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IV Zusammenfassung 
Grundlage der adoptiven Immuntherapie ist die antigen-spezifische Stimulation, 

Aktivierung und Expansion autologer T-Zellen ex vivo und deren Reinfusion in den 

Patienten. Die gezielte genetische Veränderung der zu transferierenden T-Zellen 

ermöglicht es zum Beispiel ihre Avidität zu erhöhen, indem hochaffine T-Zell-

Rezeptoren oder chimäre Antigenrezeptoren (CAR) eingebracht werden. Um jedoch 

die Etablierung eines immunologischen Gedächtnisses zu gewährleisten, ist es 

ebenso wichtig, dass diese T-Zellen zu langlebigen Gedächtniszellen differenzieren 

können. EBAG9 ist ein negativer Regulator der Sekretion von Effektormolekülen und 

kann die sekundäre Immunantwort beeinflussen. Es wird daher vermutet, dass die 

Modulierung des EBAG9-regulierten sekretorischen Signalweges eine alternative 

Strategie ist, um die Wirksamkeit von adoptiv transferierten T-Zellen zu erhöhen. 

In der vorliegenden Arbeit konnte zunächst gezeigt werden, dass die verstärkte 

zytolytische Aktivität von T-Zellen in EBAG9-defizienten Mäusen mit einer 

präferentiellen Differenzierung zu Gedächtniszellen verbunden ist. Es wurden keine 

Unterschiede in der Frequenz von Effektor-T-Zellen oder in der Expression von 

spezifischen Oberflächenrezeptoren beobachtet. Im Gegensatz dazu konnte 

nachgewiesen werden, dass die mit einer Gedächtniszelldifferenzierung assoziierten 

Transkriptionsfaktoren EOMES, T-bet, ID3 und der IL-12Rb Signalweg differentiell 

rekrutiert wurden. Dementsprechend scheint die Antigenverfügbarkeit abhängig von 

der EBAG9-vermittelten zytolytischen Aktivität zu sein und die Ausbildung eines 

immunologischen Gedächtnisses zu beeinflussen. 

Im Weiteren wurden EBAG9-spezifische micro RNAs (miRNAs) generiert, die zu einer 

sequenzspezifischen Herunterregulation von EBAG9 führten. Die Unterdrückung der 

EBAG9-Expression erhöhte spezifisch die Sekretion von Granzym A und die 

zytolytische Aktivität von primären murinen und humanen T-Zellen. Darüber hinaus 

konnte nachgewiesen werden, dass auch die in vitro und in vivo Antitumoraktivität 

von CAR T-Zellen verbessert wurde. Da eine gesteigerte T-Zell-Funktion in Folge der 

Herunterregulation von EBAG9 sowohl für BCMA als auch für CD19 CAR T-Zellen 

beobachtet werden konnte, scheint es sich hierbei um einen universell anwendbaren 

zellbiologischen Mechanismus zu handeln. Unspezifische Effekte bezüglich 

Persistenz, Erschöpfung oder Differenzierung der modifizierten T-Zellen wurde 

mithilfe einer repetitiven in vitro Antigenstimulation ausgeschlossen. Die Modulation 

des sekretorischen Signalweges in T-Zellen mittels einer miRNA-vermittelten 

Herunterregulation der EBAG9-Expression scheint dementsprechend eine geeignete 

Strategie zu sein, um die Effizienz der adoptiven T-Zell-Therapie zu erhöhen. 
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V Abstract 
Adoptive immunotherapy relies on the antigen-specific stimulation, activation, and 

expansion of autologous T cells ex vivo and reinfusion into the patient. Moreover, 

genetic engineering of cytotoxic T cells (CTLs) prior to reinfusion involves enhancing 

CTL function by the expression of high-affinity T cell receptors or chimeric antigen 

receptors (CARs). In addition to endowing CTLs with high avidity, the transfer of long-

lived CTLs is important as it ensures for long-term immunological memory and, 

therefore, protection against tumor relapse. Because EBAG9 is a negative regulator 

of effector molecule secretion and suggested to interfere with CTL memory formation, 

targeting the secretory pathway of T cells via EBAG9 may be an alternative strategy 

to enhance the efficacy of adoptively transferred T cells. 

This thesis explored whether the cytolytic strength of CD8+ T cells influences memory 

differentiation. By employing the strong Tag neoantigen and the minor 

histocompatibility mismatch antigen HY, increased cytolytic strength at the same 

effector cell frequencies could be linked to an expanded memory population in 

EBAG9-deficient mice. Although lineage-determining surface markers were 

expressed equally, differential recruitment of the transcription factors EOMES, T-bet, 

ID3 and the IL-12Rb pathway was consistent with preferential memory formation. 

Collectively, antigen availability over time appears to be controlled by EBAG9-

mediated cytolytic activity and contributes to the formation of a CD8+ T cell memory 

pool. 

To further investigate whether targeting EBAG9 increases the efficacy of adoptively 

transferred T cells, efficient sequence-specific miRNAs were generated. The miRNA-

mediated silencing of EBAG9 specifically increased granzyme A secretion, while the 

release of effector cytokines remained unaffected. Furthermore, the engineered 

downregulation of EBAG9 enhanced the cytolytic capacity of mouse and human 

CTLs. Most importantly, the in vitro and in vivo antitumor activity of CAR T cells could 

be further enhanced by EBAG9 knockdown and therefore, effective dose levels were 

decreased. The cytolytic activity of BCMA and CD19 CAR T cells was increased by 

the silencing of EBAG9, indicating that this mechanism is a universally applicable 

principle of cell biology in murine and human CTLs. Adverse effects of the miRNA-

mediated silencing of EBAG9 in regard to T cell persistence, exhaustion, or 

differentiation were excluded by an in vitro repetitive antigen stimulation assay. 

Targeting the secretory pathway of T cells by the engineered downregulation of 

EBAG9 is, therefore, a suitable strategy to increase the efficiency of adoptive T cell 

therapy.
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1. Introduction 

1.1 The immune system 
The immune system is a host defense system comprising a variety of effector cells 

and molecules that protect against diseases. By discriminating between self and non-

self structures, pathogens such as invading parasites, fungi, bacteria, and viruses are 

recognized and eliminated. Additionally, cell inherent and other environmental factors 

can lead to harmful genetic transformation in cells. These malignant cells are to some 

likelihood also removed by the immune system to avoid tumor formation. The immune 

system can be classified into two subsystems: the innate and adaptive immune 

responses. 

 

The innate or non-specific immune response represents the phylogenetically oldest 

component of the immune system. It is an antigen-independent defense mechanism 

that is used immediately or within hours after pathogen exposure[1,2]. The innate 

immune system is the earliest line of defense against the invasion of pathogens and 

comprises many barriers and compartments. The first defense compartment is 

physical barriers such as the epithelial layer of the skin or the low pH of the stomach. 

The second line of defense contains cytokines and chemokines to recruit immune 

cells to the site of infection as well as complement factors to activate the complement 

cascade. Effector cells of the innate immune system create the third line of defense 

and can be divided into two groups. The first group contains basophils and mast cells. 

These cells are able to secrete histamine and other inflammatory mediators to induce 

inflammation. The second group is composed of natural killer cells (NK cells) and 

phagocytes namely eosinophils, neutrophils, macrophages and classical dendritic 

cells (DCs)[3,4]. They recognize non-self structures and infected cells by highly 

conserved pathogen-associated molecular patterns (PAMPs) such as viral RNA or 

bacterial lipopolysaccharides (LPS), which are sensed by pattern recognition 

receptors such as toll-like receptors. Upon activation of these pathways, innate 

immune cells eliminate or neutralize infected cells and pathogens via phagocytosis or 

macropinocytosis[5]. Furthermore, cytokine production and antigen presentation by 

innate immune cells lead to the activation of the adaptive immune system. 

 

The adaptive immune response is highly antigen-specific and involves a lag time 

between antigen exposure and maximal response. An important hallmark of the 

adaptive immune response is the development of an immunological memory. Antigen-
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presenting cells (APCs) such as DCs act as a bridge between the innate and the 

adaptive arms of the immune system. After antigen uptake and processing, APCs 

present various types of antigens on their cell surface to initiate the adaptive immune 

response[6]. Two cell types are important mediators of the adaptive immunity: B and 

T lymphocytes. Both recognize specific conserved and non-conserved structures on 

invading pathogens using antigen-binding receptors on their surfaces. The repertoires 

of the T and B cell receptors (TCR and BCR, respectively) are highly diverse due to 

the rearrangement of variable gene segments that are encoded in the germline. The 

function of B cells, which are the main players of the humoral immune response, is 

the generation and secretion of antibodies to neutralize antigens. T cells are 

responsible for cell-mediated immunity and can be further divided into different 

subpopulations with distinct functions[7].  

 

1.2 T cell-mediated immunity 

1.2.1 T lymphocytes 
As a central element of the adaptive immune response, T cells are capable of 

eliminating infections and transformed tumor cells. They are derived from 

hematopoietic bone marrow stem cells and further mature within the thymus. Here, 

somatic recombination occurs, leading to the appearance of T cells expressing TCRs 

that have passed further quality control selection processes. The TCR is a 

heterodimer composed of two antigen-binding transmembrane glycoprotein chains (a 

and b) that are disulfide-linked and associated with invariant chains of the CD3 

complex (z, d, e and g) involved in intracellular signaling[8]. T cell development in the 

thymus involves positive and negative selection of immature T cells. During positive 

selection, interactions with self-peptide-MHC complexes on thymic epithelial cells are 

crucial for T cell survival. In contrast, potential self-reactive T cells are removed upon 

negative selection. High-affinity interaction of TCRs on immature T cells with self-

antigen on thymic stromal cells results in apoptosis and T cell elimination while T cells 

with low to moderate affinity migrate to the periphery[9]. 

 

Two major surface co-receptors exist that enhance the avidity for major 

histocompatibility complex (MHC) molecules and define two separate T cell lineages 

with distinct functions. MHC class I molecules are found on all nucleated cells and 

present intracellular antigens, whereas MHC class II molecules are only present on 

macrophages, DCs and B cells, and present extracellular antigens[6]. Self-antigens 
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presented by MHC class I molecules are recognized by T cells expressing the CD8 

co-receptor. These CD8+ T cells can mature into cytotoxic T lymphocytes (CTLs) and 

are primarily involved in the destruction of infected or transformed cells by releasing 

cytolytic granules into the immunological synapse[10]. T helper (TH) cells play an 

important role in establishing and maximizing the immune response. They express 

the co-receptor CD4 and recognize self-antigens presented by MHC class II 

molecules. CD4+ T cells can be further divided into different subpopulations based on 

the production of signature cytokines. TH1 cells secrete mainly IFN-γ, IL-2 and TNF-

a to activate macrophages and CD8+ T cells and induce B cells to produce opsonizing 

and neutralizing antibodies (IgG). TH2 cells produce IL-4, IL-5, IL-6, IL-10 and IL-13 

and are important for stimulating IgG, IgA and IgE antibody production by B cells. 

Furthermore, regulatory TH cells (Treg), follicular T helper cells, and TH17 cells have 

been identified. Treg cells negatively regulate the immune response and protect 

against immunopathology while follicular T helper cells are important for mediating 

humoral immunity through interactions with B cells. TH17 cells are responsible for an 

effective immune response against extracellular bacteria and fungi but are also 

involved in the generation of autoimmune diseases[11].  

 

1.2.2 Effector and memory CD8+ T cell differentiation 

1.2.2.1 The course of a CD8+ T cell response 
Following an acute infection, the T cell response has two goals. On the one hand, 

large numbers of activated effector CD8+ T cells need to be generated to eliminate 

the current infection. On the other hand, long-term protection against a future 

encounter with the same antigen needs to be installed by retaining a subset of T cells 

with enhanced longevity and regenerative capacity. Thus, the T cell response can be 

divided into different phases. First, the differentiation of CD8+ T cells into effector cells 

occurs during the clonal expansion of antigen-specific T cells during days 1 to 7 after 

primary infection. Following the clearance of infection, effector cells undergo a 

contraction phase, during which most cells die due to apoptosis (days 8 to 21). 

Approximately 5 to 10% of effector CD8+ T cells survive this selection process and 

mature into memory cells, which are maintained in an antigen-independent manner 

through the actions of the cytokines IL-7 and IL-15[12]. Memory cells are characterized 

as long-lived, self-renewing, multipotent cells that rapidly proliferate and re-acquire 

effector function upon re-stimulation with the same antigen[13]. Three major classes of 

extracellular signals modulate the fate of an activated CD8+ T cell: the strength and 
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duration of antigen exposure, costimulation through costimulatory receptors and their 

ligands, such as 4-1BB and 4-1BBL, and pro-inflammatory cytokines such as 

type I interferons, IL-2, and IL-12. All of these mostly environmental signals are linked 

and impact the number, phenotype, function, and long-term fate of effector 

CD8+ T cells[12].  

1.2.2.2 Memory CD8+ T cell subsets 
Phenotypically, memory CD8+ T cells show decreased expression of killer cell lectin-

like receptor 1 (KLRG1), whereas the expression of the adhesion molecule CD44 and 

the IL-7 receptor a chain (CD127) are increased. Furthermore, L-selectin (CD62L) 

and the CC-chemokine receptor 7 (CCR7) are useful markers for distinguishing 

between the CD8+ naive, effector and memory subset populations. Naive CD8+ T cells 

are required to enter the lymph node to find a cognate antigen. While the homing 

receptor CCR7 recognizes the ligand CCL21 that is immobilized on the high 

endothelial venules, CD62L expression is necessary to tether to the high endothelial 

venules. Additionally, CCR7-mediated signaling arrests naive T cells and facilitates 

migration into the lymph node. After T cell priming and clonal expansion of CD8+ 

T cells with an effector phenotype, effector T cells are required to leave the lymph 

node to migrate to the site of infection via downregulation of CD62L and CCR7[14,15]. 

Sallusto et al. identified that memory T cells can be further distinguished by 

expressing the homing markers CD62L and CCR7 into central memory (TCM) and 

effector memory (TEM) T cells. Like naive T cells, the expression of CD62L and 

CCR7 enable TCM to recirculate through the lymph nodes. Upon antigen 

restimulation, TCM have the potential to differentiate into effector phenotypes. In 

contrast, TEM lack expression of CD62L and CCR7. They are usually found in non-

lymphoid tissues and exhibit effector functions[16].  

1.2.2.3 Models of CD8+ T cell diversification 
There are different models to explain the generation of effector and memory CD8+ 

T cells. The separate-precursor model proposes that naive T cells become ‘pre-

programmed’ during thymic development to adopt certain differentiation states 

following activation. However, this model is supported by little evidence as single-cell 

tracing experiments using the adoptive transfer of barcoded or congenic marker 

bearing cells confirmed that a single naive CD8+ T cell is multipotent and can give rise 

to effector and memory T cells[17,18]. An additional concept suggests that terminal 

effector cell differentiation is caused by repetitive stimulation with antigens and pro-

inflammatory cytokines. This so-called decreasing potential model is a linear 
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progression model and postulates that naive CD8+ T cells differentiate initially into 

activated cells with memory potential and subsequently into cytolytic functional 

effector CD8+ T cells without memory cell properties. Supporting studies showed the 

occurrence of an accelerated memory formation due to a truncated duration of antigen 

exposure and decreasing inflammation[19,20]. Another model, the signal-strength 

model, also enables for the formation of a heterogeneous effector CD8+ T cell 

population depending on the overall strength of different signals (antigen, 

costimulation, pro-inflammatory cytokines) during T cell priming. In contrast to the 

decreasing potential model, T cell differentiation is not linear but more divergent 

according to the intensities of signals received. In combination, a strong signal drives 

clonal expansion and is important for selecting T cells that are competent for forming 

memory CD8+ T cells. If delivered in excess, a strong signal can lead to terminal 

effector CD8+ T cell differentiation[21]. Lastly, the asymmetric cell fate model assumes 

that memory and effector CD8+ T cells can originate from the same precursor T cell. 

Through asymmetric cell division, the proximal daughter cell, which is closer to the 

antigen-presenting cell, develops an effector cell fate as it receives stronger TCR and 

costimulatory signals. In contrast, the distal daughter cell is further from the antigen-

presenting cell and adopts a memory cell fate[12,22]. 

1.2.2.4 Transcriptional regulation of CD8+ T cell differentiation 
In addition to these different models involving environmental stimuli, effector and 

memory T cell differentiation is most likely controlled transcriptionally by the graded 

expression or activity of certain competing sets of transcription factors. For example, 

CD8+ T cells with higher expression or activity of the T-box transcription factor T-bet 

or B lymphocyte-induced maturation protein 1 (BLIMP1) acquire a more terminally 

differentiated phenotype characterized by a reduced proliferative activity and 

longevity. Counter-regulation of these factors is achieved by the T-box transcription 

factor Eomesodermin (EOMES) or the B cell lymphoma 6 (BCL-6), respectively. Both 

transcription factors prevent effector cells from terminal differentiation and maintain 

memory cell properties[12,23,24]. 

 

1.2.3 Effector molecules of CD8+ T cells 
Following conjugation of CTLs to a target cell, the cytotoxic secretory granules traffic 

to the immunological synapse and release cytotoxic effector molecules. These include 

granzymes that induce apoptosis within the target cells, but also cytokines such as 

IFN-γ, TNF-a and IL-2 with pro-apoptotic and pro-inflammatory functions. 
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1.2.3.1 Granzymes 
Granzymes are a family of cell death-inducing serine proteases within the cytotoxic 

granules of CTLs and NK cells. In human, five different granzymes have been 

described, whereas 11 granzymes are known to be expressed in mice[25]. Granzymes 

are highly homologous, containing the catalytic triad of trypsin family serine proteases 

(His-57, Asp-102, Ser-195), an N-terminal Ile-Ile-Gly-Gly sequence, three to four 

disulfide bridges and a conserved motif of eight amino acids[26]. Although granzymes 

are structurally related, they differ in their substrate specificity. The most prominent 

and well-studied members of the granzyme family present in human and mice are 

granzymes A and B. Granzyme expression occurs in activated T cells upon antigen 

stimulation, require costimulation via cytokines of the common gamma chain (γc) 

family such as IL-2 and granzymes are expressed concomitantly with perforin[27]. 

Granzyme mRNA transcripts are translated as pre-pro-proteases. The signal 

sequence directs the precursor molecules to the endoplasmic reticulum (ER) where 

it is enzymatically cleaved. A mannose-6-phosphate tag is added in the Golgi 

apparatus and functions as a sorting signal for lysosomal transport, directing the 

proenzyme to the cytotoxic granules. For activation of the inactive proenzymes into 

active proteases, removal of the N-terminal located activation dipeptide is required. 

This reaction is catalyzed by the proteinases Cathepsin C and H within the cytotoxic 

granules, a process that also requires low pH[28,29].  

 

As soon as the CTL recognizes and binds its target cell, secretory lysosomes move 

and cluster around the microtubule organizing center. After membrane fusion, 

granzymes and perforin are released into the immunological synapse. Via 

electrostatic interactions, the positively charged granzymes bind to the negatively 

charged target cell membranes[30,31]. Furthermore, binding to the target cell can be 

mediated by specific receptors such as the mannose-6-phosphate receptor[32]. 

Perforin is a pore-forming molecule capable of membrane permeabilization. It is 

important for the entry of granzymes into the target cell cytosol with studies performed 

on mice lacking perforin demonstrating an abolished granule-dependent target cell 

death. Yet, the mechanism of perforin-mediated granzyme entry is not entirely 

clear[33]. Within the target cell, programmed cell death pathways are initiated by 

granzymes. Granzyme A induces a caspase-independent apoptosis characterized by 

the generation of single-stranded DNA nicks. Due to the action of granzyme A, there 

is a loss of the mitochondrial inner membrane potential, leading to the release of 

reactive oxygen species (ROS). As a consequence, the ER-associated SET complex 

translocates to the nucleus. Three members of this complex that are involved in DNA 
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repair are then cleaved by granzyme A. Furthermore, cleavage of SET leads to the 

release of the DNase NM23-H1, therefore DNA single-strand nicks are induced[34-36]. 

