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II. Summary 

Species’ distribution models (SDMs) are predictive models that are increasingly applied 

to river ecosystems as a complement to large scale observational analyses. Current 

ecological theory on river discharge acknowledges that hydrological flow regime is one 

of the most important drivers of lotic systems, influencing the abundance and 

distribution of river biota. However, few studies on stream SDMs incorporate specific 

data describing flow regime, with most studies only including data describing climate or 

river related surrogates. These hydrological variables have a significant impact 

however, they only partially represent the critical aspects of flow regime. This 

limitation is partially due to available hydrological data, which are often limited in their 

spatio-temporal extent and resolution for use in SDMs. Another major challenge in 

SDM studies is the selection of relevant environmental predictors, particularly when 

modeling large communities. Often, variable choice is made for an entire community 

and not for specific species, resulting in inappropriate predictors for at least some 

species, and affecting model performance and predicted distributions. 

This thesis is method based, and my main goal was to advance the predictive 

ability of SDMs for riverine benthic macroinvertebrates by integrating hydrological 

predictors that describe flow regime. The thesis is divided into three parts: First, I 

developed a high resolution spatio-temporal dataset of streamflow, and a set of 

hydrological metrics for the German stream network. Second, I proposed a variable 

selection method to select the optimal environmental variables for use in SDMs, and I 

investigated the impact of predictor set choice in SDMs. Third, I disentangled the role 

of hydrology in SDMs by investigating the influence of climate and hydrology related 

datasets. 

Using empirical streamflow data from gauging stations across Germany and 

modeled seasonal accumulated precipitation, I applied a weighted linear regression 

model to predict a continuous daily time series of streamflow (m3 s-1) spanning 64 years 

(1950-2013). The daily streamflow data were subsequently applied as input to 

successfully calculate 53 Indicators of Hydrologic Alteration (IHA), which describe the 

magnitude, frequency, duration, timing and change rate of high, low and average 

streamflow conditions. I performed temporal and spatial validations on the streamflow 

data, through which I confirmed that the predicted flow data are adequate for use in 
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predictive ecological models. Both the IHA metrics and the streamflow datasets are 

available open access for use in predictive models.  

By applying the IHA metrics, together with data describing climate, land-use, 

and topography in Boosted Regression Trees (BRTs), I created two predictor sets 1) a 

species-specific predictor set for each individual species and 2) a uniform predictor set 

for the community as a whole. Through this procedure, I highlighted a useful and 

effective method to impartially select highly relevant environmental variables. To 

investigate the impact of each predictor set on predictive ability, I applied SDMs on a 

community of macroinvertebrates. The SDMs rendered 10 species where the models 

increased in accuracy (Mean TSS = 0.59 ± 0.03) and 10 species where the models 

decreased in accuracy (Mean TSS =0.49 ± 0.04) with the species-specific predictor set. 

The 20 species, showed distinct differences in terms of their ecological traits, known 

occurrences, and preferred environmental conditions.  

To investigate the separate influence of climate and hydrology, I calibrated 

SDMs on a community of macroinvertebrates with three datasets describing either 1) 

climate only (bioclimate), 2) hydrology only (hydrology) and 3) information on both 

climate and hydrology (hydroclimate), in four model configurations. SDMs applied 

with bioclimate and hydrology, performed significantly better overall (Mean TSS = 

0.68 ± 0.02), exhibited the lowest unexplained variance (0.29), and predicted 

significantly larger range sizes (Mean no. of presences; 3482.6 ± 129.1). I found 

bioclimate to be the most important individual factor for species’ distributions in terms 

of both variable importance and proportional explained variance. Despite the 

importance of bioclimate, hydrology contributed to a higher proportion of explained 

variance, unrivalled by other SDM configurations. The larger predicted range sizes may 

be due to the better description of the river discharge regime provided by the 

hydrological variables. 

Through this thesis, I have created and integrated hydrological variables in 

SDMs, as well as developed and validated effective methods to improve prediction 

performance of riverine species’ distribution to advance freshwater SDM research. The 

introduced methods can be applied in different geographical regions as well as under 

alternative time periods and spatial scales. Due to the implications associated with 

altered model accuracy and predicted range size, applying SDMs with hydrological 

variables has the potential to aid river management decisions and conservation efforts.
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III. Zusammenfassung 

Artverbreitungsmodelle (eng.: species distribution models; SDMs) werden zunehmend 

für Flussökosysteme angewandt um groß-skalige Analysen zu ergänzen. In der 

aktuellen ökologischen Theorie wird das Abflussverhalten als einer der wesentlichen 

Einflussfaktoren für das Vorkommen und die Verbreitung von Flusslebewesen 

beschrieben. Es gibt jedoch nur wenige Studien zur Modellierung der Verbreitung von 

Fließgewässerarten, die Daten berücksichtigen, die das Abflussverhalten detailliert 

beschreiben. Anstelle dessen, werden häufig Klimadaten, oder aber indirekte 

Indikatoren genutzt. Derartige indirekte hydrologische Indikatoren haben zwar einen 

großen Einfluss auf die Verbreitung von Fließgewässerarten, dennoch können sie die 

wesentlichen Faktoren des Abflussverhaltens nur teilweise abbilden. Dieses Vorgehen 

ist teilweise auf die Verfügbarkeit von geeigneten hydrologischen Daten für SDMs 

zurückzuführen, da diese meist in ihrer räumlichen und zeitlichen Ausdehnung und 

Auflösung limitiert sind. Eine weitere Herausforderung in der Anwendung von SDMs 

ist die Auswahl relevanter Umwelt-Prädiktoren bei der Modellierung großer 

Artgemeinschaften, da diese Entscheidung zumeist für die gesamte Artgemeinschaft 

vorgenommen wird und entsprechend nicht artspezifisch ist. Dies führt dazu, dass die 

Prädiktoren für einige Arten ungeeignet sind, was wiederum die Modellgüte und die 

vorhergesagten Verbreitungsmuster beeinflusst. 

Das Hauptziel der vorliegenden methodischen Arbeit ist es, die 

Vorhersagekapazitäten von SDMs für benthische Makroinvertebraten durch Einbindung 

von hydrologischen Prädiktoren, die das Abflussverhalten beschreiben, zu verbessern. 

Die Arbeit besteht aus drei Teilen. Im ersten Teil habe ich einen zeitlich und räumlich 

(1 km²) hoch aufgelösten Datensatz, der den Abfluss und eine Reihe weiterer 

hydrologischer Einflussgrößen beinhaltet, für Deutschland entwickelt. Im zweiten Teil 

habe ich eine Methode zur Ermittlung der optimalen Prädiktoren für den Einsatz in 

SDMs entwickelt und den Effekt der Auswahl der Prädiktoren auf SDMs untersucht. Im 

dritten Teil geht es um die Rolle der Hydrologie in SDMs, die ich über den Einfluss von 

klimatischen und hydrologischen Datensätzen untersucht habe. 

Auf der Grundlage von deutschlandweit gemessenen Abflussdaten und 

modellierten Niederschlagsdaten, habe ich mittels gewichteter linearer Regression 

deutschlandweite tägliche Abflussdaten (m3 s-1) für einen Zeitraum von 64 Jahren (1950 
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bis 2013) erstellt. Im Anschluss wurden diese täglichen Abflussdaten verwendet, um 53 

Indikatoren der hydrologischen Veränderung (IHA) zu berechnen, die die Stärke, 

Frequenz, Dauer, und Größe der Veränderung von Hoch- Niedrig-und Mittelwasser 

Ereignissen beschreiben. Die Abflussdaten wurden zeitlich und räumlich validiert, 

wodurch ich erfolgreich zeigen konnte, dass die modellierten IHA für SDMs genutzt 

werden können. Sowohl die IHA, als auch die modellierten Abflussdaten sind öffentlich 

verfügbar und können so für SDMs genutzt werden.  

Unter Anwendung der modellierten IHA sowie der Klima-, Landnutzungs-, und 

topografischen Prädiktoren wurden zwei separate Sets an Prädiktoren mit Hilfe von 

Boosted Regression Trees (BRTs) erstellt. Ein Set war dabei artspezifisch (für jede der 

Arten individuell), das zweite Set war ein uniformes Set (für alle Arten gleich). Mit 

diesem Ansatz konnte ich die Anwendbarkeit und Effektivität der Methode aufzeigen, 

die eine Auswahl von Prädiktoren für individuelle Arten ermöglicht. Um den Effekt der 

unterschiedlichen Sets an Prädiktoren auf die Vorhersagekapazität zu untersuchen 

wurden diese auf eine Makroinvertebratengemeinschaft angewendet. Die individuellen 

Sets an Prädiktoren resultierten in einer deutlichen Verbesserung der Modellgüte für 10 

der modellierten Arten (Mean TSS = 0.59 ± 0.03). Für 10 weitere Arten wurde 

allerdings eine deutliche Verschlechterung der Modellgüte aufgezeigt (Mean TSS =0.49 

± 0.04). Diese 20 Arten weisen sehr deutliche Unterschiede in Bezug auf ihre Traits, 

Vorkommenspunkte und die bevorzugten Habitateigenschaften auf.  

Um die Einzeleffekte von Klima und Hydrologie auf SDMs und deren 

Vorhersagen abzuschätzen, habe ich für eine Makroinvertebratengemeinschaft drei 

verschiedene Sets von Prediktoren 1.) nur Klima, 2.) nur Hydrologie und 3.) eine 

Kombination aus Klima und Hydrologie in vier verschiedenen Konfigurationen 

untersucht. SDMs die mit einer Kombination aus nur klimatischen und nur 

hydrologischen Prediktoren kalibriert wurden, wiesen eine signifikant bessere 

Modellgüte (Mittlerer TSS = 0.68 ± 0.02) auf, hatten die kleinste unerklärte Varianz 

(0.29) und haben signifikant größere Verbreitungsgebiete für die einzelnen Arten 

vorhergesagt (Mittlere Anzahl der vorhergesagten Vorkommenspunkte 3482.6 ± 129.1). 

Sowohl, hinsichtlich der relativen Bedeutung der Prädiktoren, als auch in Bezug auf die 

erklärte Varianz in den Modellen, haben sich reine Klimaprädiktoren als wichtigste 

Einflussgrößen für die Modellierung der Verbreitungsgebiete der Makroinvertebraten 

herausgestellt. Neben der großen Bedeutung von Klimaprädiktoren zeigte sich, dass 
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hydrologische Prädiktoren im Allgemeinen einen höheren Anteil zur erklärten Varianz 

beigetragen haben. Die größeren vorhergesagten Verbreitungsgebiete für die Arten 

basierend auf den ausschließlich hydrologischen Prädiktoren, deuten auf eine bessere 

Beschreibung des Abflussverhaltens durch die Prädiktoren hin. 

In dieser Arbeit habe ich hydrologische Variablen für SDMs erstellt und 

implementiert, effektive Methoden zur Verbesserung der Vorhersagen der Verbreitung 

von Fließgewässerarten entwickelt und validiert und somit die Forschung im Bereich 

der SDMs vorangebracht. Die entwickelten Methoden können sowohl in 

unterschiedlichen geographischen Regionen als auch für verschiedene Zeitschnitte und 

räumliche Skalen angewendet werden. Durch die Verbesserung der Modellgenauigkeit 

und der vorhergesagten Verbreitung kann die Anwendung von SDMs somit dazu 

beitragen Managemententscheidungen und Naturschutzbestrebungen zu unterstützen.  



 Thesis outline 

 

 10 

IV. Thesis outline 

This thesis is composed of three manuscripts (Chapters 2 to 4) that are either published, 

accepted or ready to be submitted to peer-reviewed journals. Chapter 1 is structured as a 

data descriptor, with an introduction, methods, technical validation, and usage notes. 

Chapters 3 & 4 are research articles, and each have an introduction, methods, results 

and discussion. The general introduction (Chapter 1) provides the general context of the 

thesis and the results of the thesis are discussed in the general discussion (Chapter 5). 

The layout of the three manuscripts was modified and figures, tables and paragraphs are 

numbered consistently through the thesis. The references of all chapters are situated at 

the end of each section. The research aims of Chapters 2, 3 and 4 are described in 

Paragraph 1.5. 

 

Chapter 1: 

General introduction 

 

Chapter 2: 

Irving K, Kuemmerlen M, Kiesel J, Kakouei K, Domisch S, Jähnig SC. 2018. A high-

resolution streamflow and hydrological metrics dataset for ecological modeling using a 

regression model [Data Descriptor]. Scientific Data. 5:180224. doi: 

10.1038/sdata.2018.224 

 

Author contributions: K.I designed the study, coded the model, computed the data, 

analyzed the results and wrote the manuscript. M.K, S.J, S.D & J.K co-designed the 

study. S.D, K.K & M.K helped draft the code. All authors advised on methodology, 

discussed the results and commented on the manuscript. 

 

Chapter 3: 

Irving K, Jähnig SC. Kuemmerlen M, 2019. Identifying and applying an optimum set of 

environmental variables in species distribution models. Inland Waters. Accepted. doi; 

10.1080/20442041.2019.1653111 
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Author contributions: K.I designed the study, coded the models, analyzed the results 

and wrote the manuscript. M.K, S.J, co-designed the study, advised on methodology, 

discussed the results and commented on the manuscript. 

 

Chapter 4: 

Irving K, Jähnig SC. Kuemmerlen M, 2019.  Disentangling the influence of climatic and 

hydrological predictor variables on benthic macroinvertebrate distribution. To be 

submitted. 

 

Author contributions: K.I designed the study, coded the models, analyzed the results 

and wrote the manuscript. M.K, S.J, co-designed the study, advised on methodology, 

discussed the results and commented on the manuscript. 

 

Chapter 5 

General discussion
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 1 Chapter 1: General Introduction 

1.1 Background  

Species’ distribution models (SDMs) are increasingly applied to river ecosystems as a 

complement to large scale observational analyses and are used to aid conservation 

efforts. To establish adequate conversation solutions, it is important to include a full 

representation of the stream ecosystem in SDMs. Stream networks involve complex 

relationships with interacting factors such as land use, topography and geology (Allan 

2004). Therefore, by including various aspects of the ecosystem, a more extensive 

impression of a species’ environmental niche is depicted, resulting in higher predictive 

ability. Current ecological theory on river discharge acknowledges that hydrological 

flow regime is one of the most important drivers of lotic systems, influencing the 

abundance and distribution of river biota (Resh et al. 1988, Poff 1997, Bunn & 

Arthington, 2002). However, few studies on freshwater SDMs include specific data 

describing flow regime, which could be due, in part, to 1) insufficient availability of 

data describing the stream environment and 2) the complex interactions between the 

numerous driving factors of river ecosystems. 

The implementation of SDMs has traditionally relied on surrogate variables, e.g. 

air temperature, as actual measurements of environmental conditions. Variables 

describing direct environmental conditions are rare for continuous networks, even at 

coarse spatial scales. Data at fine temporal resolutions is even less common. Therefore, 

a certain acceptance for surrogate data has been established, with many studies using 

alternative information such as precipitation and river basin characteristics as proxies 

for hydrology (Maloney et al. 2013, Zeng et al. 2015, Domisch et al. 2019). The 

consequence of these approximations is that SDM predictions have remained 

suboptimal. Novel efforts are targeting this issue, aiming at developing environmental 

datasets which are, at least partially, more realistic. Although, datasets describing the 

hydrological flow regime at large scales are still rather scarce.  

Even with appropriate datasets, applying the most relevant assortment of 

variables in SDMs, is a considerable challenge. It is best practice to include the most 

optimal predictors, based on “true cause-effect relationships” (Araújo et al. 2019) 

between the species and its associated environmental conditions. Determining such 
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variables, requires substantial knowledge regarding the described species, which may 

not be available, or feasible to collect. To aid optimal variable selection, numerous 

procedures are outlined in existing SDM literature; however, currently there is no 

general agreement on the most suitable process (Petitpierre et al. 2017). As a 

consequence, traditionally SDMs are applied with an identical set of environmental 

predictors for the entire community, which may be of minor relevance for a portion of 

species, leading to, further, suboptimal predictions. Based on this viewpoint, there is an 

urgent need to bridge some gaps in freshwater SDM research. This thesis aims to 

develop methodological approaches to integrate hydrological variables that describe 

flow regime in order to improve SDM performance and provide reliable distribution 

predictions by filling the following research gaps:   

 

1. The limited availability of high-resolution data describing flow regime. 

2. Applying the optimal environmental predictors to estimate species’ 

distribution in stream networks. 

3. The integration and role of variables describing flow regime in SDMs. 

1.2 Species Distribution Models 

Species’ distribution models (SDMs) are predictive models that statistically relate the 

known occurrence of a species with its associated environmental conditions. Predictions 

on the distribution of the species are then made in geographical space under, for 

example, current or future time periods or in alternative geographical regions. A 

common application, for example, is predicting species’ distribution under future 

climate change (e.g. Araujo et al. 2005, Elith and Leathwick 2009, Zimmermann et al. 

2009, Balint et al. 2011, Domisch et al. 2013, Markovic et al. 2014). SDMs are 

increasingly used to complement large scale distribution analyses, where it is costly and 

time consuming to analyze extensive study areas.  

In terrestrial research, SDMs have been a key part of ecological research for 

several decades, commonly applied to terrestrial plants and animals (Austin et al. 1990, 

Pearson and Dawson 2003, Araujo et al. 2005, Elith and Leathwick 2009). They are fast 

becoming a standard method to assist management decisions by, for example, 

identifying conservation areas, application as conservation planning tools as well as 
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managing the conservation for species of special interest (Araújo et al. 2011, Guisan et 

al. 2013, Eaton et al. 2018). SDMs also play a large role in predicting potential range 

shifts as well as colonization of problematic invasive species (Jiménez-Valverde et al. 

2011, Muha et al. 2017). Very recently these models been used in paleontological 

studies (Eduardo et al. 2018) and as a tool for insights into climate change related to the 

dinosaur extinction (Chiarenza et al. 2019). 

It has only been relatively recently however, that SDMs have been applied in the 

aquatic realm, with the first applications appearing 15-20 years ago (Elith and 

Leathwick 2009). In recent years the use of SDMs in freshwater systems has 

significantly increased, for example; European distribution of macroinvertebrates under 

future climate change (Domisch et al. 2011), land use change intensification on 

macroinvertebrates (Kuemmerlen et al. 2015) and using eDNA to predict the 

distribution of freshwater invasive species (Muha et al. 2017).   

SDMs are widely used as they have several major advantages. First, they are not 

demanding in terms of biological data. The basic input requirements are, georeferenced 

occurrences and absences for a species in binary format (i.e. 1=presence, 0= absence). 

In practice, true absence data (a location where the species is certain not to occur) is 

difficult to obtain, but a generalized alternative is the application of pseudo absences. 

Therefore, biological data for SDM studies can be sourced from databases such as 

museum archives (Elith et al. 2006) and biodiversity databases such as the Global 

Biodiversity Information Facility (GBIF.org 2019). 

The models are also applicable over large scales, from catchments (e.g. 

Kuemmerlen et al. 2012), regional & continental (Araujo et al. 2005, Araujo and Luoto 

2007, Domisch et al. 2013) and global (Ihlow et al. 2012) study areas. Predicting 

distributions over such scales is especially possible due to the increasing availability of 

open access global or large-scale environmental datasets e.g. WorldClim (climate, 

Hijmans et al. 2005, Lehner et al. 2008), EarthEnv (streams and topography, Domisch 

et al. 2015, Amatulli et al. 2018) and Corine (land use, land.copernicus.eu). Together 

with these datasets, it is also possible to predict species distribution through future 

climate change scenarios and under historical conditions. 

SDMs are also known as Environmental Niche Models (Harrison 1997, Peterson 

et al. 1999) and Bioclimatic Envelope Models (Araújo and Peterson 2012) although, the 

correct use of the terminology is inconsistent (Peterson and Soberón 2012). For the 
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benefit of this thesis, it is important to conceptually define the purpose of an SDM. The 

fundamental niche estimated by SDMs is defined through the abiotic factors, such as 

climate and hydrology that determine appropriate habitat (Soberón and Peterson 2005). 

However, biotic factors further retract the fundamental niche, termed the realized niche, 

caused by the species’ inability to reach areas due to biogeographical barriers (Pearson 

and Dawson 2003, Guisan and Thuiller 2005), e.g. water barriers for land-based 

animals, as well as biological limits, e.g. dispersal ability, competition and 

predator/prey relationships.  Therefore, when only abiotic factors are considered in the 

SDM, the fundamental niche is predicted (Austin et al. 1990, Guisan and Zimmermann 

2000, Pearson and Dawson 2003). This thesis deals with the role of hydrological 

regimes in relation to other abiotic drivers in species’ distribution therefore; the target 

output is the fundamental niche of a species. 

1.3 River ecosystems and the hydrological regime 

Precipitation is the first and foremost driver of streamflow, but flow run off patterns are 

guided through complex interactions between topography (e.g. hillslope), climate (e.g. 

temperature), geology (e.g. porous rock) and land use (e.g. forests) into the stream (Poff 

1992, Lake 2000, Bunn and Arthington 2002, Xenopoulos et al. 2005). Hydrological 

flow regimes are a driving factor of lotic habitats (Bunn & Arthington, 2002), which 

have a major influence on species assemblage (Resh et al. 1988, Poff et al. 1997). 

Global change is predicted to significantly alter seasonal flow regimes (Döll and Zhang 

2010) and increase the frequency and severity of extreme hydrological events such as 

floods and droughts (IPCC 2007, 2014). This shift is thought to be one of the most 

serious threats to the sustainability of rivers and their biodiversity (Dudgeon et al. 2006, 

Heino et al. 2009). Consequently, research exploring the relationship between 

streamflow and ecology has become increasingly prevalent over the last two decades 

(Tonkin et al. 2014).The hydrology of stream ecosystems can also be altered by 

agricultural land-use change, which impacts the stream channel as well as riparian 

habitats (Allan 2004, Schmalz et al. 2015). Due to their sensitivity to both temperature 

change (Heino et al., 2009) and altered hydrological regimes (Xenopoulos et al. 2005), 

species assemblages are predicted to shift (Sala et al. 2000, Dudgeon et al. 2006) in, for 

example, altitude (Domisch et al. 2013) and latitudinal range (Hickling et al. 2005, 

Heino et al. 2009). With this perspective, including hydrological variables in SDMs it is 
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of utmost importance to make reliable estimates on riverine species’ distributions. 

1.3.1 Riverine benthic macroinvertebrates 

Riverine benthic macroinvertebrates are an extremely diverse group encompassing 60% 

of all fauna in freshwater ecosystems (Balian et al. 2008). They inhabit the substratum 

of the river bed and play a key role in many ecological processes such as, nutrient 

recycling, food web dynamics and decomposition (Palmer 1997). Macroinvertebrates 

are mostly sedentary, so they represent site-specific ecological conditions (Metcalfe 

1989). Due to their varied responses to anthropogenic disturbances, they are useful 

indicators of the general degradation of aquatic ecosystems (Metcalfe 1989, Covich et 

al. 1999). Consequently, they are some of the most frequently used bioindicators in 

freshwater biological monitoring (Li et al. 2010, Hussain and Pandit 2012) and are a 

regulated component of the European Water Framework Directive (WFD). Despite their 

use as bioindicators globally, SDMs have only been recently applied on 

macroinvertebrates (Domisch et al. 2011) most likely in accordance with the relatively 

recent application of SDMs in river systems.  

1.4 Research gaps  

In the following, three important gaps in freshwater SDMs are described. These gaps 

make up the bulk of this thesis and resemble the structure outlined in paragraph 1.5 

“Thesis aims and structure”. 

1.4.1 Data availability 

The limited application of hydrological variables in SDMs is the lack of suitable data 

describing flow regime. One way to include flow regime information into SDMs, is the 

implementation of the “Indicators of Hydrologic Alteration” (IHA, Richter et al. 1996, 

Olden and Poff 2003), which describe the magnitude, frequency, duration, timing and 

change rate of high, low and average streamflow conditions. These metrics are used 

frequently in, for example, studies investigating flow-ecology relationships (e.g. Poff et 

al. 2010, Peres and Cancelliere 2016, Kakouei et al. 2018) as they can provide vital 

information describing flow regime including the impact of anthropogenic disturbance. 

Consequently, they are suitable for use in SDMs as they can also be applied under 
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future scenarios relating climate-induced hydrological changes to species’ distribution. 

The tools required to calculate IHA are freely available (www.github.com/USGS-

R/EflowStats, Henriksen et al. 2006, Archfield et al. 2014), however, the procedure 

requires streamflow data that is high in temporal resolution (daily, m3s-1), continuous 

(i.e. gapless in time and space) and regionally representative (large-scale). Available 

data are commonly limited to localized geographical points, i.e. gauging station sites, 

making it difficult to analyze a large-scale stream network.  An effective way to obtain 

streamflow data is through the application of complex hydrological models, e.g. SWAT 

(Arnold et al. 1998) that can produce highly precise estimates.  However, these models 

usually require a large amount of input data, which can be challenging to simulate over 

the large scale necessary for comprehensive predictions. 

1.4.2 Variable selection approach 

One of the major challenges of SDM studies in every realm is the selection of relevant 

environmental predictors applied in the model (Guisan and Zimmermann 2000, Araújo 

and Guisan 2006). The “Gold standard” for selection of variables according to Araújo et 

al. (2019) is “to use proximal variables exclusively, for which the effect on a species’ 

distribution is well evidenced, so that a model builds on true cause-and-effect 

relationships”. This standard corresponds to fundamental niche theory, which states that 

individual species differ in their environmental preferences, crucial for their 

reproduction and survival (Hutchinson 1957). To apply the optimal environmental 

variables, expert knowledge of the ecological preferences of the species is essential. It 

has been shown that models perform significantly better with a high level of expert 

knowledge (Reside et al. 2019). However, when predicting species’ distribution of a 

large riverine macroinvertebrate community (e.g. 200+ species), gathering expert 

knowledge typically involves seminar meetings and extensive literature reviews even 

for a relatively small number of species. It is therefore not always feasible to conduct 

such schemes for large communities, over large scales, as it can be time consuming and 

financially impractical. As yet, there is no general consensus on the most appropriate 

variable selection process, although examples include; 1) applying variables known to 

have an influence, or are the most commonly applied on the study species, requiring it 

to be well-studied with an established variable choice (e.g. plants, Austin and Van Niel 

2011), 2) applying all variables but ignoring multi-correlation, potentially inducing 
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uncertainty (Braunisch et al. 2013), 3) choosing a predefined number of the best 

variables from several categories, which may result in omitting other important 

variables (e.g. Kuemmerlen et al. 2015) and 4) via statistical analysis, e.g., PCA (e.g. 

McKenna and Johnson 2011, Markovic et al. 2012, De Marco and Nóbrega 2018) or 

BRTs (e.g. Record et al. 2013) on a preselected set of variables. Consequently, it is 

common practice that the same set of environmental predictor variables is uniformly 

applied to every species in an entire community to predict their distribution. This 

common application could lead to less robust predictions, as the optimum set of 

predictors for the community may not be the optimum set for every species within that 

community, which could impact model performance. 

1.4.3 Role of hydrology 

Most SDM studies in river systems commonly focus on climatic conditions (e.g. 

Domisch et al. 2011, Markovic et al. 2014, Ruiz-Navarro et al. 2016, Kärcher et al. 

2019, Rodríguez-Merino et al. 2019) by interpreting precipitation variables as a 

hydrological influence (e.g. Domisch et al. 2019), or use river basin characteristics 

(Maloney et al. 2013, Zeng et al. 2015). These hydrological variables have an important 

influence on species distribution; however, they only partially represent the flow regime 

that influences species distribution and abundance. Some recent attempts have been 

made to include, at least, some aspects of flow regime e.g. high flow days (Kuemmerlen 

et al. 2015), which was shown to be of high relevance to macroinvertebrate distribution.  

Recently, data are becoming increasingly available that describe specific aspects 

of streams e.g. stream specific climate and land use (Domisch et al. 2015), hydrology 

(Barbarossa et al. 2018, Irving et al. 2018 developed as part of this thesis), river 

classification and characteristics  (Hydrosheds, Lehner et al. 2008) as well as dams and 

reservoirs (globaldamwatch.org, Lehner et al. 2011). By describing a broader 

representation of the stream ecosystem these datasets are vital steps in improving 

predictive modeling approaches for river ecosystems leading to more robust 

conclusions. In addition, some stream-specific data combine aspects of both climate and 

hydrology i.e. earthenv.org (Domisch et al. 2015) by incorporating the flow 

accumulation, known to be highly correlated with stream-flow (Kuemmerlen et al. 

2014), into climate data. These data include the information from the upper sub-

catchment, which is an important aspect to consider when assessing the distribution of 
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river biota (Vinson and Hawkins 1998, Malmqvist and Rundle 2002, Kuemmerlen et al. 

2014). However, it is difficult to disentangle the separate influence of either climate or 

hydrology on river species distribution, leading to difficulties in interpretation. 

 

Figure 1.1: Conceptual overview of thesis structure.  

1.5 Thesis aims & structure 

SDMs are powerful tools for investigating global-change effects on river ecosystems 

however, the methodological concept of applying SDMs to predicted distributions of 
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benthic macroinvertebrates is limited in providing a full representation of the stream 

ecosystem. My research is method based, and the primary focus is to develop the 

predictive ability of SDMs for riverine benthic macroinvertebrates, with an emphasis on 

integrating hydrological predictors that describe flow regime. The thesis is divided into 

three main components intended to fill the research gaps outlined above (Figure 1.1):  

 A high-resolution streamflow and hydrological metrics dataset 

for ecological modeling using a regression model 

Available hydrological data are often limited in their spatio-temporal extent and 

resolution for use in ecological applications such as predictive modeling. To overcome 

this limitation, I developed a simple hydrological model, to apply on a 1 km2 gridded 

stream network of Germany to obtain a daily streamflow (m3 s-1) time series spanning a 

64 years period (1950-2013). Accordingly, a high resolution spatio-temporal dataset of 

streamflow and a set of 53 hydrological metrics at 1 km2 grid size are provided. The 

dataset is validated both spatially; in 70:30 ratio split, and temporally using Kling Gupta 

Efficiency measure. I also tested the metrics on 32 macroinvertebrate species using 

Generalized Linear Models (GLMs). I intended to keep the method simple and by 

exploiting globally available data, I aimed to ensure the model could be directly applied 

to alternate geographical regions or time periods. The datasets and data descriptor were 

published open access through the Nature Research Journal Scientific Data. 

 Identifying and applying an optimum set of environmental 

variables in species distribution models 

The common procedure of applying a uniform set of environmental predictors to an 

entire community may impact SDM performance. In Chapter 3 I investigate whether 

applying a specific set of environmental predictors (hydrology, climate, land use and 

topography) to individual species within a community, as opposed to the community as 

a whole, will optimize macroinvertebrate distribution predictions through SDMs. In 

addition, I propose a variable selection process using Boosted Regression Trees (BRTs). 

I apply the method on 67 macroinvertebrate species within two large catchments in 

Germany. The catchments, the Ems and the Weser, are separated by a 

lowland/mountainous eco-regional divide. I identified the species that increased in 

model performance with a species-specific set of predictors, and the species that 



Chapter 1   General introduction 

 

 25 

decreased in performance. To compare the differences between the increasing and 

decreasing species, I collated information on species’ ecological traits and preferences 

and related them to the environmental conditions at the species known occurrences. I 

expected that model accuracy will increase for a subset of species within the community 

when a species-specific predictor set is applied, and that the ecological traits and spatial 

patterns of these species will differ to those of the community.  

 Disentangling the influence of climatic and hydrological 

predictor variables on benthic macroinvertebrate distributions 

With current available data, it is not always possible to disentangle the influence of 

climate and flow regime on benthic macroinvertebrate distribution. In Chapter 4, I 

compared the influence of three openly available datasets that can be applied in 

predictive modeling to describe: 1) climate only, 2) hydrology only and 3) information 

describing both climate and hydrology embedded within the data (hydroclimate). I 

applied the three datasets through SDMs on a community of 92 macroinvertebrate 

species in four model configurations representing different dataset combinations. I 

investigated the differences in each model configuration in terms of; 1) model 

performance, 2) prediction range size. I evaluated the influence of each predictor set on 

species’ distribution by 1) investigating proportional variance explained by each dataset, 

2) variable importance from SDM ensemble of each predictor set. I hypothesized that 

SDMs that include the hydrological dataset developed in Chapter 2 will improve SDM 

performance. Further, I analyzed how the choice of predictor datasets influences the 

predicted distributions. 

 General Discussion 

I summarize the key findings of the three research studies outlined above and discuss 

the methodological limitations. I also discuss the potential applications of my findings 

in SDM research and future opportunities in freshwater SDMs. Finally, I make 

recommendations based on my research to further advance methods in SDMs.  
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2.1 Abstract 

Hydrological variables are among the most influential when analyzing or modeling 

stream ecosystems. However, available hydrological data are often limited in their 

spatiotemporal scale and resolution for use in ecological applications such as predictive 

modeling of species distributions. To overcome this limitation, a regression model was 

applied to a 1 km gridded stream network of Germany to obtain estimated daily 

streamflow data (m3 s-1) spanning 64 years (1950-2013). The data are used as input to 

calculate hydrological indices characterizing streamflow regimes. Both temporal and 

spatial validations were performed. In addition, Generalized Linear Models (GLMs) 

using both the calculated and observed hydrological indices were compared, suggesting 

that the predicted flow data are adequate for use in predictive ecological models. 

Accordingly, we provide estimated streamflow as well as a set of 53 hydrological 

metrics at 1 km grid for the stream network of Germany. In addition, we provide an R 

script where the presented methodology is implemented, that uses globally available 

data and can be directly applied to any other geographical region.  

2.2 Background & Summary 

Natural flow regimes have a large influence in shaping biological communities (Bunn 

and Arthington 2002) and regulate numerous ecological processes in stream ecosystems 

(Poff and Ward 1989, Poff et al. 1997, Poff et al. 2010). Future flow regimes are 

predicted to alter significantly by, for example, an increase in the frequency and severity 

of floods and droughts (IPCC 2007, Döll and Zhang 2010). To understand the 

ecological consequences of these changes, it is important to study how the critical 

components of flow regimes affect stream ecosystems and to include this knowledge in 

the assessment of future global-change scenarios. However, information about flow 

regimes is often not available or sufficiently diverse for detailed modeling analyses such 

as Species’ Distribution Models (SDMs; Jähnig et al. 2012, Domisch et al. 2015b), 

which are a common tool used in ecological analysis. SDMs relate known occurrences 

of species to their environmental conditions and predict species distributions in 

geographical space under current or future conditions.  

One way to include flow regime information into SDMs is the implementation 

of the “Indicators of Hydrologic Alteration” (IHA) (Richter et al. 1996), which describe 
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the magnitude, frequency, duration, timing and change rate of high, low and average 

streamflow conditions. The metrics can provide essential information on freshwater 

ecosystems in general and on the impact of human activities and may support river 

management and conservation. Additionally, they are well suited to be applied in 

predictive modeling (i.e. SDMs) and can be used under future hydrological scenarios to 

assess the effects of climate change on species distribution. 

While the tools required to calculate IHA are freely available (i.e. 

www.github.com/USGS-R/EflowStats, Henriksen et al. 2006, Archfield et al. 2014), the 

streamflow data required for carrying out ecological predictions can be challenging to 

acquire, as it needs to be of high temporal resolution (daily, m3 s-1), continuous (i.e. 

gapless in time and space) and regionally representative. Such data are typically 

restricted to gauging stations i.e. only point localities being available for analysis, 

therefore it is not possible to analyze large sections of a stream network. An effective 

way to obtain spatially gapless data is through the application of hydrological models. 

However, predictive modeling applications such as SDMs in rivers often require 

environmental predictors at fine spatial resolutions (< 1 km2), over a large spatial scale, 

in order to include the species’ full range of occurrence for comprehensive predictions 

(Barbet‐Massin et al. 2010). Depending on the complexity of hydrological model, such 

as SWAT (Arnold et al. 1998) & WaSIiM-ETH (Schulla and Jasper 2006), and the large 

amount of input data required, it can become tedious to simulate on these spatial scales. 

Given these limitations, in order to fill the much-needed data gap for ecological 

analyses, linear regression models are simple and fast methods that can be applied for 

the spatiotemporal extrapolation of streamflow (McIntyre et al. 2007, Seelbach et al. 

2011). Following these considerations, the regression model developed here used two 

freely available data components: 1) observed gauging data from the Global Runoff 

Data Centre (GRDC, www.bafg.de/GRDC/), 2) downstream accumulated precipitation 

data along a river network at high resolution (Domisch et al. 2015a). The low data 

requirements of our model, together with the simple modeling approach, render it an 

inexpensive, easy-to-use tool which can be applied to any geographical scale, and/or 

time period. 

We applied the model to a 1 km gridded stream network in Germany (n=85,363 

1 km grid cells) to create a continuous daily time series of streamflow (m3 s-1) spanning 

64 years (1950-2013). The estimated daily streamflow data were used as input to create 

http://www.bafg.de/GRDC/
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a set of IHA metrics for the German stream network. From the 165 metrics that were 

tested, 53 were validated successfully: predominantly metrics describing mean values of 

streamflow, e.g. mean monthly flow.  

To test the results for their usability in ecological applications, we predicted the 

occurrence of 34 benthic macroinvertebrate species with GLMs using the validated 

metrics with either observed or simulated values. Results from both yielded equally 

good predictions, showing that data predicted from this study is adequate for the 

purpose of ecological predictive modeling.  

We provide both the simulated daily streamflow dataset and the 53 IHA metrics 

as downloadable files (Data Citation 1) which can be used “as is”. In addition, we 

provide R scripts that allow users to apply the model to other geographical regions or 

calculate the hydrological metrics for different time periods. 

2.3 Methods 

The primary goal of this study was to create a much-needed dataset of hydrological 

variables for use in ecological predictive modeling. There is a high demand (Barbarossa 

et al. 2018) for large scale hydrological data at high spatiotemporal resolutions to be 

used as input in models such as SDMs. Such data should be either widely available or 

easy to reproduce. For this reason, we propose to estimate streamflow for entire stream 

networks using a linear regression model with only one predictor: the accumulative 

precipitation in the upper subcatchment. While there are several other relevant 

processes influencing discharge (e.g. infiltration, groundwater storage, 

evapotranspiration, etc.), adding further predictors significantly increases model 

complexity and computation time, particularly if models are of large scale and high 

spatiotemporal resolution. We are aware that applying a simple model over a large scale 

and fine resolution comes at the cost of lower prediction accuracy, as it does not fully 

consider important natural and anthropogenic influences (e.g. water abstraction and 

river management such as dams). Nevertheless, a model which can be readily 

implemented will help fill the demand for large scale, continuous, high spatiotemporal 

resolution data to be used in ecological predictive modeling, specifically SDMs.  

 Moreover, our proposed modeling framework should be easily applied globally 

at any scale, which is why open and near global data sources have been chosen. Here, 

observed daily streamflow is extrapolated from gauging stations to all grid cells on the 
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German stream network using weighted linear regression and subcatchment-

accumulated precipitation as a predictor. The predicted daily streamflow data was used 

as input data to calculate the IHA metrics set out in Olden and Poff (2003) for every 

grid cell (see Figure 2.1). 

In a last step, the level of accuracy of the model predictions for the purpose of 

ecological modeling were tested by implementing Generalized Linear Models (GLMs) 

and comparing species occurrence predictions of 34 stream macroinvertebrates at 

gauging stations using both observed and predicted streamflow.  

2.3.1 Base layer & study area 

The area of study is the stream network of Germany. An openly available, modeled 1 

km gridded stream network of Germany was used as a base layer, taken from 

earthEnv.org/streams (Domisch et al. 2015a), originally derived from the modeled 

HydroSHEDS dataset (www.hydrosheds.org, 30-arc-second spatial grain, Lehner et al. 

2008), which in turn is derived from SRTM (www.srtm.csi.cgiar.org, Jarvis et al. 2008) 

and available  in GEOTiff raster file format (Figure 2.1).  

2.3.2 Data collection: streamflow 

Daily streamflow data (m3 s-1) were collected from 1,065 gauging stations in Germany 

from the GRDC and the Federal Environment Agencies of Germany (Table 2.1). While 

all 1,065 sites collectively covered 64 years, each individual site had to contain at least 

10 years of continuous data between 1st January 1950 until 31st December 2013 to be 

considered in order to maximize input and to standardize the dataset. Due to possible 

simplifications in the 1 km stream network, the gauging station sites within a 3 km 

buffer were moved to the next grid cell of the stream network base layer in QGIS 

(www.qgis.org, QGIS Development Team 2016); any stations beyond the buffered 

network were excluded from the analysis.  

2.3.3 Data collection: predictors 

We wanted to use freely and globally available data as model predictors, as we aim to 

produce a framework that can be applied in other geographical regions. The predictors 

had to also match the high spatial resolution of 1 km grid cells to be able to be applied.  
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Figure 2.1: Workflow of the modeling and validation procedure.  

Observed daily streamflow data was used as the response variable in a weighted linear 

regression (LMWW). Seasonal accumulative precipitation data was used as the predictor 

variable. The model was validated spatially using Wilcoxon tests on the RMSE. The IHA 

metrics were calculated from observed and simulated streamflow and validated through 

Spearman’s correlation. The model was validated temporally with KGE, RMSE and R2, and 

GLMs were performed on 34 species and compared with IHA metrics calculated from observed 

and simulated flow data, respectively. The daily streamflow data were extrapolated to the entire 

stream network of Germany resulting in a time series covering 64 years. The validated IHA 

indices were then calculated for all grid cells on the stream network. Top right map is 

Germany’s location in Europe, and underneath, the study area of Germany with distribution of 

gauging stations. Bottom right map shows the modeled daily streamflow (m3 s-1) of 11th 

February 1950. 
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Subcatchment-accumulated precipitation (hereafter referred to as Precipitation) 

data were taken from www.earthenv.org/streams (downloaded 2016, Domisch et al. 

2015a), which in turn was derived from WorldClim database (Hijmans et al. 2005). It 

consists of 12 average monthly downstream precipitation values (Jan-Dec) for each grid 

cell along the stream network, where each monthly value is a 50 year average (1950-

2000) (Domisch et al. 2015a). The data in raster format represent the stream network of 

the study area outlined above (Hijmans et al. 2015). In this dataset, each grid cell of the 

stream network represents the added precipitation of all grid cells contained in the 

contributing area (i.e. upper subcatchment) of that specific cell. The accumulative 

nature of the data takes into account influencing upstream processes, important for 

stream systems (Allan 2004). 

Table 2.1: Gauging stations. Min, max and median number of gauging stations, caused by 

temporal gauge data availability, used in models throughout the time series (n=23,376 models) 

applied within each region 

Spatial region Min Max Median 

Alpine  6 112 97 

Lowland  22 254 145 

Mountain  43 584 418 

Germany 71 944 685 

 

The predictor variable precipitation was determined by calculating the mean 

monthly precipitation of four sets of three months to represent the annual seasons: Dec-

Feb (Winter), Mar-May (Spring), Jun-Aug (Summer) and Sep-Nov (Fall). The 

streamflow data began on 1st Jan 1950 and ended on 31st Dec 2013. Therefore, the 

seasonal precipitation for winter of 1950 consisted only of Jan and Feb, with Dec 1949 

being omitted. Each winter thereafter included all 3 months (Dec-Feb) and is referred to 

as winter of the year containing the information from January and February (i.e. Dec 

1983 + Jan and Feb 1984 = winter 1984). Similarly, only data from December 2013 

were available for winter 2014.  

2.3.4 Preliminary analysis 

The preliminary analysis tested model performance of various configurations of 

http://www.earthenv.org/streams
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predictors and spatial scale, the purpose of which was to find the better performing 

model at the spatial scale and resolution we required. Therefore, we ran the analysis by 

applying three different predictors in the regression model: 1) flow accumulation, 2) 

monthly precipitation and 3) seasonal precipitation. The model trials were then applied 

on four different regional extents as to detect regional differences in model 

performance: 1) Germany in its entirety, 2) Germany sub divided into three regions i.e. 

Central Plains, Central Highlands and Alpine (sensu Illies 1967). This procedure 

resulted in 12 model configurations in total, which were compared in their capability of 

predicting daily streamflow. 

Flow accumulation is the sum of contributing grid cells from the upper 

subcatchment that naturally flow into one grid cell and is known to be highly correlated 

with streamflow (Kuemmerlen et al. 2014, Kuemmerlen et al. 2015). Flow 

accumulation was taken from www.earthenv.org/streams, based on the HydroSHEDS 

digital elevation model (DEM, Lehner et al. 2008), which in turn is derived from 

(SRTM, Jarvis et al. 2008). Here, flow direction was used as a base layer for routing 

and delineating the upper stream network in grass GIS (see Domisch et al. 2015a for 

further details). It is important to note that due to the precipitation variables being 

accumulative, flow accumulation information is contained within the precipitation. This 

induces correlation between both and therefore the variables were tested in separate 

models.  

Three performance metrics were used to compare model performance and 

validate the model: 1) Root mean square error (RMSE), 2) normalized root mean square 

error (nRMSE) and 3) coefficient of determination (R2). The R2 of each regression 

model was used for evaluation and to compare between model configurations (reported 

as mean R2 +/- SE) and referred to as explained variance. Both RMSE and nRMSE are 

measurements of each model’s predictive ability and were calculated from the observed 

and simulated flow values using the R package HydroGof (Zambrano-Bigiarini 2014). 

It is important to note that the performance metrics are derived from the 

regression model applied on each individual daily time step and were used to compare 

between each model configuration. This is a comparison of model goodness of fit, 

which was used to assess the model spatially across ecoregions and using different 

predictors. To effectively visualize the comparison between model 

configurations/spatial regions with differing variations of streamflow and orders of  

http://www.earthenv.org/streams
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Figure 2.2: Comparison between each model configuration. Performance metric a) normalized 

rooted mean square error (nRMSE) and b) R squared statistic (R2). Points represent each model 

(day) over the time series (n=23,376 models). Boxplots (bar = median, box = IQR, whiskers = 

1.5 x IQR and outliers. Triangles = mean (Table 2).  
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magnitude, the RMSE was normalized (nRMSE). This was calculated manually by dividing the 

RMSE by the difference in the maximum and minimum observed streamflow values. 

