis we assume the nondegeneracy condition
(3.13) and Section 3.2 below is devoted to giving a structural characterization of
this condition.
In Chapter 2, we have mainly denoted the Jacobian matrix as G. However, for the
sensitivity analysis, it suits better to emphasize the composition of G as G = SR.
For this reason we proceed using the SR notation.

Keeping in mind that α = (ρ,µ)T , we define the (E +M)-dimensional sensitivity
response vector to an α-perturbation as

zα ∶= (Φα, δxα). (3.14)

Note that zα satisfies the following identity:

Bzα = α, (3.15)

for every α. Here the Brehm-matrix, introduced in [BF18], is defined as

B = [ IdN −R
−S 0

] . (3.16)

Indeed, by definition of Φ,
Φα −Rδxα = ρ, (3.17)

and, by equation (3.10),
− S(Φα) = µ. (3.18)

In conclusion, to calculate the responses, the only task is to invert the matrix B.

Well, the word “only” may be sometimes misleading. First of all: is B invertible, at
all? Thankfully, simple computation shows:

[ IdN 0
S IdM

] [ IdN −R
−S 0

] [ IdN R
0 IdM

] = [ IdN 0
0 −SR ] . (3.19)

Hence, via the Binet theorem, invertibility of B relies on the invertibility of SR,
which we have assumed. Furthermore, the determinant is given by

det B = (−1)M detSR, (3.20)

where, we repeat, M is the number of metabolites in the network.

By the inversion formula for block-matrices, we obtain the sensitivity matrix

Ψ ∶= B−1 = [ IdN −R(SR)−1S −R(SR)−1

−(SR)−1S −(SR)−1 ] . (3.21)

We see that the inverse of the Jacobian, (SR)−1, plays a central role. The main
problem here, computationally, is that the entries of the Jacobian matrix SR are
only symbolic, namely multilinear polynomials in the derivatives rjm. Already for
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reasonably small networks, the complexity of the explicit computation of the entries
of Ψ is far too high and unfeasible as a routine method of analysis. One of the main
goals of this thesis is therefore to simplify the computation, by providing character-
izations which circumvent the brutal inversion of the symbolic Jacobian matrix SR.

Let us consider the case
(ρ,µ) = ep, (3.22)

where p ∈ M ∪E is any element of the network and ep indicates the pth unit vector
in RN+M . In this case, when no ambiguity arises, we write α = p instead of α = ep,
for simplicity. This corresponds to a targeted perturbation, namely either a single
metabolite concentration or a single reaction rate perturbation. Since the family
{ep}N+Mp=1 constitutes a natural basis of RN+M , any vector response zα ∈ RN+M can
be expressed as a linear combination of the responses zp. Here, zp satisfies

Bzp = ep. (3.23)

This underlines the importance of the sensitivity matrix Ψ = B−1. Indeed:

1. An entry [−(SR)−1]m∗
m′ in the lower-right M ×M block encodes how a metabo-

lite m′ responds to a targeted perturbation of a metabolite m∗;

m∗ ↝m′.

2. An entry [−R(SR)−1]m∗
j′ in the upper-right N ×M block encodes how the flux

of a reaction j′ responds to a targeted perturbation of a metabolite m∗;

m∗ ↝ j′.

3. An entry [−(SR)−1S]j∗m′ in the lower-left M×N block encodes how a metabolite
m′ responds to a targeted perturbation of a reaction j∗;

j∗ ↝m′.

4. An entry [IdN −R(SR)−1S]j∗j′ in the upper-left N ×N block encodes how the
flux of a reaction j′ responds to a targeted perturbation of a reaction j∗;

j∗ ↝ j′.

In this chapter we characterize structurally the entries of the four blocks above in
terms of Child Selections. In Section 3.2 we discuss the nondegeneracy condition
allowing us to apply the IFT, in the same spirit of Chapter 2. Section 3.3 lists all
results: in particular, explicit formulas for the responses are derived. The expres-
sion of the responses is characterized to be nonzero according to certain minors of
the stoichiometric matrix S. Since the stoichiometric entries are integers, and non
symbolic, this leads to computational simplification as well as meaningful insights.
For example, Subsection 3.3.2.3 states that a perturbation on a reaction j∗, which is
the single outgoing reaction from one of its inputs m∗, influences only m∗. That is,
all responses to a perturbation of j∗ are zero, except the response of m∗. Subsection
3.3.4 argues that, mathematically, a metabolite perturbation can be considered as a
reaction perturbation, and in particular there is no need to develop the metabolite
case independently. Section 3.4 concludes the chapter with all the proofs.
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3.2 Nondegeneracy condition

As analyzed in Proposition 2.2.1, the Jacobian determinant of SR can be expressed
in terms of Child Selections J:

detSR =∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m. (3.24)

As a trivial corollary to (3.24) and Definition 2.2 , we obtain a characterization of a
nondegenerate network.

Corollary 3.2.1. A chemical reaction network is nondegenerate, i.e.

detSR ≠ 0, algebraically, (3.25)

if and only if there exists a Child Selection J, such that J does not zero-behave, i.e.,

detSJ ≠ 0. (3.26)

In particular:

1. any network, which possesses a good Child Selection, is nondegenerate;

2. any network, which possesses a bad Child Selection, is nondegenerate.

We can see, here already, what we mean as computational simplification. In fact,
the question whether the Jacobian determinant of SR is nonzero may look of high
complexity due to the symbolic entries of SR. Here we are able to verify whether it
is nonzero only with the existence of a nonzero minors SJ of the stoichiometric ma-
trix S. Good circumstance: the stoichiometric matrix S has integer entries instead
of symbols and computing them is much faster.

3.3 Results

For each of the four blocks of the sensitivity matrix Ψ, (3.21), we give a theorem
describing the entries of the block.

3.3.1 Metabolite perturbation

The responses of a targeted metabolite perturbation are encoded in the right blocks
of the sensitivity matrix Ψ, that are:

1. {(δx)m∗
m′ } = −(SR)−1, which describes the metabolites response to metabolite

perturbations;

2. {(Φ)m∗
j′ } = −R(SR)−1, which describes the fluxes response to metabolite per-

turbations.
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3.3.1.1 Metabolite response to metabolite perturbation

We analyze the expression

(δx)m∗
m′ = −((SR)−1)m∗

m′ , (3.27)

which describes the response of the concentration of m′ to a perturbation of the
concentration of m∗. Here, ((SR)−1)m∗

m′ indicates the entry of (SR)−1 in the m∗-th
column and m′-th row.

The result relies on a modified concept of Child Selections: the Partial Child Selec-
tions (PCS).

Definition 3.1 (Partial Child Selection). A Partial Child Selection J∨m
′

is an in-
jective map from the metabolite set M ∖ {m′} to the reaction set E, such that to
any metabolite m ≠m′ is associated an outgoing reaction of m, injectively.

The expression SJ∨m
′

indicates, then, the M × (M − 1) matrix whose i-th column
corresponds to the reaction J∨m

′(mi). Of course, a proper relabeling of the index i
of mi has to be taken in account, due to the missing metabolite m′. Intentionally,
we are not entirely explicit here, not to linger on heavy and pointless notation. The

notation SJ∨m
′

∨m∗ naturally indicates the (M −1)×(M −1) matrix obtained from SJ∨m
′

by removing the m∗-th row.

Remark 14. We point at an important and deceptive feature of Partial Child Se-
lections. In fact, they may innocently look as a restriction of Child Selections, in
the sense that from each Partial Child Selection J∨m

′
it is possible to induce an

associated Child Selection J such that J(m) = J∨m
′(m) for any m ≠ m′. This is

actually not always the case.

Let us clarify Remark 14 with the following minimal example:

S =

1 2 3
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 0 0
B −1 −1 0
C 1 0 −1

, (3.28)

There is only one Child Selection, namely J ∶= {J(A) = 1;J(B) = 2;J(C) = 3}.
However, considering the Partial Child Selections on the set {B,C} only, that
is, with vertex A being removed, we have now two Partial Child Selections J∨A1

and J∨A2. That is,
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1. J∨A1 ∶= {J∨A1(B) = 1;J∨A1(C) = 3};

2. J∨A2 ∶= {J∨A2(B) = 2;J∨A2(C) = 3}.

In fact: via a Partial Child Selection J∨A, B can freely select both reactions
1 and 2. In contrast, via a Child Selection J, B must select reaction 2, due
to injectivity. In fact: reaction 1 must be chosen by A. This observation has
important consequences in the analysis below and in Chapter 4.

For the above reason, we make a distinction on Partial Child Selections, depending
on whether they can be completed to a Child Selection of the entire network or not.

Definition 3.2 (Deducible/Non-deducible PCS). We call deducible Partial Child
Selections (dPCS) J∨ the PCS which can be deduced from a Child Selection by
removing a metabolite and its reaction image. In particular, any restriction of a
Child Selection J to the subset M ∖ {m′}, coincides with a dPCS J∨m

′
. On the

other hand, we say that a Child Selection J is induced from the dPCS J∨m
′

if
J(m) = J∨m

′(m), for any m ≠m′.
Respectively, we call non-deducible Partial Child Selections (nPCS) J∨ the PCS,
which are not deducible.

In Example 3.28 above, J∨A2 is deducible and J∨A1 is non-deducible.

The result for metabolite response to a metabolite perturbation reads as follows:

Theorem 3.3.1. Let m∗ and m′ be two (not necessarily distinct) metabolites. Then
the response (δx)m∗

m′ of metabolite m′ to a targeted perturbation of the metabolite m∗

is given by the formula:

(δx)m∗
m′ = −

(−1)m∗+m′ ∑
J∨m′

detSJ∨m
′

∨m∗ ⋅∏m∈M∖m′ rJ∨m′(m)m

detSR
. (3.29)

In particular,

(δx)m∗
m′ ≠ 0, algebraically, (3.30)

if, and only if, there exists a Partial Child Selection

J∨m
′ ∶ M ∖m′ Ð→ E (3.31)

such that

det(SJ∨m
′

∨m∗ ) ≠ 0. (3.32)

Note that the expression (3.29) is a rational function, whose numerator is a ho-
mogenous multilinear polynomial of degree M − 1, and whose denominator is a
homogenous multilinear polynomial of degree M (the Jacobian determinant SR).
Both polynomials in the numerator and in the denominator are in the variables rjm.
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Remark 15. Formula (3.29) is quite general. It simply describes the entries of the
inverse of a Jacobian matrix, within our network settings. In particular, let us
consider the adjugate matrix Ad(SR) of SR, whose entries are defined as:

Ad(SR)mj ∶= (−1)m+j det(SR)∨m∨j , (3.33)

where (SR)∨m∨j indicates the (M − 1) × (M − 1) minor of SR with removed jth row
and mth column. Well-known relation, for the inverse (SR)−1, is then:

(SR)−1 = Ad(SR)
det(SR) , (3.34)

which implies that the numerator of Formula (3.29) is given by Ad(SR)m∗
m′ , since

(δx)m∗
m′ = −((SR)−1)m∗

m′ . Note, in particular that

(−1)m∗+m′
detSJ∨m

′

∨m∗ = Ad(SJ)m′m∗ . (3.35)

Remark 16. Let the expression

SJ∨m
′
∪em∗ (3.36)

indicate the M ×M matrix obtained from SJ∨m
′

by inserting, as m′-th column, the
unit vector em∗ ∈ RM . Note the following equality, due to Laplace determinant
expansion:

(−1)m∗+m′
detSJ∨m

′

∨m∗ = detSJ∨m
′
∪em∗ . (3.37)

Self-influence does not always happen. Indeed, consider Example B2 of 2.3:

(3.38)

This dynamical system has equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ȧ = −r1(A) + r3(C)
Ḃ = r1(A) − r2(B)
Ċ = r1(A) + r2(B) − r3(C)

. (3.39)

The Jacobian is easily computed to be:

SR =

A B C
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −r1A 0 r3C

B r1A −r2B 0
C r1A r2B −r3C

, detSR = r1Ar2Br3C . (3.40)
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The metabolite responses matrix is

{(δx)m∗
m′ } = −(SR)−1 = 1

detSR

A B C
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −r2Br3C −r2Br3C −r2Br3C

B −r1Ar3C 0 −r1Ar3C

C −2r1Ar2B −r1Ar2B −r1Ar2B

. (3.41)

This example shows that all responses may be nonpositive, and a perturbation
of metabolite B does not produce a response on the concentration of B itself.
Moreover, we see here a counterexample to metabolite transitivity of influence,
although in a rather degenerate case. Indeed B influences C, C influences B,
but B does not influence itself. See Chapter 6.

3.3.1.2 Flux response to metabolite perturbation

We analyze the expression

(Φ)m∗
j′ = Rj′(δx)m

∗ = −Rj′((SR)−1)m∗
. (3.42)

which describes the response of the flux of j′ to a perturbation of the concentration of
m∗. Expression (3.42) indicates that we have to compute an inner product between
the row vector Rj′ and the column vector −((SR)−1)m∗

. We know both vectors: Rj′

by the network structure and −((SR)−1)m∗
by Theorem 3.3.1. The entries of Rm

j′

are nonzero if and only if the metabolite m is an input metabolite to reaction j′.
The entries of −((SR)−1)m∗

m are nonzero if and only if m∗ influences m.
However it is not always true that −Rj′((SR)−1)m∗

is nonzero if m∗ does influence
some input metabolites of reaction j′. In other words, cancellations may happen.