On the contrary, in addition to activating a caspase-independent cell death program, 

granzyme B is able to induce caspase-dependent apoptosis by cleaving and 

activating the caspases 3, 7, 8 and 10 as well as several of their downstream 

substrates. As a result, the caspase-activated DNase (CAD) is cleaved and is 

responsible for granzyme B-mediated DNA damage. Furthermore, granzyme B 

induces ROS production and the release of cytochrome c from the 

mitochondria[28,37,38]. 

 

There are different mechanisms that exist for protecting CTLs against self-destruction 

by its own granule enzymes. First, during protein synthesis and storage within the 

granules, the enzymatic activity of granzymes and perforin is inhibited by the acidic 

pH within the secretory granules[39]. Second, to protect CTLs from their own enzymes 

released into the immunological synapse, granzyme-specific inhibitors called serpins 

(serine protease inhibitors) are endogenously expressed. Serpin B9 inactivates 

granzyme B and mice lacking serpin B9 expression have a much stronger CTL death 

during the response to infection[40,41]. Yet, no serpins are known to inactivate 

granzyme A. In addition, the cytotoxic granule protein cathepsin B, which is capable 

of proteolytic inactivation of perforin, can be externalized to the CTL plasma 

membrane during granule fusion[42]. 

 

1.2.3.2 Cytokines 
The cytokine IFN-γ is the only member of the type II interferons, whereas IFN-a, -b, -

w, -t belong to the type I interferons. Both types are distinguishable by their structure 

and specificity for their receptors. IFN-γ is mainly released by macrophages, NK cells, 

activated CD8+ T cells as well as TH1 CD4+ T cells[43]. The cellular effects of IFN-γ are 

mediated by its heterodimeric receptor (IFN-γR) that is expressed ubiquitously on 

immune and non-immune cells. Therefore, IFN-γ has a large spectrum of effects 

including macrophage activation, antiviral immunity and regulation of CD4+ T cell 

polarization towards TH1 CD4+ T cells[44]. Furthermore, it increases T cell-mediated 

killing through upregulation of MHC class I expression on target cells. Upregulation of 

MHC class II molecules on B cells and APCs enhances CD4+ T cell activation[45,46]. 

Reports on IFN-γ action from CD8+ T cells vary. IFN-γ was shown to enhance the 

ability of CTLs to kill independent of perforin and play an important role in CTL 

proliferation within murine infection models. In contrast, IFN-γ may also directly 
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increase T cell apoptosis and reduce proliferation, an important process for T cell 

contraction. Additionally, within CD8+ T cells, IL-12R expression is induced upon 

IFN-γR signaling. Although mice lacking IFN-γ and IFN-γR show no defects in the 

development of the immune system, these mice were more susceptible to infection 

and tumor formation[47-50]. 

 

The tumor necrosis factor a (TNF-a) is produced primarily by activated macrophages, 

but can also be released by NK cells, neutrophils, eosinophils, mast cells, or CD4+ 

and CD8+ T cells. Two receptors are able to bind TNF-a and mediate the intracellular 

signaling. While TNF-aR1 is expressed ubiquitously, TNF-aR2 is usually located in 

immune cells[51]. Although TNF-a was shown to be part of the cytotoxic effector 

response of the immune system, putative immune suppressor functions facilitating 

the biological activity of Treg cells have been recently described[52]. Furthermore, 

TNF-a triggered melanoma dedifferentiation during adoptive CD8+ T cell therapy of 

melanoma, therefore, promoting tumor relapse. In addition, through TNF-aR1 

signaling, apoptosis of activated CD8+ T cells can be induced[53]. 

 

IL-2 belongs to the family of γc cytokines and is mainly produced by activated CD4+ 

T cells. Yet, activated CD8+ T cells and NK cells are also able to secrete IL-2. IL-2 

signaling is mediated by the IL-2 receptor (Il-2R), a trimeric receptor composed of an 

a (CD25), b (CD122) and γc chain[54]. The main function of IL-2 is to promote the 

differentiation of immature T cells into Treg cells as well as differentiation into effector 

and memory T cells. Following antigen challenge, IL-2 appears to be responsible for 

optimal expansion and generation of effector functions. During memory cell 

generation and the contraction phase where CD8+ T cells die via apoptosis, IL-2 

signaling is able to rescue CD8+ T cells from cell death, and therefore increasing 

memory CD8+ T cell numbers[55]. 

 

1.2.4 The secretory pathway of CD8+ T cells 

1.2.4.1 Secretion of effector molecules 
Antigen recognition by CTLs is mediated via interaction between the specific TCR and 

foreign antigens bound to MHC class I molecules on the target cell surface. Following 

target antigen recognition and formation of the immunological synapse, effector 

molecules are released from activated CTLs along the secretory pathway. There are 

two pathways that principally exist. First, there is the constitutive secretion of newly 
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synthesized cytokines such as IFN-γ. Second, effector molecules such as granzymes 

and perforin are released from a storage pool of vesicles in the regulated secretion 

pathway (Figure 1)[33,56].  

 

 
Figure 1: The secretory pathway in CD8+ T cells 
Following CD8+ T cell activation via interaction between the TCR and the antigen bound to the 
MHC class I complex, effector molecules are secreted. Newly synthesized cytokines are 
released constitutively, whereas the release of granzymes and perforin from a storage pool of 
secretory lysosomes is regulated, requiring an increase of the intracellular Ca2+concentrations 
[adapted from Rüder, thesis, 2005]. 
 

During constitutive secretion, vesicles are transported to the cell membrane and 

cytokines are released by passive lateral diffusion. The mechanism of constitutive 

cytokine secretion from CD8+ and TH1 CD4+ T cells has not yet been completely 

explored. According to Huse et al., two distinct pathways of cytokine secretion in 

TH1 CD4+ T cells exist. Cytokines such as IL-2 and IFN-g are released unidirectionally 

directly into the immunological synapse, while other cytokines such as TNF-a are 

released multidirectionally from the cell surface. In addition, both pathways use a 

different set of trafficking molecules[57]. The regulated secretion of effector molecules 

is characterized by the formation of an immunological synapse at the site of cell-cell 

contact induced by a target recognition-dependent Ca2+ influx. Secretory lysosomes 

containing perforin and granzymes move along microtubules via interaction between 

adaptor proteins and kinesin-motors and accumulate at the microtubule-organizing 

center (MTOC) of CTLs. The polarization of MTOC leads to trafficking of secretory 

lysosomes towards the presynaptic membrane[58].  
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Fusion of the vesicles with the membrane can be divided into four steps: tethering, 

docking, priming and fusion. The soluble N-ethylmaleimide-sensitive fusion factor 

attachment protein receptor (SNARE) complex regulates the fusion of lysosomes with 

the plasma membrane of the immunological synapse. This α-helical structure protein 

complex is necessary to overcome the electrostatic repulsive force between the 

lysosome and the plasma membrane lipid bilayer. To facilitate this process, vSNAREs 

such as VAMP7 on the vesicle surface and tSNAREs such as SNAP23 and syntaxin 4 

on the target membrane interact with each other[59,60]. Furthermore, Ras-associated 

small GTPases (Rabs) are important mediators of membrane fusion. Active GTP-

bound Rab proteins are attached to the membrane and interact with SNAREs and 

motor proteins. After fusion of the vesicle and membrane, a hydrolysis of GTP to GDP 

occurs and GDP-bound Rab proteins diffuse back to the cytosol[61]. 

 

To produce mature secretory lysosomes, coordinated transfer of secretory molecules 

from the endoplasmic reticulum/Golgi apparatus into the vesicles is required. Perforin 

and granzymes are produced within the ER and transported to the cis-Golgi complex 

where they are tagged with the mannose-6-phosphate group and accumulate as 

cargo proteins in the trans-Golgi-network (TGN). The cargo proteins are recognized 

by sorting proteins such as the mannose 6-phosphate receptor (M6PR) or sortilin. 

This complex then interacts with heterotetrameric adaptor proteins (APs), Golgi-

localizing γ-adaptin ear homology domain Arf-binding protein (GGA), and small GTP-

binding proteins of the Arf, Rac1 and/or Rab families to recruit clathrin adaptors. The 

clathrin-coated vesicles then move along the microtubules to the endosomes. After 

dissociation of the complex in the endosomes, the effector molecules are targeted to 

the secretory lysosomes while the sorting receptor is recycled to the TGN[62,63].  

1.2.4.2 EBAG9 and its role in the regulated effector molecule secretion 
Protein transfer from the TGN to secretory lysosomes is highly regulated. Our group 

demonstrated the presence of regulatory proteins such as the Estrogen receptor-

binding fragment-associated antigen 9 (EBAG9), which is a negative regulator of the 

Ca2+-dependent regulated secretion of effector molecules[64]. Human EBAG9 

comprises of 213 amino acids and exhibits a domain structure. Through a C-terminal 

coiled-coiled structure, human EBAG9 forms homo-oligomers with an N-terminal 

located transmembrane domain[65]. EBAG9 is an estrogen-inducible protein that is 

expressed in most tissues. Our group has demonstrated that a loss of EBAG9 

enhances the cytolytic activity of CTLs in vivo by increasing the release of the 

secretory lysosome content. Mechanistically, EBAG9 interacts with the γ2-subunit of 
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AP-1 and inhibits the AP-1 activity clathrin-coated vesicle formation. Furthermore, 

EBAG9 was also identified as an interaction partner of snapin and BLOS2, which are 

subunits of the lysosome-related organelles complex-1 (BLOC-1). In the secretory 

pathway, BLOC-1 regulates protein sorting from the endosome to the secretory 

lysosomes. Thus, EBAG9 negatively regulates the vesicle transfer from the TGN to 

the secretory lysosomes[64]. 

1.2.5 T cell exhaustion 
Upon chronic viral, bacterial, and parasitic infections as well as during cancer, T cells 

have been shown to attain a state referred to as exhaustion. Exhaustion is 

characterized by T cell dysfunction including poor effector functions, inhibitory 

receptor expression and a transcriptional profile distinct from that of effector and 

memory T cells[66]. For the development of T cell exhaustion, extrinsic and intrinsic 

negative regulatory pathways are of importance. During exhaustion, T cells lose their 

functions in a hierarchical manner. Important properties such as IL-2 production, high 

proliferative capacity, and ex vivo killing are lost during an early phase. Other 

functions including TNF production, are lost during the intermediate stage of 

dysfunction, while physical deletion of the antigen-specific T cell represents the final 

stage of exhaustion[67-69]. 

 

Negative regulatory pathways involved in T cell exhaustion include the expression of 

cell surface inhibitory receptors such as PD-1, CTLA-4, LAG-3, or TIM-3[70,71]. 

Although PD-1 signaling appears to be a major inhibitory pathway involved in T cell 

exhaustion, many other inhibitory receptors coregulate T cell exhaustion. It is possible 

that these individual receptors regulate distinct cellular functions. For example, PD-1 

strongly affects the survival and proliferation of exhausted T cells, whereas LAG-3 

affects cell cycle progression[70,72-74]. In addition to the intrinsic expression of inhibitory 

surface receptors, extrinsic immunomodulatory cytokines are also involved in T cell 

exhaustion. IL-10 and TGF-b have been proven to be associated with an exhausted 

T cell state[75-77]. Lastly, immunoregulatory cell types such as Treg cells affect 

exhaustion and dysfunctionalities of antigen-specific T cells[78,79]. 

 

Transcriptional analyses demonstrated exhausted T cells to represent a unique state 

of T cell differentiation as global transcriptional profiles are distinct from those of 

effector or memory T cells. Although lineage-specific transcription factors have not 

yet been identified, several transcriptional pathways are involved in T cell 

exhaustion[80,81]. Amongst these, graded expression of BLIMP1 is known to be 
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important. Moderate or small amounts of BLIMP1 are associated with T cell memory 

formation, whereas intermediate amounts promote terminal effector differentiation. In 

contrast, very high amounts of BLIMP1 are associated with the expression of 

inhibitory receptors and T cell exhaustion[82].  

 

1.3 Cancer immunotherapies 
The approach of fighting cancer by manipulating the host immune response for 

efficient tumor cell killing is termed cancer immunotherapy. This can be accomplished 

by several means. However, two types of immunotherapy have proven particularly 

effective in cancer treatment during recent years. First, immune checkpoint inhibitors 

are used clinically to stimulate the immune system by antibodies that block immune 

regulatory checkpoints. Second, specific antitumor immune cells are administered by 

adoptive T cell therapy (ATT). 

1.3.1 Checkpoint inhibitors 
Antitumor responses of T cells are limited due to the release or presentation of 

negative regulators of immune activation. These regulatory immune checkpoint 

molecules that inhibit T cell activation can be blocked by specific antibodies. In 

particular, cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed 

cell death 1 (PD-1) receptors are clinically relevant targets[83,84].  The inhibitory role of 

CTLA-4 was demonstrated by the groups of James Allison, who won the Nobel Prize 

for his work with Tasuku Honjo, and Jeffrey Bluestone[83,85,86]. While CTLA-4 is an 

intracellular receptor in resting T cells, it translocates to the cell surface upon T cell 

activation. There, it outcompetes CD28 for binding to costimulatory molecules and 

mediates inhibitory signaling. Thus, T cell proliferation and activation are blocked. 

Furthermore, mice lacking CTLA-4 die due to massive lymphocyte infiltration in the 

majority of organs[86]. The transient blocking of CTLA-4 by monoclonal antibodies led 

to durable regression of established tumors in a syngeneic mouse model[83,86]. So far, 

one fully human CTLA-4-blocking monoclonal antibody (ipilimumab) has gained 

approval from the U.S. Food and Drug Administration (FDA) whereas others are still 

under clinical trials[87,88]. The inhibitory function of the surface receptor PD-1 is 

mediated by the tyrosine phosphatase SHP-2 that dephosphorylates downstream 

TCR signaling molecules. The PD-1 pathway is activated by binding of the ligands 

PD-L1 or PD-L2. PD-L1 is expressed broadly by many somatic cells upon exposure 

to pro-inflammatory cytokines, while PD-L2 expression is more restricted to APCs[29]. 

CTLs with antitumor activity produce inflammatory cytokines such as IFN-g that, in 
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turn, induces PD-L1 expression in the tumor microenvironment resulting in T cell 

exhaustion[29,89,90]. Currently, there are five monoclonal antibodies targeting PD-1 or 

PD-L1 that are approved by the FDA in 11 tumor entities[88]. 

 

1.3.2 Adoptive T cell therapy (ATT) 
Although checkpoint inhibitors can be successfully applied in different solid tumors, a 

pre-existing immune response is necessary that can be supported. Therefore, another 

strategy is required to target poorly immunogenic or rapidly progressing cancer types. 

Transferring naturally-occurring or engineered tumor-specific T cells enables the 

treatment of such types of cancer. In the case of autologous treatments, the 

transferred T cells are isolated from a patient, expanded ex vivo and/or genetically 

manipulated, and subsequently reinfused back into the lymphodepleted patient 

(Figure 2)[91].  

 

 
Figure 2: Principles of adoptive T cell therapy 
The transfer of naturally-occurring or gene-engineered T cells can be used in the treatment of 
cancer. On the one hand, tumor-infiltrating T cells (TILs) can be isolated from patient material, 
expanded ex vivo and reinfused into the patient (left). On the other hand, peripheral blood 
mononuclear cells (PBMCs) from the patient can be endowed with tumor-specific TCRs or 
CARs by retroviral transduction and ex vivo expansion prior to reinfusion (right)[adapted from 
Met et al. and Restifo et al.[91,92]]. 
 

ATT has been shown to be a very successful immunotherapeutic treatment in 

advanced hematological malignancies[92,93]. Although the ATT-based treatment of 

solid tumors is more challenging, some promising clinical trial results were reported. 

Among them, a phase I clinical trial for the treatment of pediatric neuroblastoma 
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patients with GD2 specific CAR T cells reported a complete remission rate of 27% (3 

out of 11 patients)[93-95]. 

1.3.2.1 Tumor-infiltrating lymphocytes (TILs) 
TILs are attracted to the tumor and represent a heterogenous lymphocyte population, 

mainly comprising of T cells and NK cells. One of the first reports stating the beneficial 

effect of lymphocyte infiltration was a case report from 1972 where total regression of 

liver metastasis without prior therapy was observed in a patient with gastric cancer[96]. 

To date, the efficacy of TIL-based immunotherapy has been well studied and a 

favorable prognosis due to the presence of TILs in various cancer types has been 

reported. For example, multiple independent studies between 2005 and 2018 

revealed an objective response rate of 40-50% in patients with metastatic melanoma 

including 10-25% of complete tumor regressions[91,97-100]. TILs express an 

endogenous and often low-affinity TCR and thus are able to recognize tumor-

associated antigens (TAA). The method of large-scale ex vivo expansion of TILs was 

pioneered by the group led by Steven Rosenberg. TILs are isolated from tumor 

biopsies, rapidly expanded ex vivo under high IL-2 supplementation and reinfused 

into the lymphodepleted patient[101,102]. As this isolated and expanded lymphocyte 

population compromises an undefined mixture of T cell clones, the individual TIL 

cultures are selected by determining effector cytokine secretion or cytotoxicity upon 

TAA stimulation. Advanced selection and expansion protocols employ more clonally 

restricted TILs[101]. 

1.3.2.2 TCR-modified T cells 
To increase the antitumor function of T cells, a TCR recognizing a specific tumor 

antigen can be introduced. Therefore, a TCR specific for naturally processed and 

expressed tumor antigens needs to be isolated and introduced to alter T cell 

specificity through the expression of a new TCR a and b chain. As the T cells will be 

reinfused into the patient, the tumor-specific TCR is required to match the host MHC 

allele as a restriction element[91]. Tumor-specific TCRs can be isolated from patient-

derived, autologous, highly reactive TILs. Using an allogeneic setting, the repertoire 

limitations caused by thymic negative selection can be avoided[103]. Furthermore, 

HLA-transgenic mice exhibiting a full human TCR repertoire can be immunized with 

the human tumor antigen and used for TCR generation[104]. Following isolation and 

sequencing, the tumor-specific TCR can be cloned into retroviral or lentiviral vectors. 

Patient-derived autologous T cells are then isolated from peripheral blood, activated, 

and genetically modified to express the tumor-specific TCR. ATT using genetically 
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modified TCRs targeting, for example NY-ESO-1 in melanoma and sarcoma or gp100 

in melanoma has been shown to mediate significant tumor regression in cancer 

patients[105,106]. 