Wilcoxon tests were applied to compare the RMSE values of each model 

configuration. Any individual dataset was large (n = 23,376 days), so in order to avoid 

possible type 1 errors (false positives), the data were split into yearly subsets (n = 365 

*64). Each set of 64 Wilcoxon tests are reported as a percentage (%) of tests that show a 

significant difference between the two predictions tested. A higher percentage of 

significance indicates a larger difference between configurations. For comparison, each 

configuration was also tested using the entire dataset (n=23,376 days), without sub-

dividing into annual components. 

Table 2.2. Overall statistics. RMSE, nRMSE & R² of each model configuration (mean ± SE, 

n=23,376) 

  RMSE (m³ s-1) nRMSE (%) R² 

Flow Accumulation    
Alpine 86.35 ± 0.39 12.67 ± 0.04 0.51 ± 0.0027 

Lowland 249.16 ± 1.0 10.58 ± 0.02 0.96 ± 0.0005 

Mountain 153.45 ± 0.50 7.63 ± 0.02 0.83 ± 0.0016 

Germany 173.69 ± 0.59 7.44 ± 0.01 0.87 ± 0.0014 

Monthly Precipitation    

Alpine 81.83 ± 0.37 12.04 ± 0.03 0.59 ± 0.0027 

Lowland 217.96 ± 0.91 9.31 ± 0.02 0.96 ± 0.0005 

Mountain 129.79 ± 0.44 6.67 ± 0.02 0.86 ± 0.0014 

Germany 154.62 ± 0.53 6.68 ± 0.01 0.90 ± 0.0011 

Seasonal Precipitation    

Alpine 81.63 ± 0.37 12.02 ± 0.03 0.59 ± 0.0027 

Lowland 218.48 ± 0.91 9.34 ± 0.02 0.96 ± 0.0005 

Mountain 138.82 ± 0.47 6.95 ± 0.02 0.86 ± 0.0014 

Germany 154.78 ± 0.53 6.68 ± 0.01 0.91 ± 0.0011 

 

Precipitation performed better as a predictor than flow accumulation for both 

nRMSE (Figure 2.2a, Table 2.2) and R2 (Figure 2.2b, Table 2.2) across all regions. 

There was no significant difference between monthly and seasonal precipitation 

predictors (Figure 2.2b, Wilcoxon Test: Table 2.3), with the only exception in the 

mountain region. Models applied with flow accumulation only performed significantly 

worse than any of the precipitation predictors (Wilcoxon Test: Table 2.3) and were not 

applied in further analyses. Models in the lowland region had the highest R2 values 
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(mean R2= 0.96, Table 2.2, Figure 2.2a), and performed better in terms of explained 

variance for both monthly and seasonal precipitation predictors. However, for nRMSE, 

the models spanning the whole of Germany performed best (mean nRMSE = 6.68%, 

Table 2.2, Figure 2.2a) compared to the lowland and mountain regions for seasonal 

precipitation. Models applied in the alpine region displayed the highest variation in R2 

values (Table 2.2, Figure 2.2b). The models from all regions varied significantly from 

each other in terms of RMSE (Wilcoxon Test: Table 2.4, Figure 2.2 a&b), except for 

tests of difference that showed a lower percentage of significance (Wilcoxon test: 

68.75%, p < 0.05) between mountain and Germany regions with seasonal precipitation. 

The models applied to Germany in its entirety performed well. The contribution of both 

mountain (area = 164,544 km2 (46%)) and lowland region (area = 153,952 km2 (43%)) 

dominates the landscape (89%) of the entire area of Germany (355,926 km2).  

Table 2.3. Wilcoxon test of difference of predicted discharge RMSE between predictors. Flow 

accumulation (FL), monthly precipitation (MP), seasonal precipitation (SP), and spatial region. 

Numbers indicate % of years (total=64 years, n=365 days) with significant difference (p<0.05), 

overall significance when using total data set (n=23,376 days) indicated by*. 

Spatial Region FL x MP FL x SP MP x SP 

Lowland 96.9* 96.9* 0 

Alpine 14.1* 15.6* 0 

Mountain 100* 100* 50* 

Germany 98.4* 100* 0 

Table 2.4. Wilcoxon test of difference of predicted discharge RMSE between spatial regions. 

Alpine (AL), Mountain (MM), Lowland (LL), Germany (DE), and predictor. Numbers indicate 

% of years (total =64) with significant difference (p<0.05), overall significance when using total 

data set (n=23,376) indicated by*. 

Predictor AL x MM AL x LL AL x DE MM x LL MM x DE LL x DE 

Monthly 

precipitation 
100* 100* 100* 98.4* 95.3* 95.3* 

Seasonal 

precipitation 
100* 100* 100* 96.9* 68.8* 95.3* 

 

Therefore, the lower performing models applied in the alpine region 

(area=37,430 km2 (11%)), do not seem to have an influencing factor on the overall 



Chapter 2   Hydrological Datasets 

 

 46 

performance of the models applied throughout Germany, presumably due to their low 

contribution to the average. 

Accordingly, the seasonal precipitation model applied throughout Germany 

performed best and was therefore used to predict daily streamflow as input data for the 

IHA metrics. 

Table 2.5. Spatial comparison (mean ± SE) of regression model. Training and testing data 

(70:30) and between model methods LMWW & lmRob; Wilcoxon test percentage of 

significance (%) of p< 0.05 concluding that the means are not significantly different (i.e. 

observed and predicted values are similar). 

  RMSE (m3 s-1) nRMSE (%) R² 
% of 

significance 

Training 

(70%) 
   Training vs. testing 

LMWW 154.21± 0.55 6.89 ± 0.02 0.83± 0.0005 
4.70% 

lmRob 152.77± 0.54 6.82 ± 0.01 0.83± 0.0005 

Testing 

(30%) 
    LMWW vs. lmRob 

LMWW 151.61 ± 0.58 7.35 ± 0.02 0.82± 0.0009 
0% 

lmRob 150.33± 0.58 7.29 ± 0.02 0.82± 0.0009 

2.3.5 Modeling method  

The first step in the modeling process was to extract the daily streamflow data from the 

gauging sites on a day by day basis for the entire study area (i.e. first day 1st Jan 1950). 

All gauging sites with discharge data available for the same day (n=varies dependent on 

day and regional extents) were used as the response variable input for the model of that 

specific day. A linear model was performed to estimate the streamflow for that 

particular day only. This procedure was repeated 23,376 times from the first day (1st Jan 

1950) until the last day (31st Dec 2013) to create the daily time series of 64 years. In 

other words, the discharge is predicted on a daily basis for all of the study area. Unlike 

common hydrological modeling approaches, discharge predictions here are performed 

on the spatial dimension (i.e. as raster layers). Discharge time series are later aggregated 

by stacking the daily spatial predictions (i.e. stacking gridded datasets). We 

acknowledge that, although daily streamflow is used as the response variable in the 
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model, we use a coarser (seasonal/monthly) resolution to predict the high resolution 

(daily) time series. We understand that achieving high accuracy from this type of model 

input is challenging. However, these data are readily available for the spatial scale and 

resolution we input into the model and were tested to provide adequate precision for use 

in ecological predictive models. 

Exploratory analysis of the data showed that the distribution of the empirical 

streamflow data was heavily tailed due to several outliers, which violated the 

assumption of normal distribution. Therefore, a robust linear model (lmRob), less 

sensitive to a non-normal distribution (Fox and Weisberg 2011), was applied as 

implemented in the Robustbase R package (Maechler et al. 2016). This method uses 

maximum likelihood estimation to apply a weight system reducing the impact of 

outliers, while still including the benefits of simple linear regression and has been 

effectively used previously (Venables, W.N, personal communication, 2017). However, 

the performance metrics to determine goodness of model fit (e.g. R²) are easier and 

more intuitive to extract from simple linear models. Therefore, the weights were first 

calculated through the lmRob function and later introduced into a simple linear model to 

produce a linear model with weights (LMWW) (Ronchetti et al. 1997). The lmRob 

function calculates the weights using the method of MM-estimation, a development of 

Huber’s M-estimation (Huber 1964), which returns highly robust and efficient 

estimators. Further descriptions are outlined in Yohai (1987). For validation purposes, 

the spatial predictions from the LMWW were compared, using Wilcoxon tests on the 

RMSE, to those of the lmRob and no difference between models was found (Table 2.5). 

The resulting weighted linear regression (LMWW) is described in equation 1: 

𝐸𝑞. 1)                             𝑄𝑠 =  ∑ 𝑊𝑠 

𝑛

𝑠=1

(𝑄𝑠 − 𝑎 −  𝛽𝑥𝑠)2 

where Qs is the discharge, x is the predictor, W is the weight at the sth gauging 

site, α is the intercept and β is the slope of the model. The configuration of gauges with 

streamflow data varied daily, therefore the calculated weights also differed daily. 

2.3.6 Application of the model 

The model was used to extrapolate predicted streamflow values to each 1 km grid cell 

on the stream network raster of Germany (n=85,363). This was done for every day in 
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the time series from 01/01/1950 to 31/12/2013 (n=23,376), creating a 64 year dataset of 

daily streamflow data, covering the entire stream network of Germany. Due to the 

nature of linear models, daily streamflow predictions included a number of negative 

discharge values, particularly in the headwater region of the stream network, where 

streamflow is lowest (for more details see “Limitations”). In the final dataset, any 

negative streamflow predictions were removed and replaced with the minimum 

predicted value across the entire time period for that grid cell. Next to the adjusted 

dataset, an additional dataset of the negative values is provided. 

Table 2.6. Wilcoxon test of significance. Training and test datasets of modeling methods; 

lmRob – robust linear model, LMWW – linear model with weights. Years that showed a 

significant difference.   

Training mean Testing mean W value P value Method Year 

178.85 167.89 72922.00 0.03 lmRob 1950 

222.04 214.89 72618.00 0.05 LMWW 1952 

173.13 164.56 73816.50 0.02 LMWW 2000 

194.89 182.15 74903.50 0.00 LMWW 2013 

2.4 Code availability  

The R scripts are available online from www.github.com/ksirving/stream_flow. 

There are three scripts in total, used for different steps in the modeling procedure.  

1) The weighted linear regression model script is used to predict streamflow in any 

geographical region, given the appropriate data is available. The user needs to 

provide a data frame with daily streamflow input data for that specific region (e.g. 

GRDC www.bafg.de/GRDC/) and precipitation data as a GeoTIFF file that can be 

downloaded from www.earthenv.org/streams (Domisch et al. 2015a). The output is 

a dataframe for each day of the simulation time containing streamflow values for all 

grid cells. 

2) Format streamflow data calculated in script (1), including replacement of the 

negative values with the minimum value for that grid cell and structuring the data 

frame for input into IHA calculations and calculation of the IHA metrics.  

3) Format and structure the provided streamflow NetCDF files for input into IHA 

calculations and calculation of the IHA metrics.  

http://www.github.com/ksirving/stream_flow
http://www.bafg.de/GRDC/
http://www.earthenv.org/streams
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For script (2) & (3), the user needs to download the necessary IHA functions from 

www.github.com/USGS-R/EflowStats (2016) (Henriksen et al. 2006, Archfield et al. 

2014) . 

2.5 Data Records  

The modeled streamflow (m3 s-1) dataset contains daily (n=23,376) data over 64 years 

(1950-2013) for every 1 km grid cell (n = 85,363) in the German stream network. The 

dataset is available as NetCDF files and is available for download (Data Citation 1). 

Each individual raster layer represents one day in the time series, which are available as 

annual raster stacks (n=64). The user can subset the time series to the required period 

and follow script (3) to structure and format the data for input into the IHA calculations. 

All negative values have been replaced. However, annual NetCDF files (n=64) 

containing all original values are provided as an additional dataset. Here, each 

individual raster layer (n=1,621) of the NetCDF file represents the day in the time series 

and contains only the negative values. The 53 IHA metrics that were validated 

successfully are also available for download (Data Citation 1) for the same stream 

network (Germany, grid cells n=85,363). The IHA metrics are available as GeoTIFF 

files, with each layer representing one metric. All NetCDF and GeoTiff files are in 

WGS84 coordinate system with an extent of 55°N to 47°S latitude and 5°E to 15°W 

longitude. All layers contain 914 rows and 1,100 columns. To reduce the file size, all 

values have been multiplied by 10,000 in order to achieve an integer format without 

precision loss. Potential users therefore need to convert data back to the original units 

by dividing each raster file by 10,000 (data type = Int4S, NoData value = -999). 

2.6 Technical Validation 

2.6.1 Spatial Validation 

To validate the newly-developed dataset (Data Citation 1), we split the flow data of 

each individual model (n=23,376 days) spatially into 70% training and 30% testing data 

sets. Each model was then built using the training data and then assessed on how well it 

predicts the independent testing data.  

Wilcoxon tests were then applied to test for any difference between the root 

mean square error (RMSE) values of the training and testing datasets. The RMSE is a 

http://www.github.com/USGS-R/EflowStats
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measurement of the model’s predictive ability. RMSE is an absolute measure of fit, 

calculated through the comparison of the observed and predicted streamflow values 

from corresponding sites (equation (2)): 

𝐸𝑞. 2)                    𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑠𝑖𝑚,𝑖)
2𝑛

𝑖=1
𝑛

 

where n is the number of sites, yobs,i is the observed discharge value at the ith site 

and ysim,i is the simulated discharge at the ith site.  

RMSE is reported in the same units as the response variable (i.e. m³ s-1) and is 

an important measurement of fit when the model is used for prediction. Zero indicates 

the best possible fit. The RMSE was calculated through the HydroGof package 

(Zambrano-Bigiarini 2014).  

An indication of good model performance was considered to be the lack of 

significant differences between the RMSE values of the training and testing datasets. A 

method of subsetting the large dataset into yearly subsamples was applied (n=365 *64). 

Each set of 64 Wilcoxon tests are reported as percentage (%) of tests that show a 

significant difference.  

According to the RMSE comparison between the training and testing datasets, 

the majority (95%, n=61, p > 0.05)) of tests showed no significant difference between 

datasets (Table 2.5, LMWW: % of significance). The three years that showed a 

significant difference are listed in Table 2.6.  

2.6.2 Calculation and validation of hydrological metrics 

There are 171 IHA metrics that describe the frequency, magnitude, duration and timing 

of streamflow events set out in Olden and Poff (2003) (full descriptions in 

Supplementary Table S2.1 in the supplementary material). Of these, 165 were chosen 

and a correlation analysis performed. The six that were omitted included drainage area 

variables, such as “mean annual runoff”, an aspect which is beyond the scope of this 

study. The hydrological metrics were calculated using the functions available from the 

R package EflowStats (www.github.com/USGS-R/EflowStats) (Henriksen et al. 2006, 

Archfield et al. 2014). For validation, the observed data were randomly and spatially 

split into 70% training and 30% testing datasets. The model was built using the 70% 

http://www.github.com/USGS-R/EflowStats
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training data, with its subsequent predictions calculated for the 30% testing data, which 

were used as input for the metrics calculation of the simulated data. Any simulated 

values that were below zero were replaced with the lowest value throughout the time 

series for that grid cell. 

 

Figure 2.3: Time series of observed and simulated daily mean discharge. Taken over time 

period of 2 0 years (1965-1984), at gauge sites ± SE bars (n=518 gauges). 

 

A continuous (gapless) daily time series was needed to calculate the IHA 

metrics. Due to the nature of the data splitting, the testing dataset was not continuous 

over the entire time series for every gauge. To test the most truthful values of observed 

streamflow, instead of interpolation, and to reduce computing time, this required 

subsetting the observed flow data into a smaller dataset including 518 gauging sites, 

●

●●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●
●●
●●

●
●

●
●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●
●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●●
●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●●

●●
●
●●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●●●●●
●

●

●
●●
●

●●●●●
●●
●

●
●
●

●

●
●

●●

●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●

●

●

●●●●
●●
●●●

●●

●
●
●●
●

●

●

●
●

●

●●●●●●

●

●●
●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●
●
●
●
●●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●
●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●●●●
●
●●

●●

●

●
●
●

●

●

●●

●●●
●

●
●●

●

●

●●

●

●

●
●●●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●●

●

●
●

●

●

●●

●

●
●

●

●
●

●●●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●●
●

●

●
●

●

●●

●
●

●●

●

●
●●

●●

●

●

●

●

●●
●
●

●

●●●
●

●

●

●

●●
●

●●●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●●
●

●●●
●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●
●

●

●
●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●●

●●
●●

●

●

●●●●
●

●

●
●
●●
●

●●

●
●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●
●
●
●
●

●●●
●●
●

●

●
●●

●

●●●●●●
●
●
●●
●●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●
●

●●

●

●
●

●

●●●●●●

●

●●

●

●

●

●●●

●

●●●
●●
●

●
●
●
●
●

●●

●

●

●

●

●
●●

●●

●

●

●

●
●●
●

●

●
●
●
●

●

●

●
●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●●

●

●

●●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●●●●

●●

●

●●●●

●

●

●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●●
●

●

●

●

●

●
●
●●●

●

●
●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●●
●

●●
●

●

●●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●●
●

●

●
●
●●

●●
●●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●●
●
●
●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●●●●

●
●●

●

●
●
●

●

●
●
●

●
●
●

●

●●●
●

●

●●●●
●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●●●
●

●
●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

●●●
●●
●●
●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●●●

●●

●

●
●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●●
●

●

●

●

●

●●

●
●

●●
●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●●
●
●

●

●●

●●

●
●●

●

●

●
●

●●●
●●

●
●
●

●
●●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●●●

●●

●

●

●
●

●●●

●

●

●
●
●●

●●

●●

●
●

●

●

●

●●

●●

●
●
●
●

●●
●

●

●
●●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●
●

●

●

●
●●●
●

●
●●

●

●●●●

●

●

●

●●●

●

●

●
●

●●

●
●

●

●

●

●

●●●

●

●
●●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●●

●
●
●
●
●●

●

●

●
●
●●
●
●●●
●●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●

●

●
●
●
●
●
●

●

●
●●
●●

●

●
●●●

●

●
●

●
●
●
●●
●●●
●●●
●●

●

●

●

●
●

●●

●

●●●
●
●

●

●

●
●

●

●
●
●●●
●●●●
●
●●●
●●

●
●

●●

●●

●

●●●

●

●●

●
●

●●
●
●

●

●
●●●
●

●

●

●●
●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●
●
●

●

●

●
●

●●●
●●
●●
●

●

●

●
●

●

●●
●●

●

●
●●●
●●
●
●

●
●●

●
●
●

●

●

●

●

●

●●●
●
●

●●●●
●
●
●●

●

●
●
●
●

●

●

●

●●
●

●

●
●●
●
●●●
●
●
●
●

●
●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●●

●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●
●
●
●

●●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●
●●●

●●

●
●●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●
●
●
●
●
●

●

●●
●

●●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●
●●●
●●
●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●

●

●

●

●
●

●

●
●
●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●

●

●●
●●

●●

●

●●

●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●
●

●

●●●●

●
●
●

●
●

●

●●●

●●

●

●

●●

●●

●

●

●
●
●

●
●

●

●●●
●
●
●
●
●

●

●

●
●

●

●
●●

●●

●
●

●

●

●●

●

●●●●

●
●
●

●

●●●

●
●
●

●
●
●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●●●
●
●●
●

●

●

●
●

●

●●●

●

●

●

●
●●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●
●

●
●
●
●

●

●

●
●
●

●
●

●●●
●
●
●
●
●●
●●

●

●

●●

●
●

●●●
●●
●●●
●●●

●

●●

●

●●
●

●

●●

●●
●
●
●
●

●●●

●
●

●●●●
●
●

●

●
●●

●

●

●
●●

●

●

●
●●

●
●
●●

●
●●
●●●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●
●●●●

●

●

●

●●
●

●

●

●

●
●
●

●
●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●●●
●

●
●

●

●

●
●

●●
●
●
●
●

●

●

●
●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●
●●

●

●●

●

●

●●

●

●

●

●●
●●●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●●
●

●●
●●

●

●
●

●

●

●

●

●●

●●●

●
●

●

●●

●

●●
●
●
●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●
●●
●

●

●

●●

●
●
●●
●
●●

●
●

●

●●

●

●●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●
●

●
●
●

●

●

●●
●●●●

●●
●

●

●

●

●
●

●

●

●
●
●
●●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●
●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●
●
●

●

●●●●●
●
●
●
●

●

●

●

●●●

●

●

●
●
●●●
●

●

●

●
●
●●●
●

●

●

●
●

●

●

●

●●

●
●●
●

●

●
●
●

●

●

●●

●●
●●
●●

●
●
●●●

●

●
●●

●

●
●
●
●

●●●●
●●

●

●
●
●
●●●

●

●
●●●
●●●

●

●●

●●
●
●●

●
●●

●

●
●

●

●
●
●
●

●●●

●●

●●

●
●
●
●
●

●
●
●
●

●

●

●

●●
●●

●
●●●●●●●
●
●●

●●●

●
●●
●
●

●●
●●
●●

●
●●
●●
●
●

●

●

●●●

●●

●
●
●

●

●
●●●●
●●●●

●
●

●●●●●

●●

●

●

●
●●
●

●
●
●

●●

●

●

●

●
●
●

●

●

●●●●●●

●

●●
●●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●●
●

●

●●●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●
●●

●
●

●

●
●
●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●
●
●
●
●

●
●
●
●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●
●●●

●●

●●●
●

●

●●

●
●
●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●
●●●
●
●
●
●
●●●
●
●●●

●

●
●

●

●

●

●●

●
●

●
●
●●

●
●
●
●●

●

●●

●

●
●●

●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●
●
●
●

●

●

●

●●●

●●●

●

●

●
●●
●

●●

●

●●
●

●

●●

●

●
●

●

●●●●
●
●

●●

●

●

●
●
●●
●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●
●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●
●
●

●
●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●●
●
●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●
●
●●●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●●
●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●
●

●●

●

●

●●

●

●●

●
●
●

●

●

●

●

●●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●
●●

●

●
●●

●

●●
●

●

●●

●

●

●

●
●●
●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●●●

●●

●
●

●

●

●

●●

●●
●
●

●

●

●

●

●
●
●

●●
●
●
●

●
●
●●
●

●

●
●
●
●
●

●

●

●

●

●
●●●

●

●
●

●●●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●●●

●●
●
●

●●
●

●

●
●

●

●
●●
●
●
●

●

●

●

●

●

●●●
●●

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●●

●
●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●

●
●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●
●
●

●
●

●
●●●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●

●●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●
●
●
●

●●

●

●
●
●
●

●

●
●
●
●

●●

●
●●

●
●

●●●

●

●

●

●
●

●

●
●

●

●●

●

●
●●●●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●●

●

●

●

●
●

●●

●

●
●
●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●
●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●
●
●

●

●

●

●●
●
●●

●

●
●
●

●
●

●

●●
●●

●
●

●

●

●
●
●●
●

●

●

●

●
●●
●
●
●
●
●

●
●
●

●

●●

●

●

●●
●
●●
●

●

●●

●

●

●
●

●

●
●●

●

●●
●
●
●●

●

●

●

●

●●●

●

●●

●
●●●●

●●●
●
●●
●●
●●●●

●

●

●
●
●

●
●

●

●

●
●

●●●●
●
●●

●

●
●●
●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●●

●

●●
●
●
●
●
●●●
●●●
●
●●

●
●
●

●
●

●

●●●●●●

●
●

●
●

●

●

●●

●

●
●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●
●

●
●●

●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●●●

●

●
●

●

●

●●

●

●

●

●

●

●●●●●●
●

●

●

●
●

●

●●●
●

●●
●●

●

●●

●

●

●
●●

●

●

●
●

●

●
●●●●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●●●
●●●●

●●●

●
●
●●●

●●
●

●
●
●●

●

●●

●●

●

●●
●

●

●
●●●
●●●●●●
●●
●
●

●
●
●●

●

●

●
●

●
●
●
●●●

●

●

●

●

●●
●

●

●

●●
●
●
●

●

●

●●

●

●
●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●
●

●

●

●●●●●●●●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●●
●
●

●
●

●

●

●●●
●●●●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●
●●●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●

●

●

●

●●●●●●
●
●

●

●●
●

●

●
●●

●

●

●
●
●

●
●
●

●

●
●

●

●

●●●
●

●

●●
●●

●

●

●●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●●
●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●
●

●

●
●●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●

●●●
●●
●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●
●
●●

●

●●

●

●

●
●
●
●
●
●
●●●
●●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●
●
●●

●

●

●
●●●
●●
●
●
●●

●

●●

●

●

●
●

●
●

●

●

●
●
●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●●
●
●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●
●
●

●●
●●●
●
●
●●

●

●

●
●
●
●●●
●

●●●

●

●
●●
●●
●
●

●

●
●●●
●
●
●
●
●
●●●
●●●●●●
●
●
●●
●●●●●●

●●

●●
●●●
●

●
●●●●●
●

●
●●
●●
●
●
●
●●●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●
●●●
●
●●●
●

●

●

●●

●
●●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●●●

●

●
●
●

●●

●●
●

●
●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●●
●

●

●

●
●
●●
●
●

●

●

●
●
●
●●
●●●●●●●
●●
●●
●●●●●

●

●

●●●
●

●
●●
●
●
●●
●

●●●
●
●

●

●●

●

●

●●
●

●

●
●

●
●
●

●

●

●

●
●●
●
●

●
●
●
●
●

●

●

●
●
●●
●
●●●●●
●●
●

●●

●

●

●
●
●
●
●●●●●●●●
●●
●●●●

●
●
●
●
●●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●

●
●
●●
●●●
●●
●
●
●
●
●
●●●
●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●
●●
●

●

●

●

●●●
●

●

●
●
●
●
●●●●●●●
●
●●

●

●

●●
●●
●●●
●
●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●
●●●●

●

●

●

●
●

●

●
●

●

●●●●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●
●
●●
●

●

●
●

●

●●

●
●
●●●●
●
●
●
●
●●

●

●

●
●
●

●

●

●
●
●
●
●

●
●●●●●
●
●

●
●●
●●●
●
●
●
●
●●●
●
●●●●●●●
●●●
●
●
●
●
●●
●●
●●●●

●
●
●
●
●

●

●●
●

●

●

●
●
●

●

●●
●
●

●

●

●●
●
●●
●
●

●●●●●
●
●

●
●
●●
●
●
●
●●
●●
●
●
●●●
●
●●
●●●●●●●●●
●●
●
●●●●●
●
●
●
●
●●
●●
●●●●
●●
●
●●
●
●●●●
●
●●●●●●●●
●●●
●●
●

●

●
●●●●●●
●
●●

●●

●

●

●

●
●
●●●●●●
●●●
●
●●●●●●●
●

●●●●
●
●●●
●●●●●●●●
●
●●●●●
●
●●●●●●
●

●
●
●●
●
●
●●●●●●
●

●

●●
●

●
●●

●

●
●
●

●

●
●
●●
●
●
●●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●
●●
●●
●
●
●●●
●●
●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●
●
●

●●
●
●
●
●

●
●
●

●
●
●

●

●
●●●
●●●●●
●●
●
●

●●●●

●

●

●

●

●
●
●●●
●●●●●
●
●

●

●
●●
●●
●
●●●
●●
●●
●

●

●●
●●
●
●●●
●
●
●
●●
●
●●●●
●
●●●
●
●
●
●
●
●●●
●●●
●
●●
●●●●●

●
●
●●
●
●
●●●
●
●●●●●●●●●●●
●●
●●●●

●

●●

●●
●●●●
●

●

●
●
●●●

●

●●
●●

●
●

●
●
●

●
●

●
●●●●
●
●

●

●
●

●
●●●●
●

●

●●

●●
●●
●

●

●
●●
●●
●●

●

●
●●
●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●
●
●●
●
●●
●

●

●

●

●
●
●
●
●
●
●
●●●●
●
●●
●
●
●
●●●
●●●●
●●●
●●●●●●●●
●
●●●
●
●
●
●●●●●●●●●●●●
●
●●●
●
●●●
●

●

●●●
●
●
●
●
●
●
●

●●●
●
●●●●●●●
●
●●●●
●
●●●
●

●

●

●

●●
●

●

●
●●●
●

●

●
●
●

●
●

●●●
●
●
●
●●●●

●

●

●●
●

●

●●
●

●

●
●
●
●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●●

●

●
●

●

●

●
●
●●●●
●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●
●●
●

●

●●●
●

●

●●
●

●

●

●

●

●
●
●
●
●●
●

●

●

●
●●●●●
●●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●
●

●

●●
●
●
●
●
●
●

●
●
●
●●●●
●●●
●●
●
●
●
●●
●
●
●●●
●●●
●●●●
●●
●●●●●●●
●
●●●●●
●

●

●

●

●
●●●●●
●
●

●

●

●
●

●

●

●

●

●
●
●
●
●●●●●
●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●
●

●●●
●
●●●
●●●●●●●●
●
●●●●
●●
●●
●●●
●
●●●●●●●●●
●●●
●
●
●●●
●●●
●●●●●●●●
●
●●●●●
●
●●●●
●

●
●●
●
●
●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●
●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●●
●
●
●●
●

●

●

●●

●

●

●

●

●
●
●●
●
●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●
●●●
●
●

●

●
●●●●●
●
●●
●

●
●●
●

●
●

●

●
●●
●
●
●
●●

●
●●

●
●
●

●

●
●●●
●
●
●
●●
●

●

●●
●
●
●●●
●
●
●
●
●●●
●●
●
●●●●●
●

●

●
●●

●

●

●

●●●●
●

●

●

●
●●

●

●

●

●
●
●●●
●
●
●
●
●
●
●
●●
●●●
●●
●
●
●

●
●●●●●
●
●●●●

●

●

●

●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●
●●
●●●●●

●

●●●●
●●●
●●●●●●●●

●

●
●
●●●
●
●
●
●
●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●●
●
●●
●
●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●
●●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●
●●●●●
●

●

●
●
●
●
●
●

●●●●●●
●
●
●
●●●●●●
●●●●●
●●●●●●●●●●●●●

●

●
●
●●
●

●
●●●
●
●●●●●●●●●
●●●●●●●●
●
●
●
●●
●●
●
●●●●●●●

●

●

●●
●

●
●

●

●
●
●
●
●

●

●
●

●

●

●
●●
●

●●
●●
●
●
●
●
●
●

●

●

●
●●●
●
●
●
●
●●●●
●
●
●●●●
●●●
●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●

●
●
●
●
●●
●
●
●
●
●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●

●
●●●
●●
●
●
●●●
●●●●●
●●●●●
●
●
●
●
●●●●
●
●●

●
●
●●
●
●
●●●●●
●
●●●●●●●●●●●●●●
●
●●●●
●●●●●
●●●●●
●●●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●
●

●

●●
●●
●●●●
●
●●
●●
●●●●●●●
●
●
●●
●●●●●●●●●●
●
●●
●●●●

●●●●●●●●●●
●

●●●●●●
●
●
●●●

●●
●
●
●

●●●

●

●
●
●

●

●

●●
●

●

●
●●●

●

●
●

●
●
●●
●
●
●
●

●

●
●
●

●
●
●●●●●●
●●●
●●●
●
●
●●●●
●
●
●

●
●
●
●●●●●

●

●

●

●

●●

●

●

●
●
●
●
●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●
●●●●●●●●●●●
●

●

●

●

●

●

●●
●●
●
●●●

●

●

●

●

●
●
●
●
●●●●●
●●●
●
●
●
●
●
●
●●●
●●
●
●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●

●

●●●
●
●●●
●
●
●
●●

●

●
●

●

●
●●●●

●

●
●
●

●
●
●
●●●
●

●

●

●●●
●

●
●
●
●
●
●
●●●
●●
●
●
●
●
●
●

●
●
●●●●

●●

●

●
●
●
●●●●
●●●
●
●
●

●

●●
●

●
●●●●●
●

●
●

●

●

●
●
●●
●

●
●
●

●

●

●
●
●
●
●●●
●●●●●●
●
●●●
●●
●●●
●●●●●
●
●●
●
●●
●
●
●
●
●●●
●

●

●●

●

●
●●
●
●
●●●●●●●●●●
●●●●
●
●
●●●●
●

●
●
●

●●●
●
●
●
●●●●
●
●●
●
●
●
●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●

●
●●
●
●
●●
●

●
●●
●●
●
●

●●
●

●
●
●
●
●
●●●●●●
●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●●●●
●●●●●●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●
●

●●

●
●
●
●●
●
●●●●
●●●

●

●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●●

●

●

●●

●
●
●

●

●

●

●

●
●
●●
●●●
●●●
●
●
●
●
●
●●●●●●●●●●
●
●●
●

●

●

●
●
●

●
●
●
●
●
●●
●
●
●●
●●
●
●
●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●●●●
●

●●●
●
●●
●●
●●●●●●●●
●
●●●●
●●●●
●

●●
●●●
●●●●●●
●

●

●●
●
●●

●●
●
●
●
●
●●●
●●

●
●
●●●
●
●●
●
●●●●●●●●●

●

●●

●●

●

●

●●
●

●

●
●
●
●●
●
●●●
●●
●●●
●●
●
●
●
●●
●●●●●●●●
●

●●●
●
●
●●
●●●
●
●
●●
●●
●
●
●●●●●
●●
●●●●

●

●●
●●●●●●●●
●●
●
●●●●●●●●●
●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●●●
●
●
●●●●
●●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●
●
●●●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●●●
●
●
●●
●●
●
●
●●
●
●●
●●●●●●●
●●●●●●●●●
●●●●
●
●
●●●●
●

●

●●
●
●
●●
●
●●
●
●●●●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●●
●●●●●●●

●
●●●●
●
●●●●●●●●●
●

●
●●●●●●
●●●●
●
●
●
●
●●
●●●
●●
●
●

●

●●
●●
●

●

●
●

●
●●

●

●
●

●
●

●●

●

●

●
●
●●●

●
●
●
●●

●
●
●
●

●
●
●●

●

●
●
●
●
●
●
●
●
●●●
●
●●●

●

●●
●●●
●
●●●●

●

●

●

●
●

●

●

●
●●
●
●●●●
●
●
●●●
●
●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●

●

●●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●

●

●

●
●

●

●
●●●
●

●

●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●●

●

●
●●●●●●●●●●
●●●
●●●●●
●
●
●
●
●●●●●●●●●●●●●●●
●
●●●●
●●
●●●
●●
●
●●●
●
●●●
●●●●●●●●●●
●
●●
●●
●
●
●●●
●●●●●●
●
●●
●
●
●
●●●
●
●
●
●●
●
●●●
●●
●

●

●

●
●

●

●

●

●
●●●●
●
●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●
●

●
●
●
●●
●

●

●
●

●

●
●●●●●
●
●
●
●●
●●
●●
●
●●
●●●
●●
●●●●●●●●
●
●

●
●●
●●
●
●●●
●●●●
●

●

●●●

●
●●
●●●●●●
●
●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●
●
●●●●
●

●

●

●●

●

●●

●

●

●●●

●

●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●
●
●●
●
●
●
●
●●
●

●
●
●●●●
●
●
●
●●
●
●●
●
●●
●

●●
●
●●●●
●●
●

●

●

●
●

●
●●●●●

●

●
●●
●●

●

●●

●

●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●
●●●●●●●●
●
●●●
●●
●
●●●
●●●
●●●
●

●
●
●
●
●

●
●

●
●

●

●●

●
●
●●●
●
●
●
●
●
●
●●●
●●●●●●●
●●
●
●●
●
●
●

●●●
●
●

●

●
●

●

●

●
●
●●●

●

●●●●
●
●
●●●
●●

●

●

●●●
●●
●●
●

●
●
●●●●

●
●
●●
●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●

●

●
●●●
●

●

●

●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●
●
●
●
●●●●
●
●●
●

●

●●
●
●
●
●
●
●
●●
●

●

●
●

●●●
●
●

●
●
●●

●

●

●
●●●●●
●
●
●●●●●
●
●●
●

●

●●

●
●
●●
●
●

●●

●

●
●
●
●
●
●
●
●●●●●●
●●
●●
●

●

●

●

●
●●●●●●●
●

●
●
●
●
●●●●
●

●●

●●

●

●

●●

●●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●
●
●
●
●
●●●●●●●●
●●
●●

●

●●
●●

●

●

●

●●
●●
●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●
●●●●
●●
●
●
●●

●
●
●

●
●
●
●
●●●●
●
●●●
●
●

●●●●

●

●●

●

●

●

●

●

●
●

●
●●●

●

●
●
●●●
●
●
●●
●●●
●
●
●

●

●

●●

●

●

●

●

●●
●

●

●
●
●
●
●
●
●
●
●●●
●●
●●
●
●
●
●

●
●

●
●

●

●●
●

●
●
●
●●●●
●●●●
●●

●

●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●●
●●●
●
●
●●●

●

●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●

●

●

●
●
●

●

●

●
●
●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●●●
●
●
●
●
●
●
●
●
●●●●
●
●●●●
●
●●●

●

●

●●
●
●

●

●
●
●
●
●●●

●

●

●

●

●

●
●
●
●
●
●
●
●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●●●
●●
●●●●
●
●
●
●

●

●

●
●●
●

●

●
●
●
●
●
●
●●●
●●

●

●●
●

●

●

●

●
●
●

●
●

●
●
●●●●●
●
●
●●
●●
●●
●
●●●●
●
●●
●

●●
●

●
●●
●

●●
●

●

●

●●

●

●

●

●
●
●

●●
●
●

●

●
●
●
●
●
●●
●

●
●
●●

●●

●●●
●
●●
●
●
●●●●
●●
●
●
●●●
●
●
●●●●

●
●●
●
●
●●
●●●
●●●●
●

●●●
●
●
●
●
●
●●
●●
●
●
●●●●●●●●●●●●●
●

●

●

●

●●●
●
●
●
●
●
●
●
●
●●●●
●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●

●

●

●

●●

●

●

●
●●
●
●

●

●
●●●●●
●
●

●

●
●

●

●
●
●
●●●●●●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●

●

●

●
●●●
●
●

●
●
●●

●

●
●
●

●

●

●

●

●
●
●
●●●●●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●●
●●●●●
●●●
●
●●●●●●●●●●●

●

●
●●

●

●

●●
●

●

●

●●●●●
●
●●●●●●
●●●●

●

●

●

●

●●●
●
●●●●

●

●

●●
●

●

●
●
●
●

●

●

●

●
●
●●●
●
●
●●
●●

●●●
●●
●●●
●●●

●

●●
●●
●●●●
●●●●●●●●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●
●

●

●●
●
●
●●

●●
●●
●
●
●
●
●●●●●●
●

●●●
●
●●●
●●
●●●●●●●●●●●
●
●
●

●
●
●
●
●●●●●●●●●●

●
●●●●

●

●
●●
●

●

●
●
●

●
●●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●

●

●
●●●
●
●
●
●●●●●●●
●
●●●●
●

●●

●
●●

●
●

●

●

●●

●

●

●

●
●
●

●●●
●
●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●●

●

●

●

●●
●
●
●
●
●
●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●

●

●●
●●
●●
●
●
●
●●●●●●●●●●
●●
●●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●●
●
●●●
●●●●
●
●●
●

●

●●

●
●
●
●
●
●
●
●
●●●
●●●●●

●

●

●

●
●
●
●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●
●
●
●●
●
●●
●●
●●
●
●
●
●●
●●
●
●
●●●●
●●●●

●●
●●●●●●●

●

●●
●
●●

●

●

●

●

●

●
●●●
●

●●

●

●

●●

●

●
●

●

●

●●
●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●●
●
●●

●
●
●●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●●●
●
●●

●

●

●
●
●

●

●

●
●

●

●
●●

●

●●
●●●
●●●
●
●
●
●●●
●

●●●●●●●
●

●

●●
●

●

●
●

●

●
●
●
●
●
●
●
●●●
●
●●●
●●●●●
●

●

●●
●
●
●
●●●●●●●
●●●●●

●●

●
●
●●
●
●●●●●●●●●●
●
●

●
●●●●

●●
●

●

●
●

●

●
●
●

●●
●●

●

●

●
●●
●
●
●
●
●
●
●●
●●●●●
●
●●●
●●

●

●

●●

●

●

●●
●
●●
●

●

●
●
●
●

●
●
●●
●●
●
●●●●●
●
●●●●●
●●●

●●●
●
●●●●●●●
●●●●●●●●●●●
●●●
●●
●●●
●
●●●●●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●
●
●
●
●●
●
●
●
●
●
●●●●●●●●●
●●
●●

●
●●●

●

●

●

●

●
●
●
●●●●●●●●●●
●●
●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●●●●
●
●●

●

●

●

●●

●

●

●

●
●●
●
●●●●
●●●
●●
●

●
●●●
●

●

●●●
●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●●●●
●
●
●
●

●
●●●●●
●●
●
●
●
●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●
●●●
●
●

●

●●

●

●

●

●
●●●
●●●●

●●●●
●

●
●●●
●

●●

●

●
●
●●●
●
●●●●●●
●●●●●●●●
●●
●

●

●

●

●

●
●
●

●
●
●
●

●

●
●●●●
●
●●●●●●●
●●●●●
●
●●●●●●●●
●
●●●●
●

●
●
●
●
●●
●
●
●●●●●●●●●●●●●●●
●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●

●

●

●

●
●●●●●
●●
●
●●●●●●●
●●
●
●

●

●
●
●
●

●

●

●
●●

●

●●
●
●●●●
●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●●●●●●●●●●●
●●
●
●●●●●●●●
●●●●●●
●
●
●

●

●

●●
●

●

●●●
●●●
●
●
●
●
●
●●●
●●
●
●
●●●
●●●●
●
●
●●●●●●
●
●
●
●
●
●
●
●●
●●
●●●●

●

●
●

●

●
●●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●
●
●●
●
●
●
●
●
●
●●●
●●

●
●
●

●

●

●
●●●●●●●

●
●
●
●●
●
●
●●●●
●●●●
●●●●●●
●●●
●
●

●

●

●

●

●

●
●

●

●
●
●
●
●
●●
●
●
●
●
●
●
●●●●
●

●

●
●
●

●

●
●

●

●●

●

●
●

●

●

●●
●

●

●●●●
●

●

●
●
●
●
●●●●●●●
●

●

●
●
●
●
●●●●
●●
●●
●●
●
●
●
●
●●●●●●
●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●
●●

●

●

●●
●
●
●

●
●
●
●
●
●
●
●

0

50

100

150

200

19
65

19
66

19
67

19
68

19
69

19
70

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

M
ea

n 
di

sc
ha

rg
e 

(m
3  s

-1
)

Time Series (1965−1984)

Discharge (mean ± SE bars)
Observed
Simulated



Chapter 2   Hydrological Datasets 

 

 52 

across 20 years (1965-1984). This subset was then compared with metrics calculated 

from the above described simulated flow data for the same time period and grid cells 

matching the gauge sites in the observed dataset. Julian day and hydrological year 

information were added to each dataset, which were then arranged to match the format 

outlined through EflowStats. The 165 metrics calculated from the observed and 

simulated streamflow data were then compared using Spearman’s Rank correlation 

coefficient (r). The specific metrics that were correlated (r=>0.5) were calculated for all 

grid cells in the stream network (n=85,363). 

Spearman’s correlations of the observed and simulated hydrological metrics for 

518 sites are set out in the supplementary material (Supplementary Table S2.1). Of the 

165 metrics, 53 were sufficiently (r >=0.5) positively correlated with their observed 

equivalent. Positive correlations were predominantly found for metrics describing mean 

values of streamflow, e.g. mean monthly flow. Figure 2.3 shows the mean streamflow 

for the same 518 sites and time period (1965-1984). 

While the simulated streamflow was consistently lower than the observed one 

throughout the time series, there is a good match in the recurring temporal trends of the 

streamflow. It is this match in the long term trend which indicates that the streamflow 

predicted here can be used to derive hydrological metrics for large spatial scales, at high 

spatiotemporal resolutions.  

2.6.3 Temporal validation 

To validate the predictions temporally, the data were split as above and Kling-Gupta 

Efficiency (KGE, Kling et al. 2012), RMSE and the coefficient of determination (R2) 

were calculated on the observed vs. simulated values in the testing dataset, across the 

entire time series of 64 years through the R package HydroGof (Zambrano-Bigiarini 

2014).  

From a total of 1,014 sites, 69 had KGE over 0.6 (mean = -1.58, n=1,014) and 

352 had R2 over 0.5 (mean = 0.4, n=1,014). In addition, RMSE for the testing data 

shows a mean of 29.67 (m3 s-1) and the training data a mean of 29.67 (m3 s-1). Full 

values are shown in the supplementary material (Supplementary Table S2.2). 

We are aware that the majority of these results do not meet the requirements for 

most hydrological applications (Moriasi et al. 2007). However, the objective of this 

study was to produce streamflow data to be used for ecological predictive models, 
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therefore we performed GLM models on metrics calculated with both observed and 

simulated values.  

For this purpose, benthic macro-invertebrate occurrence data for Germany were 

collected from federal state environment agencies (see supplementary material for full 

species list, Supplementary Table S2.3). Species presences were defined as those with at 

least one occurrence per site over the period 2005-2013 and occurring at more than 19 

sampling sites across all Germany. The gauging sites were paired with species sampling 

sites in QGIS (QGIS Development Team 2016) within a buffer of 3 km. To ensure the 

sample sites were placed on the original stream, the original flow accumulation value 

had to be within 10% of the flow accumulation of the newly allocated grid cell 

(Domisch et al. 2017). A total of 327 sites remained that had associated observed and 

simulated discharge, as well as species presence data. A total of 34 species with over 20 

presences were modeled. The gauging sites were split into 3 categories of ranging KGE 

values: low (KGE < 0, no. of sites= 108, no of species =20), mid (KGE > 0 < 0.4 no of 

sites= 116, no of species =32) and high (KGE > 0.4, no of sites= 103, no of species 

=27). Two sets of four IHA metrics (TA1, TA2, MH21, MH8, see Supplementary Table 

S2.1 for full descriptions (Colwell 1974, Hughes and James 1989, Olden and Poff 2003) 

were calculated with observed and simulated discharge, respectively. 

For each KGE category we performed a GLM to predict species distribution for 

Germany. The comparison of the skill, which is defined as the residual deviance and 

Akaike Information Criterion (AIC), from each GLM is illustrated in Figure 2.4 with 

full results shown in the supplementary material (Supplementary Table S2.3), where 

lower values indicate a better fit. 