Regarding cancellations, let us be clear with an example, again (3.28). The
equations are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ȧ = −r1(A,B)
Ḃ = −r1(A,B) − r2(B)
Ċ = +r1(A,B) − r3(C)

. (3.43)

The Jacobian of the system is:

SR =

A B C
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −r1A −r1B 0
B −r1A −r1B − r2B 0
C r1A r1B −r3C

, (3.44)
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and the metabolite sensitivity matrix corresponds to

{(δx)m∗
m′ } = −(SR)−1 = 1

detSR

A B C
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −r1Br3C − r2Br3C +r1Br3C 0
B +r1Ar3C −r1Ar3C 0
C −r1Ar2B 0 −r1Ar2B

.

(3.45)
Let us concentrate on the B column (δx)B, which indicates the responses of
the three metabolites A,B,C to a perturbation of B. The response ΦB

1 of the
flux through reaction 1 to a perturbation of metabolite B is given by the inner
product between and (δx)B,

ΦB
1 = ⟨RT

1 , (δx)B⟩ (3.46)

where R1 = (r1A, r1B,0) and (δx)B = 1
detSR ⋅ (r1Br3C ,−r1Ar3C ,0)T . Therefore:

ΦB
1 = 1

detSR
⋅ (r1Ar1Br3C − r1Ar1Br3C) = 0, (3.47)

and metabolite B does not influence reaction 1. Note that the expression
r1Ar1Br3C is not associated with a Child Selection, since reaction 1 appears
twice, contradicting injectivity.

Example (3.28) constitutes also a counterexample to transitivity of influence of
the case metabolite ↝ metabolite ↝ reaction. Indeed, metabolite A influences
reaction 1:

ΦA
1 = ⟨RT

1 , (δx)A⟩ = −
1

detSR
r1Ar2Br3C . (3.48)

On the other hand, metabolite B influences metabolite A, since (δx)BA = r1Br3C .
Nevertheless, B does not influence reaction 1, i.e. ΦB

1 = 0.

It is possible to prove a result about the flux response analyzing when the above
kind of cancellations occur. However, we take here an independent route, so that
any of our results can be considered singularly. Let now the expression

SJ∖j′∪em∗ (3.49)

indicate the M ×M matrix obtained from SJ by removing the column Sj
′
, for j′ ∈ J,

and replacing it with the unit vector em∗ ∈ RM , in the same position of Sj
′
.

Our result again characterizes the flux response to metabolite perturbations in terms
of Child Selections.

Theorem 3.3.2. Let m∗ be a metabolite and j′ be a reaction. Then the flux response
(Φ)m∗

j′ of reaction j′ to a targeted perturbation of the concentration of metabolite m∗
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is given by

(Φ)m∗
j′ = −

∑
J∋j′

detSJ∖j′∪em∗ ∏m∈M rJ(m),m

detSR
. (3.50)

In particular,

(Φ)m∗
j′ ≠ 0, algebraically, (3.51)

if, and only if, there exists a Child Selection J containing j′ and such that

det(SJ∖j′∪em∗) ≠ 0. (3.52)

The expression (3.50) is a rational function, whose both numerator and denominator
are homogenous multilinear polynomials of degree M .

Remark 17. Any metabolite response (δx)m∗
m , which is expressed by a multilinear

polynomial associated to a nPCS must undergo cancellations when computing the
inner product ⟨RT

j′ , (δx)m
∗⟩. Theorem 3.3.2, indeed, asserts that the flux response

expressions are always associated to a Child Selection.

3.3.2 Reaction perturbation

The two results of this section are due to Brehm and Fiedler [BF18]. We present
them here for sake of completeness, following our personal point of view. They are
concerned with the left blocks of the sensitivity matrix Ψ, that is:

1. {(δx)j∗m′} = −(SR)−1S, which describes the metabolites response to reaction
perturbations;

2. {(Φ)j∗j′ } = IdN −R(SR)−1S, which describes the fluxes response to reaction
perturbations.

3.3.2.1 Metabolite response to reaction perturbation

We analyze the expression

(δx)j∗m′ = −((SR)−1Sj
∗)m′ = −((SR)−1)m′Sj

∗
. (3.53)

which describes the response of the concentration of m′ to a perturbation of the rate
of j∗. Equality (3.53) shows the following connected points:

1. The response of metabolite m′ to a targeted perturbation of reaction j∗ is
given by the inner product between the row vector −((SR)−1)m′ of the m′-
th metabolite response to any metabolite perturbation and the stoichiometric
column vector Sj

∗
corresponding to reaction j∗.

2. Considering the inner product ⟨−((SR)−1)Tm′ , Sj
∗⟩, the only possible nonzero

summands are given by those entries m such that both −((SR)−1)mm′ = (δx)mm′

and Sj
∗
m are nonzero. That is, corresponding to metabolites m, influencers of

m′, that are participating to reaction j∗.
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3. Lastly, the inner product is between a vector −((SR)−1)m′ with entries as
rational functions described by Theorem 3.3.1 and a vector Sj

∗
with integer

entries. Hence the form of the metabolite response to reaction perturbation
must have the same algebraic form as the entries of −((SR)−1)m′ = (δx)m′ .
That is, a rational function whose both numerator and denominator are ho-
mogeneous multilinear polynomials. The numerator has degree M − 1 and the
denominator has degree M .

In analogy to (3.36), let

SJ∨
m′

∪j∗
(3.54)

indicate the M ×M matrix obtained from SJ∨m
′

by inserting, as m′-th column,
the column Sj

∗
. The result, which confirms independently the above observations,

reads:

Theorem 3.3.3. Let j∗ be a reaction and m′ be a metabolite. Then the response
(δx)j∗m′ of metabolite m′ to a reaction rate perturbation of j∗ is given by

(δx)j∗m′ = −
∑J∨m′ /∋j∗ detSJ∨

m′
∪j∗ ⋅∏m∈M∖m′ rJ∨m′(m)m

detSR
. (3.55)

In particular,
(δx)j∗m′ ≠ 0, algebraically, (3.56)

if, and only if, there exists a Partial Child Selection J∨
m′
∶ M∖{m′}→ E∖{j∗} such

that

det(SJ∨
m′

∪j∗) ≠ 0. (3.57)

The responses (3.55) are indeed of the same algebraic form as the metabolite re-
sponse to metabolite perturbation (3.29). In particular, the numerator of the ra-
tional function is given by a homogenous multilinear polynomial of degree M − 1,
expressed by PCS.

Again, considering Example (3.28). We recall the metabolite sensitivity matrix

{(δx)m∗
m′ } = −(SR)−1 = 1

detSR

A B C
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −r1Br3C − r2Br3C r1Br3C 0
B r1Ar3C −r1Ar3C 0
C −r1Ar2B 0 −r1Ar2B

.

(3.58)
and the stoichiometric matrix

S =

1 2 3
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 0 0
B −1 −1 0
C 1 0 −1

. (3.59)
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The matrix {(δx)j∗m′} of the metabolite response to reaction perturbation is then

{(δx)j∗m′} = −(SR)−1S = 1

detSR

1 2 3
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A r2Br3C −r1Br3C 0
B 0 r1Ar3C 0
C 0 0 r1Ar2B

. (3.60)

Note the zero influence of reaction 1 on metaboliteB and C. Both are due to PCS
cancellations, e.g. for B, −(SR)−1

B = (r1Ar3C ,−r1Ar3C ,0) and S1 = (−1,−1,1)T :

⟨−((SR)−1
B )T , S1⟩ = 1

detSR
(−r1Ar3C + r1Ar3C) = 0. (3.61)

3.3.2.2 Flux response to reaction perturbation

We analyze the expression

Φj∗
j′ = δj∗j′ −Rj′(SR)−1Sj

∗
, (3.62)

which describes the response of the flux of j′ to a perturbation of the rate of j∗.
Above, δj∗j′ is the Kronecker delta. We have two slightly different theorems: one
corresponding to the self-influence case j∗ = j′, the other to the case of distinct
reactions j∗ ≠ j′.
For the self-influence case j∗ = j′ the theorem reads as follows:

Theorem 3.3.4. Let j∗ be a reaction. Then the flux response (Φ)j∗j∗ of reaction j∗

to an external perturbation of the reaction rate of j∗ itself is given by:

(Φ)j∗j∗ =
∑J/∋j∗ detSJ∏m∈M rJ(m)m

detSR
. (3.63)

In particular,

(Φ)j∗j∗ ≠ 0, algebraically, (3.64)

if and only if there exists a Child Selection J such that j∗ /∈ J and

detSJ ≠ 0. (3.65)

Promptly, we derive the following corollary

Corollary 3.3.5. Let j∗ be a reaction such that, for any Child Selection J containing
j∗, detSJ = 0. Then

(Φ)j∗j∗ ≡ 1. (3.66)

Corollary 3.3.5 is completely independent from any choice of reaction rates, as well
as from the sign of the Jacobian determinant detSR.
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As an example, let us consider a network of the following kind:

(3.67)

The basic structure considered is a metabolite A with more than one outgoing
reactions. Among those outgoing reactions, a monomolecular reaction 1 leads
to a metabolite B, which possesses a single outgoing child reaction 2 leading
back to A such that reactions 1 and 2 construct a directed cycle. The network,
outside this basic structure can be freely chosen. In such a case, we have that

Φ1
1 ≡ 1, (3.68)

independently on the rest on the network. Note, indeed, that any Child Selection
J containing 1 has detSJ = 0, since reaction 2 has to be in the image of any
Child Selection, being single outgoing child reaction of B. Moreover reaction 1
and reaction 2 have the same opposite stoichiometry. This leads to a linear
dependency in the column of SJ and consequently detSJ = 0, if 1 ∈ J.

The case when j∗ ≠ j′ is slightly more involved. In analogy to (3.49), let

SJ∖j′∪j∗ (3.69)

indicate the M ×M matrix obtained from SJ by removing the column Sj
′
, for j′ ∈ J,

and replacing it with the column Sj
∗
, in the same position of Sj

′
.

Theorem 3.3.6. Let j∗, j′ be two distinct reactions. Then a rate perturbation of j∗

produces a response (Φ)j∗j′ in the flux of j′ given by

(Φ)j∗j′ = −
∑j∗/∈J∋j′ detSJ∖j′∪j∗∏m∈M rJ(m)m

detSR
, (3.70)

In particular,
(Φ)j∗j′ ≠ 0, algebraically, (3.71)

if, and only if, there exists a Child Selection J such that j∗ /∈ J ∋ j′ and

det(SJ∖j′∪j∗) ≠ 0. (3.72)

3.3.2.3 Single children

This subsection collects two corollaries to reaction perturbation results, Theorems
3.3.3, 3.3.4, and 3.3.6. With little assumptions, and no computations, both corol-
laries yield strong conclusions.
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Corollary 3.3.7. Let m∗ participate as input only in one single reaction j∗. Then
the following three conclusions hold true:

1. Φj∗
j′ = 0 for any j′ ∈ E;

2. Φj∗
m′ = 0 for any m′ ≠m∗;

3. Φj∗
m∗ < 0, assuming rj∗m∗ > 0.

Note that, in Corollary 3.3.7, the reaction j∗ is required to be a single outgoing
reaction from m∗. This condition is stronger than the condition of j∗ being a single
child, in the sense of J(m∗) ≡ j∗, for any Child Selection J.
Indeed, relaxing the single-outgoing condition to the single-child condition leads to
the second corollary of this subsection, which is a milder version of 3.3.7.

Corollary 3.3.8. Let j∗ be the single child of the mother metabolite m∗, that is,
J(m∗) ≡ j∗, for any Child Selection J. Then Φj∗

j′ = 0 for any j′ ∈ E.

The corollaries can be summarized in two catchy sentences. The first Corollary 3.3.7
in the statement:

Single outgoing reactions always influence only their input, negatively!

The second Corollary 3.3.8 in the statement:

Single children have no flux-influence!

3.3.3 General α-perturbations

What about general α-perturbations?

Mathematically, when we consider a general perturbation vector α = (ρ,µ) ∈ RE+M

and any network single component p, we must be aware about possible cancellations
between the summands in the response inner product:

zαp = −⟨ΨT
p , α⟩. (3.73)

The following example shows how cancellations are possible.

S =

1 2 3 4 5 6 7
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 −1 −1 0 0 0 0
B 1 0 0 −1 0 0 0
C 0 1 0 0 −1 0 0
D 0 0 1 0 0 −1 0
E 0 0 0 1 1 1 −1

. (3.74)
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Let us focus on a perturbation of reaction 2 and of reaction 3, and let us check
the response of the flux of reaction 4. By Theorem 3.3.6 or by brute calculation,
we observe that:

1. (Φ)2
4 = −r1Ar4Br5Cr6Dr7E;

2. (Φ)3
4 = −r1Ar4Br5Cr6Dr7E.

That is, (Φ)2
4 = (Φ)3

4, because a symmetry of structure holds. Now, consider α
such that α2 = +1, α3 = −1 and αi = 0 for all i ≠ 2,3. In this case we would have
zero response (Φ)α4 = 0, although (Φ)2

4, (Φ)3
4 ≠ 0.

