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Weather proverbs

»Red sky at night, sailors’ delight, red sky at morning, sailors take warning.*

by folks. Old way of short-range storm predictions, works even now

,»Wenn’s um Neujahr Regen gibt, oft um Ostern Schnee noch stiebt.*

Deutsche Bauernregeln fiir eine langfristige Regenvorhersage

»Ha TaTpany cHer - K JTOXKJIJIMBOMY JIETY, & IIPOIVISTHET COJIHIIE -
K paHHEMY IIpUJIeTy ITHIL.

Pycckas napogmas mpumera
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Abstract

The standardized precipitation index (SPI) is an important yet easy-to-calculate
means to describe wet or dry conditions in very different climates. In this work, a new
scheme for obtaining improved forecasts of this index is developed. The methodology
is tested over Russia and West Africa, proving that it can be successfully applied to
different forecasting models and world regions. For testing, we use two forecasting
models: the semi-implicit semi-Lagrangian vorticity-divergence (SL—AV) model of
the Hydrometeorological Centre of Russia and the Institute of Numerical Mathematics
of the Russian Academy of Sciences for Russia and the Climate Forecast System Ver-
sion 2 (CFSv2) of the National Center for Environmental Prediction (NCEP) for West
Africa. Based on hindcast simulations of both models, we demonstrate relatively poor
skills in obtaining direct zero to three month lead-time SPI forecasts in the regions
of interest during summer season. In order to improve the accuracy of these fore-
casts, we utilize surface temperature, mean sea level pressure and 500 hPa geopotential
height fields, obtained from the outputs of both models. The spatial patterns of cross-
correlations between previously obtained climatological fields and our target variable
(SPI-1) are studied to identify informative co-variates, potentially affecting monthly-
scale precipitation variability. The cross-correlation structures between the different
fields reveal relevant interdependencies between SPI-1, sea surface temperature, mean
sea level pressure and 500 hPa geopotential height in different regions. Subsequently,
we employ two different regression models based on statistical post-processing of re-
gional climate model output. In the first model, we consider all combinations of pairs
of the previously identified predictors in a set of linear regression equations, which
generates an ensemble of individual SPI-1 forecasts. The second model is based on a
multiple linear regression approach comprising the dependency between all predictor
variables and the predictand (SPI-1) in a single equation. The resulting SPI-1 forecasts
obtained from both regression models are subsequently analysed in both deterministic
and probabilistic ways and checked by various verification metrics. We identify that
the first proposed model provides a significant improvement in the SPI forecasting,
pointing to the potential for its implementation in operational monthly precipitation
forecasts.
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Abstract

Der Standardisierte Niederschlagsindex (SPI) ist ein wichtiges und leicht bere-
chenbares Maf3, um feuchte oder trockene Bedingungen in sehr unterschiedlichen Kli-
mazonen zu beschreiben. Im Zuge dieser Arbeit wurde eine neue Methode zur ver-
besserten Vorhersage dieses Indexes entwickelt. Diese Methodik wurde fiir Russland
und Westafrika getestet; es konnte gezeigt werden, dass sie fiir verschiedene Weltre-
gionen und in Kombination mit verschiedenen Vorhersage-Modellen genutzt werden
kann. Fiir den Test wurden zwei Vorhersage-Modelle genutzt: das semi-implizite semi-
Lagrange ‘sche Vortizitéts-Divergenz-Modell (SL-AV) des Hydrometeorologischen Zen-
trums Russlands und des Instituts fiir Numerische Mathematik der Russischen Akade-
mie der Wissenschaften fiir Russland sowie das Klima-Vorhersage-System 2 (CFSv2)
des Nationalen Zentrums zur Umweltvorhersage der Vereinigten Staaten (NCEP) fiir
Westafrika. Basierend auf Hindcast-Simulationen beider Modelle konnte bei einer di-
rekten null- bis dreimonatigen SPI-Vorhersage wihrend der Sommermonate nur ei-
ne jeweils relativ geringe Vorhersagequalitit erzielt werden. Um die Genauigkeit die-
ser Vorhersagen zu verbessern, wurden die Meeresoberflichentemperatur, der durch-
schnittliche barometrische Druck auf Meereshohe sowie die geopotentiellen Hohenfel-
der bei 500 hPa der jeweiligen Modelle genutzt. Die raumlichen Muster der Kreuzkor-
relationen zwischen diesen klimatologischen Feldern und unserer Zielvariablen (SPI-
1) wurden untersucht, um informative Kovariaten zu identifizieren, die moglicherweise
die Niederschlagsvariabilitit im monatlichen MaBistab beeinflussen. Die Kreuzkorre-
lationsstruktur zwischen den verschiedenen Feldern zeigte relevante Abhingigkeiten
zwischen SPI-1, Meeresoberflichentemperatur, mittlerem barometrischem Druck auf
Meereshohe und geopotentielle Hohen von 500 hPa in verschiedenen Regionen. In
Anschluss wurden zwei unterschiedliche Regressionsmodelle verwendet, die auf der
statistischen Nachbearbeitung der regionalen Klimamodellausgabe basieren. Im ers-
ten Modell wurden Kombinationen von Paaren der zuvor identifizierten Pradiktoren
in einem Satz linearer Regressionsgleichungen betrachtet, die ein Ensemble einzelner
SPI-1-Vorhersagen erzeugen. Das zweite Modell basierte auf einem Ansatz der mul-
tiplen linearen Regression, der die Abhingigkeit zwischen allen Pridiktorvariablen
und dem Pridiktand (SPI-1) in einer einzigen Gleichung umfasste. Die resultieren-
den SPI-1-Vorhersagen, die aus beiden Regressionsmodellen erhalten wurden, wurden
anschlieBend auf deterministische und probabilistische Weise analysiert und durch ver-
schiedene Verifikationsmetriken iiberpriift.
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Chapter 1
Introduction

In recent decades, global warming and the associated changes in climate variability
have led to an increasing frequency and economic impact of hydro-meteorological
hazards (Pachauri et al. 2014). The most recent Fifth Assessment Report (ARS) of
the Intergovernmental Panel on Climate Change (IPCC) concluded that, global tem-
perature has risen on average by 0.12°C per decade (IPCC 2013) since 1951. Other
types of extreme deviations from the mean climatology such as the sustained absence
of precipitation and excess evapotranspiration from soils and vegetation, can lead to
severe droughts.

In general, hydro-meteorological extreme events, such as droughts or floods, can affect
numerous sectors (Singh et al. 2014). In the context of future climate change, there are
rising concerns that climatic extremes are likely to increase in frequency, severity and
duration (Cook et al. 2007). Therefore, it is essential to investigate the dynamics of
precipitation changes around the globe, and to predict their variations with sufficient
lead-time. For this purpose, the improvement of long-term precipitation forecasts be-
comes increasingly essential.

In this thesis, an improved monthly-scale precipitation forecasting scheme using the
Standardized Precipitation Index (SPI) is developed, starting at the initialization time
and operating at different lead-times. Subsequently, this approach is applied to two re-
gional case studies in Russia and West Africa and based on two numerical weather pre-
diction models: the semi-Lagrangian vorticity divergence (SL-AV) operational model
of the Hydrometeorological Center of Russia (Hydrometcenter) and the Institute of
Numerical Mathematics of the Russian Academy of Sciences (Tolstykh et al. 2014,
INM RAS; for the Russian case study), and the second generation Climate Forecast-
ing System (CFSv2) operated by the National Center for Environmental Prediction
(NCEP; for the West African case study).

1.1 Motivation

Precipitation is a main element of the hydrological cycle and water balance, play-
ing a crucial role in the climate system. The formation of the precipitation regime is
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2 Chapter 1. Introduction

controlled by a number of factors, such as the local physiographic conditions, atmo-
spheric circulation patterns, and global and regional features of climate change. These
factors, including their significant inhomogeneity in space and time, add complexity
to the problems of monitoring and forecasting precipitation patterns. The long-term
observations of precipitation in some regions in Russia and West Africa, reveal signif-
icant variations in the regimes of extreme dry and wet conditions (Dutra et al. 2013;
Groisman et al. 2005). As it is important to understand the behaviour and variability
of precipitation patterns, these issues have become of major significance to modern
meteorology.

Recently, the problem of hydrodynamical long-range precipitation modelling has be-
come critical. Current global and regional precipitation simulations provide evidence
for the correct description of basic boundary-layer processes. For example, the com-
parison of simulated monthly and seasonal precipitation in the framework of the DEME-
TER, ENSEMBLES, and APCC projects, has demonstrated successful precipitation
modelling over tropical regions (Parker 2017). However, the simulation of precipita-
tion variability at the monthly-to-seasonal scale at extratropical latitudes does not give
reliable results. For instance, in Russia, where complex combination of large-scale
processes and local physiographic conditions are present, the accuracy of long-term
precipitation forecasts commonly does not exceed 65%. In this case, to solve the prob-
lem of increasing the accuracy of such precipitation predictions, there are two possible
solutions: the first is to improve the weather forecasting models (e.g., their physical
description, data assimilation processes, forecasting speed, and boundary-layer de-
scription); the second is the implementation of statistical post-processing methods,
applied immediately to the model outputs, which effectively improves the quality of
the issued forecasts. These types of statistical schemes are built upon long-term in-
terdependencies between predictors and forecasted values. Currently, developing and
applying statistical post-processing methods to ensemble forecasts is the most promis-
ing direction in the forecasting practices of many weather services (Williams 2016).
This thesis therefore proposes a new statistical post-processing method for reconstruct-
ing precipitation with a lead-time of 0-3 months. By implementing this methodology
for Russia and West Africa which have complex weather conditions, the flexibility of
the scheme is demonstrated. Since the interdependencies between precipitation and
predictors can in fact be acquired for any region, the methodology may be applied to
improve monthly precipitation forecasts for different lead-times, obtained from any
weather forecasting model, for all regions, as well as for different predictors.

1.2 Aim

The aim of this study is to improve the accuracy of long-term precipitation forecasts
with different lead-times, by developing implementing and testing a new postprocess-
ing forecasting scheme. The new scheme uses spatial-temporal patterns of air pressure
and surface temperature covariates, which are implemented into regression models for
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obtaining deterministic and probabilistic forecasts in terms of the SPI.
In pursuing this general objective, three subjects are investigated:

e Since numerical weather prediction (NWP) models do not produce good precip-
itation estimates, are there further statistical methods to improve precipitation
predictions?

e Can we construct statistical forecasting models for predicting precipitation based
on large-scale predictors?

e Can the statistical forecasting models be implemented for any region and be
constructed by various NWP models?

1.3 Structure of this thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the clima-
tological background, including the precipitation regimes in Russia and West Africa,
as well as the teleconnection patterns influencing the precipitation formation in both
regions. In Chapter 3, all statistical methods are presented including the SPI-1 cal-
culation, spatial predictor selecting by means of correlation and cluster analysis. The
proposed statistical post-processing based forecasting methods are described in Chap-
ter 4. Chapters 5 and 6 discuss the utilisation of the corresponding regression models,
the observed results and associated forecast verifications for Russia and West Africa,
respectively. Finally, Chapter 7 summarizes the main strategy and findings, providing
conclusions and an outlook to future work.
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Chapter 2
Climatological background

Precipitation is one of the most important meteorological variables, since huge hazards
can result from its deficit or surplus. Floods cause loss of life, property damage, and
lasting environmental issues. Droughts may initially appear less destructive, but this
is in fact not the case. The drying of rivers and forests can cause fires and death for
humans, many animal and plant species, with a corresponding negative effect on biodi-
versity. Notably, agricultural losses due to both, flood and drought can leave millions
of people without food. Furthermore they can cause large-scale problems for both
population and governments, by increasing food prices and raising the necessity to im-
port from foreign countries. Thus, it is important to study the precipitation regime, the
reasons for its fluctuations, and to identify potential flood and drought landmarks.
The main problem of precipitation is its inhomogeneous distribution. This can be
explained by the transfer of air masses, heat, and moisture controlled by radiation
conditions, the distribution of land and ocean, the location of polar ice, dynamic pro-
cesses (Coriolis force and friction) and air pressure fields. Terrain exerts considerable
influence on the precipitation pattern; even a relatively flat underlying surface affects
air masses in the zone of an atmospheric front, which in turns disturbs the course of
atmospheric processes. The atmospheric front evolves, then passes from one under-
lying surface to another, e.g. when passing from land to sea, over the sea (or over
big water reservoirs), the front gets saturated with moisture (Jacob |1999). Therefore,
it is essential to take orography into account when producing weather forecasts. The
spatial distribution and the overall climatic variability should also be considered when
studying precipitation patterns.

This chapter introduces the precipitation regimes in Russia and West Africa, including
an overview of weather processes causing different types of precipitation on both re-
gions. Since precipitation is a very sensitive variable, it can be strongly influenced by
long-term spatial and temporal fluctuations. Temperature changes in the Pacific Ocean
can cause severe droughts or floods in many areas of the world. That is why, this
chapter also contains a short description of the most prominent teleconnection indices,
which affect precipitation fluctuations in both Russia and West Africa.
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Figure 2.1: Physical Map of RussiaEl

2.1 Precipitation in Russia

The amount of precipitation that falls in Russia starts to increase in the spring from
the subtropical to the mid latitudes and continues growing until autumn. This is in-
fluenced by the physical characteristics of the region (Fig. [2.1)). In the lowlands, most
precipitation is observed between 55° and 65°N. Precipitation in the Far East of Russia
is characterized by regional differences (Matveev [1984); there, precipitation is largely
caused by monsoon circulation and by extratropical cyclones (Arkhangelskiy [1956).
The following spatial pattern of precipitation is observed in Russia: in the European
part, the amount of precipitation is approximately 750 mm/year, originating from the
Atlantic Ocean and moving inland. In Siberia the total annual precipitation is roughly
300-500 mm/year. However, the amount of precipitation in the Far East increases up to
1000 mm/year due to its close proximity of the Pacific Ocean (Khromov et al. [1994).
Further towards the north or south, the monthly amount of precipitation decreases. To-
wards the north, the total year precipitation is only up to 100 mm, which is caused
by low temperature and low humidity of air masses generated over cold seas. Similar
behavior is observed in the more southern areas, where the amount of precipitation is
slightly higher and varies around 300 mm/year. This can be explained by dry conti-
nental southern air, moving from the deserts in Central Asia and frequently generating
weather conditions in the region (Kononova [2009).

I'The figure is taken from: https://www.ezilon.com/maps/europe/russ and reproduced with the per-
mission of the original publisher.
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Figure 2.2: Map of Russia showing the two macroregions EPR (purple) and APR
(yellow).

Since the nature of weather formation in different parts of Russia varies vastly, the
whole country has been divided into two large macroregions for the purposes of this
study - EPR, the European part of Russia (circa 42-69°N, 20-80°E; the natural border
is the Ural Mountains), and APR, the Asian part of Russia (circa 42-69°N, 81-170°E;
Fig.[2.2)). These macroregions have a strong connection with natural synoptic regions
(NSR), first introduced by Multanovsky (1933), which have all been incorporated into
long-range weather forecasts. It is found, that NSRs present large areas with similar
synoptic processes characterising the described region. Within NSR the thermobaric
field in the troposphere stays relatively stable and, therefore, provides the possibility of
creating a certain synoptic period with similar weather within the region. Multanovsky
(1954) distinguished three NSRs in the Northern Hemisphere. The fist covers the area
from Greenland to the Taymyr Peninsula, 0°- 80°E (including the EPR), the second
from Taymyr to the Bering Strait, 81° - 170°E (including the APR) and the third from
Bering Strait to Greenland. That is why, the weather conditions in EPR and APR are
so different (Pagava et al. 1966).

2.1.1 European part of Russia (EPR)

In the EPR, comprising the area from the Black Sea coast and the Caucasus Mountains
to the Ural Mountains, the total amount of precipitation from May to August varies
from 75-100 mm/month and occasionally even more (Zverev [1977)). In May, the sea-
level pressure patterns present the displacement of the zones of global maxima and
minima, within the isobars having northwest direction. During that time, east winds
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prevail in the southern part of the EPR and isobars in the summer have the northwest
direction (Zanina 1968]).

Zonal circulation usually prevails in the EPR, so the region is permanently affected
by atmospheric processes developing over the North Atlantic. A significant number
of cyclones and anticyclones move through the Baltic Sea and the Gulf of Finland.
This often causes dramatic weather differences between the areas situated to the north
and south of 60°N. Another cyclonic trajectory commonly passes the Scandinavian
Mountains. When crossing the mountains, cyclones can split into two separated per-
turbations. The leeward side of the mountains normally contains different weather
conditions than the luv side, which can cause the transformation of the cyclone. These
perturbations, in turn, form new cyclones, continuing to move further as independent
formations. The inland Baltic and Black Seas are also affected by wind, air temper-
ature, cloudiness, and precipitation in the coastal areas. In general, the intensity of
cyclones over the EPR is higher in the warm season than in the cold season (Zverev
1977). The cyclones over EPR are divided into three types:

1. Western cyclones are active in this region in summer, are less-developed in com-
parison to those in other seasons, and mainly manifest in the form of low-activity
cyclones and fronts.

2. Southern cyclones are characterized by high temperature contrasts and usually
transport warmer humid air from the sea, which causes heavy precipitation. Such
cyclones are typical for meridional circulation, which blocks west-to-east air
propagation. In view of this, these cyclones are quasi-stationary until they are
filled or supplemented with new warm air. According to their prevalent geo-
graphic trajectories, the Southern cyclones are further classified according to
their association to the Mediterranean, Black, or Caspian Seas.

3. Diving cyclones are generated by meridional circulation patterns and have spe-
cific trajectories associated only with this type of cyclone. These cyclones move
from north to south with high speed and are associated with cold intrusion; in
some dramatic scenarios, the cold air masses reach the subtropics. In these cases,
cold air is transported by such cyclones to the heated surface in the summer,
pushing sharpening of atmospheric fronts and brings rapid changes in weather,
e.g. heavy rainfall, strong winds, hailstorms, squalls, and thunderstorms.

The rapid movements of southern and diving cyclones result in the formation of sig-
nificant temperature contrasts which intensify the atmospheric fronts and cause heavy
precipitation. Usually, an anticyclone contributes to the formation of a precipitation
deficit. Severe aridity can be caused by the meridional circulation patterns that arise
when anticyclones are quasi-stationary. Examples of the negative effects of such block-
ing anticyclones include the droughts of 1972 or 2010, and many others (Coumou et
al. 2014; Lupo et al. 2012; Mokhov et al. 2014f Shakina et al. 2010). The follow-
ing classes of anticyclones characteristic for the EPR in the summer are based on the
Matveev (1984, Zanina (1960)), and Zverev (1977):
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1. Anticyclones moving from the west, north, and south.

2. Terminated anticyclones formed after a series of cyclones. A high-pressure zone
can form along with cold air mass in the northeast which is rapidly transformed
into an independent zone of high pressure and then moves on to the southeast.
Thus, the anticyclone becomes quasi-stationary in the southeast of EPR. At the
same time, a cyclone is generated over the southeast of the Black Sea.

3. Local anticyclones:

e Anticyclones in the eastern part of the Black Sea region;
e Carpathian and Pannonian anticyclones;

e Orographic anticyclogenesis over the North Caucasus formed due to the
orographic slowdown of air mass transport by the Caucasus Mountains.

2.1.2 Asian part of Russia (APR)

The specific features of the terrain and the difference in thermal conditions between
the land and oceans cause the formation of steady meridional tropospheric flows in
this region. Thus, zonal flow in the troposphere is perturbed more significantly in
comparison to other regions. The pressure field in the summer is mainly characterized
by the extensive zone of high values of submeridional direction, spreading from north-
east China to Yakutia and the Magadan region. There are two zones of low values on
both sides of these regions: one stretches from the polar basin to the Bering Sea, and
the other from the Taimyr Peninsula to Transbaikalia (Pagava et al. 1966)). As noted by
Arkhangelskiy (1956), the cyclones in the summer move slower over the continent than
over the sea due to thermal conditions, though they gather speed near the coastline.

2.1.2.1 Ural and Western Siberia

The Ural Mountains divide Russia into two macroregions not only geographically, but
also synoptically. Therefore, the weather-generating processes in these regions display
unique properties. In view of this, the pressure centres move to the APR either from
the EPR or from the east of the APR.

Apart from relatively high mountains causing weather changes in the region, the south
of the region is affected by the Central Asian Low, causing minimum air pressure
over Western Siberia and high precipitation amounts. However in the late summer, the
Asian High starts being manifested. As a result, the amount of precipitation starts to
decrease in this region, especially in Western Siberia, with 90 mm/month on average
by the late autumn (Zverev |1977). Weather conditions in Western Siberia are affected
by Atlantic processes and by Central Asia. The moisture is transported from the north,
leading to an increasing amount of aridity towards the south. Thus in Western Siberia,
precipitation is formed by moisture recycling (Berezhnykh et al. 2012).

The cyclones defining the weather in the region can be classified as:
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1. Western cyclones move across the region from west to east.

2. Southern cyclones come to the region from the south or southwest, such as the
Black, Caspian, and Aral Seas, but rarely from the Mediterranean Sea. The cy-
clones transport warm humid air to the colder and drier surfaces. This causes
the sharpening of fronts and cyclogenesis. The most severe types of cyclones in
this region originate from the South Caspian and Karakum. Southern cyclones
move with great velocity towards the central areas of Western Siberia and trans-
form into deep cyclones. In general, the southern Siberia is more influenced by
cyclones which transport heavy precipitation to the region. Southern cyclones
can also be generated within meridional circulation patterns.

3. Diving cyclones develop on the Arctic front and often come from the northwest
or directly from the Northern seas. They are formed by meridional circulation
patterns.

According to Zanina (1960) and Zverev (1977), anticyclones are similarly divided by
their trajectories and types:

1. moving from the west;
2. moving from the north and northwest;
3. moving along the ultrapolar axis from the Taimyr Peninsula or Yakutia;

4. blocking ridges.

2.1.2.2 East Siberia, Transbaikalia, Far East

A considerable lack of precipitation is observed in these areas due to the great distance
from the Atlantic Ocean, the complex terrain, and the presence of circulation features
that impede the transport of humid air masses from the Pacific Ocean (Shakina et
al. 2010). In the summer, heating of the continent induces temperature differences,
that influence the cyclonic activity at the Arctic boundary. At the same time pressure
gradients and cloud cover decrease in inland areas, increasing the radiative heating
of the region (Mazin et al. [1989). Thus, only a small amount of precipitation such
as 40-50 mm/month, is registered in the early summer. Thereafter the precipitation
increases due to the increase in cloud cover.

The precipitation patterns are also inhomogeneous in the Far East. The continental part
of the Far East is less moist than the marine areas (Zanina |1968). In Transbaikalia, the
maximum summer precipitation is caused by the influence of the Mongolian cyclones.
The warm sector in these cyclones is filled by the continental tropical air from Northern
China. Therefore, the amount of precipitation in the region does not exceed 100-200
mm/month. The Mongolian cyclones coming to this region transport drier warm air
from the heated continental Central Asia, and as a result, the amount of precipitation
is small. Air masses transported with the marine tropical air are usually more humid.
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Therefore, about 70% of summer precipitation falls in the presence of such conditions.
Thus, the formation of abundant precipitation in the Far East takes place as a result
of circulation processes and seasonal variability and these are due to the effects of
continental and oceanic air masses (Shver|1976)).

In the marine regions of the Far East, precipitation forms under the influence of cy-
clonic processes in the Pacific Ocean. These types of processes rarely move inland
due to the mountainous topography, which normally prevents the development and
westward movement of cyclones (Kiktev et al. 2015). For example, the 2 km elevation
of the mountain range Sikhote-Alin, around the Primorsky and Khabarovsk regions,
presents a natural obstacle to the free movement of anticyclonic ridges from the south-
west. They therefore do not spread westward of the eastern slopes of the range or even
go beyond the limits of the coastal zone.

In general, total precipitation in the Far East of Russia is greater in the summer than for
the rest of the year. Localisation of the Far East ridge is a typical feature of large-scale
processes formed over this region. The ridge influences the zonal transport of wind
over Eastern Siberia and blocks in the Far East. Zonal processes in the summer are ac-
companied by the preservation of the Pacific subtropical high ridge in the area of Japan
and the Far East upper - air trough. This supports the intensification of anticyclones
and filling of cyclones after their movement from the land to the sea (Arkhangelskiy
1956}, Zanina|1968). Cyclones in this area are divided into several groups:

1. Northern cyclones passing north of 65°N;

2. Western cyclones mainly passing between 50 and 65°N are most likely to pene-
trate Transbaikalia, Yakutia, and the Far East. Some cyclones of this type cause
significant rainfall over the Amur and Ussuri rivers;

3. Southern cyclones:

e intensive cyclones moving in from the Seas of Japan and Okhotsk. These
occur when the upper-air trough spreads far to the south, up to 30-35°N;

e cyclone tracking from the southwest over the Far Eastern seas.
4. Local cyclones:

e orographic cyclogenesis in Southern Cisbaikalia causes cyclones to de-
velop south of Lake Baikal due to the orographic regeneration in upper-air
troughs, moving from the western part of the APR through Siberia toward
the southeast. These cyclones progress when cold air masses cross over the
Altai and Sayan Mountains;

e cyclonic activity over the Amur River basin covers the eastern part of
Transbaikalia, the northeastern provinces of China, the Amur region, the
west of Khabarovsk and the Primorsky region. This is triggered when west-
ern cyclones move towards the Amur River basin. In some cases, these
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lows move from the Amur River basin to the Sea of Okhotsk. Deep cy-
clones are rarely generated in the summer. The intrusion of cold air masses
is required for the active development of cyclonic processes to occur over
this region;

S. Extratropical cyclones (mid-latitude cyclones) initially originating from the trop-
ics, is a very powerful type. In some cases, their power is so strong, that they
continue moving towards the north and reach the mid-latitudes. Usually this oc-
curs in July-September, when the differences in ocean surface temperature be-
tween tropics and extratropics are not so high. This type of cyclones are formed
as a result of seasonal changes in the North Pacific and usually dissipate over
land or colder oceans. Entering tropical cyclones in the mid-latitudes is usu-
ally dangerous and can have destructive consequences, including strong gusts of
wind and heavy rainfalls.

According to Arkhangelskiy (1956)), the summer anticyclones are divided into:

1. Anticyclones with northern trajectories follow sublatitudinal trajectories and
move from west to east. In the second half of the summer they follow the sub-
meridional directions and move from the northwest to the southeast;

2. Anticyclogenesis in the area of the Sea of Okhotsk in the period from April to
September governs weather conditions for almost the entire Far East. The an-
ticyclone is formed due to the stabilization of high-pressure centres originating
from the north. Since this anticyclone transports cold air, it forms clouds, fog
and drizzle even in high-pressure zones;

3. Anticyclones moving from the Kolyma River basin towards the south of the Sea
of Okhotsk may further move to:

e the north of the Sea of Japan;
e the Kuril Islands;

e the Pacific Ocean.

4. quasi-stationary anticyclones observed over the northeastern edge of Asia, the
adjacent part of the Bering Sea, and the Eastern Sayan Mountains.

To sum up, the atmospheric circulation with active fronts plays a crucial role in pre-
cipitation formation over Russia. Modern climate researcher‘s pay little attention to
the variability of planetary atmospheric circulation patterns, although its peculiarities
strongly influence the variations in air pressure, air temperature, and precipitation in
different regions. For example, Byshev et al. (2002) estimated the variability of atmo-
spheric circulation using the classification for the Northern Hemisphere created by the
Russian scientist B. L. Dzerdzeevskii. He came to the conclusion that the surface air
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temperature in the Northern Hemisphere and even the whole globe, responds closely
to variations in atmospheric circulation. In the periods of blocking processes (Palmén
et al. [1969; Pelly 2001) the quantity and intensity of anticyclones increases, together
with the frequency of extreme events (Petoukhov et al. [2013)). Thus, to predict more
accurately the regime of precipitation in different regions with different lead-times,
spatial patterns and synoptic conditions, teleconnections and long-term dependencies
must be taken into consideration.

2.2 Precipitation in West Africa

West Africa (WA) is a subregion of Africa containing 18 countries. It is normally con-
sidered to be confined to 0-20°N, and 20°W-25°E. In this study, the southern bound-
ary is increased by 8°; thus, the area of interest falls within 8°S-20°N, 20°W-25°E
(Fig.[2.3). Life in this region heavily relies on the water supplied by rainfall for agri-
culture (Rockstrom et al.|[2010). Shower rainfalls have a critical impact in this region.
Many areas have very low resilience and limited capabilities to mitigate the effects
of drought. The annual rainfall normally has a north-to-south gradient of 1 mm/km,
ranging from about 100 mm at 17°N, 800 mm at 10°N and 2000-3000 mm in some
areas (Gulf of Guinea) south of 10°N (Lebel et al. 2003)).

Notably, rainfall variability is modulated by oceanic (between 0°and 10°N) and con-
tinental (between 10°and 20°N) convergence, by variations in movements of the In-
tertropical Convergence Zone (ITCZ), and by land-atmosphere interactions, respec-
tively (Polo et al. [2008). The ITCZ is formed by the convergence of the trade winds
of the two hemispheres. This zone is characterized by low pressure, rising air motion,
clouds and precipitation. From the viewpoint of the global atmosphere, the ITCZ forms
the ascending branch of the Hadley cell (Nicholson|[2009). The West African Monsoon

The figure is taken from: https://eros.usgs.gov/westafrica/node/157
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Figure 2.4: Left: map of the mean position of the ITCZ over Africa in January and
August, taken from (Nicholson 2009). Right: mean annual precipitation over WA
(rainfall in mm), with the location of the Sahel indicated (Nicholson 2013]).

(WAM) is driven by sea-land contrasts of temperature and surface pressure between
the Gulf of Guinea and the Sahara Desert. During the summer months, North African
continental areas heat up more rapidly than oceanic waters (Fontaine et al.|1998)). The
ITCZ over Africa is conceptualized as a band of rainfall. This band advances into the
Northern Hemisphere in the boreal summer and retreats into the Southern Hemisphere
in winter (Fig.[2.4]a).