The validation of the ecological models showed that the simulated streamflow 

yielded almost the same model accuracy as the ones calculated with observed 

streamflow. A Wilcoxon test was applied as a statistical test for difference on both the 

AIC and the residual deviance. Overall, there was no difference between models applied 

with observed or with simulated predictors (low: Wilcoxon test, p = 0.69; mid: 

Wilcoxon test, p = 0.85; high: Wilcoxon test, p = 0.96). The results of the GLM suggest 

that the data predicted from this study is adequate for the purpose of ecological 

predictive modeling at the scale of Germany, encompassing steep environmental and 

hydrological gradients that facilitate the model to discriminate between suitable and 

non-suitable hydrological conditions for the species considered here. 
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.  

Figure 2.4: Comparison of observed and simulated GLMs across 3 KGE thresholds. Low (KGE 

< 0, no of sites= 108), mid (KGE>0<0.4 no of sites= 116) and high (KGE > 0.4, no of sites= 

103). The columns represent a) mean deviance, b) mean AIC, on total n=34 species, sub-divided 

per KGE category; low (n=20), mid (n=32), high (n=27) with standard error bars. 

 

2.7 Usage Notes  
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and temporal resolution is challenging in terms of data availability and computing 

effort. Our simple regression model was able to overcome these challenges while still 

rendering adequate predictions regarding the occurrence of benthic macro-invertebrate 

species predicted using SDMs. The set of 53 IHA metrics provided as downloadable 

GeoTIFF files (Data Citation 1) describe important aspects of the flow regime and has 

the potential to be applied in a number of freshwater investigations such as predictive 

modeling (e.g. SDMs) (Domisch et al. 2016) that are relevant for conservation and river 

management plans. The 64 year time series of simulated daily streamflow data are also 

provided as downloadable NetCDF files (Data Citation 1). Thus, the user can calculate 

IHA metrics for any other time period within the 64 years provided for any catchment 

or any river section of the 1 km German stream network.  

Available data from GRDC and EarthEnv (Domisch et al. 2015a), together with 

the procedure provided through an R script, creates an accessible method for calculating 

both daily streamflow data and IHA metrics within any other geographical region where 

gauged streamflow data are available. This is especially helpful in areas with 

insufficient resources to implement complex models.  

2.7.1 Limitations 

We note that the daily streamflow values are estimated assuming conditions where most 

of the discharge is driven by precipitation. Hence, the user should be aware of the 

hydrological processes that drive the streams within the study region of interest such as 

the influence of groundwater (Guse et al. 2014) and soil infiltration processes. The user 

should also validate the results if applying the model in headwaters and during extreme 

events. 

 From the preliminary analysis we note that our model worked very well when 

applied in lowland regions; however, the models applied within the alpine region 

performed least well. Rivers in lowland regions are typically fed by ground water (Guse 

et al. 2014). Through soil infiltration and groundwater processes, streamflow has a 

slower response to precipitation. As we applied a seasonal resolution of precipitation, 

the delayed response time is incorporated within the model. The relatively low number 

of gauges used within the alpine model (Table 2.1) compared with the mountain and 

lowland regions, may partially explain its relatively low performance. 
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Figure 2.5: Time series of observed and simulated discharge (mean ± SE bars) over lowland 

ecoregion in May & June 2013. Columns; seasonal precipitation value for that period, points; 

daily mean ± SE bars observed and simulated discharge values.  

 

Another explanation could be that the highly varied topography creates a 

complex landscape and hence complex precipitation-run off interactions that are highly 

impacted by daily events. Here, attributes such as altitude and steep mountain slopes are 

major factors in determining streamflow regimes by distributing rainfall to streams 

much quicker than in lowland areas. In addition, a prominent feature of alpine regions is 

the existence of glaciers and increased snow cover. These features largely control flow 

regimes through the periodical storage and melting of rainfall, which is released on 

various time scales from days to years (Jansson et al. 2003). This time lag, together with 

highly varied precipitation patterns (Isotta et al. 2014) and daily fluctuations in the 

melting of snow (Warscher et al. 2013), is not reflected in the seasonal precipitation of 

our model and is therefore not captured.  
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Figure 2.6: Distribution of predicted negative discharge values per grid cell. a) all grid cells that 

show > 5% negative values over the time series, b) subsetted grid cells > 5% negative values 

over the time series. Total grid cells = 85,363; grid cells > 5% negative values over days in time 

series (n=23,376) = 2,645 (red dots). Max % negatives = 6.93%.  

 

The outliers that are apparent in Figure 2.2b (lowland) represent low performing 

models (mean R2 = 0.003 +/- 0.0005, 1st-18th June 2013). This time period coincides 

with an extreme flooding event in June 2013 (The German Federal Institute of 

Hydrology (BfG) 2013) (Figure 2.5). There was a very apparent peak in mean observed 

discharge (n=77), which rose from 157.3 m3 s-1 on 27th May to over 588.5 m3 s-1 on 9th 

June (14 days). The outlier on May 31st represents data from fewer gauges (n=24) than 

available during the remaining days (n=77 for all days), possibly because several 

stations temporarily ceased operating during the flood. It is evident that extreme 

flooding events are difficult to capture and predict in the lowland region with any 

modeling approach (Figure 2.2). The flooding event in June 2013 was a result of heavy 

rainfall between 31st May and 18th June. This heavy rainfall was not reflected in the 50-

year average precipitation value for that month in our model, which resulted in the 

model failing to converge, thus producing low performing predictions. In contrast, 

models applied in both mountain and Germany regions performed well for the same 

time period (mountain mean R2 =0.99, Germany mean R2 = 0.99).  

 



Chapter 2   Hydrological Datasets 

 

 58 

A number of negative discharge values were predicted, which arise when the 

linear model produces a negative intercept, corresponding to the value of flow when the 

precipitation is equal to zero. Predicted negative discharge values are reported as a 

percentage of all sites over the entire time series. The total number of negative 

streamflow values was 0.99% of the entire extrapolated dataset (n = 1,995,445,488 grid 

cells over the time series), considered a negligible amount. Overall, only 3.09% 

(n=2,645) of all grid cells for the stream network of Germany (total n=85,363) yielded 

more than 5% negative values (maximum for one cell 6.93%) over the entire time series 

(n=23,376 days). The distribution of grid cells with negative flow values (Figure 2.6a) 

showed a strong pattern towards the headwaters of the stream network (Figure 2.6b). 

Although obvious, it is important to note that negative flow values are 

impossible and are to be understood as regions where no discharge is predicted. 

However, the simplicity of the model together with basic hydrological theory can, to a 

great extent, explain this issue. On occasions, the model produces a strong slope for the 

linear model, which could be induced by the difficulty of capturing the time lag of 

precipitation into rivers with high volume flow. The strong slope results from the direct 

association of flow with precipitation, without considering other hydrological processes 

such as (ground)water storage, evaporation and evapotranspiration from soil (Beven 

2004), interception (Brutsaert 1982) and surface depression storage (Kiesel et al. 2010). 

If these factors were to be included, the model would likely show a non-linear response, 

e.g. causing zero flow for regions below a certain flow accumulation threshold. This 

could potentially decrease the number of negative flow values. However, such 

relationships are only possible with significantly more complex models and beyond the 

goal of our approach to use a simple model. 
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4.1 Abstract 

For lotic freshwater Species’ Distribution Models (SDMs), applying environmental 

variables that describe flow regime is a priority, to be consistent with flow-ecology 

theory. However, most studies to date only include data describing climate or stream 

related surrogates. We calibrated four SDMs using different combinations of three 

predictor sets on 92 macroinvertebrate species. We compared model performance (TSS) 

of all combinations of predictor sets, i.e. four model configurations. The relative 

influence of each predictor set on the spatial distribution of the community was obtained 

from both the influence of individual predictors (relative importance) from SDMs and a 

variance partitioning analysis. SDMs with bioclimate and hydrology configurations 

performed significantly better overall (Mean TSS = 0.68 ± 0.02), demonstrating the 

lowest unexplained variance (0.29) and predicted significantly larger range sizes (Mean 

no. of presences; 3482.6 ± 129.1) with a range overlap of 47.6 ± 1.6 to 59.1 ± 2.1%. In 

terms of both variable importance and proportional variance, bioclimate was found here 

to be the most important factor for species’ distributions. Despite the importance of 

bioclimate, hydrology contributed to a higher proportion of explained variance, 

unrivalled by other SDM configurations Individually, however, the hydrology data 

implemented here had the lowest influence on species’ distribution most likely due to 

scale-dependency. Hydrology describes the discharge regime, which highly influences 

macroinvertebrate distribution and may have resulted in larger predicted range sizes. 

The impact of including hydrology in SDMs, on predicted range size, has important 

implications for river management decisions.  

4.2 Introduction 

Species distribution models (SDMs) are ecological predictive models that are 

increasingly used to inform and complement large scale distribution analyses to aid 

conservation efforts (Araújo et al. 2011, Guisan et al. 2013, Eaton et al. 2018). In river 

ecosystems, however, SDMs have only relatively recently been applied due, in part, to 

1) complex interactions between the numerous driving factors of river systems and 2) 

insufficient data describing the stream environment.  

Hydrological flow regime is said to be the “master variable” (Power et al. 1995) 

of lotic habitats and critical to the ecological stability of river ecosystems (Poff et al. 

1997). It is highly variable, both spatially and temporally, making it a core driver of the 
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physical structure of river habitats and a regulator of species distribution and abundance 

(Resh et al. 1988, Poff et al. 1997). In most regions on earth, precipitation is the first 

and foremost driver of streamflow, but flow run off patterns are shaped by complex 

interactions between topography (e.g. hillslope), climate (e.g. temperature), geology 

(e.g. porous rock) and land use (e.g. forests) throughout the stream network.  

Many river species are dependent on undisturbed flow regimes for either all, or a 

very important part of their life history (Lytle and Poff 2004). Numerous 

macroinvertebrate species depend on flow related cues that directly or indirectly initiate, 

for example, breeding period (Hancock and Bunn 1997), development (Gray 1981) and 

emergence & metamorphosis (Peckarsky et al. 2000, Lytle 2002). Therefore, species 

have evolved to the habitat heterogeneity in rivers caused by the variability in flow 

regime e.g. free flowing water, pools & riffles, low/high flows, intermittent and 

ephemeral flows. With the increasing changes in hydrological regime due to climate 

change, e.g. severity and frequency of floods and droughts, it is essential to understand 

the influence streamflow has on the distribution of species, so that suitable 

recommendations can be made to restore or conserve river systems successfully.  

Recently, data describing stream ecosystems are becoming available e.g. stream 

specific climate and land use (Domisch et al. 2015a), hydrology (Barbarossa et al. 2018, 

Irving et al. 2018), river classification and characteristics (Hydrosheds, Ouellet Dallaire 

et al. 2019)  as well as dams and reservoirs (globaldamwatch.org, Lehner et al. 2011). 

Despite this increasing availability, there are still a limited number of studies that 

directly investigate the influence of flow regime on riverine species distribution. Of 

these, most focus on climate (e.g. Domisch et al. 2011, Ihlow et al. 2012, Markovic et 

al. 2014, Ruiz-Navarro et al. 2016, Kärcher et al. 2019, Rodríguez-Merino et al. 2019) 

and implement precipitation variables as surrogates of hydrological variables (e.g. 

Domisch et al. 2019). While climate is certainly a dominant factor in driving species 

distribution and abundance, its sole use may be misrepresenting the effect on species’ 

distributions due to correlating factors, such as topography, which may impact 

predictions, leading to ambiguous conclusions (Real et al. 2013).  

In addition to climate, some studies have used watershed characteristics such as 

river density to model the distribution of water birds (Zeng et al 2015), and river 

drainage area for fish distribution (Maloney et al 2013). These examples show that river 

related topography has an influence on species’ distribution; however, they only 

marginally describe the flow regime that influences species’ distribution and abundance. 
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Some recent attempts have been made to include, at least, some aspects of flow regime 

e.g. high flow days (Kuemmerlen et al. 2015a) as well as aggregated flow statistics , 

e.g., mean annual flow (Kuemmerlen et al. 2015b, Pyne and Poff 2017), which were 

shown to be the of high relevance to macroinvertebrate distribution. 

There are 19 bioclimatic variables openly available from worldclim.org 

(Hijmans et al. 2005, Lehner et al. 2008, Fick and Hijmans 2017) which are applied 

frequently in SDMs and other predictive modeling studies. These data are local grid-cell 

based, and include variables describing temperature and precipitation. Although these 

data are useful in predictive modeling, they do not describe the stream ecosystem due to 

the lack of a catchment perspective that provides information on upstream zones. The 

environmental conditions of the upstream environment have important consequences for 

the species living downstream (Allan 2004) therefore, it is important to include such 

aspects when predicting species’ distribution. The dataset from 

www.earthenv.org/streams (Domisch et al. 2015a) is based on, among others, the 19 

bioclimatic variables from WorldClim. However, it differs in that the bioclimatic 

information is accumulated down the stream network, accumulating information from 

the upper subcatchment in every point along the stream network. This dataset, therefore, 

includes information specific to the stream environment, an aspect which has proven to 

be highly relevant to distribution predictions of freshwater biodiversity (Vinson and 

Hawkins 1998, Malmqvist and Rundle 2002, Kuemmerlen et al. 2014). However, 

because flow accumulation is used as the mechanism to relate environmental variables 

with the stream network (see Domisch et al. 2015a for details), the accumulative feature 

causes high correlated among many of the variables and with streamflow (Kuemmerlen 

et al. 2014, Kuemmerlen et al. 2015a). Because such data include aspects of both 

climate and hydrology, disentangling the relative influence of either factor on species’ 

distribution becomes problematic. 

The dataset from Irving et al. (2018), includes 53 of the Indicators of 

Hydrological Alteration (IHA) Metrics that describe the magnitude, frequency, timing, 

duration and rate of change of flow events (Olden and Poff 2003). IHA metrics are 

commonly used in flow-ecology assessments (e.g. Kakouei et al. 2018) and 

environmental flow research (Poff et al. 2010, Peres and Cancelliere 2016) as they 

comprehensively describe hydrological flow regime. These metrics, however, are rarely 

included in river SDMs (but see Irving et al, 2019). As the information contained in the 
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IHA metrics is directly related to the hydrological regime of rivers, it is logical to 

suggest that this data could positively impact predicted species’ distributions. 

The three datasets described above are important to the distribution of river 

biota; however, the separate influence of each driver, remains unknown. By 

disentangling the influence these factors, we can build on existing knowledge regarding 

the abiotic drivers of species distribution with a view to inform management decisions 

in formulating wise conservation or restoration strategies. 

4.2.1 Aims and objectives 

To investigate the separate influence of climate and hydrology, we applied SDMs on a 

community of benthic macroinvertebrates with three datasets describing either 1) 

climate only, 2) hydrology only and 3) information describing both climate and 

hydrology (hydroclimate).  We evaluate the influence of each predictor set on species’ 

distribution by 1) investigating individual variance explained as well as shared variance 

explained by each dataset, 2) assessing the variable importance from the SDM of each 

predictor set on the community. In addition, we compare how well each model 

configuration performs by evaluating the differences in 1) model performance, 2) 

predicted range size as well as range overlap of the predictions.  

By comparing the differences in model performance, variable importance and 

explained variance, we expect to determine the individual influence of both climate and 

hydrology, and to what extent these datasets influence predicted species’ distributions. 

We hypothesize that SDMs including the recently developed hydrological dataset will 

improve SDM performance. Further, we analyze how the choice of predictor datasets 

influences the predicted distributions.  

4.3 Method  

4.3.1 Study area 

The study area was the Ems (17,934 km2) and Weser (46,306 km2) catchments located 

in Germany (Figure 4.1). Due to restricted access to biological data outside Germany, 

these catchments were chosen as they fully lie within Germany. The two catchments are 

adjacent to each other and cover two ecoregions: Central Plains (lowland) and Central 

Highlands (mountain, sensu Illies 1967).  
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The stream network for the study area is based on a layer in GEOTiff raster 

format of a modeled 1 km2 gridded stream network with a total of 13,749 cells. The 

network was downloaded from earthenv.org/streams, which was derived from 

Hydrosheds (www.hydrosheds.org, 30-arc-second spatial grain Lehner et al. 2008), 

which in turn is based on the SRTM dataset (www.srtm.csi.cgiar.org, Jarvis et al. 2008).  

4.3.2 Biological data  

Macroinvertebrate species were sourced from German federal state agencies and 

collected following the sampling protocol outlined in Haase et al. (2004). To be 

included in the study, each species had to be identified to species level and have at least 

20 occurrences within the study area. A total of 92 species occurrences at 1258 sites 

were available through this process, in a presence only format and covering the period 

between 2005 and 2013. 

4.3.3 Model set-up 

Three predictor sets containing information that describe 1) climate (bioclimate, bC), 2) 

flow regime (hydrology, H), 3) climate and hydrology combined (hydroclimate, hC) 

were applied in this study. Hence, we set up four model configurations to compare all 

eventualities: 1) hydroclimate & hydrology (hC-H), 2) bioclimate & hydrology (bC-H), 

3) hydroclimate & bioclimate (hC-bC), 4) hydroclimate, bioclimate & hydrology (hC-

bC-H). By comparing each predictor data set in the relative influence of their individual 

predictors within SDMs, (relative importance) and the explained variance of each 

predictor set from the variance partitioning analysis, we can identify the influence of 

each climate or hydrology predictor set on the spatial distribution of the community. 

Here, the full model (hC-bC-H) represents the full coverage of environmental predictors 

used in our study; therefore, it is intended for comparative purposes only.  

4.3.4 Environmental Predictors 

The predictor variables for hydrology, hydroclimate and bioclimate used in this study 

are all openly sourced data and freely available to the user. All datasets are available in 

raster GEOTiff format.  
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Figure 4.1: Study area of Ems (green) and Weser (pink) catchments. Location within Germany, 

along with ecoregion boundaries (red lines). 

4.3.4.1 Hydrology 

The 53 hydrological metrics derived from Irving et al. (2018) were applied in this study. 

These variables are based on the Indicators of Hydrological Alteration (IHA metrics) 

outlined in Olden and Poff (2003), which describe the various aspects of flow regime: 

duration, timing, magnitude, frequency and rate of change of flow events.  

In brief, streamflow was extrapolated for the German stream network through a 

weighted linear regression using accumulated seasonal precipitation from 

earthenv.org/streams (Domisch et al. 2015a). The daily streamflow (m3 s-1) was then 

applied as input to calculate the IHA metrics via Eflowstats (www.github.com/USGS-

R/EflowStats, Henriksen et al. 2006, Archfield et al. 2014). The data have been found to 

be affective for use in predictive modeling (see Irving et al. 2018 for further details). All 

53 IHA metrics were available for the time period 1985-2013 for the Ems and Weser 

catchments.  
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Table 4.1: Predictors used in each model configuration as chosen by BRT variable selection. hC 

= Hydroclimate, bC = Bioclimate, H = Hydrology 

hC-H bC-H hC-bC hC-bC-H 

Bio 08 (hC) Bio 02 (bC)  Bio 02 (bC) Bio 02 (bC) 

Bio 09 (hC) Bio 04 (bC) Bio 04 (bC) Bio 04 (bC) 

Bio 12 (hC) Bio 08 (bC) Bio 08 (bC) Bio 08 (bC) 

MH21 Bio 09 (bC) Bio 09 (bC) Bio 09 (bC) 

DH1 Bio 15 (bC) Bio 15 (bC) Bio 15 (bC) 

 MH21 Bio 08 (hC) Bio 08 (hC) 

 DH1 Bio 09 (hC) Bio 09 (hC) 

  Bio 12 (hC) Bio 12 (hC) 

   MH21 

   DH1 

 

These metrics were originally derived from both gauging station daily 

streamflow data and seasonal precipitation also sourced from earthenv.org/streams 

(Domisch et al. 2015a). It is therefore important to note that some degree of correlation 

is to be expected with the hydroclimate variables used in this study (Bio12-19). 

Nonetheless, the additional high-resolution streamflow data adequately adds various 

aspects of flow regime at a high temporal resolution and therefore better represents 

hydrology. 

4.3.4.2 Hydroclimate 

Hydroclimate variables were downloaded from earthenv.org/streams (Domisch et al. 

2015a), which are based on the 19 bioclimatic variables available from Worldclim 

(Hijmans et al. 2005, Lehner et al. 2008) and contain variables describing temperature 

and precipitation. The bioclimatic variables accumulate down the stream network. 

Therefore, each individual grid cell includes information from all upstream cells. The 

accumulative nature of the data is developed through flow accumulation, which 

correlates with streamflow, and hence includes an aspect of hydrological information. 

This dataset therefore contains information describing both climate and hydrology, 
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embedded within the values.  

4.3.4.3 Bioclimate 

The 19 bioclimatic variables available through Worldclim (Hijmans et al. 2005, Lehner 

et al. 2008) were downloaded in 1 km (30 arc secs) resolution. These variables are 

commonly used in predictive modeling applications. All 19 variables were masked to 

the base layer 1 km2 stream network described above. The bioclimate dataset differs 

from the hydroclimate dataset in that it does not include the accumulative aspect 

originating from flow accumulation. Therefore the bioclimate data is measured at local 

grid cell scale and represents our measurement of climate.  

4.3.5 Variable selection process 

The variables were selected following the procedure from (Irving et al. 2019) using 

Boosted Regression Trees (BRTs). In brief, BRTs were applied in a two-step process. 

First, each predictor set were applied in BRTs separately (hydroclimate n=19, 

bioclimate n=19, hydrology n=53) for every species within the community (n=92). 

BRTs calculate the variable importance of each predictor from the number of times each 

variable was chosen by the algorithm (Elith et al. 2008). The variable importance was 

averaged (mean) across all species to find the variable importance for the community. 

The average variable importance was used to determine the most important (30%) 

individual variables from each predictor set (hydroclimate n=6, bioclimate n=6, 

hydrology n=19). The remaining variables from all predictor sets (n=31) were then 

applied collectively into the 2nd run of BRTs with the same criteria as above. The 

purpose of the 2nd BRT run was to impartially select the most relevant predictors for this 

community and spatial scale, without forcing a specific number of variables from each 

category. This forcing results in limited consideration of all the most relevant variables 

from each predictor category, potentially resulting in a bias outcome. 

A pair-wise Pearson’s correlation analysis was undertaken for each model 

configuration with the threshold 0.7 (Dormann et al. 2013). The variable importance 

from the 2nd run of BRTs was used to determine which of the correlated variables were 

chosen to remain in analysis. Variables chosen for each model are outlined in Table 4.1. 

As the variables are related, i.e. hydroclimate is derived from the bioclimate dataset, and 

hydrology was derived, in part, from the hydroclimate dataset, it was likely that a high 
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level of correlation would be observed between datasets. Therefore, the correlation 

analysis was undertaken with great caution. (see Table S4.1 for correlation matrix). 

The final predictor set (n=10) was applied as the full 3-set model configuration 

hC-bC-H (hydroclimate, bioclimate and hydrology). The variables contained in the full 

configuration were then distributed according to the remaining 2-set model 

configurations: hC-H (hydroclimate and hydrology), bC-H (bioclimate and hydrology), 

hC-bC (hydroclimate and bioclimate). This method of predictor distribution was applied 

to maintain consistency throughout model configurations. Here, we can intuitively 

evaluate the relative influence of each predictor set, even though model configurations 

have differing numbers of predictors. 

4.3.6 Species distribution models 

All SDM analysis was undertaken in R sdm package (Naimi and Araujo 2016). We 

applied the four model configurations outlined above to each species within the 

community in separate SDMs. Each SDM was applied with an ensemble of 5 

algorithms: Artificial Neural Network (ANN), Generalized Linear Model (GLM), 

Flexible Discriminant Analysis (FDA), Boosted Regression Tree (BRT), and 

Classification Tree Analysis (TREE). As the species data are presence only, we applied 

2000 randomly placed pseudo absences in geographical space as back ground absences. 

Each model was repeated ten times by bootstrapping. This resulted in 50 models per 

species, per configuration. For validation, the data were randomly split into training and 

testing datasets in 70:30 ratios. The True Skills Statistic (TSS) and the Sensitivity 

values were derived from the validation as a measurement of model performance. 

Sensitivity is a measure of true positives, i.e. where the model correctly places a 

presence, and the TSS is derived from both the sensitivity and the specificity (the 

number of true negatives). The TSS values are reported as weighted mean ± standard 

error (mean ± se). 

The ensemble predictions for each species were calculated though the weighted 

TSS. As output, each model produced a probability map of occurrence for the entire 

study area. To convert the probability map to binary presence/absence predictions (1,0), 

we applied a threshold determined from maximizing sensitivity and specificity (Lui et al 

2005, 2013).  
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4.3.7 Statistical Analysis 

4.3.7.1 Model performance and variable importance 

All analysis was undertaken in R version 3.5.2 (R Core Team 2018). Model 

performance was analyzed using the TSS values calculated through the training and 

testing validation datasets. Pairwise Wilcoxon tests were applied to the 50 TSS values 

of each species to test for differences between model configurations. Any values p< 

0.05 were considered significantly different. Each configuration modelled 92 species 

resulting in a total of 276 Wilcox tests. We summarize the outcome as a percentage of 

significance for each model configuration i.e. % S = (number of significant 

models/276)*100.  

The variable importance from each SDM was extracted for every species per 

configuration to assess how important each predictor category was to the community. 

The variable importance is a measurement of correlation (Naimi and Araujo 2016), 

which is not directly comparable between configurations. Therefore, to allow for 

comparison across the different model configurations, a relevance metric (following 

Irving et al. 2019) was applied. Here, each variable was assigned a value 1-10 

depending on its ordinal position, i.e. the variable with the highest importance was 

assigned 10 points, the 2nd assigned 9 points and so on. We used values between 1 and 

10 owing to 10 representing the maximum number of variables applied in the model 

configurations (see Table 4.1, hC-bC-H). This variable importance ranking system 

results in comparability across model configurations.   

4.3.7.2 Predicted distribution 

The predicted distributions were compared according to range size and percentage 

overlap. Range size was defined as the number of presences within the study area 

predicted by the model, after converting the predicted probabilities to binary 

presence/absence predictions (1,0). Range size was determined by counting the number 

of species presences predicted by each model configuration. To test for differences in 

range size between model configurations, pairwise paired Wilcoxon tests were applied. 

To compare the predicted distribution of the community, and how they were similar or 

different in geographical space, pairwise range overlap values were calculated by 

counting the number of grid cells that contained a same species’ presence predicted by 
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each respective model configuration. The proportion of shared grid cells in relation to 

the predicted range of the pairwise model configurations was calculated as percentage 

overlap (mean ± se) for the community.  

4.3.7.3 Variance partitioning 

Variance partitioning analysis was applied on all model configurations for each species. 

First, Generalized Linear Models (GLMs) were performed on all binary predictions (i.e. 

presence/absence) to determine the proportional variance for each predictor set 

separately, then collectively according to the model configuration to ascertain the 

shared variance. Due to the nature of logistic regression, i.e. GLM, the standard 

coefficient of determination (R2) cannot be derived from the model. Therefore, from 

each GLM a pseudo R2 value was calculated through the nagelkerke function in the 

rcompanion package (Mangiafico 2019) using the McFadden method (de Araujo et al. 

2014). It is important to note that pseudo R2 values cannot be interpreted in same 

manner as other regression techniques, i.e. ordinary least squares (OLS); the amount of 

variance in the response variable explained by the predictor variable. The pseudo R2 

value in GLM context is a relative measure between models of the same type describing 

how well the model explains the data (http://rcompanion.org/handbook/G_10.html, 

online book, accessed 13/06/2019). The pseudo R2 values were used here to determine 

the proportional contribution of variance as explained by the model, the total variance 

explained by the model being 1. This proportion was calculated following de Araujo et 

al. (2014), where the proportion of variance explained by the first predictor set can be 

described as total variance explained minus the proportion of variance explained by the 

second predictor set in the configuration.  

The shared variance of both/all predictor sets can be described as the total 

variance explained minus the sum of both/all predictor sets in the configuration. For 

example, the proportional variance of the hydroclimate data in the hydroclimate and 

hydrology configuration would be; R2
hydroclimate = 1 – R2

hydrology, the proportional 

variance of hydrology; R2
hydrology = 1- R2

hydroclimate, and the amount of shared variance: 

R2
shared = 1- (R2

hydrology + R2
hydroclimate). These proportional variance values were then used 

as input into the varPart function in modEva package (Barbosa et al. 2016) to calculate 

the proportional variance partition. This procedure was applied to every species and for 

http://rcompanion.org/handbook/G_10.html
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each model configuration then the proportional variance was averaged across all species 

and reported as community proportional variance.  

 

Figure 4.2: Comparison of TSS and Sensitivity values across 4 models (variable combinations): 

1) hC-H; hydroclimate and hydrology, 2) bC-H; bioclimate & hydrology, 3) hC-bC; 

hydroclimate & bioclimate, 4) hC-bC-H; hydroclimate, bioclimate and hydrology. Boxplots 

(bar = median, box = IQR, whiskers = 1.5×IQR and outliers). 
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4.4 Results 

4.4.1 Variable selection process 

The variable selection process resulted in 10 predictors (Table S4.2 for BRT 

coefficients) applied in the full model configuration and distributed to each 2-set model 

(Table 4.1). Interestingly, variables describing mean temperature of both wettest quarter 

(Bio 08) and of driest quarter (Bio 09) from both the hydroclimate and the bioclimate 

predictor sets were included in the model (see Table 4.1). It could be expected that the 

same variable from both climate-related predictor sets would be highly correlated, 

however the correlation was negligible: Bio 08 from bC and hC, corr = 0.37, Bio 09 

from bC and hC, corr =0.3 (Table S4.1). This furthers the notion that even though the 

datasets are derived from the same source, they contain different information describing 

distinctive aspects of the environment and therefore have a different influence on 

species’ distribution.  

The BRT selection process chose five bioclimate, three hydroclimate and two 

hydrology variables. This disproportionate number of variables from each predictor set 

will have an influence on variable importance ranking and variance partitioning.  

4.4.2 Model performance  

The SDMs performed well over all (mean ± se: hC-H; TSS = 0.59 ± 0.02, S = 0.80 ± 

0.02, bC-H; TSS = 0.68 ± 0.02, S = 0.85 ± 0.02, hC-bC; TSS = 0.57 ± 0.01, S = 0.79 ± 

0.02, hC-bC-H; TSS = 0.66 ± 0.01, S = 0.83 ± 0.02, Table S4.3, Figure 4.2). The 

Wilcoxon tests of difference showed that model configuration bC-H performed better 

overall (Figure 4.2). The percentage of significance for model configuration bC-H 

(66%, n=181) is greater than all remaining model configurations: hC-H (18.5%, n=51), 

hC-bC (12.7%, n=35) and hC-bC-H (49.6%, n=137). See Table 4.2 for pairwise totals 

of significantly better models/species and % of significance. Bioclimate & hydrology 

performs moderately better than the full model (hC-bC-H), i.e. significantly better for 

38 species (41%). While this model produced the highest TSS values of all model 

configurations (Figure 4.2, max TSS = 0.96) and performed significantly better in 

49.6% of pair wise comparisons, it performed better than bioclimate and hydrology 

(bC-H) for 25 species only (27%). 
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Table 4.2: Comparison of model configurations. Total number of species that performed 

significantly better (p<0.05) in pairwise Wilcox tests. Model bC-H outperforms the others. MC 

= model configuration (hC-H; hydroclimate and hydrology, bC-H; bioclimate & hydrology, hC-

bC; hydroclimate & bioclimate, hC-bC-H; hydroclimate, bioclimate and hydrology). S = 

number of significantly better performing species (n=92). Overall % determined by number of 

significantly better performing species from total number of pairwise comparisons (n=276). 

Pairwise Wilcox test 
MC1 vs. MC2 

S % 
significance 

hC-H bC-H 7 7.6 
 hC-bC 31 33.7 
 hC-bC-H 13 14.1 
Total (n=276) 

 
51 Overall % = 

18.5  
bC-H hC-H 63 68.5 
 hC-bC 80 87.0 
 hC-bC-H 38 41.3 
Total (n=276) 

 
181 Overall % = 

66.0 
hC-bC hC-H 26 27.2 
 bC-H 3 3.3 
 hC-bC-H 6 6.5 
Total (n=276) 

 
35 Overall % = 

12.7 
hC-bC-H hC-H 57 62.0 
 bC-H 25 27.2 
 hC-bC 55 59.8 
Total (n=276)  137 Overall % = 

49.6 
 

4.4.3 Variable importance ranking and variance partitioning 

Bioclimate variables showed the highest variable importance across all models (Figure 

4.3), considerably more than hydrology and hydroclimate in every model configuration: 

in model configuration bC-H, bioclimate variables showed relative importance of 

73.6% compared with hydrology 26.4% and in hC-bC-H, bioclimate had relative 

importance of 51.4%, compared with hydrology 18.0% and hydroclimate 30.5%. For 

hC-bC, bioclimate had importance of 62% compared with hydroclimate 38%. 

Hydroclimate represented 61.2% of the variable importance of hC-H, compared with 

hydrology 38.8%.  
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We applied variance partitioning to the predicted distributions from the SDMs 

(presence/absence). Overall, bioclimate shows the highest explained variance over the 

whole community in the 3-set model configuration hC-bC-H (0.698 Figure 4.4d). 

Hydrology and hydroclimate are comparable to each other but show a lesser amount of 

explained variance, 0.435 and 0.467, respectively (Figure 4.4d), than bioclimate.   

The variance partitioning of the 2-set model configurations shows that bioclimate also 

had the highest explained variance compared with hydroclimate (0.409, Figure 4.4c) 

and hydrology (0.608, Figure 4.4b).  

 

Figure 4.3: Comparison of variable importance across 4 models: 1) hC-H; hydroclimate and 

hydrology, 2) bC-H; bioclimate & hydrology, 3) hC-bC; hydroclimate & bioclimate, 4) hC-bC-

H; hydroclimate, bioclimate and hydrology. 
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Hydrology shows the lowest amount of explained variance in all 2-set models, 

compared with hydroclimate (0.229, Figure 4.4a) and bioclimate (0.166, Figure 4.4b). 

Hydroclimate shows lower explained variance than bioclimate (0.142, Figure 4.4c) but 

higher explained variance than hydrology (0.457, Figure 4.4a). 

The shared variance in all 2-set models is relatively low (Figure 4.4a-c). This 

demonstrates that the predictor sets have a separate influence on species’ distribution. 

Model configurations hC-H and bC-H show a negative shared variance meaning that the 

two predictor sets explain the variance in different directions i.e. both a positive and 

negative relationship. The model configuration hC-bC-H shows a shared variance of 

0.32 between all three predictor sets (Figure 4.4d). It is not possible to interpret the 

exact meaning of the shared variance from this analysis. It is potentially an interaction 

between datasets, yet without further analysis we cannot determine whether it is, for 

example, an amplified, additive, or an interacting effect at all. 

Unexplained variance is lowest in bC-H model configuration (0.29, Figure 

4.4b), compared with hC-H (0.38, Figure 4.4a) and hC-bC (0.36, Figure 4.4c). It is 

important to note that due to the explained variance here being proportional, the 

variance of the full model equals 1, and therefore, the unexplained variance is 0.  

4.4.4 Predicted distributions 

4.4.4.1 Range size 

Range size is defined as the area of occurrence predicted by the model once the 

predicted probabilities had been converted to binary. Model configuration bC-H 

predicted on average, larger range sizes (Mean no. of presences; 3482.6 ± 129.1, Figure 

4.5 & 4.6) than all other models (Mean no. of presences; hC-H; 2914.9 ± 156.1; hC-bC; 

1916.4± 149.6, hC-bC-H; 2716.2 ± 168.9, Figure 4.5 & 4.6). Model configuration hC-

bC predicted on average, smaller range sizes than all other configurations. All pairwise 

Wilcoxon tests showed a significant difference (p< 0.0002), with the exception of hC-H 

vs. hC-bC-H (p=0.23).  

The smallest percentage range overlap was between model configurations hC-H 

and hC-bC (44.4 ± 1.8%, n = 1187, Table 4.3). The largest range overlap was between 

model configurations hC-bC and hC-bC-H (60.4 ± 2.3%, n=1501, Table 4.3). The 

differences in predicted range are clear when mapping individual species’ distribution 
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(species richness in Figure 4.5, single species example in Figure 4.6) in geographical 

space.  

Table 4.3: Range overlap from predicted range size of model configurations. Lower left table is 

mean percentage overlap in geographical space across all species (n=92) ± standard error. 

Upper right table is absolute averaged number of overlapping predicted presences. 
 HC-H BC-H HC-BC HC-BC-H 

HC-H  1638 1187 1532 

BC-H 47.6 ± 1.6  1520 1973 

HC-BC 44.4 ± 1.8 49.4 ± 2.4  1501 

HC-BC-H 51.1 ± 1.8 59.1 ± 2.1 60.4 ± 2.3  

 

4.5 Discussion 

We compared three datasets, combined in four dataset configurations, to evaluate their 

influence on macroinvertebrate distribution using SDMs. We found that the predictor 

set describing climate has the most influence on the model in terms of variable 

importance and proportional variance. The configuration combining bioclimate and 

hydrology (bC-H) performed best, while the hydroclimate and bioclimate (hC-bC) 

configuration performing least well. The model configurations that include the data 

describing hydrology only (bC-H, hC-H & bC-hC-H), predicted significantly larger 

range sizes. Additionally, the different model configurations did not always predict 

geographically analogous species’ distributions.  

4.5.1 Variable selection (BRTs) 

The predictors mean temperature of wettest month (Bio08) and mean temperature of 

driest month (Bio09), were selected from both the hydroclimate and bioclimate datasets. 

Because these predictors were not highly correlated, their contribution in terms of 

environmental information can be assumed to be dissimilar and relevant for the 

community distribution. In addition to those predictors describing temperature, two 

precipitation variables are included in each model configuration i.e. annual precipitation 

(Bio12) is included from the hydroclimate dataset and precipitation seasonality (Bio15) 
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from the bioclimate dataset. The inclusion of these variables indicates that precipitation 

is an important aspect to include in SDMs as a separate entity to hydrology, suggesting 

that local precipitation should not be used as a substitute for hydrology related variables 

(e.g. Domisch et al. 2019). The precipitation and hydrology data are also not correlated, 

despite being derived, in part, from one another, suggesting that the data contain, to a 

great extent, separate and equally justified information. This is supported by the low 

amount of shared variance demonstrated in all model configurations through variance 

partitioning. 

 

Figure 4.4: Proportional variance partitioning of all 4 models; a) hC-H; hydroclimate and 

hydrology, b) bC-H; bioclimate & hydrology, c) hC-bC; hydroclimate & bioclimate, d) hC-bC-

H; hydroclimate, bioclimate and hydrology. 
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4.5.2 Model performance  

The bioclimate and hydrology (bC-H) model configuration performed best overall. To a 

lesser extent, the full model (hC-bC-H) also performed well. It was expected that the 

full model would perform better overall as it contained the most information, i.e. 10 

variables. Accordingly, we propose that SDMs should be applied on this community 

using bioclimate and hydrology (bC-H) at this spatial scale, because it outperformed 

others when taking into account the entire community. In addition, the increased 

performance was attained using 7 variables only, insuring model simplicity. We 

therefore argue that these two predictor sets complement each other well and that 

adding hydrology into the model configuration can improve model performance 

significantly.  

The only model configuration that did not contain hydrology, i.e. hydroclimate 

and bioclimate (hC-bC), performed least well overall. The lower performance of this 

model configuration may be explained, in part, by the specifics of the hydroclimate 

data. Because hydroclimate is derived from modelled climate data (i.e. bioclimate) and 

flow accumulation, some important factors that control river hydrology are not 

incorporated (e.g. percolation or evapotranspiration). Hydroclimate summarizes rainfall 

information from the upper grid cells, therefore including a strong spatial relationship in 

the data. In contrast, the hydrology dataset is partially derived from discharge gauging 

stations, which measure real-time streamflow (m3 s-1), and therefore account, to some 

extent, for those important factors that control river hydrology, which are not covered 

by the hydroclimate data. Furthermore, the fact that bioclimate and hydrology data are 

far less related to each other than to hydroclimate, may explain their complementing 

nature and superior combined performance. 

4.5.3 Variable importance & variance partitioning 

Variable importance ranking and variance partitioning of the individual predictor sets 

both suggest that bioclimate has the most influence on the studied macroinvertebrate 

community, at this scale. While climate is an important factor, freshwater ecological 

literature indicates that hydrology can be expected to have a large influence on species’ 

distribution. Our finding is not consistent with current flow-ecology theory that suggests 

hydrology to be as important as climate in determining species distribution (Pyne and 

Poff 2017). The scale at which the predictors are applied, may partially explain our 
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results (Pearson and Dawson 2003, Randin et al. 2009, Lenoir et al. 2013, Domisch et 

al. 2015b, Record et al. 2018). Climate and geology are the drivers of broad aspects of 

hydrological regime, i.e. floods and droughts, at large scales (i.e. catchment scale) (Poff 

1997). Whereas at small scales, i.e. reach scale, hydrological regimes are influenced by, 

e.g., hydraulics, riverbed substrates and stream channel morphology, to mention only a 

few  (Allen and Vaughn 2010, Soranno et al. 2010). Nonetheless, large-scale variables 

describing hydrological regime, such as flood and droughts, are able to induce changes 

in river biota communities by influencing local-scale habitat. However, local-scale 

hydraulics, e.g. pool/riffles, and their resultant impact on physical habitat, e.g. creation 

of refugia, influence the distribution of biota, reducing the effect of large-scale drivers: 

a theory known as the “Landscape Filters Hypothesis” (Poff 1997). This scale-

dependency is a recognized challenge in SDM research (Domisch et al. 2015b).  

Despite this challenge, incorporating hydrology at this scale does not hinder 

predictive ability (Araújo et al. 2019) and resulted in an improvement in SDM 

performance as well as a significant impact on predicted range size. We do, however, 

suggest that applying the same predictors at a smaller spatial (e.g. < 2500km2) and finer 

resolution (e.g. <100m2) (Kuemmerlen et al. 2014) could result in hydrology 

demonstrating a higher variable importance, and hence influence on macroinvertebrate 

distribution. A smaller scale and finer resolution was not possible in this study due to 

the requirement of spatially analogous biological response data and environmental 

variables in SDMs, i.e., hydrology, bioclimate and hydroclimate at 1 km (Araújo et al. 

2019). 

4.5.4 Predicted distributions 

The bioclimate and hydrology (bC-H) model configuration predicted the largest range 

size overall. Conversely, the hydroclimate and bioclimate (hC-bC) model predicted the 

smallest range size. Interestingly, linking range size to TSS values suggests that model 

performance has a positive relationship with range size. As far as we are aware, there is 

no established link connecting TSS values with predicted range size. In addition to 

different range size predictions, the model configurations are regularly predicting 

species’ distributions in different geographical locations as suggested by the range 

overlap between model configurations. 
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Figure 4.5: Distribution of all species predicted by each model: a) hC-H; hydroclimate and 

hydrology, b) bC-H; bioclimate & hydrology, c) hC-bC; hydroclimate & bioclimate, d) hC-bC-

H; hydroclimate, bioclimate and hydrology. Points represent locations, colors represent number 

of species predicted presence at point locations.  

 

As we discovered through the correlation analysis and variance partitioning, the 

datasets contain, to some extent, distinct environmental information, thus the 

differences in predicted range size and location are not surprising. Here, the SDMs are 

relating different environmental conditions to the species’ known occurrences and 

predicting suitable habitat accordingly. The range sizes predicted by model 

configurations containing hydrology are significantly larger than the configuration that 

does not include hydrology, i.e. hydroclimate and bioclimate (hC-bC). We can only 
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hypothesize on the reasons for this; however, it could be related to the specific 

information regarding flow regime contained in the hydrology dataset, delivered by 

physical hydrologic gauging stations used in its calculation. 

 

 

Figure 4.6: Example of geographical locations in study area of a) known occurrence (n=143) 

and predicted distribution of Caenis horaria by four model configurations; b) hC-H; 

hydroclimate and hydrology, c) bC-H; bioclimate & hydrology, d) hC-bC; hydroclimate & 

bioclimate, e) hC-bC-H; hydroclimate, bioclimate and hydrology. 

 

The hydrologic variables (and the anthropogenic disturbance to hydrological 

regimes) are likely to better depict the varied influences on the physical habitat of the 

river biota (Resh et al. 1988, Poff et al. 1997), which shapes the structure and function 

of river ecosystems. In contrast, the climate datasets (bioclimate and hydroclimate) are 

applied as indirect surrogates for water temperature (Moore et al. 2005, Caissie 2006) 

and hydrology (e.g. Domisch et al. 2019). Hence, the models estimate expanded suitable 

habitat when applied with hydrological variables (Figure 4.5 & 4.6). 
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4.5.5 The role of hydrology in SDMs 

Our findings have important implications when applying such models to inform 

conservation efforts: omitting flow regime variables in SDMs may lead to an 

underrepresentation of macroinvertebrate distributional range. For example, SDMs 

applied under current, and future, climate conditions have predicted range shifts of e.g. 

macroinvertebrate distribution to higher altitudes (Domisch et al 2011), several riverine 

taxonomic groups with regards to protected areas (Markovic et al 2014), freshwater fish 

(Ruiz-Navarro et al 2016) and chelonian species (Ihlow et al 2011), as well as to 

identify priority conservation areas with high aquatic plant diversity (Rodriguez-Merino 

et al 2019). These studies refer to changes in species’ distributional range under changes 

in climate, not implemented predictors describing hydrology. Nonetheless, adding 

complementary factors describing flow regime may result in deviating species’ 

predicted range, both for current and future potential distributions, subsequently 

adjusting mitigation strategies for conservation efforts.    

4.6 Conclusion 

Bioclimate was found to be the most important factor influencing macroinvertebrate 

distributions in the Ems and Weser basins, at this scale. The bioclimate and hydrology 

datasets appear to complement each other well compared to other configurations, as 

they show the highest model performance, largest range sizes, and the lowest 

unexplained variance. The model configuration including the both climate-related 

predictor sets, performed least well, and predicted smaller range sizes. 