It is beyond the interest of this thesis to investigate conditions for not having can-
cellations. However, we should not bother too much about this problem. In fact,
this is an abstract mathematical situation in which the perturbation vector α can be
chosen with such a precision to cause cancellations. In a real application, even only
for intrinsic operational errors, we cannot expect to choose α in such a way that
∣αk∣ = ∣αi∣, for any k and i. This is indeed a non-generic effect. For this reason, in any
feasible biological application, cancellations should be excluded, when investigating
a nonzero response.

3.3.4 Reducing metabolite to reaction perturbations

Let us consider Formula (3.50) for the flux response of reaction j′ to a metabolite
perturbation of m∗

(Φ)m∗
j′ = −

∑
J∋j

detSJ∖j∪e∗m∏m∈M rJ(m),m

detSR
,

and Formula (3.70) for the response of j′ to a reaction perturbation of j∗

(Φ)j∗j′ = −
∑j∗/∈J∋j′ detSJ∖j′∪j∗∏m∈M rJ(m)m

detSR
.

For the response of j′ to a perturbation of m∗, the matrix SJ∖j∪e∗m plays a central
role. Respectively, for the response of j′ to a perturbation of j∗, the matrix SJ∖j′∪j∗

plays a central role. We observe that the formulas (3.50) and (3.70) are identical
in the mathematical structure. In fact, SJ∖j∪e∗m is constructed via a swap between
the stoichiometric column Sj

′
and the unit vector em∗ , and SJ∖j′∪j∗ is constructed

via a swap between the stoichiometric columns Sj
′

and Sj
∗
. The crucial observation

is that the stoichiometry of em∗ is the same as an exit reaction j0
m∗ from m∗, with

inverted sign. That is, Sj
0
m∗ = −em∗ . This implies that a metabolite perturbation of

m∗ corresponds identically to a reaction perturbation of an added exit reaction j0
m∗ ,

with reverted sign. In this way there is no need to develop an independent theory
for metabolite perturbation, as it is already implicitly included in the reaction per-
turbation.

All other cases follow in complete analogy. Therefore, in the following chapters we
concentrate primarily on the reaction perturbation.
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3.4 Proofs

This section is devoted to the proofs of the results in this chapter. Again, we re-
peat that, for a matrix A, the notation AEF denotes the submatrix of A consisting
of columns E and rows F . For simplicity of notation, we omit the braces {m} for
single elements, so that, for example, Rj indicates the jth row and Rm indicates the
mth column of R.
We prove Theorems 3.3.1, 3.3.2, 3.3.3, 3.3.4, and 3.3.6 independently and not pur-
suing the reduction argument of Section 3.3.4. We paid a bit to redundancy but we
obtained more, we hope, in clarity. With this approach, in particular, Section 3.3.4
reads as a corollary of the independently proven Theorem 3.3.2 and 3.3.6.
These proofs are all based on a careful use of Cramer’s rule and Cauchy-Binet for-
mula. They have a basic analogous structure: we invert the Jacobian determinant
SR using Cramer’s rule, obtaining:

((SR)−1)m∗
m′ =

(−1)m∗+m′
det((SR)∨m′

∨m∗)
detSR

, (3.75)

where (SR)∨m′
∨m∗ indicates the minor of SR taken removing the m∗-th row and the m′-

th column. The numerator is analyzed via Cauchy-Binet formula and interpreted -
depending on each specific theorem - in terms of Child Selections, in a rather similar
flavor to the proof of Proposition 2.2.1. We list the proofs one after the other.

Proof of Theorem 3.3.1. The response (δx)m∗
m′ of a metabolite concentration m′ to

a perturbation of the metabolite concentration m∗ is given by

(δx)m∗
m′ = −((SR)−1)m∗

m′ , (3.76)

where ((SR)−1)m∗
m′ indicates the entry corresponding to the m∗-column and m′-row.

We invert SR using Cramer’s rule:

(δx)m∗
m′ = −((SR)−1)m∗

m′ = −
(−1)m∗+m′

det((SR)∨m′
∨m∗)

detSR
. (3.77)

Here, again, (SR)∨m′
∨m∗ indicates the minor of SR taken removing the m∗-th row and

the column m′-th column. We analyze the numerator, using Cauchy-Binet formula:

−detSR (δx)m∗
m′ =(−1)m∗+m′

det((SR)∨m′
∨m∗)

=(−1)m∗+m′
det(S∨m∗R∨m′)

=(−1)m∗+m′ ∑
E ′∈EM−1

detSE
′

∨m∗ ⋅ detR∨m′
E ′ .

(3.78)

We observe that detR∨m′
E ′ ≠ 0 if and only if there exists a Partial Child Selection

J∨m
′
: M ∖ {m′} Ð→ E, such that J∨m

′(M ∖ {m′}) = E ′. This observation and the
signature argument

sgn(J∨m′) detSE
′=J∨m

′
(M∖m′) = detSJ∨m

′

∨m∗ , (3.79)
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leads to the following equality:

(δx)m∗
m′ = −

(−1)m∗+m′ ∑
J∨m′

detSJ∨m
′

∨m∗ ⋅∏m∈M∖m′ r(J∨m′(m))m

detSR
, (3.80)

which concludes the proof.

Proof of Theorem 3.3.2. Analogously as above, we analyze the expression (Φ)m∗
j′ =

−Rj′((SR)−1)m∗
for the flux response of j′ to a metabolite perturbation of m∗.

(Φ)m∗
j′ = −Rj′((SR)−1)m∗

= − ∑
m∈M

Rm
j′ ((SR)−1)m∗

m

= − ∑
m∈M

Rm
j′
(−1)m∗+m det(SR)∨m∨m∗

detSR
.

(3.81)

That is,

−detSR (Φ)m∗
j′ = ∑

m∈M
Rm
j′ (−1)m∗+m det(SR)∨m∨m∗

= ∑
m∈M

Rm
j′ (−1)m∗+m ∑

E ′∈EM−1
detSE

′
∨m∗ ⋅ detR∨m

E ′

= ∑
E ′∈EM−1

∑
m∈M

((−1)m∗+j′ detSE
′

∨m∗)((−1)m+j′Rm
j′ detR∨m

E ′ )

= ∑
E ′∈EM−1

detSE
′∪em∗ detRE ′∪j′

=∑
J∋j′

detSJ(M)∖j′∪em∗ sgn(J) ∏
m∈M

rJ(m)m

=∑
J∋j′

detSJ∖j′∪em∗ ∏
m∈M

rJ(m)m.

(3.82)

Proof of Theorem 3.3.3. Here we analyze the metabolite response (δx)j∗m′ = −((SR)−1Sj
∗)m′ ,

of m′ to a perturbation of reaction j∗.

(δx)j∗m′ = −((SR)−1Sj
∗)m′ = − ((SR)−1)m′Sj

∗

= − ∑
m∈M

((SR)−1)mm′Sj
∗
m

= − ∑
m∈M

(−1)m+m′
det(SR)∨m′

∨m
det(SR) Sj

∗
m .

(3.83)

That is,

−detSR (δx)j∗m′ = ∑
m∈M

(−1)m+m′
det(SR)∨m′

∨m S
j∗
m

= ∑
m∈M

(−1)m+m′ ∑
E ′∈EM−1

detSE
′

∨m detR∨m′
E ′ Sj

∗
m

= ∑
E ′∈EM−1

∑
m∈M

((−1)m+m′
Sj

∗
m detSE

′
∨m)detR∨m′

E ′ .

(3.84)
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Again, detR∨m′
E ′ ≠ 0 if and only if there exists a Partial Child Selection J∨m

′
: M ∖

m′ Ð→ E, such that J∨m
′(M∖m′) = E ′. This observation and the signature argument

sgn(J∨m′) detSE
′=J∨m

′
(M∖m′) = detSJ∨m

′

∨m∗ , (3.85)

leads to:

(δx)j∗m′ = −
(−1)m+m′

Sj
∗
m detS

E ′=J∨m
′
(M∖m′)

∨m sgn(J∨m′) ⋅∏m∈∨m′ r
J∨m

′
(m)m

detSR

= −
∑J∨m′ /∋j∗ det(SJ∨

m′
∪j∗) ⋅∏m∈∨m′ r

J∨m
′
(m)m

detSR
,

(3.86)

concluding the proof.

Proof of Theorem 3.3.4. The flux response (Φ)j∗j∗ of a reaction j∗ to a perturbation
of j∗ itself reads

(Φ)j∗j∗ =1 −Rj∗(SR)−1Sj
∗

=1 − ∑
m1,m2∈M

Rm1

j∗ ((SR)−1)m2
m1
Sj

∗
m2

=1 − ∑
m1,m2∈M

Rm1

j∗
(−1)m1+m2 det(SR)∨m1

∨m2

detSR
Sj

∗
m2
.

(3.87)

That is,

detSR (Φ)j∗j∗ =detSR − ∑
m1,m2

Rm1

j∗ (−1)m1+m2( ∑
E ′∈EM−1

detSE
′

∨m2
⋅ detR∨m1

E ′ )Sj∗m2

=detSR−
∑

E ′∈EM−1
( ∑
m2∈M

(−1)m2+j∗Sj
∗
m2

detSE
′

∨m2
)( ∑
m1∈M

(−1)m1+j∗Rm1

j∗ detR∨m1

E ′ )

=detSR − ∑
E ′∈EM−1

detSE
′∪j∗ detRE ′∪j∗ .

(3.88)

Moreover, detRE ′∪j∗ ≠ 0 if and only if E ′ ∪ j∗ = J(M), for a Child Selection J. In
particular, J containins j∗. Since, again,

sgn(J)detSE
′=J(M) = detSJ, (3.89)

we have that

∑
E ′∈EM−1

detSE
′∪j∗ detRE ′∪j∗ = ∑

J∋j∗
detSJ ∏

m∈M
rJ(m)m. (3.90)

Now, detSR can be analogously expanded along Child Selections, according to
Proposition 2.2.1, leading to

(Φ)j∗j∗ =
∑J detSJ∏m∈M rJ(m)m −∑J∋j∗ detSJ∏m∈M rJ(m)m

detSR

=∑J/∋j∗ detSJ∏m∈M rJ(m)m

detSR
.

(3.91)
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Proof of Theorem 3.3.6. The flux response (Φ)j∗j′ of a reaction j′ to a perturbation
of reaction j∗, with j∗ ≠ j′, reads

(Φ)j∗j′ = −(R(SR)−1S)j∗j′
= −Rj′(SR)−1Sj

∗

= − ∑
m1,m2∈M

Rm1

j′ (SR)−1
m1,m2

Sj
∗
m2

= − ∑
m1,m2∈M

Rm1

j′
(−1)m1+m2 det(SR)∨m1

∨m2

det(SR) Sj
∗
m2
,

(3.92)

which yields

−detSR (Φ)j∗j′ = ∑
m1,m2

Rm1

j′ (−1)m1+m2 det(SR)∨m1
∨m2

Sj
∗
m2

= ∑
m1,m2

Rm1

j′ (−1)m1+m2( ∑
E ′∈EM−1

detSE
′

∨m2
⋅ detR∨m1

E ′ )Sj∗m2

= ∑
E ′∈EM−1

( ∑
m2∈M

(−1)m2+j′Sj
∗
m2

detSE
′

∨m2
)( ∑
m1∈M

(−1)m1+j′Rm1

j′ detR∨m1

E ′ )

= ∑
j′∈J/∋j∗

detSJ∖j′∪j∗ ∏
m∈M

rJ(m)m.

(3.93)

The last equality is an analogous determinant contraction as done and commented
in the previous proofs. The above computation leads to the desired equality

(Φ)j∗j′ = −
∑

j′∈J/∋j∗
detSJ∖j′∪j∗∏m∈M rJ(m)m

detSR
. (3.94)

We proceed now with the brief proof of Corollary 3.3.5.

Proof of Corollary 3.3.5. Simply note that, in the case detSJ = 0 for any Child
Selection J containing j∗, the numerator of (3.63) reads:

∑
J/∋j∗

detSJ ∏
m∈M

rJ(m)m =∑
J

detSJ ∏
m∈M

rJ(m)m = detSR. (3.95)

And we conclude with Corollaries 3.3.7 and 3.3.8.

Proof of Corollary 3.3.7. Note that the assumption implies that J(m∗) ≡ j∗, for

any Child Selection J. In particular j∗ ∈ J, for any J, and j∗ ∈ J∨
m′

, for any Partial

Child Selection J∨
m′

such that m′ ≠ m∗. These observations leads to the following
conclusions.

1. By Formula (3.63) and (3.70), any nonzero flux-influence Φj∗
j′ ≠ 0 requires

the existence of a Child Selection J, such that j∗ /∈ J. This is excluded by
assumption, and therefore Φj∗

j′ = 0 for every j′ ∈ E.
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2. By Formula (3.55), any nonzero influence Φj∗
m′ ≠ 0 requires the existence of

a Partial Child Selection J∨
m′

such that j∗ /∈ J∨
m′

. Again, this condition is
always violated by assumption, unless m′ = m∗. This concludes that Φj∗

m′ ≠ 0
for every m′ ≠m∗.