This phenomenon explains the latitudinal gradient of precipitation over WA as well as
the seasonality of rainfall throughout the tropical regions of the continent. The ITCZ
is pushed northward and provides humidity to Sahel via monsoon moisture (Gémara
et al. 2017). The most important feature is that the ITCZ is effectively independent of
the system that produces most of the rainfall (Nicholson [2009). Over WA, the ITCZ
is distorted and moves northward from the coast of the Gulf of Guinea as the Sahara
Desert becomes increasingly hotter during the lengthening days. The distortion is so
strong that the Meteorological Equator (ME) separates the area of deep convection
south of the Intertropical Front (ITF) and associated thunderstorms with strong show-
ers. In the beginning of the monsoon season, convection occurs periodically over land
and continues over the Gulf of Guinea. In June, the ME becomes confined to the land,
north of 5°N, as the waters of the Gulf of Guinea cool down. By the beginning of
August, the convection takes place over northern Africa (Galvin [2008).

The WAM has local features due orography. The monsoon flow reaches no further
north than roughly 20°N, and deep convection is only occasionally seen north of
15°N. It should be mentioned that the monsoon flow and deep instability spread inland
quickly. Initially, convection is scattered, but by late June, as a warm dome develops
over North Africa, with easterly winds of about 3 km/hour, southwesterly winds at
low levels bring more frequent rains to the northern parts of the region (Galvin 2008)).
There are notable variations in the northward extent of the deep humid zone. To the
south of the ME, there is a moist flow crossing the equator. It picks up moisture as
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it flows towards the south-facing coast of the Gulf of Guinea. The direction of the
Coriolis force changes as the southeasterly flow crosses the equator, causing the flow
to become southwesterly.

In the beginning of the summer, the increase in pressure gradients between the warm
Gulf and northern Africa is relatively weak; the flow is unstable and intensive rains
may appear over the sea as well as on the land. The wind strengthens, and the pressure
gradients increase from south to north as the summer progresses. By the end of June,
the flow across the Gulf is relatively cool, heat has been used for evaporation and cloud
formation (Nicholson 1980). The cooling plays a crucial role in supplying moisture
to the monsoon. Therefore, the moist monsoon flow is heated and diverges, bringing
significant deep convection with thunderstorms and heavy showers above the land. Its
large spatial scale means that stability can not be maintained as it passes inland.
Within the monsoon rain, moisture normally occurs south of the ME, from near the
coast of the Gulf of Guinea to about 10°N (Fig. b; Galvin [2008). This area is
called the Sahel; it is identified by different authors in terms of vegetation and rain-
fall (Tanaka et al. [1975)). In the dry areas of Sahelian countries, life revolves around
the occurrence or non-occurrence of rainfall and its temporal and spatial distribution
(Sivakumar [1992). Normally the region receives 200-600 mm/year. It is bordered to
the north by sub-deserts (100-200 mm/year) and to the south by the Sudan vegetation
zone (600-900 mm/year). In this region, the 400-500 mm isoheight has been generally
accepted as a boundary range north of which only irrigated crops should be grown.
Rainfall in this area occurs during a 4-5 month period from the beginning of June till
the end of October, with the maximum rainfall occurring in August. The region is
arid to semiarid, and in such climates the interannual precipitation variability is high
(Glantz|1977). However, even in this area, droughts are expected as part of the climate
regime (Dutra et al. 2013)).

The northern part of WA is characterized by only one rainy season, with the highest
values recorded in July and August, while the southern (Guinean Coast) has two rainy
seasons per year, with the highest amount of precipitation falling in May/June and Au-
gust/September (Siegmund et al. 2015). In the current study a period from June to
September of 1982-2016 is considered. For June, two areas with the highest amount
of monthly precipitation are identified. One covers the coastal areas south of Nigeria
and the coastal west of Cameroon; it receives 320-340 mm/month (CAMS data set,
Fig. 2.5). The second covers the coastal parts of Liberia and the Ivory Coast (Cote
d’'Tvoire) with an average rainfall of 400-420 mm/month. In July (Fig. b), the pre-
cipitation in Nigeria/Cameroon increases by 350-400 mm/month, and the second area
moves towards the western coast of Sierra Leone, Guinea and Guinea-Bissau, with the
rainfall reaching up to 300-450 mm/month (the majority falling in Sierra Leone). Actu-
ally, this area of high precipitation is fixed from June till September. August (Fig.[2.5|c)
is the most humid month in WA. The intensity of precipitation greatly increases in both
areas, thus the rainfall in Nigeria and West Cameroon is 400-550 mm/month, and 500-
700 mm/month are normally observed in Sierra Leone, Guinea and Guinea-Bissau.
In September (Fig. d), when the ITCZ begins to move southward, the precipi-
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Figure 2.5: Climatological map of monthly precipitation (in mm) in West Africa for
the period 1982-2016 (data from CAMS-OPI): a) June, b) July, ¢) August, d) Septem-
ber.

tation intensity starts to decrease, but intensive rains are still observed, with 350-450
mm/month observed in Nigeria/Cameroon and in Sierra Leone/Guinea/Guinea-Bissau.
In summary, WA can be divided into 5 zones (Fig. [2.6): the Saharan region, which
stretches across the whole northern extent of WA, is formed by the Sahara Desert,
and has an annual rainfall of about 0-150 mm; the Sahelian/Sahel Region, a semiarid
belt extending from the Atlantic Ocean to Sudan, averaging about 350 km in width,
with an annual rainfall of 150-600 mm and a dry season lasting about 8-9 months; the
Sudanian Region, which consists of a very large belt immediately south of the Sahel,
with annual rainfall of about 600-1200 mm and a dry season lasting 5-7 months; the
Guinean Region, which lies to the south of the Sudanian Region and is defined by
its precipitation average of 1200-2200 mm/year with a dry season lasting 7-8 months;
and the Guineo-Congolian Region, the wettest in WA, with an annual average rainfall
of 2200-5000 mm, with rainfall nearly uniformly distributed over the year (Fig. 2.6}

Cotillon et al. [2016).
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Figure 2.6: Bioclimatic regions in West Africa taken from (Cotillon et al. 2016).

2.3 Teleconnection indices

The term "teleconnection" was introduced by the Swedish geologist Gerard de Geer
in 1925. With this term he described the relationships between annual clay deposits in
remote parts of the globe and solar radiation mechanisms (De Geer|1926). In general,
teleconnections are characterised by interdependences between one or more sets of
events and the effects of one set on the behaviour of another. The distance between
events or the time of the response are not significant.

Some progress in the area of identification and implementation of this phenomenon in
meteorology was achieved by Wallace et al. (1981). The authors provided significant
research on teleconnections, they checked the correlation between 500 mb geopoten-
tial height fluctuations at selected points and every other grid point in the Northern
Hemisphere. They also performed the same analysis for sea level pressure. In this
way, large-scale atmospheric centres of action were identified for both tested vari-
ables. For example, sea level pressure has a high negative correlation between the
polar region and temperature latitudes, whereas the 500 mb height is showing a high
correlation more at the regional scale, which displays a nearly equivalent baratropic
structure with amplitudes increasing with height. At the Earth’s surface the majority
of regional patterns have only one or two well-defined centres, however, at the level
of the mid-troposphere they appear more wavelike and are characterized by multiple
centres of action.

Another influential paper in this field was written by Barnston et al. (1987). In this
work, the authors used an orthogonally rotated principal component analysis of the
Northern Hemisphere 700 mb geopotential height field to identify and describe the
seasonality and stability of the major modes of inter-annual variability. They also
found two north-south dipole patterns in the Pacific Ocean (the West Pacific Oscilla-
tion and East Pacific pattern), the Atlantic Ocean (the North Atlantic Oscillation and
the East Atlantic pattern), as well as two uncorrelated modes with three centres: ap-
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proximately east-west wave trains over the Eurasian and North American continents
(the Pacific/North American and the Tropical/Northern Hemisphere pattern) and the
Siberian north-south dipole (the Northern Asian pattern). The authors outlined the
inter-monthly and inter-seasonal distribution of the patterns and their fluctuations dur-
ing the seasons. In teleconnections, the investigation of long-term memory signals
plays a crucial role, necessitating observation and the development of models that can
suitably present the impact mechanisms of these signals. It is found that the prevailing
variability modes in the Earth’s free atmosphere are characterized by different general
spatial patterns (Wallace et al. 1981)). In this case, since the formation of precipitation
is controlled by atmospheric dynamics on different scales and for long-range fore-
casting purposes, it is necessary to identify interdependencies between meteorological
variables and precipitation formation.

NOAA’s Climate Prediction Center| has identified and stored historical information
about individual teleconnection patterns. According to the area of influence, those that
are of interest in this thesis can be divided into two groups: the Northern Hemisphere
extratropical indices and the tropical indices.

2.3.1 Northern Hemisphere extratropical indices

The indices listed below are important for specific regions of Russia.

e The Pacific North American pattern (PNA; Fig. a) is one of the major factors
affecting temperature and precipitation formation in North America. It has four
centres of action over the Hawaiian Islands, North Pacific, Alberta (Canada),
and in the southeast of the USA, near the Gulf of Mexico (Barnston et al. [1987;
Wallace et al.[1981)

e The East Pacific/North Pacific pattern (EP/NP; Fig.[2.7]b) can be expressed as a
western north Pacific monsoon and SST differences in the tropical to subtropical
Pacific sector (Bell et al.|[1995)).

e The West Pacific pattern (WP; Fig. ¢) in its positive phase leads to positive
temperature and precipitation anomalies in the Chukchi Peninsula, Kamchatka,
and Magadan region, as well as a weakening of the Pacific High, generating
about 100 mm/month precipitation excess in the summer. In the negative phase,
it has the opposite effect (Barnston et al.|1987; Wallace et al. [1981).

e The East Atlantic/West Russian pattern (EA/WR; Fig. d) has a connection
observed over the Canary Islands, in Great Britain, and the Black Sea region.
The positive phase of EA/WR is characterised by the formation of a pronounced
ridge at the level of 500 hPa in the east of the North Atlantic and the Barents
Sea. In November and December, precipitation deficits are observed over Great

3www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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Britain, while at the same time excess precipitation falls over the Canary Is-
lands. In the spring and summer, a weak signal is observed only in Great Britain
(Barnston et al. [1987; Wallace et al.|1981)).

e The East Atlantic pattern (EA; Fig. f) in a positive phase leads to the weak-
ening of the jet stream in the west of the North Atlantic, to the strengthening
of the Azores High, and thereby to a weakening of the Icelandic Low, and vice
versa for the negative phase. The lower-latitude centre contains a strong sub-
tropical link in association with modulations in the subtropical ridge intensity
and location. The pattern has an effect on temperature and precipitation in the
north of Europe in winter (Wallace et al. |1981)).

e The North Atlantic Oscillation (NAO; Fig. e) is a dipole between the Azores
high and the Icelandic Low. This pattern is commonly used when analysing
climate change as it indicates planetary oscillations in the atmosphere-ocean
system and it is the most significant indicator of circulation conditions in the
North Atlantic mid-latitudes (Wallace et al. [1981). The index is pronounced in
all seasons and is manifested at time-scales ranging from several days to several
centuries. The essence of the NAO consists of the redistribution of air masses
between the Arctic and subtropical Atlantic. The transition from one phase of
NAO to another causes significant variations in wind, heat, and moisture transfer,
the intensity, number, and trajectories of cyclones, etc. The maximum response
is observed mainly in winter and in the regions of the North Atlantic, Europe
and in the northern parts of Russia, mainly in winter. From April to December
the correlation between NAO and precipitation decreases, but the connection can
still be identified (Hurrell et al. 1995} Ulbrich et al. [1999; Wallace et al. |[1981)).

e The Scandinavia pattern (SCAND; Fig. g) is a dipole between the Scandi-
navian Peninsula and the south of Europe/east of Mongolia. The positive phase
corresponds to high positive anomalies, sometimes related to blocking anticy-
clones over the Scandinavian Peninsula or the EPR that lead to droughts. The
negative phase causes negative anomalies, stationary cyclones, and heavy pre-
cipitation in these regions (Barnston et al.|1987; Wallace et al. [1981).

e The Polar Eurasian pattern (POL) exists between the south of Scandinavia,
north of Poland, Siberia, and Japan, displaying a long-term correlation from the
Atlantic Ocean to Eurasia. An intensification of cyclonic activity over Europe
takes place in the positive phase of POL, when a low with its axis in the area of
20-30°E is observed (Barnston et al. [1987; Wallace et al.|1981).

e The Arctic Oscillation (AO) is one of the major climate indices, characterising
the nonseasonal sea level pressure variations northward of 20°N. The positive
phase of the index is characterised by positive temperature anomalies in Europe,
Siberia, Yakutia, and in the south of the Russian Far East during the period from
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March to November. The index affects precipitation variations over the oceans
in winter (November-March Higgins et al. 2002; Larson et al. 2005)).

2.3.2 Tropical indices

The indices listed below are important for specific regions in West Africa.

e The EI Niiio Southern Oscillation (ENSO; Fig.[2.8) is a cyclic fluctuation in sea
surface temperature (SST) and the air pressure of the atmosphere (the Southern
Oscillation) overlying the equatorial Pacific Ocean that recurs every few years
as part of a naturally occurring cycle. It reaches its full strength by the end of the
year and can last several seasons. The Southern Oscillation also describes a bi-
modal variation in the sea level barometric pressure between Darwin (Australia)
and Tahiti. Normally, the El Nifio phase starts with SST rising in the central/east
Pacific. The opposite of the El Nifio phase event, called La Nifia, is characterised
by a decrease in SST. It should be mentioned that not only the Pacific Ocean, but
the Atlantic and Indian oceans have been noted as involved in the ENSO phe-
nomenon. In this work we used the NINO3.4 index as representative of ENSO.
The effects vary considerably with season and locati01ﬂ (Trenberth et al. 2001}
Wolter et al. 2011} Yeh et al. 2009).

e The Southern Oscillation Index (SOI) is an indicator of the development and
intensity of the El Nifio or the La Nifa in the Pacific. It captures the atmospheric
component of ENSO and serves as an indicator. Low negative values (-8,-7)
indicate the appearance of the El Nifio, with warming of the central and eastern
tropical Pacific and at the same time, a decrease in the strength of the Pacific
trade winds, causing a decrease of precipitation in Australizﬂ

e The Eastern Mediterranean Pattern Index (EMPI) is a part of the Mediterranean
Oscilliation (MO) index that was introduced by Conte et al. (1989). The authors
suggested the existence of a teleconnection pattern in the annual geopotential
height field at 500 hPa between the western and eastern Mediterranean basin.
The EMPI is defined as the difference between standardized geopotential height
in Algiers and Cairo. It also proves the existence of the MO in the Mediteranean
Meridional Circulation pattern (between British Isles and Italy in winter and
spring). The EMPI, being a part of the MO, in one of its phases can bring warm
air in the eastern basin of Mediterranean, and increase evaporation, so that it
enhances the moisture advection towards the Sahel region in WA (Polo et al.
2008; Rowell 2001)).

“The figure is taken from: http://www.cpc.ncep.noaa.gov/data/teledoc/

SThe figure is taken from: http://www.noaa.gov/understanding-el-nino

Ohttps://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-
nina/enso-description

http://www.bom.gov.au/climate/glossary/soi.shtml
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Figure 2.7: Teleconnection patterns for July and October, showing the temporal cor-
relation between the monthly standardized geopotential height anomalies at each point
and the teleconnection pattern time series valid for the specified month. a) PNA pat-
tern, b) EP/NP pattern, c) WP pattern, d) EA/WR pattern, ) NAO pattern, f) EA
pattern, g) SCA pattern and h) AO pattemﬂ
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El Nifio and Rainfall
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Figure 2.8: El Nifo and strong continental rainfall anomaliesﬂ

e The Atlantic Equatorial Model (ATL3) is a quasi-periodic inter-annual pattern
appearing in the equatorial basin of the Atlantic Ocean. The ATL3 influences
the SST by episodic cooling, which most certainly causes atmospheric circula-
tion changes. It is strongly related to atmospheric climate anomalies, especially
in West African countries near the Gulf of Guinea. It mitigates the pressure
gradient between the Gulf of Guinea and the Sahara during the boreal summer
(Gémara et al.|[2017;; Zebiak |1993)).

e The Atlantic Meridional Model (AMM) SST index describes a coupled ocean-
atmosphere variability in the Atlantic Ocean. The SST in the tropical North At-
lantic in the positive AMM phase becomes warmer and pushes the ITCZ north-
ward, thereby continuing to warm up both, the sea and the air. Thus, the surface
air pressure response to the SST, wind shear becomes weaker and tropical cy-
clones start to develop in the Tropical North Atlantic. With the negative phase,
the consequences are opposite (Kossin et al. 2007; Rugg et al. 2016).

e The Quasi-Biennial Oscillation (QBO) is a quasi-periodic oscillation of the
stratospheric winds high above the equator which form a belt around the planet
and change direction approximately every 14th months. It is driven by atmo-
spheric waves and produced by intensive tropical systems. By that, the QBO
affects the Atlantic jet streanﬁ

e The Tropical North Atlantic (TNA) index is a dipole non-periodic index, which
is defined over the region 5.5-23.5°N and 57.5-15°W and can be identified on
the north of the ITCZ (Enfield et al. [1999). It presents an average of the SST

8https://www.metoffice.gov.uk/learning/quasi-biennial-oscillation



2.3. Teleconnection indices 23

anomalies occurring in the defined area, however it influences the weather condi-
tions in a large area, from northern Brazil as far as southeastern Europe (Hatzaki
et al. 2015). It has been shown the TNA has a strong influence on the vari-
ability of tropical cyclone frequency in the Pacific Ocean, especially during the
boreal summer (Huo et al. [2015). The TNA SST has a strong connection with
the ENSO events in the succeeding winter time and when warm SST anomalies
are observed in the TNA region, the La Nifia event happens, normally in spring.
However, the connection between TNA and climate is tenuous: the mean period
is 8-12 years for the boreal winter-spring and 2-3 years for the summer-autum
(Chen et al. 2017; Huang et al. 2002; B. Wang et al. 2000).

e For Tropical Southern Atlantic (TSA) index, the SST anomalies are calculated
as for the TNA, but in the domain of 0-20°S, 30°W-10°E, i.e., the south of the
ITCZ. The index shows the SST anomalies in the Gulf of Guinea, but the general
idea is similar with TNA. The mean period keeps the same as for the TNA: 8-12
years (Enfield et al.|1999).

o The Western Hemisphere Warm Pool (WHWP) index presents monthly anoma-
lies in the ocean surface area warmer than 28.5°C, ranging from the eastern
North Pacific to the Gulf of Mexico and the Caribbean. The WHWP approaches
its highest temperature values by the end of the summer and the beginning of
autumn and is closely associated with hurricane activity and rainfall in the sur-
rounding areas. The importance of this index lies in its ability to measure the
stage of the SST, when even small anomalies lead to large impacts on tropical
convection. It has been observed with the increase of the SST anomalies there is
a decrease of atmospheric sea level pressure, together with an increase of con-
vection and cloudiness (C. Wang et al. 2001).

e The Madden-Julian Oscillation (MJO) describes a tropical planetary wave prop-
agating from west to east with rainfall activity associated with upward motion
and divergence in the upper troposphere, followed by an area of rainfall associ-
ated with descending motion. It is also known as a dominant mode of tropical
variability at interseasonal times scale. The MJO appears episodically, has a
period of 30-60 days, and is mostly centred along the equator, influencing both
hemispheres. Its primary area of influence is noticed in the Western Hemisphere,
extending from the eastern Pacific to central Africa, over the Indian Ocean and
the central Pacific, where strong convection occurs. Also, the effect of the MJO
on precipitation is noticed in WA (Madden et al. |1971)).

e The Indian Ocean Dipole Zonal Mode (10D) is a coupled ocean-atmospheric
variability mode, which in its positive phases increases the SST in the western
Indian Ocean and brings heavy precipitation to the sub-continent. In its neg-
ative phase, the SST cooling is observed along with less precipitation on the
sub-continent and heavy precipitation in the eastern Indian Ocean. Links to pre-
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cipitation behaviour in WA have also been identified (Nnamchi et al.|[2011; Saji
et al.[1999; Williams et al. 2011)).



Chapter 3

Methods

Statistics is an integral aspect of meteorology and weather forecasting; however, the
complexity and implementation requirements of statistical techniques vary. Different
statistical methods are implemented to help solving complex issues regarding obser-
vation data, integrating initial data into weather models, teleconnections, and pre- and
post-processing, among many others. In this chapter, the detailed descriptions of all
statistical methods used in this thesis are provided, including the SPI calculation, tra-
ditional and new spatial verification methods.

3.1 Standardized Precipitation Index

In this thesis, the terms "drought" and "wet" events characterise atmospheric processes
caused by cyclones and anticyclones. Based on the context, droughts are typically
distinguished into: meteorological, hydrological, agricultural and socio-economical
droughts (Dutra et al.|[2013). Here, we focus only on meteorological droughts.

By definition, a meteorological drought is based on precipitation deficiency accompa-
nied by reduced surface runoff and ground water recharge, high air temperature, low
relative humidity and high solar radiation for a specific region and specific period of
time (Dracup et al. [1980). Thereby, dry conditions, in comparison with normal sit-
uations, depend on a deficit in precipitation and increased evapotranspiration. In the
middle latitudes of the Northern Hemisphere, this type of drought appears due to stable
(blocking) anticyclone(s) (Shakina et al. 2010).

As an alternative to the use of direct meteorological observations of precipitation
amounts, which are commonly hard to obtain reliably, drought and wetness indices
can be applied as quantitative approximations of precipitation variability. Over the last
few decades, a multitude of such indices have been developed, with the SPI (Standard-
ized Precipitation Index) as probably the most commonly used example (McKee et al.
1993)). It was developed for monitoring drought situations as well as wet events on a
particular time scale and location (i.e., it can be defined for any location in the world).
In 2012, the World Meteorological Organisation (WMO) developed a user guide for
the usage of the SPI by weather services (Svoboda et al. 2012).

25
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The computation of the SPI follows a relatively simple procedure based on precipita-
tion sums taken over a certain time period (1-48 months) that is selected according
to the specific problem under study (Lloyd-Hughes et al. 2002). The time period is
defined depending on the particular application and data availability, with the typical
values of 1, 3, 6, 12, ..., 48 months, and the SPI indices in each case being named
SPI-1, SPI-3, SPI-6, SPI-12, ..., SP1-48, respectively.

Since precipitation is distributed in a non-Gaussian fashion, the SPI overcomes the
associated statistical challenges by transforming the data to a standard Gaussian distri-
bution. Let us assume that our precipitation means follow a gamma distribution (e.g.,
for monthly precipitation sums). Then, to compute the SPI we need to fit a gamma
probability density function to the empirical frequency distribution of precipitation for
the station (grid point) of interest. This probability density function is defined as:

1 1
80) = garrgy™ ¢ (3.
where x > 0 is the amount of precipitation, (otherwise, g(x) =0 for x < 0), & > 0O is a
shape parameter, B > 0 is a scale parameter and

L=
I'(ox —l = 32
@ =i [T = [ (2

The empirical parameters o and 3 of the probability density function are estimated fol-
lowing an approximation developed by Thom (1958). In the investigations described
in this thesis, such estimates are obtained for each point and time period of interest
(in the case of SPI-1, they are obtained for each month of the year during the whole
calculation period). The corresponding estimates are:

o1 [4A

p==. (3.4)
with
A:m®—ZT”, (3.5)

where X is the climatological mean precipitation for the given point, and # is the num-
ber of precipitation observations. To describe the probability distribution function for
observed precipitation, the resulting parameters are used:

o x o 1 * a—1 —x/ﬁ
G(x)—/o g(x)dx = Bdr(&)/() x* e Pdx. (3.6)

If we assume ¢t = x/ B, the equation for the probability distribution can be simplified to
an incomplete Gamma function,

_ 1 o a—1 _—t
G<x)_F(6£)/()t e 'dt. 3.7)
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The reason for using the probability distribution in this step can be explained by the
necessity of some analytical treatment, which will be shown below. In this way, the
gamma function is undefined for x = 0. With ¢ = P(x = 0) > 0, where P(x = 0) is the
probability of zero precipitation, the cumulative probability distribution takes the final
form:

H(x)=q+(1—-¢9)G(x), for x>0. (3.8)

Finally, this cumulative probability distribution is transformed into a standard normal
random variable Z, yielding the SPI values. Notably, Z variable has a mean of zero
and a variance of one (Karavitis et al. 2011; Lloyd-Hughes et al. 2002; McKee et al.
1993).

The process of obtaining the SPI values is illustrated in Fig. [3.1] with an example
of precipitation amounts taken over 1 month, September, for the precipitation aver-
age during 35 years (1982-2016) for a point in West Africa with coordinates 1.25°N,
11.25°E. The left panel shows the probability density function of precipitation during
the sampling period, while the central and right panels show the process of obtaining
the SPI values from the cumulative probability distribution function. The dotted blue
line in the central panel indicates the empirical cumulative probability distribution ob-
tained for the study period (a detailed explanation of the procedure of obtaining the
empirical cumulative probability is given in Panofsky et al. [1958). The red pluses
in the same figure represent the probability distribution function of the fitted gamma
distribution associated with the actual precipitation values.

Let us take one point on line formed by the red pluses, characterising a certain pre-
cipitation amount, and convert it to the corresponding SPI values. For that, we project
the associated cumulative probability horizontally until it intersects with the curve on
the right panel (standard normal cumulative probability distribution). Then we take
the associated value on the x-axis to determine the corresponding SPI value. In this
particular example, 228 mm per month is 0.65 in terms of the SPI (characterising a
normal event for the considered point and observation period).

However, the graphical approach is not convenient to use for a large number of data
points, which is why McKee et al. (1993) and Lloyd-Hughes et al. (2002) proposed
an alternative procedure for easier SPI computation. In those papers, the authors con-
verted the cumulative probability to a standard normal random variable Z using an
approximation provided by Abramowitz et al. (1965):

co—i—clt—l—cﬂz
Z=SPl=—(t— f 0<H(x)<0.5
( 1+d1t—|—d2t2—|—d3t3> o (x) <05,
C0+C1t—|—C2t2
Z =SPl = r— fi 05<H(x) <1
+( 1—|—d1t—|—d2t2—|—d3t3) or (X) ’

with

1
r= ln[(H(x))Z} for 0<H(x)<0.5, (3.9)
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Figure 3.1: Example of an equiprobability transformation from a fitted gamma dis-
tribution to the standard normal distribution. Data are taken for the September pre-
cipitation during 1982-2016, for the point in West Africa with coordinates 1.25°N,
11.25°E.

1
t= \/ln [m} for 05<H(x) <1, (3.10)

and

co =2.515517,c1 = 0.802853,c2 = 0.010328,
d; = 1.432788,d, = 0.189269,d3 = 0.001308.

As a result, the SPI gives the number of standard deviations an observation deviates
from the mean; negative SPI values indicate drought (SPI < —2) and positive values
represent wet extremes (SPI > +2).

Table 3.1: Drought and wet events classification according to SPI value.

SPI value Category
-2.0 orless | Extreme drought
-1.5t0-1.99 Severe drought
-1.0 to -1.49 | Moderate drought
-1to 1 Normal events
1.0to 1.49 Moderately wet
1.50 to 1.99 Severely wet
2.0 and more | Extremely wet

Different ranges of values represent moderate-to-extreme conditions (see Table [3.1).
A drought classification by SPI values and corresponding event probabilities has been
presented by Lloyd-Hughes et al. (2002). The SPI is generally suited to map wet
and dry conditions; its values are specific to the considered time scale of aggregation
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of precipitation amounts and should not be compared quantitatively among regions,
since it measures wet/dry conditions relative to the local climatology. Thus, at dif-
ferent locations, the same SPI value usually corresponds to different total amounts of
precipitation.

3.2 Correlation and regression analysis

Correlation and regression analysis are standard statistical methods that are very pop-
ular in the natural sciences, since they help to identify and qualify the dependencies
among paired data. Those two methods can be used separately or combined. Both
methods are employed in this thesis.

3.2.1 Correlation analysis

Normally, in order to identify a linear dependence between two variables, the Pearson
correlation is used, which is estimated as:

i1 i (=) (i) ¥ ()

V' = =
P e ) P Em o e ()] e )]

77, (D

where x and y are two sets of data, X and y are the mean values, and x, and y/ denote
anomalies obtained by subtraction of the mean values. The correlation coefficient ry
is bounded by [-1, 1], with the perfect positive linear connection between variables
expresed as r , = 1 and perfect negative linear connection as r, = —1 (A. Katz|1988;
Wilks 2011). In this thesis two types of correlations are used (Willink et al. 2017):

e Local (point-wise) correlation is the classical Pearson correlation coefficient be-
tween two time series (e.g., station observations and the forecasts for the respec-
tive closest grid point); in other words, it is the correlation between points in
space (taking information over time).

e Field (spatial) correlation is the correlation between the SPI-1 values of all sta-
tions/grid points taken into account at a given time (e.g., during one specific
month).

In this regard, correlation analysis in this thesis is used for different purposes: 1) to
establish statistical relations between predictors and predictands, as well as finding rel-
evant predictors; 2) in teleconnection analysis, to identify strong connections between
teleconnection patterns and local precipitation; and 3) in verification, to quantify agree-
ment between observations and forecast data.
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3.2.2 Linear regression analysis

This type of analysis is used here as a part of statistical forecasting, e.g., in long-range
weather predictions. It describes the linear relationship between predictor and predic-
tand. The predictor in regression analysis is an independent variable and the predictand
fulfils the function of a dependent variable. Linear regression can be divided into two
types: simple linear regression and multiple linear regression; this division is based
on the number of predictors influencing the predictand. In this study, both regression
types were used for different purposes.

3.2.2.1 Simple linear regression

The main problem of regression analysis is to estimate the parameters of a linear model
describing the functional relationship between two datasets. The most common esti-
mation procedure, the ordinary least squares method, aims to minimize the sum of
squared vertical distances between the regression line and the observations. These ver-
tical distances, called the residuals (e;), describe the difference between observed and
predicted values and are defined for a data pair (x;,y;) as:

ei =yi—y(xi), (3.12)

where y; is the observed value and ¥(x;) is the predicted value. In such cases, the full
regression equation, including the residuals reads:

yi:y(xi)+ei:é+13x,-+ei. (3.13)

Solving the regression equation implies to estimate the regression coefficients, where
a is the intercept and b characterizes the dependence of y on x.