The main findings of our study suggest that by including environmental 

predictors describing flow regime, SDMs applied on macroinvertebrates can potentially; 

1) increase model performance, and 2) expand predicted distribution, despite a low 

contribution of hydrology to explained variance and variable importance. The IHA 

metrics applied in this study are partially derived from real-time streamflow data from 

gauging stations, which incorporate an element of the principal factors, such as 

evapotranspiration and percolation that control river hydrology. In addition, the metrics 

describe direct influencing factors of river habitat, including some aspects of 

anthropogenic disturbance. These characteristics are not described by either of the 

climate-related predictors included in our study, therefore it is beneficial to include IHA 

metrics in SDMs on river species.  
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We are aware that scale-dependency is a limiting factor in our study. The scale 

(13,749 km2) of our study area and its resolution (1 km grid cells), may be too coarse to 

fully capture the influence of all the dimensions of the hydrological regime on 

macroinvertebrate distribution. The IHA metrics chosen by the variable selection 

process, i.e. high flow volume (MH21) and the annual maxima of 1 day means of daily 

discharge (DH1) represent the broader aspects of hydrological regime, i.e. flooding, 

driven by climate and geology. These particular metrics may not comprehensively 

depict changes in hydrological variability that are important for macroinvertebrate 

communities on smaller scales, therefore, some of the flow regime metrics may not be 

relative to coarser measurements of bioclimate at the scale of our study area. 

Accordingly, it may be advisable to apply aggregated hydrologic variables, such as 

mean annual flow, for larger scale studies (Pyne and Poff 2017), however these types of 

variables may not describe sufficient information for studies directly investigating flow 

regime on species’ distribution. 

We conclude that that freshwater SDMs can profit from the inclusion of 

hydrological variables. Our study highlights improvements to predictive ability as well 

as how hydrological variables can influence the physical differences in predicted 

species’ distribution. We recommend that given its fundamental importance, variables 

describing flow regime must be considered in SDM studies applied on river biota. 
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 5 General discussion 

Species distribution models (SDMs) are employed to analyze large scale changes in 

species distribution to, for example, aid conservation decision making. In order to find the 

most effective conservation solutions, understanding the distribution of species must 

coincide with determining their most influential environmental factors. It is widely 

accepted that the flow regime is one of the most important factors in determining species 

distribution and abundance in rivers (Resh et al. 1988, Poff et al. 1997, Bunn and 

Arthington 2002). Despite this, very few studies assess the influence of these variables on 

riverine species distributions because SDMs are limited in including such descriptive 

variables. This thesis deals with the role of hydrology in SDM predictions in general: 

developing a hydrologic dataset, optimizing variable selection and testing existing 

hydrological datasets. I provide some necessary steps to include these variables in order to 

improve prediction performance of riverine species’ distribution.  

5.1 Key research findings 

I demonstrate in Chapter 2, that by applying a simple hydrological model it is possible to 

predict streamflow over a large spatial extent at a fine spatial resolution (1 km2). The 53 

Indicators of Hydrologic Alteration (IHA, Richter et al. 1996, Olden & Poff. 2003)  

metrics created from this procedure describe the various aspects of flow regime that are 

widely established in flow–ecology assessments, i.e. the duration, magnitude, timing, 

frequency, and rate of change of flow events. IHA metrics are well-established metrics for 

environmental flow assessments to aid management decisions (e.g. Peres and Cancelliere 

2016) and are also applied in predictive modeling (e.g. Kakouei et al. 2018). The metrics 

were calculated from 64 years of modeled daily streamflow data for the entire stream 

network of Germany at 1 km spatial resolution. Both the IHA metrics and the streamflow 

datasets are available open access for use in predictive models. The modeling method was 

intentionally simple and exploits openly sourced accessible data thus, the model can be 

applied in alternative geographical regions or time periods (Irving et al. 2018). These 

datasets have bridged a recognized data gap in available high-resolution hydrological data 

and have been successfully applied in predictive modeling of river ecosystems.  

 Applying the data created in Chapter 2, together with data describing climate, 

land-use and topography in Boosted Regression Trees (BRTs), Chapter 3 highlights a 
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useful and effective method (Figure 5.1) to impartially select highly relevant 

environmental variables as an alternative to time consuming extensive literature reviews 

and collating expert knowledge of large communities. Applying a species-specific custom-

made set of predictors is viable for uncommon, specialist or invasive species, whereas the 

common uniform predictor approach is appropriate for widespread, generalist species. The 

variables chosen by the variable selection process were validated through investigating 

species traits from online databases and cross referenced with the environmental 

conditions at the known occurrence sites. Variables describing bioclimate were, overall, 

the most important for this community. Nonetheless, variables describing hydrology were 

deemed important by the variable selection process, and differences in species groups, 

with regards to hydrological preferences, were validated through their known occurrence 

sites and ecological traits (Irving et al. 2019).  

Chapter 4 investigated the influence of the IHA metrics created in Chapter 2, 

against datasets commonly used as surrogates to hydrology in predictive modeling. From 

the three datasets i.e. 1) bioclimate, 2) hydrology and 3) hydroclimate, bioclimate 

exhibited the most influence in terms of variable importance and variance partitioning. 

Hydrology exhibited the lowest variable importance ranking, against both hydroclimate 

and bioclimate. The best performing model configuration was the bioclimate and 

hydrology model, which also produced, on average, significantly larger range sizes than 

all model other configurations. An important finding was that even though the hydrology 

data explained a relatively low proportion of variance, the data influenced the predicted 

distribution and model performance significantly. 

5.1.1 High resolution hydrological datasets 

Using empirical streamflow data from gauging stations across Germany and modeled 

seasonal accumulated precipitation, I applied a weighted linear regression model to predict 

a continuous daily time series of streamflow in m3 s-1 spanning 64 years (1950-2013). This 

simple modeling approach requires only two components, which are openly available: 1) 

observed gauging data are available worldwide, at least in part, from the Global Runoff 

Data Centre (GRDC, 2016), 2) accumulative precipitation available at high resolution on a 

near global scale (Domisch et al. 2015a).  

The daily streamflow data were subsequently applied as input to successfully 

calculate 53 IHA metrics (Olden and Poff 2003). Of these metrics, the indices that 
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describe average flow conditions e.g. mean daily flows, were produced to a high level of 

accuracy. However, indices that rely on variability in flow, e.g. variability in daily flows, 

were not described sufficiently well by the model. Nonetheless, the successfully validated 

variables provide an adequate description of flow regime, e.g., predictability of flow, high 

flow volume, rise and fall rate. The IHA metrics were validated successfully through 

Generalized Linear Models (GLMs), a commonly used algorithm in ensemble SDMs 

(Thuiller et al. 2014, Naimi and Araujo 2016), on 32 macroinvertebrate species. Further, 

the metrics were applied as input into the SDMs of Chapters 3 and 4.   

The weighted linear regression models did not perform as well in alpine regions as 

those applied in lowland regions. The difference in performance of the models can be 

explained, in part, to the hydrological processes of these regions.  Lowland rivers are 

typically fed by ground water (Guse et al. 2014). Through soil infiltration and 

groundwater processes, streamflow has a slower response to precipitation. As I applied 

precipitation on seasonal resolution, the delayed response time is captured within the 

model. In contrast, alpine rivers distribute precipitation into streams much faster than in 

lowland regions through several influencing factors; complex topography, high altitude 

and steep hillslope, the periodic storage and melting of snow and glaciers, as well as 

highly varied precipitation patterns (Jansson et al. 2003, Warscher et al. 2013, Isotta et al. 

2014). Accordingly, the model is limited for use in these complex environments. 

Streamflow data in alpine regions could benefit from applying higher temporal resolution 

input data, i.e. daily precipitation (e.g. DWD, www.esrl.noaa.gov), to capture the 

complexity and variability of the regions’ intricate precipitation-run off patterns. 

Additionally, the higher variability in the streamflow data produced by higher resolution 

input data could result in an increased number of IHA metrics that describe flow 

variability being validated successfully, which could not be validated in Chapter 2.  

The models applied in lowland regions produced low performing models on a 

small number of occasions. These low performing models coincide with an extreme 

flooding event in June 2013 (The German Federal Institute of Hydrology (BfG) 2013) as a 

result of heavy rainfall. Here, a number of gauges ceased to operate, reducing the amount 

of streamflow data available for the model. Additionally, the heavy rainfall of 2013 was 

not captured in the 50-year (1950-2000) average of the precipitation data. These 

restrictions in the data resulted in the model failing to converge, thus producing low 

performing models for that time period.  
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A number of negative flow values (0.99% of the total dataset produced, considered 

a negligible amount) were predicted on occasions when the linear model produced a 

negative intercept, which corresponds to the value of flow when the precipitation is equal 

to zero, i.e., a flow value of zero. These values are a result of the direct association of flow 

from gauging stations with modeled precipitation, without considering other hydrological 

processes such as (ground) water storage, evaporation and evapotranspiration from soil, 

and interception (Brutsaert 1982, Beven 2004, Kiesel et al. 2010), which reduces the 

amount of precipitation that physically converts to streamflow. If these factors were to be 

included (e.g. potential evapotranspiration at 1 km2, cgiarcsi.org) the model may predict 

zero flows more accurately, reducing the number of negative flow values. However, by 

including the necessary information to describe such relationships, the model would 

significantly increase in complexity, thus would contradict my goal of applying a simple 

modeling approach. 

5.1.2 Variable selection method and species-specific predictor sets 

SDMs predicting large communities tend to use the same set of predictors for the entire 

community (Markovic et al. 2012, Kuemmerlen et al. 2015, Domisch et al. 2019). Since 

individual species have adapted and evolved to respond differently to environmental 

conditions (Cox and Rutherford 2000, Lytle and Poff 2004, Fenoglio et al. 2007, Kroll et 

al. 2017), this uniform approach may affect model performance, as the variables chosen 

may not be relevant to a subset of species within the community. In Chapter 3, I proposed 

a variable selection process using BRTs to select the optimum set of predictors from four 

predictor categories (climate, hydrology, land use and topography, Figure 5.1). I tested the 

common uniform approach against a species-specific custom approach in SDMs and 

demonstrated how variable selection approach can impact different guilds of 

macroinvertebrates species. 

The SDMs applied on 10 species increased in accuracy (Mean TSS = 0.59 ± 0.03) 

and the models applied on 10 species decreased in accuracy (Mean TSS =0.49 ± 0.04) 

with the species-specific predictor set. The 20 species, separated into an increased group 

and decreased group, showed distinct differences in terms of their ecological traits, known 

occurrences and preferred environmental conditions. 

The increased species group were typically lowland species. Their associated 

environmental conditions include a higher coverage of agriculture, urban and barren land, 
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higher stream-related variables; high flow volume and mean monthly flow, while also 

exhibiting a lower coverage of forested area than the decreased group sites. These 

conditions correspond to the species’ downstream zonation preferences and high 

representation of functional group “gatherers”, an indication of downstream zone 

preference (River Continuum Concept, Vannote et al. 1980). The increased group also 

included two invasive species Gammarus tigrinus (Sexton, 1939) and Potamothrix 

moldaviensis (Vejdovský & Mrazek, 1902). As some invasive macroinvertebrates, 

including G.tigrinus, have been documented to have a more specialized ecological niche 

than their native counterparts (Herkül et al. 2016), I suggest that these species show more 

specialist preferences. The decreased species traits also coincide with their environmental 

conditions and known occurrence. For example, the species prefer faster flowing water 

(rheophilic), which corresponds to the steeper hill slope, and hence high flow velocity 

(Austin 2007, Domisch et al. 2011) of their occurrence sites.  

 

Figure 5.1: Schematic overview of the 2-step variable selection process using Boosted Regression 

Trees (BRTs) outlined in Chapter 3.  

 

Chapter 3 produced 20 significant results from a total of 67 species. The 

remaining 47 species showed no change when applied with a custom or uniform set of 

predictors, even though all custom predictor sets varied, at least slightly, from the uniform 

set. Thus, these 47 species may be successfully modeled with any of the predictors in the 

study and show no difference in model performance. However, if variables describing, for 
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example biotic information/limits, were included, it is possible that these species may 

show improvements in model performance. It would be interesting to investigate the 

ecological traits of the 47 species, however the focus of Chapter 3 was to compare the 

significant differences between the custom and the uniform predictor sets. 

In terms of variable importance, bioclimate was overall the most important 

predictor category for the entire community and for each model type (uniform and 

custom). Some of the variables that were overlooked by the uniform predictor set, resulted 

in a redistribution of variable importance in the increased group, which appeared to be the 

most important variables for some species in the custom model i.e. max temperature of 

warmest month & predictability of flow.  

The hydrology predictor category showed a relatively low variable importance 

ranking in the study. This low ranking is possibly due to accumulative nature of the 

bioclimate data, which uses flow accumulation to route the information through the stream 

network, incorporating all information from the upper sub catchment. Flow accumulation 

is highly correlated with streamflow (Kuemmerlen et al. 2014), therefore the bioclimate 

data contains information describing aspects of both climate and hydrology. It may be 

possible that bioclimate is dominating the influence of hydrology and/or correlating 

highly, resulting in hydrology variables being removed during the correlation analysis. 

The disentangling of the bioclimate data to determine the separate influence of the 

variables, climate and hydrology, was investigated in Chapter 4. 

5.1.3 The role of hydrology in SDMs 

Although climate is a dominant factor of riverine species’ distribution, it is important to 

include variables describing flow regime in SDMs (Collins and McIntyre 2015). However, 

many river SDM studies primarily focus on climate (e.g. Markovic et al. 2012, Kärcher et 

al. 2019) and interpret precipitation as hydrological influence (e.g. Domisch et al. 2019)..  

Implementing the IHA metrics created in Chapter 2 and applying the variable 

selection method outlined in Chapter 3 (Figure 5.1), I assessed three hydrology or 

hydrology-related datasets in SDMs applied in four model configurations; 1) hydroclimate 

& hydrology, 2) bioclimate & hydrology, 3) hydroclimate & bioclimate, 4) hydroclimate, 

bioclimate & hydrology. The hydroclimate variables referred to in Chapter 4, are the 

same accumulated climate data applied in Chapter 3 as ‘bioclimate’. However, it was 

necessary to distinguish between the two climate related datasets applied in Chapter 4, 
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i.e., bioclimate and hydroclimate. Chapter 4 reflects that climate is the principal predictor 

set in terms of variable importance and proportional variance; however, the relatively low 

proportion of variance explained by hydrology can significantly alter species’ predicted 

distributions 

The best performing model configuration was bioclimate and hydrology, which 

also predicted the largest distributional range size. Model configuration bioclimate and 

hydroclimate performed least well and predicted the smallest distributional range size. 

These differences could be explained by the information contained within each dataset. 

Hydroclimate describes a spatial aspect of river discharge, i.e. accumulating rainfall, 

however it is originally derived from the modeled bioclimate data and flow accumulation, 

which do not incorporate specific aspects of hydrology, e.g. percolation and 

evapotranspiration. In contrast, the hydrology dataset is partially derived from physical 

discharge gauging stations, which measure real-time streamflow in m3 s-1 (Chapter 2, 

Irving et al. 2018) and may account for some additional stream-related elements (not 

contained in the hydroclimate data), resulting in higher model performance. Furthermore, 

the bioclimate and hydrology are far less related to one another, which may explain their 

complementing nature and high performance. The empirical streamflow data contribute 

directly-related aspects of hydrological regimes, i.e. “proximal variables” (Araújo et al. 

2019) to the hydrological variables, which are likely to better describe the varied 

influences on the physical habitat of the river biota (Resh et al. 1988, Poff et al. 1997), 

potentially resulting in larger predicted range sizes. On the contrary, both hydroclimate 

and bioclimate describe indirect factors influencing stream ecosystems, in the form of 

surrogate information. Specifically, air temperature is applied as a proxy for water 

temperature (Moore et al. 2005, Caissie 2006) and precipitation a proxy for hydrology 

(e.g. Domisch et al. 2019).   

The main goal of Chapter 4 was to include flow regime variables into SDMs and 

compare with hydrology-related datasets that are commonly applied as descriptors of the 

stream ecosystem. For this reason, additional variables known to be important to the 

stream environment, such as topography of the landscape and catchment land use 

(Chapter 3, Moore et al. 1991, Lake 2000, Schmalz et al. 2015, Amatulli et al. 2018) 

were omitted from the study. The results of Chapter 4 demonstrate that including 

hydrology impacts predicted distribution; however, for a fuller representation of the 

stream ecosystem addition stream-related factors must be included.  
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5.2 Potential applications  

The hydrological datasets created in Chapter 2 can be used effectively in SDMs and other 

predictive modeling studies. The data are readily available for Germany 

(https://doi.org/10.6084/m9.figshare.c.3906376, Irving et al. 2018) at 1 km2 spatial 

resolution covering 64 years (1950-2013). In addition, R scripts are available to; first, 

create daily streamflow from downloadable openly sourced data, in alternative geographic 

regions or time periods, which can be used as input to, second, create all or a subset of 

IHA metrics (https://github.com/ksirving/stream_flow). The daily flow data could also be 

aggregated to create descriptive flow metrics such as mean annual flow, or 

minimum/maximum monthly flow values.  

The IHA metrics are based on Hydrosheds 1 km gridded stream network, so can be 

used simultaneously and without scaling, together with climate data e.g. WorldClim 

(Hijmans et al. 2005) and earthenv.org/streams (Jarvis et al. 2008, Lehner et al. 2008, 

Domisch et al. 2015a), land use and topography (Domisch et al. 2015a, Amatulli et al. 

2018) as well as Hydrosheds products (e.g. river classification, Ouellet Dallaire et al. 

2019). All of which are commonly used in SDMs. In addition to predictive modeling, 

depending on the applicability of reference sites, the metrics can be used in environmental 

flows assessment such as the ELOHA framework (Poff et al. 2010), in analysis of flow 

alteration. Stream flow is calculated from historical gauging data; however, it could also 

be used in conjunction with future projections of stream flow from e.g. SWAT models 

(Arnold et al. 1998), as a method of extrapolation under future scenarios. The method 

could be applied instead of the common method of pairing sampling sites (e.g. Domisch et 

al. 2017, Kakouei et al. 2018) with gauging sites. 

The BRT variable selection process outlined in Chapter 3 has been used 

successfully in other of predictive modeling studies (Record et al. 2013, Tonkin et al. 

2015) and can be applied in any ecosystem. The BRT method is a highly beneficial 

method to employ in situations where expert knowledge is limited for a large community 

and can impartially select a predictor set, without bias, by, e.g., forcing a specific number 

of variables from each category (Kuemmerlen et al. 2015).  

The custom-made predictor set can be applied to evaluate species which are less 

common in the study area, specialist or invasive species (Chapter 3). The ecological 

niche of invasive species could be well known in their native range however, their non-

native range is relatively unfamiliar. Therefore, it can be difficult to fully identify the 
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extent of which invasive species adapt to their new environment, and hence, the 

environmental conditions that are most influential. The custom-made predictor approach 

could be an informative way to identify key problematic areas where invasions may take 

place and provide ideas on how to mitigate the invasion and conserve the native species. 

My findings from Chapter 4 potentially have important implications when 

applying SDMs to inform river conservation efforts, since omitting flow regime variables 

may lead to an underrepresentation of macroinvertebrate distributional range. For 

example, SDMs applied under current, and future, climate conditions have investigated; 

macroinvertebrate (Domisch et al. 2013), freshwater fish (Markovic et al. 2012) and 

chelonian (Ihlow et al. 2012) range shifts, as well as the assessment of protected and 

conservation areas (Ruiz-Navarro et al. 2016, Rodríguez-Merino et al. 2019). While these 

studies refer to changes in species’ distributional range under changes in climate, adding 

complementary factors describing flow regime may result in deviations to predicted range, 

subsequently adjusting mitigation strategies for conservation efforts.    

The IHA metric high flow volume (Chapter 2) was deemed important to the 

macroinvertebrate community in Chapters 3 & 4.  This metric is a measure (days) 

describing high magnitude flow events (Olden and Poff 2003). High flow volume could 

therefore be a useful predictor to include when investigating extreme aspects of flow 

regime on macroinvertebrate communities at catchment scale. 

5.3 Limitations of the SDM methodology 

The main goal of this thesis was to improve macroinvertebrate predicted distributions by 

including variables describing flow regime into SDMs. The IHA metrics (Chapter 2) 

showed a relatively low influence in terms of variable importance (Chapters 3 & 4) and 

explained variance (Chapter 4) on macroinvertebrate distribution. This could be 

explained by the scale at which the predictors were applied (Pearson and Dawson 2003, 

Randin et al. 2009, Lenoir et al. 2013, Domisch et al. 2015b, Record et al. 2018). On large 

scales, such as the catchment scale of these studies, climate and geology are the main 

drivers of the broad aspects of hydrology, such as floods and droughts (Poff 1997). These 

variables are able to depict changes in river biota communities by influencing local-scale 

habitat; nevertheless, their effect is reduced by local-scale characteristics, e.g. hydraulics 

(pool/riffles), and their resultant impact on physical habitat, e.g. creation of refugia. 

Therefore, on small scales, i.e. reach scale; hydrological regimes are influenced by, e.g., 
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hydraulics, substrate and lateral characteristics such as stream width (Allen and Vaughn 

2010, Soranno et al. 2010). This effect is pertinent to the “Landscape Filters Hypothesis” 

(Poff 1997) and is a recognized challenge in SDM research (Domisch et al. 2015b). 

Therefore, the scale of my study area (13,749 km2) and its resolution (1 km2 grid cells) 

may be too coarse to fully capture the influence of all the dimensions of the hydrological 

regime on macroinvertebrate distribution. Applying IHA metrics on a smaller scale (e.g. < 

2500km2) and finer resolution (e.g. <100m2; Kuemmerlen et al. 2014), may result in 

hydrology demonstrating higher variable importance and explained variance, hence 

impacting predicted distribution. SDMs require spatially analogous environmental 

predictor and biological response variables (Araújo et al. 2019) therefore, it was not 

possible to apply the hydrology variables on a finer resolution due to the 1 km grid cell 

resolution of bioclimate, hydroclimate, and species’ occurrence data assigned onto the 

base layer stream network.  

Despite the challenge of scale dependency in Chapters 3 & 4, I demonstrate in 

Chapter 4 that applying hydrology at this scale does not reduce predictive ability (Araújo 

et al. 2019) and in fact improves SDM performance as well as induces a significant impact 

on predicted range size. Therefore, given their fundamental importance, the IHA metrics 

should be considered in river SDMs. 

BRTs were applied as the variable selection process in Chapter 3 & 4 because 

they have several advantages in their application which include; robustness to co-linearity 

of variables, their ability to handle outliers as well as different units of measurements 

without having to standardize data (Friedman 2001, Elith et al. 2008). However, there are 

some limitations. For example, due to the stochastic nature of the algorithm it is possible 

that the BRTs would produce different results with each model run (Elith et al. 2008). The 

cross-validation process applied through R package ‘dismo’ is a method of mitigating this 

issue so the outcome may only differ slightly (Elith et al. 2008, Elith and Leathwick 2017, 

Hijmans et al. 2017). In addition, the predictors chosen by the variable selection process, 

may be different than those shown to be important by the SDM analysis. This is due to the 

differing ways in which, 1) the individual algorithms are processed, e.g. the Generalized 

Linear Models (GLMs) used in the ensemble SDMs do not include the element of 

stochasticity in BRTs and may not be as efficient in handling outliers (Elith et al. 2008), 2) 

the methods differ in their calculation of variable importance from the BRTs in the stand-
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alone algorithm (number of times the variable is chosen, Elith et al. 2008), and the BRTs 

as part of the ensemble SDM (through correlation, Naimi and Araujo 2016). 

The biological data for Chapters 2, 3 & 4 were collated from sixteen separate 

German federal state agencies. The sampling method was standardized following the 

procedure outlined in (Haase et al. 2004). However, the quality and quantity of biological 

data is a perpetual concern in any predictive modeling study. Potential challenges include; 

human error in the identification of species (Haase et al. 2010) as well as sampling bias in 

geographical space. These challenges may introduce some uncertainty within the model 

(Miller et al. 2012, Araújo et al. 2019). My research is methodological based; thus, I did 

not formulate conclusions to, e.g., identify specific areas of conservation, therefore, 

uncertainty regarding biological data concerns were not considered. Nonetheless, this 

uncertainty would have to be dealt with appropriately (Chapman 2005) before SDMs are 

applied in empirical investigations.  

5.4 Further Opportunities in river SDM research 

Despite the improvements made through this thesis, SDM procedures for riverine 

macroinvertebrates are still limited. Including variables that describe biotic conditions 

would retract the predicted fundamental niche into the more ecologically conclusive 

‘realized’ niche (Austin et al. 1990, Guisan and Zimmermann 2000, Pearson and Dawson 

2003). In Chapter 3, I was able to validate the environmental conditions of species known 

occurrence sites with their ecological traits. Ecological traits of macroinvertebrates have 

been used numerous times in river ecology studies ( Poff and Zimmerman 2010 and 

references therein). Fundamentally, it is the traits of a species that determines its 

distribution, due to their adaptations in terms of, for example; phenology, life history, and 

growth, in response to changes in environmental conditions (Arthur et al. 1982, Poff and 

Zimmerman 2010, Alba-Tercedor et al. 2017). Consequently, a further opportunity to 

improve SDMs would be to include ecological traits when building the model to aid 

predictive accuracy.  

Species’ ecological traits could be applied in several forms. Phenology, how a life 

cycle of a species is associated with seasonal changes in environmental conditions, is 

known to be an important factor controlling species abundance and distribution (Verberk 

et al. 2008, Porst et al. 2012). Because macroinvertebrates depend on flow regime for 

some, or all of their life (Lytle and Poff 2004), phenological traits such as timing of 
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reproduction periods and embryonic development or emergence (Gray 1981, Arthur et al. 

1982, Hancock and Bunn 1997, Peckarsky et al. 2000, Lytle 2002, Haidekker and Hering 

2008) should be taken into consideration when predicting distribution of species under 

climate change, and climate-induced changes in flow regime. Recent attempts to include 

phenology in terrestrial SDMs have been made (Smeraldo et al. 2018). 

Nonetheless, because SDMs are a static snapshot in time, incorporating phenology 

is no easy task, although recent work has been done to attempt to include temporal 

variability (e.g. Devisser et al. 2010). Additionally, the IHA metrics created in Chapter 2 

describe the timing, frequency, duration and rate of change of flow events (Olden and Poff 

2003), relate, to an extent, to seasonal flow changes, therefore could be utilized in SDMs 

developed to incorporate phenological traits. 

Biotic interactions have been successfully introduced into terrestrial SDMs 

(Guisan and Thuiller 2005, Araujo and Luoto 2007, de Araujo et al. 2014), however it is 

only recently that attempts have been made in the aquatic realm. For example, the 

predicted occurrence, or species richness, of prey species can be applied as a predictor 

variable (Pletterbauer et al. 2016, Gherghel et al. 2018). In addition, Joint SDMs (JSDMs) 

can incorporate the co-occurrence of multiple species (D'Amen et al. 2018, Zurell et al. 

2018). In addition to negative interactions, exploring positive biotic interactions such as 

the mutualistic relationship of Potamothrix moldaviensis and Tubifex tubifex that feed on 

fecal bacteria of one another (Milbrink 1993) would be an interesting avenue of research. 

The occurrence of one mutual species could be included as a predictor variable in an 

SDM, or both species’ co-occurrence applied in a JSDM.  

Species’ dispersal also has a pronounced influence on species distribution and is 

one of the most important factors known to retract the fundamental niche into a realized 

niche (Austin et al. 1990, Guisan and Zimmermann 2000, Pearson and Dawson 2003). 

Methods to include dispersal are becoming established in the terrestrial realm (Bateman et 

al. 2013). In terms of freshwaters or rivers, quantitative dispersal abilities for fish have 

been documented (Radinger et al. 2014, Radinger and Wolter 2014, Comte and Olden 

2018) and could be included either as a predictor variable or during post processing to 

retract a species’ range. Dispersal ability for some macroinvertebrate groups have been 

proposed using functional traits and life cycle information (Usseglio-Polatera et al. 2000, 

Poff et al. 2006). Macroinvertebrates exhibit varied dispersal pathways, e.g. passive or 

active, aquatic or aerial (David T. Bilton et al. 2001, Graf et al. 2008, Graf et al. 2009, Li 
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et al. 2018). Metrics based on these pathways (e.g. Li et al. 2016) would be highly 

beneficial to incorporate into SDMs.  

5.5 Conclusion & outlook 

Through this thesis, I have created, tested and integrated hydrological variables in SDMs, 

as well as developed and validated effective methods to improve prediction performance 

of riverine species’ distribution to advance freshwater SDM research. Based on my 

results, I fully advocate the integration of hydrological variables into freshwater SDMs 

and believe this area of research should be further pursued.  

The method applied in Chapter 2 has bridged a recognized gap concerning the 

availability of high resolution, large-scale hydrological data and are well suited for use in 

predictive ecological modeling (Chapter 3 & 4). The 53 validated IHA metrics provide 

an adequate description of flow regime, e.g., predictability of flow, high flow volume, rise 

and fall rate. As the model was simple, it has some limitations, i.e. capturing the 

variability of flow and limited application in complex regions. Nonetheless, the straight-

forward modeling procedure and low data requirements render it an uncomplicated 

method to apply in alternative geographical regions and time periods. 

My application of BRTs (Chapter 3) outlines a beneficial and impartial variable 

selection method that can be applied in any system. It was my intent, to provide a 

relatively straight-forward procedure that could be implemented by ecology practitioners. 

It is most useful for communities with a large number of individual species, where it 

would be tedious and time consuming to collect knowledge of their individual ecological 

tendencies. The species-specific variable selection approach (Chapter 3) could help gain 

insights into potential species’ invasions as well as the ecological requirements of 

specialist species of interest, where species’ habitat preferences may be poorly understood.  

Furthermore, I have confirmed the traditional “uniform” predictor approach for a 

widespread species, for which I have shown that the community-wide predictor choice 

(selected by BRTs) corresponds to the ecological preferences of these species.  

The IHA metrics created and applied in this thesis, should be included in SDMs for 

riverine species, as they include information on the hydrological regime directly related to 

stream habitat, which has a substantial impact on predicted distributions (Chapter 4). As 

an example, high flow volume captures an aspect of extreme flow events, which is shown 

to be particularly important for riverine benthic macroinvertebrates at catchment scale 
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(Chapters 3 & 4) as it represents the broader aspects of hydrological regime, i.e. flooding, 

driven by climate and geology. These flow-related disturbances change the physical 

habitat of the stream bed which impacts benthic macroinvertebrate assemblage (Statzner et 

al. 1988, Lake 2000), and hence, distribution. SDMs applied with this metric could help 

gain insights into the relationship between species distribution and flow disturbances.  

Based on my results, my recommendations are twofold. First, my developed 

methods (Chapter 2 & 3) can be used as-is by water managers & practitioners, as well as 

students and academics interested in species’ distribution. The hydrological data created in 

Chapter 2, is readily available for Germany, and is supplied with R scripts 

(github.com/ksirving/stream_flow) for straight forward application. Additionally, R 

scripts are also provided for the BRT variable selection procedure (Chapter 2, 

github.com/ksirving/variable_selection). I encourage water managers to consider 

investigating species traits in both current and future distribution analyses to ensure the 

predicted habitat suitability coincides with species ecological preferences. I also 

encourage the development and expansion of online trait databases. Species trait data are 

limited for some taxon and geographic areas (Naeem and Bunker 2009),  however, 

overall, these databases provide vital information to incorporate into species’ distribution 

analysis.  

Second, to advance this research from an academic perspective, the hydrological 

data created in Chapter 2 can be improved to incorporate more complex regions such as 

alpine. In addition, the data could be modeled on various spatial resolutions (e.g. 90m2) to 

depict the multi-scale influence of various environmental drivers of river systems 

(Domisch et al. 2015, Kärcher et al. 2019) and, potentially, capture the variability in flow 

that could not be validated in Chapter 2. In addition, this data could also be modeled on a 

global scale: with recent technological advances and increased accessible computing 

power, this objective is eminently achievable. In terms of SDM methodology, I encourage 

the further development of SDM methods to include biotic factors, e.g. interactions, 

dispersal and ecological traits with an applied-science perspective for straight-forward 

implementation by water managers and practitioners. The application of such advances 

would indeed be complex; however, by providing user-friendly tools together with 

practical guidelines, implementation outside academia would be feasible. 

The recent Living Planet Report identified an 83% decline in global freshwater 

biodiversity (WWF 2018). This current status, added to the growing threat of 

https://github.com/ksirving/stream_flow
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anthropogenic global change, such as future climate change, dam expansion and land use 

change (Meybeck 2003, Vorosmarty et al. 2010), determines freshwater ecosystems as 

some of the most vulnerable ecosystems on earth (Dudgeon et al. 2006). To reliably 

estimate future instabilities, it is of utmost importance to further develop modeling 

methodology and exploit the predictive power of prognostic analyses such as SDMs.  By 

building on existing methods, we can further increase our theoretical knowledge and 

understanding of the ecological drivers of species’ distribution. Such advancements have 

the power to advise water managers in formulating wise mitigation and conservation 

decisions. 
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Table S2.1: Spearman’s correlation (r) observed vs. simulated IHA metrics (n=165), names and descriptions as per Olden & Poff (2003). Light grey =r > 0.5 

(positive correlation), no color =  r <= 0.50 ( no correlation). 

IHA r Metric Description 

DH1 0.7 Annual maxima of 1 day means of daily discharge 
Magnitude of maximum annual flow of various duration, ranging from 
daily to seasonal 

DH2 0.71 Annual maxima of 3 day means of daily discharge 
Magnitude of maximum annual flow of various duration, ranging from 
daily to seasonal 

DH3 0.71 Annual maxima of 7 day means of daily discharge 
Magnitude of maximum annual flow of various duration, ranging from 
daily to seasonal 

DH4 0.72 Annual maxima of 30 day means of daily discharge 
Magnitude of maximum annual flow of various duration, ranging from 
daily to seasonal 

DH5 0.72 Annual maxima of 90 day means of daily discharge 
Magnitude of maximum annual flow of various duration, ranging from 
daily to seasonal 

DH6 0.16 Variability in annual maxima of 1 day means of daily discharge Coefficient of variation in DH1–5 
DH7 0.12 Variability in annual maxima of 3 day means of daily discharge Coefficient of variation in DH1–5 
DH8 0.07 Variability in annual maxima of 7 day means of daily discharge Coefficient of variation in DH1–5 
DH9 -0.07 Variability in annual maxima of 30 day means of daily discharge Coefficient of variation in DH1–5 
DH10 0.02 Variability in annual maxima of 90 day means of daily discharge Coefficient of variation in DH1–5 

DH11 0.27 Means of 1 day maxima of daily discharge Mean annual 1-day maximum, respectively, divided by median flow 
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DH12 0.31 Means of 7 day maxima of daily discharge Mean annual 7-day maximum, respectively, divided by median flow 

DH13 0.33 Means of 30 day maxima of daily discharge Mean annual 30-day maximum, respectively, divided by median flow 

DH14 0.23 Flood duration 1 
Monthly flow equaled or exceeded 95% of the time divided by mean 
monthly flow 

DH15 -0.14 High flow pulse duration Mean duration of FH1 
DH16 0.05 Variability in high flow pulse duration Coefficient of variation in DH15 

DH17 0.07 High flow duration 1 
See DH15, where the upper threshold is defined as 1 times median flows, 
and the value is represented as an average instead of a tabulated count 

DH18 0.03 High flow duration 1 
See DH15, where the upper threshold is defined as 3 times median flows, 
and the value is represented as an average instead of a tabulated count 

DH19 0.12 High flow duration 1 
See DH15, where the upper threshold is defined as 7 times median flows, 
and the value is represented as an average instead  of tabulated count 

DH20 -0.03 High flow duration 2 
See DH17–19, where the upper threshold is defined as the 25th 
percentile of median flows 

DH21 0.06 High flow duration 2 
See DH17–19, where the upper threshold is defined as the 75th 
percentile of median flows 

DH22 -0.07 Flood interval Mean annual median interval in days between floods over all years 

DH23 -0.24 Flood duration 2 
Mean annual number of days that flows remain above the flood 
threshold averaged across all year 

DH24 0.09 Flood free days 
Mean annual maximum number of 365 days over all water years during 
which no floods occurred over all years 
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DL1 0.72 Annual minima of 1 day means of daily discharge 
Magnitude of minimum annual flow of various duration, ranging from 
daily to seasonal 

DL2 0.72 Annual minima of 3 day means of daily discharge 
Magnitude of minimum annual flow of various duration, ranging from 
daily to seasonal 

DL3 0.72 Annual minima of 7 day means of daily discharge 
Magnitude of minimum annual flow of various duration, ranging from 
daily to seasonal 

DL4 0.72 Annual minima of 30 day means of daily discharge 
Magnitude of minimum annual flow of various duration, ranging from 
daily to seasonal 

DL5 0.73 Annual minima of 90 day means of daily discharge 
Magnitude of minimum annual flow of various duration, ranging from 
daily to seasonal 

DL6 -0.14 Variability in annual minima of 1 day means of daily discharge Coefficient of variation in DL1–5 
DL7 -0.2 Variability in annual minima of 3 day means of daily discharge Coefficient of variation in DL1–5 
DL8 -0.23 Variability in annual minima of 7 day means of daily discharge Coefficient of variation in DL1–5 
DL9 -0.22 Variability in annual minima of 30 day means of daily discharge Coefficient of variation in DL1–5 
DL10 0.1 Variability in annual minima of 90 day means of daily discharge Coefficient of variation in DL1–5 
DL11 -0.07 Means of 1 day minima of daily discharge Mean annual 1-day minimum, divided by median flow 

DL12 -0.03 Means of 7 day minima of daily discharge Mean annual 7-day minimum, respectively, divided by median flow 

DL13 -0.09 Means of 30 day minima of daily discharge Mean annual 30-day minimum, respectively, divided by median flow 

DL14 0 Low exceedance flows 

Mean magnitude of flows exceeded 75% of the time (calculated from the 
flow duration curve) divided by median daily flow, respectively, over all 
years 
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DL15 -0.07 Low exceedance flows 

Mean magnitude of flows exceeded 90% of the time (calculated from the 
flow duration curve) divided by median daily flow, respectively, over all 
years 

DL16 -0.11 Low flow pulse duration Mean duration of FL1 
DL17 0.09 Variability in low flow pulse duration Coefficient of variation in DL16 
FH1 -0.05 High flood pulse count 1 See FL1, where the high pulse is defined as the 75th percentile 
FH2 -0.01 Variability in high flood pulse count 1 Coefficient of variation in FH1 

FH3 0.27 High flood pulse count 2 

See FH1, where the upper threshold is defined as 3 times median daily 
flow, and the value is represented as an average instead of a tabulated 
count 

FH4 0.24 High flood pulse count 2 

See FH1, where the upper threshold is defined as 7 times median daily 
flow, and the value is represented as an average instead of a tabulated 
count 

FH5 -0.01 Flood frequency 1 
Mean number of high flow events per year using an upper threshold of 1 
times median flow over all years 

FH6 -0.02 Flood frequency 1 
Mean number of high flow events per year using an upper threshold of 1 
times median flow over all years 

FH7 0.24 Flood frequency 1 
Mean number of high flow events per year using an upper threshold of 7 
times median flow over all years 

FH8 -0.05 Flood frequency 2 See FH5–7, where the 25th percentile are used as the  upper threshold 
FH9 -0.09 Flood frequency 2 See FH5–7, where the 75th percentile are used as the upper threshold 

FH10 0.01 Flood frequency 3 
See FH5–7, where the median of the annual minima is used as the upper 
threshold 

FH11 -0.24 Flood frequency 4 Mean number of discrete flood events per year 

FL1 -0.09 Low flood pulse count 

Number of annual occurrences during which the magnitude of flow 
remains below a lower threshold. Hydrologic pulses are defined as those 
periods within a year in which the flow drops below the 25th percentile 
(low pulse) of all daily values for the time period 

FL2 0.05 Variability in low flood pulse count Coefficient of variation in FL1 
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FL3 0.03 Frequency of low flow spells 
Total number of low flow spells (threshold equal to 5% of mean daily 
flow) divided by the record length in years 

MA1 0.73 Mean daily flows Mean daily flows 
MA2 0.73 Median daily flows Median daily flows 
MA3 0.25 Variability in daily flows 1 Coefficient of variation in daily flows 

MA4 0.28 Variability in daily flows 2 
Coefficient of variation of the logs in daily flows corresponding to the 
(5th, 10th, 15th, . . . , 85th, 90th 95th) percentiles 

MA5 0.29 Skewness in daily flows Mean daily flows divided by median daily flows 
MA6 0.2 Ranges in daily flows Ratio of 10th/90th percentiles in daily flows over all years 
MA7 0.23 Ranges in daily flows Ratio of 20th/80th percentiles in daily flows over all years 
MA8 0.23 Ranges in daily flows Ratio of 25th/75th percentiles in daily flows over all years 
MA9 0.28 Spreads in daily flows Ranges in daily flows (MA6–8) divided by median daily flows 
MA10 0.27 Spreads in daily flows Ranges in daily flows (MA6–8) divided by median daily flows 
MA11 0.27 Spreads in daily flows Ranges in daily flows (MA6–8) divided by median daily flows 
MA12 0.74 Mean monthly flows Mean monthly flow for all months 
MA13 0.74 Mean monthly flows Mean monthly flow for all months 
MA14 0.73 Mean monthly flows Mean monthly flow for all months 
MA15 0.71 Mean monthly flows Mean monthly flow for all months 
MA16 0.71 Mean monthly flows Mean monthly flow for all months 
MA17 0.72 Mean monthly flows Mean monthly flow for all months 
MA18 0.71 Mean monthly flows Mean monthly flow for all months 
MA19 0.72 Mean monthly flows Mean monthly flow for all months 
MA20 0.71 Mean monthly flows Mean monthly flow for all months 
MA21 0.72 Mean monthly flows Mean monthly flow for all months 
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MA22 0.73 Mean monthly flows Mean monthly flow for all months 
MA23 0.73 Mean monthly flows Mean monthly flow for all months 
MA24 0.17 Mean monthly flows Mean monthly flow for all months 
MA25 0.16 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA26 0.1 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA27 -0.02 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA28 0.03 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA29 -0.02 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA30 -0.06 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA31 -0.02 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA32 -0.09 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA33 0.01 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA34 0.16 Variability in monthly flows  Coefficient of variation in monthly flows for all months 
MA35 0.16 Variability in monthly flows  Coefficient of variation in monthly flows for all months 

MA36 0.25 Variability across monthly flows 1 
Variability in monthly flows divided by median monthly flows, where 
variability is calculated as range  

MA37 0.34 Variability across monthly flows 1 
Variability in monthly flows divided by median monthly flows, where 
variability is calculated as interquartile  

MA38 0.32 Variability across monthly flows 1 
Variability in monthly flows divided by median monthly flows, where 
variability is calculated as 90th–10th percentile. 