3. The running nondegeneracy assumption detSR ≠ 0 implies, via Corollary
3.2.1, the existence of a Child Selection J such that detSJ ≠ 0. In partic-
ular, from a nonzero Child Selection J, let us consider a deducible Partial

Child Selection J∨
m∗

. Again via Formula (3.55),

Φj∗
m∗ ≠ 0⇔ det(SJ∨m

∗
∪j∗) ≠ 0. (3.96)

Note, in the considered case, that the following equality holds:

(SJ∨m
∗
∪j∗) = SJ, (3.97)

and therefore, detSJ ≠ 0 implies Φj∗
m∗ ≠ 0.

Moreover, the nonzero response (Φ)j∗m∗ can be explicitly computed to be

Φj∗
m∗ = −

∂rj∗m∗(detSR)
detSR

= − 1

rj∗m∗
, (3.98)

and, assuming further rj∗m∗ > 0, we conclude that Φj∗
m∗ < 0.

Corollary 3.3.8 has exactly the same proof of point 1 in Corollary 3.3.7, which we
do not repeat.



Chapter 4

Signed response

4.1 Introduction

This chapter deepens the analysis of Chapter 3 and addresses the question on the sign
of the flux and metabolite responses. We consider targeted positive perturbations
of α = ep. As before, p ∈ M ∪ E indicates a single reaction or a single metabolite.
Analogous considerations as in Section 3.3.3 hold for general α ∈ RE+M . For the
targeted case α = ep, we ask:

What is the sign of the responses?

Our previous assumptions for nonzero responses remain in effect. Specifically, we
recall that we consider strictly positive reaction rates r(x), such that rj(x) depends
only on those concentrations xm for which m is an input metabolite to reaction
j. Moreover, the sign question of this chapter requires the further assumption of
monotonicity for the reaction rates r(x), as in Chapter 2. That is, we consider the
nonzero partial derivatives rjm to be positive:

rjm > 0. (4.1)

In particular, the responses are given as rational functions whose denominator and
numerator are multilinear homogenous polynomials in the variables rjm. With the
monotonicity assumption rjm > 0, we restrict the (algebraic) sign analysis to a sign
analysis of the coefficients of the response rational functions.

We concentrate mainly on the case {(Φ)j∗j′ } of flux response j′ to reaction pertur-
bation j∗. In fact, the metabolite perturbation case can be reduced to the reaction
one, as already introduced in Section 3.3.4; see also Corollary 4.2.4 below. The
metabolite response is treated in Subsection 4.2.2.

Formula (3.70) for the flux response (Φ)j∗j′ of reaction j′ to a reaction perturbation
of j∗ ≠ j′ tells that

detSR ⋅ (Φ)j∗j′ = ∑
j∗/∈J∋j′

(ϕJ)j∗j′ , (4.2)

where
(ϕJ)j∗j′ ∶= −detSJ∖j′∪j∗ ∏

m∈M
rJ(m)m. (4.3)

65
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The sign of the flux response (Φ)j∗j′ , in particular, depends on the sign of the Ja-

cobian determinant detSR and on the sign of each response summand (ϕJ)j∗j′ . We
have structurally analyzed sign(detSR) in Chapter 2. Here, thus, we are only con-

cerned with the sign of the response summands (ϕJ)j∗j′ .

The main tool of our analysis are the Enlarged Child Selections (ECS) J ∪ j∗, for
j∗ /∈ J. An ECS naturally identifies an M × (M + 1) matrix SJ∪j∗ , where j∗ is the
column M + 1 and the first M columns are identical to SJ. The two main results
of this chapter, contained in Section 4.2, fix a Child Selection J and describe the
sign of (ϕJ)j∗j′ for any j′ ∈ J. Specifically, Proposition 4.2.1 shows that the only

relevant case is when the dimension of the kernel of SJ∪j∗ is exactly one. Indeed,
trivial kernels are excluded by the dimension M × (M + 1) of SJ∪j∗ and kernels of

dimension bigger than one indicate zero response summands (ϕJ)j∗j′ , for all j′. The
analysis highlights in particular the important role played by nonzero kernel vectors
0 ≠ v ∈ RM+1,

SJ∪j∗v = 0, (4.4)

in the one-dimensional kernel situation, ker(SJ∪j∗) = span⟨v⟩. In this case,

The sign pattern of the entries vj holds the key to the sign pattern of the responses.

In fact, Theorem 4.2.2 states that nonzero response summands (ϕJ)j∗j′ ≠ 0 are char-
acterized by nonzero entries vj′ ≠ 0, and the mutual sign of the entries translates to
the mutual sign of the response summands. That is, for j′1 and j′2,

sign((ϕJ)j∗j′1 (ϕ
J)j∗j′2 ) = sign(vj′1vj′2). (4.5)

The determination of the specific sign of each summands is addressed in Theorem
4.2.3. Two different cases appear depending on whether the Child Selection J of the
response summand (ϕJ)j∗j′ zero-behaves, or not. If the Child Selection J does not
zero-behave, in particular, then the entry vj∗ associated to the perturbed reaction

j∗ is nonzero. The absolute sign of the response summand (ϕJ)j∗j′ is then, simply,
given by

sign(ϕJ)j∗j′ = β(J) sign(vj∗vj′), (4.6)

where β(J) = sign(detSJ) is again the behavior coefficient introduced in Definition
2.2. The case in which J zero-behaves is more elaborate and it involves cokernel
vectors κ,

κSJ = 0. (4.7)

We recall that nonzero cokernel vectors κ represent conservation laws of the subnet-
work identified by the stoichiometric matrix SJ. For zero-behaving Child Selections
J and for a uniquely determined choice of the cokernel vector κ, we have that

sign(ϕJ)j∗j′ = − sign( vj′ ⟨κ,Sj
∗⟩ ), (4.8)

Here Sj
∗

again indicates the stoichiometric column associated to the perturbed re-
action j∗.
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The above arguments are made precise in Section 4.2, which contains the main
results. Section 4.3 presents three examples and Section 4.4 concludes with the
proofs.

4.2 Main results

The first proposition provides a necessary condition for any nonzero response sum-
mand (ϕJ)j∗j′ ≠ 0.

Proposition 4.2.1. For a response summand (ϕJ)j∗j′ , it holds:

(ϕJ)j∗j′ = 0 for all j′ ⇔ dim(ker(SJ∪j∗)) > 1. (4.9)

Remark 18. Consider any (not necessarily square) matrix, with one-dimensional
kernel. Note how the support, i.e. nonzero entries, of any nontrivial kernel vector
is unique. In particular, kernel vectors of such type are elementary in the sense
that they do not properly contain the support of any other kernel vectors. In a
metabolic context, the importance of elementary kernel vectors has already been
noted by Klammt and coauthors [KRG+17]. Mathematically, they have previously
been studied by Rockafellar [Roc69].

An interesting question arises from the above Remark 18. Let us assume that only a
small part Γsub of a network Γ is known, such as a reversible reaction from metabolite
A to metabolite B.

Ssub =
1 2

[ ]A −1 1
B 1 −1

, (4.10)

Above, Ssub is the stoichiometric matrix of the subnetwork Γsub. Note, in particular,
that dim(kerSsub) = 1. Let S be the stoichiometric matrix of the whole network Γ.
Under our standing nondegeneracy assumption detSR ≠ 0, for the whole network Γ,
can we infer the existence of a Child Selection J for Γ, such that J(A) = 1, J(B) = 2
and dim(kerSJ) = 1?
This question may possibly possible an affirmative answer for the majority of bio-
logical networks. However, on a purely mathematical basis the answer is negative:
the above claim is wrong. See Example III in Section 4.3

We now state the first main theorem of this chapter, on the relative sign of the
responses.

Theorem 4.2.2 (Relative sign of responses). Suppose dim(ker(SJ∪j∗))=1, and let
kerSJ∪j∗ = span⟨v⟩. Then,
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1. The response summand of reaction j′ is nonzero if and only if the j′-th entry
of v is nonzero, that is

(ϕJ)j∗j′ ≠ 0 ⇔ vj′ ≠ 0. (4.11)

2. The mutual sign of the response summands of reactions j′1 and j′2 is given by
the mutual sign of the j′1-th and j′2-th entries of v, that is

sign(ϕJ)j∗j′1 sign(ϕJ)j∗j′2 = sign(vj′1vj′2). (4.12)

To proceed towards the second result of the chapter, on the specific sign of each
response, we recall some linear algebra concepts, first, [HJ13].

Let A be any M ×M matrix with a one-dimensional kernel. Straightforwardly, then,
also the cokernel is one-dimensional. The cofactor matrix C(A) of A is the matrix
whose entries C(A)mj are given by

C(A)mj = (−1)m+j det A∨j
∨m, (4.13)

where A∨j
∨m indicates the (M −1)×(M −1) minor of A, obtained by removing row m

and column j. The adjugate matrix of A, Ad(A), is then defined as the transpose
of the cofactor matrix C(A) of A. That is,

Ad(A) = C(A)T . (4.14)

Moreover, we have the relation

A Ad(A) = Ad(A)A = det A = 0. (4.15)

Let us fix a kernel vector v, which spans ker A. Equalities (4.15) imply that there
exists a cokernel vector κ = κ(v), coker A = span⟨κ⟩, such that

Ad(A) = v ⋅ κT . (4.16)

In particular, any entry Ad(A)mj of the adjugate matrix can be expressed as:

Ad(A)mj = (−1)m+j det A∨m
∨j = vm κj . (4.17)

We are now ready to state the second main Theorem 4.2.3.

Theorem 4.2.3 (Absolute sign of responses). As in Theorem 4.2.2, let us suppose
dim(ker(SJ∪j∗))=1, and let kerSJ∪j∗ = span⟨v⟩. There are two cases:

1. If the Child Selection J does not zero-behave, then the j∗-th entry of v is
nonzero, i.e. vj∗ ≠ 0, and

sign(ϕJ)j∗j′ = β(J) sign(vj∗vj′). (4.18)
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2. If the Child Selection J zero-behaves, then vj∗ = 0. In particular, consider
ṽ ∈ RM such that kerSJ = span⟨ṽ⟩ and ṽj = vj, for any j = 1, ...,M . For the
unique cokernel vector κ of SJ such that Ad(SJ) = ṽ ⋅ κT , we have

sign(ϕJ)j∗j′ = − sign(vj′⟨κ,Sj
∗⟩). (4.19)

Remark 19. Theorem 4.2.3 confirms that, for self-influence j∗ ↝ j∗,

sign(ϕJ)j∗j∗ = β(J). (4.20)

This can also be computed directly from Formula (3.63) for (Φ)j∗j∗ .

As a straightforward consequence, we state a corollary for metabolite perturbations.

Corollary 4.2.4 (Metabolite Perturbation). For a perturbation of the metabolite
concentration of m∗, Proposition 4.2.1, Theorems 4.2.2, and 4.2.3 read identically
by setting

j∗ = em∗ . (4.21)

In applications, the system is often required to have a stable equilibrium, for any
choice of reaction rates. As commented in Chapter 2, this requirement implies
that the system does not possess any Child Selection J, which ill-behaves, that is,
β(J) ≠ (−1)M−1. In particular, the Jacobian has to be of the fixed sign

sign(detSR) = (−1)M . (4.22)

With this case of application in mind, we state the following Corollary to Theorem
4.2.3.

Corollary 4.2.5 (Fixed Sign Jacobian). If detSR is of fixed sign, then sign(detSR) =
β(J) ≡ β, for any nonzero Child Selection J. In particular, for nonzero Child Se-
lections J, we have:

sign
(ϕJ)j∗j′
detSR

= sign(vj∗vj′). (4.23)

In a fixed sign Jacobian situation, Corollary 4.2.5 determines the sign of the re-
sponse summands for nonzero Child Selections without any determinant computa-
tion. However, the zero-behaving Child Selection case, point 2 of Theorem 4.2.3, still
involves a determinant computation. This is an unavoidable point in our analysis.
Indeed, in our approach of Child Selections behavior, we have only classified the sign
of certain maximal reshuffled minors of the stoichiometric matrix. In particular we
have identified the nonsingular M ×M Child Selection minors to be either good or
bad, depending on the sign of detSJ. Point 2 of Theorem 4.2.3, however, deals with
Child Selections, which are singular, that is, Child Selections J such that detSJ = 0.
In this case, we have made no statement nor assumption on the sign of non maximal
minors.
Stronger network assumptions might possibly simplify the computation also for point
2 of Theorem 4.2.3 and consequently allow a fast and efficient algorithm. For in-
stance, a square matrix A is called sign-nonsingular if all matrices with the same
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sign pattern as A are nonsingular. Then, a square matrix A is called Strongly Sign
Determined if all its square minors are either singular or sign-nonsingular. The as-
sumption of the stoichiometric matrix S being Strongly Sign Determined guarantees
a regular sign structure of all square minors of the stoichiometric matrix. For more
references on these assumptions and structures see [BDB07,BR11,BS09].
However, we underline that these assumptions may be far too strong, depending on
the goal, as they exclude the existence of bad Child Selections, and consequently of
saddle-node bifurcations.

How to deal with an indeterminate sign Jacobian remains an important open ques-
tion. We are not addressing this problem in this thesis, and leave it for future
work. Suffice it to say that an indeterminate sign Jacobian does not always result in
indeterminate sign responses, in contrast to what intuition might suggest. Indeed,
cancellations between the denominator and the numerator of the rational expression
of the responses may occur, see Example II in the next Section 4.3.