1.3.2.3 CAR-modified T cells 
Chimeric antigen receptors (CARs) consist of a single polypeptide combining an 

extracellular antigen-binding domain, a spacer, a transmembrane domain, and an 

intracellular signal domain. With this composition, the specificity and affinity of an 

antibody are combined with the TCR-mediated cytotoxic potency and activation of a 

T cell. Antigen recognition by CARs is not restricted to the MHC context. Instead, all 

surface-expressed molecules are potential targets for CAR-mediated 

immunotherapy. First-generation CARs contain a single-chain antibody variable 

fragment, an IgG spacer that determines the distance between the target and T cell, 

and an intracellular CD3z activation domain. As these first-generation CARs failed to 

induce T cell proliferation and lead to CAR T cell anergy upon repetitive antigen 

stimulation, further engineering was required[107]. By introducing an additional 

intracellular costimulatory CD28 or 4-1BB domain, second-generation CARs evolved 

that demonstrated potent anti-tumor activity in clinical trials[108-111]. Currently, third-

generation CARs that contain two costimulatory domains, as well as multi-functional 

next generation CARs including, for example, an ON- or OFF-switch are under 

development[112]. Although CARs have been tested within several clinical trials for 

diverse tumor entities, the success of CAR T cell therapy is, to date, restricted to 

hematopoietic malignancies. CD19 represents the most prominent and successful 

target for CAR-mediated T cell therapy and is a B cell lineage antigen expressed on 

normal and malignant B cells. CD19-specific CAR T cells were shown to be efficient 

in the treatment of different B cell malignancies such as aggressive B cell lymphoma, 

chronic lymphocytic leukemia or acute lymphoblastic leukemia[108-110,113,114].  

1.3.3 RNA interference (RNAi) 
Although most of the therapeutic approaches within ATT focus on the gain-of-function 

by introducing a TCR or a CAR into T cells, cancer therapies have been developed 

that use RNA molecules and the RNA interference (RNAi) pathway for inhibiting 

protein functions. 

1.3.3.1 The RNA interference pathway 
RNAi was first observed in the late 1980s and is a post-transcriptionally mediated 

gene silencing mechanism that is triggered by double-stranded RNA (dsRNA) to 

induce sequence-specific translational repression or mRNA degradation[115]. In the 
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nucleus, the micro RNA (miRNA) genes are transcribed into 500-3000 nucleotide pri-

miRNAs by action of the RNA polymerase II. These pri-miRNAs are capped and 

polyadenylated. In addition, pri-miRNA contain one or multiple stem-loop sequences 

and are cleaved by the Drosha-DGCR8 complex to 60-100 nucleotide double-

stranded pre-miRNA hairpin structures[116-118]. Ran GTPase and Exportin-5 mediate 

the export of pre-miRNAs from the nucleus into the cytoplasm. There, they are further 

processed by an RNase III enzyme called Dicer to an imperfect duplex structure of 

22 nucleotides[119]. One of the strands resembles the mature miRNA that binds to 

Argonaut (Ago) proteins and is incorporated in the RNA-induced silencing complex 

(RISC)[120].  

 

 
Figure 3: RNA interference is a post-transcriptional gene silencing mechanism. 
Transcription of miRNA genes is controlled by the polymerase II promoter (pol II) and 
generates pri-miRNA molecules with a characteristic secondary structure. After processing by 
the Drosha-DGCR8 complex, pre-miRNA molecules leave the nucleus in an exportin 5-
dependent manner. A polymerase III promoter (pol III) regulates the transcription of shRNA 
genes and also generates pre-miRNA molecules that are exported to the cytoplasm. In the 
cytoplasm, pre-miRNAs and siRNAs are processed by the RNase III enzyme Dicer and 20-25 
nucleotide containing single-stranded RNA molecules are loaded to the RNA-induced 
silencing complex that contains Argonaut (Ago) proteins. Ago2 and complete 
complementation to the target RNA lead to mRNA cleavage, whereas the other Ago proteins 
and an imperfect complementation cause translational repression of the target gene [adapted 
from [121]]. 
 

In most cases, the miRNA-RISC complex can recognize and bind to target sequences 

within the 3’ UTR of target mRNA molecules, although some target sequences are 

also present in the 5’ UTR regions. As a consequence of RISC binding, mRNA 
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degradation or repression of protein translation is induced[120,122]. The fate of the target 

mRNA molecules depends on the grade of complementarity between the target 

mRNA molecule and miRNA but is also affected by the incorporated Ago protein. 

While incorporation of Ago 2 leads to direct cleavage of the target mRNA, the other 

Ago proteins negatively impact mRNA stability or attenuate translation (Figure 3)[123-

125]. 

 

For the engineered knockdown of specific targets, several dsRNA molecules can be 

used that enter the RNAi pathway at different points. Transfection with small 

interfering RNA (siRNA) molecules leads to transient protein knockdown. siRNAs are 

duplex RNA molecules consisting of two complementary strands of 22 nucleotides 

that enter the RNAi pathway in the cytosol[126,127]. To achieve stable protein 

downregulation, short hairpin RNA (shRNA) or miRNA molecules can be applied. 

Both enter the RNAi pathway in the nucleus and are then processed to siRNA-like 

molecules. Transcription of shRNA molecules is mediated by RNA polymerase III and 

generates a pre-miRNA structure that is transported to the cytosol, further processed 

by Dicer, and loaded to the RISC. In contrast, the transcription of miRNA molecules 

is under the control of the RNA polymerase II promoter, produces a transcript that 

resembles the pre-miRNA structure, and requires processing by the Drosha-DGCR8 

complex prior to export of the nucleus[116,128]. 

1.3.3.2 Applications of the RNAi pathway to T cell engineering 
Although various promising cancer immunotherapies exist, limitations often occur as 

the immune system is restrained by negative feedback mechanisms that originally 

protect the host against autoimmunity but also prevent antitumor activity. As 

previously mentioned, monoclonal antibodies for targeting immune checkpoints are 

available. Yet, using antibodies for targeting multiple checkpoints has been shown to 

be challenging. Further limitations are caused by immunosuppressive signals 

originating from the tumor microenvironment and that recruit multiple immune 

checkpoints. To overcome these challenges, the RNAi pathway can be used by 

introducing dsRNA molecules to target specific multiple intracellular and extracellular 

targets in DCs and T cells that restrict their function. Thus, the immune system can 

be empowered to bypass intrinsic inhibitory pathways and be insensitive to immune 

suppression mediated by the tumor microenvironment[121].  

 

Mature DCs have an exceptionally strong capacity for presenting antigens and 

activating T cells but are negatively regulated by feedback mechanisms. The RNAi 
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pathway can be used to inhibit immunosuppressive pathways within DCs, manipulate 

CD4+ T cell differentiation towards TH1 CD4+ T cells, or prolong the lifespan of DCs 

by inhibiting apoptosis. A variety of molecules are expressed in DCs that repress 

antigen presentation. These include A20 and the suppressor of cytokine signaling 1 

(SOCS1). Antigen-loaded DCs silenced for A20 or SOCS1 have been shown to 

activate larger numbers of effector T cells that correlate with tumor growth inhibition 

in mice[129-131]. Furthermore, DCs that express the Tyro3/Ax1/Mer family of receptor 

tyrosine kinases are capable of inducing SOCS1 expression. Mer knockdown in DCs 

increases the number of antigen-specific T cells in vivo[132-134]. In addition to T cell 

activation, DCs also express the pro-apoptotic surface molecule Fas ligand (FasL). 

Interaction of FasL with the Fas receptor on T cells induces apoptosis induction within 

T cells. The effectiveness of an FasL-targeting shRNA to enhance DC function and 

suppress tumor cell growth has been demonstrated[135]. Furthermore, siRNA-

mediated targeting of IL-10 in DCs reduces the level of this immunosuppressive 

cytokine and, in turn, increases IL-12 production, thereby inducing TH1 CD4+ T cell 

differentiation instead[136].  

 

Besides antigen presentation by DCs, it is essential that T cells home to, proliferate, 

and function in the tumor microenvironment to ensure an efficient antitumor response. 

Therefore, T cells can be manipulated in many different ways using the RNAi pathway 

to modulate their properties for therapeutic purposes. Tumor regression could be 

achieved in a mouse model after adoptive transfer of CD8+ T cells with silenced 

SOCS1 or of CD4+ T cells with silenced STAT3[137,138]. Furthermore, the E3 ubiquitin 

ligase Cbl-b, which negatively regulates TCR activation, is an attractive target for 

RNAi-mediated T cell modification. Substantial suppression of tumor growth and 

increased survival rates of tumor-bearing mice could be observed due to the adoptive 

transfer of Cbl-b knockdown CD8+ T cells[139]. The adaptor protein SHP-1 negatively 

regulates T cell activation by diminishing the interaction between T cells and antigen-

presenting DCs. Silencing SHP-1 in tumor-specific T cells led to improved therapy of 

disseminated leukemia cells[140].  

 

Collectively, using the RNAi pathway to avoid inhibitory mechanisms that attenuate 

the antitumor immune response in T cells is emerging as a promising approach in 

cancer immunotherapy.
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2. Aim of the thesis 
To overcome the limits of immunotherapy based on the transfer of cytotoxic T cells 

there is a redirection of the focus from amplifying the cell quantity to improving the 

quality of individual T cells. In this process, one of the main challenges is to induce a 

potent antitumor effector cell function without impairing the development of T cell 

memory response. Previously, our group revealed that EBAG9 negatively regulates 

the Ca2+-dependent effector molecule secretion from CD8+ T cells. Furthermore, mice 

lacking EBAG9 had a much stronger secondary immune response[64]. Based on these 

findings, in the present thesis it was investigated whether the secretory pathway of 

T cells can be manipulated to improve T cell avidity and the efficacy of adoptively 

transferred T cells. 

 

Firstly, the mechanism of the enhanced secondary immune response in EBAG9-

deficient mice should be elucidated in more detail. The question was raised, if the 

formation of an antigen-specific CD8+ T cell memory pool is altered depending on the 

increased cytolytic capacity and if so, how the loss of EBAG9 is linked to the 

transcriptional control of CD8+ T cell fate decision. 

 

The second part of this thesis aimed to strengthen the cytotoxic capacity of effector 

T cells by miRNA-mediated silencing of EBAG9. Therefore, EBAG9-specific miRNAs 

should be generated and analyzed for their knockdown efficiency in primary mouse 

and human T cells. In addition, functional assays should answer the question if a 

downregulation of EBAG9 can enhance the cytolytic activity of engineered T cells. 

First, engineered mouse T cells with a loss of EBAG9 were analyzed for their antigen-

specific cytotoxic competence in an in vivo killing assay. Second, for a robust 

translational approach, human T cells equipped with a high-affinity CAR and an 

EBAG9-specific miRNA were investigated in regard to their in vitro and in vivo 

antitumor killing capacity. Lastly, it was analyzed if the miRNA-mediated knockdown 

of EBAG9 impacts on in vitro human CAR T cell persistence, exhaustion or 

differentiation.  
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3. Material 

3.1 Plasmids and retroviral vectors 
The following plasmids and retroviral vectors were used (Table 1). 

 
Table 1: Plasmids and retroviral vectors 
 

Name Description 

pALF-10A1GaV Eukaryotic expression vector encoding murine leukemia 
virus env gene 10A1 
 

pcDNA3.1gag/pol Eukaryotic expression vector encoding murine leukemia 
virus gag and pol genes 
 

MP71_GFP Retroviral vector MP71 expressing eGFP 

MP71_140-145_GFP 
 

Retroviral vector MP71 expressing miRNA 140, 141, 142, 
143, 144 or 145 and eGFP; mi140 has no endogenous 
target sequence and serves as a control, mi141-mi145 are 
sequence-specific EBAG9-targeting miRNAs  
 

MP71_H16-H19_GFP Retroviral vector MP71 expressing human EBAG9-
targeting miRNA H16, H17, H18 or H19 and eGFP 
 

MP71_BIX Retroviral vector MP71 expressing the BCMA-targeting 
CAR (VH-linker-VL-IgG1D-CD28-CD3z) 
 

MP71_H18_BIX Retroviral vector MP71 expressing the EBAG9-targeting 
miRNA H18 and the BCMA-targeting CAR (VH-linker-VL-
IgG1D-CD28-CD3z) 
 

MP71_CD19 Retroviral vector MP71 expressing the CD19-targeting 
CAR (VH-linker-VL-IgG1D-CD28-CD3z) 
 

MP71_H17_CD19 Retroviral vector MP71 expressing the EBAG9-targeting 
miRNA H17 and the CD19-targeting CAR (VH-linker-VL-
IgG1D-CD28-CD3z) 
 

MP71_SP6 Retroviral vector MP71 expressing the SP6 CAR (VH-
linker-VL-IgG1D-CD28-CD3z) without any naturally 
occurring antigen 
 

MP71_H17/H18_SP6 Retroviral vector MP71 expressing the EBAG9-targeting 
miRNA H17 or H18 and the SP6 CAR (VH-linker-VL-
IgG1D-CD28-CD3z) without any naturally occurring 
antigen 
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3.2 Oligonucleotides 
The following oligonucleotides were used for qRT-PCR (Table 2). 

 
Table 2: Oligonucleotide primer for qRT-PCR using TaqManÒ probes 
 

Gene Assay ID 

Eomes Mm01351985_m1 

Tbx21 Mm00450960_m1 

Bcl6 Mm00477633_m1 

Prdm1 Mm00476128_m1 

Id2 Mm00711781_m1 

Id3 Mm0188138_g1 

Il12rb1 Mm00434189_m1 

Runx3 Mm00490666_m1 

Tcf7 Mm00493445_m1 

Bcl2 Mm00477631_m1 

Il7r Mm00434295_m1 

Rora Mm01173766_m1 

Foxo1 Mm00490672_m1 

Ebag9 Mm00834632_g1 

Gapdh Mm99999915_g1 

EBAG9 Hs00188444_m1 

GAPDH Hs02786624_g1 

 

3.3 Antibodies and MHC multimers 

3.3.1 Conjugated antibodies specific for mouse surface antigens  
The following fluorophore coupled anti-mouse antibodies were used (Table 3). They 

are conjugated with alexa fluor 647 (AF647), allophycocyanin (APC), brilliant violet 

(421), fluorescein isothiocyanate (FITC), pacific blue (PB), peridinin chlorophyll 

protein complex (PerCP) or phycoerythrin (PE). 
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Table 3: Conjugated anti-mouse antibodies 
 

Specificity Conjugate Clone Isotype Host Source 

CD4 PE GK1.5 IgG2b Rat BioLegend 

CD8a BV421 53-6.7 IgG2a Rat BioLegend 

CD8a PB 53-6.7 IgG2a Rat BioLegend 

CD19 PerCP 6D5 IgG2a Rat BioLegend 

CD44 APC IM7 IgG2b Rat BioLegend 

CD44 PE IM7 IgG2b Rat BioLegend 

CD45.1 PB A20 IgG2a Mouse BioLegend 

CD45.2 APC 104 IgG2a Mouse BioLegend 

CD62L FITC MEL-14 IgG2a Rat BioLegend 

CD127 PE A7R34 IgG2a Rat BioLegend 

KLRG1 FITC 2F1/KLRG1 IgG Syrian hamster BioLegend 

IFN-g FITC XMG1.2 IgG1 Rat BD 

 

3.3.2 Conjugated antibodies specific for human surface antigens 
The following fluorophore coupled anti-human antibodies were used (Table 4). 

 
Table 4: Conjugated anti-human antibodies 
 

Specificity Conjugate Clone Isotype Host Source 

CD3e PB HIT3a IgG2a Mouse BioLegend 

CD4 BV421 RPA-T4 IgG1 Mouse BioLegend 

CD8a APC HIT8a IgG1 Mouse BioLegend 

CD8a PE/Cy7 HIT8a IgG1 Mouse BioLegend 

CD19 APC HIB19 IgG1 Mouse BioLegend 

CD45RA PB HI100 IgG2b Mouse BioLegend 

CD45RO PerCP/Cy5.5 UCHL1 IgG2a Mouse BioLegend 

CD62L FITC DREG-56 IgG1 Mouse BioLegend 

CD138 BV421 MI15 IgG1 Mouse BioLegend 

CD197 

(CCR) 
PE G043H7 IgG2a Mouse BioLegend 

CD223 

(LAG-3) 

AF647 11C3C65 IgG1 Mouse BioLegend 

CD269 

(BCMA) 

APC 19F2 IgG2a Mouse BioLegend 
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CD279 

(PD-1) 

PE EH12.2H7 IgG1 Mouse  BioLegend 

CD366 

(TIM-3) 

BV421 F38-2E2 IgG1 Mouse BioLegend 

IgG PE  Polyclonal Goat Southern 

Biotech 

 

3.3.3 MHC Multimers 
The following MHC multimers for staining of antigen-specific T cell were used (Table 

5). 

 
Table 5: MHC multimers 
 

Specificity Peptide MHC Conjugate Source 

SV40 large T antigen VVYDFLKL H-2Kb PE IMMUDEX 

miHag UTY  

(ubiquitously transcribed 

tetratricopeptide repeat gene 

on the Y chromosome) 

WMHHNMDLI H-2Db PE ProImmune 

 

3.3.4 Unconjugated primary antibodies for Western Blot 
The following unconjugated primary antibodies were used (Table 6). 

 
Table 6: Uncoupled primary antibodies 
 

Specificity Clone Isotype Source 

Calnexin Polyclonal Rabbit Enzo 

EBAG9 serum Polyclonal Rabbit Home-made AG Rehm[65] 

 

3.3.5 Secondary antibodies for Western Blot 
The following secondary antibodies were used (Table 7). 

 
Table 7: Secondary antibodies 
 

Specificity Conjugate Host Source 

Anti-rabbit HRP Goat Southern Biotech 
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3.4 Cell lines 
The following cell lines were used (Table 8). 

 
Table 8: Cell lines 
 

Cell line Description 

B3Z Mouse T cell hybridoma, generated by the fusion of an 
ovalbumin-specific T cell clone with a derivative of the mouse 
BW5147 thymoma cell line[141] 
 

DOHH-2 Human B-cell non-Hodgkin’s lymphoma, specifically follicular 
centroblastic/centrocytic lymphoma 
 

HEK 293T Human embryonic kidney cell line 
 

JeKo-1 Human B-cell non-Hodgkin’s lymphoma, specifically mantle 
cell lymphoma 
 

Jurkat76 Human TCR-deficient derivative of J.RT3-T3.5 Jurkat cell 
line 
 

MM1.S Luc-eGFP Human multiple myeloma, stable expression of a firefly 
luciferase-eGFP construct  
 

OPM-2 Human multiple myeloma cell line 

PlatE Ecotropic packaging cell line Platinum-E, derivative of HEK-
293T, stable expression of MLV gag-pol and env genes[142] 

 

3.5 Mice 
EBAG9-/- mice (background C57BL/6) were previously generated in our group and 

described by Rüder et al. 2009[64]. Breeding pairs of C57/BL6, the congenic C57BL/6 

Ly5.1 strain and the Rag2-/- (recombination activating gene 2) strain were obtained 

from Charles River Laboratories. The transgenic MataHari mice that express an MHC 

class I-restricted HY-specific TCR were kindly provided by Prof. Il-Kang Na (Charité 

Berlin) and crossed together with the EBAG9+/+ and EBAG9-/- mice strain[143]. 

NOD.Cg-Prkdcscid Il12rg tm1 Wji/SzJ (NSG) mice were purchased form The Jackson 

Laboratories and subsequently used as breeding pairs. All mice were housed and 

maintained in a controlled pathogen-free environment at the animal facility of the Max-

Delbrück-Centrum for Molecular Medicine (MDC) Berlin. In all experiments, control 

groups were matched for their age, sex and strain background. All animal studies 

were conducted in compliance with the institutional guidelines of the MDC and 

approved by the Berlin State review board at the Landesamt für Gesundheit und 



Material 
 

 30 

Soziales, Berlin (registered under Landesamt für Gesundheit und Soziales TVV 

G0091/15; G0050/16). 