MA39 0.29 Variability across monthly flows 2 Coefficient of variation in mean monthly flows 

MA40 0.31 Variability across monthly flows 2 

Coefficient of variation in mean monthly flows 4 MA40 6 M Skewness in 
monthly flows (Mean monthly flow—median monthly flow)/median 
monthly flow 
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MH1 0.71 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH2 0.72 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH3 0.71 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH4 0.7 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH5 0.7 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH6 0.7 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH7 0.69 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH8 0.69 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH9 0.68 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH10 0.7 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH11 0.71 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH12 0.7 Mean maximum monthly flows Mean of the maximum monthly flows for all months 
MH13 0.27 Variability across maximum monthly flows Coefficient of variation in mean maximum monthly flows 

MH14 0.2 Median of annual maximum flows 
Median of the highest annual daily flow divided by the median annual 
daily flow averaged across all years 

MH15 0.27 High flow discharge 
Mean of the 1st, 10th and 25th percentile from the flow duration curve 
divided by median daily flow across all years 

MH18 0.28 Variability across annual maximum flows Coefficient of variation of logarithmic annual maximum flows 
MH19 0.28 Skewness in annual maximum flows See Hughes and James (1989) 

MH21 0.64 High flow volume 

Mean of the high flow volume (calculated as the area between the 
hydrograph and the upper threshold during the high flow event) divided 
by median annual daily flow across all years. The upper threshold is 
defined as 1 times median annual flow 
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MH22 0.06 High flow volume 

Mean of the high flow volume (calculated as the area between the 
hydrograph and the upper threshold during the high flow event) divided 
by median annual daily flow across all years. The upper threshold is 
defined as 3 times median annual flow 

MH23 0.15 High flow volume 

Mean of the high flow volume (calculated as the area between the 
hydrograph and the upper threshold during the high flow event) divided 
by median annual daily flow across all years. The upper threshold is 
defined as 7 times median annual flow 

MH24 0.25 High peak flow 1 

Mean of the high peak flow during the high flow event (defined by the 
upper threshold) divided by median annual daily flow. The upper 
threshold is defined as 1 times median annual flow  

MH25 0.24 High peak flow 1 

Mean of the high peak flow during the high flow event (defined by the 
upper threshold) divided by median annual daily flow. The upper 
threshold is defined as 3 times median annual flow 

MH26 0.27 High peak flow 1 

Mean of the high peak flow during the high flow event (defined by the 
upper threshold) divided by median annual daily flow. The upper 
threshold is defined as 7 times median annual flow 

MH27 0.31 High peak flow 2 
See MH24–26, where the upper threshold is defined as the 25th 
percentile from the flow duration curve 

ML1 0.74 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML2 0.74 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML3 0.74 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML4 0.72 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML5 0.71 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML6 0.71 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML7 0.72 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML8 0.72 Mean minimum monthly flows Mean minimum monthly flow for all months 
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ML9 0.71 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML10 0.72 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML11 0.73 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML12 0.74 Mean minimum monthly flows Mean minimum monthly flow for all months 
ML13 -0.06 Variability across minimum monthly Coefficient of variation in minimum monthly flows 
ML14 -0.07 Mean of annual minimum flows Mean of the lowest annual daily flow divided by median 
ML15 -0.07 Low flow index  Mean of the lowest annual daily flow divided by mean annual 
ML16 -0.09 Median of annual minimum flows 2 Median of the lowest annual daily flows divided by median 

ML17 0.05 Baseflow index 1 
Seven-day minimum flow divided by mean annual daily flows averaged 
across all years 

ML18 -0.29 Variability in Baseflow Index 1 Coefficient of variation in ML17 

ML19 -0.07 Baseflow index 2 
Mean of the ratio of the lowest annual daily flow to the mean annual 
daily flow times 100 averaged across all years 

ML20 -0.02 Baseflow index 3 Ratio of baseflow volume to total flow volume 

ML21 -0.13 Variability across annual minimum 
Coefficient of variation in annual minimum flows averaged across all 
years 

RA1 0.64 Rise rate Mean rate of positive changes in flow from one day to the next 
RA2 0.33 Variability in rise rate Coefficient of variation in RA1 
RA3 0.61 Fall rate Mean rate of negative changes in flow from one day to the next 
RA4 0.26 Variability in fall rate Coefficient of variation in RA3 
RA5 0.24 No day rises Ratio of days where the flow is higher than the previous day 

RA6 -0.06 Change of flow 
Median of difference between natural logarithm of flows between two 
consecutive days with increasing/decreasing flow 

RA7 -0.03 Change of flow 
Median of difference between natural logarithm of flows between two 
consecutive days with increasing/decreasing flow 
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RA8 -0.04 Reversals 
Number of negative and positive changes in water conditions from one 
day to the next 

RA9 0.02 Variability in reversals Coefficient of variation in RA8 
TA1 0.58 Constancy See Colwell (1974) 

TA2 0.58 Predictability of flow 

Composed of two independent, additive components: constancy (a 
measure of temporal invariance) and contingency (a measure of 
periodicity) 

TA3 0.32 Seasonal predictability of flooding 
Maximum proportion of all floods over the period of record that fall in 
any one of six 60-day ‘seasonal’ windows 

TH1 0.16 Julian date of annual maximum The mean Julian date of the 1-day annual maximum flow over all years 
TH2 0.08 Variability in Julian date of annual maximum Coefficient of variation in TH1 

TH3 0.18 Seasonal predictability of non-flooding 
Maximum proportion of the year (number of days/365) during which no 
floods have ever occurred over the period of record 

TL1 0.06 Julian date of annual minimum The mean Julian date of the 1-day annual minimum flow over all years 
TL2 0.03 Variability in Julian date of annual minimum Coefficient of variation in Tl1 

TL3 0.19 Seasonal predictability of low flow 
Proportion of low-flow events 5-year magnitude falling in a 60-day 
‘seasonal’ window 

TL4 -0.01 Seasonal predictability of non-low flow 
Maximum proportion of the year (number of days/365) during which no 
5-year + low flows have ever occurred over the entire period of record 
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 Table S2.2: Temporal validation full list of KGE, R2 and RMSE results and coordinates of sites 
  

Site lon lat r2 KGE RMSE_test RMSE_train 

1 9.704167 50.47083 0.69 0.78 0.56 0.63 

2 8.5375 51.54583333 0.66 0.77 0.93 0.95 

3 11.7 50.06 0.59 0.76 0.71 0.69 

4 8.7375 51.74583333 0.72 0.76 0.86 0.89 

5 9.8125 50.44583 0.76 0.76 0.54 0.55 

6 10.60416667 52.57083333 0.62 0.75 1.16 1.24 

7 10.158 50.631 0.65 0.74 0.66 0.65 

8 11.02 53.32 0.58 0.74 2.2 2.27 

9 8.31 53 0.62 0.74 6.25 6.39 

10 9.8125 50.6375 0.64 0.74 0.56 0.61 

11 11.0625 50.30416667 0.6 0.73 0.7 0.66 

12 11.684707 51.226506 0.54 0.73 15.74 15.54 

13 10.2375 52.62917 0.61 0.72 1.21 1.13 

14 8.4125 52.65416667 0.64 0.72 3.48 3.44 

15 6.470833333 51.8375 0.66 0.71 1.33 1.32 

16 10.13 51.94 0.62 0.7 0.86 0.85 

17 6.970833333 51.22083333 0.52 0.7 0.57 0.55 

18 8.479166667 52.82916667 0.61 0.7 5.65 5.7 

19 8.98 49.61 0.6 0.7 0.62 0.65 

20 9.704166667 52.6875 0.52 0.7 23.42 23.25 

21 12.17083 53.80417 0.51 0.69 1.74 1.79 

22 9.5625 51.1125 0.65 0.69 0.72 0.71 

23 9.929166667 51.40416667 0.65 0.69 1.45 1.69 

24 12.05417 51.30417 0.61 0.68 34.21 38.11 

25 8.48 52.83 0.58 0.68 5.95 5.78 

26 8.670833 51.17083 0.62 0.68 0.55 0.56 

27 8.529167 51.5375 0.63 0.67 0.99 0.91 

28 12.01 53.15 0.59 0.66 1.88 1.89 

29 6.370833 50.90417 0.46 0.66 7.51 7.51 

30 8.045833333 49.2125 0.51 0.66 0.94 0.96 

31 8.104166667 47.6625 0.63 0.66 1.45 1.57 

32 8.520833 48.77917 0.49 0.66 0.62 0.62 

33 9.970833 51.12083 0.45 0.66 1.1 0.85 

34 10.04 52.74 0.55 0.65 2.56 2.64 

35 10.29583333 53.5375 0.56 0.65 1.14 1.1 

36 7.929167 51.62917 0.68 0.65 0.89 0.92 

37 8.38 51.16 0.48 0.65 0.99 0.95 
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38 9.37 48.51 0.58 0.65 0.83 0.83 

39 9.7375 50.62917 0.68 0.65 0.91 1 

40 10.05416667 52.62083333 0.54 0.64 18.36 18.43 

41 10.7125 51.10416667 0.49 0.64 2.58 2.79 

42 9.612062 51.944106 0.51 0.64 0.77 0.81 

43 9.6125 49.05416667 0.54 0.64 0.71 0.7 

44 11.1875 51.8875 0.57 0.63 4.6 4.57 

45 11.68 50.04 0.46 0.63 0.88 0.87 

46 7.254166667 51.7875 0.48 0.63 1.67 1.71 

47 8.39 48.47 0.44 0.63 0.67 0.67 

48 8.571186 49.668736 0.56 0.63 1.78 1.73 

49 8.7875 50.27916667 0.57 0.63 4.16 4.24 

50 9.275496 48.083736 0.43 0.63 2.23 2.32 

51 10.79583333 50.52083333 0.4 0.62 0.91 0.86 

52 10.9625 51.35416667 0.61 0.62 2.03 1.93 

53 11.8375 53.7375 0.47 0.62 1.37 1.4 

54 13.395112 51.518745 0.39 0.62 9.97 9.26 

55 9.695833333 52.10416667 0.58 0.62 1.04 1.1 

56 12.32083333 50.0125 0.69 0.61 1.17 1.18 

57 6.62 50.24 0.56 0.61 0.87 0.87 

58 8.06 50.24 0.65 0.61 1.01 0.99 

59 8.19 47.93 0.52 0.61 1.19 1.11 

60 8.979166667 49.97083333 0.62 0.61 2.03 1.93 

61 9.283338 50.853971 0.63 0.61 1.23 1.11 

62 11.478205 49.028364 0.61 0.6 9.17 9.19 

63 11.69 49.97 0.45 0.6 0.99 3.41 

64 7.38 50.37 0.58 0.6 1.55 1.57 

65 7.5125 49.9875 0.51 0.6 0.8 0.75 

66 8.57 49.67 0.51 0.6 1.92 1.68 

67 8.7375 50.17917 0.57 0.6 6.67 6.79 

68 9.454166667 48.57083333 0.53 0.6 0.84 0.85 

69 10.32083333 51.5625 0.46 0.59 0.73 0.71 

70 11.061 50.548 0.46 0.59 0.88 0.84 

71 11.12083333 53.85416667 0.44 0.59 2.28 2.28 

72 11.8375 51.1625 0.58 0.59 39.78 37.26 

73 12.2625 50.32083333 0.46 0.59 1.21 1.28 

74 13.07917 51.77083 0.41 0.59 12.79 12.82 

75 13.36 48.83 0.51 0.59 2.36 2.54 

76 7.345833333 52.6875 0.58 0.59 15.74 15.8 

77 7.43 50.42 0.54 0.59 1.76 1.76 

78 8.000165 52.308177 0.46 0.59 2.52 2.3 
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79 8.145833 50.3625 0.54 0.59 1.33 1.43 

80 9.2875 50.85416667 0.51 0.59 1.41 1.5 

81 9.64 49.04 0.58 0.59 0.89 0.92 

82 9.75 52.89 0.5 0.59 1.66 1.65 

83 9.9375 51.1375 0.64 0.59 1.08 0.82 

84 10.8875 53.2375 0.36 0.58 400.7 397.83 

85 11.19583333 49.8125 0.65 0.58 0.96 0.97 

86 11.5125 50.35416667 0.47 0.58 1.07 1 

87 11.52083333 50.17916667 0.55 0.58 0.9 0.91 

88 7.020833 52.22083 0.61 0.58 1.48 1.62 

89 8.304166667 51.8625 0.49 0.58 2.54 2.43 

90 9.104167 50.2875 0.62 0.58 0.84 0.88 

91 9.2125 49.82916667 0.51 0.58 0.95 0.93 

92 9.3875 52.7875 0.56 0.58 62.35 63.11 

93 10.6875 51.74583 0.35 0.57 0.8 0.83 

94 11.83 49.63 0.45 0.57 0.82 0.74 

95 6.545833333 50.55416667 0.56 0.57 1.34 1.37 

96 7.42 52.43 0.46 0.57 4.31 4.18 

97 8.004166667 47.62916667 0.42 0.57 0.82 0.81 

98 8.2125 50.75417 0.72 0.57 0.9 0.95 

99 8.720833 51.6625 0.67 0.57 1.55 1.55 

100 8.795833 50.47917 0.63 0.57 0.83 0.82 

101 9.0875 52.2875 0.5 0.57 0.89 0.85 

102 9.154166667 48.09583333 0.41 0.57 1.28 1.2 

103 9.77 51.81 0.7 0.57 1.39 1.32 

104 9.845833 52.97917 0.48 0.57 0.62 0.68 

105 9.879166667 53.72083333 0.33 0.57 0.77 0.75 

106 10.32 52.57 0.57 0.56 0.91 0.89 

107 10.6375 50.4875 0.64 0.56 2.33 2.19 

108 10.79583 51.69583 0.5 0.56 0.88 0.85 

109 11.02083333 49.60416667 0.59 0.56 1.29 1.22 

110 13.3125 53.7875 0.37 0.56 4.23 4.15 

111 14.19 50.93 0.34 0.56 1.04 1.11 

112 6.345833 50.92917 0.54 0.56 9.31 9.4 

113 9.995833 51.17083 0.62 0.56 2.2 1.83 

114 10.2375 53.50416667 0.57 0.55 1.58 1.62 

115 10.3625 52.0125 0.45 0.55 1.99 1.92 

116 11.64583333 52.12916667 0.39 0.55 326.72 330.46 

117 11.9875 52.54583333 0.39 0.55 340.94 337.28 

118 7.120833333 51.35416667 0.34 0.55 1.09 1.22 

119 7.6375 52.72917 0.33 0.55 1 0.92 
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120 9.020833 50.4375 0.7 0.55 1.03 1.11 

121 9.479167 50.32083 0.67 0.55 1.26 1.28 

122 9.79 50.31 0.69 0.55 1.16 1.12 

123 10.47 53.15 0.44 0.54 4.41 4.38 

124 10.95416667 50.8375 0.61 0.54 1.48 1.46 

125 10.957 50.921 0.6 0.54 1.99 2.08 

126 10.99 49.44 0.42 0.54 7.96 7.19 

127 11.16 50.432 0.46 0.54 0.96 1.07 

128 11.2125 51.82917 0.46 0.54 3.82 3.81 

129 11.8875 51.9875 0.39 0.54 336.82 340.17 

130 13.37 48.63 0.47 0.54 1.58 1.56 

131 6.94 49.83 0.6 0.54 1.49 1.56 

132 7.495833 52.4375 0.61 0.54 2.47 2.35 

133 7.9625 52.5625 0.59 0.54 5.94 5.84 

134 8.004166667 50.9625 0.56 0.54 1.33 1.33 

135 8.345833 50.69583 0.72 0.54 1.18 1.29 

136 9.020833333 54.70416667 0.41 0.54 2.93 2.98 

137 9.731472 50.805051 0.59 0.54 2.5 2.65 

138 9.761058 50.022368 0.54 0.54 1.95 1.97 

139 10.10416667 51.6875 0.53 0.53 6.7 6.88 

140 6.1875 50.72917 0.52 0.53 0.75 0.8 

141 6.970833333 52.50416667 0.5 0.53 6.96 6.97 

142 9.125 52.964 0.58 0.53 182.19 178.36 

143 9.345833333 51.07916667 0.5 0.53 5.07 5 

144 10.746 50.509 0.61 0.52 1.71 1.63 

145 10.8375 50.00416667 0.54 0.52 1.96 1.89 

146 12.4125 48.9125 0.31 0.52 1.84 1.97 

147 6.4375 50.22083 0.59 0.52 0.96 1.01 

148 8.47 48.55 0.41 0.52 0.85 0.85 

149 8.59 48.77 0.49 0.52 1.23 0.95 

150 8.83 49.81 0.68 0.52 1.31 1.3 

151 8.88 50.23 0.63 0.52 2.27 2.24 

152 9.2875 50.75417 0.58 0.52 1.04 1.23 

153 11.441377 49.106945 0.49 0.51 1.09 1.08 

154 12.32083333 52.60416667 0.41 0.51 45.77 47.16 

155 13.62083 52.29583 0.32 0.51 1.35 1.36 

156 7.898373 51.972621 0.52 0.51 10.87 11.15 

157 7.954166667 47.9375 0.45 0.51 1.15 1.12 

158 8.3375 50.45417 0.7 0.51 1.72 1.78 

159 8.515945 49.008091 0.33 0.51 1.72 1.59 

160 8.895833333 52.60416667 0.56 0.51 5.58 5.94 
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161 8.897686 48.724098 0.27 0.51 1.49 1.48 

162 8.902825 52.601321 0.55 0.51 5.79 5.44 

163 8.954167 52.02083 0.69 0.51 0.71 0.74 

164 9.379166667 54.62083333 0.41 0.51 1.61 1.57 

165 10.02916667 48.89583333 0.68 0.5 1.21 1.22 

166 10.64583333 51.45416667 0.45 0.5 2.12 1.78 

167 11.4375 49.1125 0.5 0.5 0.69 0.62 

168 12 50.13 0.78 0.5 1.08 1.19 

169 7.6625 49.52917 0.31 0.5 1.45 1.39 

170 7.84 52.72 0.58 0.5 10.5 10.74 

171 8.7625 49.6375 0.57 0.5 0.63 0.62 

172 9.211 52.852 0.61 0.5 116.29 117.51 

173 11.39583333 50.9375 0.57 0.49 3.24 3.02 

174 11.579321 51.071839 0.54 0.49 3.9 4.12 

175 12.1125 50.02083333 0.69 0.49 1.24 1.26 

176 12.2625 49.05416667 0.48 0.49 0.9 0.82 

177 12.32083333 52.6125 0.38 0.49 47.78 47.27 

178 12.40416667 51.20416667 0.32 0.49 4.74 4.65 

179 12.40416667 51.2125 0.31 0.49 4.5 4.85 

180 6.85115 51.673858 0.55 0.49 29.45 28.89 

181 7.1875 51.7375 0.59 0.49 26.28 26.04 

182 7.804166667 50.27916667 0.59 0.49 0.88 0.93 

183 8.01 52.71 0.58 0.49 3.28 3.46 

184 8.36 48.61 0.42 0.49 2 2.37 

185 8.5125 49.00416667 0.33 0.49 1.69 1.58 

186 8.62 48.14 0.48 0.49 2.43 2.97 

187 9.24493 47.729498 0.32 0.49 2.12 2.03 

188 9.731446 48.266271 0.41 0.49 24.96 25.49 

189 10.47917 52.95417 0.53 0.48 1.05 1.03 

190 10.79 51.6 0.36 0.48 1.17 1.09 

191 10.89583333 49.79583333 0.58 0.48 1.32 1.51 

192 11.206 50.405 0.48 0.48 1.1 1.03 

193 11.67 50.87 0.43 0.48 2.07 1.82 

194 12.65416667 51.8625 0.31 0.48 235.03 240.27 

195 6.445833 50.37083 0.6 0.48 1.22 1.2 

196 7.670833333 52.70416667 0.59 0.48 11.46 11.31 

197 7.779167 51.90417 0.61 0.48 1.62 1.64 

198 7.8375 49.77916667 0.43 0.48 1.89 1.73 

199 8.54 48.72 0.61 0.48 1.39 1.36 

200 8.630535 51.748833 0.58 0.48 7.32 7.34 

201 8.6375 49.15416667 0.44 0.48 1.67 1.62 
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202 9.204167 50.7625 0.53 0.48 0.69 0.71 

203 9.279166667 50.20416667 0.62 0.48 0.69 0.71 

204 9.729166667 49.05416667 0.4 0.48 1.14 0.99 

205 10.35 50.98 0.36 0.47 2.13 1.96 

206 11.38 49.366979 0.53 0.47 1.66 1.72 

207 11.5 48.73 0.32 0.47 4.81 4.73 

208 12.845305 52.478085 0.34 0.47 41.08 39.87 

209 13.010575 51.558968 0.33 0.47 218.42 224.27 

210 13.44583333 48.72916667 0.49 0.47 3.29 2.95 

211 13.7375 51.4625 0.32 0.47 4.51 4.15 

212 6.095833 50.87083 0.32 0.47 1.3 1.31 

213 7.254166667 49.67083333 0.55 0.47 1.21 1.16 

214 7.279166667 51.0125 0.54 0.47 0.94 0.98 

215 7.604166667 52.6875 0.53 0.47 14.02 13.75 

216 8.37 48.31 0.69 0.47 1.63 1.71 

217 9.77 48.68 0.51 0.47 1.2 1.1 

218 10.087194 53.655835 0.5 0.46 2.31 2.29 

219 10.8454 53.418912 0.58 0.46 2.09 2.03 

220 10.90416667 50.42083333 0.51 0.46 1.06 0.99 

221 10.989 50.926 0.53 0.46 4.28 4.39 

222 13.57 48.82 0.23 0.46 1.29 1.22 

223 13.77296 51.198328 0.36 0.46 1.83 1.98 

224 8.070833333 47.82083333 0.35 0.46 1.29 1.27 

225 8.862 52.176 0.61 0.46 100.48 103.53 

226 9.09 52.15 0.45 0.46 1.37 1.39 

227 9.120833333 52.59583333 0.62 0.46 113.45 113.42 

228 9.248 47.7296 0.34 0.46 2.43 2.4 

229 9.92 51.55 0.45 0.46 4.03 3.64 

230 10.41 48.84 0.55 0.45 1.62 1.63 

231 10.913473 48.953204 0.48 0.45 5.66 5.43 

232 13.7375 51.05416667 0.36 0.45 218.65 220.11 

233 14.1625 52.70416667 0.39 0.45 1.72 1.72 

234 6.1875 51.02083333 0.25 0.45 2.14 2.14 

235 6.804166667 49.94583333 0.62 0.45 1.67 1.92 

236 7.229166667 52.7375 0.53 0.45 54.76 53.46 

237 7.36 52.11 0.52 0.45 1.45 1.3 

238 8.2 48.28 0.43 0.45 4.31 4.53 

239 8.2875 50.7625 0.73 0.45 1.37 1.35 

240 8.84 47.74 0.34 0.45 1.9 2.04 

241 8.922 52.249 0.61 0.45 112.14 112.58 

242 9.13 52.96 0.61 0.45 320.94 327.24 
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243 9.396086 48.072465 0.41 0.45 20.17 20.4 

244 9.665742 49.625874 0.43 0.45 8.56 7.3 

245 9.83 48.24 0.36 0.45 4.24 5.28 

246 9.831213 48.238604 0.22 0.45 2.72 2.64 

247 10.315221 50.980701 0.57 0.44 2.69 2.84 

248 10.94583333 49.8375 0.48 0.44 33.76 32.69 

249 12.059195 51.86316 0.32 0.44 285.36 291.6 

250 7.1875 51.7375 0.54 0.44 29.82 29.87 

251 7.2375 52.72916667 0.6 0.44 54.05 51.51 

252 7.868864 48.340419 0.35 0.44 1.29 1.39 

253 8.399592 50.136749 0.56 0.44 0.86 0.85 

254 9.18 49.16 0.54 0.44 1.63 1.75 

255 9.603865 50.009995 0.6 0.44 92.59 97.35 

256 9.904166667 48.2625 0.28 0.44 2.08 2.09 

257 10.400272 50.718201 0.65 0.43 1.56 1.77 

258 13.61 50.8 0.21 0.43 1.11 1.16 

259 6.454167 50.69583 0.44 0.43 7.59 7.47 

260 7.24 52.73 0.51 0.43 54.75 53.62 

261 8.029166667 50.89583333 0.56 0.43 2.34 2.56 

262 8.720833333 52.5625 0.54 0.43 3.86 3.7 

263 8.73 48.54 0.52 0.43 1.38 1.39 

264 9.229166667 49.7125 0.62 0.43 106.07 112.35 

265 9.318533 48.695677 0.24 0.43 1.37 1.44 

266 9.438 51.648 0.6 0.43 87.9 87.4 

267 9.469 51.227 0.51 0.43 39.95 40.74 

268 9.516 51.973 0.57 0.43 96.49 91.36 

269 10.57916667 51.45416667 0.45 0.42 0.93 0.96 

270 13.07916667 49.17916667 0.24 0.42 1.12 1 

271 13.993832 51.022092 0.31 0.42 1.77 1.81 

272 14.32083333 51.30416667 0.29 0.42 1.1 1.09 

273 7.24852 52.595595 0.58 0.42 34.25 34.06 

274 7.7875 47.85416667 0.41 0.42 1.45 1.52 

275 8.7125 50.1125 0.6 0.42 127.91 125.25 

276 8.870833333 48.25416667 0.43 0.42 1.08 1.02 

277 8.92 51.5 0.64 0.42 3.68 3.76 

278 9.46 49.24 0.41 0.42 1.76 1.58 

279 9.679167 47.90417 0.28 0.42 2.08 2.12 

280 10.01 51.87 0.47 0.41 0.88 0.87 

281 10.17 48.92 0.53 0.41 0.87 0.89 

282 10.22 51.57 0.54 0.41 1.09 1.18 

283 10.7125 48.60416667 0.2 0.41 2.86 2.68 
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284 11.196753 48.888543 0.49 0.41 7.9 7.38 

285 11.70417 51.1125 0.5 0.41 26.64 26.16 

286 6.9625 52.55416667 0.42 0.41 7.97 7.58 

287 7.429167 49.80417 0.58 0.41 2.2 1.94 

288 8.43 47.72 0.44 0.41 5.57 5.32 

289 8.804166667 51.97916667 0.47 0.41 1.89 2.02 

290 9.154166667 48.0875 0.52 0.41 0.95 0.9 

291 9.22 49.69 0.62 0.41 3.15 3.2 

292 9.2625 48.57083333 0.5 0.41 1.89 1.91 

293 9.404167 52.72917 0.34 0.41 0.82 0.82 

294 13.35416667 48.8375 0.35 0.4 1.59 1.62 

295 7.920833333 51.75416667 0.44 0.4 0.78 0.82 

296 8.145833333 48.69583333 0.46 0.4 0.84 0.86 

297 8.4625 48.0625 0.53 0.4 1.97 1.79 

298 9.1375 51.70417 0.61 0.4 1.31 1.37 

299 9.456837 49.249141 0.39 0.4 1.79 1.69 

300 9.595833333 52.67916667 0.54 0.4 41.6 40.19 

301 9.641 51.426 0.59 0.4 75.28 77.39 

302 9.676 52.388 0.56 0.4 34.21 32.63 

303 10.72 48.61 0.32 0.39 3.63 3.73 

304 11.75416667 50.57083333 0.37 0.39 1.57 1.7 

305 7.08 50.07 0.52 0.39 2.25 2.23 

306 7.854167 49.8875 0.53 0.39 1.14 1.08 

307 8.454167 50.8875 0.62 0.39 1.69 1.29 

308 8.8875 48.3875 0.31 0.39 1.56 1.6 

309 9.520833333 51.62916667 0.59 0.39 81.69 78.05 

310 9.6875 51.25417 0.56 0.39 0.63 0.61 

311 9.895833333 48.27083333 0.17 0.39 1.96 1.88 

312 10.19583333 53.3375 0.44 0.38 2.29 2.27 

313 11.12083 51.45417 0.49 0.38 5.72 5.46 

314 11.14 53.84 0.53 0.38 1.44 1.48 

315 11.38 49.37 0.56 0.38 1.84 1.48 

316 6.46575 49.888832 0.52 0.38 2.8 2.83 

317 7.434 52.288 0.54 0.38 29.49 30.98 

318 8.720833 50.65417 0.56 0.38 0.98 1.13 

319 9.170121 53.339366 0.52 0.38 4.57 4.72 

320 9.379167 53.29583 0.54 0.38 2.54 2.56 

321 9.6 51.63 0.61 0.38 2.44 2.4 

322 10.16 48.63 0.32 0.37 2.63 2.72 

323 10.36 47.63 0.16 0.37 1.21 1.19 

324 11.92083333 50.32083333 0.62 0.37 4.14 4.34 
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325 12.432924 50.889017 0.28 0.37 1.92 2.1 

326 6.46 49.88 0.38 0.37 3.13 2.82 

327 7.82 49.61 0.44 0.37 1.26 1.08 

328 8.39 51.04 0.58 0.37 2.28 2.24 

329 9.054167 49.8375 0.68 0.37 2.57 2.43 

330 9.205753 53.075773 0.54 0.37 6.54 6.78 

331 10.220815 50.031196 0.56 0.36 74.36 78.06 

332 10.23 48.58 0.25 0.36 2.02 2.32 

333 10.27916667 52.4625 0.21 0.36 0.87 0.83 

334 10.483 50.917 0.56 0.36 0.67 0.64 

335 11.02083 51.7375 0.43 0.36 3.79 3.83 

336 11.58 47.74 0.14 0.36 1.13 1.14 

337 11.75 50.57 0.36 0.36 1.92 1.7 

338 14.37 51.577 0.25 0.36 10.06 10.02 

339 14.574671 51.405506 0.2 0.36 3.78 3.48 

340 6.779166667 52.07916667 0.53 0.36 3.25 3.28 

341 7.495833 52.6375 0.6 0.36 0.73 0.76 

342 8.36 48.32 0.59 0.36 1.46 1.29 

343 9.78 49.5 0.52 0.36 7.74 9.35 

344 9.904166667 49.05416667 0.53 0.36 2.15 2.34 

345 10.2125 52.32916667 0.49 0.35 1.73 1.73 

346 10.42083333 47.60416667 0.16 0.35 1.21 1.17 

347 11.02083333 50.70416667 0.57 0.35 2.26 2.32 

348 11.2625 51.8375 0.55 0.35 1.82 1.72 

349 11.37 50.3 0.53 0.35 1.91 1.81 

350 12.32083 53.6875 0.37 0.35 0.81 0.82 

351 14.30417 51.20417 0.16 0.35 0.91 0.8 

352 8.089404 51.662965 0.56 0.35 16.93 16.49 

353 8.770833333 48.40416667 0.33 0.35 3.18 3.38 

354 9.21 53.08 0.53 0.35 6.96 6.57 

355 9.709 51.408 0.61 0.35 34.39 34.82 

356 10.65667 48.28903 0.13 0.34 1.46 1.39 

357 10.80417 51.7375 0.34 0.34 2.46 2.45 

358 10.89 47.73 0.14 0.34 1.02 1.03 

359 6.48 50.58 0.5 0.34 4.94 4.95 

360 7.603 52.094 0.48 0.34 25.24 24.57 

361 8.79 51.1 0.63 0.34 2.84 2.93 

362 9.151828 48.51144 0.36 0.34 1.77 1.85 

363 9.7375 47.64583333 0.29 0.34 5.1 5.09 

364 9.773611 49.4925 0.45 0.34 7.12 6.94 

365 9.86 48.81 0.46 0.34 1.55 1.73 
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366 9.974833 51.270925 0.61 0.34 32.75 31.88 

367 10.52083333 47.55416667 0.14 0.33 1.02 1.06 

368 11.52083333 48.42916667 0.19 0.33 2.97 2.77 

369 11.578935 49.947823 0.61 0.33 3.23 3.04 

370 12.0875 53.59583 0.31 0.33 0.84 0.83 

371 12.432 50.892 0.23 0.33 2.15 2.03 

372 12.66502 54.11993 0.36 0.33 1.89 1.99 

373 13.412422 48.938176 0.18 0.33 0.84 0.85 

374 6.2875 50.8125 0.49 0.33 2.8 2.86 

375 7.720833333 51.8875 0.46 0.33 3.87 3.56 

376 8.325545 47.623306 0.41 0.33 8.41 7.64 

377 8.603951 48.586485 0.59 0.33 2.17 2.12 

378 8.89 48.39 0.39 0.33 1.65 1.72 

379 9.2625 48.5625 0.44 0.33 2.03 2.04 

380 9.740556 48.985379 0.5 0.33 2.03 2.15 

381 10.254582 51.651 0.48 0.32 2.66 2.93 

382 14.12 51.81 0.19 0.32 1.52 1.46 

383 14.944133 51.064069 0.24 0.32 1.6 1.65 

384 7.85 48.34 0.27 0.32 1.8 1.4 

385 8.7375 51.3875 0.84 0.32 3.12 2.76 

386 10.78383 51.506747 0.55 0.31 3.94 3.56 

387 11.936343 49.118264 0.55 0.31 34.53 36.85 

388 11.94 49.12 0.52 0.31 40.2 39.42 

389 12.665 54.1199 0.29 0.31 1.83 1.74 

390 8.2875 51.05416667 0.56 0.31 2.96 2.73 

391 8.3875 51.02917 0.54 0.31 2.35 2.37 

392 8.43 50.5 0.58 0.31 0.84 0.89 

393 9.54 50.03 0.67 0.31 2.43 2.46 

394 10.1375 48.9375 0.49 0.3 2.66 2.68 

395 10.7625 49.92916667 0.57 0.3 82.83 80.12 

396 12.3625 48.45416667 0.21 0.3 2.76 3.46 

397 12.747222 48.879753 0.38 0.3 293.84 296.74 

398 8.795833 51.15417 0.67 0.3 3.82 3.69 

399 9.128615 49.345874 0.64 0.3 2.19 2.47 

400 9.317255 54.514342 0.4 0.3 4.64 4.65 

401 9.445833333 48.70416667 0.4 0.3 3.1 2.98 

402 9.495833333 51.1875 0.52 0.3 22.72 21.39 

403 9.945833 48.0875 0.16 0.3 0.81 0.82 

404 10.0125 50.65416667 0.66 0.29 2.66 2.49 

405 10.197 51.125 0.58 0.29 30.54 29.26 

406 11.33351 50.716568 0.45 0.29 20.22 20.8 
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407 6.395395 51.756918 0.45 0.29 1535.2 1513.05 

408 8.629166667 48.17083333 0.39 0.29 5.98 6.62 

409 8.764489 50.798716 0.44 0.29 16.57 15.96 

410 8.84 49.31 0.5 0.29 2.73 2.56 

411 9.07 48.49 0.36 0.29 1.78 1.54 

412 9.56 49.29 0.44 0.29 1.26 1.2 

413 9.72 51.004 0.51 0.29 19.44 20.2 

414 9.945833333 51.8625 0.49 0.29 24.95 24.33 

415 10.0875 51.70416667 0.55 0.28 11.25 10.91 

416 12.04 48.25 0.14 0.28 1.21 1.29 

417 12.138699 49.023576 0.38 0.28 288.91 292.58 

418 6.7625 51.22916667 0.45 0.28 1436.46 1465.7 

419 7.910784 49.911575 0.37 0.28 34.68 31.83 

420 8.355248 50.545162 0.45 0.28 35.56 34.77 

421 8.728344 51.38311 0.15 0.28 1.85 1.73 

422 9.4625 48.9875 0.48 0.28 2.71 3.08 

423 9.595833 47.77917 0.29 0.28 5.94 6.15 

424 10.92083 51.7375 0.29 0.27 3.67 3.69 

425 12.18 47.75 0.07 0.27 1.23 1.18 

426 13.21 50.68 0.3 0.27 1.96 2.08 

427 13.24 49.01 0.45 0.27 2.16 2.14 

428 14.406338 51.164241 0.28 0.27 2.53 2.57 

429 6.970833333 50.9375 0.45 0.27 1436.65 1429.94 

430 7.88 51.84 0.51 0.27 0.98 0.97 

431 8.386279 51.031445 0.51 0.27 2.5 2.43 

432 8.47 50.92 0.6 0.27 2.07 1.95 

433 8.56 52.36 0.08 0.27 1.35 1.29 

434 9.86 49.13 0.44 0.27 1.86 1.88 

435 10.46 50.72 0.52 0.26 1.6 1.55 

436 11.87083 52.07917 0.43 0.26 1.06 1.03 

437 13.07852 50.631093 0.33 0.26 2.66 2.76 

438 6.151 51.684 0.62 0.26 4.93 4.69 

439 7.581097 51.435987 0.49 0.26 25.8 25.86 

440 8.138863 49.350089 0.3 0.26 1.58 1.58 

441 8.68 49.29 0.28 0.26 0.84 0.81 

442 8.729503 48.897062 0.49 0.26 14.36 14.87 

443 9.62 50.2 0.72 0.26 5.04 4.95 

444 9.851501 49.140837 0.49 0.26 3.18 3.31 

445 10.0375 47.87083333 0.38 0.25 3.93 3.95 

446 10.692384 48.783235 0.4 0.25 13.74 12.98 

447 11.53 48.43 0.21 0.25 4.15 3.95 
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448 12.693803 48.606248 0.19 0.25 5.73 5.73 

449 13.115161 48.676623 0.33 0.25 422.81 428.69 

450 13.36914 48.62954 0.58 0.25 3.21 3.53 

451 14.42916667 51.07916667 0.27 0.25 1.94 1.9 

452 7.39205 50.443386 0.42 0.25 1386.13 1391.32 

453 7.654167 49.6875 0.4 0.25 10.73 11.09 

454 8.82 49.31 0.57 0.25 2.36 2.5 

455 9.08 48.96 0.23 0.25 1.83 1.8 

456 9.720833333 53.3875 0.36 0.25 0.98 0.98 

457 9.9875 50.82083333 0.59 0.25 4.62 4.3 

458 10.04 47.87 0.38 0.24 4.06 4.04 

459 10.47083333 50.54583333 0.66 0.24 3.72 3.57 

460 10.65 48.29 0.16 0.24 2.16 2.46 

461 14.42083333 51.17916667 0.22 0.24 2.74 2.17 

462 7.579167 51.4375 0.51 0.24 27.09 26.77 

463 8.1 51.11 0.6 0.24 4.23 4.36 

464 8.709661 48.823801 0.53 0.24 7.93 7.28 

465 8.945812 50.132082 0.63 0.24 8.86 8.65 

466 9.458716 48.984121 0.44 0.24 2.8 2.46 

467 9.5625 49.2875 0.46 0.24 1.11 1.12 

468 9.74 48.99 0.57 0.24 2.76 2.94 

469 12.43 48.92 0.44 0.23 6.02 3.89 

470 7.5625 50.6375 0.7 0.23 2.62 2.84 

471 8.3375 47.62916667 0.44 0.23 8.89 8.23 

472 8.73 48.9 0.44 0.23 15.16 15.32 

473 9.39 48.67 0.26 0.23 1.91 1.76 

474 9.77 49.5 0.34 0.23 8.24 8.69 

475 12.014935 48.946957 0.27 0.22 240.98 240.36 

476 12.37916667 48.47083333 0.24 0.22 4.22 4.79 

477 12.79583333 47.70416667 0.11 0.22 1.58 1.6 

478 14.89583333 51.27083333 0.26 0.22 1.39 1.32 

479 7.229167 52.29583 0.43 0.22 1.32 1.38 

480 7.764967 50.085444 0.34 0.22 1149.93 1160.54 

481 8.279166667 47.69583333 0.53 0.22 2.09 2.01 

482 9.129167 51.9125 0.52 0.22 4.48 4.29 

483 10.83 47.65 0.06 0.21 1.2 1.11 

484 10.94583333 52.45416667 0.5 0.21 2.39 2.33 

485 12.53 48.28 0.22 0.21 4.97 5.77 

486 13.09 48.8 0.58 0.21 0.88 0.86 

487 13.3875 50.8875 0.37 0.21 3.22 3.32 

488 13.93 51.26 0.26 0.21 1.05 1.08 
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489 6.857059 52.602223 0.51 0.21 17.02 17.24 

490 8.295833333 48.00416667 0.47 0.21 0.77 0.78 

491 8.4625 50.5875 0.6 0.21 10.37 10.74 

492 9.0875 51.1625 0.26 0.21 18.59 18.93 

493 11.05416667 50.55416667 0.49 0.2 2.8 2.59 

494 11.21 50.23 0.64 0.2 3.76 3.72 

495 6.604166667 50.12916667 0.51 0.2 7.1 7.59 

496 6.89 50.14 0.49 0.2 0.74 0.73 

497 7.1875 49.1375 0.44 0.2 16.77 16.2 

498 8.620833 52.07083 0.54 0.2 2.82 3.06 

499 9.5348 47.6732 0.29 0.2 9.16 8.29 

500 9.970453 51.378703 0.48 0.2 3.59 3.67 

501 10.50053 48.568397 0.27 0.19 114.23 111.88 

502 13.48 51.56 0.46 0.19 2.46 2.42 

503 7.404167 50.20417 0.43 0.19 0.96 0.89 

504 7.445735 50.50212 0.6 0.19 8.24 9.06 

505 8.22 48.77 0.08 0.19 1.81 1.87 

506 8.275313 50.003988 0.3 0.19 1135.31 1135.75 

507 8.29 47.88 0.48 0.19 0.75 0.81 

508 8.670932 52.133419 0.46 0.19 10.5 10.25 

509 9.005032 49.438249 0.41 0.19 118.93 123.13 

510 9.219941 49.268549 0.49 0.19 18.22 18.22 

511 9.6375 50.59583333 0.62 0.19 6.65 6.4 

512 9.6625 54.80416667 0.13 0.19 0.67 0.67 

513 9.720833 50.8625 0.46 0.19 22.38 19.49 

514 12.02 50.25 0.56 0.18 0.78 0.75 

515 12.15395 49.535609 0.55 0.18 18.19 17.41 

516 13.22 52.13 0.36 0.18 1.17 1.13 

517 6.620833333 49.72916667 0.48 0.18 274.86 285.82 

518 7.73 52.77 0.26 0.18 1.01 1.01 

519 8.57 48.14 0.63 0.18 3.72 3.85 

520 8.679166667 49.55416667 0.54 0.18 2.98 3 

521 8.78 50.33 0.35 0.18 1.46 1.28 

522 8.8625 47.7875 0.41 0.18 1.9 1.85 

523 8.945833333 51.7625 0.19 0.18 0.88 0.82 

524 9.3875 53.5375 0.39 0.18 0.71 0.61 

525 10.0625 47.7625 0.38 0.17 2.05 2.1 

526 10.96 50.26 0.66 0.17 4.92 4.4 

527 11.865229 48.460684 0.16 0.17 30.45 30.25 

528 7.7125 49.77916667 0.39 0.17 32.73 33.34 

529 8.36 48.51 0.57 0.17 2.58 2.58 
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530 9.129167 50.2375 0.51 0.17 0.66 0.61 

531 9.545833333 47.67916667 0.29 0.17 9.35 9.29 

532 9.6625 47.92916667 0.11 0.17 2.24 2.27 

533 9.6875 48.2125 0.18 0.17 0.88 0.85 

534 12.15416667 49.5375 0.5 0.16 21.81 20.76 

535 6.592735 49.342302 0.37 0.16 17.65 16.14 

536 6.91 49.41 0.52 0.16 3.73 3.89 

537 7.168276 50.143351 0.48 0.16 321.38 309.35 

538 8.229166667 52.0375 0.46 0.16 0.73 0.67 

539 9.534877 47.672577 0.25 0.16 9.37 9.04 

540 9.83928 48.622759 0.56 0.16 2.55 2.47 

541 10.69583333 48.7875 0.31 0.15 19.1 17.83 

542 13.27 51.06 0.39 0.15 6.32 6.46 

543 7.2375 52.0625 0.27 0.15 0.63 0.67 

544 9.829166667 48.62916667 0.44 0.15 2.84 2.89 

545 10.72 50.5 0.62 0.14 4.53 4.61 

546 10.87083333 49.94583333 0.54 0.14 44.45 44.01 

547 12.27916667 49.72083333 0.25 0.14 2.04 2.13 

548 6.6 49.35 0.37 0.14 17.45 17.04 

549 6.648422 49.408927 0.37 0.14 80.35 78.08 

550 7.3875 52.4125 0.48 0.14 2.82 2.82 

551 8.22 47.86 0.52 0.14 2.74 2.5 

552 8.280575 51.347759 0.57 0.14 8.56 8.41 

553 8.72 48.56 0.47 0.14 2.07 2.07 

554 9.3125 48.85416667 0.41 0.14 7.47 9.66 

555 9.382104 48.675446 0.31 0.14 37.27 35.46 

556 10.58 47.75 0.26 0.13 2.7 2.75 

557 10.81 51.48 0.34 0.13 1.71 1.82 

558 7.5625 51.22083 0.54 0.13 2.85 2.9 

559 8.129166667 49.35416667 0.27 0.13 1.68 1.65 

560 8.627985 49.813865 0.45 0.13 0.81 0.83 

561 8.7125 52.19583 0.48 0.13 17.47 16.42 

562 9.1875 50.19583 0.61 0.13 8.55 8.41 

563 9.315816 48.84736 0.42 0.13 7.18 7.52 

564 9.419 48.707 0.35 0.13 45.5 45.46 

565 10.41 50.787 0.42 0.12 0.7 0.71 

566 10.4125 50.57083333 0.61 0.12 14 13.57 

567 10.74 53.39 0.55 0.12 1.18 1.11 

568 7.1625 51.40416667 0.49 0.12 72.8 73.41 

569 8.53 50.91 0.57 0.12 7.18 7.08 

570 9.154166667 48.0125 0.34 0.12 1.85 1.85 
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571 9.5625 53.27917 0.44 0.12 0.72 0.72 

572 9.75 48.69 0.61 0.12 5.67 5.53 

573 10.722448 50.496464 0.55 0.11 4.7 4.49 

574 11.78 47.69 0.06 0.11 1.73 1.7 

575 11.87916667 48.4625 0.11 0.11 34.22 37.3 

576 6.7625 51.7375 0.42 0.11 0.84 0.81 

577 8.1375 51.39583333 0.53 0.11 15.83 15.66 

578 8.154166667 47.90416667 0.48 0.11 1.05 1.05 

579 8.212933 48.24 0.62 0.11 4.26 4.27 

580 8.579166667 48.37083333 0.56 0.11 5.4 4.93 

581 8.679166667 47.92083333 0.44 0.11 13.47 14.05 

582 8.898182 51.155679 0.48 0.11 24.31 23.49 

583 9.71 49.53 0.49 0.11 0.87 0.82 

584 11.422 48.754 0.21 0.1 230.32 226.79 

585 12.129441 49.127955 0.36 0.1 32.27 32.87 

586 7.445833333 50.50416667 0.49 0.1 11.82 11.2 

587 8.61 49.12 0.12 0.1 1.39 1.39 

588 9.8625 48.25416667 0.22 0.1 2.82 2.71 

589 14.159127 52.693351 0.37 0.09 2.32 2.23 

590 8.125898 48.584384 0.41 0.09 2.24 1.85 

591 9.261206 48.959297 0.34 0.09 7.08 7.4 

592 9.3875 47.94583333 0.34 0.09 0.98 0.98 

593 9.82 48.63 0.39 0.09 3.6 3.28 

594 6.369035 49.472575 0.39 0.08 173.23 163.84 

595 9.079166667 54.72083333 0.39 0.08 1.1 1.09 

596 9.120833 50.4625 0.58 0.08 0.57 0.58 

597 12.581 51.591 0.32 0.07 65.64 62.84 

598 8.376019 49.64112 0.2 0.07 1052.81 1045.01 

599 9.9875 53.3125 0.46 0.07 0.84 0.82 

600 12.13 49.13 0.28 0.06 34.23 35.01 

601 13.25416667 51.32083333 0.27 0.06 1.29 1.29 

602 14.79583333 50.89583333 0.42 0.06 4.46 5.16 

603 7.1625 51.25416667 0.46 0.06 8.03 7.9 

604 7.970833333 50.84583333 0.49 0.06 10.26 11.74 

605 8.354166667 47.9875 0.53 0.06 5.65 5.56 

606 8.623725 51.035299 0.5 0.06 13.16 15.34 

607 8.7 48.88 0.45 0.06 17.88 18.26 

608 14.802623 50.891976 0.36 0.05 4.79 4.53 

609 6.7875 49.37083333 0.49 0.05 12.42 12.71 

610 8.58 48.81 0.16 0.05 5.12 5.01 

611 9.1125 49.0625 0.22 0.05 2.85 3.26 
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612 10.41 47.59 0.13 0.04 1.96 1.9 