4.2.1 Twin sisters have opposite influence

Note that any ECS J ∪ j∗ contains in particular at least two outgoing reactions
from a metabolite m∗, one of which is j∗. We call here the reaction j∗s = J(m∗) the
sister of j∗. Let now J and Js be two Child Selections at distance d = 1 such that
J(m∗) = j∗s and Js(m∗) = j∗. In particular, J(m) = Js(m) for any m ≠ m∗. The
matrix SJs∖j′∪j∗s has opposite determinant to the matrix SJ∖j′∪j∗ . The two matrices
are indeed obtainable one from the other, via a single interchange of the columns
Sj

∗
and Sj

∗
s . The change of sign in the determinant is a well-known property of a

multilinear alternating form. This implies that

(ϕJ)j∗j′ = −(ϕJs)j
∗
s

j′ . (4.24)

Let us now assume that the metabolite m∗ participates, as a mother input, only to
two reactions j∗ or j∗s . In particular, any Child Selection J contains either j∗ or j∗s ,
as child reaction of m∗. In this case, the statement (4.24) can be strengthened to
the following proposition.

Proposition 4.2.6. Suppose that any Child Selection J maps the metabolite m∗

either to j∗ or to j∗s , only. Then

rj∗m∗(Φ)j∗j′ = −rj∗sm∗(Φ)j
∗
s

j′ , for any j′. (4.25)

In particular,

sign(Φ)j∗j′ = − sign(Φ)j
∗
s

j′ . (4.26)

For further related arguments in the monomolecular case, see [VM17].
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4.2.2 Metabolite response

Formula (3.55) for the metabolite response (δx)j∗m′ of metabolite m′ to a reaction
perturbation of j∗ tells that

detSR ⋅ (δx)j∗m′ = ∑
J∨m′ /∋j∗

(σJ∨m
′
)j∗m′ , (4.27)

where

(σJ∨m
′
)j∗m′ = −detSJ∨m

′
∪j∗ ∏

m∈M∖m′
rJ∨m′(m)m. (4.28)

Consider now a reaction j′, which is outgoing child of the metabolite m′. Let us
start by considering a dPCS J∨m

′
and one of its induced Child Selections J. A

comparison between Formula (3.55) and Formula (3.70) implies that

(σJ∨m
′
)j∗m′ =

(ϕJ)j∗j′
rj′m′

, (4.29)

and, consequently,

sign(σJ∨m
′
)j∗m′ = sign(ϕJ)j∗j′ = sign(−detSJ∖j′∪j∗). (4.30)

Indeed, the algebraic structure of SJ∖j′∪j∗ is identical to, and indistinguishable from,

the algebraic structure of SJ∨m
′
∪j∗ , for J Child Selection induced from the dPCS

J∨m
′
. In fact: the columns of both matrices possesses no child assigned to m′ and

both matrices possesses at least two outgoing reactions of m∗, with j∗ being in the
m′-th column. Therefore, for m′ mother input metabolite of n reactions j′1, ..., j

′
n, it

holds:

sign(σJ∨m
′
)j∗m′ = sign(ϕJ)j∗j′1 = ... = sign(ϕJ)j∗j′n . (4.31)

In particular, fixing J∨m
′
and J as above, a proven nonzero influence on one element

m′, j′1, ..., j
′
n implies nonzero influence for all elements m′, j′1, ..., j

′
n. Consequently, we

have the following Corollary:

Corollary 4.2.7 (Metabolite Response for dPCS). Let J∨m
′

be a deducible Partial

Child Selection. For the summand response (σJ∨m
′
)j∗m′ of metabolite concentration

m′, we have:

sign(σJ∨m
′
)j∗j′ = sign(ϕJ)j∗j′ , (4.32)

where J is an induced Child Selections from J∨m
′
.

The sign-analysis of (σJ∨m
′
)j∗m′ when J∨m

′
is a nPCS is more involved. For doing this

we need to introduce some notation, first. Consider the set E ′ of M−1 reactions such
that E ′ = J∨m′(M∖m′). Note that there always exists a Child Selection J̃ ∶ MÐ→ E
such that

J̃(M) = E ′ ∪ j̃, (4.33)

for some reaction j̃. On the other hand, the map J∨m
′∪j∗ ∶ M Ð→ E, associating to

any m ≠ m′ the corresponding reaction j = J∨m′(m) and to m′ the reaction j∗, can
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as well be seen as a permutation of M elements, in analogy to any Child Selection
map. Let now τ be

τ = sgn(J∨m′∪j∗) sgn(J̃), (4.34)

where sgn(⋅) indicates the signature (or parity). We have the following corollary:

Corollary 4.2.8 (Metabolite Response for nPCS). Let J∨m
′

be a non deducible

Partial Child Selection. In the above notation, for the summand response (σJ∨m
′
)j∗m′

of metabolite concentration m′, we have:

sign(σJ∨m
′
)j∗m′ = τ sign(ϕJ̃)j∗

j̃
. (4.35)

Remark 20. Note that there can be more than one Child Selection as J̃ above, as
well as more than one reaction as j̃. The goal of this Section 4.2.2 has only been to
reduce, mathematically, the metabolite response to the flux response. Since the flux
response has been previously analyzed, Corollaries 4.2.7 and 4.2.8 show that there
is no need of an independent analysis for the metabolite response case.

4.3 Examples

Example I. We present a zero-behaving Child Selection J on seven metabolites:
m∗, A, B, C, D, E, F . With our theorems, we want to study the responses (ϕJ)j∗j′
of reactions j′ = J(A), J(B), J(C), J(D), J(E), J(F ), to a perturbation of the
dashed reaction j∗.

(4.36)

SJ =

J(m∗) J(A) J(B) J(C) J(D) J(E) J(F )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m∗ −1 0 0 0 0 0 0
A 0 −1 0 0 0 −1 0
B 0 1 −1 0 0 0 0
C 0 0 1 −1 0 0 0
D 0 0 −1 0 −1 0 0
E 0 0 0 0 1 −1 0
F 0 0 0 0 0 1 −1

, Sj
∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m∗ −1
A 1
B 0
C 0
D 3
E 0
F 0

;
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In particular, the vector v = (0,w,w,w,−w,−w,−w)T , w ∈ R satisfies

SJv = 0, (4.37)

and it is therefore a kernel vector of SJ. Note, moreover, that the

dim(kerSJ) = 1 and thus ker(SJ) = span⟨v⟩. (4.38)

Now, the adjugate matrix Ad(SJ) is

Ad(SJ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 0 0 0 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0

, (4.39)

and the choice of the cokernel vector κ = (0, 1
w ,

1
w ,0,− 1

w − 1
w ,0)T satisfies

v ⋅ κT = Ad(SJ). (4.40)

For simplicity of the computation, we can consider in particular the choice w = y = 1,
so that v = (0,1,1,1,−1,−1,−1)T and κ = (0,1,1,0,−1 − 1,0)T . Firstly we compute

− ⟨κ,Sj∗⟩ = −1 ⋅ −2 = +2 (4.41)

The signs of the single response summands (ϕJ)j∗j′ follows, according to Thm 4.2.3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(ϕJ)j∗
J(A) = sign(−⟨κ,Sj∗⟩ vJ(A)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j∗
J(B) = sign(−⟨κ,Sj∗⟩ vJ(B)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j∗
J(C) = sign(−⟨κ,Sj∗⟩ vJ(C)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j∗
J(D) = sign(−⟨κ,Sj∗⟩ vJ(D)) = sign(+2 ⋅ −1) < 0.

sign(ϕJ)j∗
J(E) = sign(−⟨κ,Sj∗⟩ vJ(E)) = sign(+2 ⋅ −1) < 0.

sign(ϕJ)j∗
J(F ) = sign(−⟨κ,Sj∗⟩ vJ(F )) = sign(+2 ⋅ −1) < 0.

(4.42)

Example II: Indeterminate sign determinant does not imply indetermi-
nate sign response. di

This example has intentionally been designed to illustrate a case of a determined sign
response in the case of indeterminate sign Jacobian, due to a cancellation between
the numerator and the denominator of (Φ)j∗j′ .

(4.43)
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S =

1 2 3 4 5
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 −1 −1 0 1
B 0 1 1 −1 0
C 0 1 0 1 −1

, (4.44)

Metabolites B and C can only choose their single child, reactions 4 and 5, respec-
tively. On the other hand, metabolite A can choose three different children, namely
reactions 1, 2, and 3. Consequently, there are three Child Selections.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J1 ∶= {J1(A) = 1;J1(B) = 4;J1(C) = 5}
J2 ∶= {J2(A) = 2;J2(B) = 4;J2(C) = 5}
J3 ∶= {J3(A) = 3;J3(B) = 4;J3(C) = 5}

(4.45)

The sign of the Jacobian determinant is indeterminate. Indeed,

detSR =∑
J

detSJ ∏
m∈M

rJ(m)m

=detSJ1 ∏
m∈M

rJ1(m)m + detSJ2 ∏
m∈M

rJ2(m)m + detSJ3 ∏
m∈M

rJ3(m)m

= − 1 ⋅ ∏
m∈M

rJ1(m)m + 1 ⋅ ∏
m∈M

rJ2(m)m + 0 ⋅ ∏
m∈M

rJ3(m)m

=(r2A − r1A)r4Br5C .

(4.46)

Considering the flux response (Φ)3
4 of reaction 4 to a perturbation of reaction 3, via

Formula (3.70), we have:

detSR (Φ)3
4 = (r2A − r1A)r4Br5C (Φ)3

4 = ∑
4∈J/∋3

(ϕJ)3
4 = (ϕJ1)3

4 + (ϕJ2)3
4

= −detSJ1∖4∪3 ∏
m∈M

rJ1(m)m − detSJ2∖4∪3 ∏
m∈M

rJ2(m)m

= −1 ⋅ ∏
m∈M

rJ1(m)m − (−1) ⋅ ∏
m∈M

rJ2(m)m

= −(r2A − r1A)r4Br5C .

(4.47)

This concludes that (Φ)3
4 ≡ −1, with no indeterminacy at all, even in presence of

indeterminate sign determinant.

Example III: A subnetwork with one-dimensional kernel which cannot be
completed to a Child Selection with one-dimensional kernel. di

We consider the following network Γ:

(4.48)
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S =

1 2 3 4 5 6
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

A −1 −1 1 0 1 0
B 0 1 −1 −1 −1 0
C 0 0 0 1 −1 1
D 0 0 0 0 1 −1

. (4.49)

The network is nondegenerate. In fact, there is a well-behaving Child Selection J,

J ∶= {J(A) = 1;J(B) = 4;J(C) = 5;J(D) = 6}, (4.50)

with associated nonsingular stoichiometric matrix

SJ̃ =

1 4 5 6
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

A −1 0 1 0
B 0 −1 −1 0
C 0 1 −1 1
D 0 0 1 −1

, detSJ̃ = 1. (4.51)

Reactions 2 and 3 and their input metabolites A and B constitute a degenerate
subnetwork Γsub ⊂ Γ whose stoichiometric matrix Ssub reads:

Ssub =
2 3

[ ]A −1 1
B 1 −1

. (4.52)

Note that dim(kerSsub) = 1. We show here that it is not possible to extend the Child
Selection {J̃sub(A) = 2, J̃sub(B) = 3} on Γsub to a Child Selection J̃ on Γ such that
dim(kerSJ̃) = 1. Indeed, reactions 5 and 6 are single children from their mother
metabolites C and D. In particular, any Child Selection contains reactions 5 and 6.
That is, the only possible extension of the Child Selection J̃sub on Γsub to a Child
Selection J̃ on Γ is

J̃ ∶= {J̃(A) = 2; J̃(B) = 3; J̃(C) = 5; J̃(D) = 6}, (4.53)
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with associated stoichiometric matrix

SJ̃ =

2 3 5 6
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

A −1 1 1 0
B 1 −1 −1 0
C 0 0 −1 1
D 0 0 1 −1

, (4.54)

which possesses a 2-dimensional kernel, ker(SJ) = span{v1, v2} where v1 = (1,1,0,0)T
and v2 = (1,0,1,1)T .

4.4 Proofs

We start this section with the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Preliminarily, note that ker(SJ∪j∗) ≠ ∅, since SJ∪j∗ is a
M × (M + 1) matrix. Hence, the dimension of the kernel is either 1 or greater than
1. Moreover, by Formula (4.3),

(ϕJ)j∗j′ ≠ 0 ⇔ det(SJ∖j′∪j∗) ≠ 0. (4.55)

Firstly, assume that dim(ker(SJ∪j∗)) > 1.

dim(ker(SJ∪j∗)) > 1 ⇒ ker(SJ∖j′∪j∗) ≠ ∅, for all j′

⇒ (ϕJ)j∗j′ = 0, for all j′.
(4.56)

Conversely, assume that dim(ker(SJ∪j∗)) = 1. We have

dim(ker(SJ∪j∗)) = 1 ⇒ rankSJ∪j∗ =M
⇒ ∃ det(SJ∖j′∪j∗) ≠ 0 ⇒ ∃ (ϕJ)j∗j′ ≠ 0.

(4.57)

Proof of Theorem 4.2.2. The proof is based on a careful use of Cramer’s rule.