3.6 Chemicals and consumables 
Abbott:    Isoflurane 

 

BD:    7-aminoactinomycin (7-AAD) 

 

C. Roth:  2-propanol, acetone, agar, ammonium persulfate 

(APS), ampicillin, bovine serum albumin-fraction V, 

didecyldimethylammoniumchloride, calcium chloride, 

ethanol, glycerin, glycine, hydrochloric acid, 

ethylenediaminetetraacetic (EDTA), hydrogen 

phosphate, yeast extract, methanol, milk powder, 

peptone, phenylmethysulfonyl fluoride (PMSF), sodium 

hydroxide, sodium chloride, Rotiphorese Gel 30 (30% 

acrylamide, 0.8% bisacrylamide), 

tetramethylethylenediamine (TEMED), TritonX-100, 

polysorbate 20 (Tween 20)  

 

Gibco:  2-ethansolfonic acid (HEPES), fetal calf serum (FCS), 

RPMI-1640, DMEM, Penicillin/Streptamycin 100x, 

glutamine 100x, sodium pyruvate 100x, minimum 

essential medium non-essential amino acids 100x 

 

Merck:  Biocoll, Nα-Benzyloxycarbonyl-L-lysine Thiobenzyl 

Ester (BLT) 

 

Miltenyi:   human IL-2, human IL-7, human IL-15 

 

PAN:    FCS South Africa 

 

Peprotec:   mouse IL-2, human IL-2, human IL-7, human IL-15 
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Sigma-Aldrich: 5,5`-Dithio-bis-(2-nitrobenzoic acid) (DNBT), agarose, 

aprotinin, dimethyl sulfoxide (DMSO), ethidium bromide, 

tris(hydroxymethyl)aminomethane (TRIS) base, 

bromophenol blue, sodium dodecyl sulfate, NP-40 

 

Thermo Fisher Scientific: eBioscience Cell Proliferation Dye eFluor 670, b-

mercaptoethanol, blasticidin, puromycin 

 

3.7 Kits 
Agilent Technologies:  RNA 6000 Pico Kit 

BD:    BD OptEIA human IFN-g ELISA Set 

BD OptEIA human TNF-a ELISA Set 

BD OptEIA human IL-2 ELISA Set 

Qiagen:   DNA Maxi Kit 

RNeasy Micro/Mini Kit 

RNase-free DNase Set 

QIAquick Gel Extraction Kit 

Miltenyi Biotec:  CD8+ T Cell Isolation Kit, human 

CD138 MicroBeads, human 

Thermo Fisher Scientific: SuperScriptÒ III First-Strand Synthesis SuperMix for 

qRT-PCR 

SuperScriptÒ VILOÔ cDNA Synthesis Kit 

STEMCELL Technologies: EasySepÔ PE Positive Selection Kit 

    EasySepÔ Human T Cell Enrichment Kit 

Stratec:   InvisorbÒ Spin Plasmid Mini Two 

 

3.8 Software 
Adobe:    IllustratorÒ CS6, PhotoshopÒ CS6 

BD:    FACS DivaÒ 

Caliper LifeScience:  Living ImageÒ 4.5 

GraphPad:   PrismÒ 6 

Microsoft:   OfficeÒ 2011 

TreeStar:   FlowJoÒ 10 
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4. Methods 

4.1 Molecular biology 
Introducing CAR cDNA into miRNA-encoding MP71 constructs 

For cloning the BCMA or CD19 CAR cDNA into the human miRNA-encoding 

MP71-GFP vector, the NotI and EcoRI specific restriction sites were used to replace 

the GFP cDNA by either the BCMA or CD19 CAR cDNA. For this purpose, fast digest 

restriction enzymes from Thermo Fisher Scientific were used according to the 

manufacturer’s instructions. In brief, 2 µg to 5 µg plasmid DNA was mixed with 10x 

restriction enzyme buffer and 1 µl of each restriction enzyme. In order to remove 5’ 

phosphate residues of vector fragments, 1 U of thermosensitive alkaline phosphatase 

(Fast-AP) was included in the reaction.  

 

After incubating the enzymatic reaction for 30 min at 37°C, DNA fragments were 

separated by agarose gel electrophoresis (1% agarose in TAE buffer, 0.5 µg/ml 

ethidium bromide). Corresponding fragments were then manually extracted from the 

gel and DNA was isolated by the use of the QIAquick Gel Extraction Kit (Qiagen). 

DNA concentrations were determined spectrophotometrically at an OD of 260 nm and 

ligation was performed using the T4 DNA Ligase (Thermo Fisher Scientific) according 

to the manufacturer’s instructions. DNA fragments were used in a molar ratio of 3:1 

(insert:vector) and incubated with 1 U T4 DNA Ligase for 1 h at RT.  

 

Plasmid DNA was transformed into the chemically competent Escherichia coli (E. coli) 

strain XL1-Blue. To this end, 50 µl of competent cells were incubated with 5 µl DNA 

for 20 min on ice. Following a heat shock at 42°C for 45 s, cells were cooled down on 

ice for 5 min. Afterwards, bacteria were mixed with 500 µl LB medium and incubated 

for 1 h at 37°C and 200 rpm. The transformation mix was then plated onto LB-agar 

plates containing 100 µg/ml ampicillin (Roth) and incubated overnight at 37°C. The 

next day, plasmid DNA was extracted using either the Invisorb® Spin Plasmid Mini 

Two (Stratec) for small scale preparations or the DNA Maxi Kit (Qiagen) for large 

scale preparations according to the manufacturer’s instructions. Plasmid sequence 

was confirmed by Sanger DNA sequencing performed by either Source BioScience 

or Eurofins Genomics. 

 

TAE buffer (50x):  2 M TRIS, 1 M acetic acid, 50 mM EDTA (pH 8.0) 
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DNA loading buffer (6x): 30% glycerol, 10 mM EDTA (pH 8.0),   

    0.25% bromophenol blue, 0.25% xylene cyanol 

 

LB medium: 1% peptone, 1% NaCl, 0,5% yeast extract  

 

LB-agar: 1.5% agar, in LB medium 

 

RNA Isolation, cDNA synthesis and qRT-PCR 

Cells were resuspended in 350 µl RLT lysis buffer (Qiagen) supplemented with 3.5 µl 

b-Mercaptoethanol and either stored at -80°C or immediately used for RNA isolation. 

RNA was isolated from cell lysates by using the RNeasy Micro or Mini Kit including 

the RNase-free DNase Set (Qiagen) according to the manufacturer’s instructions. 

RNA concentrations were determined spectrophotometrically at an OD of 230 nm. For 

the measurement of RNA integrity, the RNA 6000 Pico Kit (Agilent) was used 

according to the manufacturer’s instructions. Samples with a higher RNA integrity 

number value of 8 were subsequently used. 

 

For transcribing the isolated RNA into complementary DNA (cDNA), either the 

SuperScriptÒ VILOÔ cDNA Synthesis Kit (Thermo Fisher Scientific) or the 

SuperScriptÒ III First-Strand Synthesis SuperMix for qRT-PCR (Thermo Fisher 

Scientific) was used according to the manufacturer’s instructions. 

 

Quantitative real-time PCR analysis was done by using TaqManÒ probes that anneal 

specifically to a complementary sequence between forward and reverse primer sites. 

A reporter dye is linked to the 5’ end of the probe and a non-fluorescent quencher to 

the 3’ end. Initially, the proximity of the reporter dye to the quencher dye leads to a 

suppression of the reporter fluorescence. During the polymerase chain reaction 

(PCR), the 5’-3’ exonuclease activity of the Taq polymerase leads to the cleavage of 

hybridized probes and the separation of the reporter from the quencher dye results in 

increased fluorescence by the reporter. The reaction was performed in 10 µl by adding 

100 ng cDNA, 1x TaqManÒ  Gene Expression Assay and 1x TaqManÒ  Gene 

Expression Master Mix. Reactions were performed in triplicates using the Applied 

Biosystems StepOnePlus Real-Time PCR system. Results were analyzed by using 

the StepOne software (v2.3). The expression of a gene of interest (GOI) was 

calculated relative to the expression of Gapdh by using the following formula:  
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Relative gene expression (GOI to Gapdh) = 2-[Ct(GOI)-Ct(Gapdh)] 

 

(Ct = mean value of in triplicates measured Ct (threshold cycle) value) 

 

4.2 Cell culture 
Cultivation and cryo-preservation of cell lines 

Cells were cultured at 37°C, 5% CO2 and a relative humidity of 95% in a Binder 

CB 210 incubator (Binder). Adherent cells were passaged depending on their growth 

rate at a confluency of 90%. For this purpose, medium was removed, cells were 

washed with PBS and treated with 0.05% trypsin-EDTA in PBS for 5 min. Cells were 

centrifuged at 400xg for 5 min and the required number of resuspended cells was 

added into a culture flask with fresh serum-containing medium. Suspension cells were 

maintained with 20% to 50% medium exchange once or twice a week depending on 

cell growth. For cryo-preservation, cells were resuspended in 90 % FCS and 

10 % DMSO, transferred to cryo-tubes and stored for 48 h at -80°C in cryo-containers 

(Nalgene). For longtime storage, cells were transferred into liquid nitrogen. Cells were 

thawed again by incubation at 37°C for 2 min. Thawed cells were taken up into 10 ml 

cold medium, centrifuged at 400xg for 5 min and seeded in appropriate culture flasks. 

 

Production of viral supernatant 

For the production of ecotropic retroviral particles, calcium phosphate transfection of 

Plat-E cells with the respective MP71 plasmid was used. The 293T-based retroviral 

packaging cell line Plat-E is already stably transfected with plasmids encoding gag/pol 

and env genes and is therefore cultivated with blasticidin [10 µg/ml] and puromycin 

[1 µg/ml][142]. One day prior to transfection, 4x106 Plat-E cells in 10 ml medium 

(without blasticidin and puromycin) were seeded into tissue culture-treated 10 cm 

dishes to reach an optimal confluence of 70-80% at the time of transfection. One day 

later cells were transfected with 10 µg plasmid DNA per dish.  

 

Precipitation mixture per well: 10 µg  DNA 

     30 µl  CaCl2 (2.5 M) 

     ad 300 µl ddH2O 

 

This solution was incubated for 5 min and mixed under agitation with 

300 µl transfection buffer (2xHEBS). After 20 min incubation at RT, 300 µl of this 

mixture were added dropwise onto the cells. Six h later the medium which contained 
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25 µM chloroquine to improve transfection efficiency was exchanged against 

chloroquine-free medium. Supernatants containing the retroviral particles were 

harvested 48 h after transfection, filtered (0,45 µM pore size) and either used directly 

for transduced or were frozen and stored at -80°C.  

 

For production of amphotropic retroviral supernatants HEK-293T cells were used. 

0.8x106 HEK-293T cells per well in 3 ml medium were seeded into tissue-culture 6-

well plates. Transfection of HEK-293T cells was performed using an MP71 construct 

and two plasmids encoding the MLV env (10A1) and gag/pol genes in a 1:1:1 ratio 

(6 µg each) following the same protocol as described above. 

 

HEBS (2x):  50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, pH 7.05 (+/- 0.05) 

 

Culture medium PlatE:  DMEM, 10% FCS (Gibco), 1% penicillin- streptomycin, 

1% sodium pyruvat, 1% glutamine 

 

Culture medium HEK-293T: DMEM, 10% FCS (Gibco), 1% penicillin-streptomycin, 

1% glutamine  

 

Isolation, transduction and culture of primary mouse T cells 

Spleens of 10-12 week old mice were isolated and passed through a 40 µM cell 

strainer to generate single-cell suspensions. After centrifugation at 400xg for 5 min, 

cells were resuspended in 5 ml hypotonic ACK erythrocyte lysis buffer. By adding 

mouse T cell culture medium (mTCM) lysis of red blood cells was stopped after 5 min. 

Cells were washed and seeded for activation onto 6-well plates coated with anti-

mouse CD3 [3 µg/ml] and anti-mouse CD28 [2 µg/ml] antibody in 7 ml medium 

containing 10 IU/ml mouse recombinant IL-2 (Peprotech) per well. Twenty-four h after 

activation, mouse splenocytes were transduced once. For this purpose, cell density 

was adjusted to 1x106 cells/ml and 10 µl per 106 cells T-Activator CD3/28 beads 

(Thermo Fisher Scientific), 10 IU/ml IL-2 and 4 µg/ml polybrene were added. Next, 

1x106 cells per well were transferred to a virus-coated 24-well plate. This non-tissue 

culture plate was incubated overnight at 4°C with 12,5 µg/ml RetroNectin (TaKaRa), 

blocked for 30 min at 37°C with 2% BSA in PBS and washed with 25 mM HEPES 

before 500 µl of virus supernatant per well were transferred and centrifuged for 90 min 

at 3000xg at 4°C. After transferring 1 ml activated splenocytes per well, cells were 

centrifuged for 20 min at 800xg at 32°C and cultured overnight. One day after 
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transduction, positively transduced cells were sorted by FACS and injected 

intravenously (i.v.) into recipient mice. 

 

ACK lysis buffer (10x): 1.67 M NH4Cl, 100 mM KHCO3. 1.26 mM EDTA, pH 7.3  

 

mTCM: RPMI-1640, 10% FCS (PAN), 1% penicillin-streptomycin, 

1% glutamine, 1% sodium pyruvate, 1% minimum essential medium 

non-essential amino acids (MEM NEAA), 50 µM b-mercaptoethanol 

 

Isolation, transduction and culture of primary human T cells and human cell lines  

Peripheral blood from healthy voluntary donors was diluted in human T cell culture 

medium (hTCM). For isolating human peripheral blood mononuclear cells (PBMCs), 

a density gradient centrifugation with Biocoll (Biochrom) was performed. Enrichment 

of CD3+ or CD8+ T cells was achieved by magnetic cell separation, using either the 

“Easy Sep™ Human CD3 Positive Selection Kit” (STEMCELL Technologies), or the 

“CD8+ T Cell Isolation Kit, human” (Miltenyi), respectively, according to enclosed 

protocols. After adjusting the cell density to 1x106 cells/ml and adding either 10 IU/ml 

recombinant human IL-2 and 10 ng/ml recombinant human IL-15, or recombinant 

human IL-7 and IL-15 (10 ng/ml each, Peprotech or Miltenyi), cells were transferred 

to a 24-well tissue culture-treated plate which was coated with anti-human CD3 

[5 µg/ml] and anti-human CD28 [1 µg/ml] antibodies. Activated human T cells were 

subjected to two rounds of transduction starting 48 h after T cell activation. For 

transduction 500 µl retroviral supernatant was transferred to a RetroNectin-coated 24-

well non-tissue-treated plate and centrifuged for 90 min at 3000xg and 4°C. Next, 1 ml 

activated T cells supplemented with the respective cytokines and 4 µg/ml polybrene 

were transferred to the virus-coated plate. After adding further virus supernatant (1:4 

diluted in hTCM), cells were centrifuged at 800xg at 32°C for 20 min and cultured 

overnight. Next day, transduction procedure was repeated and 4 h after transduction 

cells were transferred to cell culture flasks. Cell culture medium supplemented with 

the respective cytokines was added to the cells as required. On day 13 after T cell 

activation (prior to functional assays 48 h later), medium was exchanged for fresh 

hTCM containing 10 IU/ml IL-2 and 1 ng/ml IL-15 (for in vitro cytotoxicity, granzyme 

A release and cytokine secretion assay), or IL-7 and IL-15 at a concentration of 

10 ng/ml each (for in vitro repetitive antigen stimulation).  

 

MACS buffer: 1x PBS, 0.5% BSA, 2mM EDTA  
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hTCM: RPMI-1640, 10% FCS (PAN), 1% penicillin-streptomycin, 

1% glutamine, 1% sodium pyruvate, 1% minimum essential 

medium non-essential amino acids (MEM NEAA) 

 

human cell lines: RPMI-1640, 10% FCS (Gibco), 1% penicillin-streptomycin, 

1% glutamine, 1% sodium pyruvate, 1% minimum essential 

medium non-essential amino acids (MEM NEAA)  

 

4.3 Functional assays 
Flow cytometry and fluorescence-activated cell sorting (FACS) 

To detect expression of surface antigens, 1-2x106 cells per sample were transferred 

to a well of a round-bottom 96-well microtiter plate and stained with specific antibodies 

in 100 µl FACS buffer for 20 to 30 min on ice in the dark. Cells were washed twice 

with FACS buffer and centrifuged (1500 rpm for 1 min). Prior to antibody staining, 

mouse splenocytes were blocked with anti-mouse CD16/32 antibody in FACS buffer 

for 20 min on ice and washed once. Fc block for human cells was performed by adding 

10% human AB serum. To discriminate between living and dead cells, stained 

samples were incubated with 7-AAD (Biolegend) 5 to 10 min before data acquisition. 

Samples were acquired on a FACS Canto II flow cytometer (BD Biosciences) and 

data were analyzed with FlowJo v. 10.0.8 software (Tree Star). All cell-sorting steps 

were carried out on a “FACS Aria” or a “FACS Aria Fusion” machine (BD Biosciences). 

Before sorting, cell suspensions were filtered with a 35 µm cell strainer to remove 

aggregated cells. 

 

FACS buffer:  1x PBS, 0.5% BSA, 0.05% NaN3, pH 7.3 

 

In vitro cytotoxicity assay 

Antigen-stimulated in vitro cytotoxicity was measured by [51Cr]-chromium release. 

Target cells were labeled with 20 µCi [51Cr] sodium chromate (PerkinElmer) in hTCM 

(+15% FCS) for 90 min at 37°C. After washing, target cells were co-cultured with 

transduced human CAR T cells (day 15 after activation) in different effector to target 

ratios for 4 h at 37°C. Assay supernatants were transferred to LUMA-scintillation 

plates, air-dried and counted for [51Cr]-chromium release by using a Top γ-Scintillation 

Count Reader (PerkinElmer). All samples were performed in duplicates. Target cell 

maximum release was determined by directly counting labeled cells. Spontaneous 
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release was measured by incubating target cells alone. Calculation of specific lysis 

was achieved according to the formula:  

 

%lysis = [(experimental lysis-spontaneous lysis)x100]/(maximum lysis-spontaneous 

lysis) 

 

Granzyme A release assay 

To determine the activity of granzyme A, human CAR T cells (day 15 after activation) 

were resuspended in FCS-free medium containing 1% BSA (Sigma-Aldrich) at a 

densitiy of 2x106 cells/ml. The granzyme A release was stimulated by transferring 

100 µl cells on an anti-mouse CD3 (3 µg/ml) and anti-mouse CD28 (2 µg/ml) 

antibody-coated 96-well flat-bottom plate. All samples were performed in triplicates. 

After incubation for 4 h at 37°C, supernatants were frozen at -20°C or analyzed 

immediately. To determine the total enzymatic activity, cells were lysed by the use of 

200 µl medium with 1% Triton X-100 and incubated for 1 h at 4°C. To calculate 

granzyme A activity, enzymatic reaction of the substrate Nα-Benzyloxycarbonyl-L-

lysine Thiobenzyl Ester (BLT, Merck Millipore) in the presence of 5,5`-Dithio-bis-(2-

nitrobenzoic acid) (DNBT, Sigma-Aldrich) was analyzed. Thirty µl of supernatant or 

cell lysate were incubated for 2 to 5 h at 37°C with 100 µl of granzyme A substrate 

solution. Product concentration was measured at 405 nm and correlates with 

enzymatic activity. Supernatants of CAR T cells transferred to non-coated plates were 

used as a control for the basal secretion of granzyme A.  