Hence, simple linear regression describes the relationship between predictor and pre-
dictand by a linear function with parameters estimated such that the error of the predic-
tions of y is minimised for given observations of x. For this purpose, the most common
approach is to minimise the sum of the squared errors, which is called the ordinary
least squares (OLS) method (Wilks 2011). Of course, this criterion is not the only
possible one; other approaches are also popular and used for different applications
(e.g., least absolute deviation; Gray et al.|1992a)). However, using the OLS criterion is
useful, since it provides an analytically tractable solution.

Let us assume, that the quantities e; are independent random variables with a mean
of zero; the sample mean of the residuals is also zero (Y. ; ¢; = 0), and the variance
is constant. The constant variance assumption means that all conditional distributions
of the residuals have the same variance. The regression equation can be regarded as
specifying the conditional mean of the predictand by giving a specific value of the
predictor. The estimated residual variance is then given by the following formula:

[yi — 9 (xi))°. (3.14)
1

2
S, =

1 n
n—2%5=

1
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The estimated residual variance is key to obtaining estimates of the sampling distribu-
tions of the regression coefficients. The regression coefficients a and b exhibit sam-
pling variability, and different sets of data with size n will lead to different estimates
of regression slopes and intercepts. Let us assume that the sampling distributions of
the regression parameters are Gaussian.

aNN(oc,oﬁ), bNN(B,sz), eNN(O,GZ), (3.15)
with a=a, fla=a. (3.16)
B=b, p,=4. (3.17)
Then, )
1/2
n 2
@,:fe[ ,,"le"_z»] , (3.18)
”Zizl(xi—x)
and R
~ S
6p = ¢ 7 (3.19)

T (9]
Hence, the OLS estimates of the regression coefficients are unbiased, and equations
(3.18)) and (3.19) describe the precision with which the regression parameters can be
estimated from the data. However, these equations apply only for simple linear regres-
sions; for multiple linear regression, more complex expressions must be considered
(Wilks [2011)).
Another important notion in regression analysis is the prediction interval, containing
a future value of the predictand with a specific probability. Following the assumption
of residuals having a Gaussian distribution, we can expect a 95% confidence interval
for a future value approximately being bounded by y + 1.965,. For a forecasted y, the
prediction variance can be written as:

22

§:ﬁ1+l+ﬁ¥LiLE
n i1 (xi — )
where x is the predictor value. Here, the second term in the equation comes from the
uncertainty in estimation of the true mean of the predictand from a sample size n. The
third term describes the uncertainty of the slope, which means that predictions with
large deviation from the centre of the distribution of the data used for the regression
have larger uncertainty compared to the case where the predictions are made near the
mean of the sample. If we remove the first term of 1 in Equation (3.20), we obtain
the confidence intervals. If we compute and plot prediction and confidence intervals,
the latter are more narrow compared with the prediction intervals reflecting a smaller
variance. The variance of the conditional mean of the predictand given a particular
predictor value xg is:

(3.20)
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3.2.2.2 Multiple linear regression

Multiple linear regression can be used to describe situations where more than one
predictor influences the predictand. In the multiple regression equation, an arbitrary
number of predictors can be taken. The general form of a multiple linear regression
can be written as:

y=do+ax)+dayx;+...+apx, +e, (3.22)

where ay,ds, ..., d, are regression coefficients, d is the intercept (i.e., the value of y if
xi=0foralli=1,...,n), and e is the residual. Equation (3.12)) is also valid for calcu-
lating the residuals of multiple linear regressions. In the least-squares method, the best
fit for the observed data is again obtained by minimizing the sum of the squared resid-
uals for each data point. Since deviations from the fitted model are first squared, then
summed, there are no cancellations between positive and negative residuals (Parker
2017} Wilks 2011).

3.3 Cluster analysis

Cluster analysis is a standard method of multivariate statistical analysis for separating
data into groups having similar properties, though, we usually don’t know the exact
number of groups beforehand. Cluster analysis is common in different applications.
In the atmospheric sciences, it is used in such diverse areas as post-processing tech-
niques, especially in order to investigate predictors (Bondell et al. 2008; Dormann et al.
2013; Gaftney et al. [1999), in weather typification analysis (Fovell et al. [1993; Huth
et al. 2008} Kalkstein et al. [1987), and in grouping members of forecast ensembles
(Legg et al. 2002; Molteni et al.|1996} Tracton et al. [1993), among many others. The
main advantage of cluster analysis is that it identifies groups exhibiting high internal
homogeneity and high external heterogeneity.

In cluster analysis, the Euclidean distance d; ; = [Lr_ wi(xix —xjx)?] 2 petween
data points is often used, where x; and x; are the measured points (vectors), K is the
number of dimensions and wy are weights, which can balance the influence of vari-
ables with incommensurate units for each k = 1,..,K (Wilks 2011)). For both case
studies considered in this thesis, the Euclidean distance is taken as a clustering crite-
rion. Along with the resulting distance matrix, it is possible to implement different
techniques of cluster analysis to identify strongly related groups of data.

Hierarchical cluster analysis is a very common approach. It starts with the assumption
that n observations of x have no group structure or, equivalently, that the data set consist
of n groups containing one observation each. Within the next steps, the two groups that
are closest in K-dimensional space are identified in terms of their Euclidean distance
(see below) and then combined into a single cluster. This procedure is iteratively
repeated until all items have been considered into a single cluster. Several approaches
are available to define cluster-to-cluster distances. The results can strongly depend on
the technique chosen (Wilks [2011):
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1. Single-linkage/minimum-distance clustering - the distance between two clusters
G and G, is the shortest distance between one member of G| and one member
of Gy:

dGl,Gz IGGITEIEIGQ dl yE (3.23)

2. Complete-linkage/maximum distance clustering - the distance between two groups
of data points is given by the largest distance between points in the two groups
G and Ga:

dg,c, = max d;;. (3.24)
’ i€G;i,jeGy ’

3. Average-linkage clustering - the distance between two clusters G| and G; is
equal to the average distance from any member of one cluster to any member of

another cluster:
ny np

dG,,6, = —— Z Z di j. (3.25)

I’ll’lzl 1j=

where ny,n; are the numbers of clusters in G, G, respectively.

4. Centroid clustering - here, the distance between centroids/vector averages of
pairs of clusters is taken:

dc, .6, = lI¥6, —Xg,|| with xGiz—Zxk, (3.26)
’keG

When dealing with different scales and a large number of potentially important vari-
ables, different techniques such as principal components analysis (PCA; Preisendorfer
1988)) and cross-correlation analysis (Wilks [2011) are frequently used in meteorology.
PCA identifies new variables composed of mutually orthogonal linear combinations of
the original ones, each accounting for a specific fraction of the original total variance
of the data, as indicated by the size of their associated eigenvalue of the correlation
matrix associated with data. These new variables can be used to generate component
scores, those can be clustered instead of the raw data (Fovell et al.|1993; Richman et al.
1985).

3.4 Types of forecasts

Weather services and scientists produce different types of forecasts with different aims.
A deterministic prediction gives an exact value of atmospheric parameters in the fu-
ture, while a probabilistic forecast gives only certain probabilities of an occurence of
the forecasted event. That is why deterministic and probabilistic forecasts are given
for different ranges of predictions, purposes and parameters. However, when they are
given together, they provide diverse forecasting information. Many studies of atmo-
spheric predictability (J. Li et al. 2011; Lorenz |1969alb; Shukla 1981; Slingo et al.
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2011; Stockdale et al. [1998) have shown that there is a limit of deterministic fore-
cast predictability of 14 days. Thus, a deterministic forecast is normally bounded by
short- and middle-range periods. For longer ranges (month, season, year, decade), a
probabilistic forecast is given.

3.4.1 Deterministic forecast

A deterministic forecast predicts the future state of the atmosphere by extrapolating
the current situation using a fixed law or set of laws written in different ways (dy-
namical models, statistical models or others; Inness et al. 2012). Another important
feature of deterministic forecasts is the absence of uncertainty. Weather forecasters
occasionally use the terminology "most likely" or "probably" along with this type of
forecast because of otherwise incorrect interpretation. However, these types of proba-
bilities in deterministic forecasts must be considered as absolute. In any case, despite
the simplicity of deterministic forecasts, the WMO (Gordon et al. 2000) defines it as
follows:

o Deterministic forecast for dichotomous events - many meteorological events can
be characterised as dichotomous events, or in other words, binary events. Such
events either occur or do not occur (e.g., rain, fog, floods, thunderstorm, frost,
tornado, etc.). These forecasts are normally issued with a statement that they
will/will not occur, also described as a yes/no forecast (NCAR Research Appli-
cations Laboratory [2015).

e Deterministic forecast for multiple categories - this type can be subdivided into
two types, unranked forecast and ranked forecast. The first represents situations
with a number of different types of one event, for example, precipitation can be
presented as rain, snow, or freezing rain, among others. More often in weather
prediction, there are ranked forecasts that include an order (e.g., precipitation
forecasts in gradations of intensity, visibility in categories, etc.).

e Deterministic forecast for continuous variables - a forecast results in a specific
value of the variable which is possible to compare with the corresponding obser-
vation (e.g., temperature in degrees Celsius).

3.4.2 Probabilistic forecast

The main idea of probabilistic forecasts is to identify the joint probability distribution
of future weather conditions or events. A probabilistic forecast gives the user the
infromation about forecast’s uncertainty. Like the deterministic forecast, it can be also
divided into following types (Gordon et al. 2000):

e Probabilistic forecast for two categories - presents the forecasts limited by two
possible outcomes. According to Wilks (2011]) the most commonly used exam-
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ple of this forecast is the probability of precipitation (PoP) forecast, where we
can say about occurrence or nonoccurrence of the event.

e Probabilistic forecast for multiple categories - often used when the forecast
must be presented with different categories and corresponding probabilities at
the same time. Often, this type is used for long-term forecasts. Let us consider a
monthly precipitation forecast. Normally, it has to be given in three gradations:
below normal, normal and above normal with respect to the mean climatology,
with certain probabilities for each gradation. The probabilities of all categories
together add to 100%; thus, since we have 3 categories of this event, we have
to find probabilities of occurrence of each gradation that combine to a total of
100%. Here, we give a small example for clarity: Assume that the monthly
precipitation forecast for any random point A is given as a 25% probability of
below normal values, 70% probability of normal values and 5% chance of above
normal values. Thus, for point A, there is a 70% chance that precipitation in
the next month will be within the normal range gradation according to the mean
climatology.

e Probabilistic forecast for continuous variables - presents a forecast in the form
of a probability distribution of continuous variables from, as an example, an
ensemble system.

After implementing the forecasting schemes, we obtain deterministic and probabilistic
forecasts for multiple categories. The deterministic forecast is obtained in terms of the
SPI-1 index in seven categories as presented in Table 3.1, The probabilistic forecast
is presented for 3 categories: below, normal, and above normal gradations, as rec-
ommended by WMO for long-range forecasts. The detailed descriptions of obtaining
deterministic and probabilistic forecasts from the proposed scheme are given in the

next sections (4.3.1)) and {.4.1).

3.5 Forecast verification

Forecast verification is the process of assessing the quality of statistical forecasts.
The joint distribution of forecasts and observations provides the basis for a unified
framework for verification (Murphy et al. |1987). The joint distribution can be writ-
ten as p(f,o0), where f is a forecast and o is an observation. Thus, having fore-
cast/observation data sets, the joint behaviour can be characterized in terms of the
relative frequencies of all possible combinations of forecast/observation. This gives
information about the forecast, the observation, and their relationship. The joint dis-
tribution can be used to create a conditional distribution for the observation, given a
forecast. a Bayesian approach can be used to estimate the forecasting parameters.

Providing statistics obtained from verification analysis can help in the assessment of
specific strengths and weaknesses of forecasts (Murphy et al. [1992). The usefulness
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of forecasts to support decision making clearly depends on their error characteristics,
which are explained through forecast verification methods. That is why forecasts must
be verified quickly in order to provide it to users a useful time in advance of the fore-
cast events. For forecasts relating to specific types of events (e.g., SPI classification
from Table [3.1)), following Wilks (2011)) the joint distribution of the forecasts and ob-
servations can be written in the following way:

p(fi,0j) =Pr{fi,0;} =Pr{fino;};i=1,...I;j=1,....J, (3.27)

where f; are the forecasts, which can take any of I values; o; are the corresponding ob-
servations with any of J values, and Pr is the probability that a forecasted event will be
observed. Equation (3.27) presents a discrete bivariate probability distribution func-
tion. Joint distributions can be factorized in two ways into conditional distributions
and marginal distributions:

e Calibration-refinement factorization - involves the conditional distribution
p(ojlfi) of the observation given the forecasts and the marginal distribution p( f;)
of the forecasts:

p(fi05) = plojlfi)p(fi)si=1,...L;j=1,...J. (3.28)

The conditional distribution characterises the frequency of different observations
for given forecast value fi; p(f;) is the frequency of different forecasted values.
Notably, calibration and refinement are two important parts of the verification
process and have to be considered together in order to achieve good forecasts.
The ability of the forecast to predict extreme events is called sharpness, it is a
property of the forecast only. It will be introduced later in this thesis by attribute

diagrams (Section[3.5.2).

e Likelihood-base rate factorization - involves the conditional distribution p( fi|o;)
of the forecasts given the observation and the unconditional distribution p(o;)
of the observation o;:

p(fi0)) = p(filoj)ploj)ii=1,...L,j=1,..J. (3.29)

The conditional distribution p(fi|o;) is defined the likelihoods that the forecasted
values would have been issued of each of the observed values with certain period
in advance. As an example, let us take precipitation prediction. Here, in cate-
gorical predictions, we forecast the occurrence or non-occurrence of the precip-
itation event; therefore, two conditional distributions for such forecasts can be
written as p(f;|1) for occurred and p(f;|0) non-occurred events. When the like-
lihoods are distinctive for different observed events, the forecast gives sparse
results and is therefore very informative about observed events. The uncondi-
tional distribution p(o;) is the frequency of occurrence of observed o; events in
verification data sets, and is well-known as sample climatological distribution.
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Likelihood-base rate factorization provides a separation of two types of informa-
tion that can be implemented in the forecast of observed events. The likelihood
reflects the conditional distribution of the forecast for the given observation and
base rate reflects historical observations.

These two factorizations can organize the verification more conceptually in an infor-
mative way (Murphy et al. 1987; Wilks 2011).

There are two verification approaches that can be derived based on the full informa-
tion content of the joint distribution. The first is the distribution oriented approach,
where verification methods are based on distributions, and the second is the measures-
oriented approach, which is based on a few scalar verification measures. Below, we
discuss different verification characteristics from these two classes of approaches and
give a short computational description for each of them.

In order to select informative verification characteristics, we adopt the Standardized
Verification System on Long-Range Forecasts (SVS-LRF) established by the World
Meteorological Organization (WMO). To create this system, WMO collected the most
popular verification methods for both deterministic and probabilistic forecasts (Ma-
son 2016). SVS-LRF integrates several established verification approaches from the
existing literature on this topic (Mariani et al. 2008; Murphy et al. 1992; Wilks 2011)).
One of the foremost challenges in developing a new statistical forecasting method is
obtaining a realistic estimate of its skills. Usually, the underlying regression equa-
tions are tested on a sample of independent data that have not been used during the
development of the forecast equations. There are two approaches to obtaining such an
independent data set, which we mention in this thesis, since one of them is used later
to train both forecasting schemes.

The first approach splits the available period to create training and verification periods.
For example, a data set covering 28 years splits sample into two parts: 23 years of
data are used for training the forecasting model and 5 years of data for verification.
This approach has some disadvantages. Normally, verifying a model with data from
such a short period is not sufficient for the results to be informative. The short period
cannot capture all possible diverse weather conditions, so it does not provide us with
information on how the model will behave in rare situations.

The second approach does not have the problem of short data sets, due to using almost
all available data from the study period with the exception of e.g., one year (depends on
puposes of the forecaster); this method is called cross-validation (CV) (Wilks [2011).
The most frequently applied procedure is known as "leave-one-out" cross-validation,
in which the fitting procedure is repeated N times, each time with a sample of given
size (N — 1)K, where a subset of size K serves as the validation set and the remaining
sample of size (N — 1)K as a training set. Therefore, the length of the initial data set
is not reduced markedly and the model is checked more widely against more different
types of past weather situations. Thus, we get more diverse information about the
model’s forecasting ability. This presents a reasonable solution and the approach has
also been used in forecasting applications in other fields (e.g., Michaelsen |1987)).
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It has to be noted that cross-validation calls for some care when the underlying data
are serially correlated. In this case, individual data that are adjacent or near the omitted
observation(s) will tend to be more similar to them than randomly selected ones (Wilks
2011)). In our case for both, Russia and West Africa case studies we use the "leave-
one-out" method.

At this point, we should also introduce two important terms in the context of veri-
fication, skill and skill score. By skill (skillfull) we mean a relative accuracy of the
forecast, normally with respect to observation data (Murphy 1973). A skill score is a
metric that is used in order to quanftify thfe skill of the forecast. Gneiting et al. (2007

cst Te

the hypothetical optimal forecast, and S™! is the score for a reference forecast strategy.
Skill scores are standardized, in such a way that 1 corresponds to a perfect (optimal)
forecast, where the forecasted weather situation was fully observed. The reference
forecast is normally a climatological forecast (but there are several available options
for reference forecast), that in turn is the marginal distribution of the predictand. If
Sff“ = Zpt, then the skill score is 1; if SEC“ = Sflef, then the skill score is 0, since there
is no improvement according to the reference forecast. Skill scores can also take neg-
ative values, indicating that the forecast performing worse than the reference forecast.

. i . Opt .
define a skill score as: SNl = where St is the forecast’s score, S," is

3.5.1 Measures-oriented approaches

A reference forecast provides a benchmark against which a certain forecast accuracy
is to be quantified. Normally, such a reference is based on climatological values of the
predictand, persistence forecasts or random forecasts. The following gives a short de-
scription of parameters used in this thesis in order to evaluate the developed forecasting
schemes for continuous forecasts.

e The Mean Absolute Error (MAE)
1 n
MAE =~ Y 1 fi— ol (3.30)
k=1

is the arithmetic mean of the absolute values of the differences between fore-
casted and observed data, where a value of zero would indicate a perfect fore-
cast. When the MAE is large, the distance between forecast and observation data
is also large; thus, it can be interpreted as a magnitude of the forecast error in a
given verification data set.

e The Mean Squared Error (MSE)

1 n
MSE = = Y (fi —ox)? 3.31)
=
is based on the average squared difference between the forecast and observation
data. By squaring the difference between forecast and observation values, by
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definition, errors are always positive. This characteristic is more sensitive to
larger errors, in contrast with the MAE.

If we take the root of the MSE, we achieve a new characteristic, the RMSE,

; 1/2
RMSE = (1 Y (fi— ok)2> (3.32)
=

which measures the standard deviation of the prediction errors (or residuals in
regression models).

To better understand the metrics given above and below, the following definitions are

used.

The term "hit" describes a forecasted event that is observed in a given range or

within an acceptable range. For example, for precipitation forecasts, it is necessary to
be within the gradation of intensity of precipitation and correctly say if a corresponding
value will occur in the forecasted area. Similarly, a "miss" denotes that an event was
not forecasted, but observed. A false alarm (FA) indicates a predicted event that did
not occur (Jolliffe et al. 2012). With these terms, we can define the additional indices
which are refer to general dichotomous events:

The reliability characteristic

ny—n_
p= N (3.33)
is the difference between the numbers of true (n) and false (n_) forecasts, di-
vided by the total number N of comparisons made. A "true" forecast means an
event was forecasted and observed, and "false" means an event was not fore-
casted, but was observed, or a forecast was issued, but the forecasted event was
not observed. In this thesis p will be used for comparing gridded data with
station-based reference data and estimated for all stations and all years of obser-
vations.

Local (point-wise) correlation - see Section [3.2.1]
Field (spatial) correlation - see Section [3.2.1]

False alarm rate (FAR):
#FA

= Bhits +#FA’
where FA is the number of false alarms.

FAR (3.34)

Whereas the previously introduced measures are tailored to characterise the forecast
of the dichotomous events, we consider generalising this to events following multiple
classes.
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e The continuous ranked probability score (CRPS) makes use of the main advan-
tage of probabilistic forecasts, the opportunity to extract cumulative distribution
functions (CDF) or probability density functions (PDF). It assesses the qual-
ity of weather forecasts by defining a distance between probabilistic forecast
and observation. In other words, it compares the forecasted and observed CDF
(Hersbach 2000; Jolliffe et al.|[2012; Jordan et al.[2017; Wilks|2011)). The corre-
sponding equation can be written as

CRPS = / (f)2df, (3.35)

where P(f) is the cumulative distribution of the forecast f; P, is the cumulative
distribution of the observed value.

0, f < observed value

Po(f) = { 1, f > observed value (3.36)

Equation (3.36) is a cumulative probability step function that varies from O to
1, and the best CRPS value is the smallest. Thus, for any cumulative distribu-
tion P(f) € [0,1],F(—o°) =0 and F(eo) = 1. For a Gaussian distribution, the
classical view of Equation translates into:

CRPS(1, 6> o)—o{ [2<1>(” “)—1]+2<p(0 ”)—ﬁ} (3.37)

where U is the mean, o2 the variance, o the observation, ® the CDF, and ¢ the
PDF.

Equation (3.37) significantly simplifies the calculation for the Gaussian case.
This is of particular benefit for the SPI index. Since precipitation values are not
normally distributed, transforming them to the SPI yields a Gaussian distribution
of the resulting values and helps to implement most statistical metrics in a more
simplified way, without the need for additional transformations. Cases for other
distributions are not presented here; however, they can be found in Grimit et al.
(2006). As mentioned by Hersbach (2000) and Wilks (2011), there is a direct
link between CRPS and the BS for dichotomous events.

A list of further metrics can be found in Wilks (2011)).

MAE, RMSE, p, CRPS, local and field correlation will be used for checking pre-
dictability of the deterministic forecasts provided by the new forecasting scheme de-
scribed in this thesis, since these metrics are simple to implement and interpret the
obtained results.

All abovementioned metrics require an exact match between observed and forecasted
values in both space and time. This creates the "double penalty problem", where a false
alarm is noted, but at the same time an event was observed at different site and was
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missed in the forecast. Thus, two forecasts errors are recorded for one observed event
in one location. Therefore, the above metrics do not provide information on the spatial
distribution of false forecasts, how far the forecasted area is from the occured event,
and whether the forecast over- or underestimated the true conditions. To overcome
such problems, additional spatial forecasting methods have been developed (Casati
2010; Ebert et al. 2009, 2000; Gilleland et al. 2009; Marzban et al. [2009; Nachamkin
et al. 2005; Roberts et al. 2008; Wernli et al.|2008), including:

e Neighborhood (fuzzy) methods give credit to spatially close forecasts, e.g., the
Fractions Skill Score (F'SS; Roberts et al. 2008) and other neighbourhood-based
methods (Ebert 2009);

e Scale-separation methods measure a scale-dependent error, e.g., the intensity
scale (1S; Casati 2010) or multi-scale variability (MSV; Brown et al.[2009);

e Features-based methods evaluate attributes of identifiable features, e.g., Con-
tiguous rain area (CRA; Ebert et al. 2009); Structure, Amplitude and Loca-
tion (SAL; Wernli et al. 2008)); composite-composite method (Nachamkin et al.
2003)), Method for Object-based Diagnostic Evaluation (MODE; Davis et al.
2009);

e In Field deformation methods the forecasted field is spatially manipulated in
order to make it as close to the observation field as possible, e.g., Image warping
(IW; Gilleland et al.[2009).

Neighbourhood methods require the forecasts and observations to be close in space,
time, intensity, etc. They measure the strength of the relationship between forecast and
observation. These techniques provide information on temporal or spatial scales used
in the forecast to achieve appropriate accuracy. For such neighbourhood methods,
object matching is not required (Ebert 2008; Roberts et al. 2008). One of the most
popular neighbourhood metrics is the Fractions Skill Score (FSS). Within this metric,
the forecast is useful if the forecasted event frequency (Fy) is similar to the observed
event frequency (F,) and they have to be on the same grid. The similarity between
forecast and observation is measured in terms of their fractional coverage of the event
(the fraction of surrounding points within a given cell of the size n).

As the best example of generating the fractions, Figure [3.2] provides a schematic ex-
planation of observed and forecasted binary fields on the same grid. Shaded grid cells
show forecasted and observed events. Let us take the central grid cell highlighted
with a black contour. For that particular case an event had been observed although it
had not been forecasted. Then, the observation field at this grid cell has a value of
1 and the forecast field is 0. However, when computing the fractions of forecasted
and observed events over the 5x5 domain (i.e., a neighbourhood size of n = 5) pro-
vides the same fractional event coverage of 6/25 (6 shaded grid cells with observed
and predicted events out of 25), thus the forecast is correct over the area covered by
that neighbourhood.
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observation forecast
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Figure 3.2: Schematic example of observed and forecasted fractional coverage of the
event, taken from (Roberts et al. 2008)).

Then let us define the MSE for the fractional coverages of the forecast P and observa-
tion P, at each cell of size n for the domain size N, where N = N, x Ny, and Ny is the
number of columns, Ny is the number of rows in the domain, then

1 Ny Ny )
MSEw = N, & & Potmy = Prinn, | (3.38)
Ny Ny Ny Ny
2
MSEwrer = NN, [Z Y Pofy) +212Pf (3.39)
i=1j= i=1j

with this equations, we can define the F'SS,,) for a given neighbourhood size based on
the classical definition of the skill score (given above), using MSE as follows:

MSE ) — MSE ),
MSE |, — MSE()ref’

FSS( = (3.40)

n)perfect

For the perfect forecast, MSE ;) perfees = 0 (the MSE of a perfect forecast on the neigh-
bourhood length n), then the Equation (3.41)) simplifies to:

MSE

FSS)y=1— ————.
() MSE(n)ref

(3.41)

Now if we insert Equation (3.38) and (3.39) into (3.41) we get the definition of the
FSS for a given neighbourhood length as follows:

1
]T/Z{'\jzl (Pf - P0>2

FSS)=1— (3.42)

N N
,IP]%+ —YN P2
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All further computational formulas and details can be found in Roberts et al. (2008)).
For FSS to be implemented, the data must be of a high resolution, so that as many
neighbouring points as possible can be taken into consideration for computing the
fractional coverages of forecast and observations. The fractional coverages are gen-
erated for each possible spatial scale. The FSS is normally calculated for different
thresholds (depending on the type of the forecast, if we use the FSS for precipita-
tion forecasts, any threshold can be selected, depending on the purpose, e.g., 1, 2 or
5 mm). With F'SS,,.00m = F,, the minimum FSS for a forecast to be useful is given
by FSSysefu = 0.5+ F, /2. FSS = 0 when the spatial extent of the considered neigh-
borhood domain is smaller or equal to the displacement error of the event implying a
complete mismatch. In turn, when the spatial scales is larger than the displacement
error, the FSS increases with the scale and can reach the value of 1, meaning a com-
plete match. By changing the value of n, the fractions are thus generated for different
spatial scales, and n can be any odd value up to 2N — 1, where N is the number of grid
points along the longest side of the research domain (e.g., if the domain is 5x10°, as
the longest side we take 10°, details can be found in Roberts et al. 2008]). It has to be
mentioned, that the F'SS = 1 only in case of no bias in the forecast. If there is a bias,
then the observed frequency (F;) is not equal to the forecast frequency (Fy), and the
resulting bias can be:

(Fo—Fy)® _ 2FFy

F}+F}  F24+FF

This approach is useful, since it relates the bias to the spatial accuracy of the forecast
and provides a link to the conventional frequency bias (F,/Fy).

AFSS=1-—

(3.43)

3.5.2 Distribution-oriented approaches

Distribution-oriented approaches include not only statistical verification characteristics
belonging to probabilistic forecasts, but also give information about the joint distribu-
tion for non-probabilistic forecasts and observations for continuous variables.

e Conditional quantile plots present the joint distribution of non-probabilistic fore-
cast and observation for continuous variables. Information about two factors of
the calibration-refinement factorization of the joint distribution of forecast and
observation is represented in the plot. It is a convenient way of visually analysing
the forecast model’s performance and clearly shows the deviation of forecasted
data from observations. It divides prediction and observation values into three
bin pairs of the same length and identifies 10%, 25% and 50% quantiles for each
bin, where the diagonal line represents perfect skill. In this sense, the condi-
tional quantile plot characterises how well the distributions of observation and
forecasted data agree with each other, especially at the lower and upper quantiles
(Carslaw et al. 2012; Wilks2011). The plot is rather different from a standard Q-
Q plot and presents a modified version of it, avoiding two main disadvantages of
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a Q-Q plot: firstly, a wavy appearance, and secondly, difficulties in quantifying
linearity of the plot (Kafadar et al.|1986)).

The Receiver Operating Characteristic (ROC) curve describes the joint changes
of true positive rate (TPR - corresponds to the previously discussed hit rate) and
false alarm rate (FAR) when a certain parameter of the forecasting scheme used
to identify the event type of interest is systematically varied. The ROC curve
can characterise deterministic and probabilistic forecasts; however, in this the-
sis it will be used only for probabilistic forecasts. If the forecast probabilities
® have been rounded to 7 discrete values, there are / — 1 thresholds, excluding
the case where the forecaster always observes/not observes the forecasted event.
These probabilities can be used to select those thresholds for event definition that
provide the best trade-off between hit rate and false alarm rate for a particular
type of decision. A skilful forecast will achieve a hit rate that exceeds the false
alarm rate, and therefore the ROC curve will move towards the top left corner in
a (FPR, TPR) diagram, whereby further left represents a more skilful forecast.
The forecast can be called without any skill (which is no better than guessing)
if TPR equals FPR; thus, the ROC curve will be along the diagonal. The result-
ing prediction skills are then measured by the area under the ROC curve (AUC).
Commonly, for AUC values between 0.9 and 1.0 the forecast accuracy is con-
sidered excellent, good to acceptable for 0.7 - 0.9, fair for 0.7 - 0.5, and poor for
0.5 (Wilks 2011).