1) We prove that

(ϕJ)j∗j′ ≠ 0 ⇔ vj′ ≠ 0. (4.58)

The first step is to make the matrix SJ∪j∗ an invertible (M + 1) × (M + 1) matrix
Nb by adding in the (M + 1)-th row a proper row vector bT , that is

Nb ∶= [S
J∪j∗

bT
] . (4.59)

Secondly, we compute:

[S
J∪j∗

bT
] ⋅ v = [ 0

⟨b, v⟩] . (4.60)
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Above, 0 refers to the M -dimensional zero vector. Note that ⟨b, v⟩ ≠ 0, since Nb is
invertible. We now apply Cramer’s rule to the j′-th entry of v and find that

det(Nb) vj′ = det

1 ... j′ ... M + 1

[ ]SJ(m1) ... 0 ... Sj
∗

bT1 ... ⟨b, v⟩ ... bTM+1

= −det

1 ... j′ ... M + 1

[ ]SJ(m1) ... Sj
∗

... 0
bT1 ... bTM+1 ... ⟨b, v⟩

= −⟨b, v⟩ detSJ∖j′∪j∗ .

(4.61)

The conclusion follows by noting that

vj′ ≠ 0⇔ detSJ∖j′∪j∗ ≠ 0⇔ (ϕJ)j∗j′ ≠ 0. (4.62)

2) Above, (4.61) showed that for any v′j ≠ vj∗

det(Nb) vj′ = −⟨b, v⟩detSJ∖j′∪j∗ . (4.63)

In particular, this holds for any two vj′1 , vj′2 ≠ 0. We can divide one equality by the
other obtaining

vj′1
vj′2

= detSJ∖j′1∪j
∗

detSJ∖j′2∪j∗
=

(ϕJ)j∗j′1
(ϕJ)j∗j′2

. (4.64)

Passing to the sign operator gives the desired equality.

Proof of Theorem 4.2.3. Firstly, let us observe that, under the one-dimensional con-
dition kerSJ∪j∗ = span⟨v⟩, we have

⎧⎪⎪⎨⎪⎪⎩

detSJ = 0 ⇔ vj∗ = 0.

detSJ ≠ 0 ⇔ vj∗ ≠ 0.
(4.65)

1) Now, let us assume detSJ ≠ 0, i.e. vj∗ ≠ 0. By Cramer’s rule,

det(Nb) vj∗ = det

1 ... M + 1

[ ]SJ(m1) ... 0
bT1 ... ⟨b, v⟩

= ⟨b, v⟩detSJ.

(4.66)

Comparison of the equalities between (4.61) regarding v′j and (4.66) regarding v∗j
implies:

vj′

vj∗
= −detSJ∖j′∪j∗

detSJ
. (4.67)

Passing to the sign operator yields

sign(vj′vj∗) = β(J) sign(ϕJ)j∗j′ . (4.68)
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2) For this case, we are allowed to choose b = ej′ , where ej′ indicates the j′-th unit
vector in RM+1. We consider, then, the nonsingular matrix

Nj′ ∶= [S
J∪j∗

eTj′
] . (4.69)

By Cramer’s rule, we obtain that

det(Nj′)vj′ = −vj′ det(SJ∖j′∪j∗). (4.70)

Hence,
sign(ϕJ)j∗j′ = − sign det(SJ∖j′∪j∗) = sign det(Nj′). (4.71)

To compute det(Nj′), we consider

det(Nj′) = det(NT
j′ ) = det [(S

J)T ej′
(Sj∗)T 0

] . (4.72)

Let us consider ṽ ∈ RM such that kerSJ = span⟨ṽ⟩ and ṽj = vj, for any j = 1, ...,M .
Now, for square matrices, dim coker(SJ) = dim ker(SJ). Let us choose the vector
κ ∈ RM such that,

coker(SJ) = span⟨κ⟩, (4.73)

and
Ad(SJ) = ṽ ⋅ κT (4.74)

Let us set κ̃ = (κ,0)T . Again:

NT
j′ ⋅ κ̃ = [ 0

⟨Sj∗ , κ⟩] . (4.75)

Let us pick an entry κi ≠ 0 and, one more time by Cramer’s, we obtain:

det(Nj′)T κi = det

i M + 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

... 0 ... 0 1

... ... ... ...

... 0 ... 1j′ j′

... ... ... ...

... ⟨Sj∗ , κ⟩ ... 0 M + 1

= (−1)i+j′+1⟨Sj∗ , κ⟩ det(SJ)∨j′∨i .

(4.76)

Above, again, (SJ)∨j′∨i indicates the matrix with removed column j′ and row i.
Now, noting that

(−1)i+j′ det(SJ)∨j′∨i = (AdSJ)j′i = vj′κi (4.77)

leads to the complete chain of equalities:

sign(ϕJ)j∗j′ = − sign det(SJ∖j′∪j∗) = sign det(Nj′) = sign det(Nj′)T

= − sign(vj⟨Sj
∗
, κ⟩),

(4.78)

which concludes our proof.
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Corollary 4.2.4 is a consequence of reduction arguments of Section 3.3.4 and Corol-
lary 4.2.5 is a simple check via equality (4.18), in the case of fixed sign Jacobian SR.

Proof of Proposition 4.2.6. We have assumed that the metabolite m∗ participates,
as a mother input, only to two reactions j∗ or j∗s . In particular, any Child Selection
J contains either j∗ or j∗s , as child reaction of m∗.

Let us pick the influence of j∗ on any j′ ≠ j∗, j∗s and let us brutally compute, via
Formula (3.70):

detSR ⋅ rj∗m∗ ⋅ (Φ)j∗j′ = − ∑
j∗/∈J∋j′

detSJ∖j′∪j∗ ⋅ rj∗m∗ ⋅ ∏
m∈M

rJ(m)m

= + ∑
j∗s /∈J̃∋j′

detSJ̃∖j′∪j∗s ⋅ rj∗sm∗ ∏
m∈M

rJ̃(m)m

= − detSR ⋅ rj∗sm∗ ⋅ (Φ)j
∗
s

j′ .

(4.79)

To check the central step above, note that any Child Selection, which does not
contain the sister j∗, must contain her twin sister j∗s . Hence, with only one column
swap j∗ ↔ j∗s , the matrix SJ∖j′∪j∗ , for a Child Selection J /∋ j∗ becomes the matrix
SJ̃∖j′∪j∗s for a Child Selection J̃ /∋ j∗s . The step follows since the determinant is an
alternating form.
Cases j∗ = j′ and j∗s = j′ follow analogously by considering Formula (3.63) instead.
We omit the computation here.

Corollary 4.2.7 follows from the arguments exposed in Section 4.2.2. We conclude
with the proof of Corollary 4.2.8.

Proof of Corollary 4.2.8. Note that, by construction, SJ
∨m′

∪j∗ possesses same columns
set as SJ̃∖j̃∪j∗ . Let now E ′ be the subset of E so that J∨m

′ = (E ′). In particular,
J̃(M) = E ′ ∪ j̃ and

SJ̃(M) sgn(J̃) = SJ̃. (4.80)

Of course, the equality still holds if the stoichiometric column S j̃ is removed and
replaced with the stoichiometric column Sj

∗
, on both sides. That is:

SJ̃∖j̃∪j∗(M) sgn(J̃) = SJ̃∖j̃∪j∗ . (4.81)

On the other hand,

SJ
∨m′

∪j∗(M) sgn(J∨m′∪j∗) = SJ∨m
′
∪j∗ . (4.82)

In conclusion,

SJ
∨m′

∪j∗ = sgn(J∨m′∪j∗) SJ∨m
′
∪j∗(M)

= sgn(J∨m′∪j∗) SJ̃∖j̃∪j∗(M)

= sgn(J∨m′∪j∗) sgn(J̃) SJ̃∖j̃∪j∗

=τ SJ̃∖j̃∪j∗ .

(4.83)
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Therefore,

sign(σJ∨m
′
)j∗m′ = sign(detSJ

∨m′
∪j∗)

=τ sign(detSJ̃∖j̃∪j∗) = τ sign(ϕJ̃)j∗
j̃
.

(4.84)



Chapter 5

Monomolecular networks

5.1 Introduction

A monomolecular reaction network consists of metabolites m, which interact singu-
larly by certain reactions j. That is, a monomolecular reaction network possesses
only monomolecular reactions j is of the form

j ∶ m1 Ð→
j
m2, (5.1)

where one single metabolite input m1 is converted into another single metabolite
output m2. The stoichiometry of these networks is particularly simple: the columns
Sj of the stoichiometric matrix S have at most one negative entry −1 and one positive
entry +1. In particular, columns Sj

0
m associated to outflow exit reactions j0

m

j0
m ∶ mÐ→

j0
0 (5.2)

have only a negative entry −1 in the mth row.

It is natural to model a monomolecular reaction network as a directed graph with
a vertex metabolite set M ∪ {0} and an arrow reaction set E. We require here
that there are no self-loops. As in previous chapters, this excludes explicit auto-
catalytic reactions. A dipath (or directed path) is any acyclic ordered sequence
of alternatingly adjacent vertices and arrows. The zero-complex 0 in the words of
Feinberg [Fei87] is ‘a complex in which the stoichiometric coefficient of every species
is zero’. Ingoing reactions of the zero-complex 0 are called outflow exit reactions or
simply exit reactions. In the previous chapters we had avoided the zero-complex 0
as a superfluous tool, in that multimolecular context. Here, we make use of it, since
it allows us to represent monomolecular networks as directed graphs.

At the basis of the sensitivity analysis presented in this thesis, there is a nondegen-
eracy assumption on the network. That is, we assume the Jacobian matrix of the
network to be nonsingular, algebraically:

detSR ≠ 0. (5.3)

81
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In Section 3.2, we have already discussed all implications and characterizations of
this nondegeneracy condition, in the general case. In the monomolecular case, it is
a known fact (see for example [FM15] and [BB08]) that this condition is equivalent
to the following graph condition:

There exists a dipath from any metabolite m to 0. (5.4)

Again, at first, we concentrate on the case {(Φ)j∗j′ } of flux response j′ to reaction
perturbation j∗. Fiedler and Mochizuki were able to characterize the nonzero flux
response, using only graph means, see [FM15]. The main theorem on the flux
response for monomolecular reaction networks reads as follows.

Theorem 5.1.1 (Fiedler&Mochizuki). Consider any pair of reactions (j∗, j′), not

necessarily distinct. Then the flux response (Φ)j∗j′ of j′ to a perturbation of j∗ is
nonzero, algebraically, if and only if there exist two dipaths γ0 and γ′ such that:

1. both dipaths emanate from m∗, input metabolite of j∗;

2. one of the dipaths contains j∗;

3. the exit dipath γ0 terminates at vertex 0, and the influence dipath γ′ termi-
nates with metabolite m′, the input vertex of j′;

4. except for their shared starting vertex m∗, the two dipaths γ0 and γ′ are dis-
joint.

We call (γ0, γ′) an exit-influence pair of (j∗, j′).

In a joint paper with Matano [VM17] we have further clarified the flux response in
the monomolecular case, from a network connectivity point of view.

In the present thesis, we significantly improve on the Fiedler-Mochizuki result for
monomolecular reaction networks, by addressing the problem of signed (+/-) re-
sponse. In other words, we investigate and answer the following question:

Is the nonzero flux response positive, negative, or of indeterminate sign?

Moreover, we clarify the precise relation between the choice of an exit-influence pair
of dipaths of Theorem 5.1.1 and the explicit rational expression of the flux response
(Φ)j∗j′ , (3.70). In this sense, our present result provides a deeper interpretation of
the above theorem.

The chapter is organized as follows. Section 5.2 contains the main result and its
proof. Extensions to the other cases are discussed in Sections 5.3 and 5.4. Sec-
tion 5.5 concludes the chapter with a commented example. An abridged version
of the same results presented here has been previously announced, by the author.
See [Vas17].
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5.2 Main result: flux response to reaction pertur-

bation

For this result, we assume again monotone kinetics. That is, we assume the nonzero
derivatives rjm = r′j(xm) to be positive functions.

The main theorem is preceded by a lemma which analyzes the sign of detSR, in the
monomolecular case.

Lemma 5.2.1. For any monomolecular reaction network:

sign(detSR) = (−1)M . (5.5)

Proof. In example G1 of Section 2.3, we have noticed that any nonzero monomolec-
ular Child Selection J well-behaves, that is:

detSJ ≡ (−1)M . (5.6)

The conclusion of the lemma follows by the determinant expansion of Proposition
2.2.1.

We recall explicitly formula (3.70) for the flux response (Φ)j∗j′ of j′ to a perturbation
of j∗:

detSR ⋅ (Φ)j∗j′ = ∑
j∗∉J∋j′

(ϕJ)j∗j′ , (5.7)

where
(ϕJ)j∗j′ = −det(SJ∖j′∪j∗) ∏

m∈M
rJ(m)m. (5.8)

The main theorem of this chapter reads as follows.