 

Granzyme A substrate solution: 0.2 mM BLT, 0.2 mM DNBT, 0.2% Triton X-100 in 

     PBS 

 

Cytokine secretion assay 

Antigen-stimulated cytokine secretion by human CAR T cells (day 15 after activation) 

was analyzed by co-culturing 5x104 human T cells with 5x104 antigen-expressing 

tumor cell lines (100 µl each) in round-bottom 96-well plates for 16 to 24 h. All 

samples were performed in duplicates. Supernatants were either frozen at -80°C or 

analyzed immediately. The concentrations of human IFN-γ, TNF-α and IL-2 were 

determined by enzyme-linked immunoabsorbent assays using flat-bottom 96-well 

ELISA plates according to manufacturer’s instructions (BD Bioscience). Antigen-

independent maximal release was achieved by incubation of CAR T cells with 

1 µM ionomycin (Calbiochem) and 5 ng/ml phorbol-12-myristate-13-acetate (PMA, 

Promega). Minimum release represents T cells incubated without target cells.  
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Assay buffer: 10% FCS in PBS 

 

Repetitive antigen-stimulation assay/stress test  

To analyze the effect of in vitro repetitive antigen stimulation on CAR T cells, a stress 

test was performed in a similar manner as described by Künkele et al. 2015[144]. CAR 

T cells were cultured and transduced in the presence of recombinant human IL-7 and 

IL-15 (10 ng/ml each). On day 10 to 13 of culture, CAR T cells were co-cultivated in 

24-well plates with MM.1S tumor cells at a 1:1 ratio (5x105 cells each), in the presence 

of 0.1 ng/ml recombinant human IL-7 and IL-15. Supernatants were harvested to 

quantify the release of IFN-γ 72 h after co-cultivation. To determine the remaining 

amount of MM.1S tumor cells within the culture, an aliquot of cells was analyzed by 

flow cytometry using CD138 staining of tumor and CD3 staining of T cells. All cells of 

the co-culture were treated with CD138 MACS Micro Beads (Miltenyi) to deplete 

residual CD138+ tumor cells. Enriched CAR T cells were then used for another round 

of co-culturing with MM.1S tumor cells at a 1:1 ratio. In total, 5 rounds of transfer over 

15 days were performed. After each round, T cells were analyzed for cell numbers, 

viability, and CD4+/CD8+ subset distribution. In addition, CAR expression, T cell 

exhaustion and memory marker expression was assessed.  

 

4.4 Protein biochemistry 
Preparation of cell lysates and SDS gel electrophoresis (SDS-PAGE)  

Generation of cell lysates for detection of protein expression was done by 

resuspension of cells in RIPA lysis buffer freshly supplemented with the protease 

inhibitors phenylmethysulfonyl fluoride (PMSF) and aprotinin at a concentration of 

1 mM and 5 µg/ml, respectively. After 30 min of incubation at 4°C, lysates were 

centrifuged (13000 rpm, 10 min, 4°C) to remove cellular debris. The supernatant was 

either stored at -20°C or analyzed immediately by SDS-PAGE. For the latter, protein 

samples were mixed with SDS sample buffer and heated at 95°C for 5 min. For protein 

separation, a 12.5% running gel with 4% stacking gel was used. As a standard for the 

molecular weight, the “PageRuler prestained protein ladder 10-170 kDa” (Thermo 

Fisher Scientific) was applied. The electrophoresis was performed in Laemmli running 

buffer at a constant current of 20 mA per gel. 

 

RIPA: 50 mM TRIS/HCl (pH 7.5), 50mM NaCl, 0.5 mM EDTA, 0.5% NP-40, 

 0.25% sodium deoxycholate 
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Lower TRIS buffer (4x): 1.5 M TRIS, 0.4% SDS, pH 8.8 

 

Upper TRIS buffer (4x): 1.5 M TRIS, 0.4% SDS, pH 6.8 

 

SDS sample buffer (2x): 125 mM TRIS/HCl (pH 6.8), 8% SDS, 20% glycerin, 

10% b-mercaptoethanol, 0.002% bromophenol blue 

 

Laemmli running buffer (10x): 250 mM TRIS, 2.5 M glycine, 1% SDS, pH 6.8 

 

Protein transfer and immunological protein detection 

Separated proteins on the SDS gel were transferred via electroblotting (Mini-

PROTEANÒ Tetra Cell system, Bio-Rad) onto a nitrocellulose membrane (“Protean 

BA85 Nitrocellulose Membrane”, Whatman) at 150 mA per gel for 90 min in transfer 

buffer. Alternatively, the transfer was performed at 20 mA per gel overnight. After 

transfer, the non-specific protein binding sites were blocked by incubation of the 

membrane in PBS-T supplemented with 5% milk powder for 60 min under agitation 

at RT. For antibody staining, the membrane was incubated in PBS-T supplemented 

with 1% milk powder and an uncoupled protein specific primary antibody for 2 h under 

agitation at RT. The membrane was then washed three times for 5 min with PBS-T 

and incubated with PBS-T supplemented with 1% milk powder and an HRP-coupled 

secondary antibodies for 1 h under agitation at RT. This secondary antibody 

specifically detects and binds to the primary antibody species. The membrane was 

then washed for three times and protein detection was performed by treating the 

membrane with the ”Pierce ECL western blotting substrate” (Thermo Fisher Scientific) 

according to the manufacturer’s instructions. HRP activity resulted in 

chemiluminescence signals that were detected using the ChemiDoc (Bio-Rad 

Laboratories).  

 

Transfer buffer: 25 mM TRIS, 192 mM glycine, 20% methanol 

 

PBS-T:  0.05% Tween 20 in PBS (1x) 

 

4.5 In vivo experiments 
Immunization of EBAG9+/+ and EBAG9-/- mice 

For the analysis of memory formation, EBAG9+/+ and EBAG9-/- mice were immunized 

once intraperitoneally (i.p.) with 1x106 Co16.113 cells. On day 6 or between days 55 
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to 65, mice were sacrificed, and spleens were removed. Splenocytes were isolated 

by gently disrupting the spleen and application on a 70 µm cell strainer to obtain single 

cell suspensions. Following lysis of erythrocytes with hypotonic ACK lysis buffer for 

5 min at RT, cells were subsequently processed for flow cytometry. 

 

Adoptive transfer of MataHari cells 

For the analysis of memory formation upon minor histocompatibility antigen 

stimulation, splenocytes from female CD45.2+ MataHari mice that were EBAG9+/+ or 

EBAG9-/- were isolated and sorted by FACS for CD8+ CD62L+ naive cells. Afterwards, 

4-5x104 sorted cells were transferred into female CD45.1+ EBAG9+/+ or EBAG9-/- 

recipient mice by intravenous injection (i.v.). One day later, recipient mice were 

immunized i.p. with 5x106 male HY+ splenocytes. On day 7 or between days 50 to 56, 

mice were sacrificed, splenocytes isolated and subsequently analyzed by flow 

cytometry.  

 

In vivo killing assay 

Donor C57Bl/6 mice were immunized twice i.p. with the SV40 large T-antigen 

expressing cell line Co16.113 prior to isolation and retroviral transduction of 

splenocytes. Twenty-four h after transduction, GFP-expressing transduced cells were 

sorted by FACS and transferred i.v. into RAG2-/- recipient mice. RAG2-/- mice were 

immunized i.p. on days 1 and 14 after T cell transfer with Co16.113 cells. In vivo killing 

assay was performed on day 19 after transfer. Splenocytes from untreated C57Bl/6 

mice were isolated and resuspended in PBS at a density of 1x107 cells/ml. Peptide 

labeling was achieved by incubation of splenocytes with 4 µg/ml Tag peptide IV for 

30 min at 37°C. Half of the cells was left without peptide. Cells were washed and 

labeled with different amounts of eFluor670 for 10 min at 37°C. The peptide-loaded 

population was stained with 1 µM eFluor670, while the non-loaded population was 

stained with 0,1 µM eFluor670. Afterwards, cells were washed once in mTCM and 

twice in PBS. 2x107 stained target cells were injected i.v. into recipient RAG-/- mice at 

a ratio of 1:1 of peptide-loaded and non-loaded cells. Recipients were sacrificed 

16 h after transfer. Splenocytes were isolated and analyzed by flow cytometry. To 

calculate the specific lysis, the following formula was applied: 

 

%specific lysis = [1-(control ratio/experimental ratio)]x100 

 

Ratio = % low eFluor670 peak/% high eFluor670 peak 
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(Low = w/o peptide, high = peptide-pulsed) 

 

Multiple myeloma xenograft model 

The human multiple myeloma cell line MM.1S (0,8x107 to 1x107 cells) was injected 

i.v. into 6-10 week old NSG mice (NOD.Cg-PrkdcscidIl2rgtm1 Wji/ SzJ, Jackson 

Laboratories). The MM.1S cell line is transduced with a lentivirus encoding firefly 

luciferase in tandem with eGFP[145]. Using luciferin (Biosynth) i.p. application and 10 

min later IVIS spectrum imaging (Caliper Life Sciences), the tumor growth was 

monitored. On day 7 after tumor injection, i.v. CAR T cells were administered (1x106 

CAR positive T cells per mouse). Tumor progression was monitored on day 7 and 13 

after T cell injection by measurement of bioluminescence signals. Mice were imaged 

for several exposure times, ranging between 1 and 150 s. Binning and exposure were 

adjusted to achieve maximum sensitivity without leading to image saturation. To 

analyze the bioluminescence signal flux for each mouse as photons/s per cm2 per 

steradian, the Living Image software version 4.5 (Caliper Life Sciences) was used. 

On day 15 to 16, animals were sacrificed. Tumor cells and remaining human CAR 

T cells were detected and analyzed in bone marrow, blood and spleen. To analyze 

bone marrow cells, femora were dissected and flushed with PBS. The cell suspension 

was applied to a 70 µm cell strainer, centrifuged (400xg, 5 min, 4°C) and lysed with 

hypotonic ACK erythrocyte lysis buffer for 5 min at RT. PBMCs from blood were 

retrieved from heart puncture. The blood was immediately mixed with 50 µl 

0.5 M EDTA and lysed twice with hypotonic ACK erythrocyte lysis buffer. 

Subsequently, cells derived from bone marrow, blood and spleen were analyzed by 

flow cytometry. 

 

4.6 Statistics 
For data analysis and determination of statistical significance between groups, the 

Prism software version 6.0 (GraphPad) was used. Results are expressed as 

arithmetic means ± standard error of the mean (SEM). Normally distributed data were 

analyzed by using the Student’s unpaired or paired two-tailed t-test or a one sample 

t-test. The unpaired Mann-Whitney U test was used to analyze non-normally 

distributed data. Non-normalized values were evaluated using the Wilcoxon signed 

rank test. Values of p<0.05 were considered as statistically significant and were 

illustrated by one asterisk, values of p<0.01 were marked with two asterisks, and 

values of p<0.001 with three asterisks.
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5. Results 

5.1 EBAG9 regulates CD8+ T cell memory differentiation 
Rüder et al. reported that genetically engineered mice with an EBAG9 deletion 

showed a higher killing capacity of CTLs. The release of granzyme A-containing 

secretory lysosomes from CD8+ T cells is facilitated in these mice. In addition, a 

stronger secondary immune response against target cells expressing the SV40 large 

T-antigen (Tag) was observed[64]. It is currently unclear how the cytolytic capacity of 

CD8+ T cells is linked to the memory commitment of these cells. Therefore, the first 

part of this project focused on analyzing the relationship between enhanced cytolytic 

efficacy and memory formation upon loss of EBAG9. By using a low dose of the strong 

Tag neoantigen and the minor histocompatibility antigen (mHag) HY, the role of 

cytolytic strength on T cell fate decision under non-inflammatory conditions was 

explored.  

5.1.1 Loss of EBAG9 leads to an enhanced antigen-specific memory 
CD8+ T cell development after immunization with the strong Tag 
neoantigen  

To date, loss of EBAG9 was shown to increase the secondary immune response in 

animals rechallenged on day 30 with the viral SV40 large T antigen-expressing cell 

line Co16.113. To examine whether there were differences in the frequency of 

antigen-specific CD8+ T cells due to EBAG9 deficiency, EBAG9+/+ and EBAG9-/- mice 

were immunized i.p. with a low dose of 1x106 Tag-expressing Co16.113 tumor cells. 

Memory formation was analyzed by flow cytometry after 55 to 65 days. To detect 

antigen-specific T cells, tetramers were used. These multimers are oligomeric forms 

of MHC molecules bioengineered to present the Tag-derived immunodominant 

peptide IV (TetIV). Co-staining of CD8+ T cells with TetIV and CD44 revealed 1.5-fold 

higher frequencies of CD8+ TetIV+ CD44high T cells among all splenocytes of mice 

lacking EBAG9. While 0.06% of antigen-specific memory CD8+ T cells could be 

detected in EBAG9+/+ mice, 0.09% were present in EBAG9-/- mice. Total cellularity in 

the spleen of EBAG+/+ and EBAG9-/- mice was previously shown to be similar[64]. Naive 

non-immunized mice served as a negative control for the presence of antigen-specific 

memory T cells (Figure 4).  
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Figure 4: Loss of EBAG9 leads to an increased CD8+ T cell memory formation upon 
immunization with the Tag neoantigen. 
(A) EBAG9+/+ and EBAG9-/- mice were immunized i.p. with 1x106 Tag-expressing Co16.113 
tumor cells. On days 55-65, splenocytes were isolated, stained for CD19, CD8, TetIV, and 
CD44 and subsequently analyzed by flow cytometry. CD19 staining was used to exclude 
B cells. Frequencies of CD19- CD8+ TetIV+ CD44high T cells among all splenocytes are 
depicted. Bars represent mean values ± SEM of n=3 experiments with n=10-11 mice per 
genotype. *p<0.05, **p<0.01, *p<0.001; ns, not significant. An unpaired t-test was applied. 
(B) Dot plots show one representative gating example for each genotype. Frequencies of 
CD8+ TetIV+ CD44high T cells are indicated as percentages on the gate. 
 

Effector and memory T cells can be phenotypically distinguished by the expression of 

distinct surface markers. While increased expression of the killer-cell lectin-like 

receptor G1 (KLRG1) is associated with differentiation into short-lived effector T cells, 

expression of the IL-7 receptor a subunit CD127 defines early memory or memory 

precursor T cells, respectively[146-148]. To examine whether there were differences in 

precursor frequencies, EBAG9+/+ and EBAG9-/- mice were immunized with 

1x106 Co16.113 cells i.p. and analyzed by flow cytometry in the expansion phase on 

day 6 after immunization in collaboration with Dr. Dana Hoser (Charité Berlin). No 

differences in antigen-specific CD8+ T cell frequencies were observed at this early 

stage (Figure 5A). Additionally, in comparison to EBAG9+/+ controls, EBAG9-deficient 

mice exhibited similar frequencies of activated T cells that were characterized by 

CD44 expression (Figure 5D). Co-staining of antigen-specific CD8+ TetIV+ T cells with 

KLRG1 and CD127 revealed identical proportions of terminal effector and memory 

precursor T cells in EBAG9+/+ and EBAG9-/- mice (Figure 5B-C). Therefore, in regard 

to a surface marker-defined distinction into effector and precursor memory CD8+ 

T cells, the differentiation processes associated with EBAG9 deletion could not be 

resolved. 
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Figure 5: Similar expression of classical effector and memory surface markers by 
EBAG+/+ and EBAG9-/- mice on day 6 after Tag-immunization. 
(A) EBAG9+/+ and EBAG9-/- mice were immunized with 1x106 Tag-expressing Co16.113 tumor 
cells i.p. and analyzed on day 6 by flow cytometry for frequencies of antigen-specific CD8+ 
TetIV+ T cells. Bars represent mean values ± SEM of n=3 experiments with n=11-13 mice per 
genotype. *p<0.05, **p<0.01, *p<0.001. A Mann Whitney U test was applied. (B-D) Expression 
of surface markers for effector and memory T cells on day 6 after immunization by co-staining 
of CD19- CD8+ TetIV+ cells with KLRG1, CD127 or CD44. Histograms show one representative 
example per genotype. For KLRG1 and CD127, gates were set for CD8+ TetIV+ KLRG1+ or 
CD8+ TetIV+ CD127+ cells, respectively, while the CD44 histogram represents expression of 
CD44 in the CD8+ TetIV+ gate. Bars represent mean values ± SEM of n=3 experiments with 
n=6-11 animals per genotype. Significances were calculated by an unpaired t-test; all 
comparisons are non-significant. 
 

Several transcription factors have been shown to coordinate and regulate the balance 

between long-lived memory and terminally differentiated CD8+ T cells. These 

transcription factors often function in pairs and form counter-regulatory axes. For 

example, Eomesodermin (EOMES) and T-bet are T box transcription factors with 

crucial roles in the formation and function of effector and memory T cells. Although 

EOMES and T-bet cooperate in many aspects for sustaining CTL identity in early 

activated CD8+ T cells, their expression is of a reciprocal nature. The ratio of EOMES 

to T-bet is highest at memory cell stages and lowest at effector cell stages[23]. Another 



Results 
 

 48 

interesting pair of antagonistic transcription factors is BCL-6 and BLIMP1. While 

BLIMP1 is a transcriptional repressor that is expressed by effector T cells, BCL-6 

expression is inversely correlated with the expression of BLIMP1. Therefore, BCL-6 

is crucial for the memory T cell formation[12]. 

 

To gain a better understanding of transcription factors that are important during the 

early stages of activation in Tag-specific CD8+ T cells, qRT-PCR analysis was 

performed. EBAG9+/+ and EBAG9-/- mice were immunized with 1x106 Tag-expressing 

Co16.113 cells followed by the fluorescence-activated cell sorting (FACS) of antigen-

specific CD8+ TetIV+ T cells on day 6 after immunization. Gene expression analysis 

revealed that Eomes expression was upregulated 4-fold in EBAG9-deficient mice 

compared to EBAG9-proficient mice. There were no significant differences in the 

expression of Tbx21 (encodes for T-bet), Bcl6, or Prdm1 (encodes for BLIMP1) 

detected (Figure 6).  

 

 
Figure 6: Loss of EBAG9 leads to the increased expression of the memory formation 
promoting transcription factor EOMES. 
On day 6 after immunization of EBAG9+/+ and EBAG9-/- with 1x106 Co16.113 i.p., antigen-
specific CD19- CD8+ TetIV+ T cells were sorted by FACS followed by RNA isolation. Gene 
expression analysis was performed by qRT-PCR. Gene expression in the EBAG9+/+ samples 
was set arbitrarily at 1. Bars represent mean values ± SEM of n=3 experiments with n=3 
samples pooled from 2-3 animals per genotype. *p<0.05, **p<0.01, *p<0.001; ns, not 
significant. An unpaired t-test was applied. 
 

5.1.2 Deletion of EBAG9 confers mice with a selective advantage for the 
development of a larger HY-specific CD8+ memory pool 

The previous results were obtained under non-inflammatory conditions by employing 

an immunization protocol whereby a low dose of a strong neoantigen was 

administered. These immunizations recruit a polyclonal T cell repertoire. To avoid 
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potential alterations in the TCR repertoire, affinities, or precursor frequencies that 

might exist in EBAG9-/- mice, these mice were crossed to transgenic monoclonal 

MataHari mice expressing an MHC class I-restricted HY-specific TCR[143]. HY is a Db-

restricted weaker immunogenic mHag encoded by genes on the Y chromosome.  

 

To mimic low physiological precursor frequencies, an adoptive transfer approach was 

used. Accordingly, 4-5x104 naive (CD8+ CD62Lhigh) EBAG9+/+ and EBAG9-/- MataHari 

CD8+ CD45.2+ T cells from female donors were sorted by FACS and transferred i.v. 

into CD45.1+ female recipient mice. The congenic markers CD45.1 and CD45.2 were 

used to further distinguish recipient-derived and transferred T cells. On days 50-56 

following immunization with 5x106 HY+ male splenocytes i.p., memory formation in the 

donor-derived CD45.2+ population was analyzed by flow cytometry. Co-staining of 

CD8+ CD45.2+ T cells with CD44 revealed 1.5-fold higher frequencies of 

EBAG9-/--derived MataHari memory T cells (CD8+ CD45.2+ CD44high) in all 

splenocytes (Figure 7A). In addition, there was a significantly higher ratio of CD44high 

memory cells amongst the CD8+ CD45.2+ population. Sixty percent of the CD44high 

T cells were derived from EBAG9+/+ mice whereas 75% of the CD44high T cells were 

from EBAG9-deficient mice. Therefore, in accordance with the results obtained in the 

polyclonal immune response, loss of EBAG9 also resulted in the development of a 

larger antigen-specific CD8+ memory pool in a monoclonal TCR population (Figure 
7B).  