The attributes (reliability) diagram is a tool showing the full joint distribution
of forecast and observation for probabilistic forecasts of a binary predictand in
terms of calibration-refinement factorization. In other words, it shows the ob-
served frequencies of a given type of event plotted against the forecast probabil-
ity (Hartmann et al. 2002; Weisheimer et al. 2014; Wilks|[2011). In an ideal case,
when the predicted event probabilities and observed event frequencies are equal,
the characteristic curve in the reliability diagram coincides with the main diag-
onal. However, in realistic weather forecasting systems, especially in long-term
precipitation forecasts, it is hard to achieve this optimal result. Beyond the main
diagonal corresponding to perfect forecast reliability, the attribute diagram com-
prises horizontal and vertical lines showing climatological event frequencies for
the forecasted variable, as well as shaded areas indicating a positive Brier Skill
Score (Wilks[2011). The latter a measure-oriented approach defined as:

BSS = 1—BS/BSB (3.44)
with
1 ¥ )
BS = NZ (pi— o) (3.45)
i=1

denoting the classical BS (where p; is the forecast probability of a certain event
to occur at time i and o; is the actual outcome, i.e., 0; = 1 if the event actually
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happened, and o; = 0 otherwise) and the Brier score baseline (BSB) defined as
the value of BS if the forecast is based only on the mean climatology obtained
from all available observations. The BS is a verification tool for the occurrence
of a specific event.
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Chapter 4

Statistical
post-processing-based
forecasting schemes

Today, operational long-range forecasts are based on NWP models, which produce dif-
ferent future scenarios of the atmospheric dynamics, and as a result, provide informa-
tion on the behaviour of forecasted meteorological parameters. However, complicated
relationships between meteorological variables that are not precisely described in the
model equations, and errors in the initial observation data (assimilated into the NWP
model), make forecasting models and their outputs imperfect.

For example, the question of how to obtain an accurate representation of the atmo-
spheric processes in terms of physical equations is a complicated question and our
ability to model them improves slowly. While work on improving the various parts
of the forecasting models is in the progress, forecasters work with the NWP outputs
which contain large uncertainties.

Regardless of these input uncertainties, forecasters need to produce reliable forecasts.
Statistical post-processing techniques have been developed in order to improve not the
model, but its outputs, and to reduce uncertainties. Post-processing methods are rela-
tively simplistic statistical approaches (compared to working with complex forecasting
models, debugging potential mistakes, waiting for a long time to get computational
results after applying new features, etc.). Their absence of direct representations of
physical processes of the atmosphere and fast calculations increase the ease of their
implementation, and in many cases, they achieve good results. These methods draw
upon relationships between forecast and observation data and obtain a new, calibrated
forecast as a result.

In this section, we discuss several basic post-processing methods developed for vari-
ous applications and types of forecasts to improve the resulting prediction, aiming to
provide the background for the new strategy developed and presented in this thesis.
Subsequently, we provide a full description of a new forecasting scheme along with

47
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two forecasting models that will be used in order to predict SPI-1 values in Russia and
West Africa.

4.1 Statistical post-processing

According to Wilks (2011]), there are two statistical approaches to weather forecasting,
both based on regression equations. These two methods differ from classical statistical
forecasting approaches by the range of available predictor variables.

The first approach is perfect prognosis (perfect-prog; Klein et al. [1959). It involves
taking the forecast of future atmospheric variables as an initial value and assuming
that this forecast is perfect. Developing regression equations for perfect-prog does not
much differ from developing classical regression equations, where predictors are spec-
ifying observed predictands with a possible time lag, using climatological data. The
forecast time lag is represented in the regression equations by connecting predictors
available before the forecast to values of the predictand observed at a later time. To fit
the regression model, predictand and predictor values are obtained at the same time. In
the perfect-prog approach it is possible to use the forecasted predictor values obtained
from the dynamical model at any time in advance. Quantities forecasted without a dy-
namical model cannot be taken as potential predictors, apart from those values already
known. Of course, since predictors are coming from the dynamical model, their qual-
ity heavily influences the perfect-prog outputs - in this approach, the higher the quality
of the forecasted predictors, the higher the quality of the output.

A second well known approach is Model Output Statistics (MOS) in which the dynam-
ical forecast is used together with a statistical weather forecast. The statistical model
is usually presented in terms of some regression equation (Carter et al. 1989; Glahn
et al.|1972)). The big advantage of MOS is the possibility to consider in the regression
equation the influence of specific characteristics of the dynamical model forecast at
different lead-times. It also gives an opportunity to compensate the systematic errors,
while the forecast is computed.

Both perfect-prog and MOS use dynamical model outputs to derive the predictors. The
only difference is that perfect-prog uses predictors only during the preparation of the
forecast, while MOS uses the model’s outputs to develop and produce the forecast
equations. For constructing forecasting equations, both perfect-prog and MOS use
a multiple linear regression approach based on correlations between predictand and
predictor (Lemcke et al.|1988; Schuhen et al. 2012).

In one example of its application, Lemcke et al. (1988) used the MOS approach to
forecast different weather parameters such as precipitation, frozen precipitation, thun-
derstorm, and sunshine. The authors created two statistical forecasting models - a
multiple linear regression model for point forecasts and a logistic model for proba-
bilistic forecasts - and showed that the approach exhibits good forecasting skills. The
MOS approach was even used to provide forecasts of temperature, relative humidity,
wind speed and wind direction for the Olympic and Paralympic Winter Games in Salt



4.1. Statistical post-processing 49

Lake City in 2002, and is noted to be more accurate than the local forecasting 12- and
4-km grid models MMS5 (Schuhen et al. [2012). It can be concluded that MOS can be
used together with any forecasting model and can derive forecasts at any lead-time.
However, the MOS equations must be renewed for each forecasting model.
Ensembles are commonly used for hydrometeorological forecasts and represent vari-
ous types of uncertainties from climatology, models, parametrisations or initial con-
ditions. In order to overcome these uncertainties, several post-processing methods
for ensemble forecasts have been developed. One such method is frequency-based
probability forecasting, which aims to estimate probability forecasts of binary events.
The probability forecast is derived from the ensemble members based upon the PDF
of the future observations. The number of ensemble members predicting an event is
consistently an unbiased estimator of the probability of this event taking place. Thus,
the corresponding fraction of members of the ensemble can be used to estimate the
probabilities

1 N
Pr<ytSQ):NZI(xn,t§CI)7 4.1)
n=1

where Pr(y; < q) is the probability of predicting an event y;, N is the number of his-
torical observations; ¢ is the threshold of interest and can be set by the user, x; =
(X14,X24,...,xN ) are the members of the forecast ensemble. As an alternative estima-
tor, Equation (#.1]) can be transformed to:

Pr(y: <) =Rank(q),/(N+1), 4.2)

where Rank(g); = Y, I(x,; < g)+ 1 is the rank of the threshold g, when brought
together with all members of the forecast ensemble x;. When all members of the
ensemble are below ¢, then according to Duncan et al. (1978), Rank(q), = N + 1.

A modified frequency based probability forecasts approach can be used to derive a new
method called direct model output (DMO). Here, the probability forecast is given by

Rank(g); —1/3
Rank (yi < q) = N+(1);1/3/'

The probability forecast can range from 2/(3N +4), where Rank(g;) = 1 to (3M +
2)/(3M +4), when Rank(g); = N + 1. The adjustments introduced to the numerator
(—1/3) and to the denominator (1/3) in the proposed equation are one among the
possible corrections of frequency-based approaches (Wilks 2011 Williams 2016)).

Hamill et al. (1997) presented another ensemble post-processing method using rank
histogram recalibration (RHR) in ensemble location and dispersion. It uses historical
training samples of ensemble forecast and observation. To generate the rank distri-
bution histogram, quasi-independent sample points are used. To improve the quality
of precipitation predictions, probabilistic ensemble forecasts are created by using the
ensemble in conjunction with the probability information embedded in the rank his-
tograms. Before constructing the probability forecast using the RHR method, it is

4.3)
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essential to remove any constant bias from the out-of-sample ensemble forecast x;.
Then we assume that the distribution between the ensemble members is uniform, thus
we can find the appropriate weight for each member as:

1 N
wj = Y1 (Rank (yi) = j)forj = 1,2,.... M+ 1, “44)
i=1

where Rank(y;) = 1 +YM_ I(%y, <) is the rank of the observation when merged
together with the ensemble members, M + 1 is the relative frequency of possible ranks
taken by the N observations y;. Hamill et al. (1997) assumed that the observations y;
are uniformly distributed in the range of [0, )Gt(N)], where )?t(N) is the largest ensemble
member. However, if we fit a normal distribution for both tails of the RHR of the fore-
cast distribution, then the probability forecast for observation in the lower part of the
forecast distribution is weighed by wy, and for the upper part by wy_.1. However, many
observations fall in the tails of the probability forecast distribution, since operational
ensemble forecasts possess low dispersity. Let us assume that gR7 is the probability
distribution for the tails of the RHR forecast distribution, GR7X the cumulative dis-
tribution function and X; the ensemble forecast. Then, the RHR forecast distribution
is a weighted disjointed mixture of uniform distributions, chosen for quantities in the
lower and upper tails and unbounded by the ensemble forecasts. Thus, the probability
forecast of the binary event y; < g can be written as:

( ~(k)
K gt L) (N)
ijl W']+Wk+1x"(k+l)ix"<k), lf xt < q Sxt
t t

GRHR ) if q < )ez(l)

Pr(y < q) = M G (0 4.5)

GRHR (g)— GRHR (ﬁ(M)
N _ ! . ~(M)
Y wjtwni | CRIR ()21(N)) , it g>%

\

where ¢ is the threshold of interest.

Gneiting et al. (2005) presented another post-processing method, nonhomogeneous
Gaussian regression (NGR), which can be used when the forecast has a Gaussian dis-
tribution. The NGR is actually an extension of the MOS technique which accounts
for the possible spread-skills relationships which appears between the forecast spread
and the errors of the NGR forecast mean. Thus, the variance obtained from the post-
processing method is given by a linear function of the ensemble mean, variance, and a
weighted sum of the ensemble members. We expect that the NGR forecast distribution
is a bias-corrected deterministic forecast, where the bias-correction is a linear function
of the ensemble mean (Gneiting et al.[2005).

In this overview, we should also mention a method called best member dressing (BMD),
first introduced by Roulston et al. (2003). The idea behind the "dressing" method is
providing each ensemble member with its own statistical error (taking into account the
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impact of the residual errors in the forecast due to the finite size of the ensemble) in
order to achieve a realistic comparison between different forecasts which can be made
within the ensemble. The BMD method was developed by X. Wang et al. (2005).
The authors dressed each ensemble member of a dynamical model with independent
sets of N random 4D dressing perturbations in order to remove seasonal mean errors.
In this approach, each member of an ensemble forecast is dressed with an extra, so-
called "daughter ensemble" to derive a "hybrid" version of the ensemble. However,
as Williams (2016) noted, the result of the method is more the construction of a con-
tinuous probability distribution of the forecast than an actual ensemble forecast. X.
Wang et al. (2005) derived a Gaussian-distributed dressing kernel variance (mathemat-
ically it is a variance of the BMD forecast distribution, which has to be equal to that of
the squared distance between the observations and ensemble members in the training
sample; Williams [2016), which can be written for the one-dimensional case as

1Y
GﬁMD:ﬁZ{(fi—Yi)z—(lJrl/M)s?} (4.6)

i=1
where 63, is the variance of the Gaussian-distributed dressing kernels,
= _ A - _ ~ =\2 .
£ =M"'YM | %y is the ensemble mean, and s7 = (M — 1)"' M| (%, — %) is the
ensemble variance of the bias corrected ensemble forecast, m = 1,2,3,...,M are the

ensemble members. Then the probability forecast of the binary event y, < g can be
written as

Pr(y < q) = — f o (4= Tms 4.7)
= M~ "\ oBMD )’

where @ is the cumulative density function of the standard Gaussian distribution, £, ;
is the bias-corrected ensemble member, m = 1,2,3,..., M, and ¢ is the threshold of in-
terest. The method can be used even for systems with an additional member; however,
this is possible only when the size of the ensemble is predefined.

Another important and frequently used method for probabilistic weather forecasting
is Bayesian model averaging (BMA; Fraley et al. [2010; Hoeting et al. 1999} Raftery
et al. 2005; Sloughter et al. 2007). It is used to address questions of model selection,
combined estimation and prediction, and helps to identify the most obvious model
selection criteria while at the same time leading to less risky predictions (Hoeting et
al. [1999). In this method, each ensemble member is weighted and has its own kernel
variance. Notably, the dressing kernel variance is estimated by an optimized objective
function which is obtained over the training sample. The probability forecast of the
binary event y; < g can be written as

Pr(y, <gq) = MCI) 9~ S 4.8
Yr—q>—A—42 oBMA | (4.8)

The BMA method can be used for parameters with a normally distributed PDF. In
its original form, it cannot be applied for precipitation forecasts, since precipitation
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THE SPI FORECASTING SCHEME

‘ Model 1 Deterministic
forecast

Ensemble
Forecasting ) Verification

results
Model 2

Probabilistic
\ Multiple R. forecast

Figure 4.1: Schematic illustration of the SPI-1 forecasting scheme proposed in this
thesis: (1) predictor selection, (2) forecasting model 1 - ensemble construction based
on single linear regression equations, (3) model 2 - multiple linear regression, (4) final
forecasting results, (5,6) deterministic/probabilistic forecast, (7) verification.

Predictor
selection

is non-Gaussian distributed. However, Sloughter et al. (2007) presented a modified
BMA method which obtains a probabilistic precipitation forecast.

4.2 General strategy of the used foresting scheme

The SPI forecasting scheme presented in this thesis systematically exploits the exis-
tence of relevant statistical relationships between potential predictors and predictand.
Hence, the identification and selection of informative predictors is a crucial aspect
of this scheme. Wilby et al. (2000) provided a table with predictors and techniques
used in different studies to investigate precipitation amounts. Notably, an absolute
geopotential at 500 hPa level (H500) has been found to serve as a globally applicable
predictor that can be used not only for weather classification (Bardossy et al. [1992),
but also for predicting different meteorological variables and especially precipitation
(Bardossy et al. Kilsby et al.[1998; Lang 201 1; Wen et al.[2009} Yao et al.[2010).
Using H500 as a predictor in post-processing schemes is a common approach, because
it is a more stable parameter than others (precipitation, wind direction, temperature,
etc.) and that is why it is forecasted by almost all models with higher skills (Kilsby
et al.[1998;; Yao et al.[2010).

Figure .1 shows a schematic representation of our approach. First, we identify pre-
dictors which exhibit a relevant statistical relationship with precipitation formation in
different regions. Then, we decide, which model to utilize, model 1 or model 2 (see
Sections [4.3.1|and 4.4.T| respectively). Both models are based on regression equations
between predictors and predictand (SPI-1) obtained by investigating the statistical rela-
tionships among them in more detail, exploiting existing teleconnections in space. The
difference between the presented models lies in the way, how the regression equations
with the possible predictors are constructed. In model 1, we consider all combinations
of previously identified predictors in a set of linear regression equations, which gener-
ates an ensemble of individual SPI-1 forecasts. Model 2 is based on a multiple linear
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regression approach comprising the dependency between all predictor variables and
the predictand (SPI-1) in a single equation. The resulting SPI-1 forecasts obtained
from both regression models are subsequently analysed in both, deterministic and
probabilistic ways, by means of various verification metrics. Finally, statistical ver-
ification procedures are performed to identify when and where the employed method
provides acceptable skills.

4.3 Forecast model 1

4.3.1 Definition and description

We use multiple fields of potential predictors in order to investigate strong covariability
with local SPI-1 changes over the respective region of interest, including H500, mean
level pressure (MSLP) and surface temperature (ST). To identify strong statistical re-
lationships between potential predictors and SPI-1, a cross-correlation analysis and
then a cluster analysis are applied. Both types of analysis identify areas with strong
statistical dependence between possible predictors and the predictand. Motivated by
this, we hypothesize that combinations of the thus derived potential predictors can be
utilized to constrain the expected SPI-1 values for any given grid point, together with
their associated uncertainties.

Henceforth, as a first model we propose an SPI-1 forecasting scheme in which all pos-
sible combinations of individual predictors from each of the considered climatological
fields are used to form a set of linear regression equations for the predictand (local
SPI-1 value).

To this end, we use at most triplets of predictors - on the one hand, to reflect the fact
that three predictor fields influence SPI-1 - and on the other hand, to keep the regres-
sion models as sparse as possible so that the corresponding regression parameters can
be well-constrained and minimize numerical problems due to a possible collinearity
of predictors. Instead, the maximally possible variety of combinations of predictors
from the predictor fields is utilized to explore the full space of possibilities in the prob-
abilistic forecasting task and capture as much as possible of the associated forecast
uncertainty.

Following this rationale, we consider all combinations of previously identified individ-
ual predictors of the fields of interest to provide individual forecasts of the

SPI-1 (y; i) for any given forecasting region (FR) and month in terms of a set of linear
regression equations

Vijk = ijkX1i + bijexaj + cijeXak + diji (4.9)

where a;jk, bjjk, ¢ijx and d;j; are regression coefficients estimated from the available
data. By this procedure, each forecasting site is associated with an individual set of
linear equations, which are independently solved to generate an ensemble of individ-
ual SPI forecasts based on different lead-time predictors obtained from the model. The
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resulting set of forecasts are suitable for exploitation in both deterministic and proba-
bilistic ways.

4.3.2 Ensemble generation from model 1

A deterministic forecast is obtained by computing the mean over all ensemble mem-
bers. As aresult, we obtain a single SPI-1 estimate together with some possible further
statistical characteristics, like its standard error. Specifically, by taking an average over
the different ensemble members, we ensure that the resulting deterministic forecast
represents the range of possible outcomes more reliably than each individual forecast.
Moreover, the spread among the ensemble members can be used for assessing forecast
uncertainty (in the spirit of multi-model ensembles) at least qualitatively, while the
actual number of independent ensemble members might often be too small to obtain
reliable quantitative uncertainty estimates. Note that the different predictor variables
x,, exhibit different mean correlation values with the target SPI-1 value of the respec-
tive FR, suggesting that they will not be equally skilful. A natural extension of the
approach presented here would therefore be replacing the unweighted mean over the
individual forecasts of the different ensemble members by an accordingly weighted
one. In contrast, the probabilistic forecasting procedure takes all ensemble members
explicitly into account instead of using only the basic statistical properties of their
distribution.

(@)

Absolute frequency
AN

[\

3 -2 -1 050 05 1 2 3
SPI values

Figure 4.2: Schematic example for a forecast probability distribution based on the
linear regression approach described in the text. Dark bars denote the histogram of
observed SPI-1 values; the solid red line indicates a normal distribution with the same
mean and standard deviation as the SPI-1 values; and dots show individual SPI-1 fore-
casts from the considered ensemble. In the presented case, 6 out of 8 ensemble mem-
bers indicate wet (AN) rather than normal (NN) or dry (BN) conditions.
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To obtain a coarse-grained classification of local SPI estimates, we utilize the empirical
probability distribution function of all historical SPI-1 data at the given site during the
study period. Based on this distribution, we select the 33th and 66th percentiles to
classify the individual SPI-1 values of each FR into normal (NN), below normal (BN,
dry conditions) and above normal (AN, wet conditionsﬂ Note that it would also
be possible to instead adopt the WMO classification of different drought levels and
proceed with this classification in the same way. However, in our case studies we
prefer to utilize a coarser classification of SPI values.

Next, we take all members of the SPI-1 forecast ensemble and determine the empirical
probabilities of forecasts in any of the three classes (NN, AN, BN). We refer to the
estimated probabilities of these three classes of values as the probabilistic forecasts.
The class (NN, AN, BN) containing most of the individual forecasts can be considered
as a categorical SPI-1 forecast. If two or more classes are equally likely, no such
categorical forecast can be made at the respective time step for the location under study.
Figure [4.2] shows a corresponding example. In the end, the information derived from
this kind of analysis is of the type "probability of a drought event to occur". Hence,
such a probabilistic forecast provides the probabilities of occurrence of different types
of (coarse-grained) events, while a deterministic forecast specifies an explicit expected
SPI-1 value.

4.4 Forecast model 2

4.4.1 Definition and description

The forecast model 1 described above offers many advantages: to avoid the problem
of multicollinearity (appearing in multiple linear regression models) and to achieve
both probabilistic and deterministic forecasts in a simple and reliable way. However, it
remains to be studied how the performance of such classical multiple linear regression
models differs from that of the model 1. For this purpose, we compare the accuracy of
the forecast made by model 1 with that of classical multiple linear regression (model 2)
to provide a conclusion about the quality of both schemes in the particular case of long-
range predictions with different lead-time. Here, model 2 is based on a multiple linear
regression approach, containing the dependency between all predictors and predictand
as:

y=ap+ax) +axxo+,...,+apx,, (4.10)

where § is the predicted variable, x1, x3, ..., X, are the potential predictors and

ap,ap,az,...,a, the corresponding regression coefficients (Parker 2017; Wilks 2011]).
Note that in model 1, each simple linear equation has individual coefficients. Thus,
since we obtain N linear regression equations, we have N predictions and hence a

I'The classification into normal, below normal and above normal conditions is a common strategy in
long-term forecasting.
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corresponding forecast uncertainty. In contrast, the model 2 contains only one equa-
tion and consequently one SPI-1 estimate, while also capturing the uncertainty of the
system as described below.

4.4.2 Forecast generation for model 2

A deterministic forecast based on model 2 is obtained immediately and does not re-
quire extra calculations, due to the nature of model 2. Instead of an ensemble of linear
regression equations we construct only one forecasting equation, and its result presents
a pure deterministic forecast. However, for a probabilistic forecast, the computation is
not so obvious.

To present a probabilistic forecast in below normal, normal, and above normal grada-
tions, we estimate the regression parameters in the multiple regression Equation (4.10)).
It is important to mention, that we assume, the regression parameters have a Gaussian
distribution and are chosen in order to obtain the best estimations, i.e., e ~ N(0,5?2).
Thus, we can replace the single forecasted value (¥) by its distribution, which is char-
acterised by the forecasted value as the mean. Then the standard deviation is described
by the standard deviation of the residuals obtained from the regression model. In such
way, § ~ N(u,6?) with & = ag+a x| +axxa+, ..., +anx,. By assuming that our model
has a Gaussian distribution, we can immediately obtain quantiles and probabilities for
forecasts in the gradations BN, NN, and AN, which simplifies all calculations.



Chapter 5

Spatio-temporal pattern of
extreme SPI and monthly SPI
forecasts in Russia

Obtaining consistent and reliable precipitation forecasts beyond the time-scales of nor-
mal synoptic patterns is a challenging task. The results of such forecasts are very
important for a variety of different applications. Accordingly, there is an increasing
interest in the development of improved forecasting schemes in order to predict pre-
cipitation with higher accuracy. In this chapter we present an analysis of the SPI-1
index over Russia, focusing on the most extreme precipitation events during the period
1966-2010. The reasons for the occurrence of the identified extremes are explained
by synoptical analysis. By means of statistical methods we identify their spatial distri-
bution in different regions of Russia and frequency of occurrence. In order to predict
extreme events, it is necessary to improve the long-range precipitation forecasts. In this
chapter, we propose an implementation and verification of a new statistical forecasting
scheme (model 1) in Russia.

5.1 Data and model

5.1.1 Precipitation data

The station-based observational data is used from the RIHMI-WDCﬂ Figure|5.1{shows
the corresponding spatial distribution of rain gauge stations. It is clearly seen, that ob-
servation stations are not homogeneously distributed across Russia, especially huge
gaps between stations are noticed in the Northern regions of APR. In those regions the
distance between stations is more than 700 km and the total amount of observation sta-
tions with available data in Russia is only 518 (in 2012ﬂ In this way, the replacement

! http://meteo.ru/data
2 http://meteo.ru/data
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Figure 5.1: Spatial distribution of meteorological stations with continuous rain gauge
records that are used as reference data in this chapter. Hatching indicates land area
outside the Russian Federation, which is ignored in the following.

of these heterogeneously distributed station data with a realistic and spatially homo-
geneous data set of values across Russia is essential. We considered two candidate
data sets, NOAA/NCEP CPC CAMSEI and ERA-Interinﬂ with the same horizontal
resolution of 0.5° x 0.5°.

The CAMS_CPC data set of the Climate Prediction Center of the National Weather
Service of USA provides global monthly gridded precipitation amounts and is avail-
able for the entire globe (excluding ocean areas). Within this data set, rain gauge
observations (from the Climate Anomaly Monitoring System, CAMS) are combined
with satellite data (Huffman et al. [ 1997} Janowiak et al. 1999, specifically, the Outgo-
ing Long-Wave Radiation Precipitation Index). The data set is renewed every month at
a resolution of 2.5°. When this work was started the CAMS data archive was available
at three resolutions: 0.5°, 1° and 2.5° for the period from 1979 until present.
ERA-Interim is an operationally updated global reanalysis data set including mete-
orological records from 1979 to present. The data set is provided by the European
Centre for Medium-Range Weather Forecasts (ECMWEF, UK). The model is semi-
Lagrangian with a semi-implicit scheme; it utilizes the hybrid sigma-pressure coor-
dinate system to improve wind simulation in the upper troposphere and stratosphere,
which allows a large improvement in forecasts of all other parameters, including pre-

3 ftp://ftp.cpc.ncep.noaa.gov/precip
4 http://www.ecmwf.int
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cipitation. The data is assimilated using the 4D-VAR technique and operational data
from the ECMWEF data set. Therefore, in each cycle, the available observation data are
integrated with the forecast data to reveal the most accurate current global atmospheric
conditions (Balsamo et al.[2015]; Dee et al. 2011)).

Both data sets (CAMS and ERA-Interim) provide global coverage and are regularly
extended up to the present day. In both cases, monthly precipitation data are taken for
the period 1979-2014 to calculate the SPI-1 values.

5.1.2 Operational model description

To obtain values of the SPI-1 from raw NWP data, we use the SL—-AV model. SL-AV is
a global semi-Lagrangian semi-implicit model of the atmospheric general circulation
based on the absolute vorticity equation. The model is run at the Hydrometeorological
Center of Russia (Hydrometcenter) as an operational probabilistic long-range forecast
system, and at the Siberian Hydrometeorological Institute (SibNIGMI) as an opera-
tional medium-range numerical weather prediction tool. The model’s dynamic core
was developed at the Institute of Numerical Mathematics, Russian Academy of Sci-
ence, in cooperation with Hydrometcenter and using the subgrid-scale physics package
from the ALADIN/ LACE NWP model (Shashkin et al. [2014). The main character-
istic of SL—AV is that its dynamical core uses a finite-difference semi-implicit semi-
Lagrangian implementation on the unstaggered grid, with horizontal divergence and
the vertical component of the absolute vorticity as forecasted variables. The horizontal
grid is regular in latitude and longitude with the options for variable latitude resolution
and the use of a reduced latitude-longitude grid.

The SL-AV model uses a time-stepping scheme based on SETTLS (Hortal [2002) time
approximation in combination with the semi-implicit approach and the pseudo-second-
order decentering (Temperton et al. [2001). A semi-implicit time integration scheme
within the semi-Lagrangian treatment of advection allows atmospheric simulations
with time steps larger than the limits of the Courant - Friedrichs - Lewy (CFL) sta-
bility condition, and thus allows the creation of computationally efficient models. The
model includes a set of parameterizations of the following sub-grid processes: short-
and long-wave radiation, deep and shallow convection, planetary boundary layer, slow-
down of gravity waves, heat and moisture exchange with the underlying surface.

The most recent version of the model couples the SL—AV model of general atmospheric
circulation with the sigma model of general ocean circulation, INMOM, developed at
the Institute of Numerical Mathematics of the Russian Academy of Sciences. The
INMOM model is based on a closed system of nonlinear equations of ocean hydrody-
namics in spherical coordinates using the hydrostatic and Boussinesq approximations
(Tolstykh et al. [2014). A model of sea ice dynamics and thermodynamics was also
incorporated into INMOM.

It should be noted that global models have a problem with meridian convergence in the
geographic coordinate system. The model developers have therefore applied different
methods to overcome the related shortcomings. For example, SL-AV uses a reduced
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latitude-longitude grid and INMOM uses a curvilinear orthogonal grid. There is a
time gap in SL-AV between the atmosphere and ocean models as the atmosphere is
integrated with a time step of 36 minutes and the ocean with a time step of 72 minutes
(Tolstykh et al. 2014)). Spatial weight averaging is used to recompute SST generated
by the ocean model to the atmospheric grid. The use of a new assimilation method
improved the quality of initial data and thereby reduced the errors in the simulation in
the field of 500 hPa geopotential height. In addition, the simulation of the precipitation
field was improved, the mean error of temperature forecast decreased and the forecast
of SST in the tropics performed much better (Tolstykh et al. [2014)). Despite the fact
that further work on improving the model is in progress, the results of the model can be
also corrected by post-processing methods. For example, the application of statistical
methods to separate forecast variables can improve the forecast skill. Therefore, the
data of hindcasts of precipitation, MSLP, and H500 for the period 1983-2010 computed
with the SL-AV model at the 2.5° grid for the area of 20-90°N, 50°W-180°E are taken
for further computation.

5.1.3 SPI-1 calculations based on different data sets

As the first step of our analysis, we compare the SPI-1 values obtained from station-
based precipitation observations with those derived from the two candidate data sets,
CAMS and ERA-Interim (based on the respective neighbouring grid point at the orig-
inal higher spatial resolution of these data sets of 0.5° x 0.5°). Figure shows
the local correlation values between the time series of station-based and gridded SPI-1
values for all boreal summer months, obtained by computing the classical Pearson cor-
relation coefficient between each station and the respective closest grid point and spa-
tially interpolating the obtained values over the study region. Note that the particular
values shown in the resulting maps are affected by the spatial interpolation, especially
in regions with sparse station coverage, as well as by the fact that precipitation is a
small-scale property that can vary markedly between a particular station location and
the location of the neighbouring grid point. In this spirit, the results shown should be
considered only in qualitative terms, allowing us to assess the relative representation
quality of observed monthly precipitation sums in the two data sets under considera-
tion. However, high correlations can still be accompanied by strong bias.