613 11.642973 50.870692 0.15 0.04 1.53 1.48 

614 13.853698 50.953832 0.19 0.04 4.2 3.08 

615 14.1375 50.94583333 0.33 0.04 3.08 2.98 

616 7.52 51.33 0.57 0.04 6.05 6.04 

617 8.245833333 47.72916667 0.39 0.04 3.14 3.23 

618 9.52 48.81 0.23 0.04 6.63 7.12 

619 10.0148 48.9211 0.41 0.03 1.03 0.94 

620 11.226675 50.181522 0.53 0.03 13.08 13.6 

621 13.16 50.78 0.3 0.03 9.47 9.64 

622 13.237261 50.703663 0.31 0.03 6.55 6.69 

623 13.23 49.03 0.26 0.02 4.68 4.62 

624 13.2375 50.70416667 0.3 0.02 6.61 6.54 

625 14.13386 50.941862 0.31 0.02 3.1 3.2 

626 6.78 49.37 0.45 0.02 13.87 13.6 

627 7.329166667 50.7875 0.6 0.02 5.55 5.2 

628 8.145405 48.490087 0.6 0.02 3.86 4.84 

629 9.768198 49.001552 0.53 0.02 12.41 12.11 

630 7.270833333 52.2875 0.52 0.01 2.38 2.3 

631 8.6125 48.5875 0.28 0.01 4.9 4.47 

632 9.1625 48.00416667 0.38 0.01 1.84 1.88 

633 9.23 49.28 0.39 0.01 27.03 27.89 

634 9.287113 49.258277 0.42 0.01 29.91 26.91 

635 9.6 47.82 0.29 0.01 0.98 0.88 

636 11.32083 52.0125 0.24 0 12.31 12.09 

637 12.493608 50.740902 0.27 0 14.99 16.13 

638 7.4375 50.77916667 0.48 0 34.89 35.73 

639 7.442713 50.776982 0.47 0 34.72 37.61 

640 7.91 47.61 0.31 0 4.51 4.66 

641 8.1 47.88 0.21 0 0.95 0.93 

642 8.745833 51.72917 0.25 0 3.66 3.66 

643 8.94 50.8 0.56 0 8.62 8.49 

644 10.3 47.39 0 -0.01 1.91 1.9 

645 11.3625 52.85417 0.38 -0.01 0.63 0.66 

646 12.9125 49.0625 0.23 -0.01 2.57 2.75 

647 8.217126 48.317024 0.56 -0.01 5.31 5.06 

648 8.9625 54.77083333 0.26 -0.01 1.96 1.91 

649 11.12083333 47.92916667 0.04 -0.02 2.26 1.69 

650 12.77255 51.006826 0.24 -0.02 27.44 28.24 

651 13.15416667 51.07916667 0.42 -0.02 3.91 3.85 

652 13.76603 50.843051 0.2 -0.02 0.82 0.76 
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653 14.8 51.27 0.19 -0.02 1.31 1.26 

654 8.100414 51.10887 0.24 -0.02 7.89 7.63 

655 8.8125 49.32083333 0.41 -0.02 2.13 2.08 

656 8.904166667 50.5375 0.49 -0.02 4.42 4.21 

657 12.71 50.59 0.25 -0.03 7.27 6.95 

658 13.44583333 48.6875 0.35 -0.03 17.03 15.33 

659 13.52083333 48.72916667 0.2 -0.03 2.7 2.33 

660 7.204166667 50.8375 0.47 -0.03 19.56 19.38 

661 7.345833 49.70417 0.46 -0.03 14.06 13.33 

662 7.4875 51.70417 0.39 -0.03 0.73 0.68 

663 8.1375 48.57916667 0.47 -0.03 3.57 3.64 

664 8.305563 49.038985 0.12 -0.03 985.66 995.15 

665 13.02 50.89 0.27 -0.04 24.23 23.55 

666 13.35416667 48.82083333 0.12 -0.04 4.7 8.15 

667 13.504361 48.5824 0.08 -0.04 1090.87 1087.82 

668 8.1375 48.2875 0.5 -0.04 18.53 18.78 

669 8.22 48.31 0.61 -0.04 7.82 7.76 

670 8.745833333 47.99583333 0.33 -0.04 3.6 3.65 

671 9.11 50.49 0.5 -0.04 3.21 3.18 

672 10.831 50.713 0.43 -0.05 0.69 0.7 

673 12.060282 50.774489 0.33 -0.05 2.44 2.52 

674 12.6875 48.67083333 0.08 -0.05 129.01 130.7 

675 12.92 49.28 0.3 -0.05 0.92 0.89 

676 7.845408 47.699494 0.53 -0.05 9.13 8.83 

677 7.86 47.71 0.54 -0.05 8.8 8.95 

678 7.8625 50.79583 0.5 -0.05 21.92 20.84 

679 9.3125 52.92083 0.47 -0.05 0.71 0.72 

680 11.25416667 47.42916667 0 -0.06 3.44 3.51 

681 12.4875 50.4625 0.18 -0.06 2.48 2.22 

682 6.995833333 51.07083333 0.47 -0.06 16.64 16.49 

683 8.22 48.32 0.55 -0.06 6.25 5.44 

684 9.22 49.26 0.44 -0.06 7.56 7.49 

685 9.295833333 48.1125 0.24 -0.06 3.82 3.84 

686 11.67083333 50.42916667 0.39 -0.07 0.95 0.96 

687 12.2625 49.0875 0.43 -0.07 3.74 3.85 

688 12.32 47.77 0.05 -0.07 3.05 3.17 

689 12.78 51.01 0.2 -0.07 29.13 26.41 

690 8.029166667 48.3875 0.45 -0.07 26.91 27.91 

691 8.633705 49.156612 0.27 -0.07 1.14 1.04 

692 9.54 47.67 0.3 -0.07 18.93 18.82 

693 9.779166667 53.70416667 0.28 -0.07 0.71 0.71 
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694 10.4375 47.6125 0.18 -0.08 3.42 3.32 

695 13.45416667 48.69583333 0.4 -0.08 24.31 25.1 

696 8.34 48.52 0.35 -0.08 4.22 3.47 

697 9.279166667 48.97083333 0.24 -0.08 1.04 1.07 

698 12.50416667 50.7125 0.18 -0.09 17.96 15.08 

699 7.729166667 47.92083333 0.47 -0.09 5.04 5.38 

700 8.03 48.39 0.44 -0.09 28.51 29.34 

701 10.013584 53.392938 0.23 -0.1 4.06 4.06 

702 12.841559 49.309549 0.37 -0.1 3.89 3.77 

703 11.57083 53.6625 0.51 -0.11 1.35 1.29 

704 8.279166667 51.34583333 0.38 -0.11 3.29 3.33 

705 9.86 47.68 0.35 -0.11 6.7 6.64 

706 11.16 52.97 0.49 -0.12 6.5 6.46 

707 7.154166667 50.79583333 0.46 -0.12 67.65 67.37 

708 8.297143 48.818715 0.48 -0.12 18.49 18.89 

709 10.27083333 47.42916667 0 -0.13 4.49 4.55 

710 11.2625 50.6875 0.55 -0.13 6.8 6.85 

711 11.74583 53.72083 0.47 -0.14 2.1 2.09 

712 7.159168 50.797901 0.46 -0.14 72.88 68.75 

713 8.354166667 48.62083333 0.48 -0.14 12.52 11.14 

714 9.1875 49.0875 0.36 -0.14 0.87 0.92 

715 10.1125 49.02083333 0.5 -0.15 5.89 5.34 

716 10.14583333 48.92916667 0.61 -0.15 8.74 8.93 

717 12.822811 47.681177 0.01 -0.15 37.52 38.2 

718 7.920833333 47.65416667 0.58 -0.15 7.87 7.98 

719 9.820833333 47.70416667 0.34 -0.15 10.57 9.95 

720 12.8125 47.6875 0.01 -0.16 39.28 38 

721 9.145833 51.3875 0.57 -0.16 1.07 1.05 

722 9.4125 52.8875 0.37 -0.16 0.89 0.88 

723 10.56 47.58 0.08 -0.17 5.5 5.66 

724 13.23 49.02 0.28 -0.17 8.62 8.32 

725 7.604167 53.34583 0.39 -0.17 0.79 0.81 

726 12.73 48.53 0.24 -0.18 1.48 1.41 

727 6.795833333 52.10416667 0.41 -0.18 4.78 4.85 

728 9.5125 48.17083333 0.36 -0.18 1.41 1.36 

729 11.02083 53.4875 0.58 -0.19 0.74 0.81 

730 11.9354 47.71 0.07 -0.19 4.57 4.5 

731 8.21 47.91 0.49 -0.19 11.18 11.44 

732 8.595833 50.35417 0.62 -0.2 0.75 0.77 

733 9.74 49.6 0.61 -0.2 12.93 13.33 

734 6.829166667 50.77916667 0.38 -0.21 3.5 3.44 
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735 8.97 48.53 0.2 -0.21 1.1 1.18 

736 9.904166667 49.22916667 0.35 -0.21 10.72 10.51 

737 11.54583333 47.77916667 0.02 -0.22 28.47 28.33 

738 8.854166667 48.27916667 0.37 -0.22 10.75 10.62 

739 9.37 49.38 0.62 -0.22 16.03 17.19 

740 9.604166667 47.62916667 0.25 -0.22 24.42 23.39 

741 8.962187 48.526377 0.18 -0.23 1.24 1.23 

742 9.24 49.19 0.36 -0.23 1.11 1.1 

743 9.59 50.59 0.63 -0.23 16.73 16.88 

744 7.995833333 48.12083333 0.06 -0.24 10.38 10.8 

745 9.995833333 48.37083333 0.09 -0.24 57.25 59.38 

746 8.3125 47.80416667 0.43 -0.25 7.82 7.83 

747 9.4875 47.6625 0.36 -0.25 11.36 10.98 

748 10.00416667 48.8875 0.57 -0.26 20.82 21.89 

749 7.7625 50.70416667 0.53 -0.26 1.88 1.9 

750 7.99 47.92 0.6 -0.26 9.29 9.27 

751 12.542419 47.99121 0.12 -0.27 13.49 14.42 

752 6.81 51.3 0.14 -0.27 1.26 1.22 

753 6.95 52.61 0.58 -0.27 19.84 20.34 

754 7.9 47.99 0.5 -0.27 2.46 2.42 

755 9.354166667 48.7125 0.5 -0.27 14.86 15.3 

756 10.069745 53.576022 0.31 -0.28 0.96 0.94 

757 10.89583333 51.25416667 0.47 -0.28 1.98 1.98 

758 12.432654 51.376276 0.27 -0.28 1.73 1.71 

759 8.2 49.14 0.5 -0.28 0.97 0.95 

760 11.0649 47.4843 0.02 -0.29 7.53 7.38 

761 12.64583333 47.82916667 0.16 -0.29 12.36 13.18 

762 7.2125 50.85416667 0.56 -0.29 22.97 23.14 

763 10.30417 52.67083 0.69 -0.3 0.85 0.81 

764 10.888009 48.406968 0.03 -0.3 104.66 103.47 

765 13.41 48.94 0.42 -0.3 9.52 9.3 

766 11.66 49.91 0.58 -0.31 0.88 0.91 

767 12.55 47.99 0.09 -0.31 15.14 13.78 

768 12.715356 50.59635 0.24 -0.31 8.14 8.64 

769 10.30416667 47.35416667 0 -0.32 1.09 1.04 

770 6.445833 50.3625 0.55 -0.32 0.86 0.85 

771 8.55 48.15 0.64 -0.32 24.88 25.39 

772 8.954167 50.5125 0.51 -0.32 0.56 0.57 

773 9.39 48.89 0.18 -0.32 0.99 0.92 

774 9.83 48.63 0.61 -0.33 25.9 26.11 

775 13.000042 49.042548 0.36 -0.34 17.02 16.51 
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776 8.74 48.72 0.44 -0.34 3.7 3.59 

777 10.464 53.15 0.22 -0.35 9.56 9.27 

778 12.62 52.27 0.29 -0.35 1.65 1.72 

779 12.94583333 47.6125 0 -0.35 4.94 4.9 

780 13.9875 53.52083 0.41 -0.35 5.59 5.51 

781 9.26 48.96 0.39 -0.36 2.7 2.74 

782 11.1125 47.47916667 0 -0.37 4.24 4.13 

783 12.48 47.78 0.05 -0.37 38.69 39.33 

784 9.145833333 48.52916667 0.48 -0.37 35.61 35.62 

785 9.720833333 51.00416667 0.5 -0.37 11.16 11.24 

786 8.470833333 49.94583333 0.29 -0.38 0.69 0.68 

787 11.12916667 50.17083333 0.55 -0.4 44.82 46.58 

788 11.57083333 47.67916667 0.02 -0.4 24.4 26 

789 7.745833333 50.37916667 0.48 -0.4 29.16 30.36 

790 8.979166667 48.9125 0.56 -0.4 48.03 50.69 

791 10.316864 47.730411 0.06 -0.41 53.41 54.31 

792 6.095833333 51.09583333 0.34 -0.41 25.1 24.99 

793 8.0375 51.2875 0.53 -0.41 0.58 0.59 

794 10.2375 47.4125 0.02 -0.42 9.41 9.49 

795 9.129166667 49.34583333 0.52 -0.42 1.31 1.31 

796 9.145833333 49.07916667 0.55 -0.42 116.7 116.62 

797 10.32916667 47.50416667 0.02 -0.43 9.45 9.27 

798 11.07916667 47.49583333 0.01 -0.44 12.52 12.41 

799 12.9625 48.85416667 0.34 -0.44 0.96 0.92 

800 10.87083333 48.0375 0 -0.45 80.22 79.19 

801 14.92083 51.15417 0.19 -0.45 0.86 0.88 

802 9.926 49.796 0.38 -0.45 149.96 150.99 

803 11.759765 52.990829 0.38 -0.46 833.45 823.91 

804 11.270803 47.443334 0.01 -0.47 12.16 12.26 

805 7.54 49.19 0.43 -0.47 0.73 0.79 

806 10.7875 51.8375 0.31 -0.49 0.7 0.75 

807 10.88 53.23 0.29 -0.49 1204.3 1201.42 

808 10.799034 47.696642 0 -0.5 75.57 73.42 

809 13.8625 52.44583333 0.15 -0.5 35.15 34.82 

810 11.14583333 47.8375 0.05 -0.51 21.54 17.1 

811 11.9375 51.57916667 0.19 -0.51 121.68 121.64 

812 13.01 47.64 0 -0.51 18.65 18.09 

813 8.448717 49.323807 0.18 -0.52 1375.45 1372.84 

814 9.579166667 48.25416667 0.34 -0.52 2.38 2.41 

815 11.8125 51.92916667 0.15 -0.53 144.04 144.14 

816 6.570833333 50.25416667 0.57 -0.53 0.74 0.76 



Appendix A: Supporting information for Chapter 2 

    185 

 

817 8.46 49.94 0.32 -0.53 0.69 0.72 

818 11.79583 51.7625 0.33 -0.54 2.03 2 

819 9.895833333 53.75416667 0.31 -0.54 0.77 0.83 

820 8.0125 47.94583333 0.49 -0.55 1.05 1.05 

821 8.654167 53.3375 0.27 -0.55 0.75 0.71 

822 8.66 49.07 0.31 -0.55 1.22 1.19 

823 6.84 50.37 0.05 -0.56 4.48 4.49 

824 9.145833333 50.4125 0.64 -0.56 0.97 0.98 

825 10.94583333 51.57916667 0.26 -0.57 1.05 0.96 

826 12.85 49.17 0.45 -0.57 1.7 1.77 

827 13.5375 52.25417 0.29 -0.58 1.61 1.62 

828 13.77 50.94 0.31 -0.59 0.88 0.92 

829 11.09583333 47.5125 0 -0.62 18.27 18.47 

830 8.295833333 48.29583333 0.32 -0.62 2.44 2.38 

831 11.3625 47.67083333 0.01 -0.63 52.3 52.36 

832 13.3875 48.85416667 0.13 -0.63 1.26 1.28 

833 6.845833333 50.7625 0.22 -0.63 2.02 1.91 

834 8.05 48.34 0.55 -0.63 1.17 1.15 

835 6.879166667 51.87083333 0.52 -0.64 1.04 1.04 

836 8.1 49.65 0.45 -0.66 1.21 1.2 

837 6.9125 50.07083333 0.09 -0.67 0.96 0.93 

838 8.6875 50.59583333 0.43 -0.67 1.25 1.24 

839 13.8125 52.8375 0 -0.68 506.58 503.59 

840 11.3875 52.5375 0.24 -0.69 0.72 0.68 

841 9.72 49.37 0.34 -0.7 5.53 5.29 

842 10.12917 52.89583 0.34 -0.71 1.06 1.07 

843 10.65416667 47.8375 0.15 -0.73 4.44 4.48 

844 12.22916667 48.0625 0 -0.73 413.59 415.89 

845 10.55416667 51.85416667 0.29 -0.74 1.02 0.94 

846 13.9625 51.84583333 0 -0.74 205.17 204.72 

847 10.62 50.853 0.48 -0.76 0.71 0.75 

848 8.370833333 48.60416667 0.53 -0.76 1.82 1.86 

849 11.82916667 47.89583333 0.04 -0.77 4.55 4.62 

850 6.84604 50.766075 0.26 -0.77 1.95 1.88 

851 7.1375 51.37083 0.5 -0.77 0.98 0.95 

852 10.04583333 49.4375 0.46 -0.78 0.9 0.87 

853 8.37 48.26 0.38 -0.78 1.33 1.32 

854 9.0375 51.35417 0.67 -0.78 1.31 1.25 

855 10.3125 49.02916667 0.46 -0.8 0.88 0.87 

856 6.845833333 50.7625 0.32 -0.8 1.76 1.77 

857 10.811 51.469 0.52 -0.81 3.01 3.02 
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858 7.7625 50.82083333 0.48 -0.81 0.68 0.74 

859 9.05 49.49 0.48 -0.81 0.73 0.71 

860 6.945833333 51.15416667 0.23 -0.83 1.23 1.22 

861 6.954166667 50.6625 0.38 -0.84 1.03 1.02 

862 13.95417 52.4625 0.18 -0.86 0.8 0.75 

863 10.02083333 49.09583333 0.35 -0.92 0.91 0.89 

864 9.4125 48.7125 0.34 -0.92 23.24 22.29 

865 10.84583333 54.15416667 0.3 -0.96 0.73 0.71 

866 6.454166667 50.17916667 0.42 -0.97 0.79 0.73 

867 9.320833333 54.12916667 0.26 -0.98 0.81 0.81 

868 10.07083333 49.45416667 0.52 -0.99 1.82 1.8 

869 8.93 47.84 0.12 -1 1.08 1.05 

870 11.38 49.83 0.38 -1.01 0.89 0.87 

871 8.71 48.87 0.2 -1.01 2.89 2.94 

872 6.97 50.51 0.39 -1.02 0.94 0.95 

873 9.079167 50.34583 0.39 -1.03 0.68 0.67 

874 8.1625 48.15416667 0.31 -1.04 0.97 0.97 

875 12.45416667 49.4875 0.48 -1.07 0.78 0.76 

876 8.65 48.16 0.36 -1.09 3.76 3.82 

877 6.77 50.76 0.23 -1.13 1.79 1.75 

878 9.76 49.26 0.43 -1.15 6.24 6.28 

879 7.7875 49.72917 0.37 -1.18 0.85 0.88 

880 9.870833333 48.4125 0.26 -1.19 1.84 1.8 

881 10.987 50.889 0.28 -1.21 1.38 1.49 

882 13.86 51.94 0.47 -1.24 3.09 3.03 

883 11.95417 52.24583 0.32 -1.25 0.92 0.94 

884 13.3625 49.0125 0.09 -1.25 0.92 0.94 

885 10.61 50.8 0.34 -1.3 0.94 0.97 

886 7.26 52.13 0.35 -1.3 0.78 0.81 

887 8.8 47.99 0.18 -1.31 1.28 1.26 

888 8.920833 51.7125 0.49 -1.32 0.71 0.72 

889 8.145833333 47.75416667 0.31 -1.34 1.74 1.74 

890 12.02917 51.4375 0.13 -1.37 0.94 0.92 

891 6.645833333 51.12916667 0.38 -1.4 7.67 7.72 

892 11.85417 52.27917 0.38 -1.41 0.98 0.97 

893 7.320833333 50.77916667 0.39 -1.44 12.13 12.19 

894 11.43 50.62 0.44 -1.46 11.1 11.12 

895 9.420833 51.49583 0.39 -1.51 0.82 0.84 

896 13.8 52.42 0.39 -1.52 1.33 1.28 

897 10.12 49.08 0.3 -1.53 0.96 0.9 

898 11.8875 51.77917 0.07 -1.54 0.7 0.69 
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899 12.49 53.16 0.22 -1.55 1.16 1.12 

900 11.7875 52.57917 0.33 -1.58 0.85 0.85 

901 9.770833333 49.00416667 0.45 -1.58 3.97 4 

902 9.94 48.8 0.31 -1.6 0.89 0.85 

903 9.495833333 49.37083333 0.25 -1.64 1.02 0.97 

904 7.695833333 49.8875 0.5 -1.68 0.93 0.98 

905 12.06 50.77 0.2 -1.76 2.98 2.87 

906 10.5375 53.4375 0.36 -1.77 0.93 0.93 

907 10.17916667 50.04583333 0.47 -1.8 1.08 1.11 

908 11.979419 48.413618 0.15 -1.83 4.93 4.84 

909 9.145833 51.9125 0.69 -1.83 2.44 2.45 

910 12.32917 52.27083 0.13 -1.92 0.92 0.98 

911 12.1125 51.62083 0.19 -1.93 1.05 0.96 

912 7.9375 47.90416667 0.27 -1.94 1.23 1.21 

913 9.9 48.42 0.42 -1.94 2 1.98 

914 13.997 52.368 0.23 -2.07 26.41 26.69 

915 8.704166667 48.8875 0.26 -2.09 10.02 9.96 

916 11.432152 50.619021 0.06 -2.1 12.74 12.79 

917 11.98 48.42 0.14 -2.16 3.51 3.52 

918 12.47083 50.62083 0.18 -2.2 0.8 0.8 

919 11.00417 51.44583 0.64 -2.21 3.94 3.91 

920 6.2625 50.9625 0.15 -2.21 1.11 1.13 

921 6.6375 51.2125 0.1 -2.22 0.68 0.66 

922 9.04 48.56 0.01 -2.28 1.14 1.13 

923 12.0375 53.3875 0.4 -2.3 0.9 0.84 

924 10.65417 53.0125 0.55 -2.42 1.37 1.42 

925 10.2625 48.90416667 0.3 -2.48 0.94 0.87 

926 10.77083333 50.6875 0.13 -2.49 0.98 0.95 

927 9.604166667 54.00416667 0.21 -2.49 0.73 0.69 

928 11.6125 51.22083 0.08 -2.51 0.97 0.93 

929 9.895833 53.27083 0.43 -2.53 1.04 0.99 

930 12.2625 51.92083 0.28 -2.56 0.88 0.88 

931 8.895833333 48.72083333 0.18 -2.58 2 2.03 

932 12.27083333 49.0625 0.43 -2.64 1.19 1.19 

933 10.37083333 49.3875 0.31 -2.72 0.93 0.9 

934 9.779166667 53.27916667 0.23 -2.89 0.95 0.93 

935 12.34 52.22 0.07 -2.92 0.98 1.03 

936 8.020833333 49.77916667 0.38 -2.92 1.08 1.12 

937 6.279167 51.35417 0.44 -2.95 1.41 1.4 

938 10.47083333 52.90416667 0.15 -3.05 0.93 0.97 

939 8.58 48.29 0.29 -3.13 5.96 6.09 
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940 9.757545 51.366474 0.37 -3.26 0.77 0.77 

941 12.52083333 50.42916667 0.18 -3.27 0.93 0.9 

942 8.79 50.31 0.47 -3.45 3.4 3.41 

943 8.6 50.46 0.37 -3.48 0.94 0.94 

944 8.51 48.57 0.45 -3.49 1.3 1.28 

945 6.270833 51.1625 0.25 -3.58 1.03 1.03 

946 8.8875 51.2375 0.37 -3.62 0.85 0.86 

947 12.72917 52.17083 0.35 -3.66 1.44 1.4 

948 11.8125 53.5625 0.42 -3.67 1.24 1.2 

949 12.09583 52.00417 0.28 -3.75 1.34 1.35 

950 12.35416667 53.3125 0.3 -3.82 0.91 0.88 

951 10.085826 50.83704 0.54 -3.9 11.49 11.31 

952 9.795833333 49.42916667 0.32 -4.1 1.02 1.01 

953 8.945833333 49.30416667 0.43 -4.24 1.49 1.48 

954 8.18 49.47 0.08 -4.29 1.16 1.15 

955 8.395833333 48.1125 0.48 -4.3 1.12 1.11 

956 9.76 51.37 0.39 -4.54 1.06 1.03 

957 11.55416667 50.07083333 0.59 -4.57 2.4 2.4 

958 8.954166667 48.0375 0.32 -4.6 11.92 11.75 

959 14.3375 52.5875 0.19 -4.7 1.3 1.19 

960 11.7375 51.6125 0.03 -4.79 1.14 1.16 

961 14.4375 51.27917 0.06 -4.8 0.76 0.69 

962 12.23 50.51 0.4 -4.89 1 0.98 

963 9.46 49.13 0.38 -4.99 0.88 0.89 

964 11.6625 52.57917 0.26 -5.01 0.73 0.78 

965 10.08 49.14 0.23 -5.39 1 0.99 

966 9.9625 50.2125 0.49 -5.46 1.15 1.09 

967 13.65416667 50.77916667 0.24 -5.53 1.07 1.03 

968 9.58 48.9 0.38 -5.9 1.08 1.1 

969 10.94583 53.52083 0.24 -5.92 1.56 1.57 

970 9.332153 49.234982 0.26 -6.02 11.25 11.42 

971 13.62916667 51.4625 0.41 -6.16 7.59 7.6 

972 12.8375 49.30416667 0.47 -6.33 2.3 2.3 

973 10.37916667 48.49583333 0.2 -6.56 81.16 81.35 

974 10.2625 48.4625 0.16 -7.35 65.35 66.9 

975 10.3625 48.4875 0.21 -7.35 77.2 76.41 

976 12.77083 51.85417 0.24 -7.59 1.45 1.39 

977 6.320833333 51.52916667 0.52 -7.96 6.95 6.71 

978 9.3375 48.6375 0.31 -8.01 22.83 23.13 

979 8.14 49.07 0.21 -8.72 0.99 0.94 

980 11.753 50.52 0.42 -8.78 4.07 4 
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981 9.129166667 48.5375 0.19 -9.02 19.2 18.88 

982 9.71 49.58 0.46 -9.45 5.93 5.76 

983 7.645833 49.67917 0.31 -9.57 7.98 8.02 

984 10.0125 48.3375 0.13 -9.78 18.76 18.76 

985 7.7875 50.0375 0.26 -10.04 0.95 0.97 

986 6.554166667 51.22083333 0.13 -10.09 0.83 0.82 

987 14.22917 52.05417 0.07 -10.14 0.82 0.86 

988 6.270833 51.27083 0.13 -11.1 0.96 0.98 

989 6.2875 51.1375 0.14 -11.58 0.81 0.81 

990 10.49 52.34 0.41 -12.19 4.21 4.21 

991 11.542917 50.769252 0.18 -13.82 21.47 21.6 

992 9.06 48.94 0.18 -13.9 14.89 14.14 

993 10.10416667 49.0125 0.37 -13.93 2.51 2.48 

994 9.2875 49.25416667 0.36 -15.69 13.34 12.78 

995 12.63 52.06 0.06 -17.36 1.11 1.14 

996 12.92 47.77 0.09 -17.74 25.6 25.57 

997 7.2125 50.77916667 0.29 -22.01 17.83 18.1 

998 13.4375 51.87083 0.13 -22.82 1 0.99 

999 10.90417 51.8625 0.25 -24.43 1.64 1.66 

1000 11.55416667 47.5875 0.05 -27.87 8.5 8.59 

1001 9.57 47.75 0.14 -33.74 6.92 6.88 

1002 6.179167 51.00417 0.03 -34.1 3.18 3.14 

1003 11.55416667 47.7625 0.06 -34.16 13.37 13.42 

1004 12.4875 52.37916667 0.36 -39.03 49.06 49.65 

1005 6.270833333 50.70416667 0.31 -40.68 1.17 1.2 

1006 9.37 48.68 0.22 -41.09 24.98 24.2 

1007 8.74 49.12 0.09 -41.11 1.74 1.7 

1008 7.604166667 49.62916667 0.04 -45.22 2.78 2.77 

1009 12.5125 52.3875 0.35 -67.99 86.51 87.47 

1010 10.45416667 51.84583333 0.28 -74.71 1.68 1.59 

1011 6.929167 51.3625 0.32 -123.1 46.21 45.56 

1012 7.045833 51.39583 0.31 -161.06 44.42 44.55 

1013 12.1625 47.70416667 0.01 -389.48 95.88 96.66 
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Table S2.3: GLM residual deviance and AIC values from both observed and simulated models. Full species list (n=34) and no of occurrences within each 

KGE threshold modelled. 

species kge_threshold no_presences no_of_sites sim_res_deviance sim_AIC sim_df_res obs_res_deviance obs_AIC obs_df_res 

Anabolia nervosa low 42 108 140.52 150.52 103 132.56 142.56 103 

Anabolia nervosa mid 42 116 145.06 155.06 111 142.92 152.92 111 

Anabolia nervosa high 50 103 139.40 149.40 98 139.51 149.51 98 

Asellus aquaticus low 63 108 130.18 140.18 103 130.59 140.59 103 

Asellus aquaticus mid 69 116 146.50 156.50 111 154.61 164.61 111 

Asellus aquaticus high 61 103 136.58 146.58 98 132.76 142.76 98 

Athripsodes 

albifrons 

mid 25 116 115.84 125.84 111 114.71 124.72 111 

Athripsodes 

cinereus 

mid 28 116 127.13 137.13 111 126.42 136.42 111 

Athripsodes 

cinereus 

high 22 103 101.82 111.82 98 101.44 111.44 98 

Baetis fuscatus low 26 108 115.93 125.93 103 107.93 117.93 103 

Baetis fuscatus mid 48 116 142.65 152.65 111 146.13 156.13 111 

Baetis fuscatus high 36 103 126.93 136.93 98 123.94 133.94 98 

Baetis lutheri mid 34 116 128.31 138.31 111 125.69 135.69 111 

Baetis lutheri high 23 103 102.80 112.80 98 106.45 116.45 98 
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 Baetis muticus mid 22 116 94.66 104.66 111 100.39 110.39 111 

Baetis rhodani low 86 108 100.96 110.96 103 102.60 112.60 103 

Baetis rhodani mid 90 116 96.49 106.49 111 99.07 109.07 111 

Baetis rhodani high 74 103 100.96 110.96 98 101.82 111.82 98 

Baetis scambus low 27 108 88.94 98.94 103 111.54 121.54 103 

Baetis scambus mid 38 116 123.65 133.65 111 134.45 144.45 111 

Baetis scambus high 35 103 118.13 128.13 98 116.83 126.83 98 

Baetis vernus low 49 108 133.05 143.05 103 120.77 130.77 103 

Baetis vernus mid 56 116 150.10 160.10 111 151.04 161.04 111 

Baetis vernus high 50 103 130.25 140.25 98 130.38 140.38 98 

Brachycentrus 

subnubilus 

mid 24 116 117.20 127.20 111 115.59 125.59 111 

Brachycentrus 

subnubilus 

high 26 103 101.49 111.49 98 115.01 125.01 98 

Caenis luctuosa mid 23 116 110.88 120.88 111 105.53 115.53 111 

Caenis luctuosa high 22 103 98.62 108.62 98 101.88 111.88 98 

Centroptilum 

luteolum 

mid 33 116 133.93 143.93 111 132.77 142.77 111 

Centroptilum 

luteolum 

high 26 103 115.81 125.81 98 111.27 121.27 98 

Ceraclea dissimilis mid 21 116 105.79 115.79 111 107.27 117.27 111 

Ceraclea dissimilis high 22 103 98.69 108.69 98 100.54 110.54 98 
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 Ephemera danica low 55 108 144.51 154.51 103 144.07 154.07 103 

Ephemera danica mid 72 116 141.38 151.38 111 146.06 156.06 111 

Ephemera danica high 54 103 127.50 137.50 98 128.73 138.73 98 

Gammarus pulex low 62 108 134.32 144.32 103 138.23 148.23 103 

Gammarus pulex mid 73 116 145.73 155.73 111 138.94 148.94 111 

Gammarus pulex high 73 103 107.34 117.34 98 107.42 117.42 98 

Goera pilosa mid 26 116 117.87 127.87 111 117.10 127.10 111 

Goera pilosa high 23 103 105.32 115.32 98 98.76 108.76 98 

Habroleptoides 

confusa 

low 23 108 107.03 117.03 103 94.66 104.66 103 

Habroleptoides 

confusa 

mid 21 116 97.84 107.84 111 101.27 111.27 111 

Habrophlebia lauta mid 25 116 96.34 106.34 111 110.31 120.31 111 

Halesus radiatus low 24 108 100.44 110.44 103 110.67 120.67 103 

Halesus radiatus mid 24 116 110.72 120.72 111 113.08 123.08 111 

Heptagenia 

sulphurea 

low 24 108 113.39 123.39 103 92.15 102.15 103 

Heptagenia 

sulphurea 

mid 24 116 114.79 124.79 111 114.75 124.75 111 

Heptagenia 

sulphurea 

high 31 103 120.44 130.44 98 115.86 125.86 98 
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 Hydropsyche 

incognita 

mid 30 116 120.67 130.67 111 122.86 132.86 111 

Hydropsyche 

instabilis 

low 25 108 112.33 122.33 103 109.28 119.28 103 

Hydropsyche 

pellucidula 

low 36 108 126.31 136.31 103 112.18 122.18 103 

Hydropsyche 

pellucidula 

mid 39 116 142.98 152.98 111 140.18 150.18 111 

Hydropsyche 

pellucidula 

high 44 103 137.84 147.84 98 139.49 149.49 98 

Hydropsyche siltalai low 64 108 141.37 151.37 103 138.49 148.49 103 

Hydropsyche siltalai mid 80 116 115.13 125.13 111 120.71 130.71 111 

Hydropsyche siltalai high 61 103 118.43 128.43 98 117.95 127.95 98 

Lepidostoma basale mid 24 116 113.64 123.64 111 115.01 125.01 111 

Lepidostoma basale high 25 103 97.49 107.49 98 100.94 110.94 98 

Lepidostoma hirtum low 32 108 120.78 130.78 103 123.33 133.33 103 

Lepidostoma hirtum mid 53 116 140.68 150.68 111 149.06 159.06 111 

Lepidostoma hirtum high 39 103 126.97 136.97 98 123.04 133.04 98 

Limnephilus lunatus low 27 108 107.55 117.55 103 106.05 116.05 103 

Limnephilus lunatus mid 21 116 104.56 114.56 111 104.18 114.18 111 

Limnephilus lunatus high 21 103 100.01 110.01 98 95.91 105.91 98 

Mystacides azurea low 22 108 99.11 109.11 103 99.37 109.37 103 
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 Mystacides azurea mid 38 116 146.31 156.31 111 142.66 152.66 111 

Mystacides azurea high 34 103 119.51 129.51 98 123.28 133.28 98 

Polycentropus 

flavomaculatus 

flavomaculatus 

low 31 108 120.32 130.32 103 119.11 129.11 103 

Polycentropus 

flavomaculatus 

flavomaculatus 

mid 48 116 151.97 161.97 111 148.81 158.81 111 

Polycentropus 

flavomaculatus 

flavomaculatus 

high 31 103 109.70 119.70 98 117.45 127.45 98 

Prodiamesa 

olivacea 

low 44 108 131.00 141.00 103 137.65 147.65 103 

Prodiamesa 

olivacea 

mid 55 116 152.74 162.74 111 149.44 159.44 111 

Prodiamesa 

olivacea 

high 65 103 130.71 140.71 98 127.44 137.44 98 

Psychomyia pusilla mid 38 116 142.68 152.68 111 140.29 150.29 111 

Psychomyia pusilla high 34 103 121.80 131.80 98 126.16 136.16 98 

Serratella ignita low 48 108 141.31 151.31 103 144.05 154.05 103 

Serratella ignita mid 62 116 141.79 151.79 111 147.74 157.74 111 

Serratella ignita high 51 103 140.53 150.53 98 132.64 142.64 98 
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 Torleya major high 22 103 79.95 89.95 98 82.81 92.81 98 



Appendix B: Supporting information for Chapter 3 

   196 

Appendix B: Supporting information for Chapter 3 

Table S3.1: Number of species per taxonomic group and relative percentage of each order over 

the entire community. 

 
Order* No. of 

Species 
% of 
community 

Bivalvia 5 7.46 

Chironomidae 3 4.48 

Coleoptera 5 7.46 

Crustacea 4 5.97 

Ephemeroptera 10 14.93 

Gastropoda 6 8.96 

Heteroptera 3 4.48 

Hirudinae 4 5.97 

Odonata 1 1.49 

Oligochaeta 5 7.46 

Plecoptera 3 4.48 

Tricoptera 16 23.88 

Turbellaria 2 2.99 

Total 67 100 
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Table S3.2:  All species (n=67) traits: stream zonation, current preference and feeding type. 
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Anabolia nervosa Tricoptera 533 42.30 0 0 0 0 0 3 3 0 4 0 
 

yes 
     

2 0 0 5 1 0 0 2 0 0 

Anacaena globulus Coleoptera 47 3.73 2 5 0 0 0 0 0 0 3 0 
   

yes 
   

3 0 0 2 3 0 0 2 0 0 

Anodonta anatina Bivalvia 34 2.70 0 0 0 1 2 2 2 0 3 0 
   

yes 
   

0 0 0 0 0 10 0 0 0 0 

Apsectrotanypus 

trifascipennis 

Chironomidae 67 5.32 0 1 1 2 2 1 0 0 2 1 
    

yes 
  

0 0 0 0 1 0 0 9 0 0 

Athripsodes 

cinereus 

Tricoptera 194 15.40 0 0 0 0 3 3 0 0 3 1 
  

yes 
    

0 0 0 3 3 0 0 4 0 0 

Baetis lutheri Ephemeroptera 99 7.86 0 0 1 5 3 1 0 0 0 0 
    

yes 
  

5 0 0 0 5 0 0 0 0 0 

Baetis rhodani Ephemeroptera 1238 98.25 0 1 2 3 2 1 1 0 0 0 
    

yes 
  

5 0 0 0 5 0 0 0 0 0 

Bithynia tentaculata Gastropoda 381 30.24 0 0 0 0 1 2 2 2 3 0 
      

yes 3 0 0 0 2 5 0 0 0 0 

Brachycercus 

harrisella 

Ephemeroptera 23 1.83 0 0 0 0 0 5 5 0 0 0 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Brachyptera 

seticornis 

Plecoptera 58 4.60 0 2 5 3 0 0 0 0 0 0 
    

yes 
  

7 0 0 0 3 0 0 0 0 0 

Caenis horaria Ephemeroptera 143 11.35 0 1 0 0 0 1 1 1 5 1 
 

yes 
     

0 0 0 0 10 0 0 0 0 0 

Clinotanypus 

nervosus 

Chironomidae 29 2.30 0 0 0 0 0 0 0 0 10 0 
 

yes 
     

0 0 0 0 1 0 0 9 0 0 

Cloeon dipterum Ephemeroptera 104 8.25 1 1 1 1 1 1 1 1 2 0 
 

yes 
     

5 0 0 0 5 0 0 0 0 0 

Corbicula fluminea Bivalvia 21 1.67 0 0 0 0 0 3 3 2 2 0 
       

0 0 0 0 0 0 0 0 0 0 

Dugesia 

gonocephala 

Turbellaria 512 40.63 0 0 3 4 2 1 0 0 0 0 
    

yes 
  

0 0 0 0 0 0 0 10 0 0 

Dugesia tigrina Turbellaria 36 2.86 0 0 0 2 1 0 0 0 7 0 
  

yes 
    

0 0 0 0 0 0 0 10 0 0 

Elmis aenea Coleoptera 326 25.87 0 0 3 6 1 0 0 0 0 0 
    

yes 
  

9 0 0 0 1 0 0 0 0 0 

Ephemerella 

mucronata 

Ephemeroptera 220 17.46 0 0 4 4 2 0 0 0 0 0 
   

yes 
   

5 0 0 0 5 0 0 0 0 0 
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Erpobdella vilnensis Hirudinae 380 30.16 0 0 3 3 3 0 0 0 1 0 
       

0 0 0 0 0 0 0 10 0 0 

Galba truncatula Gastropoda 42 3.33 1 2 1 1 1 1 0 0 3 0 
  

yes 
    

3 0 0 3 2 0 0 0 0 2 

Gammarus 

fossarum 

Crustacea 558 44.29 1 1 2 2 2 1 0 0 1 0 
    

yes 
  

1 0 0 7 2 0 0 0 0 0 

Gammarus roeselii Crustacea 485 38.49 0 1 1 1 2 2 1 0 2 0 
   

yes 
   

1 0 0 5 3 0 0 1 0 0 

Gammarus tigrinus Crustacea 82 6.51 0 0 0 0 1 2 3 4 0 0 
   

yes 
   

0 0 0 7 3 0 0 0 0 0 

Gerris lacustris Heteroptera 43 3.41 0 0 0 0 0 0 0 0 10 0 
  

yes 
    

0 0 0 0 0 0 0 10 0 0 

Glyphotaelius 

pellucidus 

Tricoptera 38 3.02 1 1 1 0 0 1 0 0 6 0 
 

yes 
     

1 0 0 6 0 0 0 3 0 0 

Graptodytes pictus Coleoptera 28 2.22 0 0 0 0 0 0 0 0 10 0 
  

yes 
    

0 0 0 0 0 0 0 10 0 0 

Gyraulus albus Gastropoda 136 10.79 0 1 1 1 1 1 1 1 3 0 
  

yes 
    

6 0 0 2 0 0 0 0 0 2 

Habroleptoides 

confusa 

Ephemeroptera 216 17.14 0 2 2 3 2 1 0 0 0 0 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Habrophlebia fusca Ephemeroptera 117 9.29 1 2 2 2 2 0 0 0 1 0 
  

yes 
    

2 0 0 0 8 0 0 0 0 0 

Haemopis 

sanguisuga 

Hirudinae 57 4.52 1 1 1 1 1 1 1 1 1 1 
  

yes 
    

0 0 0 0 0 0 0 10 0 0 

Halesus digitatus 

digitatus 

Tricoptera 68 5.40 0 0 0 2 4 4 0 0 0 0 
  

yes 
    

1 0 0 7 0 0 0 2 0 0 

Halesus tessellatus Tricoptera 49 3.89 0 0 0 3 3 4 0 0 0 0 
  

yes 
    

1 0 0 7 0 0 0 2 0 0 

Helobdella stagnalis Hirudinae 323 25.63 0 0 0 1 2 2 2 1 2 0 
      

yes 0 0 0 0 0 0 0 10 0 0 

Hemiclepsis 

marginata 

Hirudinae 31 2.46 0 0 0 0 2 3 2 1 2 0 
  

yes 
    

0 0 0 0 0 0 0 0 10 0 

Hydraena gracilis Coleoptera 238 18.89 0 1 1 3 3 2 0 0 0 0 
    

yes 
  

10 0 0 0 0 0 0 0 0 0 

Ilyocoris cimicoides 

cimicoides 

Heteroptera 24 1.90 0 0 0 0 0 0 2 0 8 0 
 

yes 
     

0 0 0 0 0 0 0 10 0 0 

Isoperla 

grammatica 

Plecoptera 47 3.73 0 0 3 3 3 1 0 0 0 0 
    

yes 
  

1 0 0 1 1 0 0 7 0 0 

Lepidostoma basale Tricoptera 242 19.21 0 0 0 5 5 0 0 0 0 0 
   

yes 
   

5 0 3 2 0 0 0 0 0 0 

Limnephilus lunatus Tricoptera 38 3.02 0 0 0 0 1 2 1 0 5 1 
 

yes 
     

2 0 0 5 0 0 0 3 0 0 

Limnephilus 

extricatus 

Tricoptera 298 23.65 2 0 0 0 0 2 2 0 4 0 
 

yes 
     

2 0 0 5 0 0 0 3 0 0 

Limnius volckmari Coleoptera 469 37.22 0 0 1 3 5 1 0 0 0 0 
    

yes 
  

8 0 0 1 1 0 0 0 0 0 

Limnodrilus 

claparedeanus 

Oligochaeta 53 4.21 0 0 1 1 1 1 1 1 2 2 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Limnodrilus 

hoffmeisteri 

Oligochaeta 266 21.11 0 0 1 1 1 1 1 1 2 2 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Lithax obscurus Tricoptera 21 1.67 2 4 4 0 0 0 0 0 0 0 
    

yes 
  

9 0 0 0 1 0 0 0 0 0 

Lymnaea stagnalis Gastropoda 93 7.38 0 0 0 0 1 1 0 0 8 0 
  

yes 
    

4 0 0 4 0 0 0 0 0 2 

Lype reducta Tricoptera 83 6.59 0 1 4 2 1 1 0 0 1 0 
      

yes 8 0 2 0 0 0 0 0 0 0 
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Molanna angustata Tricoptera 68 5.40 0 0 0 0 1 3 3 0 3 0 
 

yes 
     

0 0 0 0 3 0 0 7 0 0 

Musculium lacustre Bivalvia 46 3.65 0 1 0 0 0 2 2 0 5 0 
  

yes 
    

0 0 0 0 0 10 0 0 0 0 

Nais elinguis Oligochaeta 52 4.13 1 1 1 1 1 1 1 1 1 1 
   

yes 
   

5 0 0 0 5 0 0 0 0 0 

Nemoura cinerea 

cinerea 

Plecoptera 49 3.89 3 2 1 1 1 1 0 0 1 0 
 

yes 
     

1 0 0 4 5 0 0 0 0 0 

Neureclipsis 

bimaculata 

Tricoptera 25 1.98 0 0 0 0 0 5 5 0 0 0 
   

yes 
   

0 0 0 0 0 0 1 9 0 0 

Paratendipes 

albimanus 

Chironomidae 34 2.70 0 0 1 1 1 1 1 1 3 1 
      

yes 1 0 0 0 8 1 0 0 0 0 

Pisidium nitidum Bivalvia 41 3.25 0 0 0 2 2 2 2 0 2 0 
   

yes 
   

0 0 0 0 0 10 0 0 0 0 

Pisidium 

subtruncatum 

Bivalvia 82 6.51 0 0 1 1 2 2 2 0 1 1 
   

yes 
   

0 0 0 0 0 10 0 0 0 0 

Planorbarius 

corneus 

Gastropoda 70 5.56 0 0 0 0 1 2 2 2 3 0 
  

yes 
    

4 0 0 2 2 0 0 0 0 2 

Planorbis planorbis Gastropoda 72 5.71 0 0 0 0 0 2 2 2 4 0 
  

yes 
    

6 0 0 2 0 0 0 0 0 2 

Platycnemis 

pennipes 

Odonata 131 10.40 0 0 0 0 0 2 4 0 4 0 
  

yes 
    

0 0 0 0 0 0 0 10 0 0 

Plea minutissima 

minutissima 

Heteroptera 25 1.98 0 0 0 0 0 0 0 0 10 0 
 

yes 
     

0 0 0 0 0 0 0 10 0 0 

Polycentropus 

flavomaculatus 

flavomaculatus 

Tricoptera 440 34.92 0 0 0 2 2 2 2 2 0 0 
  

yes 
    

0 0 0 0 0 0 1 9 0 0 

Potamophylax 

rotundipennis 

Tricoptera 82 6.51 0 0 1 3 3 3 0 0 0 0 
   

yes 
   

2 0 0 6 0 0 0 2 0 0 

Potamothrix 

hammoniensis 

Oligochaeta 92 7.30 0 0 0 0 1 2 2 1 2 2 
  

yes 
    

0 0 0 0 10 0 0 0 0 0 

Potamothrix 

moldaviensis 

Oligochaeta 24 1.90 0 0 0 0 0 3 3 0 3 1 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Proasellus coxalis Crustacea 268 21.27 0 2 2 1 1 1 1 2 0 0 
     

yes 
 

1 0 0 8 1 0 0 0 0 0 

Procloeon bifidum Ephemeroptera 73 5.79 0 0 1 1 2 2 2 0 2 0 
   

yes 
   

0 0 0 0 10 0 0 0 0 0 

Psychomyia pusilla Tricoptera 133 10.56 0 0 0 1 4 4 1 0 0 0 
   

yes 
   

6 0 0 0 2 0 1 1 0 0 

Rhithrogena 

semicolorata 

Ephemeroptera 44 3.49 0 1 2 3 3 1 0 0 0 0 
    

yes 
  

10 0 0 0 0 0 0 0 0 0 

Rhyacophila nubila Tricoptera 256 20.32 0 2 5 3 0 0 0 0 0 0 
    

yes 
 

0 0 0 0 0 0 0 10 0 0 0 
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Table S3.3: All predictors (n=82), description, category and source, used in BRT variable selection process. Uniform predictor set and all custom predictor sets per species (n=67). Cat (predictor category), BIO (bioclimate), Hydro 