 

 
Figure 7: Higher frequencies of HY-specific CD8+ memory T cells within EBAG9-
deficient mice. 
(A-B) Naive EBAG9+/+ or EBAG9-/- CD45.2+ MataHari T cells (CD8+ CD62Lhigh) from female 
donors (4-5x104) were transferred i.v. into female CD45.1+ recipient mice followed by 
immunization i.p. with 5x106 male HY+ splenocytes. On days 50-56, memory formation of the 
transferred T cells was analyzed by flow cytometry and staining for CD8+ CD45.2+ CD44high 
T cells. Bars represent mean values ± SEM of n=2 experiments with n=5-6 mice per genotype. 
*p<0.05, **p<0.01, *p<0.001; ns, not significant. An unpaired t-test was applied. 
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To determine whether EBAG9-/--derived memory cells were still functional, the ability 

of these cells to release the effector cytokine IFN-g was analyzed. FACS-sorted 

MataHari memory T cells (CD8+ CD45.2+ CD44high) derived from EBAG9+/+ or 

EBAG9-/- mice were restimulated in vitro by co-culture with HY peptide-pulsed 

dendritic cells (DCs). Flow cytometric analysis revealed, the capability of EBAG9-/--

derived memory cells to produce identical rates of IFN-g (Figure 8). 

 

 
Figure 8: Functionality of EBAG9-deficient MataHari memory T cells. 
MataHari memory T cells (CD8+ CD45.2+ CD44high) were sorted by FACS and restimulated in 
vitro by co-culture with HY peptide-pulsed dendritic cells. Effector cytokine release was 
measured by intracellular staining of IFN-g. Frequencies of CD45.2+ CD8+ IFN-g+ positive 
populations are indicated as percentages on the gate. 
 

To explore whether lineage commitment after transfer of low numbers of monoclonal 

MataHari T cells resembles the observations on the polyclonal Tag-specific precursor 

activation, surface markers for effector and memory differentiation were analyzed. 

After transferring 4-5x104 naive EBAG9+/+ or EBAG9-/- MataHari T cells (CD8+ 

CD45.2+ CD62Lhigh) from female donors into female CD45.1 recipient mice i.v., mice 

were immunized i.p. with HY+ male splenocytes. On day 7 after immunization, 

identical amounts of CD8+ CD45.2+ T cells among all splenocytes were found for 

EBAG9+/+ and EBAG9-/--derived MataHari T cells. Comparable total cell numbers of 

these antigen-specific T cells in the spleen were observed. This result indicates a 

similar expansion of both populations (Figure 9A-B). In accordance with the data 

obtained when animals were immunized with the strong Tag neoantigen, EBAG9-

deficient MataHari T cells revealed similar frequencies of terminal effector (CD8+ 

KLRG1+) and memory precursor (CD8+ CD127+) T cells as EBAG9+/+ controls. 

Furthermore, a similar activation level was observed as the frequency of 
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CD44high CD8+ CD45.2+ T cells for both genotypes were similar. Altogether, HY-

specific CD8+ T cell populations form EBAG9-proficient or EBAG9-deficient mice did 

not reveal phenotypical differences regarding activation (CD44), effector (KLRG1), or 

memory (CD127) differentiation in this early expansion phase (Figure 9C-E). 

 

 
Figure 9: No differences in the expression of lineage determining T cell surface markers 
in EBAG9-deficient mice on day 7 after immunization with male splenocytes 
(A-B) Naive EBAG9+/+ or EBAG9-/- CD45.2+ MataHari T cells from female donors (4-5x104 

cells) were transferred i.v. into female CD45.1+ recipient mice followed by immunization i.p. 
with 5x106 male HY+ splenocytes and analysis on day 7 by flow cytometry. (A) Frequencies of 
CD8+ CD45.2+ T cells among all splenocytes and (B) total cell numbers are depicted. Bars 
represent mean values ± SEM of n=3 experiments with n=9-11 mice per genotype. (C-E) 
Expression of surface markers for effector and memory T cells on day 7 after immunization by 
co-staining of CD8+ CD45.2+ cells with KLRG1, CD127 or CD44. Histograms show one 
representative example per genotype. For KLRG1 and CD127, gates were set for CD8+ 

CD45.2+ KLRG1+ or CD8+ CD45.2+ CD127+ cells, respectively, while the CD44 histogram 
represents expression of CD44 within the CD8+ CD45.2+ gate. Bars represent mean 
values ± SEM of n=3 experiments with n=6-12 mice per genotype. Significances were 
calculated by an unpaired t-test; all comparisons are non-significant. 
 

To examine the transcriptional profile of HY-specific T cells that may lead to memory 

differentiation, female EBAG9+/+ and EBAG9-deficient mice were immunized twice i.p. 
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with HY+ male splenocytes. Our group previously demonstrated the effective 

elimination of HY+ male target cells in female mice 11 days after immunization with 

HY+ male splenocytes via in vivo killing assays (unpublished data). Therefore, this 

time point was selected for the sorting of HY+-specific T cells (CD19- CD8+ 

Pentamer+). These antigen-specific T cells were further analyzed for gene expression 

of well-known transcription factors involved in establishing and maintaining a memory 

T cell pool. In addition to the aforementioned counter-regulatory pairs of the 

transcription factors EOMES/T-bet and BCL-6/BLIMP1, inhibitor of DNA binding 2 

(ID2) and 3 (ID3) were analyzed. Id2 and Id3 are expressed by effector CD8+ T cells. 

Whereas ID2 supports the survival of effector T cells upon naive to effector cell 

transition, ID3 regulates their survival at a later stage during effector to memory 

transition[149]. Furthermore, the IL-12 receptor (IL-12R), the IL-7 receptor (IL-7R), the 

transcription factor 7 (TCF7), the apoptosis regulatory B-cell lymphoma 2 protein 

(BCL-2), and the forkhead box protein O1 (FOXO1) are factors rather associated with 

memory precursor cell differentiation. In contrast, the nuclear receptor RORa and the 

Runt-related transcription factor 3 (RUNX3) are important for the development of an 

effector cell population[150].  

 

 
Figure 10: Differential transcription factor gene expression in CD8+ T cells derived from 
EBAG9-deficient mice. 
On day 11 after immunization of female EBAG9+/+ and EBAG9-/- mice with 5x106 HY+ male 
splenocytes, antigen-specific T cells (CD19- CD8+ Pentamer+) were sorted by FACS followed 
by RNA isolation. Gene expression was determined by qRT-PCR. Gene expression within 
EBAG9+/+ samples was set arbitrarily at 1. Bars represent mean values ± SEM of n=5-6 
experiments with n=5-6 samples pooled from 2-3 animals per genotype. *p<0.05, **p<0.01, 
*p<0.001; ns, not significant. An unpaired t-test was applied. 
 

Of all tested transcription factors, the T box transcription factor Tbx21 (encodes for 

T-bet), Id3, and Il12rb (encodes for the b-subunit of the IL-12 receptor) were 
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significantly (p<0.05) up-regulated by at least 1.5-fold in EBAG9-/- CD8+ T cells 

compared to EBAG9+/+ CD8+ T cells. Although a difference in the gene expression of 

the Id3 counterpart Id2 was not detected, the ratio of Id2 and Id3 was clearly shifted 

towards Id3 in EBAG9-deficient mice (Figure 10). 

 

Altogether, loss of EBAG9 increased the formation of an CD8+ T cell memory pool 

within a polyclonal and monoclonal T cell repertoire under non-inflammatory 

conditions. The increase of the memory population was associated with the 

differential expression of several transcription factors involved in memory 

differentiation. Hence, EBAG9 links the cytolytic activity, the duration of antigen 

accessibility over time, and the commitment to the CD8+ memory lineage. Therefore, 

EBAG9 defines a regulatory checkpoint for T cell cytotoxicity and memory formation. 

 

5.2 Target site validation for EBAG9 knockdown 
Most efforts to strengthen ATT are devoted to CTL maturation, high-affinity TCR, or 

CAR selection. Besides identifying a suitable strategy for inducing potent effector cell 

function, ensuring the development of a T cell memory response is also important 

because it is required for long-term immune surveillance[151]. The secretory pathway 

of T cells appears as an attractive alternative target for improving ATT. We previously 

showed that EBAG9 negatively impacts the ability of CTLs in recognizing and killing 

of transformed cells[64]. Furthermore, in the first part of this project, loss of EBAG9 

was shown to link the T cell cytolytic strength to an increased formation of an antigen-

specific memory pool. Therefore, EBAG9 could be a suitable gene function to connect 

both aspects of T cell biology, which could play a role in successful T cell tumor 

immunotherapy. These experiments were performed in genetically deleted animals 

generated by conventional knockout technology in embryonic stem cells. In order to 

translate these observations into ATT applicable to patients, it is necessary to 

generate and analyze ex vivo engineered mature CTLs with a stable EBAG9 

knockdown. In the next part of this project, different EBAG9-targeting miRNAs were 

designed and analyzed for knockdown efficiency in the mouse T cell hybridoma cell 

line B3Z. 

 

For silencing of EBAG9, five different miRNAs (mi141-mi145) targeting different 

regions within the open reading frame of the mouse Ebag9 gene and a control miRNA 

without any target sequence in the genome (mi140) were generated in cooperation 

with Dr. Mario Bunse (Max-Delbrück-Center Berlin). Four different target site 
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prediction programs were used for the miRNA design reflecting the requirements of 

the endogenous RNAi machinery to identify suitable target sites. The miRNA 

secondary structure is important for recognition and processing by the RNAi 

machinery. Characteristic features of the miRNA structure are the rather unstructured 

backbone and the highly base-paired hairpin that encodes the antisense sequence.  

 

 
Figure 11: Effective EBAG9 knockdown after transduction with miRNAs targeting 
different sites within the murine EBAG9 transcript. 
(A) The MP71 vector was used for the simultaneous expression of intronically located EBAG9-
targeting miRNA and GFP. (B-C) The mouse T cell hybridoma cell line B3Z was transduced 
with vectors expressing GFP and miRNAs targeting different regions of the Ebag9 transcript 
(141-145). miRNA 140 is a negative control without any endogenous target site. GFP 
expressing positively transduced cells were analyzed by flow cytometry. One representative 
dot plot for mi142 is shown. The gMFI of GFP is depicted in C. (D) Western blot analysis 
revealed a reduced EBAG9 protein levels due to transduction with sequence-specific miRNAs. 
Calnexin was used as a loading control. Lysates of 1x106 B3Z cells per group were analyzed. 
 
To generate Ebag9-targeting miRNAs, the endogenous miRNA-155 was used. 

Exchanging the 21 nucleotide containing targeting sequence led to Ebag9 

knockdown. The backbone sequence of miRNA-155 was used, however, in 

comparison to the native variant, there was a central mismatch of two base pairs and 
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the GU at the 5’ end of the antisense sequence was missing. The resulting miRNA-

coding sequences were introduced into a GFP-encoding retroviral MP71 vector at an 

intronic position. The MP71 vector is known for high transduction efficiency and stable 

transgene expression in primary T cells[152]. As miRNA transcription is regulated by 

the polymerase II promoter, the highly active 5’ LTR of MP71 can be used to drive 

miRNA and transgene expression (Figure 11A). 

 

To examine the knockdown efficiency of the different miRNAs, the mouse T cell 

hybridoma cell line B3Z was transduced. The B3Z cell line is a fusion cell line of 

myeloma tumor cells and murine primary T cells. GFP expression of transduced cells 

was analyzed by flow cytometry and revealed a high transduction rate (<90%) for all 

miRNAs (Figure 11B). Analysis of the mean fluorescence intensity (MFI) of GFP 

showed that GFP expression is reduced after introducing mi140, mi142, and mi143 

in comparison to the miRNAs 142, 144, and 145 (Figure 11C). Western blot analysis 

revealed that all five sequence-specific miRNAs strongly decreased EBAG9 protein 

expression. Knockdown efficiencies of mi141, mi142, and mi145 exceeded 90%, 

whereas the silencing effect of mi143 and mi144 was less effective. The non-targeting 

mi140 did not alter the EBAG9 protein levels. The ER-located chaperone Calnexin 

served as a loading control and its expression remained unaffected by retroviral 

transduction (Figure 11D). 

 

5.3 Analysis of RNAi-modified mouse T cells 
In the previous section, three highly efficient miRNAs for the silencing of EBAG9 were 

identified. Vectors encoding for these miRNAs were able to efficiently express RNA 

molecules that enter the RNAi pathway. Next, two of these three miRNA constructs 

were selected and a strategy for the efficient transduction of primary mouse T cells 

was designed. The next part of this project focused on the functionality of RNAi-

modified mouse T cells and the question of whether EBAG9 knockdown increases 

the cytolytic activity of modified T cells in vivo. For this purpose, in vivo killing assays 

were performed. 

5.3.1 Efficient RNAi-mediated EBAG9 downregulation in primary mouse 
T cells 

As mi141 and mi142 were identified as suitable tools for RNAi-mediated EBAG9 

silencing in B3Z cells, these miRNAs were also used for further characterization in 

primary mouse T cells. Activated mouse T cells were retrovirally transduced with the 

MP71-vector encoding GFP and either one of the sequence-specific EBAG9-targeting 
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miRNAs or the non-targeting mi140. GFP expression of transduced cells was 

analyzed by flow cytometry and compared to the unmodified parental MP71-GFP 

vector on day 4 after transduction. Although high transductions rates of around 50% 

for GFP+ cells of all T cells were achieved, the transduction efficiency was reduced in 

comparison to the unmodified vector (Figure 12A-B). Furthermore, GFP intensity was 

decreased upon miRNA introduction to around 35% to 50% of the parental MP71-

GFP vector (Figure 12C-D). 

 

 
Figure 12: Efficient transduction of primary mouse T cells with reduced transgene 
expression. 
(A-B) Retrovirally transduced mouse T cells were analyzed by flow cytometry. The gating 
strategy for lymphocytes and single cells is shown. Positively transduced cells expressed 
GFP. Transduction rates are indicated by numbers on the gates. (C-D) Transduction with 
vectors carrying GFP and the miRNA led to reduced GFP expression levels. MFI is depicted 
compared to GFP alone. The histogram shows one representative example for each group. 
Bars represent mean values ± SEM of n=7 experiments with n=4-8 samples. *p<0.05, 
**p<0.01, *p<0.001; ns, not significant. A one sample t-test was applied. 
 

To confirm the sequence-specific knockdown of EBAG9 in primary mouse T cells, 

EBAG9 mRNA and protein levels were examined. RT-PCR and Western blot analysis 
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were performed after FACS of GFP-expressing transduced T cells. Compared to 

untransduced mouse T cells, Ebag9 mRNA levels were reduced by around 80% when 

the mi141 was employed, whereas the mi142 led to a decrease of about 70%. 

Transduction with the non-targeting mi140 had no effect on the Ebag9 gene 

expression (Figure 13A). On the protein level, an RNAi-mediated EBAG9 knockdown 

of >90% could be observed for both miRNAs. Transduction with the parental MP71-

GFP or the non-targeting mi140 did not alter EBAG9 protein expression (Figure 13B). 

For subsequent experiments, the mi141 was selected because it had the most 

efficient silencing effect on EBAG9 gene and protein expression. 

 

 
Figure 13: Validation of an effective EBAG9 downregulation in primary mouse T cells. 
(A) Following transduction, stable knockdown of EBAG9 mRNA and protein was achieved. 
Prior to analysis, positively transduced GFP+ lymphocytes were sorted by FACS followed by 
RNA isolation. mRNA expression was analyzed by qRT-PCR and compared to untransduced 
control cells. Bars represent mean values ± SEM of n=3 experiments. *p<0.05, **p<0.01, 
*p<0.001; ns, not significant. A one sample t-test was performed. (B) A representative Western 
blot out of two experiments is depicted. Calnexin was used as a loading control. Lysates of 
1x106 T cells were analyzed. 
 

5.3.2 The engineered knockdown of EBAG9 amplifies antigen-specific 
killing by cytotoxic mouse T cells in vivo 

To prove the functionality of RNAi-modified cytotoxic T cells in vivo, a mouse model 

was established. C57BL/6 mice were immunized twice with the Tag-expressing cell 

line Co16.113. Three weeks later, splenocytes were isolated and transduced. 

Positively transduced GFP-expressing T cells were enriched by FACS and transferred 

i.v. into immunodeficient RAG2-/- mice. These mice are immunodeficient and lack 

mature T and B cells[153]. Hence, they are particularly capable of supporting 

homeostatic and antigen-induced lymphocyte expansion. On days 1 and 14, RAG2-/- 

mice were immunized twice i.p. with Co16.113 cells. On day 19 after T cell transfer, 

an in vivo killing assay was performed (Figure 14A).  
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Figure 14: The in vivo killing capacity of engineered mouse CTLs can be doubled by 
RNAi-mediated silencing of EBAG9. 
(A) Schematic representation of the experimental procedure. T cells of pre-immunized mice 
were transduced and transferred i.v. into RAG2-/- mice. In vivo killing assay was performed on 
day 19 following T cell transfer by challenging RAG2-/- mice with an equal mixture of non-
loaded and peptide-loaded splenocytes labelled with different amounts of eFluor 670. The 
ratio between both populations was determined by flow cytometry after 16 h. (B) Gating 
strategy for leukocytes and single cells is shown. In addition, transferred CD45.1 positive and 
eFluor 670 stained target cells were analyzed. Frequencies are indicated as percentages on 
the gate. (C) Histograms show one representative example for each group. Percentages of 
non-loaded and peptide-loaded fractions are indicated. Mean values ± SEM of n=5 
experiments are shown with n=5-15 mice per group. *p<0.05, **p<0.01, *p<0.001; ns, not 
significant. A Mann-Whitney U test was applied. 
 

The killing capacity of transferred T cells was tested by challenging RAG2-/- mice with 

peptide IV-loaded and non-loaded splenocytes stained with different amounts of 

eFluor 670. The ratio between both populations was determined by flow cytometry on 

the following day (Figure 14B). Naive control mice that did not receive T cells and 

were not immunized failed to recognize and kill transferred peptide-loaded target 

cells. Mice treated with T cells isolated from immunized mice and transduced with an 

MP71-GFP retrovirus showed a mean antigen-specific killing rate of 31%. This 



  Results 
 

 59 

antigen-specific killing rate in mice that had received the EBAG9-specific mi141 was 

2-fold higher compared to the GFP control group (Figure 14C). 

Analysis of T cells revealed no differences in the engraftment or expansion of GFP-

transduced or RNAi-modified T cells. For both cell populations, around 10% of 

transduced T cells among all splenocytes were detectable within RAG2-/- mice on day 

20 following transfer (Figure 15B). Collectively, the enhanced killing capacity of T cells 

equipped with EBAG9 silencing miRNAs was not caused by different effector cell 

numbers. 