It is observed that the typical local correlation values for the CAMS data set are clearly
higher than those for ERA-Interim (Fig.[5.3). Table[5.1|summarizes the corresponding
mean local correlations taken over the complete set of stations, where the correspond-
ing correlation values have been obtained individually for each boreal summer month
(June, July, August) during the period 1979-2014. In addition, the table displays the re-
sults of two other common verification metrics already introduced in Section [3.5] The
spatial field correlation describes the correlation between the SPI-1 values of all sta-
tions and their respective closest grid point during the same month and is represented
here by its mean value taken over all months. The reliability characteristic p is defined
as the difference between the numbers of true and false classifications of SPI-1 values
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Figure 5.2: Spatial patterns of local (point-wise) correlations between SPI-1 values
obtained from direct measurements made at meteorological stations across Russia and
monthly precipitation data from the neighbouring grid points in the CAMS_CPC (left)
and ERA-Interim (right) data sets.

in the gridded data as compared to the station-based reference data, divided by the
total number of comparisons made, and is estimated using all stations and all years of
observations. Here, a corresponding classification is obtained by coarse-graining the
SPI-1 values into seven distinct classes defined by the WMCﬂ (Table [3.1). All three
measures clearly demonstrate that CAMS reproduces the true precipitation patterns
with higher accuracy than ERA-Interim. Consequently, for further SPI-1 calculations
the monthly precipitation data from CAMS is used.

Next, the behaviour of SPI-1 values obtained from the raw NWP data taken from the
SL-AV model output is studied. It is found that one-month lead-time SPI-1 forecasts
based on direct precipitation estimates from hindcast simulations of SL-AV indicate
relatively poor predictability (see Table [5.2] for details). As an example, Figure [5.4]
displays the calculated SPI-1 values based on CAMS and SL-AV for one randomly
selected month (August 2010), indicating a remarkable discrepancy in the resulting
spatial patterns. In fact, when computing the local correlations between the SPI values
derived from both data sets for the different boreal summer months (Fig. @ we find
correlation values distributed around zero, with absolute values rarely exceeding 0.3.
While the SL-AV model is capable of capturing the timing of drought and wet events
with reasonable confidence, the geographical extent of these events is not correctly
represented. This observation again underlines the necessity of developing and apply-
ing an alternative approach for seasonal precipitation forecasts that improves the poor
accuracy of predictions for the Russia.

3See, e.g., http://www.wamis.org/agm/pubs/SPI/'WMO_1090_EN.png, p. 4.
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Figure 5.3: Box plots of local (point-wise) correlations between SPI-1 values obtained
from direct measurements made at meteorological stations across Russia and monthly
precipitation data from the neighbouring grid points in the CAMS and ERA-Interim
data sets.

Table 5.1: Statistical characteristics of CAMS and ERA-Interim derived SPI-1 fields
compared with station data.

Month Local Field Reliability
correlation | correlation | characteristics p
CAMS

June 0.76 0.72 0.59

July 0.71 0.68 0.53
August 0.75 0.73 0.57

ERA-Interim

June 0.65 0.63 0.45

July 0.62 0.60 0.42
August 0.64 0.62 0.44
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Table 5.2: Summary of verification criteria for SL-AV based SPI-1 hindcasts and
deterministic forecasts using the scheme proposed in this thesis (see Section [5.6.1] for
details).

Month Local Field Reliability
correlation | correlation | characteristics p
SL-AV hindcast
June 0.14 0.13 0.11
July 0.12 0.11 0.07
August 0.15 0.14 0.09
Deterministic forecast
June 0.58 0.56 0.54
July 0.52 0.51 0.48
August 0.55 0.53 0.50
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Figure 5.4: Example of resulting SPI-1 estimates for August 2010 based on CAMS
(left) and SL—AV hindcast data (right). For this month, the spatial field correlations
between the different fields are 0.65 (CAMS vs. rain gauges), 0.61 (ERA- Interim - not
shown here - vs. rain gauges), 0.14 (SL-AV hindcast vs. rain gauges), 0.21 (CAMS vs.
SL-AV hindcast), illustrating the poor agreement between the SL-AV hindcasts and

both the station-based precipitation records and the selected spatially homogeneous
reference data set (CAMS).
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Figure 5.5: Local (point-wise) correlations between CAMS and SL-AV hindcast-
derived SPI-1 values during the boreal summer.

5.2 Statistical analysis of extreme SPI

5.2.1 Spatio-temporal patterns of extreme SPI

Observed variations in regional and global climate require re-evaluation of the con-
sequences and environmental impact of large-scale circulation processes. Previous
statistical conclusions should be reviewed to account for new data and techniques for
climate data analysis and interpretation. Climatic conditions for large-scale processes
have changed; therefore, methods for estimation of the frequency and duration of ex-
treme events, including drought and wetness, are of rising interest.

Changes in the climate conditions in Russia can be accompanied by drought intensi-
fication (Pachauri et al. 2007) and an increase in the occurrence frequency of drought
events over the Kalmykiya, Astrakhan, Volgograd, and Rostov regions (Lopatin et al.
2005). The authors of that paper also confirmed a trend towards aridification of Russia,
with its consequences being evident in the spring and summer months.

For spatio-temporal analysis of such events, the SPI calculations based on observed
rain-gauge data (obtained from RIHMI-WDC) are used. The data includes monthly
precipitation sums for the boreal summer (June-August) during the period 1966-2010
obtained from 518 weather stations inhomogeneously distributed over the territory of
Russia (Fig.[5.1). Stations with many gaps in measurements have been excluded from
this analysis, thus data from 500 stations have been used for the index calculations.
Insignificant gaps (1-2 months) in the measurements have been filled with monthly
mean values for a given station.

Two of the most extreme recent droughts in Russia during the boreal summer occurred
in 1972 and 2010 (Fig. [5.6). In the summer 1972, a catastrophic drought developed
in most parts of Russia, mainly due to the formation of a blocking anticyclone over
the centre of the APR in June and in the southern EPR in late July. During that year
an abnormally cold winter with deep-frozen soil were observed, thereby much of the
winter and spring precipitation had run off, which promoted the drought from the be-
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ginning of May. In June, the drought formed over the APR (Fig. [5.6) and decreased
toward July, while the situation worsened for the EPR over the same period. A perma-
nent inflow of dry Arctic air toward the south of the EPR resulted in the formation of a
stable anticyclone, which was broken only at the end of July. Cherenkova et al. (2012)
assume that the Azores High played a significant role in the formation of the drought
in the summer of 1972.

A similar blocking anticyclone settled over the EPR in the summer of 2010, causing
hot and dry weather, but the prerequisites that worsened the conditions are similar to
those present in the summer 1972: a precipitation deficit in winter and spring and low
temperatures in the winter months with concomitant deep freezing and slow thawing
of soil. The soil was insufficiently wet; a powerful high-pressure centre settled over
the EPR in the third week of June, which stabilised for 55 days and disturbed the usual
eastward air mass transport. Moreover, this pressure situation prevented formation
of clouds and, hence, precipitation, which finally resulted in a catastrophic drought
(Shakina et al. [2010). A drought peak with maximum intensity and distribution was
observed in July.

As seen in Figure[5.6 the spatial distribution of SPI adequately shows the drought dis-
tribution. To estimate quantitatively the SPI spatial distribution over a region, we use
the areal parameter P1, which shows the percentage of area covered by drought/extreme
wetness relative to the total area of a macroregion. The EPR and APR are mainly im-
pacted by different air masses and, hence, different pressure centres; therefore, areas
of extreme drought/wetness have different genesis mechanisms. Thus, the areal distri-
bution is analysed separately for each macroregion.

Table [5.3] shows extreme dry/wet events with wide coverage of the study region. The
six most extreme droughts and the six most extreme wet events are selected for the
EPR; seven droughts and six wet events for the APR. Thus, the higher PI, the larger
the region affected by the event. For example, “extreme dry" Pl values are maximal
in the EPR in August 1972 and in the APR during June 1972. Indeed, the drought of
1972 was catastrophic and covered most of the territory of the former USSR.

5.2.2 Frequency distribution of extreme SPI

In order to analyse the frequency distributions of extreme events, we separated the re-
search period (1966-2010) into eleven-year periods in order to observe the short-term
climatic changes (period I: 1966-1976; period II: 1977-1987; period III: 1988-1998;
period IV: 1999-2010) and obtain the SPI-1 values. For each period we estimated sev-
eral statistical parameters including the 90% quantile, kurtosis, asymmetry, standard
deviation (SD), median and amplitude and summarized the results in Table [5.4] An
increase in the number of extreme drought events in July and August is observed dur-
ing the study period; the number of wet events decreased over the same period. The
standard deviation allows to estimate the spread of the SPI values about the mean. No-
tably, there is a trend towards left-side asymmetry, which indicates the prevalence of
wet over drought events.
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Table 5.3: Areal parameter Pl of significant drought and wet peaks in the EPR and

APR.
Month | Year | Extreme | Year | Extreme | Year | Extreme | Year | Extreme
dry dry wet wet
EPR APR EPR APR
June 3 12 3 3
July 1972 5 1972 1 1981 0 1970 0
Agust 31 2 0 0
June 12 4 1 0
July 1979 0 1981 3 1998 4 1973 2
Agust 1 8 3 1
June 0 7 0 2
July 1994 14 1983 0 2000 4 1979 0
Agust 1 1 0 0
June 0 2 0 1
July 1996 0 1998 8 2003 0 1980 2
Agust 17 5 5 0
June | 0 3 |
July | 2002 3 2000 1 2005 0 1988 2
Agust 14 6 0 4
June 11 2 0 1
July | 2010 18 2003 3 2006 1 2006 0
Agust 0 6 4 4
June 2
July - - - - 2007 5 - -
Agust 3
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Table 5.4: Statistical parameters of extreme SPI for the EPR and APR.

Period Left Right Median | SD | Asymmetry | Kurtosis | Min | Max
1(1966-1976) quantile | quantile
I (1977-1987) 0.05dry | 0.95 wet
IIT (1988-1998)
IV (1999-2010)
EPR
June
I —1.78 1.38 —0.09 10.93 —-0.25 3.14 —3.53 1 2.66
1I —1.70 1.63 0.13 1.02 —0.40 3.52 —4.52 1 2.85
1T —1.49 1.65 0.16 0.96 —0.19 3.04 —3.46 | 2.89
1A% —1.91 1.59 0.08 1.06 —0.39 3.21 —4.10 | 2.78
July
I —1.71 1.43 0.07 0.94 —0.47 3.49 —4.04 1 2.68
I —1.57 1.54 0.18 0.96 —0.50 3.66 —-393 1272
111 —1.77 1.67 0.11 1.02 —-0.24 3.17 —4.12 1 3.00
v —1.93 1.57 —0.04 [1.05 —0.20 2.89 —3.53 | 3.17
August
I —1.87 1.41 —0.01 70.99 —0.41 3.70 —45373.20
11 —1.51 1.59 0.15 0.95 —-0.22 3.23 =372 13.12
1T —1.75 1.54 0.13 0.99 —0.40 3.10 —3.4513.04
1A% —1.74 1.66 0.03 1.04 —0.13 3.00 —3.7713.63
APR
June
I —1.63 1.58 0.04 0.96 —0.09 3.13 —3.86 | 3.39
I —1.87 1.58 0.01 1.04 —0.25 3.19 —4.14 1 3.24
11T —1.67 1.52 0.05 0.98 —0.31 3.13 —3.80 | 3.04
1V —1.65 1.67 0.12 1.01 —0.08 291 —3.49 1 3.60
July
I —1.65 1.56 0.13 0.98 —0.33 3.21 —3.65 ] 3.05
I —1.52 1.56 0.06 0.94 —0.11 3.03 —3.77 1 3.36
111 —1.98 1.57 0.02 1.07 —-0.34 3.17 —4.09 | 3.57
v —1.67 1.59 0.04 1.00 —0.27 3.31 —5.00 | 3.14
August
I —1.72 1.56 0.07 1.00 —0.27 3.05 -390 3.06
1I —1.79 1.61 0.06 1.03 —0.21 3.04 —3.78 | 3.97
1T —1.80 1.59 0.08 1.03 —-0.32 3.32 —430 | 3.47
v —1.60 1.53 0.06 0.95 —0.19 3.15 —3.89 | 2.97
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Figure 5.6: SPI-1 values for the most extreme drought events in Russia in a) 1972 and
b) 2010 during the boreal summer (left to right -June, July, August).

In the EPR we observed a tendency towards more droughts in June, in turn the wetness
increases by August and drought decreases accordingly. Both gradations clearly man-
ifest themselves in June in the APR: drought prevails and wetness decreases by July;
as mentioned above, they both tend to decrease in August. This situation has become
more pronounced in recent years (period IV).

For further analysis we identified cases corresponding to values below the 5% quantile
for dry and above the 95% quantile for wet evens. Since the 5/95% quantiles identify
the most extreme cases and are different for each point, we classify them according
to the SPI gradation and visualise the spatial distribution for each case (Fig.[5.7] a,
b). Both maps identify by green color all values where the corresponding quantiles
correspond to absolute SPI values of >2 (indicating extreme events); the purple color
is for SPI values within the gradation [—2,—1.5] and [1.5,2] for dry and wet events,
respectively (severe events), and finally, the yellow color represents moderate events
with SPI within [—1.5,—1] or [1.0,1.5]. Figure[5.7](a) highlights that droughts have
been especially recorded in the southern and western regions, in the European North,
Southern Siberia, Primorye and Khabarovsk regions. Lower frequency of droughts is
observed in the northern regions. The spatial distribution of drought changes during
the summer: extreme droughts mainly accumulate in the southwestern regions in June,
cover the whole south, however they also noticed in the Murmansk region in the north,
and the southern part of the Far East, especially in July. In August droughts propagate
to cover almost the whole territory of Russia. Figure (b) shows the same analysis
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Figure 5.7: Spatial distribution of the a) Sth percentile for drought events b) 95th
percentile for wet events over Russia (left to right: June, July, August in the SPI gra-
dations).

for wet events. It is found that the severe gradation is the most frequently observed.
Wet events can be observed almost over whole Russia as opposite to droughts, as well
as in the northerneast regions (e.g., Yakutia, Chukchi Peninsula) and western Siberia
(Krasnoyarsk regions) wet events are observed more often. The highest number of wet
events are recorded in June, and the fewest in July.

5.2.3 Long-term variability

Regarding the long-term trends of drought and wet events over the EPR and APR for
the study period, we identify a decrease in drought events for the EPR in June and
August, with an increase in July (Fig.[5.8]a). The results are opposite for wet events:
an increase in June and August and a decrease in July. The coefficients of the linear
trends for both types of events are maximal in July with different signs, i.e., drought
increases and wetness decreases. The statistical significance of the coefficients of the
linear trend is confirmed with a confidence of 93% for drought and 92.5% for wetness
in June, while the p-values of Student’s t-test indicate statistical insignificance for both,
dry and wet events in July and August. The behaviour of drought and wetness in the
APR is similar to that observed for drought and wetness in the EPR, with an increase
of drought (Fig.[5.8|b) and decrease in wet events.
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Figure 5.8: Long-term trends of drought distribution in terms of Pl value in the a) EPR
and b) APR (left to right - June, July, August).

5.3 Synoptic analysis of extreme SPI events

Variations in atmospheric circulation regimes associated with changes in the global
and regional climate affect the frequency and intensity of climatic extremes, which
in turn exert considerable influence on overall biodiversity (Barry et al. 2009). The
formation of droughts and extreme wet events of different duration and intensity is
caused by many factors, and by the complex physical mechanisms of their interactions
(“Adoption of the Paris Agreement”|2015).

Macrocirculation processes are among the most important factors contributing to the
development of drought and wet conditions. Cherenkova et al. (2015) described re-
lationships between the development of large-scale circulation and the corresponding
influence on the frequency of extreme events within the period 1936-2000. Climate
forecasts demonstrate that the general planetary temperature rises and, hence, the fre-
quency of extreme droughts is increasing (IPCC2013)). In addition, arid areas currently
cover up to 1/5 of the whole surface of the Earth (Cherenkova 2007). Studying the cli-
mate dynamics of arid zones will enable to make correct strategic and management
decisions, since phenomena like desertification and persistent droughts have a direct
influence on socio-economics.
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5.3.1 Drought events

Cherenkova et al. (2015) provided an analysis of extreme drought frequency over Rus-
sia using different drought indices, including the Russian agricultural drought index
(Selyaninov GTK) and the Palmer index (PSDI) - along with a typification of elemen-
tary circulation mechanisms (ECMs) in the Northern Hemisphere (NH) developed by
Dzerdzeevskii (1968). This study revealed spatio-temporal key features of drought
conditions and a trend towards the formation of more frequent drought conditions in
the NH based on the analysis of the dynamics of durations of circulation types, es-
pecially blocking processes in the European sector. The blocking processes and, as a
result, extreme weather events are oftenly caused by highly amplitude quasistationary
midlatitude planetary waves (Petoukhov et al. [2016). Coumou et al. (2014) demon-
strated that most of the summer extremes have been associated with anomalous jet
stream circulation patterns characterized by persistent high-amplitude quasi-stationary
Rossby waves. Also, they noticed a weakening of the zonal mean jet, which causes, in
turn, meridional circulation patterns. Furthermore, the anomalous circulation regimes
cause persistent surface weather conditions resulting in a midlatitude synchronization
of extreme heat and rainfall events on monthly time-scales. One of the most extremely
persistent blocking anticyclones was observed in 2010. That summer experienced
catastrophic droughts, which became subjects of high research interest not only in
Russia but worldwide. Some studies explaining the genesis and detailing the forma-
tion of this extreme event (Cherenkova et al. 2015; Lupo et al. 2012; Volodin 2011)
sought to reveal the regularities of extreme event formation and potential localisation
and indicated that the obtained information can be effectively implemented into fore-
casting of extreme weather conditions.

Here a synoptic analysis is provided by applying composite maps (Fig. [5.9) repre-
senting superimposed fields of mean sea level pressure (MSLP) with visualized SPI.
The MSLP maps play an important role in such analyse, since they demonstrate the
distribution of pressure systems in the atmospheric boundary layer. This helps us to
associate the zones of extreme drought/wet events with the pressure systems (anti-
cyclones/cyclones) causing these extremes. In turn, the location of pressure systems
explains the weather situation and helps to predict future conditions of the atmosphere
by using different types of typifications of weather processes. In this thesis, we de-
scribed the identified extreme weather events with Katz’ typification of atmospheric
processes (Katz 1960), commonly used by long-range operational weather predictions
in weather agencies of the former USSR countries. Katz grouped the cases of ex-
treme drought and wet events into several classes according to the configuration of the
pressure fields involved. This enables referring to a certain type of process for each
extreme drought or wet event. The analysis of maps obtained for 500 and 850 geopo-
tential height reveal the presence of blocking processes in all cases of extreme events
presented in Table [5.3] In this part of the work, the identified cases are separated into
groups within a synoptic description characterising each group.

1. Group I with the centre of the pressure system over Eastern Europe includes the
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following cases: June 1979, July 1994. Both events have been characterized by
similar locations of the main synoptic structures. Drought formation was caused
by an anticyclone, located in the area of 40-60°N and 10-40°E. East of it a deep
cyclone was found (50-100°E) that provided air masses from the Arctic (Fig.
a, b).

2. Group Il with the centre of the pressure system over the EPR includes three cases:
August 1972, August 1996, and July 2010. These anticyclones were located
further to the east compared with the first group and encompassed almost the
whole EPR up to 70°E. In comparison with group I, the cyclones also shifted to
the east up to 140°E (Fig.[5.9/c, d, e).

3. Group III with the centre of the anticyclone over the Urals and West Siberia
includes the following cases: June 1972, August 1981, and July-August 2013.
In this group the high-pressure formation covered almost the half of the territory
of Russia (50-120°) and caused an extreme drought over a larger region. West
and east of the anticyclone, two troughs were located which cause intensive
moisturisation in these regions. Figure[5.10]clearly demonstrates the location of
pressure formations (cyclones and anticyclones) caused such event.

4. Group 1V with the centre of the anticyclone over Siberia and West Yakutia in-
cludes the following cases: June 1983, July 1998, August 2003, and June-July
2012. One main anticyclone can be identified, with the covered area being about
two times smaller than for those areas in the third group, which favours a pre-
cipitation deficit in the region. The pressure field on the east of this anticyclone
was unstable. The anticyclones in these cases were located within the range of
65-100°E. A striking example of this group was found in 2012. An extreme
drought accompanied by forest fires has been observed over Siberia, especially
over its central and southern parts, during the period of early June to the first ten

days of August (Fig. [5.T1).

For the cases from the EPR (groups I and II), the separated groups have been compared
with Katz’s weather typification (Katz |1960). In this typification, the author divided
the weather processes into two types: zonal and meridional. Both are described us-
ing circulation indices, which characterise the intensity of air mass transport in zonal
and meridional directions. The zonal index is the mean pressure gradient between the
meridians bounding the region of interest; the meridional index is the mean pressure
gradient between parallels bounding the region of interest; the general index is the
ratio between zonal and meridional circulation indicies (Katz [1960). Different com-
binations of pressure gradient signs indicate the geographic localization of pressure
systems in the upper-air (850 and 500 hPa) pressure fields. For instance, the consecu-
tive combination of two positive and two negative signs of geopotential zonal gradients
means that the axis of the upper-level trough (the centre of the cyclone) is located in
the area where the gradient sign changes from positive to negative. In the zonal type air
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Figure 5.9: Composite maps of SPI and MSLP for the first group: a) June 1979, b)
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Figure 5.10: Same as in Figurefor the third group: a) June 1982, b) August 1981,
¢) July 2013, d) August 2013.
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Figure 5.11: Same as in Figure for the fourth group: a) June 1983, b) July 1998,

¢) August 2003, d) June 2012, e) July 2012.

masses flow from west to east along around a latitudinal band. Different combinations

of gradient signs are used to define four types of meridional circulation.

e In the “C" circulation type (with central position of the ridge relative to Europe

and West Siberia), an upper-level ridge is located over the centre of the EP
the upper-level troughs on its eastern side.

R with

The "E" circulation type (eastern position of the upper-level ridge) presupposes

the presence of an upper-level trough over Western Europe and an upper-air ridge

in the east of the EPR and over West Siberia.

an upper-level ridge over Western Europe (or over the British Isles) and an

The "W" circulation type (western position of the upper-level ridge) experiences

upper-

level trough east of it, with the axis directed to the southeast part of the EPR/West

Siberia.

east of an upper-level trough with the axis passing through the centre

The "N" circulation type (mixed type) represents two ridges located west and

of the

EPR. Thus, this circulation type can be seen as a combination of the "W" and

"E" types (Katz|1960).

Visual assessment of the separated groups for extreme drought episodes demonstrates
that the first and second groups (anticyclones over the EPR) correspond to the "C"

circulation type (central type), while the third and fourth groups (anticyclones o
APR) coincide with the "N" circulation type.

ver the
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5.3.2 Wet events

According to the SPI gradation, all values above zero characterize wet conditions. In
most parts of Russia, wetness is associated with precipitation observed along atmo-
spheric fronts. To carry out a synoptic analysis of precipitation genesis, information
about natural synoptic periods (NSPs) for every month is obtained. Normally, a NSP
has a duration 3-7 days. Some preliminary explanations and definitions at NSP and
natural synoptic regions (NSR) have been already given in the Section Informa-
tion about NSP for the first NSR is stored at the Division for Long-Range Weather
Forecasting at the Hydrometcentre of Russia. Due to the absence of data on NSP for
the second NSR covering the APR, a similar analysis for the APR is not provided here.
The synoptic analysis is based on the charts of the 500 and 850 hPa geopotential height
levels and MSLP for each observed extreme wet event. To complete the analysis, we
use the observed values for daily precipitation in the gradation of "very heavy rain"
(15-49 mm per 12 hours) and "extreme rain" (50 mm or more per 12 hours) according
to the Hydrometcentre of Russiaﬂ The plotted precipitation maps and pressure maps
are enabled us to explain the genesis of heavy and extremely heavy precipitation in
certain regions (see an example of such map in Figure[5.12).

These exists a clear relation of the amount of precipitation and the duration of NSP
with the prevailing cyclonic activity affecting the moisture content of the region. As
shown in Section[5.3.1] blocking processes are observed over the study region in cases
of extreme drought formation. In contrast, extreme wet gradations can be established
not only during meridional circulation, but also within zonal circulation, where a series
of active humid cyclones pass over the same region multiple times during one month
or sometimes both circulation types (zonal and meridional) can be observed during the
same month in different NSPs causing extreme precipitation amounts.

The episode in June 2005 describes such situation clearly (Fig. [5.12); "extreme rain"
was registered during two different NSPs within one month. The first period was
observed from June 6 to 11, when a series of active cyclones with the zonal circulation
type and producing heavy rain passed over the midlatitudes of the EPR. During the
second period, June 20 to 23, transformation of the planetary upper level frontal zone
(PUFZ) took place and an active moisturised cyclone was generated over the EPR and
blocked by two anticyclones in the west and east. This configuration of the PUFZ
caused enduring precipitation.

The episodes of extreme wetness are compared with the catalogue of Katz’s typifi-
cation of weather processes. The assessment of the separated cases of heavy pre-
cipitation (Table [5.3) over the EPR revealed that the events during June 1981, June
2005, and August 2006 can be referred to as "C" - type circulation, and those of July
1998, July 2000, August 2003, and July 2007, as "E" - type circulation. Both types of
patterns are characterised by transition zones in the troposphere between high cold cy-
clones and high warm anticyclones, called upper-level frontal zones (UFZs). Separate
UFZs can merge and form PUFZs that trigger the processes of formation and devel-

®https://meteoinfo.ru/images/ media/books-docs/RHM/nast-KPP-2009.pdf
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Figure 5.12: The charts for the synoptic analysis of wet events in EPR for June 2005
for two NSPs. a) 500 hPa, b) 850 hPa, ¢) MSLP, d) maps of actual planetary upper-
level frontal zones (PUFZs) and mean normal PUFZs obtained for the period from
1966 to 2013 for the second and fourth NSPs in July 2005 separately. The maps of
actual precipitation (right panels of the sub-figure d) for both cases are in "heavy" and
"very heavy" gradations. L is low pressure, H is high pressure, the lines are isobars.
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Figure 5.13: a) 500 hPa charts and b) composite maps of SPI and MSLP for the case
of extreme floods in July - August 2013 in Far East of Russia. L is low pressure, H is
high pressure, the lines are isobars.

opment of cyclones and anticyclones and, hence, the generation of wave processes in
the atmosphere. Since heavy and extreme rain in deep cyclones are associated with
considerable deviations of PUFZ from its climatological position (for each month) to-
ward the south, we focused our attention on the dynamics and transformation of these
frontal zones. We demonstrated the position of PUFZ (Fig.[5.13]a) and composite SPI
map (Fig. [5.13| b) for one of the most extreme floods in Far East, happened in July-
August 2013. The detailed analysis of existed weather situation shown in Utkuzova et
al. (2015b). By comparing contour lines of climatological PUFZ with observed PUFZ
during extreme precipitation cases, we noticed a southward shift of the observed PUFZ
according to climatological line by 5-25° with the "E" - type circulation (Fig.[5.13]a).

5.4 Correlation of the SPI with teleconnection indices

In Sections [5.3] and [5.2] we have shown that synoptic analysis can help to explain the
formation of extremely dry and wet events, and that statistical analysis can help to
quantify the occurrence of these events. To continue the discussion on synoptical
influences on precipitation formation in Russia we next present an analysis of the as-
sociated teleconnection patterns.

In Section [2.3.1] we discussed important teleconnection patterns that influence precip-
itation formation in different areas of the world. Since teleconnections play a crucial
role in long-range precipitation forecasts, and formation of precipitation is controlled
by the atmospheric dynamics at different scales, it is necessary to identify meteorolog-
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ical variables connected with precipitation that have the potential to serve as predic-
tors. In the present context, the North Atlantic and North Pacific circulation patterns
are known to influence meteorological conditions in vast parts of the NH extratrop-
ics (Wallace et al. [1981)). Specifically, both types of atmospheric circulation patterns
have been shown to have an influence on weather in Russia during the boreal winter
and spring (Kiktev et al. [2015). In the following, we report statistical evidence that
relevant relationships also exist during summer.

In order to uncover the role of the most relevant NH centres of action for the emer-
gence of the summer precipitation patterns over the territory of Russia, we performed
a correlation analysis between indices (Barnston et al. [1987; Bell et al. 1995 Wal-
lace et al. |1981)) representing these large-scale variability patterns and the observed
regional SPI-1 values. Specifically, we focus on the East Atlantic/West Russia pattern
(EA/WR); East-Pacific/North Pacific pattern (EP/NP); Polar Eurasian pattern (POL),
describing a long-range connection from the Atlantic to Eurasia; and the Scandinavian
pattern (SCA), a dipole pattern west and east of the Caspian Sea, all with monthly
resolution. High correlation values between the respective indices and observed SPI-1
values during a certain month of the year highlight regions for which possible wet and
dry events can be expected to coincide with the respective positive or negative phases
of the associated pattern.

The results of our corresponding analysis are shown in Figure [5.14] and confirm that
precipitation formation during the summer in the study region is statistically related
with (and, thus, most likely influenced by) different large-scale atmospheric circula-
tion patterns in the NH. The strongest positive correlations between the EA/WR index
and the monthly SPI-1 fields are found in July and confined to the Southern Ural. A
very similar correlation structure is also present for the EP/NP index in July. The latter
also shows a notable positive correlation in northwestern Russia during June. In paral-
lel, both patterns also exhibit strongly negative correlations across Western to Central
Siberia (especially EP/NP in July), while August lacks any particularly relevant cor-
relation patterns with both indices. POL and SPI-1 exhibit strongly positive mutual
correlations, especially in July in the Northern part of Siberia, and marked negative
correlations in the EPR. As the summer proceeds, the positive correlations gradually
vanish, while the region with negative correlations persists. Finally, the SCA pattern
presents strongly positive correlation values during all boreal summer months (espe-
cially in July and August) in Southern Yakutia, Eastern Siberia and the western part of
the Russian Far East, while strong negative correlations are mainly concentrated in the
north of the EPR. All aforementioned statistical interdependencies are characterized
by maximum absolute values of correlations between 0.5 and 0.7.

From the analysis detailed above, it is concluded that regions closer to the Atlantic and
Pacific Oceans have a tendency toward stronger correlations between SPI-1 values and
their possible predictors (related to the aforementioned patterns) in comparison with
the more continental parts of Russia. In June, the Northern European and Far-Eastern
parts of Russia can be expected to be the regions with the most reliable pressure-based
SPI-1 forecasts (especially regarding the significant correlations with the POL and
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Figure 5.14: Results of local (point-wise) correlation analysis between the CAMS-
derived SPI-1 data and different atmospheric circulation patterns: a) EP/NP, b)
EA/WR, c¢) POL and d) SCA) for the boreal summer (from left to right: June, July,
August).
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Figure 5.15: Grids with FRs for a) H500 and b) SPI.