Theorem 5.2.2. Consider any pair of reactions (j∗, j′) in a monomolecular reac-

tion network, not necessarily distinct. Assume that (Φ)j∗j′ is algebraically nonzero,
that is, there exist one or several exit-influence pairs of two dipaths (γ0, γ′) satisfy-
ing conditions (i)-(iv) of Theorem 5.1.1.
Then the exit-influence pairs (γ0, γ′) are in one-to-one correspondence with the re-

sponse summands (ϕJ)j∗j′ . Moreover,

(ϕJ)j∗j′ > 0 for (γ0, γ′) ⇔ j∗ ∈ γ′; (5.9)

(ϕJ)j∗j′ < 0 for (γ0, γ′) ⇔ j∗ ∈ γ0. (5.10)

The concrete interpretation of the theorem, in terms of positive, negative, or inde-
terminate sign influence, is given by the following straightforward corollary.

Corollary 5.2.3 (Sign of the responses). There are three possible cases.

1. The flux response (Φ)j∗j′ > 0 is positive if, and only if, for any choice of an
exit-influence pair (γ0, γ′), j∗ is in the influence dipath γ′.
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2. The flux response (Φ)j∗j′ < 0 is negative if, and only if, for any choice of an
exit-influence pair (γ0, γ′), j∗ is in the exit dipath γ0.

3. The flux response sign is indeterminate if, and only if, there are at least two
different choices of exit-influence pairs (γ0

1 , γ
′
1) and (γ0

2 , γ
′
2) such that j∗ ∈ γ0

1

is in the exit dipath of one pair, but j∗ ∈ γ′2 is in the influence dipath of the
other pair.

Now, we proceed with the proof of the main Theorem.

Proof of Theorem 5.2.2. We divide the proof in two cases: j∗ ≠ j′ and j∗ = j′.

Case j∗ ≠ j′. In the monomolecular case, positivity of all nonzero derivatives rJ(m)m
and Lemma 5.2.1 imply:

sign((Φ)j∗j′ ) = (−1)M−1 sign( ∑
j∗∉J∋j′

det(SJ∖j′∪j∗) ∏
m∈M

rJ(m)m), (5.11)

and the sign of a summand (ϕJ)j∗j′ (5.8) is

sign((ϕJ)j∗j′ ) = sign(det(SJ∖j′∪j∗)). (5.12)

Now, for economy, we refer to the set J(M) ∖ j′ ∪ j∗ simply with J ∖ j′ ∪ j∗. This
swapped determinant is nonzero if and only if the set J ∖ j′ ∪ j∗ ⊆ E selects, jointly
with all the adjacent vertices of the reaction arrows in J ∖ j′ ∪ j∗, a spanning tree
T of the network. In other words, T contains all metabolites in M plus the zero-
complex 0 and it does not contain cycles. Moreover, the set J∖ j′∪ j∗ ⊆ E is a Child
Selection except for the swapped elements. Hence all metabolites m ∈ M have one
single outgoing reaction in the spanning tree T, with the only two exceptions of m′

(input of j′) and m∗ (input of j∗). Indeed, m′ has no outgoing reactions and m∗

has two outgoing reactions, due to the swapping J ∖ j′ ∪ j∗.
To compute the determinant, we implement Gaussian elimination and proceed as
follows. We start choosing a subset of M0 ⊂ M such that m∗, m′ ∉ M0 and any
m ∈ M0 has no ingoing reaction in J ∖ j′ ∪ j∗. Sometimes these vertices are called
in graph theory literature roots of the tree T. Of course this set might be empty,
and in this case we just skip this step. For any mth row of the SJ∖j′∪j∗ matrix with
m ∈ M0, we sum the mth row to the O(J(m))th row. With the notation O(j), we
simply indicate the output metabolite of reaction j. As a rough explanation, we are
reducing tree branches. After this first step, indeed, all the columns corresponding
to J(m) with m ∈ M0 possesses only a nonzero entry, which is -1 on the diagonal.
We iterate this procedure by defining a set M1 such that any m̃ ∈ M1 is an output
m̃ = O(J(m)) of a reaction j = J(m), with m ∈ M0, and no m̃ ∈ M1 is in γ0 ∪ γ′.
Again, we sum the m̃th row to the O(J(m̃))th row. We keep on iterating by defining
a set M2, analogously. etc. At the end of this procedure, we have left untouched
the rows corresponding exactly to the metabolites contained in γ0 ∪ γ′.
At this stage, the matrix SJ∖j′∪j∗ has been modified into another matrix with the
same determinant (we have only added rows), such that every column corresponding
to reactions j ∉ γ0 ∪ γ′ is the opposite of the jth unit vector, i.e., −ej.
We assume now that j∗ ∈ γ′. We start, with the same procedure, summing the
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m∗-th row to the O(J(m∗))th row. Note that J(m) ≠ j∗. The m∗-th row has -1 both
in the J(m∗)th column and in the j∗-th column. We iterate now this procedure
on the O(J(m∗))th row and we keep on iterating the procedure as long as we can,
namely until we have touched all the elements on γ0 and reached the zero. This
must happen since j∗ ∈ γ′. Also, the j∗-th column has been filled with -1 in all the
rows corresponding to metabolites in γ0. We call this process a cascade of -1 along
γ0. Up to now, the only rows we did not touch correspond exactly to the metabolites
contained in γ′ ∖m∗. At this second stage, the original matrix SJ∖j′∪j∗ has changed
into another matrix with the same determinant (we have just added rows), such
that every column corresponding to reactions j ∉ γ′ is the opposite of the jth unitary
vector ej. In other words, it has only a -1 on the diagonal. Note that j∗ is indeed
in γ′. Now, lastly, we start adding the O(j∗)th row with the same procedure of the
preceding step. The O(j∗)th row has a −1 in the column of reaction J(O(j∗)) and
a +1 in the column of reaction j∗, which is in the original position of reaction j′.
Therefore, iterating the procedure along γ′ we have a cascade of +1 until we reach
the m′-th row, where m′ is the input of j′. In this way the j∗-th column has been
filled with +1 in all the rows corresponding to metabolites in γ′, including m′-th
row. Note that this row has been filled with +1 crucially in the diagonal entry, of
course. At the end of this third stage, the matrix is almost diagonal, with the only
exception of j∗-th column. This transformed matrix has the same determinant of
SJ∖j′∪j∗ and it has only −1 on the diagonal except for the j∗-th (originally j′-th)
column, in which, due to the cascade of +1 along γ′, there is now +1. Therefore:

sign(det(SJ∖j′∪j∗)) = (−1)M−1.

and

(−1)M−1 sign(ϕJ)j∗j′ = (−1)M−1 sign(det(SJ∖j′∪j∗))
= (−1)M−1(−1)M−1 = +1.

The case in which j∗ ∈ γ0 is solved by analogous arguments, and we omit here the
redundant details.

In particular, we have shown that any different choice of couple (γ0, γ′) gives a

nonzero summand to the rational expression of the flux-response indicator (Φ)j∗j′ .

Case j∗ = j′. According to the Fiedler-Mochizuki Theorem 5.1.1, j′ = j∗ always lies
in the influence dipath γ′. Therefore, to prove the Theorem 5.2.2 for this case, it is
enough to show that any nonzero self-influence is positive, i.e. ,

(Φ)j∗j∗ ≥ 0. (5.13)

Formula (3.63), for the response of the flux of reaction j∗ to a perturbation of j∗

itself reads:

(Φ)j∗j∗ =
∑J/∋j∗ detSJ∏m∈M rJ(m)m

detSR
. (5.14)

Note that the above expression (Φ)j∗j∗ ≠ 0 can only be nonnegative. Indeed, in
the monomolecular case, sign(detSR) = (−1)M , and no Child Selection ill-behaves.
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Therefore,
(−1)M detSJ ≥ 0, for any J. (5.15)

and any nonzero self-influence is positive.

This completes the proof.

5.3 Metabolite response to reaction perturbation

For the metabolite response m′ to a reaction perturbation j∗, we have the following
two relations:

1. If m′ =m∗ is the input metabolite only of reaction j∗, then

δxj
∗
m′ = −

1

rj∗m′
< 0, (5.16)

and therefore the metabolite response δxj
∗
m′ is always strictly negative. See

Section 3.3.2.3. This case is therefore trivial.

2. If m′ is the input metabolite of a reaction j′ ≠ j∗, then

(Φ)j∗j′ = (ej∗ +R(δx)j∗)j′ = rj′m′ δxj
∗
m′ . (5.17)

Note that the equality (R(δx)j∗)j′ = rj′m′ δxj
∗
m′ holds only for a monomolecular

network. This case includes also the case m′ =m∗, input of j∗.

In the case 2 above, we can conclude that

δxj
∗
m′

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

= 0 ⇔ (Φ)j∗j′ = 0

> 0 ⇔ (Φ)j∗j′ > 0

< 0 ⇔ (Φ)j∗j′ < 0

indet. ⇔ (Φ)j∗j′ indet.

. (5.18)

In particular, Theorem 5.2.2 structurally characterizes the sign of the metabolite
response δxj

∗
m′ of m′ to a perturbation of j∗, in an identical way.

5.4 Metabolite perturbation

We state a simple characterization of the responses to a perturbation of a metabolite
concentration m∗, in the monomolecular case. We have the following result:

Theorem 5.4.1. Let m∗ be a metabolite and p′ an element, either a metabolite p′ =
m′ or a reaction p′ = j′, in a monomolecular reaction network. Then a perturbation
of m∗ produces a response on an element p′ if and only if p′ is reachable from m∗

via a directed path.
Moreover, any nonzero response is strictly positive.
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Above, the reachability is intended in the usual graph theory sense. That is, an
element p is reachable from a vertex m if there exists a directed path γ[m,p], which
starts at the element m and ends at the element p.
Before proceeding on to the proof, let us observe that reachability in a graph is
a transitive property. This leads to a general metabolite transitivity result for
monomolecular network. See for further details Chapter 6.

Proof of Theorem 5.4.1. According to Section 3.3.4, a metabolite perturbation of
m∗ is identical to a reaction perturbation of an added exit reaction j0

m∗ from m∗,
with reverted sign.
Consider now the previous results in this chapter, based on the existence of two
directed paths (γ0, γ′), both departing from m∗, γ0 leading to 0, γ′ leading to m′.
In our case, we should consider γ0 ≡ j∗0 . This always provides the existence of γ0

satisfying the needed conditions. For any reachable p′ from m∗, any directed path
γ[m∗, p′] serves as γ′, providing the desired exit-influence pair (γ0, γ′).
The perturbed reaction j0

m∗ is trivially always in γ0, so that previous Theorem 5.2.2
guarantees that the response is always negative. By construction, we must revert
the sign and we always obtain a positive response.

5.5 Example

In this section we comment on one example.

S =

1 2 3 4 5 6 7 8
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 −1 0 0 0 0 0 0
B 1 0 −1 −1 0 0 0 0
C 0 0 0 1 −1 1 0 0
D 0 1 0 0 0 −1 −1 0
E 0 0 1 0 1 0 1 −1

, (5.19)

Here below the table of the responses, obtained by applying the theorems of this
chapter. The upper row indicates the perturbed element, the left column indicates
the responsive element, as suggested by the arrow £.
The signs of response are given by 0,+,−,+/− for zero, positive, negative, indeter-
minate - respectively.
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£ 1 2 3 4 5 6 7 8 A B C D E

1 + - 0 0 0 0 0 0 + 0 0 0 0
2 - + 0 0 0 0 0 0 + 0 0 0 0
3 + - + - 0 0 0 0 + + 0 0 0
4 + - - + 0 0 0 0 + + 0 0 0
5 +/- -/+ - + 0 + - 0 + + + + 0
6 - + 0 0 0 + - 0 + 0 0 + 0
7 - + 0 0 0 - + 0 + 0 0 + 0
8 0 0 0 0 0 0 0 0 + + + + +
A - - 0 0 0 0 0 0 + 0 0 0 0
B + - - - 0 0 0 0 + + 0 0 0
C +/- -/+ - + - + - 0 + + + 0 0
D - + 0 0 0 - - 0 + 0 0 + 0
E 0 0 0 0 0 0 0 - + + + + +

The symbol −/+ has been used to stress that the response (Φ)1 is the opposite of
(Φ)2, i.e., (Φ)1 = −(Φ)2 in all flux response components. The same feature can be
seen for all the cases of metabolite with only two outgoing reactions, see also Propo-
sition 4.2.6. That is, (Φ)3 = −(Φ)4 and (Φ)6 = −(Φ)7. The metabolite responses
present a similar feature, with the important exception of the response of the input
of the perturbed reactions, which is always negative. In fact: (δx)1

A = (δx)2
A < 0,

(δx)3
B = (δx)4

B < 0, and (δx)6
D = (δx)7

D < 0.
Note that Single children influence only the mothers, negatively!, see Section 3.3.2.3.
That is, reaction 5 and reaction 8 only influence metabolite C and metabolite E,
respectively.
The indetermination of the response (Φ)1

5 of reaction 5 to a perturbation of reac-
tion 1 can be seen in the network by considering two couples of exit-influence pairs
(γ0

1 , γ
′
1) and (γ0

2 , γ
′
2), where

⎧⎪⎪⎨⎪⎪⎩

γ0
1 = [A1B3D80]
γ′1 = [A2D6C]

⎧⎪⎪⎨⎪⎪⎩

γ0
2 = [A2D7E80]
γ′2 = [A1B4C]

.