 

Furthermore, transduced cells were co-stained for CD4 and CD8 expression prior to 

and 20 days after transfer. On the day of injection, GFP- and mi141-transduced 

T cells exhibited a similar ratio of CD4+ and CD8+ T cells. An average composition of 

26% CD4+ and 35% CD8+ T cells could be detected (Figure 15A). In contrast, on day 

20 after transfer, there was a significant difference in the T cell subset composition 

between GFP-transduced and RNAi-modified T cells. While GFP-transduced T cells 

exhibited a composition of 88% CD4+ and 10% CD8+ T cells, 75% CD4+ and 

23% CD8+ T cells were detected after transfer of mi141-transduced T cells (Figure 
15C). These data indicate that RNAi-modification may either lead to a preferential 

proliferation of CD8+ T cells or to a disturbed CD4+ T cell development. Therefore, 

CD4+ to CD8+ T cell ratios could be influenced by introducing a miRNA encoding 

sequence. 

 

 
Figure 15: T cell subset composition differs after RNAi-mediated knockdown of EBAG9. 
(A) Prior to transfer into RAG2-/- mice, positively transduced mouse T cells (GFP+) were 
analyzed by flow cytometry. GFP+ cells were co-stained with CD4+ and CD8+. Bars represent 
mean values ± SEM of n=3 experiments with n=3 samples per group. (B) On day 20 after 
T cell transfer, mice were sacrificed followed by lymphocyte analysis. GFP+ transferred cells 
were detected by flow cytometry. Bars represent mean values ± SEM of n=5 experiments with 
10-15 mice per group. (C) Twenty days after T cell transfer, mice were sacrificed, and T cells 
were analyzed again. GFP+ transferred T cells were detected by flow cytometry and co-stained 
with CD4+ and CD8+. Bars represent mean values ± SEM of n=5 experiments with 10-15 mice 
per group. *p<0.05, **p<0.01, *p<0.001; ns, not significant. An unpaired t-test was applied. 
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5.4 RNAi-mediated silencing of EBAG9 in human T cells 
As a proof-of-concept, the mouse model has shown that the engineered 

downregulation of EBAG9 is a suitable strategy to enhance the cytolytic competence 

of adoptively transferred CTLs. In the next part of this project, a robust translational 

approach was developed to transfer the RNAi-mediated EBAG9 silencing into a 

human cell system. Therefore, humanized miRNAs were designed and tested for the 

ability to silence EBAG9. Furthermore, EBAG9-targeting miRNAs were combined with 

antigen-specific CARs. Human CAR T cells harboring an engineered knockdown of 

EBAG9 were then functionally analyzed in regard to their effector molecule secretion 

and cytotoxic capacity in vitro. To exclude adverse effects associated with a loss of 

EBAG9 and its involvement in secretory pathway regulation, in vitro repetitive antigen 

stimulation was performed. This so-called stress-test provides information on T cell 

functionality as well as on the differentiation capacity of T cells. 

5.4.1 Development of a g-retroviral vector for RNAi-mediated EBAG9 
knockdown and the expression of an antigen-specific CAR 

In cooperation with Dr. Mario Bunse (MDC Berlin), four humanized miRNAs (H16-

H19) were designed and cloned into the MP71-GFP vector. H16, H17, and H18 target 

the same region within the open reading frame of the EBAG9 gene as mi141 for 

murine Ebag9, whereas H19 represents a new target site.  

 

Retroviral transduction efficiency and EBAG9 downregulation on the mRNA and 

protein level were tested in the human acute T cell leukemia cell line Jurkat J76. 

Compared to the MP71-GFP control vector without miRNA, all humanized miRNAs 

led to a 1.5-2.5-fold decrease of transduction efficiency (Figure 16A). Yet, an EBAG9 

knockdown efficiency of around 80% could be detected for H16, H17, and H18 on an 

mRNA and protein level compared to untransduced T cells (UT). In contrast, H19 did 

not effectuate EBAG9 gene or protein downregulation (Figure 16B-C). The most 

efficient miRNAs H17 and H18 were selected for further analysis in primary human 

T cells. 

 



  Results 
 

 61 

 
Figure 16: Decreased human EBAG9 expression in Jurkat cells after transduction with 
g-retroviral vectors encoding for different EBAG9-targeting miRNAs. 
(A) Retroviral transduction of human Jurkat cells with different GFP-encoding vectors 
expressing different miRNAs directed against human EBAG9. To determine the transduction 
rate, GFP expression was measured by flow cytometry. Transduction rates are indicated by 
numbers on the gates. (B-C) Transduction of Jurkat cells with sequence-specific miRNAs 
leads to a reduction of EBGA9 mRNA and protein. Prior to analysis positively transduced GFP+ 
cells were enriched by FACS. (B) Bars represent mean values ± SEM of n=2 experiments with 
n=3 samples per group. *p<0.05, **p<0.01, *p<0.001; ns, not significant. A one-sample t-test 
was applied. (C) One representative Western blot out of three experiments performed is 
shown. Calnexin was used as a loading control. Lysates of 1x106 Jurkat cells were analyzed. 
 

In a next step, the retroviral MP71 vector containing the miRNA H18 was modified to 

further accommodate a chimeric antigen receptor (CAR) targeted at BCMA as 

previously generated in our group (Figure 17). This second generation CAR is able to 

specifically target BCMAhigh-expressing human multiple myeloma (MM) and BCMAlow-

expressing non-Hodgkin’s B-cell lymphoma (B-NHL) cells. As a consequence of 

antigen recognition, BCMA CAR T cells are endowed with effector functions[154].  
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Figure 17: The MP71 vector is suitable for a simultaneous expression of an EBAG9-
targeting miRNA and the BCMA CAR. 
The BCMA CAR was introduced into a miRNA-containing MP71 vector at the indicated 
position. Schematic representation of the second generation CAR construct containing a high-
affinity anti-BCMA scFv, a Whitlow linker, an IgG1 hinge region, a CD28 transmembrane and 
intracellular signaling domain as well as an intracellular activation domain of CD3z.  
 

As a negative control for functional assays, the SP6 CAR without any naturally 

occurring ligand was combined with the EBAG9-targeting miRNA H18. Retroviral 

transduction of primary human T cells with the MP71 vector expressing only the 

BCMA CAR decreased EBAG9 mRNA and protein expression by an average rate of 

40% compared to UT. However, RNAi-mediated EBAG9 knockdown in combination 

with the SP6 or BCMA CAR was efficient and led to EBAG9 downregulation of around 

70% to 80% (Figure 18A-B). Comparing transgene expression between T cells 

transduced with the MP71 vector encoding the BCMA CAR alone with the vector 

combining the H18 miRNA with the BCMA CAR, revealed a 50% reduction of CAR 

surface density in the latter (Figure 18C-D). 
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Figure 18: EBAG9 knockdown and BCMA CAR expression in transduced primary 
human T cells. 
(A-B) Transduction of human T cells with vectors encoding either an SP6 or BCMA CAR in 
conjunction with the miRNA H18 led to a reduction of EBGA9 mRNA- and protein levels. 
Before analysis, positively transduced cells were sorted by FACS (CD8+ and IgG+). Gene 
expression was determined by qRT-PCR. UT was set arbitrarily at 1. Bars represent mean 
values ± SEM of n=2-5 experiments n=4-10 samples per group. *p<0.05, **p<0.01, *p<0.001; 
ns, not significant. A one-sample t-test was applied. One representative Western blot out of 
two experiments performed is shown. (C-D) Reduced BCMA CAR surface expression of 
transduced T cells was observed after introducing the miRNA H18 into the vector. BCMA CAR 
surface density (gMFI) was set arbitrarily at 100%. Bars represent mean values ± SEM of n=2 
experiments with n=4 samples. *p<0.05, **p<0.01, *p<0.001; ns, not significant. A one-sample 
t-test was applied. The histogram shows one representative sample for each group. 
 

5.4.2 Downregulation of EBAG9 increases granzyme A release whereas 
cytokine secretion is not affected 

As previously described, EBAG9 negatively influences the regulated secretion of 

granzyme A from a storage pool of vesicles inside the cell. On the other hand, the 

constitutive release of newly synthesized cytokines such as IFN-g is not affected[64]. 

To prove that EBAG9 silencing specifically increases the release of granzyme A from 

activated T cells, an in vitro release assay was performed. CD8+ T cells from healthy 

donors were isolated, transduced twice, and cultivated under IL-2 supplementation 

for 13 days. Prior to functional in vitro assays on day 15, IL-2 supplementation was 

lowered for 48 h (Figure 19A). Retroviral transduction efficiency of human primary 



Results 
 

 64 

CD8+ enriched T cells was determined by staining of the IgG hinge region and resulted 

in variable transduction rates between miRNA-transduced and control groups. 

Therefore, for all further in vitro characterizations, transduction rates were adjusted to 

20%-30% by adding UT cells. On day 15 of culture, T cells were antigen-

independently activated by re-stimulation with anti-human CD3/CD28 antibodies for 

4 h. The granzyme A amount released from BCMA CAR-transduced T cells was 

similar to those of UT (mean of 38%). In contrast, T cells transduced with the H18-

BCMA CAR construct released 2-fold higher amounts of granzyme A (mean of 50%). 

Likewise, the H18 miRNA also endowed SP6 CAR T cells with enhanced cytolytic 

effector molecule secretion (Figure 19B). 

 

 
Figure 19: EBAG9 downregulation facilitates the antigen-independent release of 
granyzme A from activated human CD8+ T cells. 
(A) Experimental timeline for retroviral transduction of human primary T cells prior to 
functionally in vitro assays. (B) Human CD8+ T cells were transduced with vectors encoding 
an SP6 or BCMA CAR in conjunction with the EBAG9-targeting miRNA H18 or the BCMA 
CAR alone. Enzymatic activities in supernatants were measured on day 15 after CD8+ T cell 
activation. Granzyme A release was induced by re-stimulation of T cells with anti-human 
CD3/CD28 antibody for 4 h. Values show the release in percentages relative to the total 
content. Bars represent mean values ± SEM of n=3 experiments with n=4 independent donors 
per group. *p<0.05, **p<0.01, *p<0.001; ns, not significant. A paired t-test was performed. 
 

To examine antigen-specific effector cytokine secretion, transduced CD8+ T cells on 

day 15 of culture were co-cultured with BCMAhigh-expressing MM (OPM-2) and 

BCMAlow-expressing B-NHL (DOHH-2, JeKo-1) cell lines at a 1:1 ratio for 24 h. As a 

negative control, Jurkat cells, which do not express BCMA on the surface, were used 

(Figure 20A). Experimental controls included minimal cytokine release (MIN) 

represented by a CAR T cell-only culture, and maximum release achieved by T cell 

stimulation with PMA/Ionomycin (MAX).  
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Figure 20: Antigen-stimulated cytokine secretion from activated human T cells is not 
influenced by silencing of EBAG9. 
(A) BCMA expression on different cell lines was confirmed by flow cytometric analysis. (B-D) 
CD8+ T cells (transduction rates adjusted to 20%-30% by addition of UT) were co-cultured with 
target cell lines on day 15 after T cell activation at a 1:1 ratio for 24 h. Cell-free supernatants 
were harvested to measure IFN-γ (B), TNF-a (C) and IL-2 (D) secretion by ELISA. Bars 
represent mean values ± SEM error bars, n=2-3 experiments with n=3-6 independent donors 
per group performed in duplicates. *p<0,05, **p<0,01, ***p<0,00.1; ns, not significant. A Mann-
Whitney U test was employed. 
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All BCMA-expressing cell lines led to activation of BCMA CAR T cells as 

demonstrated by the secretion of typical T cell effector cytokines IFN-g, TNF-a, and 

IL-2. Importantly, there were no significant differences in the cytokine release as a 

result of EBAG9 downregulation. H18-SP6 CAR T cells were not activated, 

demonstrating that EBAG9 downregulation did not confer non-specific T cell 

activation (Figure 20B-D). 

5.4.3 Downregulation of EBAG9 confers CAR T cells with enhanced 
cytolytic activity  

To investigate the effect of EBAG9 downregulation on the antigen-specific cytolytic 

capacity of CAR T cells, in vitro cytotoxicity assays were performed.  

 

 
Figure 21: Antigen-specific cytolytic activity of CAR T cells can be increased by the 
downregulation of EBAG9. 
(A-C) In vitro cytotoxicity assays were performed on day 15 of CAR T cell culture. Transduction 
rates were adjusted to 20%-30% by addition of UT. [51Cr] chromium-labeled MM (A) and B-
NHL (B-C) cell lines were co-cultured with transduced human T cells at different effector to 
target ratios for 4 h. Data represent mean ± SEM error bars, n=5 experiments performed in 
duplicates with 4-8 different donors per group. *p<0,05, **p<0,01, ***p<0,00.1; ns, not 
significant. A Mann-Whitney U test was employed. 
 



  Results 
 

 67 

The BCMAhigh-expressing MM cell line OPM-2, as well as the BCMAlow-expressing B-

NHL cell lines DOHH-2 and JeKo-1, were used as target cells. In contrast to the 

aforementioned cytokine release assays, in vitro cytolytic activity reports on the 

release of granzymes and perforin. This secretion process is controlled by EBAG9[64]. 

Prior to co-cultivation with CAR T cells on day 15 of culture, target cells were 

incubated with [51Cr] chromium. After 4 h of co-cultivation with different effector to 

target ratios, cytolytic activity was observed in BCMA CAR-transduced CD8+ T cells, 

whereas no or little activity could be detected in UT or SP6 CAR T cells. Therefore, in 

accordance with the cytokine release assays, no non-specific T cell activation 

occurred upon EBAG9 downregulation. At the highest effector to target ratio of 80:1, 

target cell lysis of BCMA CAR T cells was around 30%. The combination of the BCMA 

CAR with EBAG9 silencing in H18-BCMA CAR T cells led to a significant increase in 

CAR T cell-mediated cytolytic efficiency in all cell lines tested. For example, in the MM 

cell line OPM-2, H18-BCMA CAR T cells had a lysis rate approximately 1.5-fold higher 

than the BCMA CAR only. In a different calculation, the maximal killing rate of BCMA 

CAR-transduced T cells (E:T 80:1) could be achieved with only one-quarter to one-

eighth of EBAG9 knockdown BCMA CAR T cells. Thus, effective dose levels were 

substantially decreased (Figure 21A-C). 

 

To confirm the RNAi-mediated increase in CAR T cell cytotoxic activity, another 

miRNA sequence, H17, was used in the context of a CD19 CAR. The CD19 CAR 

plasmid was kindly provided by the group of Prof. Hinrich Abken (Uniklinik Köln)[155]. 

As shown for the H18 miRNA, the SP6 CAR was combined with the EBAG9 

sequence-specific miRNA H17. Retroviral transduction with the miRNA-containing 

MP71 vector led to a reduction of the EBAG9 mRNA and protein expression by up to 

a mean of 50% relative to UT. In contrast, transduction with the CD19 CAR alone did 

not alter the expression of EBAG9 (Figure 22A-B). As for the BCMA CAR, in vitro 

cytotoxicity assays were performed. Transduction rates of retrovirally transduced 

CD8+ T cells were adjusted to around 15% using UT. The CD19high-expressing B-NHL 

cell lines JeKo-1 and Raji were used as target cells in a chromium release assay 

(Figure 22C). After 4 h of co-cultivation, almost no lysis activity could be detected for 

UT and the control H17-SP6 CAR T cells. In Jeko-1 cells, CD19 CAR-transduced 

T cells effectuated a specific target cell lysis of about 20% (E:T 80:1). Consistent with 

the previous results, EBAG9 silencing endowed CAR T cells with a substantial gain 

in killing activity. For both cell lines, RNAi-mediated T cell engineering resulted in a 

cytotoxicity increase of 2-fold. Furthermore, to achieve maximal lysis of JeKo-1 or Raji 
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cells by CD19 CAR T cells, only one-fifth to one-eighth of the H17-CD19 CAR T cells 

were required (Figure 22D-E).  

 

 
Figure 22: Increasing cytolytic activity of CAR T cells by silencing EBAG9 is a 
universally applicable cell biological mechanism.  
(A-B) Transduction of human CD8+ T cells with vectors encoding either an SP6 or CD19 CAR 
in conjunction with the EBAG9-targeting miRNA H17 lead to a reduction of EBGA9 mRNA- 
and protein expression. Prior to analysis, positively transduced cells were staining for CD8+ 
IgG+ cells sorted by FACS. Bars represent mean values ± SEM of n=2-4 experiments with 
n=3-9 independent donors per group. *p<0.05, **p<0.01, *p<0.001; ns, not significant. A one-
sample t-test was performed. One representative Western blot out of two experiments 
performed is shown. (C) CD19 expression of B-NHL cell lines was confirmed by flow 
cytometric analysis. (D-E) In vitro cytotoxicity assays were performed on day 15 of CAR T cell 
culture. Transduction rates were adjusted to 15% by the addition of UT. [51Cr] chromium-
labeled Jeko-1 (D) and Raji (E) cell lines were co-cultured with transduced human T cells at 
different effector to target ratios for 4 h. Data represent mean ± SEM error bars n=3 
experiments performed in duplicates with 3-6 different donors per group. *p<0,05, **p<0,01, 
***p<0,00.1; ns, not significant. A Mann-Whitney U test was employed. 
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Therefore, targeting EBAG9 to increase the cytolytic capacity of CAR T cells is not 

restricted to the BCMA CAR but appears to be rather a universally applicable cell 

biological mechanism. 

 

5.4.4 No link between enhanced cytolytic activity and exhaustion of 
RNAi-modified CAR T cells upon repetitive antigen stimulation 

The results presented so far proved that EBAG9 knockdown in human supports the 

increased granzyme A secretion and thus, enhanced target cell lysis by CAR T cells 

in vitro. To exclude that this higher cytotoxic activity causes rapid T cell exhaustion or 

accelerated activation-induced cell death, an in vitro serial transfer was performed to 

simulate repetitive antigen stimulation[144,154]. Therefore, CAR T cells and RNAi-

modified CAR T cells were co-cultured with the BCMA- and CD138-expressing 

multiple myeloma cell line MM.1S at a ratio of 1:1. CAR T cells (mixed CD4+ and 

CD8+) were used on days 10 to 13 after activation and culturing under IL-7/IL-15 

supplementation. After co-culturing for 72 h, remaining tumor cells were counted and 

removed using CD138 MACS beads, whereas CAR T cells were transferred to fresh 

MM1.S target cells. In total, five rounds of transfers were performed, and different 

T cell functionality and exhaustion parameters were analyzed. 

 

After each round of co-cultivation, remaining tumor cells were stained for CD138 and 

quantified by flow cytometry. The capacity of BCMA CAR-transduced and RNAi-

edited BCMA CAR T cells to eliminate tumor cells to subtotal levels remained high 

throughout the repetitive antigen stimulation. Only a minor amount of MM.1S tumor 

cells of around 0.5%-2% were still present in the culture. In contrast, H18-SP6 CAR 

T cells were unable to kill CD138+ tumor cells as shown exemplarily for day 3. 

Therefore, consistent with the previous results, no antigen-independent CAR T cell 

activation could be observed when EBAG9 was downregulated (Figure 23A-B). 

Accordingly, cell-free co-culture supernatant from H18-SP6 CAR T cells did not 

contain IFN-g. In contrast, IFN-g secretion was found for co-cultures of BCMA CAR 

and H18-BCMA CAR-transduced T cells. IFN-g secretion decreased slowly upon 

serial transfer and comprised in round five one-third of the amount after the first round 

(Figure 23C). In accordance, the proliferation capacity of CAR T cells remained at 

least 2-fold between each transfer cycle starting from the second round of transfer 

(Figure 23D). Altogether, no differences between EBAG9 proficient and knockdown 

CAR T cells were observed.  
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Figure 23: RNAi-modified CAR T cells maintain their effector functions and proliferation 
capacity upon recursive antigen exposure in vitro. 
(A-B) CAR T cells were co-cultured on days 10-13 after activation with MM.1S target cells at 
a ratio of 1:1. After 72 h, CAR T cells were transferred to fresh target cells for a total of five 
transfer rounds. Remaining viable tumor cells were quantified after each round by staining for 
CD138+ CD3- 7AAD- cells and analysis by flow cytometry. Dot plots show one representative 
example for each group. Frequencies of CD138+ CD3- 7AAD- tumor cells and CD138- CD3+ 
7AAD- T cells are indicated as percentages on the gate. (C) To measure IFN-g secretion, cell-
free supernatants were analyzed by ELISA. (D) The proliferation rate was assessed by 
manually counting of viable T cells after removing CD138+ MM.1S cells by MACS. The ratio 
of T cells after each round versus the number of input T cells was calculated. Bars represent 
mean values ± SEM of n=2 experiments with 3 independent donors. 
 