SCA patterns in these regions). In July, the regions between 45-60°N and 20-40°E as
well as 120-160°E display the strongest correlations with the EA/WR, EP/NP and POL
indices. Finally, during August, the region between 50-70°N and 30-60°E presents
the highest correlations with the SCA and POL indices. Taken together, these results
increase confidence in the potential to estimate the SPI-1 fields based on predictors that
are properly selected (independently for each region) using linear regression analysis,
which will be demonstrated in the following sections.

5.5 Statistical forecasting scheme for Russia

5.5.1 Selection of predictors

In order to identify potential informative predictors for the regional SPI-1 fields over
entire Russia, we perform a detailed cross-correlation analysis of the H500 and MSLP
of the SL-AV hindcast data sets. For evaluating possibly relevant cross-correlations,
we fix the spatial range for both predictands to 20-90°N and 50°W to 180°E. This
area is chosen to cover the Northern part of the Atlantic, Pacific and Arctic oceans
as well as continental parts of Northern Eurasia. The SPI-1 fields are obtained from
the CAMS precipitation data within the region of 40-90°N and 20-180°E. In order
to reduce the corresponding amount of pairwise correlations and account for the fact
that very detailed regional resolution is hard to achieve and interpret, we divide the
aforementioned regions into larger spatial sub-regions, each covering 5 (10°) in lati-
tude (longitude) instead of working with the native spatial resolution of the data (2.5°).
This coarse-graining procedure resulted in 322 grid cells for the SL-AV data sets. From
the CAMS-derived SPI-1 data, 121 of the resulting cells are considered as FRs, all of
which cover at least some part of the land surface of Russia (Fig. [5.13).

The coarse-graining of the predictor (H500 and MSLP) and target (SPI-1) fields is
achieved by representing each resulting grid cell by its geographical centre and com-
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puting a weighted mean (with weights according to the spatial distance to the centre
of each cell) over the data for all original grid points that contribute to each respective
cell. Based upon this, reduced data sets are obtained, defining potential predictors for
the SPI-1 values in each FR as spatial regions in which the respective pressure variable
exhibited an absolute correlation value above 0.4 (with statistical significance beyond
the 95% confidence level) with respect to the target SPI-1 value for a given calendar
month (i.e., separately for the three boreal summer months June, July and August). By
this analysis we identify a set of candidate regions in the H500 and MSLP fields from
SL-AV that might serve as informative predictors for each FR and each calendar month
for which SPI-1 is to be predicted. Notably, these candidate regions have a tendency
to cluster in space.

In order to obtain a robust and numerically feasible forecasting scheme, we further
reduce the number of individual candidate regions to a set of predictors by selecting
the weighted mean value for each group of candidate regions that meets the following
conditions (see Figure [5.16] for a schematic illustration): (i) minimum size of three
sub-regions, (i1) spatial connectedness (i.e., each region in a group needed to have at
least one direct neighbour region that belongs to the same cluster) and (iii) stability
(i.e., groups used for predicting SPI-1 values at neighbouring regions need to have
a sufficiently large overlap). For the purposes of this case study, the latter require-
ment is manually checked for all pairs of FRs, while a more formal and automatically
testable criterion for spatial overlap is used in the later West African case study (see
Section to increase its objectivity. Taken together, our reduction procedure re-
sults in a comparatively small set of predictors, which are subsequently used in the
forecasting step (see below). Note that while most FRs are associated with several
predictor combinations (typically of the order of 5-10), there are others for which our
approach does not result in any suitable pair of predictor variables from the MSLP and
HS500 fields. As a consequence, from the initial 121 FRs, the predictor selection left us
with pressure covariates allowing SPI-1 forecasts for 81, 73 and 78 FRs for June, July
and August, respectively.

5.5.2 Scheme description and implementation

In Section [5.5.1] it has been demonstrated that both H500 and MSLP exhibit regions
that show strong co-variability with local SPI-1 changes over the Russian Federation.
Motivated by this finding, we hypothesize that combinations of potential H500 and
MSLP predictors thus derived can be utilized to constrain the expected SPI-1 values
for any given grid point, together with their associated uncertainty. Specifically, we
propose using model 1 (Section [4.3.1)) in which all possible pairwise combinations
of individual H500 and MSLP predictors identified in Section [5.5.1] are considered
to form a set of linear regression equations for the predictand (local SPI-1 value) for
the corresponding FR and calender month of interest. Note, that it would be equally
possible to utilize combinations of more than two predictor variables from the con-
sidered set of candidate predictors, as well as pairs of variables stemming from the
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Figure 5.16: Schematic illustration of the selection of informative predictors. The
black square depicts the forecast region (FR) for which a prediction is to be made for a
certain calendar month (for all years with the same set of statistical models, see text),
while groups of dots with different colors indicate different informative predictors. In
the example illustrated here, 10 independent regression equations can be formed by
combining 5 MSLP and 2 H500 predictors to generate the forecast ensemble.

same pressure field. To this end, we use only pairs of H500 and MSLP predictors on
one hand, to reflect the fact that both fields influence SPI-1 and, on the other hand,
to keep the regression models as sparse as possible, so the corresponding regression
parameters could be well constrained and minimize numerical problems due to a pos-
sible collinearity of predictors. Instead, the maximal possible variety of combinations
of predictors from the H500 and MSLP fields are utilized to explore the full space of
possibilities in the probabilistic forecasting task and capture as much of the associated
forecast uncertainty as possible.

Following this rationale, we consider all combinations of pairs of previously identified
H500 (x;) and MSLP (y;) predictors to provide individual forecasts of the SPI-1 (z;;)
for a given FR and month in terms of a set of linear regression equations, as described
in Section4.3.1] By this procedure, each forecasting site is associated with an individ-
ual set of linear equations, which are independently solved to generate an ensemble of
individual SPI forecasts based on one-month lead-time H500 and MSLP forecasts of
the SL-AV model. This set of forecasts can then be exploited in both deterministic and
probabilistic ways.
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Table 5.5: Summary of verification metrics.

Event type | BS | BSS | AUC
June
BN 0.16 | 0.27 | 0.79
NN 0.20 | 0.07 | 0.76
AN 0.17 1 0.25 | 0.79
July
BN 0.17 1 0.20 | 0.75
NN 0.21 | 0.04 | 0.70
AN 0.19 | 0.16 | 0.73
August
BN 0.14 1 0.29 | 0.78
NN 0.18 | 0.14 | 0.73
AN 0.16 | 0.27 | 0.77

5.6 Forecast verification

5.6.1 Deterministic forecast

In this work we use a deterministic forecast for multiple categories. It is obtained
from the set of linear equations by computing the mean over all ensemble members
in a single SPI-1 value. This value characterises dry or wet conditions in the SPI-1
gradations for each given FR.

Table summarizes verification metrics for characterizing the skills of the direct
SPI-1 hindcasts of the SL-AV model together with those of our forecasting model 1
based on one-month lead-time forecasts of H500 and MSLP from SL-AV. Here, "true"
and "false" indicate whether or not the deterministic forecast made by our algorithm
falls into the same of the seven SPI classes defined by the WMO as the corresponding
observation.

In our case, the reliability characteristic p (see Section [3.5.1)) takes values of around
0.5, with the weakest results for July (0.48), slightly better values in August (0.5) and
the highest in June (0.54). The local correlation coefficients vary between 0.27 and
0.73 (Fig. a), with the best results again being obtained for June, whereas in July
and August, the correlation is generally weaker. Figure[5.17](a,b) highlights areas with
relatively good, as well as such with relatively poor forecast accuracy. Specifically, a
good forecast can be expected in June in the northwestern, southern European and
far-eastern parts of Russia. In July, reasonable results can be obtained, especially
in the Far East and some parts of southern Russia. Finally, in August, we expect
acceptable forecasts in the westernmost EPR as well as in the western to central parts
of Siberia. The model generally tends to exhibit lower forecast skill for the central
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parts of Russia, with maximum values of about 0.5 for both p and local correlation,
which meets the expectations raised by the spatially distinct influences of different
large-scale atmospheric circulation patterns (see Section [5.4).

As additional verification metrics, we also calculated the Mean Absolute Error (MAE)
and root mean square error (RMSE) of the SPI-1 forecasts for each FR. Both character-
istics indicate good accuracy. In accordance with the metrics discussed above, June is
found to be the month with the lowest forecast error (values of 0.11 and 0.35 for MAE
and RMSE, respectively). In August, both error measures have slightly higher values
(0.15 and 0.38, respectively), whereas July shows the highest values (0.20 and 0.45,
respectively). Figure (c) shows the corresponding spatial patterns of the RMSE.
As expected, in general the lowest errors are found in areas with the highest local cor-
relation and forecast reliability p. In turn, large errors together with low correlation
and reliability indicate regions with poor forecast accuracy.

In June, small errors can be observed on the Taymyr peninsula, in northern Siberia,
some smaller areas in the centre of the EPR, close to the Ural Mountains, and in the
Far East of Russia close to the Sea of Okhotsk. In July, larger errors are found in
several smaller areas across the entire study region, with the highest values in the
southern parts of Russia. In August, much of the EPR, Eastern Siberia on the south
of the Russian Far-East exhibit the largest forecast errors. However, there are some
regions with relatively small forecast error during all months, like the westernmost
part of Russia and some areas in the Far-East.

An additional verification of our deterministic forecasts is provided by the scatter
plots between observed and predicted SPI-1 values shown in Figure [5.18] The curves
demonstrate the different capabilities of model 1 in catching dry, normal and wet
episodes and their intensity in the boreal summer. Based on these results, it is con-
cluded that months classified as having normal weather conditions are not necessarily
well-represented in the SPI forecasts. The actual forecast scores depend strongly on
the specific region, reflecting different dominant atmospheric circulation patterns in
different regions. In general, the deterministic forecasts showed the best accuracy in
June and somewhat lower ones in August and July.

5.6.2 Probabilistic forecast

A big advantage of probabilistic forecast is the explicit consideration of forecast un-
certainty. Specifically, the probabilistic forecast takes all ensemble members explicitly
into account and produces the prediction along with a certain probability of the occur-
rence of the event of interest. To check the quality of the obtained forecasts, we use
two metrics for probabilistic forecast verification: ROC curves and reliability diagrams
(as discussed in Section [3.5.2)). The corresponding results for our pressure-based fore-
casts for each class of conditions and each boreal summer month are presented in
Figure[5.19and Table[5.5] The best accuracy is found in June, with a maximum area
under the ROC curve (AUC) value of 0.79 for below normal (BN) and above normal
(AN) conditions, while a generally lower prediction accuracy is observed for normal
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Figure 5.17: Deterministic forecast accuracy: a) local (point-wise) correlation, b)
forecast reliability characteristic p and c) RMSE between deterministic forecast and
CAMS-derived SPI-1 values.
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Figure 5.18: Scatter plot between observed and predicted SPI-1 values for the deter-
ministic forecasts for the months June, July and August (from top to bottom).

conditions (0.76). The same ranking between the different types of events is recovered
for the two other summer months (with AUC generally slightly higher for dry than for
wet conditions). However, the corresponding AUC values are consistently lower for
August than for June and indicate the lowest forecast accuracy for July.
Figure[5.20[shows the resulting reliability diagrams. The corresponding values of Brier
Score (BS), Brier score baseline (BSB) and Brier Skill Score (BSS) are provided in Ta-
ble[5.5] The best skills are identified (highest BSS) for all three types of conditions
during August, slightly less skilful forecasts for June, and the lowest skills for forecasts
in July, which resembles the outcome of the ROC analysis. In general, the reliability
diagrams indicate the highest reliability (despite not possessing the highest BSS) for
the prediction of dry conditions in June. According to Wilks (2011) and Weisheimer
et al. (2014) and their classification of characteristic forms in reliability diagrams, in
our case, dry and wet conditions generally exhibited good forecast calibration. For
wet conditions, the forecast line often lay slightly above the diagonal during June and
July, indicating a minor tendency towards underforecasting, except for very high fore-
cast probabilities. In contrast, for dry conditions during August, the reliability curves
fall below the main diagonal, revealing a loss of predictive skills at low-to-moderate
forecast probabilities. Unlike for wet and dry conditions, the reliability diagrams for
normal conditions indicate generally poorer skills of our probabilistic forecasts (yet
slightly higher skills than pure climatological forecasts) and reveal a general and sta-
ble tendency towards overforecasting at all but the very low forecast probabilities for
all boreal summer months.

As for the deterministic forecasts, it should be underlined that the accuracy presented
here exhibits large differences among the different regions of Russia due to the differ-
ential impact of large-scale atmospheric circulation patterns (not shown). Specifically,
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Figure 5.19: ROC curves describing the forecast accuracy for different groups of SPI-
1 conditions over Russia during the three boreal summer months.

the influence of the oceans on the formation of extreme precipitation patterns clearly
plays a major role for prediction purposes. In summary, it is concluded that the pro-
posed scheme (model 1) provides an improvement of existing direct SPI-1 forecasts
based on the SL-AV model. The obtained results are acceptable but still far from being
fully satisfactory. Potential improvements to our approach include the replacement of
linear by nonlinear statistical relationships, the introduction of probabilistic weights
to the individual members of the forecast ensembles according to their expected in-
dividual forecast skills, and the reduction of possibly redundant information due to
potentially collinear predictors by backward elimination, as in the method introduced
by Runge et al. (2015). However, some of these possible improvements are likely to
suffer from the small ensemble size (a few decades of one monthly value per year for
each regression model).

5.7 Discussion

In this chapter, we compared two data sets (CAMS and ERA-Interim) with monthly
precipitation values. We found that CAMS satisfies our needs (good coverage over
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Figure 5.20: Reliability diagrams for probabilistic SPI-1 forecasts of below normal,
normal and above normal precipitation conditions over Russia during the three boreal
summer months. Point labels give the relative frequencies of use of each forecast
probability.

Russia, high quality of precipitation reconstructions, including low amount of missing
data in time-series, long period of records and quick update of the archive with the
new data) and provides higher quality of data than ERA-Interim. In order to inspect
the behaviour of monthly precipitation in terms of the SPI-1 index, we reconstructed
this index for the period 1966-2010. During the research period, the SPI-1 index was
employed to identify the most extreme dry and wet events observed in Russia. These
cases were compared with historical data and confirmed that the SPI-1 provides an
adequate and easy-to-understand picture of the spatial distribution of extreme events.
Identified cases were analysed by implementing statistical and synoptic analysis tools.
Within our statistical analysis, we found an increase in the amplitude of extreme
(dry/wet) events during the past 20 years, with a prevalence of wet events over dry
events. Trends in the drought distribution over Russia in the summer months have also
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been identified. Accordingly, the spread of drought is becoming reduced in June and
August and increased in July; wetness propagation increases in June and August and
is reduced in July in the EPR.

A catalogue of extreme dry and wet events over Russia was created based on the SPI
calculations for the period from 1966 to 2013. This catalogue can be used for different
scientific purposes and provided the basis for synoptic analysis. The episodes obtained
were categorised into four groups following their synoptic features and subsequently
compared with the catalogue of Katz’s weather typification. Despite the fact that this
weather typification was developed around 50 years ago, the weather charts proposed
by Katz still accurately describe weather processes and help to predict atmospheric
circulation over the NH in the short (during one NSP) and long range (in this study, up
to one month). The analysis of upper-level (850 and 500 hPa) charts demonstrated that
extreme wet events can form in cases of both meridional and zonal circulation. With
the zonal type, an extreme wet event is possible if a series of cyclones are passing
through the same region during a certain period of interest. The duration of NSPs
affects the intensity of wetness over Russia. In all extreme drought and wet episodes,
the cyclones and anticyclones existed on sea level, 850 hPa and 500 hPa charts.
According to the PUFZ, we observed some common facts in the transformation and
dynamics during extreme events. In cases of extreme wetness with cyclones of an
"E" circulation type, the planetary frontal zone was displaced by 5-25° to the south
relative to the climate mean position. The features of the PUFZ configuration and
sea level pressure fields revealed by this study can be used as prognostic indicators
for forecasting extreme drought and wet events with different lead-times, e.g., when
forecasters observe the southward displacement of PUFZ by 5° and more, they may
expect the process of stabilisation of a pressure system in the observed region.

The analysis of teleconnection patterns extended the atmospheric circulation analysis
of precipitation formation over Russia. Long-term teleconnection patterns play a cru-
cial role in predicting precipitation for longer periods. We identified that the EA/WR,
EP/NP, POL and SCA patterns all have a significant correlation with SPI-1, influencing
the summer precipitation formation over Russia. This analysis also shows a tendency
for strong correlation between possible pressure-based predictors (H500, MSLP) and
SPI-1. This raises confidence in the potential to estimate SPI-1 fields using linear
regression analysis based on these variables.

The implementation of the SPI-1 forecasting model 1 was also presented in this Chap-
ter. The detailed procedure of obtaining predictors and regression equations was de-
scribed. By making use of cross-correlations between SPI-1 and atmospheric pressure
fields at sea-level and 500 hPa geopotential height, we developed a new forecasting
scheme utilizing selected pressure covariates as informative predictors for regional
summer precipitation in a linear regression framework. Regions with significant co-
variability between observed SPI-1 values and corresponding pressure variables turned
out to coincide with spatial locations for which forecasting model 1 commonly yields
acceptable results and outperforms previous direct precipitation forecasts. The regres-
sion approach developed in the present work can be directly used to formulate both
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probabilistic and deterministic forecasting schemes.

We have found that, for the territory of the Russian Federation and the proposed model
1, both deterministic and probabilistic forecasts exhibit good accuracy, with the highest
accuracy during June mainly for wet and dry episodes, though some problems persist
in capturing normal conditions. The prediction results have been compared to hindcast
data, revealing that the proposed prediction scheme (model 1) has great potential for
improving forecasts beyond the existing direct precipitation forecasts of the underlying
SL-AV model. Thus, the proposed model 1 benefits from the existence of large-scale
controls on precipitation formation across Russia, which are most relevant in the west-
ern and eastern parts of the country and gradually lose their significance toward central
Russia with its more continental climate.



Chapter 6

Spatio-temporal pattern of
extreme SPI over West Africa

and 0-3 months lead-time SPI-1
forecasts

The region of West Africa (WA) has recently been intensively studied, motivated by
its diverse weather conditions and extreme vulnerability to climate change. Weather
in the region is shaped by different types of phenomena (monsoon, tropical cyclones,
etc.) bringing more frequent natural disasters. Agriculture and the economy are heav-
ily dependent on the rainy season, requiring resilience to constantly adapt to the new
conditions resulting from climate change. Year-to-year variations in the timing and
amount of precipitation result in economic and human losses. Consequently, it is cru-
cial to perform in-depth analyse on the reasons of such fluctuations and to predict fu-
ture consequences. In this Chapter we present a comparison between two forecasting
models for WA based on the forecasting scheme presented in Section 4.2

6.1 Data and model

6.1.1 Precipitation data

To understand the changing climatology and for monitoring the rainy season, reli-
able data is of paramount importance. A dataset suitable for operational precipitation
monitoring and forecasting must have consistent time series (without gaps) and be sta-
tistically homogeneous (Guttman [1999). By homogeneous, we mean that observation
stations should cover the region with the high resolution, have equipment and mea-
suring techniques recommended by WMO and record meteorological parameters at
certain times (presented by WMO) with minimal gaps between the measurements. On
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a global scale, it is difficult to acquire data with such standards. Of course, the quality
and accessibility of observation data depend on the region, e.g., for WA we encoun-
tered the problem of accessing high quality observations. Several data sources were
considered, but inconsistencies in the amount of precipitation and a lack of a suitable
observation period were discovered.

One of the available data sources is provided by NOAAE via the Climate Data On-
line (CDO) tool covering different types of meteorological information with open ac-
cess. These data initially looked homogeneous, with long term records. However,
the monthly precipitation amounts for several stations in WA are undervalued (e.g.,
for an area with August monthly mean of around 400 mm/month it reported 0-10
mm/month, a value that is obviously too low to be correct). Another potential data
provider with higher accuracy is the Koninkijk Nederlands Meteorologisch Instituut
(KNMIE] in partnership with the WMO Regional Climate Centre, giving the possibil-
ity to directly analyse and download climate data for multiple regions. After checking
both archives, we found that KNMI provides more realistic values for WA, thus we
obtained observational data for the reference period 1983-1997 from 166 weather sta-
tions in WA (Fig. [6.1). Years outside this reference period had to be omitted due to
missing data.

Since the spatial coverage of observation data is not high enough in order to use these
data directly in the forecasting models, huge efforts are currently undertaken to create
new reliable precipitation. Today, one of the most popular ways of generating high
quality and resolution observation data is combining observed precipitation together
with satellite data, providing estimates for every grid point at the required resolution.
One of the most popular and reliable data archives providing such estimates is the
NOAA/NCEP CPC CAMS (shortly CAMS) data set. It was successfully used in our
previous analysis in Russia (see Chapter 5) and has been proven to be a reliable data
source (Dutra et al.[2013; Kidd 2001; Manzanas et al.[2014}; Rowell et al.[2015; Siebert
et al. 2011; Sohn et al. [2012). Also, CAMS is a recommended archive by the African
Regional Climate Centre (ARCC). With such recommendation, we expect that CAMS
is a good alternative for WA. In order to verify our expectations, we compared it to
the reference data. We used monthly data for the period of June-September 1982-2016
with a spatial resolution of 2.5°. In comparison with Russian case study, where we
upscaled the initial resolution of CAMS due to decrease computations over such huge
area, in WA it was decided to stay with the initial resolution of CAMS, to be able
to cover diverse precipitation conditions in details on relatively small area and at the
same time to have enough forecasting regions for running the statistical scheme over
the region.

In order to provide a detailed drought/wet analysis (see Section of the WA re-
gion we use high resolution precipitation data. Among others, CHIRPS (Climate Haz-
ards Group InfraRed Precipitation with Station data) is commonly used for seasonal

! https://ncdc.noaa.gov/cdo-web/
2 https://climexp.knmi.nl/
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drought monitoring in the African region (June-September, 1982-2016). It presents
precipitation obtained by coupling satellite images with meteorological station data
with a resolution of 0.05° (Verdin et al. 2016). It is a quasi-global rainfall dataset
available for the period from 1981 through to the present day for 50°S - 50°N.

6.1.2 Operational model description

As an operational model, we used the second-generation Climate Forecasts System,
CFSv2, running at the National Centers for Environmental Prediction (NCEP). This
is a fully coupled ocean-atmosphere-land prediction system, with advanced physics,
high resolution, and refined initialization to improve the seasonal climate forecasts
(Yuan et al. 2011)). The second generation of the CFS model contains improvements
of its four technological components, an upgrade of the four-level soil model, an in-
teractive three-layer sea-ice model, and historical prescribed CO, concentrations. The
four technological components of the CFSv2 model were independently designed. The
R2NCEP/DOE Global Reanalysis contains global atmospheric and land surface con-
ditions (Kanamitsu et al. [2002). GODAS is a global ocean data assimilation system
that has been operating at NCEP since 2003 (Behringer |2007)) and provides the ocean
initial states. GFS is a Global Forecasting System and atmospheric model run at a
lower resolution (T62L4). MOMA4 is the fourth version of an ocean forecasting model
from GFDL (Griffies et al. 2004).

The atmospheric model has a spectral triangular truncation in the seven horizontal
layers and a finite differencing in the eight vertical layers, with 64 sigma-pressure
hybrid layers. The vertical coordinates are the same as in the operational Global Data
Assimilation System (GDAS; Saha et al. 2014). As a land surface model, the Noah
model is used in CFSv2 for medium-range forecasts (Ek et al. [2003). It should be
mentioned that the predictive skill of the model is higher in boreal winter and for
target phases when enhanced convection is present in the central Indian and Pacific
oceans (Barnston et al. 2013; S. Li et al. 2015; Wang et al. 2014).

CFSv2 produces outputs for 4 different time ranges: subseasonal, 2-6 week predictions
over the continental US and for MJO predictions; long-lead seasonal predictions of up
to 9 months; decadal and centennial predictions. The model provides hindcast data for
the period from 1981 to 2010 with the initial conditions at 0, 6, 12, and 18Z (here Z is
the Universal Time Zone) cycles for every 5th day (Saha et al.[2014)). For our purpose,
we used 9-month retrospective predictions and extracted predictions for the first four
months, resulting in 0, 1, 2, and 31t forecasts for the initial conditions’ 12Z cycle. To
increase the time period covered by data, we combined re-forecasts with forecast data
for 2011-2016. Thus, for further work, we have a period from 1982 to 2016 for the
boreal summer months including September (June-September).
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Figure 6.1: Spatial distribution of meteorological stations (red dots) in WA with con-
tinuous rain gauge records that have been used as reference data in this study.

6.1.3 SPI-1 calculations based on different datasets

Comparison between precipitation estimates from data archives and observations is es-
sential to this work. Here, we compared the SPI-1 values obtained from station-based
precipitation observations with gridded data from CAMS. As displayed in Figure [6.1]
station data are not homogeneously distributed, while precipitation varies in WA on a
small scale, producing various weather conditions. As it was mentioned before, the
observation network is not homogeneous, especially in the southeastern part the dis-
tance between stations is quite large. Another problem with the data is the short time
series of available good quality observations. Only 16 years are available, and even
within this period (1982-1997), there are some gaps found, which have been filled by
averages (for stations with not more than 2-3 gaps per considered time period).

As first step, obtained the SPI values from the rain gauge stations and performed corre-
lation analysis between SPI-1 for observational data and CAMS. As seen in Figure[6.2]
the correlation between the two data sets is not high. The highest correlation coeffi-
cients are found in June in the Sahel area, with the highest concentration of weather
stations. In June, August and September, a statistically significant high correlation
over Nigeria is noticed. In August and September an area with low correlation is ob-
served over Cameroon, the Central African Republic and the Guinea Coast. The root
mean square error (RMSE) values of CAMS compared with observation data range
from 0.9 (September) to 1.15 (August).

For drought analysis, the high-resolution CHIRPS archive is used. Gauge and satellite
estimates are compared for the period 1982-1997 in terms of SPI-1. We calculated
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Figure 6.2: Spatial patterns of local (point-wise) correlations between SPI-1 values
obtained from direct measurements made at meteorological stations across WA and
monthly precipitation data from the neighbouring grid points in the CAMS data sets
for the period 1982-1997. a) June, b) July, ¢) August and d) September.
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Figure 6.3: Same as in Figure , but for the CHIRPS data set.
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point-wise correlations between CHIRPS and station data (Fig. [6.3). Generally, there
is a strong correlation between satellite estimates and observation data; however, the
locations of high and low correlation areas are roughly the same as in the analysis
with CAMS. The mean values of correlations cluster is around 0.3, whereas the mean
correlation for CAMS is lower, around 0.2, and RMSE is identical to CAMS, with the
lowest error in July (0.85) and the highest in August (1.2). The results from the corre-
lation analysis for the two data archives are similar, with some fluctuations, however
there are no high correlation coefficients obtained. African meteorological centref]
recommended to use both archives for research and forecasting work, since the quality
of observation data is poor.

Next, we studied the behaviour of SPI-1 based on CAMS and raw forecast data taken
from the CFSv2 model. We obtained pure precipitation forecasts with up to a three-
month lead-time; thus, we had four first month forecasts from the nine-month seasonal
hindcasts for the period June-September. The WMO describes lead-time forecasts
as follows: 3It forecast, 21t forecasts, 11t forecasts, Olt forecasts, where the forecast
is created for four months, three months, two months, one month ahead and current
month, respectively. Normally, these forecasts are obtained in the beginning of the
forecasting month (1st day of the month). Following this idea, Olt forecast is given
Ist day of the forecasting month in order to describe weather conditions for the whole
month.

An example of SPI-1 patterns based on CAMS and CFSv2 for a randomly selected
year, 1988 (all 4 months), a case with extremely wet conditions observed throughout
WA is presented in Figure [6.4] This figure indicates differences in spatial patterns;
however, the forecast is not always worse at longer lead-times. For example, in the
plots shown in Figure [6.4] (c) we observe that the 21t and the 31t forecasts predict the
current situation with wet events better than at Olt, which, logically, should be the best
forecasts. The reason for this could be the uncertainties of the model, rendering the
first forecasting month to be less stable than others because the forecasting system is
dynamic. In time, by the second month the system stabilizes and starts to produce
more accurate forecasts.

The differences between observational data and forecasts are not only in the locali-
sation, but also in the intensity of the predicted events. In some cases (e.g., August
1988), the model predicted absolutely the opposite situation of what was observed,
but for others (e.g., July 1988) the model predictions are acceptable. The correlation
analysis also shows a weak relationship between SPI-1 from CAMS and CFSv2 for
which the mean correlation values are distributed around 0.1 and the highest absolute
values rarely exceed 0.6. These results underline the necessity of the application of a
statistical postprocessing scheme to improve the quality of the forecast.

3http://acmad.net/rcc/dataservice.php
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Figure 6.3: An example comparison of SPI-1 estimates for 1988 based on CAMS
(left) and CFSv2 hindcast data (right, (1) Olt, (2) 11t, (3) 2It, (4) 31t) and a) June, b)
July, ¢) August, d) September.
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Figure 6.4: See the previous page for caption and panel c, d

6.2 Statistical analysis of drought and wet events in West
Africa

Drought is a naturally occurring climate phenomenon that impacts human and envi-
ronmental activity and can be considered one of the most destructive natural disasters
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(Below et al. 2007). Drought can be exacerbated by human activities such as defor-
estation, improper land use, and poor management of water resources that influence
water storage and climate. According to Sheffield et al. (2014), sub-Saharan "Tropic
of Cancer" African droughts represent 20% of the natural disasters in WA and influ-
ence over 80% of the population there (Thomas [2004). While a detailed overview of
the relevant precipitation regimes has been given in Section it is necessary to men-
tion that some areas of WA are exposed to droughts even during the rainy season. For
example, the southwest of Nigeria and the coastal parts of Benin, Togo, Ghana and
Cote d’Ivoire experience a "little dry season" (Parker 2017)), which normally occurs
between July and August, is characterized by negative precipitation anomalies, and
is linked to the northward progression of the Intertropical Discontinuity (ITD). Bad
weather conditions occur during this period, usually including cold winds, low tem-
perature, morning drizzles, and partly cloudy conditions; however, afternoon sunshine
may be observed. The little dry season occurs annually, although its duration varies
from year to year. During this period, high pressure accumulates in the Gulf of Guinea
and St. Helena, where it exhibits anticyclogenesis. The little dry period is intense,
when the coastal upwelling is strong and sea surface temperature is lower than nor-
mal (along the coasts of Ghana, east of the Cape of the Three Points, and along the
coasts of Togo and Benin), but weak where both the warm onshore waters persist and
the coastline is perpendicular to the southwest monsoonal winds (Parker 2017} Sultan
et al. 2003)).