(hydrology), Topo (topography)  
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Agricultur
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Cultivated and 

managed vegetation 
Land 

Use 

Domish 

et al 

2015 

 X X X   X X  X X  X      X    X X      X X  

Barren 

Land 

Barren lands/sparse 

vegetation 
Land 

Use 

Domish 

et al 

2015 

X  X X X  X X  X X  X X X   X X X  X  X  X X X  X  X 

Shrubs 

Shrubs 

Land 

Use 

Domish 

et al 

2015 

                              X  

Herbaceous 

vegetation   

Regularly flooded 

shrub/herbaceous 

vegetation   

Snow 

Snow/ice 
Land 

Use 

Domish 

et al 

2015 

                                

Forest 

evergreen/deciduou

s needle leaf trees 

Land 

Use 

Domish 

et al 

2015 

X    X X   X   X  X X X X X  X X X   X X X X X   X 

evergreen broadleaf 

trees 

deciduous broadleaf 

trees 

Mixed/other trees   

Urban 

Urban/built-up 
Land 

Use 

Domish 

et al 

2015 

 X    X X  X   X    X X    X  X  X    X    

Water 

Open water 
Land 

Use 

Domish 

et al 

2015 

                                

Bio01 

Annual Mean 

Upstream 

Temperature   

BIO 

Domish 

et al 

2015 

    X X           X        X        
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 Bio02 

Mean Upstream 

Diurnal Range 

(Mean of monthly 

(max temp - min 

temp)) 

BIO 

Domish 

et al 

2015 

                                

Bio03 

 Upstream 

Isothermality 

(hydro_02 / 

hydro_07) (* 100)     

BIO 
Domish 

et al 

2015 

         X     X                  

Bio04 

 Upstream 

Temperature 

Seasonality 

(standard deviation 

*100)      

BIO 

Domish 

et al 

2015 

X X X X X X X X X X X X  X X X X X X X X X X X X X X X X X X X 

Bio05 

 Maximum 

Upstream 

Temperature of 

Warmest Month      

BIO 
Domish 

et al 

2015 

 X       X  X X  X  X    X            X 

Bio06 

Minimum Upstream 

Temperature of 

Coldest Month       

BIO Domish 

et al 

2015 

                                

Bio07 

 Upstream 

Temperature Annual 

Range - hydro_06)      

BIO Domish 

et al 

2015 

            X                    

Bio08 

 Mean Upstream 

Temperature of 

Quarter 

BIO Domish 

et al 

2015 

X  X  X   X  X  X   X  X  X  X  X    X X    X 

Bio09 

 Mean Upstream 

Temperature of 

Quarter 

BIO Domish 

et al 

2015 

X X  X X X X X X  X  X X X X  X    X X X X X X   X X  

Bio10 

 Mean Upstream 

Temperature of 

Quarter 

BIO Domish 

et al 

2015 

                      X          

Bio11 

 Mean Upstream 

Temperature of 

Quarter 

BIO Domish 

et al 

2015 

                                

Bio12 

 Annual Upstream 

Precipitation   

BIO Domish 

et al 

2015 

X  X X    X X X X X  X X  X    X X X      X  X X 

Bio13 

 Upstream 

Precipitation of 

Wettest Month 

BIO Domish 

et al 

2015 

     X       X   X  X          X     

Bio14 

 Upstream 

Precipitation of 

Driest Month 

BIO Domish 

et al 

2015 

                   X          X   
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 Bio15 

 Upstream 

Precipitation 

Seasonality 

(Coefficient 

Variation) 

BIO 

Domish 

et al 

2015 

   X      X  X       X           X  X 

Bio16 

 Upstream 

Precipitation of 

Wettest Quarter 

BIO Domish 

et al 

2015 

                                

Bio17 

 Upstream 

Precipitation of 

Driest Quarter 

BIO Domish 

et al 

2015 

                                

Bio18 

 Upstream 

Precipitation of 

Warmest Quarter 

BIO Domish 

et al 

2015 

                                

Bio19 

 Upstream 

Precipitation of 

Coldest Quarter 

BIO Domish 

et al 

2015 

                                

DH1 

Annual maxima of 1 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
 X                               

DH2 

Annual maxima of 3 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

DH3 

Annual maxima of 7 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

DH4 

Annual maxima of 

30 day means of 

daily discharge 

Hydro 
Irving et 

al 2018 
                                

DH5 

Annual maxima of 

90 day means of 

daily discharge 

Hydro 
Irving et 

al 2018 
                                

DL1 

Annual minima of 1 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

DL2 

Annual minima of 3 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

DL3 

Annual minima of 7 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

DL4 

Annual minima of 30 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
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DL5 

Annual minima of 90 

day means of daily 

discharge 

Hydro 
Irving et 

al 2018 
                                

MA1 
Mean daily flows Hydro Irving et 

al 2018 
                                

MA2 
Median daily flows Hydro Irving et 

al 2018 
                                

MA12 
Mean monthly flows Hydro Irving et 

al 2018 
    X                   X X X       

MA13 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA14 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA15 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA16 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA17 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA18 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA19 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA20 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA21 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA22 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MA23 
Mean monthly flows Hydro Irving et 

al 2018 
                                

MH1 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH2 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH3 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH4 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH5 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH6 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH7 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
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MH8 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH9 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH10 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH11 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH12 
Mean maximum 

monthly flows 

Hydro Irving et 

al 2018 
                                

MH21 
High flow volume Hydro Irving et 

al 2018 
X  X X X   X   X X X X X X X X X X X    X  X X  X X X 

ML1 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML2 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML3 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML4 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML5 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML6 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML7 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML8 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML9 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML10 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML11 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

ML12 
Mean minimum 

monthly flows 

Hydro Irving et 

al 2018 
                                

RA1 
Rise rate Hydro Irving et 

al 2018 
                                

RA3 
Fall rate Hydro Irving et 

al 2018 
      X            X        X      

TA1 
Constancy Hydro Irving et 

al 2018 
                                

TA2 
Predictability of flow Hydro Irving et 

al 2018 
 X    X X  X X            X X X  X   X    
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Slope 

% rise 

Topo 

Amatulli 

et al 

2015 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Eastness 

-1+1 

Topo 

Amatulli 

et al 

2015 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Northness 

-1+1 

Topo 

Amatulli 

et al 

2015 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
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Table S3.3: Continued. All predictors (n=82), description, category and source, used in BRT variable selection process. Uniform predictor set and all custom predictor sets per species (n=67). Cat (predictor category), BIO (bioclimate), 

Hydro (hydrology), Topo (topography) 

Name Description Category Source 

H
al

es
us

 te
ss

el
at

us
 

H
el

ob
de

lla
 s

ta
gn

al
is

 

H
em

ic
le

ps
is

 m
ar

gi
na

ta
 

H
yd

ra
en

a 
gr

ac
ili

s 

Ily
oc

or
is

 c
im

ic
oi

de
s 

Is
op

er
la

 g
ra

m
m

at
ic

a 

Le
pi

do
st

om
a 

ba
sa

le
 

Li
m

ne
ph

ilu
s 

ex
tr

ic
at

us
 

Li
m

ne
ph

ilu
s 

lu
na

tu
s 

Li
m

ni
us

 v
ol

ck
m

ar
i 

Li
m

no
dr

ilu
s 

cl
ap

ar
ed

ea
nu

s 

Li
m

no
dr

ilu
s 

ho
ffm

ei
st

er
i 

Li
th

ax
 o

bs
cu

ru
s 

Ly
m

na
ea

 s
ta

gn
al

is
 

Ly
pe

 re
du

ct
a 

M
ol

an
na

 a
ng

us
ta

ta
 

M
us

cu
liu

m
 la

cu
st

re
 

N
ai

s 
el

in
gu

is
 

N
em

ou
ra

 c
in

er
ea

 

N
eu

re
cl

ip
si

s 
bi

m
ac

ul
at

a 

Pa
ra

te
nd

ip
es

 a
lb

im
an

us
 

Pi
si

di
um

 n
iti

du
m

 

Pi
si

di
um

 s
ub

tr
un

ca
tu

m
 

Pl
an

or
ba

riu
s 

co
rn

eu
s 

Pl
an

or
bi

s 
pl

an
or

bi
s 

Pl
at

yc
ne

m
is

 p
en

ni
pe

s 

Pl
ea

 m
in

ut
is

si
m

a 

Po
ly

ce
nt

ro
pu

s 
fla

vo
m

ac
ul

at
us

 

Po
ta

m
op

hy
la

x 
ro

tu
nd

ip
en

ni
s 

Po
ta

m
ot

hr
ix

 
ha

m
m

on
ie

ns
is

 

Po
ta

m
ot

hr
ix

 m
ol

da
vi

en
si

s 

Pr
oa

se
llu

s 
co

xa
lis

 

Pr
oc

lo
eo

n 
bi

fid
um

 

Ps
yc

ho
m

yi
a 

pu
si

lla
 

R
hi

th
ro

ge
na

 s
em

ic
ol

or
at

a 

R
hy

ac
op

hi
la

 n
ub

ila
 

Agriculture Cultivated and 
managed vegetation Land Use Domish et 

al 2015 X  X  X X      X X  X  X  X        X      X X X  

Barren 
Land 

Barren lands/sparse 
vegetation Land Use Domish et 

al 2015 X X X X X  X X X X X X X X X X  X   X X X X X X X X X X X  X X X X 

Shrubs 

Shrubs 

Land Use 

Domish et 
al 2015 

                X            X        
Herbaceous 
vegetation   
Regularly flooded 
shrub/herbaceous 
vegetation   

Snow Snow/ice Land Use Domish et 
al 2015 

                                    

Forest 

evergreen/deciduous 
needle leaf trees 

Land Use 

Domish et 
al 2015 

 X  X   X X X X X   X  X  X  X X X X X X X  X X X X X    X 
evergreen broadleaf 
trees 
deciduous broadleaf 
trees 
Mixed/other trees   

Urban Urban/built-up Land Use Domish et 
al 2015 

  X   X             X X            X     

Water Open water Land Use Domish et 
al 2015 

                                    

Bio01 
Annual Mean 
Upstream 
Temperature   

Bio 
Domish et 
al 2015 X         X  X                  X X     X 

Bio02 

Mean Upstream 
Diurnal Range 
(Mean of monthly 
(max temp - min 
temp)) 

Bio 

Domish et 
al 2015 

                          X          

Bio03 

 Upstream 
Isothermality 
(hydro_02 / 
hydro_07) (* 100)     

Bio Domish et 
al 2015        X          X                   

Bio04 

 Upstream 
Temperature 
Seasonality 
(standard deviation 
*100)      

Bio Domish et 
al 2015 

X X X X X X X X X  X X  X X X X X X X X X X X  X  X X X X X X X X X 

Bio05 
 Maximum Upstream 
Temperature of 
Warmest Month      

Bio Domish et 
al 2015   X     X          X X   X    X X   X X      

Bio06 
Minimum Upstream 
Temperature of 
Coldest Month       

Bio Domish et 
al 2015                         X            
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Bio07 
 Upstream 
Temperature Annual 
Range - hydro_06)      

Bio Domish et 
al 2015                                     

Bio08 
 Mean Upstream 
Temperature of 
Quarter 

Bio Domish et 
al 2015 X  X  X X   X  X X X  X X  X  X  X X X     X  X  X X X  

Bio09 
 Mean Upstream 
Temperature of 
Quarter 

Bio Domish et 
al 2015 X X X  X  X   X X X    X X  X  X  X  X X X X  X X  X X X  

Bio10 
 Mean Upstream 
Temperature of 
Quarter 

Bio Domish et 
al 2015      X       X        X        X        

Bio11 
 Mean Upstream 
Temperature of 
Quarter 

Bio Domish et 
al 2015                                     

Bio12  Annual Upstream 
Precipitation   

Bio Domish et 
al 2015 X X   X   X  X   X   X X   X         X  X X X X X  

Bio13 
 Upstream 
Precipitation of 
Wettest Month 

Bio Domish et 
al 2015    X          X X         X    X        X 

Bio14 
 Upstream 
Precipitation of 
Driest Month 

Bio Domish et 
al 2015                     X                

Bio15 

 Upstream 
Precipitation 
Seasonality 
(Coefficient 
Variation) 

Bio Domish et 
al 2015 

   X               X X X             X  X 

Bio16 
 Upstream 
Precipitation of 
Wettest Quarter 

Bio Domish et 
al 2015                                     

Bio17 
 Upstream 
Precipitation of 
Driest Quarter 

Bio Domish et 
al 2015                                     

Bio18 
 Upstream 
Precipitation of 
Warmest Quarter 

Bio Domish et 
al 2015                                     

Bio19 
 Upstream 
Precipitation of 
Coldest Quarter 

Bio Domish et 
al 2015                                     

DH1 
Annual maxima of 1 
day means of daily 
discharge 

Hydro 
Irving et al 
2018                   X                  

DH2 
Annual maxima of 3 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

DH3 
Annual maxima of 7 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

DH4 
Annual maxima of 
30 day means of 
daily discharge 

Hydro Irving et al 
2018                                     

DH5 
Annual maxima of 
90 day means of 
daily discharge 

Hydro Irving et al 
2018                                     

DL1 
Annual minima of 1 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

DL2 
Annual minima of 3 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     
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DL3 
Annual minima of 7 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

DL4 
Annual minima of 30 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

DL5 
Annual minima of 90 
day means of daily 
discharge 

Hydro Irving et al 
2018                                     

MA1 Mean daily flows Hydro Irving et al 
2018 

                                    

MA2 Median daily flows Hydro Irving et al 
2018 

                                    

MA12 Mean monthly flows Hydro Irving et al 
2018 

        X         X    X X    X          

MA13 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA14 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA15 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA16 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA17 Mean monthly flows Hydro Irving et al 
2018 

     X                   X            

MA18 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA19 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA20 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA21 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA22 Mean monthly flows Hydro Irving et al 
2018 

                                    

MA23 Mean monthly flows Hydro Irving et al 
2018 

                                    

MH1 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH2 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH3 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH4 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH5 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH6 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH7 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH8 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH9 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH10 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH11 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH12 Mean maximum 
monthly flows 

Hydro Irving et al 
2018 

                                    

MH21 High flow volume Hydro Irving et al 
2018 X X X  X  X X X  X X X X X X X  X  X X X X X X X    X  X  X X 
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ML1 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML2 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML3 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML4 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML5 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML6 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML7 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML8 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML9 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML10 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML11 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

ML12 Mean minimum 
monthly flows 

Hydro Irving et al 
2018 

                                    

RA1 Rise rate Hydro Irving et al 
2018 

                                    

RA3 Fall rate Hydro Irving et al 
2018 

  X    X    X X              X    X       

TA1 Constancy Hydro Irving et al 
2018 

                                    

TA2 Predictability of flow Hydro Irving et al 
2018 

   X  X    X        X  X        X X X  X  X   

Slope % rise Topo Amatulli et 
al 2015 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Eastness -1+1 Topo Amatulli et 
al 2015 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Northness -1+1 Topo Amatulli et 
al 2015 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
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Table S3.4: BRT Coefficients 
 

Climate Category Hydrology Category Land use Category Customized Predictor Set Uniform Predictor Set 

taxa 

no_of

_tree

s 

dev_ 

mean 

cor_ 

mean 

discrim_

mean 

cv_ 

thres 

no_of_tr

ees 

dev_ 

mean 

cor_ 

mean 

discrim_

mean 

cv_ 

thres 

no_of_t

rees 

dev_ 

mean 

cor_ 

mean 

discrim_

mean 

cv_ 

thres 

no_of_tr

ees 

dev_ 

mean 

cor_ 

mean 

discrim_

mean 

cv_ 

thres 

no_of_

trees 

dev_ 

mean 

cor_ 

mean 

discrim_

mean 

cv_ 

thres 

Anabolia 

nervosa 1000 1.25 0.10 0.56 0.32 800 1.25 0.01 0.50 0.32 1000 1.25 0.04 0.53 0.32 1000 1.25 0.08 0.55 0.32 1000 1.25 0.06 0.54 0.32 

Anacaena 

globulus 4700 0.29 0.14 0.62 0.06 1750 0.30 0.06 0.52 0.04 2250 0.30 0.07 0.58 0.05 4600 0.29 0.12 0.63 0.06 3450 0.29 0.08 0.63 0.05 

Anodonta 

anatina 5850 0.21 0.08 0.67 0.06 2900 0.22 0.06 0.63 0.04 1850 0.22 0.05 0.62 0.03 6700 0.21 0.12 0.66 0.06 6000 0.21 0.11 0.66 0.06 

Apsectrota

nypus 

trifascipenn

is 7500 0.31 0.14 0.67 0.09 1000 0.32 0.05 0.54 0.04 2400 0.32 0.06 0.56 0.05 3550 0.32 0.10 0.57 0.06 3600 0.32 0.09 0.55 0.06 

Athripsode

s cinereus 5950 0.70 0.16 0.64 0.16 1900 0.72 0.08 0.59 0.13 3550 0.72 0.10 0.60 0.13 6150 0.70 0.17 0.66 0.16 5350 0.70 0.15 0.65 0.15 

Baetis 

lutheri 2600 0.52 0.08 0.58 0.09 3700 0.52 0.11 0.60 0.09 1100 0.53 0.06 0.56 0.08 4900 0.52 0.12 0.62 0.10 3600 0.52 0.10 0.60 0.09 

Baetis 

rhodani 9500 1.18 0.27 0.66 0.63 1000 1.25 0.08 0.55 0.68 4150 1.23 0.16 0.60 0.66 9250 1.19 0.26 0.66 0.64 9100 1.19 0.26 0.67 0.64 

Bithynia 

tentaculata 7250 0.99 0.20 0.64 0.24 1000 1.01 0.06 0.54 0.21 1000 1.01 0.08 0.57 0.21 7200 0.99 0.18 0.64 0.23 7000 0.99 0.19 0.64 0.23 

Brachypter

a seticornis 1000 0.35 0.03 0.54 0.05 1750 0.35 0.05 0.58 0.05 1000 0.35 0.04 0.54 0.05 2050 0.36 0.07 0.59 0.05 1550 0.36 0.06 0.54 0.05 

Caenis 

horaria 9300 0.56 0.20 0.70 0.14 3950 0.58 0.11 0.61 0.11 1000 0.59 0.06 0.56 0.09 8350 0.57 0.17 0.68 0.13 7100 0.57 0.15 0.66 0.13 

Cloeon 

dipterum 8200 0.45 0.16 0.68 0.11 3250 0.47 0.09 0.61 0.08 4000 0.47 0.09 0.62 0.09 5050 0.46 0.10 0.64 0.09 7150 0.46 0.13 0.66 0.10 

Corbicula 

fluminea 10000 0.11 0.16 0.77 0.08 3250 0.12 0.04 0.60 0.03 1350 0.12 0.02 0.62 0.02 7350 0.12 0.10 0.70 0.05 4850 0.12 0.08 0.59 0.03 

Dugesia 

gonocephal

a 6800 1.20 0.22 0.63 0.35 1000 1.24 0.03 0.51 0.31 3600 1.23 0.14 0.59 0.32 6150 1.21 0.21 0.62 0.34 6750 1.20 0.22 0.64 0.34 

Dugesia 

tigrina 1000 0.24 0.03 0.60 0.03 950 0.24 0.02 0.56 0.03 1000 0.24 0.03 0.59 0.03 4250 0.24 0.06 0.70 0.05 1000 0.24 0.02 0.63 0.03 

Elmis 

aenea 6200 0.95 0.20 0.64 0.22 1000 0.97 0.03 0.53 0.19 1400 0.97 0.09 0.57 0.20 6250 0.95 0.19 0.64 0.22 5350 0.95 0.18 0.63 0.21 

Ephemerell

a 

mucronata 3050 0.80 0.12 0.60 0.15 1000 0.81 0.09 0.53 0.14 1000 0.81 0.05 0.56 0.14 1000 0.81 0.06 0.56 0.14 2000 0.80 0.10 0.59 0.15 

Galba 

truncatula 1200 0.28 0.03 0.58 0.04 1050 0.28 0.03 0.59 0.04 1300 0.28 0.05 0.51 0.04 1000 0.28 0.02 0.53 0.04 1000 0.28 0.03 0.56 0.04 
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Gammarus 

fossarum 10000 1.18 0.33 0.71 0.36 1000 1.28 0.08 0.55 0.34 8250 1.23 0.24 0.65 0.36 10000 1.20 0.30 0.69 0.37 10000 1.20 0.31 0.69 0.37 

Gammarus 

roeselii 3800 1.12 0.16 0.59 0.26 1000 1.14 0.07 0.54 0.26 1000 1.14 0.06 0.54 0.26 2750 1.13 0.15 0.57 0.26 1500 1.13 0.13 0.56 0.26 

Gammarus 

tigrinus 5500 0.33 0.10 0.67 0.07 1000 0.34 0.04 0.60 0.05 2850 0.34 0.06 0.61 0.05 3000 0.34 0.07 0.59 0.06 3000 0.34 0.07 0.58 0.06 

Gerris 

lacustris 6800 0.25 0.14 0.70 0.09 4600 0.26 0.11 0.64 0.07 5950 0.25 0.14 0.69 0.08 5100 0.26 0.12 0.72 0.08 5100 0.26 0.12 0.70 0.07 

Glyphotaeli

us 

pellucidus 2400 0.24 0.05 0.64 0.04 3150 0.24 0.05 0.70 0.04 3250 0.24 0.05 0.60 0.05 3050 0.24 0.07 0.61 0.04 2350 0.24 0.06 0.59 0.04 

Graptodyte

s pictus 3400 0.19 0.06 0.68 0.05 1000 0.19 0.01 0.63 0.03 2750 0.19 0.04 0.60 0.03 5250 0.18 0.08 0.70 0.06 4050 0.18 0.09 0.69 0.05 

Gyraulus 

albus 8350 0.57 0.21 0.68 0.14 2000 0.60 0.09 0.53 0.10 6650 0.58 0.17 0.66 0.13 8350 0.57 0.21 0.68 0.13 7400 0.58 0.19 0.67 0.13 

Habrolepto

ides 

confusa 2850 0.77 0.11 0.59 0.15 1000 0.78 0.06 0.53 0.13 1000 0.78 0.04 0.53 0.13 3400 0.77 0.12 0.59 0.15 2150 0.77 0.10 0.57 0.14 

Habrophleb

ia fusca 4100 0.51 0.11 0.60 0.10 1250 0.51 0.07 0.60 0.08 950 0.52 0.04 0.54 0.08 3000 0.51 0.10 0.62 0.09 3750 0.51 0.09 0.62 0.09 

Haemopis 

sanguisuga 3550 0.35 0.07 0.63 0.06 2750 0.35 0.07 0.62 0.06 9000 0.33 0.14 0.72 0.10 7500 0.33 0.16 0.67 0.08 5750 0.34 0.11 0.66 0.08 

Halesus 

digitatus 3450 0.32 0.07 0.60 0.06 1800 0.32 0.04 0.58 0.05 3750 0.32 0.09 0.59 0.06 1050 0.33 0.04 0.59 0.05 2650 0.33 0.07 0.60 0.06 

Halesus 

tesselatus 3600 0.29 0.09 0.63 0.06 1600 0.29 0.06 0.49 0.04 6700 0.28 0.12 0.67 0.07 1900 0.29 0.05 0.61 0.05 2050 0.29 0.05 0.61 0.05 

Helobdella 

stagnalis 3400 1.00 0.14 0.58 0.22 1000 1.01 0.05 0.54 0.21 1000 1.01 0.09 0.57 0.21 5100 1.00 0.16 0.62 0.22 4450 1.00 0.15 0.61 0.22 

Hemiclepsi

s marginata 1250 0.22 0.05 0.57 0.03 1150 0.23 0.03 0.60 0.03 1500 0.22 0.04 0.61 0.03 1300 0.22 0.02 0.61 0.03 1800 0.22 0.04 0.63 0.03 

Hydraena 

gracilis 3700 0.89 0.12 0.61 0.19 1000 0.90 0.02 0.51 0.17 1000 0.90 0.08 0.58 0.17 3600 0.89 0.13 0.61 0.19 2950 0.90 0.11 0.60 0.18 

Ilyocoris 

cimicoides 4000 0.16 0.09 0.67 0.05 2900 0.16 0.06 0.63 0.04 2200 0.16 0.04 0.61 0.03 3800 0.16 0.11 0.60 0.05 3250 0.16 0.09 0.61 0.04 

Isoperla 

grammatic

a 2700 0.20 0.08 0.60 0.04 8600 0.20 0.09 0.64 0.05 3650 0.20 0.07 0.64 0.04 750 0.20 0.02 0.56 0.03 1200 0.20 0.04 0.58 0.03 

Lepidostom

a basale 5200 0.85 0.15 0.63 0.18 1350 0.87 0.09 0.59 0.16 1000 0.87 0.07 0.56 0.16 3550 0.86 0.12 0.60 0.17 3000 0.86 0.12 0.59 0.17 

Limnephilu

s extricatus 3800 0.21 0.07 0.63 0.05 2000 0.21 0.05 0.52 0.04 4750 0.21 0.15 0.59 0.06 2600 0.21 0.05 0.58 0.04 2250 0.21 0.05 0.58 0.04 

Limnephilu

s lunatus 8750 0.89 0.24 0.68 0.23 2150 0.93 0.11 0.57 0.19 5800 0.91 0.17 0.62 0.21 8400 0.90 0.22 0.67 0.22 7200 0.91 0.21 0.66 0.21 

Limnius 

volckmari 5400 1.21 0.18 0.62 0.33 1000 1.23 0.03 0.54 0.31 1350 1.23 0.11 0.57 0.31 4600 1.21 0.17 0.61 0.32 4450 1.21 0.17 0.60 0.32 
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Limnodrilus 

claparedea

nus 10000 0.30 0.16 0.76 0.10 1350 0.32 0.05 0.58 0.05 1950 0.32 0.05 0.60 0.05 8450 0.30 0.16 0.74 0.09 8100 0.31 0.15 0.73 0.08 

Limnodrilus 

hoffmeister

i 10000 0.78 0.29 0.74 0.24 1000 0.86 0.04 0.55 0.16 6900 0.83 0.18 0.65 0.20 10000 0.78 0.30 0.74 0.23 10000 0.79 0.30 0.73 0.23 

Lithax 

obscurus 4600 0.10 0.10 0.75 0.05 8150 0.09 0.19 0.68 0.06 1500 0.10 0.02 0.59 0.02 7300 0.09 0.19 0.69 0.04 5900 0.09 0.16 0.68 0.04 

Lymnaea 

stagnalis 9700 0.45 0.18 0.72 0.13 1250 0.48 0.07 0.50 0.07 7700 0.46 0.17 0.69 0.12 8600 0.46 0.17 0.70 0.11 9150 0.46 0.17 0.71 0.11 

Lype 

reducta 3550 0.42 0.09 0.60 0.07 1150 0.42 0.07 0.51 0.06 3100 0.42 0.08 0.57 0.07 2500 0.42 0.06 0.58 0.07 1000 0.42 0.04 0.58 0.06 

Molanna 

angustata 10000 0.34 0.18 0.75 0.11 4650 0.35 0.15 0.54 0.09 4300 0.36 0.12 0.61 0.08 5650 0.35 0.12 0.67 0.08 5750 0.35 0.13 0.68 0.08 

Musculium 

lacustre 1900 0.26 0.07 0.50 0.04 2050 0.26 0.05 0.51 0.05 1000 0.27 0.04 0.41 0.03 1000 0.26 0.02 0.58 0.04 1500 0.26 0.04 0.57 0.04 

Nais 

elinguis 7800 0.28 0.16 0.74 0.09 200 0.30 0.01 0.49 0.04 4550 0.29 0.09 0.67 0.06 5750 0.29 0.10 0.69 0.06 8050 0.28 0.15 0.72 0.08 

Nemoura 

cinerea 7300 0.30 0.15 0.70 0.08 2300 0.31 0.05 0.58 0.05 4300 0.31 0.08 0.63 0.06 6950 0.30 0.11 0.71 0.07 6850 0.30 0.11 0.70 0.08 

Neureclipsi

s 

bimaculata 1700 0.16 0.05 0.58 0.03 5150 0.16 0.09 0.67 0.05 1000 0.16 0.02 0.62 0.02 2550 0.16 0.03 0.65 0.03 2700 0.16 0.04 0.64 0.03 

Paratendip

es 

albimanus 3300 0.20 0.07 0.58 0.04 4800 0.20 0.10 0.67 0.06 1000 0.21 0.02 0.54 0.03 4450 0.20 0.09 0.63 0.05 5700 0.20 0.11 0.66 0.06 

Pisidium 

nitidum 9200 0.20 0.11 0.70 0.09 2900 0.21 0.06 0.64 0.05 9150 0.20 0.15 0.75 0.08 5050 0.21 0.09 0.70 0.06 3600 0.21 0.10 0.68 0.05 

Pisidium 

subtruncat

um 2900 0.34 0.06 0.62 0.06 600 0.34 0.01 0.50 0.04 4900 0.34 0.12 0.64 0.07 2300 0.34 0.06 0.60 0.06 2350 0.34 0.06 0.60 0.06 

Planorbariu

s corneus 2600 0.37 0.06 0.62 0.07 350 0.37 0.01 0.48 0.05 2100 0.37 0.05 0.60 0.06 4400 0.36 0.10 0.66 0.07 4550 0.36 0.11 0.64 0.07 

Planorbis 

planorbis 7600 0.35 0.17 0.67 0.10 3550 0.36 0.10 0.58 0.07 3450 0.36 0.07 0.62 0.07 5650 0.35 0.11 0.67 0.08 4800 0.36 0.10 0.63 0.08 

Platycnemi

s pennipes 10000 0.51 0.20 0.72 0.14 2000 0.54 0.06 0.58 0.09 4800 0.53 0.12 0.63 0.11 8300 0.52 0.16 0.68 0.12 8150 0.52 0.16 0.68 0.12 

Plea 

minutissim

a 3300 0.16 0.08 0.60 0.04 1300 0.16 0.03 0.52 0.02 2900 0.16 0.04 0.64 0.03 3100 0.16 0.09 0.61 0.04 2950 0.16 0.06 0.63 0.04 

Polycentro

pus 

flavomacul

atus 1000 1.17 0.08 0.54 0.28 1000 1.17 0.05 0.53 0.28 1000 1.17 0.08 0.54 0.28 950 1.17 0.02 0.52 0.28 1000 1.17 0.05 0.53 0.28 
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Potamot

hrix 

hammon

iensis 9050 0.41 0.18 0.71 0.11 850 0.43 0.02 0.53 0.06 4200 0.43 0.10 0.63 0.08 10000 0.41 0.15 0.72 0.11 10000 0.41 0.15 0.72 0.11 

Potamot

hrix 

moldavi

ensis 1000 0.14 0.01 0.63 0.02 1150 0.14 0.04 0.65 0.02 5950 0.13 0.14 0.68 0.08 4250 0.13 0.11 0.63 0.05 4550 0.13 0.14 0.64 0.05 

Proasell

us 

coxalis 6600 0.82 0.17 0.64 0.19 1000 0.85 0.06 0.56 0.16 3050 0.84 0.11 0.59 0.17 5600 0.83 0.15 0.63 0.19 6200 0.82 0.16 0.64 0.19 

Procloeo

n 

bifidum 4700 0.33 0.11 0.61 0.07 1000 0.34 0.01 0.56 0.05 1950 0.34 0.06 0.53 0.05 3800 0.33 0.08 0.57 0.06 1000 0.34 0.03 0.56 0.05 

Psychom

yia 

pusilla 3150 0.59 0.09 0.61 0.11 1000 0.59 0.05 0.55 0.09 1250 0.59 0.07 0.57 0.09 2300 0.59 0.07 0.62 0.10 4500 0.58 0.10 0.63 0.11 

Rhithrog

ena 

semicolo

rata 6250 0.24 0.13 0.72 0.08 3000 0.25 0.06 0.64 0.05 3150 0.25 0.05 0.65 0.04 4050 0.24 0.07 0.64 0.05 5300 0.24 0.12 0.67 0.06 

Rhyacop

hila 

nubila 6750 0.87 0.18 0.65 0.21 1000 0.90 0.06 0.56 0.17 2850 0.89 0.11 0.59 0.18 5600 0.88 0.16 0.64 0.20 5250 0.89 0.16 0.63 0.20 

Riolus 

subviola

ceus 4050 0.30 0.09 0.66 0.06 1000 0.30 0.03 0.58 0.04 2900 0.30 0.07 0.59 0.05 3150 0.30 0.08 0.59 0.06 4100 0.30 0.09 0.60 0.06 

Stictotar

sus 

duodeci

mpustul

atus 4550 0.43 0.09 0.63 0.09 1100 0.44 0.06 0.51 0.06 1900 0.44 0.07 0.58 0.07 1000 0.44 0.05 0.58 0.06 1000 0.44 0.03 0.59 0.06 

Torleya 

major 3750 0.85 0.13 0.62 0.18 900 0.86 0.02 0.52 0.16 1250 0.86 0.10 0.56 0.16 2850 0.85 0.11 0.61 0.17 2850 0.85 0.12 0.61 0.17 

Valvata 

piscinali

s 2200 0.17 0.06 0.58 0.03 500 0.17 0.02 0.55 0.02 3150 0.17 0.07 0.58 0.04 3200 0.17 0.06 0.64 0.04 3850 0.17 0.07 0.68 0.04 
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Table S3.5: TSS value from SDMs for all species (n=92) 

species Uniform 

Weight 

TSS 

Uniform 

mean TSS 

Uniform 

Standard Error 

Custom Weighted 

TSS 

Custom Mean TSS Custom standard 

error 

Anabolia_nervosa 0.34 0.32 0.01 0.33 0.30 0.01 

Anacaena_globulus 0.48 0.44 0.02 0.43 0.40 0.02 

Anodonta_anatina 0.63 0.59 0.02 0.65 0.60 0.02 

Apsectrotanypus_trifascipennis 0.48 0.45 0.02 0.54 0.51 0.02 

Athripsodes_cinereus 0.42 0.39 0.01 0.46 0.45 0.01 

Baetis_lutheri 0.59 0.59 0.01 0.55 0.54 0.01 

Baetis_rhodani 0.40 0.39 0.01 0.41 0.40 0.01 

Bithynia_tentaculata 0.46 0.45 0.01 0.45 0.45 0.01 

Brachycercus_harrisella 0.63 0.56 0.03 0.73 0.67 0.03 

Brachyptera_seticornis 0.70 0.69 0.01 0.64 0.62 0.02 

Caenis_horaria 0.52 0.50 0.01 0.51 0.50 0.01 

Clinotanypus_nervosus 0.57 0.51 0.03 0.62 0.50 0.04 

Cloeon_dipterum 0.46 0.43 0.02 0.52 0.49 0.02 

Corbicula_fluminea 0.62 0.56 0.03 0.70 0.63 0.03 
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Dugesia_gonocephala 0.46 0.46 0.01 0.47 0.46 0.01 

Dugesia_tigrina 0.60 0.55 0.02 0.67 0.60 0.03 

Elmis_aenea 0.39 0.36 0.01 0.35 0.33 0.01 

Ephemerella_mucronata 0.62 0.61 0.01 0.63 0.63 0.01 

Erpobdella_vilnensis 0.39 0.38 0.01 0.33 0.33 0.01 

Galba_truncatula 0.37 0.32 0.02 0.39 0.35 0.02 

Gammarus_fossarum 0.47 0.47 0.01 0.44 0.43 0.01 

Gammarus_roeselii 0.44 0.38 0.02 0.45 0.40 0.02 

Gammarus_tigrinus 0.53 0.44 0.03 0.55 0.53 0.02 

Gerris_lacustris 0.52 0.47 0.02 0.55 0.49 0.03 

Glyphotaelius_pellucidus 0.46 0.41 0.02 0.48 0.39 0.03 

Graptodytes_pictus 0.57 0.50 0.03 0.53 0.46 0.02 

Gyraulus_albus 0.40 0.37 0.02 0.41 0.38 0.01 

Habroleptoides_confusa 0.59 0.58 0.01 0.57 0.57 0.01 

Habrophlebia_fusca 0.50 0.48 0.01 0.61 0.59 0.02 

Haemopis_sanguisuga 0.51 0.48 0.02 0.45 0.42 0.02 

Halesus_digitatus 0.44 0.42 0.01 0.41 0.37 0.02 

Halesus_tesselatus 0.60 0.58 0.02 0.60 0.57 0.02 
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Helobdella_stagnalis 0.33 0.30 0.01 0.33 0.30 0.01 

Hemiclepsis_marginata 0.56 0.53 0.02 0.62 0.56 0.03 

Hydraena_gracilis 0.56 0.56 0.01 0.57 0.57 0.01 

Ilyocoris_cimicoides 0.67 0.60 0.03 0.56 0.49 0.03 

Isoperla_grammatica 0.60 0.54 0.03 0.56 0.50 0.02 

Lepidostoma_basale 0.47 0.47 0.01 0.46 0.45 0.01 

Limnephilus_extricatus 0.59 0.53 0.03 0.63 0.58 0.02 

Limnephilus_lunatus 0.40 0.37 0.02 0.40 0.38 0.01 

Limnius_volckmari 0.34 0.33 0.01 0.35 0.34 0.01 

Limnodrilus_claparedeanus 0.68 0.66 0.02 0.65 0.63 0.02 

Limnodrilus_claparedeianus 0.55 0.52 0.02 0.55 0.50 0.02 

Limnodrilus_hoffmeisteri 0.52 0.51 0.01 0.50 0.50 0.01 

Lithax_obscurus 0.82 0.75 0.03 0.71 0.61 0.04 

Lymnaea_stagnalis 0.57 0.55 0.02 0.49 0.47 0.01 

Lype_reducta 0.36 0.32 0.02 0.33 0.30 0.01 

Molanna_angustata 0.62 0.59 0.02 0.61 0.58 0.02 

Musculium_lacustre 0.45 0.36 0.03 0.38 0.33 0.02 

Nais_elinguis 0.73 0.70 0.02 0.76 0.74 0.02 
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Nemoura_cinerea 0.50 0.45 0.02 0.49 0.44 0.02 

Neureclipsis_bimaculata 0.57 0.51 0.03 0.68 0.60 0.03 

Paratendipes_albimanus 0.60 0.57 0.02 0.61 0.57 0.02 

Pisidium_nitidum 0.67 0.62 0.02 0.72 0.68 0.02 

Pisidium_subtruncatum 0.56 0.53 0.02 0.58 0.55 0.02 

Planorbarius_corneus 0.57 0.53 0.02 0.53 0.51 0.01 

Planorbis_planorbis 0.51 0.47 0.02 0.49 0.45 0.02 

Platycnemis_pennipes 0.52 0.51 0.01 0.55 0.54 0.01 

Plea_minutissima 0.60 0.49 0.03 0.59 0.54 0.02 

Polycentropus_flavomaculatus 0.42 0.41 0.01 0.39 0.38 0.01 

Potamophylax_rotundipennis 0.56 0.52 0.02 0.52 0.49 0.01 

Potamothrix_hammoniensis 0.49 0.46 0.02 0.59 0.57 0.02 

Potamothrix_moldaviensis 0.57 0.49 0.03 0.75 0.65 0.04 

Proasellus_coxalis 0.34 0.31 0.01 0.34 0.33 0.01 

Procloeon_bifidum 0.43 0.38 0.02 0.47 0.44 0.02 

Psychomyia_pusilla 0.48 0.46 0.01 0.48 0.47 0.01 

Rhithrogena_semicolorata 0.63 0.59 0.02 0.65 0.61 0.02 

Rhyacophila_nubila 0.59 0.59 0.01 0.59 0.59 0.01 



 

    

217 

 A
ppendix C

: Supporting inform
ation for C

hapter 4 

 

Appendix C: Supporting information for Chapter 4 

Table S4.1: correlation matrix of all predictors from all model configurations 
 

dh1 mh21 Bio 08 (hC) Bio 09 (hC) Bio 12 (hC) Bio 15 (bC) Bio 02 (bC) Bio 04 (bC) Bio 08 (bC) Bio 09 (bC) 

 

dh1 
 

1 0.04110397 0.04299391 0.12507105 0.05306071 0.04631987 -0.030846 -0.2104459 0.07266893 0.07059209 

 

mh21 
 

0.04110397 1 -0.1811403 0.04500541 -0.1460599 -0.0497881 0.11133953 0.01669001 -0.0178457 0.02258609 

 

Bio 08 (hC) 
 

0.04299391 -0.1811403 1 -0.1186342 0.04297953 0.11957353 0.18033317 -0.0168116 0.37173693 -0.1118949 

 

Bio 09 (hC) 
 

0.12507105 0.04500541 -0.1186342 1 0.03579034 -0.1671069 -0.3614894 -0.5589005 -0.1557763 0.30354887 

 

Bio 12 (hC) 
 

0.05306071 -0.1460599 0.04297953 0.03579034 1 0.0690387 -0.1302382 -0.0842928 0.1245857 0.04414832 

 

Bio 15 (bC) 
 

0.04631987 -0.0497881 0.11957353 -0.1671069 0.0690387 1 0.21512485 -0.0551016 0.31857108 -0.0173852 

 

Bio 02 (bC) 
 

-0.030846 0.11133953 0.18033317 -0.3614894 -0.1302382 0.21512485 1 0.28669032 0.31285451 -0.1640398 
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Bio 04 (bC) 
 

-0.2104459 0.01669001 -0.0168116 -0.5589005 -0.0842928 -0.0551016 0.28669032 1 -0.0420521 -0.3169023 

 

Bio 08 (bC) 
 

0.07266893 -0.0178457 0.37173693 -0.1557763 0.1245857 0.31857108 0.31285451 -0.0420521 1 -0.1183476 

 

Bio 09 (bC) 
 

0.07059209 0.02258609 -0.1118949 0.30354887 0.04414832 -0.0173852 -0.1640398 -0.3169023 -0.1183476 1 
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Table S4.2: Coefficients for each predictor category in 1st run and all predictors in 2nd run. 