Reaction 1 is in γ0
1 (providing a negative sign summand), and in γ′2 (providing a

positive sign summand). Identical considerations for the indeterminate responses
(Φ)2

5, (Φ)1
C and (Φ)2

C .
En passant, let us observe here the following things:

1. 1 ↝ B and B ↝ E,8. But 1 /↝ E,8. This constitutes a counterexample to the
transitivity of reaction influence and metabolite influence. See Chapter 6.

2. (Φ)1
4 > 0, (Φ)4

5 > 0, but (Φ)1
5 is indeterminate. This constitutes a mild but

already significative indication that signed transitivity fails. See Chapter 6.
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Limitations to influence
transitivity

6.1 State of the art

In previous works, great effort has been invested into the topic of transitivity of
influence. Let us introduce transitivity by considering any p1, p2, and p3 elements
in the network, either metabolites or reactions. The transitivity question is:

If p1 ↝ p2 and p2 ↝ p3, can we conclude that p1 ↝ p3?

The relevance of a positive answer to this question is both conceptual and practical.
Conceptually, indeed, it explains the patterns observed experimentally in the re-
sponses. Practically, it greatly simplifies the computation of the nonzero responses,
at least for the nonzero question.

The answer has originally been addressed for the reaction perturbation case, only.
In the case of reaction perturbations, nonzero transitivity has been established in
the monomolecular case [FM15], [VM17], at first. The general multimolecular case
was resolved in [BF18].
The result by Brehm and Fielder in [BF18] actually claims more than the pure
reaction perturbation case, and it is worth to recall it here:

Theorem 6.1.1 (Brehm-Fiedler). Let p1 and p2 be elements in a metabolic network.
Let j′ be any reaction and m′ one of its input metabolites.

1. If p1 ↝m′ and j′ ↝ p2, then p1 ↝ p2.

2. If p1 ↝ j′ and j′ ↝ p2, then p1 ↝ p2.

However the general case

p1 ↝ p2 and p2 ↝ p3
?Ô⇒ p1 ↝ p3

has remained open, for p2 =m metabolite.

The following Section 6.2 shows, with an extremely simple example, that theorem
6.1.1 cannot be improved, for the general multimolecular case. That is, any further
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transitivity claim of this type fails, in the multimolecular case. In the much simpler
case of monomolecular networks, however, it is possible to extend the transitivity
to the pure metabolite case, Section 6.3.

Even in the monomolecular case, as seen in Section 5.5, nonetheless,

j ↝m and m↝ p /⇒ j ↝ p.

Finally, unfortunately, there is no hope for a signed transitivity result of the kind

p1
+↝ p2

+↝ p3
?Ô⇒ p1

+↝ p3.

We show this with a counterexample in Section 6.4. These counterexample further
emphasize the subtleties of the transitivity question.

6.2 A general counterexample

The simple example here is again Example (3.28) of Chapter 3:

(6.1)

The sensitivity matrix below can be derived easily:

Ψ =

£ 1 2 3 A B C

1 0 0 0 + 0 0
2 0 0 0 - + 0
3 0 0 0 + 0 +
A - + 0 + - 0
B 0 - 0 - + 0
C 0 0 - + 0 +

.

Note that the flux-responses to reaction perturbations (Φ)j∗j′ are constantly zero for
any reaction j∗, j′. This is due to the fact that there is only one Child Selection,
and therefore any reaction is a single child, see 3.3.2.3.

The four counterexamples, which we chose to focus our attention on, are:

1. B ↝ A and A↝ C, but B /↝ C;

2. B ↝ A and A↝ 3, but B /↝ 3;

3. 2↝ A and A↝ C, but 2 /↝ C;

4. 2↝ A and A↝ 1, but 2 /↝ 1.

Hence, Theorem 6.1.1 covers all the transitivity properties.
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6.3 Metabolite transitivity in monomolecular net-

works

For the special case of monomolecular reaction networks, the following Theorem
holds:

Theorem 6.3.1 (Monomolecular Transitivity). Let m∗, p1, p2, be three elements
of a monomolecular reaction network, where m∗ is a metabolite, and p1 and p2 are
metabolites or reactions.
Assume moreover that

m∗ ↝ p1 and p1 ↝ p2.

Then,
m∗ ↝ p2.

Proof. The case in which p1 is a reaction reduces to Theorem 6.1.1.
Next, we only need to consider p1 = m metabolite. This case is solved by the
monomolecular Theorem 5.4.1 for metabolite influence, which states that metabo-
lite influence is equivalent to reachability. Reachability in networks is obviously a
transitive property.

6.4 Failure of sign-transitivity

Transitivity of flux-influence (reaction ↝ reaction) has been proven to hold; see
6.1.1. In contrast, Section 6.2 above illustrates how transitivityfails for the pure
metabolite case (metabolite ↝ metabolite), in general. For sign-transitivity, we
therefore restrict to the case of flux-influence, only. Let j∗, j′, j′′ be three distinct
reactions. The question of sign-transitivity asks whether it is possible to infer the
sign of the influence j∗ ↝ j′′, knowing the signs of the influences j∗ ↝ j′, and j′ ↝ j′′.
In symbols,

j∗
+↝ j′

+↝ j′′
?Ô⇒ j∗

+↝ j′′,

or any other combinations of signs. We show that sign-transitivity fails, with the
following simple monomolecular example.

(6.2)

Consider a perturbation of reaction 1. By Theorem 5.2.2, the flux of reaction 3
responds positively. Consider indeed the dipaths (γ1

3)0 = [A2C5D60] and (γ1
3)′ =

[A1B]. Since (γ1
3)0, (γ1

3)′ is the only exit-influence pair and 1 belongs to the influence
dipath (γ1

3)′, we conclude that the response is positive, (Φ)1
3 > 0. Analogously, there

is a single choice of exit-influence pair for a response of reaction 5 to a perturbation
of reaction 3, namely (γ3

5)0 = [B4D60] and (γ3
5)′ = [B3C]. Here, the perturbed

reaction 3 is in the influence dipath (γ3
5)′ and therefore the influence is again positive.
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However, checking the response of reaction 5 to a perturbation of reaction 1 we see
that, again, we have a single choice of exit-influence pair, namely (γ1

5)0 = [A1B4D60]
and (γ1

5)′ = [A2C]. Here, however, reaction 1 lies in the exit dipath (γ1
5)0 and

the influence is therefore negative, contradicting any signed transitivity hope. In
conclusion we have shown:

1
+↝ 3

+↝ 5 but 1
−↝ 5.

Other cases follow in analogy, and we omit the computation. From the same exam-
ple:

2
−↝ 1

−↝ 5 but 2
+↝ 5.

1
+↝ 4

−↝ 5 and 1
−↝ 5,

1
+↝ 4

−↝ 3 but 1
+↝ 3.

2
−↝ 1

+↝ 3 and 2
−↝ 3.,

2
−↝ 3

+↝ 5 but 2
+↝ 5.

The remaining cases are easily constructible with new examples, and we omit them
here. See for instance Example 5.19 in Section 5.5, which presents some cases where
also indeterminate response is involved.

To close this topic, let us remind that Theorem 5.4.1 states that pure metabolite
influence is characterized by reachability, in the monomolecular case. Moreover, the
influence is always positive. This implies that metabolite influence is trivially sign-
transitive, for the monomolecular case, as it is always positive. With this minimal
success, we still consider sign-transitivity to fail, overall.
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Discussion and open questions

In this thesis we have presented a systematic approach to sensitivity analysis for
metabolic chemical reaction networks.
In particular, in the new language of Child Selections, we have highlighted the main
algebraic players in the signed description of the entries of the sensitivity matrix.
These structures, related to kernel and cokernel vectors of the stoichiometric matrix,
possess well-known biological significance [KRG+17].

Some delicate issues have not been addressed in detail in this dissertation.
First, our approach is based on the Implicit Function Theorem. In this sense, our
analysis is a local analysis. However, in real applications, the fluctuation of param-
eters modeled by a perturbation may not be small, for example enzyme knock-out
experiments, where an enzyme catalyzing a reaction is knocked out by a genetic
modification of the cell. After this modification, the reaction rate of the perturbed
reaction becomes very small or zero. Obviously, this kind of perturbation cannot
be considered local. This requires global extension of our arguments to the case of
large perturbations. Fortunately, our results also apply to such large perturbations,
due to an interpolation argument by Brehm and Fiedler [BF18], which we omit here.
Suffice it to say that the core reason, why such an interpolation argument holds,
is that our analysis is only based on the stoichiometry of the system, and does not
really depend - mathematically - on the specific equilibrium. In fact, in any equi-
librium we consider, the responses are the same, qualitatively.
Secondly, the nondegeneracy assumption det(SR) ≠ 0 relies on the intended applica-
tion. Due to the abundant presence of outflows, this assumption practically always
holds, in a metabolic context. Mathematically possible, an extension of the present
theory allowing stoichiometric subspaces may dangerously result in an overload of
mathematical abstraction and confusing notation, mostly, at least without a desired
application requiring such a context.

We conclude with three main open questions to drive our future work in this field.

1. The computation of the full sensitivity matrix for a metabolic network of
medium size, like the central carbon metabolism of Section 2.10, still requires
substantial effort, at present. We have not addressed the design of an efficient
algorithm for this problem. In a mathematical context more related to ecology,
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Giordano and co-authors [GSFB16] have designed an algorithm of exponential
complexity to compute the sign of some sensitivity responses.
Some tools developed in our thesis may help in the construction of an ef-
ficient algorithm. For example, the concept of the distance of Child Selec-
tions from Section 2.6 implicitly points at a useful lattice structure on the
set of Child Selections. In view of the analysis of Chapter 4, a major role
is played by Enlarged Child Selections which identify stoichiometric minors
with one-dimensional kernel. The elementary kernel vectors v, spanning such
one-dimensional kernel spaces, are the central objects in the description of the
sensitivity responses. Child Selections at low distance, then, may identify sto-
ichiometric minors possessing the same one-dimensional kernel space, spanned
by the same elementary kernel vector. For this reason, different sensitivity
terms associated to many low-distance Child Selections may be computed in
parallel allowing a strong reduction of computation time. In other words,
there may be much fewer elementary kernel vectors v than Child Selections.
We hope to develop an efficient algorithm along these lines.

2. As pointed out in Example II of Section 4.3, a Jacobian of indeterminate
sign does not always imply indeterminate sign responses. In particular, can-
cellations may occur in the rational expression of the responses between the
numerator of and the Jacobian denominator. We have only cursorily touched
upon such cancellations in Corollary 3.3.5. Indeterminate sign responses are of
particular interest. In fact: they are controllable, in the sense that there exist
choices of parameters for which the responses are positive, negative, or zero.
A better comprehension of this topic would be of great help for the control of
the response sign, with important consequences for applications.

3. In Section 2.9, we have introduced and discussed the property of a system
possessing a factorizable Jacobian determinant. These networks are nongeneric
but - interestingly - they present a striking feature for the bifurcation analysis:
the presence of two Child Selections with opposite behavior directly implies
the existence of a simple bifurcation parameter which controls the sign of
the Jacobian determinant of the entire system, for any choice of parameters.
A complete structural characterization of this class of networks is of great
interest.

With the last parting glances upon the unfinished aspects of our present work, which
constitute - as always - the real driving force for new future work, we conclude this
dissertation.
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[Ger31] Semyon A. Gershgorin. Über die Abgrenzung der Eigenwerte einer Ma-
trix. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences
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di

Zusammenfassung

In dieser Arbeit präsentieren wir eine umfassende Sensitivitätsanalyse metabolischer
Reaktionsnetzwerke mit allgemeiner Kinetik. Sensitivitätsanalyse meint hier das
systematische Studium der Veränderung des Netzwerkkomponenten durch Störun-
gen. Wir betrachten lokale Störungen eines dynamischen Gleichgewichts, das heißt,
Störungen der Metabolitenkonzentrationen bzw. der Reaktionsgeschwindigkeiten.
Wir untersuchen die resultierenden Veränderung der Metabolitenkonzentrationen
als auch die der Reaktionsflüsse. Zunächst beschreiben wir, auf welche Komponen-
ten des Netzwerks überhaupt eingewirkt wird. Zweitens analysieren wir, ob das
Vorzeichen der Veränderung von den Parametern des Systems abhängt.

Dabei spielen Vorzeichenänderungen der Jacobi-Determinante des Netzwerks eine
wichtige Rolle, sowohl bei der Sensitivitätsanalyse als auch bei der Bifurkation von
Gleichgewichten. Der erste Teil dieser Arbeit unterscheidet den Fall des konstan-
ten Vorzeichens vom Bifurkationsfall, bei dem das Vorzeichen von den Werten der
Reaktionsgeschwindigkeiten abhängt.

Unser Ansatz ist eher qualitativ als quantitativ. Tatsächlich basiert unsere Analyse
ausschließlich auf der Stöchiometrie des Reaktionsnetzwerks. Quantitative Angaben
zu den Reaktionsgeschwindigkeiten sind nicht erforderlich. Stattdessen erfolgt die
Beschreibung in rein algebraischen Begriffen, welche nur die Kenntnis der Netzw-
erkstruktur erfordern.

Biologische Anwendungen umfassen den Nachweis von Multistationarität, Enzym-
Knock-Out-Experimente und die Stoffwechselkontrolle.
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