For further analysis of the propagation of dry and wet events over WA we use the Pl
value (see Section[5.2.T)). As a threshold, we consider only those cases where a spatial
coverage of dry/wet events is more than 10% of the whole area of WA (see Table [6.1]).
A comparison between dry and wet events outlines that during the period 1982-2016,
the frequency of severe and extremely wet events has been larger (16 times within 35
years) as compared to dry events (10 times within 35 years), with a high persistence of
wet events. However, a large spatial coverage of drought events is evident compared
with wet events, which have more local effects, implying a recovery of the rainy sea-
son in the WA region in late 1970s. Since the early 1970s, the frequency of rainfall
events has significantly increased, and moderate to severe drought years have occurred
at approximately 9-year intervals (Kasei et al. 2010). Thus, though occurring more
frequently, wet events do not propagate as widely as drought events, which may be
explained by the generation of rain in this area happening locally in high convective
clouds during the monsoon. The strong variability at the start and end of the rainy
season together with intensity fluctuations leads to problems for long-range forecast-
ing. Since the WA region has complex synoptic conditions, with dry and wet events
occurring in small regions, it is important to analyse not only the statistical frequency
of events, but also to visualise their spatial distribution (Fig. [6.5)).

Naresh Kumar et al. (2012)) introduced a simple, but important parameter called the
"drought resistance", which is a monthly measure of the persistence of drought and
wet events during the rainy season. This parameter is adopted here for the calculation
of the areas with drought and wet resistance from June till September for time periods
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Figure 6.5: Spatial distribution of severe and extreme dry/wet events for a) June, b)
July, ¢) August and d) September.
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Table 6.1: P1 values for the most extreme drought events in WA describing the per-
centage of areal coverage of WA during the boreal summer for the period 1982-2016.

Drought Wet
Year | June | July | August | September | Year | June | July | August | September
1982 12.34 20.41 1984 | 10.07 | 11.24
1983 17.37 | 23.48 15.95 1985 10.59
1984 | 14.56 | 16.70 | 41.61 1986 10.87
1986 | 12.55 1988 | 16.87 | 12.35 | 16.07 11.83
1987 16.00 1989 | 11.96 14.25
1990 13.07 11.51 1994 14.15 27.97
1991 32.49 1995 11.82
1997 13.69 1997 | 21.22
2009 13.63 1998 32.92
2015 | 22.73 1999 31.12 | 36.09 15.48
2003 | 22.47
2005 | 14.36
2008 10.53
2009 | 12.22
2010 14.31 15.68
2012 | 12.78 | 12.82 | 11.75
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of 2-4 months. For example, resistance-2 indicate situations were the event is observed
in June-July, July-August or August-September, whereas resistance-3 correspond to
the three-month periods June-August or July-September, and resistance-4 identifies
the most persistent dry/wet events affecting all 4 months (the most dangerous cases).
The bar plots in Figure [6.6 display the area coverage (in number of grid cells) of dry
and wet events in different persistence gradations (described above) during the reaserch
period. The resistance value (2, 3, 4) characterises the Persistence Score (PS; charac-
terising the duration of the observed event in months), which is a direct indicator of
the magnitude and intensity of drought (DPS) and wet (WPS) events. The PS-2 shows
stable events covering a large surface area, while PS-4 values characterise a higher
resistance of the event, but with lower covered surface area, with PS-3 possessing an
intermediate stability and areal coverage. In each year, the numbers of grid cells under
different combinations of persistent drought/wet and non-persistent events are identi-
fied. The highest values of DPS-2, DPS-3 and DPS-4 indicate the most intense drought
events in 1982, 1983, 1984 and 2013. The beginning of the 1980s is known as the most
extreme drought period in WA (Dai 2011; Druyan 201 1; Lebel et al. 2009; Mishra et
al. 2010). While the drought events started in 1982-1983, the precipitation deficits
worsened the drought situation in the following year in the Sahel region, and thereby
worsened any resulting consequences of the drought; only 60% of normal crop areas
were available for planting during this period (Giannini et al. 2008)). The main reason
for this catastrophic drought event has been the monsoonal rainfall deficit, which may
have been the result of a very strong El Nifio phase (1982-1983). However, the spatial
distribution of DPS-4 values for drought events is not wide in comparison with PS-2
or PS-3 (Fig.[6.6b). The highest values of WPS for a 2, 3, and 4-month stability are
found in 1984, 1989, 1999 and 2012, i.e., years with a strong La Nifa phase (Parker
2017).

Since teleconnection patterns have a strong impact on the SST and the resulting pre-
cipitation formation in WA, with catastrophic consequences for the region, they are
further investigated in the next section.

6.3 Correlation with teleconnection indices

According to Parker (2017), SST is one of the most important factors influencing the
climate in WA. The SST anomalies play a crucial role in energy transport from the
ocean to the atmosphere, influencing the drought and wet seasons in WA (Bjerknes
1969; Namias 1972)). Reduction of evaporation causes deficits of moisture in the air,
which, in turn, reduces the formation of clouds and precipitation. Long periods of no
precipitation can lead to serious droughts in the region and cause severe consequences
(Parker 2017). Gémara et al. (2017) have described the inter-annual variability of the
most prominent SST patterns. These systems are: 1) ENSO (El Nifio Southern Os-
cillation), 2) Eastern Mediterranean Pattern (EMPI) and 3) Atlantic Equatorial Mode
(ATL3). In order to investigate the effect of teleconnection patterns on precipitation
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Figure 6.6: Drought (a, b) and wet (c, d) persistence of different years with differ-
ent persistence levels (2-4). Panels b) and d) show the persistence-4 characteristics
separately.
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in WA, we decided to increase the list of indices and selected in total 14 indices de-
scribing the fluctuations in the Atlantic, Indian and Pacific oceans (as introduced in
Section[2.3). Cross-correlation analysis is performed between these teleconnection in-
dices and SPI-1 during the rainfall season (June-September, 1982-2016) with monthly
resolution. The majority of the indices are taken from NOAAEI except for ATL3 and
EMPI, which are calculated for this analysis. The ATL3 is computed based on SST
values taken from the NOAA Optimum Interpolation (version 2) with 1° resolution and
for EMPI calculations we obtained geopotential height field at 500 hPa from the NCEP
Reanalysis 2, provided by NOAA /OAR/ESRL PSD, Boulder, Colorado, USAﬂ The
SPI-1 fields are calculated from the CAMS data set with a resolution of 2.5°.

Since we found significant correlation with the majority of indices during our study
period, we decided to divide them into 3 groups. The first group has the strongest
correlation with the SPI-1 during all 4 months and indices AMM, TNA, WHWP and
MIJO_E (MJO with the centre around 10°E), the second group has strong correla-
tion during 3 months found for MJO_W 10 (with the centre around 20°W) and PNA;
the third group includes indices with significant correlation during 2 months (ATL3,
QBO, EMPI, NAO, SOI, TSA). The results obtained from correlation analysis be-
tween CAMS SPI-1 and the teleconnection indices from our first group are shown in
Figure The strongest positive correlation between almost all indices in the first
group and SPI-1 is seen in June and September, when the rainfall season begins and
ends. However, areas responding to different indices vary. For instance, the influence
of TNA, WHWP and AMM distributes as followes: in June, on the eastern part of the
Sahel region, in July, the affected area spreads through the Sahel and Sudan regions
and along the Guinea coast, in August and September a stronger correlation over whole
WA is observed. For the MJO_E20 index, at first the results are less clear. Since MJO
is calculated for different longitudes (every 30°), we have chosen two indices hav-
ing the closest location to our study area: MJO_W10 and MJO_E20. We found that
MJO_WI10 has strong positive correlation with precipitation in WA, whereas in July,
when a "little dry season" occurs in many regions/areas, a strong negative correlation is
noticed. Conversely, with MJO_E20, the correlation is stronger in June and July than
in August and September. Parker (2017) provides MJO composite maps of weekly
rainfall probabilities and 850 hPa wind anomalies for the May-July period, where he
showed how the probabilities of rain occurrence change during the eight MJO phases
in WA. Notably, precipitation in phases 1 and 5 can be caused by the occurrence of
anomalous low-level westerly winds, and in the phases 3 and 7 due to easterly wind
anomalies. In such way, MJO events are taken into account for predicting precipitation
with a time lag of approximately 15-20 days.

The second group includes only two indices: PNA and MJO_W10 (Fig. [AT). Here
we observed significant correlations only in June, August and September. Since the
indices are defined based on variability in the Pacific and Atlantic oceans basins, they

“https://estl.noaa.gov/psd/data/climateindices/list/
Shttps://esrl.noaa.gov/psd/
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clearly affect the different parts of WA differently. In June, a positive correlation be-
tween PNA and SPI-1 is noticed in the southern part of WA, in the area of Zaire and
Angola. In August, this moves to the north and is split into two main areas, with nega-
tive (south of WA) and positive (central Sahel) correlation. In September the effected
area covers the western and southern coastal parts of WA. Conversely, for MJO_W10
the response areas with positive and negative correlation are observed in the northern
parts of WA. In June, there is a strong positive correlation in the centre of the Sahelian
and the Sudanian regions. In August, the area moves eastward, and in September it
divides into two parts, both with strong negative correlation to MJO_W10, one over
the centre of Guinea, and the second beyond our area of interest, in the northeastern
part of Chad, southeast of Libya, and northwest of Sudan.

SPI responds to the variability of different indices in different months, for instance, a
strong connection was observed in September between SPI-1 and ATL3, QBO and SOI
(Fig.[A2)). ATL3 has a positive correlation with the Sahelian region and negative with
the centre of the Guinea coast region. Folland et al. (1991), Gray et al. (1997), Rowell
et al. (1995), and Ward (1998)) found that decadal precipitation variations over the Sa-
hel and Sudan areas are related to negative anomalies in SST over the Atlantic. SST
modes (generating favourable atmospheric conditions over the Atlantic) strongly in-
fluence the development of tropical storms, which affect the precipitation regime (over
the Sahel and Sudan regions). Analysis of the QBO index and SPI showed a strong
positive correlation with almost the entire western part of WA. Such correlation can
be explained by increasing latent heat release in the tropics and the varying position of
a sub-tropical standing wave within the associated Hadley anomaly (Jury et al. |1994).
Gray et al. (1992b)) demonstrated a connection of ENSO and QBO, such that the QBO
eastern phase supports the development of El Nifio, while its western phase promotes
La Nifa events. We therefore expect that, El Nifio and La Nifia strongly influence the
precipitation in WA. Indeed, SOI is found to have a correlation with the precipitation
in the southern part of WA region (Janicot et al. [1996)).

Following the previos consideration, we conclude that SST variability influences the
precipitation formation in different areas of WA and that it is possible to identify those
response areas using teleconnection indices. Not only the Atlantic influences WA cli-
mate, but the Pacific and Indian oceans also play a significant role. This effect has
been investigated in many studies (Gray et al. [1992b; Jury et al. |[1994; Nnamchi et al.
2011; Rowell et al. [1995; Williams et al.|[2011). Cooler-than-average SST in the equa-
torial and South Atlantic is the reason for wet periods, while warmer-than-average
SSTs lead to droughts in the Sahel region. The influence of the Mediterranean Sea
on WA is presented through the EMPI index, with affecting precipitation in the Sa-
helian region and southern parts of WA in June. A weaker correlation between the
EMPI index and precipitation is evident for July, where positive anomalies lead to wet
conditions in the Sahel, and negative anomalies to dry conditions. Therefore, vari-
ations in the SST of the Atlantic, Indian, and Pacific oceans and the Mediterranean
Sea have a large impact on the regional variation in precipitation in WA, especially
in the coastal areas (Guinea Coast) and the Sahelian and the Sudan regions during
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Figure 6.7: Results of spatial correlation analysis between the CAMS-derived SPI-1
observations and different atmospheric circulation patterns. a) TNA, b) WHWP, ¢)
MIO_E20, d) AMM, for the boreal summer (from left to right: June, July, August,
September).

the boreal summer (June-September). Based on the performed analysis, we conclude
that areas showing strong correlation with teleconnection indices, should have strong
statistical connection with predictors, which we can use in the proposed statistical post-
processing scheme to provide better forecasts. In June, we expect good skills in the
eastern and coastal parts of the Sahel and Sudan regions (south of Mali, Niger, north of
Burkina Faso, Nigeria, coastal parts of Mauritania, Senegal, Guinea), whereas in July,
the connection is not as strong compared with other months, which can cause lower
predictability. In August and September, forecasts for the northern parts of the central
Sahel and areas close to the coast should be skilful. Therefore, the closer the region to
the Atlantic, the better we expect the forecast to be, since precipitation in this area has
a strong connection to SST.
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6.4 Statistical forecasting scheme for West Africa

6.4.1 Predictor detection and cluster analysis

In order to test the statistical forecasting model 1 (see Section for a region from
Russia (see Section we apply it to WA, which is well-known as a complex area
with intensive drought and wet regimes during the June-September period. In sec-
tion [6.3| we demonstraited the influence of large-scale teleconnection patterns on pre-
cipitation formation in the region. The seasonal anomalies in WA have been linked
to SST variability (Folland et al. |1991; Janicot et al. [1996; Ropelewski et al. 1987).
Changes in SST control the transfer of large amounts of energy from the ocean to
the atmosphere, which significantly influences the formation and duration of dry and
wet events (Bjerknes [1969). Thus, SST plays a crucial role in WA climate and the
corresponding forecasts. However, the impact of SST anomalies on WA differs from
one part of the region to another and it is necessary to take into account the regional
aspects of climate. Of course, SST is not the only variable that influences monthly
weather conditions in this area; among other factors, pressure fields H500 and MSLP
also have effects on precipitation, since all atmospheric dynamics are pressure based.
In section [6.3] we have outlined the significance of the connection between telecon-
nection indices (many of them being pressure-based) and precipitation in WA. In ad-
dition, section demonstrated the necessity of using pressure fields in precipitation
reconstructions. Therefore, we used surface temperature (ST, combined sea and land
surface temperature) instead of standard SST to increase the covered area and take into
account the boundary level temperature, along with H500 and MSLP as possible pre-
dictors, and each was subjected to cluster analysis in order to detect areas that could
be influencing precipitation.

Before performing cross-correlation analysis, the resolution of the FR is selected. In
WA, an initial resolution of 2.5° for the field to be forecasted and 1° for the predictors
are used. Another new idea implemented in the WA case study is to check the fore-
casting ability of the model for 0-31t periods. Since WA is a complex region which is
influenced by all three tropical oceans as well as the Mediterranean Sea (the north of
WA, the Sahel region), ST is obtained in the area 40°S-40°N, 180°W-180°E (Fig.
a). Both pressure fields (H500, MSLP) should cover the processes in the Pacific and
Atlantic oceans, we therefore used the ranges of 40°S-60°N, 180°W-10°E (Fig.[A3|b).
Based on these three potential predictor fields, we perform the cross-correlation anal-
ysis between each grid cell from each predictor field and each grid cell from the SPI-1
field separately for the entire research period and each lead-time separately. To identify
the closest connection between predictor fields and predictand, we limit the correla-
tion values by the 1 and 99th percentiles for all empirical correlation values. Here we
should draw parallels with the corresponding analysis for Russia, where we defined
the regions as exhibiting an absolute correlation value above 0.4. Using the 1 and 99th
percentiles points for the predictor selection procedure, allows us to identify a thresh-
old for each forecasting region (FR), which in turn is a more sensitive and accurate
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approach to detect candidate regions. We noticed (as in Russia) that the candidate
regions in WA have a tendency to cluster in space.

Candidate regions further subjected to cluster analysis are performed using the R func-
tions hclust for hierarchical clustering (Murtagh et al. 2014) and mclust for normal
mixture modeling for model-based clustering classification and density estimation
(Fraley et al. 2012)). The second package, mclust, is used to check if the obtained
results from the Aclust are robust. The idea behind hclust procedure is to check the
Euclidean distance between grid points and provide as output only those cells, having
the minimum spatial distance to each other, i.e., neighbours (single-linkage/minimum-
distance clustering, Section [3.3)). Outputs of the clustering procedure produces several
spatially distributed potential predictor clusters for each FR. Afterwards, the geograph-
ical centre is found and the weighted mean of all time series within respective cluster
is computed for further usage in the regression model. Notably, ST has more poten-
tial clusters than H500 and MSLP, which again indicates that statistical precipitation
variability in WA is directly influenced by ST.

6.4.2 Implementation of forecasting schemes

In this section we shortly describe the implementation of the previously identified pre-
dictors into both forecasting models. Model 1 follows the strategy discussed in sec-
tion For this purpose, we consider all combinations of ST (x;), H500 (y;) and
MSLP (z;) predictors to provide individual forecasts of SPI-1 (M; ;) for a given FR and
month in terms of a set of linear regression equations (as discussed in Section 4.3.1).
By this procedure, each FR is associated with an individual set of linear equations that
are independently solved to generate an ensemble of individual SPI forecasts based on
0-31t ST, H500 and MSLP predictions obtained from the CFSv2 model. This set of
forecast equations can then be evaluated in both deterministic and probabilistic ways.

The number of possible predictive clusters is only limited by the number of sub-regions
considered and the requirement that different clusters need to be spatially discon-
nected. The procedure for probabilistic forecasts is fully described in Section [5.6.2}
as the result in this case, we obtain forecasts in three gradations, BN, NN and AN,
with probabilities of each event type to occur for the period June - September for each
lead-time.

The detailed description of model 2 is given in Section[d.4.1] In this case, all identified
predictors from ST, H500, MSLP fields are combined in one multiple linear regression
equation and evaluated, as previously mentioned, in both deterministic and probabilis-
tic ways.
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6.5 Forecast verification

6.5.1 Deterministic forecast
6.5.1.1 Traditional spatial verification methods

Deterministic forecasts obtained from model 1 and model 2 are checked firstly by us-
ing traditional spatial metrics, such as RMSE, MAE and point-wise correlation. The
results for all four months and 0-31t results are presented in Table [0.2] Comparing
both models according to the listed metrics, we find that model 1 predicts SPI-1 more
accurately than model 2. For model 1, the correlation is higher, by around 0.2, and the
errors are almost half lower. The best forecast is achieved for June, with low RMSE
and MAE. The month with the second highest accuracy is September, while for Au-
gust, the forecast is slightly worse, and the worst forecast is obtained for July, with the
largest values for RMSE and MAE and lowest correlation values (Table[6.2). The low-
est values are observed in the southern parts of WA (Angola, Zaire; Fig. , near the
Gulf of Guinea and in the eastern parts of the Sudan region. These patterns strongly
resemble the areas of high and low correlation between SPI-1 and teleconnection in-
dices, identified in Section[6.3] The northern part of WA shows high predictability, as
also expected from the teleconnection analysis.

The derived verification parameters for model 2 show a slightly different picture of
the distribution of forecast accuracy for boreal summer in WA. In general, model 2
predicts precipitation with the lowest errors in August, with mean values for RMSE
of 1.12, MAE of 0.89, and a mean correlation value of 0.54. Thus, the errors are
significantly higher, and correlation is much lower than for model 1. Next, in July,
both errors are higher (1.20 and 0.95, respectively) and the mean correlation is just
0.46. In September, the results for the errors are similar, with an RMSE of 1.21 and
MAE of 0.95; however, the mean correlation is a little higher (0.51). Finally, June has
the highest error values (1.65 and 1.03, respectively) and the highest mean correlation,
0.54. Maps of the spatial distribution of correlation coefficients (Fig. [6.9) display an
area of low values in the central (continental) part of WA. Having high correlation and
high error means the bias of obtained results is also high and we do not catch the mean
values good enough, however the bias is not checked explicitly. Again, as described
for model 1, the July 2It case shows very low values compared to other months and
lead-times. We also observe more northern areas with low values compared to model
1. However, coastal areas exhibit good forecasts, with correlation coefficients of 0.7 to
0.8.

Next, the outputs of deterministic forecasts are analysed by conditional quantile plots
(Wilks [2011) derived for each forecasting month for both models. Here, we use a
modified version of classical Q-Q plots, plotting 10/90%, 25/75% quantiles, median
and histogram (Fig.[6.10]and [6.TT). Conditional quantile plots (CQP) are a convenient
method for graphical representation of the joint distribution of forecast and observa-
tions. Quantiles are derived from the conditional distributions p (o; | f;) in relation
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Figure 6.8: Point-wise correlation between the forecasts obtained by model 1 and ob-
served SPI-1 for June, July, August, September for a) Olt, b) 11t, c¢) 2It, d) 31t forecasts.
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Figure 6.9: Same as for Figure but for model 2.
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to the line of identity, and the lower parts of the figure show the unconditional distri-
butions of the forecasts, p(f;) (Murphy et al. |1987). In the best forecast, the red line
characterising the median must be positioned on the main diagonal. Any deviation
from this line shows uncertainties in the forecasts and SPI values that are poorly fore-
casted. For better comparison, we fix the axis on the figures at the interval [-4, 4] (in
the SPI-1 gradation, values of -4 and 4 characterise extreme drought and wet events).
Comparing both forecast models, it is clearly seen that model 1 provides acceptable
results (except for June 21t, August Olt; Fig.[6.10). The median line intersects with the
diagonal line for normal events; however, there are forecasts for dry and wet events
that significantly deviate from the diagonal line. There are even some cases where
the median line becomes almost flat (June Olt, July 2It) and these forecasts are less
reliable. In general, dry events are more closely following the diagonal line than wet
events; however, with different lead-times, various situations can be observed.

We cannot conclude that with a larger lead-time the quality of the forecast is reduced.
On the contrary, for August and September, the 31t forecast presents the current situ-
ation more accurately than the 21t or 11t forecasts. For model 2 (Fig. , it can be
clearly seen that the forecasts are much further separated from the diagonal line than in
model 1. The intensity of dry and wet events is also much more strongly overestimated
by model 2 than by model 1. From the figures it is hard to select "good" and "bad"
forecasts, since they all look more or less similar and present low accuracy.
Additionally, we present comparison maps with observed and deterministic forecasts
for one randomly selected case with forecast values of all lead-times for both model
1 and model 2 (Fig. [6.12)). The left panel presents the observed SPI pattern and de-
terministic forecasts for both schemes with 0-31t are presented on the right side. In
June 1984 we clearly observed an intense and extreme drought in WA. Both models
predict the actual drought and wet events accurately. However, the spatial distribution
is not accurate, especially for model 2. Moreover, Olt and 11t forecasts from model
2 underestimate wet events and produce forecasts in the wrong areas. More accurate
visualisations of deterministic forecasts are presented by model 1, where spatial locali-
sation and intensity of dry and wet events are presented reasonably well. Less accuracy
is achieved for 2It, where both wet and dry events are underestimated. Conversely, for
the 31t forecast wet events are predicted in the southern part of the study region with
high accuracy for both spatial distribution and intensity.

In summary, traditional forecast verification methods show that model 1 produces de-
terministic forecasts more accurately, compared to the more classical model 2. That
means, using combinations of predictors and obtaining ensembles of forecast equa-
tions for each forecast region can increase the probability of getting better forecasts
compared to the use of only one deterministic model.

6.5.1.2 Fractions SKkill Score

Spatial verification methods have recently become popular in the meteorological com-
munity (Radanovics et al. 2018). To keep up with the state-of-the-art we compute
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Figure 6.10: Conditional quantile plots for model 1: a) Olt, b) 11t, ¢) 2It, d) 31t fore-
casts. The red solid line presents the median, the green dashed line the 25th and 75th
percentiles, the blue dashed line the 10th and 90th percentile; the blue histogram shows
the frequency of forecasted values.
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Figure 6.11: Same as for Figure but for model 2.
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Observed SPI, June 1984
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Figure 6.12: Example results of observed SPI and deterministic forecasts of spatial
SPI-1 patterns for June 1984 using model 1 (top 4 panels) and model 2 (bottom 4
panels) for a) Olt, b) 11t, c) 2It, d) 31t forecasts.
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Table 6.2: Summary of forecast verification parameters.

Model 1
0lt 11t 21t 31t
Month RMSE | MAE Corr | RMSE | MAE Corr | RMSE | MAE Corr | RMSE | MAE Corr
June 0.7004 | 0.5348 | 0.7285 | 0.7111 | 0.5473 | 0.7109 | 0.7227 | 0.5510 | 0.6808 | 0.7129 | 0.5463 | 0.7033
July 0.7699 | 0.5786 | 0.6372 | 0.7682 | 0.5801 | 0.6655 | 0.8767 | 0.6653 | 0.3855 | 0.7668 | 0.5788 | 0.6596
August | 0.7978 | 0.6129 | 0.6488 | 0.7366 | 0.5686 | 0.7163 | 0.7612 | 0.5925 | 0.6603 | 0.7489 | 0.5784 | 0.7007
September | 0.7536 | 0.5914 | 0.6675 | 0.7408 | 0.5769 | 0.6930 | 0.7386 | 0.5762 | 0.6921 | 0.7274 | 0.5696 | 0.7193
Model 2
Olt 11t 21t 31t
June 1.0592 | 0.8463 | 0.5629 | 1.0592 | 0.8463 | 0.5629 | 3.4357 | 1.6214 | 0.4806 | 1.0503 | 0.8404 | 0.5567
July 1.0847 | 0.8620 | 0.5199 | 1.1843 | 0.9427 | 0.5011 | 1.4205 | 1.1226 | 0.3010 | 1.0966 | 0.8721 | 0.5191
August 1.2495 | 0.9879 | 0.5103 | 1.1139 | 0.8949 | 0.5481 | 0.9993 | 0.7887 | 0.5474 | 1.1253 | 0.8987 | 0.5343
September | 1.0198 | 0.8189 | 0.5147 | 1.1056 | 0.8741 | 0.5500 | 1.2301 | 0.9807 | 0.5132 | 1.4883 | 1.1328 | 0.4848

Fractions Skill Score (FSS) in our study to check the obtained deterministic forecast
for both models. Most of the spatial verification characteristics are available in R
within the package Spatialeﬂ For FSS calculations we use a combination of the
SpatialVx package and R code provided by Dr. M. Hoff (DWD, Germany) for better
visualisation.

The FSS calculations require to identify thresholds and scales (numbers of neighbour-
hood boxes), where the model produces different scores. In deterministic forecasts, it
is important to identify intensity thresholds of dry and wet events (from -1 to -2 for dry
events and from +1 to +2 for wet events). As neighbourhood size, we take the highest
value equal to 8 (in our case the WA domain is containing 13 by 18 grid points, if we
take n = &, it fully covers the study area). We obtained the FSS for dry and wet events
for deterministic forecasts for both models, 0-31t, and the years 1982-2016. FSS can
be obtained for each year separately or for a whole period of interest, depending on
the specific purposes.

The results of FSS calculations are shown in Figures [A5|and[A6]as a function
of dry/wet intensity threshold (x-axis) and spatial scale (y axis). Within these plots, the
numbers present the FSS score values; dark red, red and orange colors indicate good
performance, whereas all colors below the blue dividing line represent poorer perfor-
mance. The edge between those two areas (indicating the range of "useful forecasts")
can be calculated using the formula FSS > 0.5+ f,5/2, where f,, is the fraction of
observed events in the full domain (Mittermaier et al. 2010). Values below the blue
line in the FSS diagrams display the skill that would be achieved using traditional grid
box matching and a low threshold. All other values of 7 (from 2 to 8 in this case) on the
y-axis present FSS scores for upscaled boxes. Following this logic, it is easy to achieve
high skills for the forecast with n = 8, since all domains are taken into account and the
higher n, the higher the FSS. Comparing the forecast for different box sizes helps to
overcome the biggest problem of weather forecast verification — the double penalty

6Spatial Vx: Spatial Forecast Verification https://CRAN.R-project.org/package=Spatial Vx
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problem (see Section [3.5.1)), and thus the fact that traditional techniques consider two
errors — the first when the forecasted event did not occur at the corresponding loca-
tion, and the second when the event happened where it was not forecasted (Gilleland
et al. 2009). Therefore, matching observed and forecast values for large box sizes
decreases the chance of double penalty and increases the accuracy of the forecast.
Forecasted dry events presented in Figures and for both models show high
FSS values with similar qualities, as found using traditional verification methods. The
FSS values for model 1 are in most cases (except for July), especially for box sizes 1
and 2, above the blue threshold. Only in July, the forecasts for all four lead-times show
much lower values, with FSS below the usefulness criterion (July, 2It). For other box
sizes, we found acceptable scores. August and September forecasts are more accurate
than June and July, however, FSS values in June are also high, especially for 11t and 31t
forecasts. The highest accuracy can be observed again for the September 31t forecast.
FSS values for model 2 are slightly higher, and values are equally distributed among
all months and lead-times; however, none of the cases covers the first two box sizes.
That behaviour allows us to conclude that model 1 shows higher accuracy compared
to model 2 for dry events.

FSS values for wet events are presented in Figs. [A4] and [A6] The FSS values for
wet events have similar behaviour and distribution as for dry events. According to
Figure [A4] FSS values are higher in August and September, whereas slightly worse
forecasts are obtained in June, with the lowest values presented in July. The 21t forecast
is again useful for boxes with sizes n = 1,2, as we noticed using other verification
characteristics. For wet events, different thresholds have different accuracy. Boxes
with sizes n = 1,2 show low FSS, with values in the gradation below the value of
useful forecasts. However, as the box size increases, FSS rises for thresholds (of the
SPI-1 values) from 1 to 1.6 and in June, Olt for all thresholds. The model does not
produce a score for thresholds above 1.6, meaning that the model can better predict
low intensity wet events compared to such with high intensity.

Wet events in model 2 have lower FSS values, and the boxes with sizes n=1, 2 for all
months and lead-times also show skills below the usefulness threshold. July shows
bad forecast accuracy compared to other months, but without large differences among
lead-times. The highest accuracy is obtained in September, while the accuracies for
June and August are similar.