1st run BRTs 2nd run BRTs 

Hydroclimate Hydrology Bioclimate All predictors 

no_of_ 

trees 

dev_ 

mean 

cor_ 

mean 

Discrim 

mean 

cv_thres no_of_ 

trees 

dev_ 

mean 

cor_mean discrim 

mean 

cv_thres no_of_ 

trees 

dev_ 

mean 

cor_ 

mean 

Discrim 

mean 

cv_thres no_of_ 

trees 

dev_ 

mean 

cor_ 

mean 

Discrim 

mean 

cv_thres 

2300 0.1937637 0.03165908 0.67598 0.03830936 1900 0.19428371 0.05404798 0.59629 0.03170907 7350 0.18441022 0.12830968 0.69641 0.0676502 5750 0.18652672 0.12011354 0.70351 0.0581091 

1000 1.25315613 0.08094596 0.55178 0.32424652 950 1.25476986 0.02568042 0.52875 0.3221976 2050 1.24902636 0.1214032 0.56919 0.32326098 1600 1.25016257 0.12464871 0.57844 0.32349401 

3900 0.29219755 0.10516271 0.597 0.05683603 2150 0.29627332 0.07377855 0.55359 0.04563816 4300 0.29188986 0.11909036 0.60003 0.05991084 5000 0.28964948 0.13159019 0.63636 0.06583351 

1000 1.26624139 0.10782563 0.56973 0.33374099 1000 1.2673596 0.07567551 0.5582 0.33221297 1000 1.26683226 0.08617803 0.55769 0.33308734 1000 1.2649108 0.1012037 0.56882 0.33200551 

8550 0.46671325 0.17590127 0.68107 0.11088658 1000 0.48617864 0.04307111 0.52518 0.07180062 7350 0.46769535 0.14874212 0.68577 0.11008312 5100 0.47513322 0.11950853 0.64959 0.09373251 

6800 0.21129914 0.14390221 0.64855 0.06276316 4600 0.21345727 0.13108658 0.5256 0.05120029 3450 0.21647912 0.07150302 0.60419 0.0435151 5300 0.21281996 0.10187682 0.62452 0.05312693 

5100 0.31733486 0.10357068 0.61339 0.06741931 1000 0.32391668 0.02363363 0.47236 0.0435876 6450 0.31335035 0.11050955 0.68912 0.08400376 6850 0.31278158 0.12770394 0.65352 0.07875275 

1000 0.972131 0.05810074 0.52868 0.19258685 1000 0.97307397 0.02535141 0.51918 0.19315048 2150 0.96833388 0.09688076 0.58951 0.20003746 1000 0.97449399 0.07552963 0.57726 0.1949268 

5400 0.70392614 0.14613499 0.6481 0.15252678 2850 0.7163072 0.09791766 0.60275 0.13323407 5950 0.7036952 0.15353576 0.65107 0.14968799 6900 0.69679414 0.16740644 0.65362 0.15490218 

4100 0.51973064 0.11124054 0.61841 0.1005876 1000 0.52698223 0.05673255 0.55006 0.07917108 3600 0.52098521 0.10368145 0.61558 0.09905672 3950 0.51960736 0.0992249 0.62582 0.09808779 

9200 1.18923783 0.25534439 0.65411 0.63336375 1000 1.24646848 0.06303068 0.52791 0.68354758 10000 1.17381811 0.29200076 0.67698 0.63581327 8900 1.18332972 0.271841 0.66407 0.63317806 

6900 0.98979462 0.18699228 0.62362 0.23404093 1000 1.01364735 0.08335809 0.56223 0.20859108 7400 0.98522865 0.19739832 0.64789 0.24603726 6900 0.98800483 0.1885931 0.64138 0.23664088 

10000 0.55801811 0.21132477 0.69594 0.14489597 4700 0.58091638 0.11956676 0.6236 0.11254861 6800 0.57243486 0.15776527 0.66771 0.12373908 7950 0.56683971 0.17025079 0.66666 0.13083726 

4500 0.61354874 0.10760254 0.61721 0.11651633 1550 0.62077208 0.07164686 0.57749 0.1013942 3500 0.61595387 0.0974182 0.60813 0.11369397 5300 0.61006964 0.11624877 0.63755 0.1232073 

700 0.50332579 0.0154709 0.51373 0.07312298 1000 0.50289058 0.03830439 0.48185 0.07415479 1000 0.50304531 0.02766079 0.55409 0.07477235 1000 0.50169 0.03309828 0.57409 0.07443081 

850 0.35936224 0.02162931 0.5023 0.04991044 2850 0.35659846 0.07142315 0.59603 0.06066708 2750 0.35526905 0.0994785 0.51759 0.06644689 3050 0.35448416 0.065043 0.61453 0.06510285 

8350 0.45666404 0.14079677 0.66188 0.10680004 1550 0.47224743 0.06035681 0.61289 0.07292957 7900 0.45387179 0.14778611 0.69406 0.10707395 7400 0.45578305 0.14673978 0.6715 0.09917412 

10000 0.10863266 0.18110769 0.77106 0.08538344 3400 0.11993549 0.07127804 0.52947 0.03501758 2900 0.1213404 0.03493757 0.64111 0.02621418 3300 0.12053525 0.04646298 0.6847 0.02955502 

6350 1.20734126 0.20917943 0.6222 0.33533612 1000 1.23970415 0.04265829 0.52012 0.31309919 6700 1.20434519 0.21298253 0.63028 0.34070308 6450 1.20361841 0.21242585 0.63295 0.33889403 

5450 0.17612103 0.10748157 0.68829 0.06010374 4000 0.17936354 0.06054844 0.68621 0.0451251 2700 0.17992565 0.06742343 0.67166 0.04198846 4250 0.18375806 0.068618 0.70016 0.05242042 

7100 0.94300551 0.19189642 0.64592 0.22678454 1000 0.9697819 0.07130525 0.52136 0.19188376 6050 0.94928437 0.17268436 0.63228 0.22327083 6800 0.9454221 0.18798886 0.64333 0.2217386 

8900 0.33950855 0.19142707 0.67747 0.09068936 4950 0.3523303 0.09473527 0.62718 0.07720208 10000 0.33489812 0.17032866 0.74349 0.10848268 8250 0.34015746 0.15076398 0.69985 0.08997417 

1450 0.80471719 0.09417233 0.5871 0.14500022 1000 0.80638829 0.07978769 0.5454 0.14224659 4000 0.79679498 0.14015473 0.59807 0.15171745 3700 0.79947251 0.12752967 0.60724 0.15005716 

3450 0.47729582 0.0809657 0.62661 0.08532334 1000 0.48211905 0.02822801 0.52478 0.06978815 4450 0.47513352 0.0949845 0.64429 0.08900044 3250 0.47651647 0.0830952 0.61 0.08378231 

1600 0.27553479 0.0556004 0.55904 0.04063612 1000 0.2761634 0.03339038 0.50962 0.03704158 1200 0.2760707 0.03405051 0.5484 0.03853897 3900 0.27703635 0.08190026 0.60266 0.05930378 

10000 1.19144072 0.31324023 0.69544 0.36891258 1000 1.27466969 0.10194021 0.55911 0.33824553 10000 1.17972548 0.33136783 0.70841 0.3785064 10000 1.17874339 0.33787498 0.70885 0.38128059 

1000 1.02816214 0.01843957 0.51563 0.78793745 1000 1.02738292 0.06097359 0.53082 0.78715078 1000 1.02711148 0.06340699 0.55668 0.78798622 1000 1.02787868 0.04661074 0.55088 0.78739104 

2950 1.12790984 0.13630616 0.57217 0.26135286 1000 1.13531588 0.06997227 0.5459 0.25813785 1000 1.13528626 0.07160625 0.55597 0.25854781 1000 1.13436829 0.10484991 0.56462 0.25810764 

4600 0.33215561 0.09552712 0.64608 0.06941239 1000 0.3390397 0.05029379 0.61228 0.04518873 5150 0.33166863 0.07857821 0.6693 0.07257761 4600 0.3309513 0.09715902 0.68923 0.07577864 

5750 0.25397501 0.13732206 0.71781 0.09623958 4450 0.25592923 0.13739362 0.61839 0.07858397 4550 0.25863633 0.11130295 0.68814 0.06368173 7450 0.25126891 0.17001845 0.76537 0.0948298 

1200 0.51448089 0.04865502 0.60352 0.07892815 850 0.51562648 0.03049305 0.48925 0.075276 4050 0.50960245 0.08204424 0.63336 0.09417406 2650 0.51118237 0.07147029 0.61302 0.08582372 

2250 0.24130439 0.04035451 0.60492 0.04022721 1700 0.2419915 0.04192852 0.61683 0.03504001 3450 0.2386788 0.08082682 0.66366 0.05316365 2150 0.24064986 0.05042826 0.62651 0.04331998 

2800 0.28488761 0.05615149 0.60379 0.0506888 2550 0.28545385 0.05867086 0.5561 0.04519348 2000 0.28596958 0.03786472 0.60386 0.04541022 4850 0.2814608 0.07341479 0.65615 0.05850006 
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4250 0.18345867 0.09347746 0.67519 0.05936731 1600 0.1881348 0.03580658 0.57983 0.03043654 1850 0.18804795 0.02985553 0.62964 0.03067177 6750 0.17797319 0.11865092 0.74718 0.06489723 

8300 0.57348709 0.18894456 0.67578 0.1337499 2300 0.59739494 0.11960301 0.50288 0.09602426 8400 0.57293621 0.18712501 0.68334 0.13484951 8000 0.57351798 0.20129917 0.66172 0.1238317 

4750 0.50772714 0.10811515 0.60364 0.10209239 4650 0.50619591 0.11148512 0.65547 0.09921738 1700 0.51346927 0.06962603 0.58136 0.0817001 4950 0.50889005 0.11505411 0.62957 0.10211663 

2400 0.34716234 0.06021262 0.61501 0.05741722 5050 0.34145021 0.10397965 0.60708 0.07642303 1100 0.34878905 0.0402579 0.59189 0.04910508 3400 0.34454015 0.07177687 0.63514 0.06391145 

4150 0.31847358 0.09634044 0.59638 0.06175988 1000 0.32423297 0.02162689 0.52326 0.0435183 1750 0.32289586 0.04198085 0.61505 0.05135001 4800 0.32047194 0.10398232 0.65955 0.07312384 

2550 0.88176952 0.09910198 0.59674 0.17475598 1000 0.88619586 0.056148 0.54122 0.16621986 1000 0.88571222 0.07081725 0.58066 0.16649315 2050 0.88388774 0.09188811 0.58266 0.17425482 

3950 0.28674741 0.1087954 0.61645 0.05876479 1550 0.29170329 0.05443327 0.44536 0.04195372 2000 0.29114678 0.0479282 0.63619 0.04871699 2800 0.28949222 0.05149474 0.63265 0.0543576 

4150 1.00056473 0.14286411 0.59827 0.22551207 1000 1.01245284 0.05306634 0.53334 0.20768439 5100 0.99341907 0.16810746 0.61018 0.23564021 4650 0.99517233 0.1577411 0.61281 0.22959132 

2050 0.22416416 0.04239536 0.57064 0.03357007 1900 0.22450452 0.03330944 0.62233 0.03532921 3750 0.22199612 0.08702276 0.58369 0.04258114 2250 0.22333108 0.05847446 0.57588 0.03792959 

2500 0.57726287 0.09969655 0.50754 0.09360334 1000 0.58205477 0.04544489 0.46593 0.08837318 3200 0.57564257 0.10342102 0.54919 0.10016635 2900 0.57507299 0.10762558 0.53135 0.09820575 

1000 0.8942686 0.04761072 0.54962 0.16796638 1000 0.89396821 0.05914978 0.55271 0.16848919 4500 0.88264544 0.13798468 0.60624 0.18391757 2950 0.88931392 0.11762438 0.58348 0.17552021 

1000 0.86995238 0.07113798 0.56636 0.16127416 1000 0.87085506 0.0343487 0.53212 0.16052224 2150 0.86676579 0.09718447 0.55022 0.16456799 1000 0.87215229 0.02225379 0.52148 0.16134701 

3350 0.8196641 0.10700618 0.6093 0.16146804 1000 0.82654636 0.04817825 0.53354 0.14797718 4200 0.81514416 0.13602222 0.61529 0.16997317 3500 0.81935745 0.12076839 0.6048 0.16462908 

1650 0.1755591 0.04442416 0.48013 0.02746385 1750 0.17533885 0.03935936 0.49174 0.0309434 1950 0.17495327 0.06757788 0.5801 0.0327375 1350 0.17532089 0.0293258 0.58678 0.02641901 

4400 0.1572429 0.09068565 0.61385 0.05332133 3650 0.15977465 0.08817427 0.6157 0.04429875 3550 0.16053746 0.07559499 0.63563 0.0379922 3050 0.15968547 0.05974092 0.57017 0.03818589 

2850 0.19905558 0.06350409 0.58225 0.0404157 4600 0.19855854 0.06676124 0.61218 0.04206872 2350 0.19956095 0.03978531 0.59581 0.03886025 3450 0.19725046 0.07195326 0.56922 0.04471173 

7000 0.2872528 0.11447311 0.69217 0.07874036 1400 0.29710768 0.06092638 0.41733 0.04282977 2550 0.2961708 0.05074827 0.60272 0.04881582 3900 0.29293853 0.06766935 0.61323 0.05942145 

5100 0.85473309 0.14536139 0.6171 0.18309413 1600 0.86559216 0.09012937 0.58285 0.16381528 4750 0.85585231 0.13246903 0.61273 0.18099397 6350 0.85002357 0.17353159 0.64665 0.18716293 

8100 0.30677971 0.13256486 0.67069 0.07813193 1000 0.31898543 0.02814411 0.55038 0.04359179 10000 0.29576712 0.189397 0.75447 0.1004148 7100 0.30451838 0.15135451 0.69976 0.0825335 

5150 0.48858164 0.10432795 0.63155 0.10067902 600 0.49928547 0.00843133 0.48179 0.070849 2750 0.49441698 0.08161584 0.61936 0.08511602 4800 0.48687727 0.11416927 0.65274 0.09740739 

4200 0.20878403 0.09624252 0.58081 0.05013981 1000 0.21331925 0.02194767 0.56571 0.02850901 3350 0.21017507 0.08762058 0.62404 0.04247143 1500 0.21230625 0.044562 0.58878 0.03326838 

1300 0.14290969 0.02441119 0.62415 0.02273327 3000 0.14116749 0.04891473 0.66147 0.04000942 3300 0.14020639 0.09099517 0.64307 0.03756173 5000 0.13794458 0.08135285 0.6705 0.0501783 

8650 0.88971933 0.24448326 0.67126 0.22940354 2100 0.93025583 0.105157 0.57324 0.18655479 10000 0.87626015 0.26694169 0.69942 0.22876301 10000 0.88193663 0.27521501 0.69286 0.22755135 

8700 0.35896391 0.18852812 0.72289 0.10707401 1550 0.38238 0.04664233 0.59171 0.05607483 9850 0.35082955 0.21552831 0.74471 0.10734991 10000 0.29317518 0.22042677 0.78768 0.10251533 

10000 0.7812952 0.3061333 0.74248 0.23842116 1000 0.85962605 0.05443062 0.52763 0.15800856 10000 0.75401602 0.36730746 0.76991 0.24187064 10000 0.75150094 0.36862574 0.76906 0.24092196 

1250 0.09998726 0.02730088 0.63936 0.01928321 7900 0.0920253 0.22179389 0.66936 0.05702291 3800 0.09480987 0.09304785 0.66517 0.05054209 5000 0.09468033 0.10321426 0.73269 0.05513078 

9300 0.44945688 0.18765642 0.71502 0.12580223 1150 0.47704634 0.05870127 0.52414 0.07108627 8100 0.4568346 0.14144166 0.7095 0.11267048 6500 0.46383186 0.12991963 0.69034 0.10306529 

2450 0.41810613 0.0707562 0.60018 0.06762889 2300 0.41809505 0.06746123 0.53074 0.06564898 1000 0.42032628 0.03240005 0.58331 0.06108304 2450 0.41705945 0.07108751 0.57124 0.07093441 

3250 0.21684952 0.06271438 0.64081 0.04466156 1000 0.21936098 0.02077929 0.5811 0.02903026 4800 0.21386949 0.08448696 0.67278 0.05442072 3750 0.21521649 0.05640694 0.6671 0.04887778 

9250 0.34549759 0.13907925 0.7229 0.10269793 4900 0.35344334 0.13781962 0.53305 0.08727192 8050 0.34467772 0.13062358 0.73907 0.10724271 7150 0.34675119 0.13430698 0.7136 0.0975402 

2850 0.26293277 0.05748723 0.55528 0.04629155 1600 0.26447808 0.03845204 0.56172 0.04255383 2850 0.2632735 0.0534185 0.59919 0.04677167 5700 0.25777216 0.09721651 0.61363 0.06236011 

7750 0.2798824 0.15128231 0.73917 0.08911839 1250 0.29728245 0.04393542 0.55044 0.04177197 7250 0.28455998 0.13815941 0.72487 0.0846699 6700 0.28515192 0.13667908 0.70078 0.07069381 

7700 0.2982922 0.13276155 0.71399 0.08355574 3950 0.30943405 0.06370515 0.65895 0.05833971 1400 0.313097 0.04068088 0.59765 0.04452012 4400 0.30538074 0.0963458 0.67778 0.06592586 

2100 0.37188854 0.06573749 0.58863 0.06065696 1000 0.37393826 0.01978681 0.5038 0.05289213 1900 0.37202881 0.07212589 0.57627 0.05742044 1200 0.3770664 0.04748939 0.58456 0.05424892 

1950 0.16233571 0.0357477 0.5481 0.02920744 4500 0.15919117 0.06507533 0.67945 0.05008718 3050 0.161274 0.04296404 0.71834 0.04107022 850 0.16289184 0.03001803 0.55363 0.02183146 

2100 0.32276773 0.05109326 0.60195 0.04987901 900 0.3242158 0.02474064 0.51346 0.04302782 4200 0.31689226 0.12240692 0.59943 0.06943114 1600 0.32210281 0.06189341 0.55417 0.05315501 

4500 0.18256794 0.11235168 0.67863 0.05249917 2600 0.18625811 0.09135079 0.50843 0.03911564 4350 0.18073032 0.15748299 0.59986 0.06565237 6250 0.17661473 0.16822941 0.70578 0.07478203 

3100 0.20352399 0.08539747 0.5947 0.04589198 4250 0.20145076 0.10631651 0.58032 0.05489573 3450 0.20472621 0.06216075 0.68996 0.04511625 4500 0.20077975 0.09583239 0.6744 0.05311938 

5600 0.21831414 0.08091412 0.70029 0.06984601 1100 0.22499559 0.02903264 0.47765 0.03248131 4700 0.22029924 0.08559706 0.66376 0.05487733 5200 0.21964909 0.06615434 0.68185 0.05735247 
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7400 0.20325378 0.10691422 0.71946 0.08399839 3000 0.21066543 0.06870883 0.60945 0.04583219 3500 0.21029402 0.06668205 0.64995 0.04531753 3950 0.2084462 0.08220825 0.65208 0.0562408 

2050 0.34253413 0.06395478 0.56635 0.05517892 1000 0.34396753 0.03402184 0.55171 0.04784213 1650 0.34335639 0.04241084 0.60862 0.05356352 1800 0.34219597 0.06536022 0.56455 0.05421728 

6200 0.35060573 0.14461897 0.67346 0.08525745 2200 0.36197987 0.06252256 0.56265 0.05958634 1000 0.36387071 0.03079733 0.57906 0.0506557 2950 0.35965816 0.06881223 0.62219 0.06832792 

8200 0.52106251 0.17257767 0.68216 0.12256582 1000 0.54317528 0.04927481 0.52307 0.08250794 8600 0.51839811 0.17538306 0.68982 0.12658774 8000 0.52081874 0.16471018 0.6893 0.11765578 

2950 0.16119824 0.06150167 0.55189 0.03589426 2600 0.16107127 0.06637521 0.56448 0.03721665 8850 0.15302318 0.11617488 0.75084 0.06301739 4250 0.1578908 0.10576433 0.62419 0.04307184 

1000 1.17341167 0.04906896 0.52113 0.27567672 1000 1.17391484 0.03015312 0.52502 0.27552409 1000 1.1721777 0.09231855 0.54697 0.27599344 1000 1.17251465 0.07273329 0.53281 0.2754163 

1000 0.42928681 0.05215852 0.54419 0.06069828 1000 0.42966953 0.02833018 0.53735 0.06042288 6950 0.41685272 0.15532077 0.63737 0.09203756 3400 0.42403066 0.10531126 0.57575 0.07679977 

2700 0.13496622 0.04303732 0.64193 0.0328626 1300 0.13621697 0.01403386 0.60828 0.02210713 1400 0.13607036 0.02231243 0.60967 0.02316323 3050 0.13372449 0.04819297 0.67965 0.03864518 

7400 0.8189683 0.17977278 0.65566 0.1937911 1000 0.84620063 0.04112693 0.5483 0.15526369 7550 0.81773241 0.17951098 0.65594 0.19447182 5950 0.82377082 0.16551812 0.64531 0.18831433 

4550 0.33322978 0.08490588 0.59173 0.07009525 1750 0.33841144 0.04726642 0.55012 0.05056722 4750 0.32991356 0.12878189 0.60434 0.0745274 2750 0.33565782 0.07285234 0.5939 0.06112798 

4000 0.58478391 0.1238017 0.62494 0.11334917 1000 0.59270622 0.0536189 0.56785 0.09234345 3350 0.58731146 0.09910939 0.60317 0.10780333 4550 0.58230899 0.11612007 0.64697 0.11446139 

2800 1.13127407 0.12963214 0.58629 0.27196708 1000 1.13957604 0.03962188 0.52159 0.25915377 2100 1.1342866 0.10989505 0.5811 0.26869202 1600 1.13752395 0.10323375 0.57035 0.26611563 

7700 0.23317793 0.15760112 0.71813 0.08141804 3950 0.24367155 0.08811328 0.67001 0.05800582 4250 0.24313295 0.08632029 0.68525 0.05853554 7200 0.23676173 0.11945281 0.70731 0.06742312 

4950 0.28265122 0.05984648 0.67427 0.06142352 1000 0.28747735 0.02845891 0.5056 0.03832393 1000 0.28723635 0.02245251 0.56831 0.03905607 1000 0.28660687 0.03417832 0.57275 0.03935263 

4050 0.43333479 0.08398068 0.64083 0.08346897 1000 0.43839096 0.03604436 0.54636 0.06326497 750 0.43900166 0.00894233 0.54691 0.06101185 1000 0.43732557 0.03851347 0.60952 0.06313936 

1000 0.96973026 0.07316307 0.54762 0.1913268 1000 0.97067678 0.02273037 0.51435 0.19154153 1000 0.96990785 0.05943413 0.54344 0.19275194 1000 0.96816282 0.06514032 0.54477 0.19126795 

4050 0.84635615 0.12771363 0.61195 0.18072612 1000 0.85695854 0.0545318 0.53973 0.15779567 5150 0.8426416 0.13805536 0.62927 0.18105421 3850 0.84623171 0.11931027 0.62194 0.17211078 

7800 0.15893864 0.13139818 0.70661 0.07423819 3450 0.16613823 0.08339707 0.63257 0.04877448 5250 0.16514976 0.06748255 0.69145 0.0559193 5100 0.16454292 0.09286566 0.65051 0.05161833 

1900 0.2123116 0.04377545 0.57998 0.0366287 1800 0.21264666 0.0358918 0.58673 0.03304986 3100 0.21023535 0.07139409 0.6042 0.04471894 1650 0.21207737 0.04167373 0.6005 0.03485937 

9850 0.08930872 0.0989168 0.87412 0.08335255 4700 0.09679052 0.09402248 0.70433 0.04885551 2450 0.09890522 0.03182937 0.7521 0.02988998 5100 0.09617347 0.06911153 0.77796 0.05631622 
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Table S4.3: Mean TSS and Sensivity (SENS) values for each species and all model configurations. Mean calculated from 50 models per species (5 algorithms , 10 repeats),w = weighted mean, m = non weighted mean, se = 

standard error 
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Alainites muticus 0.71 0.89 0.69 0.88 0.01 0.01 0.77 0.91 0.75 0.90 0.01 0.01 0.81 0.92 0.8 0.91 0.01 0.01 0.77 0.90 0.76 0.89 0.02 0.02 

Anabolia nervosa 0.53 0.75 0.48 0.71 0.02 0.02 0.36 0.63 0.34 0.63 0.01 0.01 0.34 0.65 0.31 0.65 0.01 0.02 0.37 0.68 0.34 0.67 0.01 0.01 

Anacaena globulus 0.58 0.79 0.55 0.77 0.02 0.02 0.54 0.74 0.53 0.73 0.01 0.02 0.56 0.74 0.54 0.73 0.01 0.02 0.54 0.76 0.52 0.74 0.01 0.03 

Ancylus fluviatilis 0.54 0.76 0.47 0.71 0.03 0.02 0.42 0.74 0.41 0.74 0.01 0.01 0.47 0.74 0.46 0.73 0.01 0.01 0.44 0.77 0.43 0.77 0.01 0.01 

Anisus vortex 0.69 0.83 0.66 0.82 0.02 0.01 0.70 0.85 0.69 0.85 0.01 0.01 0.56 0.78 0.55 0.77 0.01 0.02 0.58 0.79 0.57 0.79 0.01 0.01 

Anodonta anatina 0.74 0.91 0.73 0.91 0.01 0.01 0.80 0.93 0.79 0.92 0.01 0.01 0.68 0.79 0.65 0.76 0.02 0.02 0.74 0.87 0.73 0.86 0.01 0.02 

Apsectrotanypus 

trifascipennis 

0.62 0.81 0.59 0.80 0.02 0.02 0.67 0.86 0.65 0.85 0.02 0.02 0.47 0.74 0.45 0.72 0.01 0.03 0.64 0.83 0.63 0.82 0.02 0.02 

Atherix ibis 0.59 0.80 0.55 0.78 0.02 0.01 0.63 0.82 0.60 0.80 0.02 0.02 0.51 0.75 0.5 0.76 0.01 0.01 0.63 0.81 0.59 0.79 0.02 0.02 

Athripsodes 

cinereus 

0.63 0.80 0.58 0.77 0.02 0.02 0.60 0.80 0.56 0.78 0.02 0.02 0.46 0.7 0.43 0.68 0.02 0.02 0.48 0.72 0.46 0.71 0.01 0.01 

Baetis lutheri 0.58 0.77 0.54 0.75 0.02 0.02 0.70 0.85 0.67 0.85 0.02 0.01 0.61 0.88 0.6 0.87 0.01 0.01 0.60 0.84 0.60 0.84 0.01 0.01 

Baetis rhodani 0.57 0.77 0.54 0.75 0.02 0.02 0.52 0.81 0.49 0.80 0.02 0.02 0.43 0.8 0.42 0.79 0.01 0.01 0.44 0.81 0.43 0.80 0.01 0.01 

Bithynia 

tentaculata 

0.62 0.80 0.59 0.78 0.02 0.02 0.60 0.78 0.56 0.75 0.02 0.02 0.48 0.7 0.46 0.68 0.01 0.02 0.48 0.73 0.45 0.72 0.01 0.02 

Caenis horaria 0.61 0.81 0.59 0.80 0.02 0.01 0.71 0.84 0.69 0.84 0.01 0.01 0.58 0.78 0.57 0.78 0.01 0.01 0.56 0.76 0.54 0.75 0.01 0.01 

Caenis luctuosa 0.62 0.76 0.57 0.74 0.02 0.02 0.68 0.82 0.66 0.82 0.02 0.01 0.52 0.74 0.47 0.72 0.02 0.02 0.52 0.77 0.50 0.76 0.02 0.01 

Calopteryx virgo 0.56 0.76 0.52 0.73 0.02 0.02 0.63 0.80 0.60 0.79 0.02 0.02 0.45 0.72 0.41 0.7 0.02 0.02 0.49 0.72 0.47 0.72 0.01 0.02 

Cheumatopsyche 

lepida 

0.79 0.89 0.77 0.89 0.02 0.01 0.74 0.89 0.72 0.88 0.02 0.01 0.73 0.89 0.72 0.89 0.01 0.01 0.73 0.88 0.72 0.89 0.01 0.01 



 

    

223 

 A
ppendix C

: Supporting inform
ation for C

hapter 4 

 

Cloeon dipterum 0.61 0.81 0.57 0.79 0.02 0.02 0.72 0.87 0.70 0.86 0.01 0.01 0.53 0.82 0.51 0.81 0.01 0.02 0.56 0.79 0.55 0.78 0.01 0.02 

Corbicula fluminea 0.77 0.91 0.76 0.90 0.02 0.02 0.83 0.94 0.82 0.94 0.01 0.01 0.78 0.92 0.76 0.9 0.01 0.02 0.91 0.97 0.91 0.96 0.01 0.01 

Dugesia 

gonocephala 

0.58 0.76 0.55 0.73 0.02 0.02 0.61 0.83 0.57 0.81 0.02 0.02 0.5 0.82 0.5 0.82 0.01 0.01 0.50 0.80 0.50 0.79 0.01 0.01 

Ecclisopteryx 

dalecarlica 

0.68 0.85 0.65 0.83 0.02 0.02 0.82 0.93 0.81 0.93 0.01 0.01 0.64 0.79 0.62 0.79 0.02 0.02 0.66 0.82 0.63 0.81 0.02 0.02 

Elmis aenea 0.58 0.76 0.53 0.73 0.02 0.02 0.59 0.77 0.55 0.74 0.02 0.02 0.43 0.64 0.39 0.61 0.02 0.02 0.45 0.69 0.43 0.68 0.02 0.02 

Ephemera vulgata 0.58 0.81 0.56 0.80 0.01 0.02 0.76 0.86 0.76 0.85 0.01 0.01 0.63 0.81 0.62 0.8 0.01 0.01 0.64 0.82 0.63 0.81 0.01 0.01 

Ephemerella 

mucronata 

0.47 0.71 0.46 0.70 0.01 0.02 0.71 0.85 0.69 0.84 0.02 0.01 0.57 0.84 0.57 0.84 0.01 0.01 0.58 0.85 0.56 0.85 0.01 0.01 

Erpobdella 

nigricollis 

0.44 0.74 0.40 0.71 0.02 0.02 0.61 0.82 0.57 0.80 0.02 0.02 0.49 0.73 0.48 0.72 0.01 0.02 0.49 0.71 0.48 0.71 0.01 0.02 

Galba truncatula 0.47 0.67 0.43 0.63 0.02 0.03 0.64 0.82 0.62 0.79 0.02 0.02 0.47 0.67 0.44 0.64 0.02 0.02 0.68 0.86 0.66 0.85 0.01 0.02 

Gammarus 

fossarum 

0.40 0.66 0.36 0.63 0.02 0.02 0.63 0.84 0.61 0.84 0.02 0.01 0.54 0.82 0.53 0.81 0.01 0.01 0.51 0.78 0.49 0.78 0.01 0.01 

Gammarus pulex 0.30 0.67 0.25 0.64 0.02 0.02 0.44 0.76 0.39 0.74 0.02 0.02 0.34 0.75 0.3 0.74 0.02 0.01 0.46 0.80 0.41 0.78 0.02 0.02 

Gammarus roeselii 0.41 0.68 0.31 0.65 0.02 0.02 0.60 0.85 0.56 0.85 0.02 0.01 0.49 0.76 0.44 0.73 0.02 0.02 0.62 0.80 0.60 0.79 0.02 0.02 

Gammarus tigrinus 0.59 0.79 0.54 0.77 0.02 0.02 0.69 0.88 0.67 0.87 0.02 0.01 0.62 0.82 0.6 0.82 0.02 0.02 0.63 0.82 0.61 0.81 0.02 0.02 

Gerris lacustris 0.53 0.70 0.51 0.68 0.02 0.02 0.66 0.82 0.65 0.81 0.01 0.02 0.56 0.73 0.54 0.71 0.02 0.03 0.60 0.75 0.58 0.74 0.01 0.02 

Glossiphonia 

nebulosa 

0.59 0.80 0.57 0.79 0.01 0.01 0.72 0.87 0.70 0.86 0.02 0.01 0.59 0.82 0.57 0.8 0.02 0.02 0.57 0.79 0.55 0.77 0.02 0.02 

Glyphotaelius 

pellucidus 

0.61 0.80 0.57 0.77 0.02 0.02 0.71 0.82 0.70 0.81 0.01 0.02 0.64 0.78 0.6 0.75 0.02 0.02 0.81 0.90 0.78 0.88 0.02 0.02 

Gomphus 

vulgatissimus 

0.54 0.80 0.51 0.79 0.02 0.02 0.75 0.87 0.74 0.86 0.01 0.01 0.59 0.83 0.57 0.82 0.01 0.02 0.60 0.82 0.58 0.80 0.02 0.02 

Graptodytes pictus 0.52 0.70 0.49 0.66 0.02 0.03 0.75 0.92 0.74 0.92 0.01 0.01 0.64 0.8 0.62 0.79 0.01 0.02 0.65 0.83 0.62 0.80 0.02 0.02 

Gyraulus albus 0.43 0.73 0.39 0.71 0.02 0.02 0.67 0.83 0.66 0.82 0.01 0.01 0.47 0.65 0.46 0.65 0.01 0.02 0.65 0.83 0.63 0.83 0.02 0.01 

Habrophlebia fusca 0.53 0.74 0.50 0.73 0.02 0.02 0.67 0.85 0.64 0.84 0.02 0.01 0.56 0.73 0.52 0.7 0.02 0.02 0.69 0.82 0.66 0.80 0.02 0.02 

Haemopis 

sanguisuga 

0.53 0.77 0.50 0.75 0.02 0.02 0.68 0.82 0.66 0.80 0.02 0.02 0.54 0.75 0.52 0.73 0.02 0.02 0.55 0.75 0.52 0.72 0.02 0.02 
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Halesus digitatus 0.45 0.74 0.43 0.71 0.02 0.03 0.66 0.83 0.65 0.82 0.01 0.02 0.51 0.79 0.5 0.79 0.01 0.02 0.73 0.85 0.71 0.84 0.01 0.02 

Halesus radiatus 0.34 0.65 0.30 0.64 0.02 0.02 0.62 0.78 0.60 0.77 0.02 0.02 0.38 0.64 0.35 0.64 0.01 0.02 0.60 0.80 0.56 0.79 0.02 0.02 

Halesus tesselatus 0.58 0.84 0.55 0.82 0.02 0.02 0.76 0.88 0.75 0.87 0.01 0.01 0.64 0.84 0.62 0.83 0.01 0.02 0.72 0.87 0.70 0.86 0.02 0.02 

Helobdella stagnalis 0.33 0.64 0.31 0.63 0.01 0.02 0.59 0.77 0.55 0.75 0.02 0.02 0.36 0.63 0.34 0.61 0.01 0.02 0.62 0.77 0.59 0.75 0.02 0.02 

Hemiclepsis 

marginata 

0.57 0.79 0.54 0.75 0.02 0.03 0.76 0.87 0.75 0.86 0.01 0.01 0.64 0.82 0.63 0.81 0.01 0.02 0.68 0.87 0.66 0.86 0.01 0.02 

Heptagenia 

sulphurea 

0.40 0.72 0.35 0.68 0.02 0.02 0.66 0.81 0.63 0.80 0.02 0.01 0.47 0.76 0.45 0.77 0.01 0.02 0.67 0.83 0.65 0.83 0.02 0.01 

Hydropsyche 

angustipennis 

0.41 0.71 0.37 0.71 0.02 0.01 0.61 0.79 0.56 0.77 0.02 0.02 0.41 0.65 0.38 0.62 0.02 0.02 0.45 0.69 0.40 0.67 0.02 0.02 

Hydropsyche 

instabilis 

0.42 0.68 0.39 0.67 0.01 0.01 0.65 0.81 0.63 0.79 0.02 0.02 0.55 0.87 0.54 0.87 0.01 0.01 0.69 0.85 0.67 0.84 0.02 0.01 

Hydropsyche 

pellucidula 

0.34 0.66 0.30 0.63 0.02 0.02 0.56 0.76 0.52 0.73 0.02 0.02 0.37 0.66 0.34 0.64 0.02 0.02 0.59 0.79 0.56 0.78 0.02 0.01 

Hyphydrus ovatus 0.61 0.80 0.57 0.76 0.02 0.03 0.81 0.94 0.80 0.94 0.01 0.01 0.58 0.82 0.56 0.8 0.02 0.03 0.68 0.87 0.65 0.85 0.02 0.02 

Ilyocoris cimicoides 0.51 0.74 0.45 0.69 0.02 0.03 0.81 0.91 0.79 0.90 0.02 0.01 0.73 0.88 0.72 0.86 0.01 0.02 0.84 0.95 0.83 0.95 0.01 0.01 

Isoperla 

grammatica 

0.58 0.76 0.52 0.70 0.03 0.03 0.68 0.86 0.64 0.85 0.02 0.02 0.57 0.81 0.53 0.78 0.02 0.03 0.81 0.90 0.79 0.89 0.02 0.02 

Laccophilus 

hyalinus 

0.49 0.75 0.46 0.73 0.02 0.02 0.65 0.82 0.64 0.82 0.01 0.01 0.57 0.81 0.56 0.8 0.01 0.02 0.82 0.91 0.82 0.91 0.01 0.01 

Lepidostoma basale 0.35 0.62 0.32 0.61 0.01 0.02 0.63 0.86 0.60 0.85 0.02 0.01 0.55 0.84 0.54 0.84 0.01 0.01 0.52 0.83 0.51 0.83 0.01 0.01 

Leuctra fusca 0.62 0.86 0.59 0.83 0.02 0.02 0.82 0.92 0.82 0.92 0.01 0.01 0.76 0.85 0.76 0.84 0.01 0.01 0.87 0.92 0.87 0.92 0.01 0.01 

Leuctra geniculata 0.51 0.77 0.49 0.77 0.01 0.02 0.74 0.87 0.73 0.86 0.01 0.01 0.63 0.78 0.61 0.77 0.01 0.01 0.73 0.87 0.72 0.87 0.01 0.01 

Limnephilus 

extricatus 

0.58 0.76 0.54 0.74 0.02 0.02 0.68 0.82 0.66 0.81 0.02 0.02 0.6 0.75 0.58 0.73 0.02 0.02 0.75 0.87 0.73 0.86 0.02 0.02 

Limnephilus 

flavicornis 

0.67 0.81 0.65 0.78 0.02 0.02 0.84 0.92 0.83 0.91 0.02 0.02 0.72 0.85 0.7 0.83 0.02 0.02 0.65 0.82 0.63 0.80 0.02 0.03 

Limnephilus lunatus 0.42 0.74 0.38 0.74 0.02 0.01 0.59 0.77 0.54 0.74 0.02 0.02 0.44 0.72 0.41 0.72 0.02 0.01 0.44 0.69 0.41 0.69 0.02 0.02 

Limnodrilus 

claparedeanus 

0.73 0.86 0.72 0.85 0.01 0.01 0.77 0.87 0.76 0.86 0.01 0.01 0.76 0.87 0.75 0.87 0.01 0.01 0.84 0.91 0.83 0.91 0.01 0.01 
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Limnodrilus 

hoffmeisteri 

0.60 0.79 0.56 0.76 0.02 0.02 0.66 0.82 0.64 0.81 0.02 0.01 0.55 0.69 0.54 0.69 0.01 0.01 0.69 0.83 0.67 0.82 0.02 0.01 

Lithax obscurus 0.89 0.98 0.87 0.97 0.02 0.01 0.94 0.99 0.93 0.98 0.01 0.01 0.91 0.97 0.88 0.94 0.02 0.02 0.96 0.99 0.96 0.99 0.01 0.01 

Lymnaea stagnalis 0.72 0.87 0.71 0.87 0.01 0.01 0.69 0.83 0.66 0.83 0.02 0.01 0.63 0.81 0.61 0.8 0.01 0.02 0.75 0.89 0.74 0.89 0.01 0.01 

Lype reducta 0.57 0.84 0.52 0.82 0.02 0.02 0.59 0.82 0.56 0.81 0.02 0.02 0.43 0.71 0.4 0.67 0.02 0.03 0.40 0.66 0.38 0.65 0.01 0.03 

Melampophylax 

mucoreus 

0.62 0.85 0.60 0.83 0.02 0.02 0.77 0.92 0.76 0.92 0.01 0.01 0.66 0.88 0.65 0.87 0.01 0.02 0.88 0.95 0.87 0.95 0.01 0.01 

Molanna angustata 0.74 0.91 0.70 0.88 0.03 0.02 0.82 0.92 0.81 0.92 0.01 0.01 0.65 0.87 0.64 0.86 0.01 0.02 0.86 0.94 0.86 0.94 0.01 0.01 

Musculium lacustre 0.67 0.85 0.64 0.84 0.02 0.02 0.60 0.81 0.57 0.79 0.02 0.02 0.52 0.77 0.49 0.75 0.02 0.03 0.53 0.73 0.49 0.70 0.02 0.03 

Nais elinguis 0.76 0.90 0.74 0.89 0.02 0.01 0.81 0.90 0.79 0.89 0.02 0.01 0.76 0.87 0.74 0.86 0.02 0.01 0.84 0.93 0.83 0.93 0.01 0.01 

Nemoura cinerea 0.58 0.81 0.54 0.80 0.02 0.02 0.67 0.81 0.63 0.78 0.02 0.02 0.54 0.75 0.52 0.74 0.01 0.02 0.72 0.88 0.70 0.87 0.02 0.02 

Nepa cinerea 0.59 0.79 0.56 0.77 0.02 0.02 0.59 0.79 0.54 0.78 0.02 0.02 0.47 0.77 0.45 0.76 0.01 0.02 0.47 0.77 0.44 0.74 0.02 0.02 

Neureclipsis 

bimaculata 

0.78 0.93 0.75 0.91 0.02 0.02 0.77 0.91 0.75 0.90 0.02 0.01 0.69 0.8 0.65 0.76 0.02 0.03 0.80 0.93 0.79 0.92 0.02 0.01 

Notidobia ciliaris 0.58 0.83 0.53 0.80 0.02 0.02 0.67 0.83 0.63 0.80 0.02 0.02 0.53 0.73 0.49 0.7 0.02 0.02 0.66 0.84 0.65 0.83 0.02 0.02 

Oecismus monedula 0.81 0.93 0.80 0.92 0.01 0.01 0.78 0.88 0.77 0.87 0.01 0.01 0.73 0.87 0.71 0.85 0.02 0.02 0.87 0.94 0.86 0.93 0.02 0.01 

Paratendipes 

albimanus 

0.72 0.87 0.69 0.85 0.02 0.02 0.70 0.84 0.68 0.82 0.02 0.02 0.63 0.8 0.6 0.79 0.02 0.02 0.78 0.91 0.77 0.90 0.01 0.01 

Pisidium 

casertanum 

0.70 0.89 0.67 0.88 0.02 0.01 0.77 0.89 0.75 0.88 0.02 0.02 0.6 0.81 0.57 0.78 0.02 0.03 0.61 0.82 0.59 0.80 0.02 0.03 

Pisidium nitidum 0.78 0.89 0.77 0.88 0.02 0.01 0.82 0.91 0.81 0.90 0.01 0.01 0.75 0.83 0.74 0.83 0.01 0.01 0.87 0.93 0.86 0.92 0.01 0.01 

Pisidium 

subtruncatum 

0.74 0.85 0.72 0.84 0.01 0.01 0.71 0.89 0.69 0.88 0.01 0.01 0.56 0.8 0.55 0.79 0.01 0.02 0.81 0.90 0.79 0.89 0.02 0.01 

Planorbis planorbis 0.64 0.77 0.63 0.77 0.01 0.02 0.70 0.85 0.69 0.84 0.01 0.01 0.56 0.78 0.55 0.77 0.01 0.02 0.58 0.76 0.57 0.75 0.01 0.02 

Platycnemis 

pennipes 

0.62 0.85 0.59 0.85 0.02 0.01 0.69 0.85 0.67 0.84 0.02 0.01 0.57 0.75 0.56 0.74 0.01 0.02 0.72 0.82 0.70 0.81 0.02 0.01 

Plea minutissima 0.65 0.84 0.63 0.82 0.02 0.02 0.77 0.91 0.76 0.90 0.01 0.01 0.66 0.84 0.63 0.82 0.02 0.02 0.79 0.94 0.78 0.93 0.01 0.01 

Polycentropus 

flavomaculatus 

0.55 0.73 0.48 0.66 0.03 0.03 0.61 0.83 0.58 0.81 0.02 0.01 0.44 0.74 0.42 0.73 0.01 0.01 0.61 0.82 0.58 0.80 0.02 0.02 
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Potamophylax 

rotundipennis 

0.67 0.85 0.65 0.85 0.02 0.01 0.59 0.79 0.56 0.78 0.02 0.02 0.59 0.76 0.57 0.75 0.01 0.01 0.70 0.80 0.68 0.79 0.02 0.02 

Potamothrix 

moldaviensis 

0.78 0.94 0.76 0.93 0.02 0.01 0.80 0.92 0.80 0.91 0.01 0.01 0.81 0.89 0.77 0.86 0.02 0.02 0.78 0.89 0.77 0.87 0.02 0.02 

Proasellus coxalis 0.59 0.81 0.54 0.78 0.02 0.02 0.59 0.77 0.53 0.74 0.02 0.02 0.38 0.67 0.37 0.66 0.01 0.02 0.64 0.84 0.62 0.83 0.02 0.01 

Procloeon bifidum 0.67 0.85 0.65 0.84 0.02 0.02 0.62 0.84 0.59 0.83 0.02 0.02 0.58 0.85 0.55 0.84 0.02 0.01 0.72 0.88 0.70 0.87 0.02 0.01 

Psychomyia pusilla 0.62 0.83 0.58 0.82 0.02 0.01 0.63 0.80 0.60 0.79 0.02 0.02 0.52 0.7 0.5 0.69 0.01 0.01 0.69 0.83 0.66 0.82 0.02 0.02 

Radix balthica 0.54 0.73 0.48 0.69 0.03 0.02 0.58 0.78 0.55 0.76 0.02 0.02 0.34 0.66 0.31 0.65 0.01 0.02 0.60 0.78 0.58 0.76 0.02 0.02 

Rhithrogena 

semicolorata 

0.66 0.84 0.62 0.81 0.02 0.02 0.78 0.93 0.77 0.92 0.01 0.01 0.69 0.88 0.68 0.87 0.01 0.02 0.67 0.83 0.65 0.81 0.02 0.02 

Rhyacophila 

evoluta 

0.68 0.85 0.65 0.83 0.02 0.02 0.77 0.91 0.76 0.91 0.01 0.01 0.71 0.84 0.69 0.83 0.02 0.02 0.80 0.92 0.79 0.92 0.01 0.01 

Stictotarsus 

duodecimpustulatus 

0.59 0.80 0.56 0.78 0.02 0.02 0.60 0.81 0.55 0.78 0.02 0.02 0.51 0.78 0.5 0.77 0.01 0.02 0.73 0.88 0.72 0.87 0.01 0.01 

Stylodrilus 

heringianus 

0.56 0.77 0.51 0.75 0.02 0.02 0.58 0.77 0.55 0.75 0.02 0.02 0.49 0.79 0.47 0.78 0.01 0.01 0.60 0.78 0.56 0.75 0.02 0.02 

Torleya major 0.61 0.78 0.57 0.76 0.02 0.02 0.70 0.86 0.68 0.86 0.02 0.01 0.58 0.86 0.57 0.86 0.01 0.01 0.67 0.89 0.65 0.89 0.02 0.01 

Valvata piscinalis 0.67 0.82 0.63 0.79 0.02 0.02 0.75 0.88 0.74 0.87 0.01 0.02 0.68 0.86 0.66 0.84 0.02 0.02 0.71 0.86 0.68 0.85 0.02 0.02 

Velia caprai 0.58 0.78 0.54 0.76 0.02 0.02 0.70 0.83 0.69 0.82 0.01 0.01 0.52 0.73 0.47 0.67 0.02 0.03 0.71 0.84 0.67 0.82 0.02 0.02 

Viviparus viviparus 0.83 0.96 0.82 0.95 0.01 0.01 0.82 0.94 0.81 0.93 0.02 0.01 0.87 0.94 0.84 0.92 0.02 0.02 0.94 1.00 0.93 1.00 0.01 0.00 

Mean 0.59 0.80 0.56 0.78 0.02 0.02 0.68 0.85 0.66 0.83 0.02 0.02 0.57 0.79 0.55 0.77 0.01 0.02 0.66 0.83 0.64 0.82 0.01 0.02 

max 0.89 0.98 0.87 0.97 0.03 0.03 0.94 0.99 0.93 0.98 0.02 0.02 0.91 0.97 0.88 0.94 0.02 0.03 0.96 1.00 0.96 1.00 0.02 0.03 

min 0.30 0.62 0.25 0.61 0.01 0.01 0.36 0.63 0.34 0.63 0.01 0.01 0.34 0.63 0.30 0.61 0.01 0.01 0.37 0.66 0.34 0.65 0.01 0.00 
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