We conclude that the FSS is a useful tool to verify the quality of forecasts for SPI gra-
dations and helps the user becoming aware of incorrect event gradation. An advantage
of the SPI (particular using SPI in FSS analysis, instead of pure precipitation) is its
gradation system. Thus, the main challenge for a forecaster is to predict the grada-
tion correctly (not predict an exact value), which is increasing the chance of obtain-
ing a high accuracy of a forecast. Generally, the FSS is better when verifying larger
domains with many grid points; otherwise, with smaller domains, the results must
be interpreted more carefully. The FSS helps to overcome the problem of a double
penalty and to identify the frequency of its occurrence. This score reflects the general
behaviour of the forecast accuracy obtained from traditional methods and can be used
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as an extra verification tool.

6.5.2 Probabilistic forecast

Probabilistic forecast comparison of both regression models for WA is done using
ROC curves, attribute diagrams and CRPS, since they accurately quantify the skills
of probabilistic forecasts. All these characteristics are calculated for each month and
lead-time to show the deviation in skills when moving from O until 31t during the June-
September season for both forecasting models.

6.5.2.1 ROC curves

ROC curves are constructed for all three event types (AN, NN, BN) for both models
and include 3lt cases on each graph presented in Figure [6.14] for model 1 and Fig-
ure for model 2. The resulting prediction accuracy (AUC parameter) for model 1
and 2 is presented in Table

The presented ROC curves and the AUC parameter clearly show that the probabilistic
forecast derived from model 1 has good accuracy. All curves are far from the horizontal
line and AUC values vary between 0.65 and 0.85 for dry events, 0.67 and 0.82 for wet
events, and 0.47 and 0.62 for normal events. Again, the model has a low accuracy for
normal events, as also found for Russia in Section[5.6l However, the model’s skills are
good (around 0.8 for most cases) for dry and wet events. We also compared different
forecasts with lead-times from 0-3 months, and the best predictability for dry events
is achieved in June (0lt), followed by September (31t), August (11t) and July (11t); for
wet events the results are almost the same, apart from July. The highest values are
observed in June (0lt), September (21t), July (0lt) and August (11t). We notice a lack
of linear dependence between increasing lead-time and decreasing accuracy, as the
behaviour is different for each month. In June, the highest accuracy for dry events is
observed for 11t, then for Olt, 31t and finally for 2It; however, the differences between
the AUC values for different lead-times are only in the decimals, and thus too small to
be significant. In July, dry events are forecasted to be much worse, with the best results
being achieved for Olt and 3¢, then for 11t and 21t. In August, the best forecast is in 11t
and 31t, then 2It and Olt. Unexpectedly, in September the best forecast is achieved for
31t, then a bit worse AUC value is obtained for Olt and values similar to each other are
observed for the 21t and 11t predictions.

The ROC curves and AUC values derived from model 2 show clearly worse results
(Table [6.3). Dry and wet events are forecasted well enough, with AUC values around
0.7; however, neutral events are presented insufficiently, with AUC around 0.5. Be-
tween different lead-times, the highest AUC values are obtained from the 31t and Olt
forecasts; between months, the values are similar with small deviations and it is diffi-
cult to emphasize the best and the worst forecasting month within model 2. According
to neutral events, they were also found to be poorly forecasted.
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Figure 6.14: ROC curves describe the forecast accuracy for different groups of SPI-1
conditions over WA during the four boreal summer months and a-d) BN, e-h) NN and
i-1) AN for model 1.

Table 6.3: Summary of AUC values for WA.

Month Olt 11t 2t 3t
BN | NN | AN BN | NN | AN BN [ NN | AN BN | NN | AN
Model 1
June 0.850 | 0.5957 | 0.8252 | 0.8527 | 0.5960 | 0.8258 | 0.8258 | 0.5746 | 0.7933 | 0.8270 | 0.5850 | 0.8112
July | 0.7783 | 0.5596 | 0.7942 | 0.7963 | 0.5417 | 0.7863 | 0.6550 | 0.4770 | 0.6711 | 0.7953 | 0.5494 | 0.7848
August | 0.8060 | 0.5499 | 0.7670 | 0.8371 | 0.6226 | 0.8389 | 0.8244 | 0.6015 | 0.8194 | 0.8316 | 0.6113 | 0.8292
September | 0.8122 | 0.6231 | 0.8273 | 0.8177 | 0.6182 | 0.8240 | 0.8200 | 0.6206 | 0.8402 | 0.8411 | 0.6306 | 0.8313
Model 2
June | 0.7580 | 0.5355 | 0.7519 | 0.7437 | 0.5275 | 0.7495 | 0.7243 | 0.5209 | 0.7108 | 0.7587 | 0.5533 | 0.7611
July | 07453 | 0.5592 | 0.7544 | 0.7219 | 0.5465 | 0.7220 | 0.6417 | 0.5300 | 0.6220 | 0.7425 | 0.5603 | 0.7353
August | 0.7357 | 0.5430 | 0.7367 | 0.7540 | 0.5721 | 0.7369 | 0.7620 | 0.5578 | 0.7605 | 0.7518 | 0.5702 | 0.7434
September | 0.7440 | 0.5531 | 0.7363 | 0.7531 | 0.5553 | 0.7490 | 0.7377 | 0.5454 | 0.7232 | 0.7138 | 0.5486 | 0.7076




122 Chapter 6. S-t patterns of SPI and its forecasting in WA

August September

1.0

0.8

BN
04 0.6

08 1.0 0.0 0.2
|

TPR
NN
04 0.6

1.0 0.0 0.2
|

AN
04 06 08
|

— ol |
— 1t
— 2t | J — 2t
— 31t | — 3t
—

7‘\ T T T T T T T T T T T T T T T T T T T T T
00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10
FRP

00 0.2

Figure 6.15: Same as Figure 6.14] but for model 2.
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6.5.2.2 Reliability diagrams

Further verification analysis for probabilistic forecasts is performed by considering
attribute diagrams, Brier Score (BS) and Brier Skill Score (BSS) values obtained for
both models. Attribute diagrams are generated for all months and lead-times separately
and are presented in Figures and In general, all reliability diagrams
for model 1 show high skill scores and good calibration, except for neutral events.
According to Wilks (2011) descriptions of different types of attribute diagrams, dry
events at all lead-times show good calibration and in some cases are underestimated
(dry bias), wet events are forecasted slightly worse, also with good calibration and
overestimation (wet bias). Unfortunately, forecasts of neutral events are overconfident
and have poor resolution.

The Brier Skill Score (BSS) characteristics of reliability diagrams are derived by using
the verify function of the verification package in R for both models and are presented
in Table[6.4] For model 1, the BSS parameter has similar behaviour as the correspond-
ingly AUC values. The best forecast is achieved for dry events for Olt, then slightly
smaller BSS values are found for 11t, 31t and 2It, respectively. In July, the BSS values
are distributed such that the highest value is observed for 11t, then for 3lt, Olt and 2It.
In August and September, again the best forecasts are achieved for 3lt, then for 1It,
21t and Olt. Wet events are forecasted a bit worse; however, the BSS values are still
significantly high. In June, the best forecast is derived for Olt, then for 11t ,31t, and 2It,
while in July the ranking is (best to worst) 3lt, Olt, 11t and 2It.

It should be mentioned that as for the ROC curves in July, for all events the BSS shows
low values, and for 2lIt the forecast skills is not significant. In August, the highest BSS
values are observed for 11t, then for 31t, 21t and Olt, while in September - for 3lt, Olt,
11t and 3It. Neutral events are forecasted with low, but positive, BSS values for all
lead-times and during all months, except for one case (July, 2It). In June and August,
the best forecast is obtained for Olt, 11t, 31t and finally for 2It. In July, the accuracy
ranking is almost the same, with a difference between the first two lead-time forecasts,
so the best prediction is obtained for 11t, with results a little bit worse for Olt, then for
31t and 2It. In September, the best forecasts are for 3lt, 11t, 21t and Olt.

The results obtained for the model 2 are presented in Figures [6.17] [ATO} [ATI] and
[AT2] Here, all diagrams have minimal resolution, as all the curves are positioned far
from the diagonal. The below and above normal events in all cases are overestimated
(wet bias) and due to that, normal events are forecasted relatively poorly. For normal
events, the BSS is always negative, which means that a climatological forecast gives
better results than model 2, and the attribute diagrams are showing rare events.

The BSS and BS parameters for model 2 are presented in the second part of Table [6.4]
for all months, lead-times and dry, wet and neutral events separately. The BS values
are high for all cases, compared with model 1, and since the BS and the BSS are related
to each other, the BSS values are quite low. However, for dry and wet events only in
some cases the BSS values are negative: for Olt, 11t and 31t in August, and for 2It in
June. The best forecast is obtained for June and August for Olt-21t; for 31t the best
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Figure 6.16: Reliability diagrams for probabilistic SPI-1 forecasts for model 1 of
below normal, normal and above normal precipitation conditions over WA during the
four boreal summer months (June - September) for Olt forecasts. Point labels give the
relative frequencies of use of each forecast probability.

forecast is found in June and July.

6.5.2.3 Continuous ranked probability score

An additional verification parameter is used in order to check the quality of proba-
bilistic forecasts obtained from both models. The continuous ranked probability score
(CRPS; Matheson et al. [1976)) is one of the most popular verification metrics in the
meteorological community. The best CRPS is the lowest (i.e., 0 indicates the best
forecast), since it generalizes an absolute error (see Section [3.5.1]).

The CRPS is calculated for each month and each lead-time for both models. Based
on the results (Table [6.5)), we conclude again that model 1 tends to perform better,
since the values for model 1 are lower than those for model 2. The lowest values are
distributed between different lead-times; however, the smallest value is observed in
September for the 31t forecast. Based on the CRPS, the forecast for June is slightly
more accurate compared to other months. However, the differences are not large; thus,
little higher values are observed in August, with the most accurate forecast obtained
for 11t. The best forecasts in September are found at 21t and 31t. In July, as mentioned
before, we obtained the lowest accuracy, with a CRPS of around 0.52.

The CRPS obtained from model 2 have higher values. It is difficult to name the best
forecasted month, since the values vary between lead-times. However, the lowest score
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Table 6.4: Summary of verification parameters: Brier Score (BS) and Brier Skill
Score (BSS) for Model 1 (top part) and Model 2 (bottom part)

Model T
OlIt
BN NN AN
Month BS BSS BS BSS BS BSS
June 0.1590 | 0.2765 | 0.2071 | 0.0805 | 0.1734 | 0.2179
July 0.1844 | 0.1710 | 0.2188 | 0.0106 | 0.1857 | 0.1677
August | 0.1821 | 0.1866 | 0.1883 | 0.1385 [ 0.1879 | 0.1613
September | 0.1795 | 0.1910 | 0.2089 | 0.0539 | 0.1761 | 0.2134
11t
Month BS BSS BS BSS BS BSS
June 0.1640 | 0.2531 | 0.2134 | 0.0525 | 0.1811 | 0.1829
July 0.1812 | 0.1854 | 0.2114 | 0.0442 | 0.1861 | 0.1659
August | 0.1728 | 0.2283 | 0.1951 | 0.1072 | 0.1669 | 0.2549
September | 0.1720 | 0.2247 | 0.2065 | 0.0650 | 0.1762 | 0.2131
21t
Month BS BSS BS BSS BS BSS
June 0.1713 | 0.2201 | 0.2210 | 0.0185 | 0.1887 | 0.1490
July 0.2368 | 0.0650 | 0.2652 | -0.1991 | 0.2411 | -0.0806
August | 0.1797 | 0.1976 | 0.2092 | 0.0427 | 0.1781 | 0.2052
September | 0.1691 | 0.2381 | 0.2066 | 0.0643 | 0.1725 | 0.2297
20t
Month BS BSS BS BSS BS BSS
June 0.1706 | 0.2233 | 0.2160 | 0.0408 | 0.1814 | 0.1818
July 0.1836 | 0.1744 | 0.2205 | 0.0030 | 0.1842 | 0.1747
August | 0.1711 | 0.2357 | 0.2028 | 0.0721 | 0.1713 | 0.2354
September | 0.1683 | 0.2416 | 0.2024 | 0.2239 | 0.1680 | 0.2498

BN NN AN
Month BS BSS BS BSS BS BSS
June 0.2149 | 0.0305 | 0.301T1 | -0.3371 | 0.2154 | 0.0191
July 0.2205 | 0.0053 | 0.3025 | -0.3432 | 0.2179 | 0.0078
August | 0.2316 | -0.0447 | 0.2983 | -0.3246 | 0.2374 | -0.0810
September | 0.2136 | 0.0363 | 0.2995 | -0.3300 | 0.2115 | 0.0372

Month BS BSS BS BSS BS BSS
June 0.2178 | 0.0238 | 0.2847 | -0.2876 | 0.2129 | 0.0427
July 0.2329 | -0.0438 | 0.2901 | -0.3118 | 0.2332 | -0.0487

August | 0.2628 | -0.1780 | 0.2686 | -0.2146 | 0.2753 | -0.2379

September | 0.2178 | 0.0238 | 0.2869 | -0.2973 | 0.2250 | -0.0117

Month BS BSS BS BSS BS BSS
June 0.2259 | -0.0084 | 0.2804 | -0.2831 | 0.2251 | -0.0053
July 0.2155 | 0.0383 | 0.2824 | -0.2926 | 0.2250 | -0.0050

August | 0.2038 | 0.0902 | 0.2741 | -0.2546 | 0.2066 | 0.0773

September | 0.2171 | 0.0312 | 0.2811 | -0.2863 | 0.2228 | 0.0050

Month BS BSS BS BSS BS BSS
June 0.2134 1 0.0470 | 0.2748 | -0.2447 | 0.2161 | 0.0263
July 0.2141 | 0.0441 | 0.2855 | -0.2928 | 0.2180 | 0.0177

August | 0.2247 | -0.0034 | 0.2858 | -0.2945 | 0.2330 | -0.0501

September | 0.2381 | -0.0634 | 0.2867 | -0.2982 | 0.2424 | -0.0926
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Figure 6.17: The same as in Figure , but for model 2.

is observed in August for the 2It forecast (0.65). The worst forecast is obtained in
September for 31t, while interestingly enough, the same forecast is the best according
to model 1. In general, in June and July the CRPS values are similar, except for
June 11t forecast, where the score is relatively high. In August and September, the
situation is not stable at all, skills are different and range from 0.65 (August, 2It)
to 0.86 (August Olt). In September, the values are slightly higher, with the lowest
observed for the Olt forecast and the highest for 31t. Thus, August exhibits the most
accurate forecast in model 2. We conclude that the CRPS values are mostly consistent
with the corresponding results obtained from the other verification metrics.

6.5.3 Example: June 1984

A visual comparison between the two forecasting models and the observed SPI, trans-
ferred into the three gradations, is presented in Figure[6.18]for the same example month
(June 1984) as in Section [6.5.1] The observed SPI values are transferred into the cat-
egories of dry, neutral and wet conditions and visualised. Five significant regions of
dry and wet events are evident in Figure Regarding the wet events, the first area
is located in the western part of WA, covering the Guinea Coast and western part of
Mauritania; the second is in the north-eastern part of WA, and finally, the third part
is located in the south of WA. Dry events cover central areas of WA, except for small
regions over Nigeria, dividing the big dry domain into two parts.

Comparing both models with observational data, we conclude that model 1 reproduces
dry and wet events slightly more accurately than model 2. The western wet area is not
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Table 6.5: Summary of CRPS values for WA for model 1 and model 2.

Month | Ot [ 1t | 2t | 3t
Model 1
June [ 0.4137 | 0.4320 | 0.4245 | 0.4108
July | 0.5094 | 0.5101 | 0.5805 | 0.5105
August | 0.4344 | 0.4070 | 0.4345 | 0.4148
September | 0.4472 | 0.4440 | 0.4210 | 0.3998
Model 2
June | 0.7318 [ 0.7410 | 0.9286 | 0.7238
July | 0.7275 | 0.8203 | 0.9183 | 0.7414
August | 0.8558 | 0.7685 | 0.6461 | 0.7724
September | 0.6598 | 0.7422 | 0.8469 | 0.9413

reproduced well by both models; only the 2It in the model 1 and model 2 presented
forecasts relatively close to the observed situation. The eastern wet area is also fore-
casted insufficiently: only the 11t forecast from model 1 and Olt, 2It forecasts from
model 2 represented this area with a reasonable approximation to the observations.
Both models for all lead-time forecasts capture the dry area in the south, where inac-
curacy is mostly noticed in the spatial distribution. We observe that the spatial pattern
of model 1 is more precise, especially in the Olt and 21t forecasts. Dry events are re-
produced by model 1 correctly for Olt and 31t forecasts, for 2It, the forecasted dry area
moves towards the north and the 11t forecast is too smooth, although it is still pos-
sible to recognize dry events. Model 2 produces good enough results for Olt and 21t
forecasts, while the figures for 31t and 11t are again forecasted too smooth.

6.6 Discussion

We have considered a second region in order to study the applicability of the proposed
forecasting scheme to different regions and for different lead-times. We focused on a
study period of 1982-2016 and four months (June-September) to characterise dry and
wet periods in the WA region. We have first provided an analysis of the precipitation
data used, reconstructed the SPI-1 index for further calculations, checked the quality of
precipitation forecasts obtained from the CFSv2 forecasting model and motivated the
necessity of implementing statistical post-processing methods in order to increase the
quality of long-range precipitation predictions. The chapter also included an analysis
of the most extreme cases of drought and wet events in WA during the study period.
The analysis was complemented by an evaluation of long-term variability of extreme
drought and wet events, where both types of events were checked for persistence in
time, identifying the historically most extreme events with their duration and spatial
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Figure 6.18: Example results of observed SPI (in terms of below, normal and above
normal events) and probabilistic forecasts of spatial SPI-1 patterns for June, 1984 for
model 1 (top 4 panels) and model 2 (bottom 4 panels) for: a) Olt, b) 11t, ¢) 21t and d)
31t forecasts.

extent.

Further, we have described the possible influence of teleconnection patterns on precipi-
tation formation and have identified the strongest correlations between certain patterns
occurring not only in the Atlantic, but also in the Pacific and Indian oceans, as well as
the Mediterranean Sea. Based on this teleconnection analysis, we conclude that, since
some regions of WA have strong statistical relations with different indices, using these
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indices as predictors could allow obtaining better forecasts in those areas.

Based upon these observations, we have demonstrated the selection of informative
predictors for WA SPI values necessary for constructing the forecasting models. We
have considered three candidate fields of potential predictors (ST, H500 and MSLP) to
identify interconnections with the SPI-1, calculated from the CFSv2 model and CAMS
data, respectively. Combinations of potential predictors were identified and used in the
forecasting models.

Another new feature introduced in the analysis of WA described in this chapter is
the comparison of two regression based forecasting models. The model 1 presents
the approach as used for Russia in Section {.3.1] with an ensemble of simple linear
regression equations obtained for each FA, while model 2 (see Section[4.4.1)) presents a
classical multiple linear regression approach, where all possible predictors are included
in one single equation.

To identify the best forecasting model, we have employed various verification metrics.
We have found that for WA, model 1 produces more accurate forecasts for both de-
terministic and probabilistic predictions. The highest accuracy was achieved in June
followed by September, August and July for dry events, while slightly worse accu-
racy was achieved for wet events, and acceptable accuracy for normal situations. We
demonstrated the absence of a linear relation between predictability and lead-time.
However, the 31t forecast was even better than Olt (e.g., in the September case).
Comparison of deterministic and probabilistic forecasts for model 2 demonstrated
lower accuracy and higher errors than for model 1, and much stronger overestima-
tion of the predicted events. Model 2 also showed different accuracy behaviour in
deterministic forecasting during the study period. It was noticed that SPI values in
maritime regions and areas with less continentality (closer to the ocean) are predicted
better. According to the probabilistic forecasts, model 2 exhibits poor accuracy and
even produced the forecasts worse than climatological forecast. However, visual anal-
ysis demonstrated for the example of June 1984 that both models may be able to de-
scribe the general patterns of all three types of events (BN, NN, AN) with acceptable
accuracy.

To this end, the proposed model 1 produces higher accuracy for deterministic and
probabilistic forecasts and can be implemented for different regions and models. We
could not identify a strong decrease in its accuracy with an increase of lead-time. For
this reason, at least the first four months’ outputs, which have been checked for ST,
H500 and MSLP fields, can be taken from the CFSv2 model for further work.
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Chapter 7
Conclusions and outlook

Obtaining consistent and reliable precipitation forecasts beyond the time-scales of nor-
mal synoptic patterns is a challenging task. The results obtained from such forecasts
are important for a variety of different applications including (but not limited to) agri-
cultural and hydrological planning, decision making in engineering and industry, etc.
Accordingly, since the topic is important, there is an increasing interest in the devel-
opment of improved forecasting schemes.

The main goal of this study was to develop a statistical post-processing scheme based
on linear regression models, reconstructing precipitation in terms of the SPI index
and thereby improving the quality of long-term precipitation forecasts based on the
identified predictors. To test the regression models, two case studies and two fore-
casting models were selected. The first experiment was based on the application of
the SL-AV model to a case study in Russia, where monthly precipitation data for bo-
real summer (June-August) were forecasted for the period 1983-2010. The second
experiment applied the CFSv2 model for West Africa (WA), with the period of in-
terest being the summer wet seasons (June-September) from 1982-2016. In WA, we
focused on monthly precipitation predictions with different lead-times (0-3 months).
After discussed the two cases, we now return to the original research questions that are
presented in the introduction, summarize the main results of this study, and provide an
outlook for further work that could be continued on the topic of further improvement
of precipitation forecast.

7.1 Conclusions

o Since numerical weather prediction (NWP) models do not produce good precip-
itation estimates, are there further statistical methods to improve precipitation
predictions?

Statistical methods are popular tools that aim to improve different lead-time
forecasts, especially long-range precipitation predictions, due to their relatively
simple implementation procedures, potential for fast calculations, and relatively
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easy-to-implement methods to identify significant connections between predic-
tors and the predictand.

The methods applied to NWP outputs are called post-processing methods. They
quantify the relationship between forecasted predictors and observed predictand
in order to obtain new, calibrated forecasts. Statistical post-processing methods
can significantly improve raw NWP calculations and thus have become quite
popular. In this work, we presented an improved monthly precipitation forecast-
ing scheme for different lead-time forecasts, starting at the initialization time for
the Standardized Precipitation Index (SPI) over Russia and WA based on two
prediction models: the SL-AV operational model (for the Russian case study)
and CFSv2 model (for the WA case study). Notably, contemporary NWP mod-
els used for producing seasonal forecasts, like SL-AV and CFSv2, often perform
relatively poorly at this task. This insufficiency results from differences between
the observation and interpretation data in the model, incomplete representation
of physical processes in the atmosphere, systematic biases, and other problems.
Here, we have proposed a new statistical post-processing scheme that includes
some ingredients of other existing schemes but combines them in a way that
(to the best of the author’s knowledge) has not been attempted previously in the
context of SPI forecasting. With this method, we developed an improvement in
the monthly precipitation forecasts of both case studies.

Can we construct statistical forecasting models for predicting precipitation based
on large-scale predictors?

In this work, we presented two forecasting models that display the potential of
this approach. We were motivated by the substantial influence of large-scale at-
mospheric teleconnection patterns on precipitation formation in the two study
regions. Accordingly, our analysis provided a detailed characterization of statis-
tical interrelationships between some of the most prominent Northern and South-
ern Hemispheric centres of action in atmospheric dynamics and the regimes of
boreal summer precipitation across Russia and WA. In regions with significant
co-variability between observed SPI-1 values and corresponding pressure vari-
ables, our new forecasting scheme commonly yields acceptable results and out-
performs previous direct precipitation forecasts. In order to identify potential
informative predictors for the regional SPI-1 fields over Russia and WA, we pro-
vided a cross-correlation analysis for the absolute geopotential at 500 hPa level
(H500) and mean sea level pressure (MSLP) predictors for Russia, and H500,
MSLP and surface temperature (ST) predictors for the WA case study, where
the predictors were taken from hindcasts obtained from the SL-AV and CFSv2
models, respectively. Based on these datasets, we defined potential predictors
for the SPI-1 values in each forecasting region with respect to the target SPI-1
value for a given calendar month. By this analysis, for each forecasting region,
calendar month and lead-time for which SPI-1 was to be predicted, we identi-
fied a set of candidate regions in the H500, MSLP and ST fields. In order to
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obtain a robust and numerically feasible forecasting scheme, we further reduced
the number of individual candidate predictors to a set of regions by selecting
the weighted mean value for each group of spatially contiguous grid points with
strong enough correlations with an target variable. We also introduced extra
conditions that the potential predictors had to satisfy.

Essentially, we prepared sets of possible predictors and they (and their com-
binations) were used in a forecasting scheme to reconstruct past precipitation
in Russia and WA. In this approach, the detection of predictors played a crucial
role; thus, the procedure for identifying potential predictors had to be as accurate
as possible. We noticed that since precipitation in WA has a strong connection
with ST, we obtained more strong candidate predictors from this variable (in
comparison with MSLP and H500), and as a result, achieved higher accuracy
for precipitation reconstructions in WA than in Russia.

The prediction results achieved by the new approach have been compared to
hindcast data, revealing that the proposed prediction scheme has great potential
to improve forecasts for both study regions beyond the existing direct precipi-
tation forecasts of the underlying SL-AV and CFSv2 model. We also showed
the absence of a linear connection between predictability and lead-time for dif-
ferent months: the accuracy between lead-times is different. However, in most
cases, the last 31t forecast was even better than Olt; we noticed that the 21t and
0Olt forecasts were often less accurate.

e Can the statistical forecasting models be implemented for any region and be
constructed by various NWP models?

In this study, the statistical forecasting model is based on linear regression. The
classical interpretation of linear regression is that it shows the linear relationships
between dependent variable(s)/predictor(s) and a predictand. Such relationships
can be identified between any predictors and predictand. We checked the fore-
casting scheme for two case studies - Russia and WA - to show how the scheme
works on such regions, with extremely diverse circulation patterns and precipi-
tation regimes. The good results obtained from the proposed forecasting scheme
show its flexibility and the potential to implement the model for different study
areas.

The most important step of using such scheme is to identify relevant statistical
connections between predictor and predictand. The connection can be identified
by correlation analysis between selected candidate predictors that influence pre-
cipitation in the region of interest. The predictors should be well-presented by
NWP models, e.g., in this thesis we employed two different forecasting models:
SL-AV and CFSv2 for Russia and WA correspondingly.

When we checked the SPI-1 index, obtained from the raw NWP precipitation
we got poor predictability for both NWP models. That is why the implementa-
tion of further corrections is required. One possible way to solve this problem is
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post-processing techniques. In short, the identified potential informative predic-
tors can be used to constrain the expected SPI-1 values for any given grid point,
together with their associated uncertainty. Specifically, we proposed an SPI-1
forecasting scheme in which all possible combinations of individual predictors
from H500, MSLP (for the case of Russia) and H500, MSLP, ST (for WA) are
considered to form a set of linear regression equations for the predictand (local
SPI-1 value). The maximum possible variety of combinations of predictors from
the H500, MSLP and ST fields are used to explore the full space of possibilities
in the probabilistic forecasting task and capture as much as possible of the asso-
ciated forecast uncertainty. Following this rationale, we provided an ensemble
of linear regression equations for each forecasting region. The result of such
regression approach can be delivered in probabilistic and deterministic ways.

7.2 Outlook

The work on the proposed methodology revealed several topics for future research that
may result in further improvements of the proposed forecasting scheme.

e Different precipitation data sets can be tested and used. Recently, many new
high-quality high-resolution and open source precipitation archives have been
published. However, these archives must be comprehensively reviewed in order
to identify the most appropriate ones for forecasting purposes. Their high reso-
lution may be another challenge, since it requires more computational resources,
especially to perform cross-correlation analysis. In such cases, it is important to
provide a procedure of upscaling, which can cause errors and require approxi-
mations. Within this topic, it is necessary to adopt a strategy that balances rea-
sonable resolution and computation time requirements, while providing accurate
predictions.

e Additional predictors could be identified and used to construct the regression
models. In the presented study we used only three predictors - two pressure
covariates and surface temperature. However, other possible predictors (e.g.,
wind velocity), should be also considered, since they may have a strong physical
connection with precipitation formation and may increase the quality of result-
ing forecasts. Additional work can be done on implementing different statisti-
cal approaches for cluster analysis to identify possible potential predictors more
carefully (e.g., network analysis, principle component analysis, Bayesian model
averaging and others).

o Identifying different approaches for obtaining deterministic forecasts is the most
important part of further work in this area. The current way of extracting de-
terministic forecasts from a system of linear regression equations in Model 1
should be reconsidered (e.g., the simple averaging approach should be replaced
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by a more accurate one). A better solution should increase the accuracy of de-
terministic forecasts.

e Other precipitation indices: In the beginning of the work related to this the-
sis, we produced a comparison of the most popular precipitation indices cur-
rently in use (Utkuzova et al. [2015a). This analysis showed that the SPI is the
most appropriate index for representing drought and wet conditions in the mid-
latitudes. Moreover, SPI recommended by the World Meteorological Organisa-
tion (WMO) to detect drought and wet events (Svoboda et al. 2012). Recently,
we have become interested in the SPEI index, which is a slightly modified ver-
sion of the SPI. The SPEI includes evapotranspiration, making it more sensitive
to droughts, since it plays an important role in the formation of serious drought
and wet events, especially in regions with low monthly precipitation totals (sub-
tropics, tropics). Contextually, it makes sense to provide a comparison between
forecasting models applied to SPI and SPEI for different climate regions in order
to identify areas where each index gives the most reliable precipitation forecasts.
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Figure A1l: Results of spatial correlation analysis between the CAMS-derived SPI-1
observations and different atmospheric circulation patterns a) PNA, b) MJO_W10, for
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Figure A2: Results of spatial correlation analysis between the CAMS-derived SPI-1
observations and different atmospheric circulation patterns a) ATL3, b) QBO, c¢) SOI
for September.
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Figure A4: Neighbourhood verification scores using FSS method for wet events for
the period 1982-2016 verified against observed SPI for the same period for Model 1.
a) Olt, b) 11t, ¢) 2It, d) 3It.
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Figure A6: Same as in Figure but for wet events, Model 2.
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