To characterize CAR T cell differentiation in more detail, cells were analyzed by flow 

cytometry after each round of transfer (Figure 24A). T cells were stained with 7-AAD, 

indicating that more than 90% viable T cells were present throughout all transfer 

rounds. This observation, in the context of consistent proliferation, argued against an 

activation-induced cell death (Figure 24B). CAR T cell frequency was analyzed by 

staining of the IgG hinge region. Starting with a transduction rate of 38% 7-AAD- CAR+ 

cells, an enrichment of the CAR+ T cell population was observed. After three rounds 

of repetitive antigen stimulation, 90% of T cells were positive for CAR expression 

independent of the RNAi modification. Altogether, despite an enhanced cytolytic 

activity antigen-dependent proliferative activity remained unaffected (Figure 24C).  
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Figure 24: Repetitive tumor cell exposure enriches antigen-specific CAR T cells and 
leads to different T cell subset composition depending on RNAi modification. 
(A) T cells from co-cultures were analyzed every 72 h by flow cytometry. The gating strategy 
is shown. Frequencies are indicated as percentages on the gate. (B) T cell viability was 
determined by 7-AAD staining. Mean values ± SEM are plotted. (C) Frequencies of transduced 
CAR+ cells were determined by anti-IgG staining. Mean values ± SEM are plotted of 
n=1 experiment with 2 independent donors. (D) T cell subset composition was analyzed by 
staining of CD3 and CD8. CD3+CD8+ double positive cells were defined as CD8+ T cells while 
CD3+CD8- cells were considered as CD4+ T cells. Mean values ± SEM are plotted of 
n=2 experiments with three independent donors. 
 

Additionally, T cell subset composition of CAR+ T cells was explored by staining for 

CD3+ and CD8+. The CD3+ CD8+ population defined cytotoxic T cells, whereas 

CD3+ CD8- T cells defined CD4+ T helper cells. Already at the beginning of the co-

culture T cell subset composition differed between BCMA CAR and H18-BCMA CAR-

transduced T cells. Transduction with the BCMA CAR revealed a predominant 

occurrence of CD4+ T cells. Starting at a rate of 80%, CD4+ T cells were further 

enriched to 90% of the co-culture after five rounds of repetitive transfer. Conversely, 
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only 20% of CD8+ T cells were present at the beginning and declined to 10% after five 

rounds of repetitive stimulation. For the RNAi-modified H18-BCMA CAR T cells, the 

initial CD4+ to CD8* ratio was 60% to 40%. Upon repetitive antigen stimulation, this 

ratio changed over time and attained a 50% to 50% distribution (Figure 24D). 

 

 
Figure 25: Enhanced cytotoxic activity of CAR T cells due to silencing of EBAG9 does 
not alter the expression of T cell exhaustion markers. 
(A-C) Expression of T cell exhaustion markers PD-1 (A), LAG-3 (B) and TIM-3 (C) was 
analyzed in every round of co-cultivation by co-staining of 7-AAD- CD3+ CD8- CAR+ T cells 
(CD4+ CAR T cells) or 7-AAD- CD3+ CD8+ CAR+ T cells (CD8+ CAR T cells) and flow cytometry 
in two independent experiments with n=3 independent donors. Mean fluorescence intensities 
(MFI) ± SEM for each marker over time are shown. Values for isotype intensities were always 
subtracted. Dot plots and histograms show one representative example for each marker on 
day 0 of co-culture (initial load). Cells were pre-gated on 7-AAD- CD3+ CAR+. Frequencies and 
gMFIs are indicated as numbers on the gate. 
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Next, the expression of the activation and exhaustion markers PD-1, LAG-3, and 

TIM-3 was assessed over the co-cultivation period. Consistent with the activation 

process, the expression of all three markers increased within the first round of co-

cultivation. For CD8+ T cells transduced with the BCMA CAR or H18-BCMA CAR, 

expression of PD-1 and TIM-3 was unaltered during repetitive antigen stimulation 

(Figure 25A, C). In contrast, after the third round of transfer (day 9) LAG-3 expression 

in BCMA CAR-transduced T cells was moderately increased, while for RNAi-modified 

BCMA CAR T cells a decrease of LAG-3 expression could be observed. At round four, 

LAG-3 expression for both CAR T cell populations was, again, similar (Figure 25B). 

For CD4+ T cells transduced with BCMA CAR or H18-BCMA CAR, expression of 

LAG-3 and TIM-3 remained very stable upon serial transfer (Figure 25B-C). PD-1 

expression of all transduced T cells reached a peak after one round of co-cultivation 

(day 3), declined to around 50% of the MFI until the third round and slightly increased 

again (Figure 25A). While transduced CD4+ T cells revealed a higher expression of 

PD-1, LAG-3 expression was stronger in CD8+ T cells. Collectively, RNAi-mediated 

silencing of EBAG9 did not favor a condition where T cells undergo faster exhaustion. 

 

5.4.5 T cell differentiation upon repetitive antigen stimulation is not 
altered due to the loss of EBAG9 

Another aspect of CAR T cell functionality when challenged by recursive antigen 

stimulation is the development of a memory status. To distinguish between effector 

and memory T cells, the surface markers CD45RA and CD45RO were analyzed 

(Figure 26A). The protein tyrosine phosphatase CD45 is expressed on all 

hematopoietic cells, but several isoforms can occur by alternative splicing. CD45RA 

expression is characteristic for naive, effector and stem cell-like memory T cells. In 

contrast, CD45RO is a prototypical marker for central and effector memory 

T cells[156,157]. At the starting point of co-cultivation with MM.1S tumor cells (day 0), 

around 55% to 60% of transduced BCMA CAR T cells and H18-BCMA CAR T cells 

showed a memory phenotype. Upon repetitive antigen stimulation, the predominance 

of CD45RO-expressing memory T cells increased and after five rounds of transfer, 

no CD45 RA-expressing effector T cells were present. No differences due to RNAi-

modification of BCMA CAR T cells could be detected (Figure 26B). Memory T cells 

can be further divided into effector (TEM) and central memory T cells (TCM) 

depending on the presence of the lymph node homing receptors CD62L and CCR7 

(Figure 26A)[16,158,159]. 
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Figure 26: Differentiation of transduced human T cells towards effector memory T cells 
is not affected by the loss of EBAG9. 
(A) In every round of co-cultivation, memory T cell subset composition was analyzed by flow 
cytometry. Gating strategy for the definition of memory subtypes is shown (TEM: CD45RO+ 
CD45RA-, CD62L- CCR7-; TCM: CD45RO+ CD45RA-, CD62L+ CCR7+). (B) Percentages of 
memory T cells were determined by analysis of CD45RO+ CD45RA- cells in one experiment 
with n=2 independent donors. Mean values ± SEM are plotted. Representative dot plots are 
shown on the left. Frequencies are indicated as percentages on the gate. (C) Co-staining of 
CD45RO+ CD45RA- cells with CD62L and CCR7 was used to distinguish between central and 
effector memory T cells in one experiment with n=2 independent donors. Mean values ± SEM 
are plotted. Representative dot plots are shown on the left. Frequencies are indicated as 
percentages on the gate. 
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Approximately 23%-30% of T cells at the starting point of co-cultivation were 

characterized as TCM (CD45RA- CD45RO+ CD62L+ CCR7+). TEM (CD45RA- 

CD45RO+ CD62L- CCR7-) were present at the same frequencies. Upon serial 

transfer, BCMA CAR T cells differentiated towards TEM, and only a minor fraction of 

TCM was still present. Again, RNAi-mediated EBAG9 silencing did not alter T cell 

differentiation compared with BCMA CAR T cells alone (Figure 26C). 

 

5.5 EBAG9 silencing amplifies the cytolytic activity of CAR 
T cells at low effector frequencies in a multiple myeloma 
xenograft model 

In vitro characterization of EBAG9 knockdown CAR T cells revealed an increased 

released of granzyme A, whereas effector cytokine secretion remained unaltered. 

Accordingly, cytolytic activity of CAR T cells was improved and a gain in cytotoxic 

efficiency was obtained in vitro. To translate these findings into an in vivo model, a 

multiple myeloma xenograft model was established. 

A suitable animal model for the xenotransplantation of human multiple myeloma cell 

lines and primary human CAR T cells is the immunodeficient NOD scid gamma-chain 

deficient (NSG) mouse strain. Due to the scid mutation in the DNA repair complex 

Prkdc, which is important during recombination, these mice do not have mature T or 

B cells. In addition, they lack the common γ-chain for IL-2 receptor expression, 

therefore, NK cell differentiation is blocked[160,161]. NSG mice were inoculated with the 

BCMA-expressing multiple myeloma cell line MM.1S. Tumor progression was 

monitored by bioluminescence imaging of the MM.1S cell line stably expressing a 

firefly luciferase-eGFP construct (Figure 27B). Tumor cell engraftment was detected 

by IVIS imaging six days after transfer. A single dose of 1x106 CAR+ T cells on days 

10-13 of culture under IL-7/IL-15 supplementation was injected i.v. one day later. 

Tumor development was followed by serial IVIS imaging until day 14 after transfer. 

Mice were sacrificed on days 15-16. Bone marrow was analyzed by flow cytometry 

for the number of remaining tumor cells and CAR T cells (Figure 27A). Before transfer, 

CAR+ T cells were stained for CD3 and CD8 and revealed divergent T cell subset 

composition. BCMA CAR-transduced T cells showed a predominance of CD4+ T cells 

(72%), whereas a smaller amount of CD8+ T cells (23%) was present. In contrast, 

H18-BCMA CAR T cells contained 40% of CD8+ T cells, compared to 58% of CD4+ 

T cells, respectively (Figure 27C).  
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Figure 27: Targeting of BCMA+ MM.1S cells with engineered CAR T cells. 
(A) The experimental procedure is depicted. On day 8 after tumor cell injection, CAR T cells 
were transferred, and tumor development was monitored over 2 weeks. (B) MM.1S tumor cell 
line expressing GFP and the surface markers CD138 and BCMA. (C) Transferred CAR T cells 
were enriched for positively transduced T cells. T cell subset composition was determined by 
CD3 and CD8 staining. CD3+CD8+ double positive cells were defined as CD8+ T cells, whereas 
CD3+CD8- cells were considered as CD4+ T helper cells. Transduction rates after enrichment 
and percentages of T cell subsets are indicated by numbers on the gate. 
 

Serial IVIS imaging revealed rapid tumor growth between days 6 and 14. The highest 

specific luciferase signal, which correlates with tumor activity, could be localized to 

the bone marrow. Treatment with the non-targeting H18-SP6 CAR T cells was unable 

to control tumor growth. The highest tumor burden was observed in mice from this 

group. Hence, there was no antigen-independent T cell activation due to EBAG9 

silencing and subsequently increased ability of effector molecule release. Mice 
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treated with BCMA CAR T cells showed less tumor progression. However, clinical 

efficacy at this low number of effector CAR T cells was modest. In contrast, mice that 

received H18-BCMA CAR T cells showed almost no tumor signal (Figure 28A).  

 

 
Figure 28: In vivo engineered CAR T cells with silenced EBAG9 eradicate multiple 
myeloma cells more efficiently. 
(A) NSG mice were engrafted with 1x107 MM.1S cells stably expressing GFP and a firefly 
luciferase. On day 6, tumor inoculation was visualized by IVIS with 150 s exposure. One day 
later, 1x106 CAR+ cells were transferred and treatment efficiency was observed by IVIS at 60 s 
exposure. (B) Mean values ± SEM of bioluminescence signal intensities obtained from regions 
of interest covering the entire body were plotted for each group and timepoint in one 
experiment. (C) On days 15 and 16, animals were sacrificed and CD138+ GFP+ tumor cells in 
the bone marrow were quantified by flow cytometry. Mean values ± SEM of n=2 experiments 
are plotted. *p<0,05, **p<0,01, ***p<0,00.1; ns, not significant. A Mann-Whitney U test was 
employed. 
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Accordingly, mean values of bioluminescence signal intensities obtained from regions 

of interest covering the entire body of each mouse essentially showed no tumor 

growth within the H18-BCMA CAR-treated mice (Figure 28B). Paradoxically, the IVIS 

imaging results were only partially reflected when analyzing tumor cell numbers 

(GFP+ CD138+) in bone marrow, the prime niche for myeloma cell homing. Although 

only modest differences in bioluminescence intensity between the H18-SP6 CAR and 

the BCMA CAR groups were detected, tumor cell quantitation revealed 2-fold higher 

numbers in the control group. Notably, almost no tumor cells were present in mice 

treated with RNAi-mediated EBAG9 silencing in BCMA CAR T cells (Figure 28C). 

Altogether, RNAi-mediated downregulation of EBAG9 led to a strongly increased 

antitumor efficiency even at low effector cell numbers. 

 

 
Figure 29: CAR T cell exhaustion marker expression in vivo are not increased due to an 
enhanced cytolytic efficiency.  
(A) NSG mice were sacrificed on days 15 and 16 after T cell transfer and CAR T cell subset 
composition was analyzed by staining of CD3 and CD8 and flow cytometry analysis. 
CD3+CD8+ double positive cells were defined as CD8+ T cells, whereas CD3+CD8- cells were 
considered as CD4+ T cells. Data are given as the percentage of T cells among total bone 
marrow cells. Bars represent mean values ± SEM of n=2 experiments with 5-9 animals per 
group. (B) Anti-PD-1, LAG-3 and TIM-3 co-staining for the detection of CD4+ and CD8+ T cell 
exhaustion. Quantitation was performed by determining fluorescence intensities (gMFI). Bars 
represent mean values ± SEM of n=2 experiments with 2-9 animals per group. *p<0,05, 
**p<0,01, ***p<0,00.1. A Mann-Whitney U test was employed. 
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In addition, human T cells were isolated from the bone marrow and analyzed by flow 

cytometry. Although H18-BCMA CAR T cells showed the highest cytotoxic activity, 

only a small number of CD3+ CD8+ T cells could be detected on days 15 and 16 

following transfer. In contrast, about 2 to 3 times more H18-SP6 CAR and BCMA CAR 

T cells remained detectable. For all groups, CD4+ T cells were the predominant 

fraction (Figure 29A). Co-staining of CD4+ CAR T cells with the exhaustion markers 

PD-1, LAG-3 and TIM-3 revealed no significant differences between all groups. 

Conversely, expression of all tested exhaustion markers was lower in CD8+ RNAi-

modified BCMA CAR T cells compared to BCMA CAR T cells, however, the values 

were in the range of the H18-SP6 CAR control group. Therefore, in accordance with 

previous in vitro results, increasing the cytotoxic activity in vivo by silencing EBAG9 

was not linked to overt T cell exhaustion (Figure 29B). 
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6. Discussion 
Cancer immunotherapy is a promising curative approach to treat patients with 

advanced hematological and solid malignancies. The adoptive transfer of either 

naturally-occurring or gene-engineered T cells can mediate tumor regression in 

patients with metastatic cancer. In contrast to naturally-occurring T cells that require 

an already existing tumor-reactive T cell population, manipulating T cells by 

introducing TCRs or CARs can endow them with potent cytotoxic activity against 

many desired specificities[92,162]. CD8+ T cells play a prominent role in tumor clearance 

due to their ability to destroy tumor cells by secreting effector molecules[10,163]. Yet, 

tumor-specific T cells can also fail to mediate tumor regression due to the negative 

regulatory milieu of the tumor microenvironment or T cell-intrinsic inhibitors[164-166]. 

Furthermore, long ex vivo culturing times of T cells that are necessary for manipulating 

and generating therapeutic quantities may reduce T cell functions[167]. Therefore, 

enhancing the functional avidity of these effector T cells is necessary. One approach 

used is to genetically manipulate the intrinsic properties of T cells[168,169]. In addition, 

focus should be placed on T cell memory formation because this process is thought 

to confer long-term immune surveillance. Within the scope of this thesis, an analysis 

was performed on whether targeting the secretory pathway of T cells by miRNA-

mediated downregulation of EBAG9 can fulfill these criteria.  

 

6.1 EBAG9 links cytolytic strength to CD8+ memory 
formation 

6.1.1 Loss of EBAG9 allows for the preferential formation of CD8+ 
memory T cells 

After the effector phase, most CTLs undergo activation-induced cell death, whereas 

only a few cells remain and form the memory T cell pool. The mechanisms that 

underlie T cell memory development are not yet fully understood. The impact of the 

cytotoxic strength of a T cell has been, in particular, poorly investigated. Most 

knowledge about the role of effector molecules for CD8+ memory differentiation was 

obtained from effector molecule-deficient animals[170]. In contrast to this loss-of-

function study, EBAG9-deficient mice enable us to study memory formation from a 

completely different perspective, namely the loss of EBAG9 that enhances the 

cytolytic efficacy of CD8+ T cells.  
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Our group previously reported that mice with a genetically engineered loss of EBAG9 

showed a higher secondary immune response when rechallenged at day 30 with the 

strong Tag neoantigen[64]. To address the question of how this increased secondary 

immune response is achieved, frequencies of antigen-specific CD8+ memory T cells 

were analyzed after Tag antigen challenge, with substantially higher frequencies of 

antigen-specific CD8+ T cells observed in EBAG9-deficient mice. However, CD8+ 

T cell expansion and differentiation in the effector phase were indistinguishable 

between EBAG9+/+ and EBAG9-/- mice as determined by the expression of lineage-

specific surface markers. Challenge with the strong immunogenic Tag neoantigen 

leads to the development of a heterogenic effector CD8+ T cell pool regulated through 

inflammatory cytokines such as IL-12 or interferons[171,172]. To avoid the confounding 

effect of the polyclonal TCR repertoire on the memory T cell pool formation, the 

monoclonal MataHari HY mHag system was used. This system allows for the analysis 

of T cell fate in the absence of an inflammatory stimulus. Yet, HY-specific 

alloresponses are of clinical relevance as they can mediate graft-versus-host as well 

as graft-versus-leukemia effects[173-175]. When naive T cells from MataHari donor mice 

were adoptively transferred and recipient mice were challenged with the HY antigen, 

activation and memory differentiation processes similar to those in the Tag antigen 

model were recapitulated. This suggests that the EBAG9-mediated effects on CD8+ 

T cell lineage decision were not restricted to the polyclonal or monoclonal TCR model. 

Furthermore, it provides formal evidence that these fate decisions are independent of 

TCR strength, affinity, or precursor frequency. 

 

Little is known about the consequences of altered cytolytic strength on CD8+ T cell 

memory formation. To date, investigations concerning such consequences have 

focused on effector-function-deficient T cells. Opferman et al. suggested that T cells 

that differentiate into memory T cells are somehow able to escape from activation-

induced cell death as mediated by the same effector molecules that clear infections. 

They adoptively transferred T cells with an inhibitor-induced selective block of the 

perforin/granzyme-mediated cytotoxicity and could observe that memory formation 

occurred only under conditions of low cytolytic activity. This led to the conclusion that 

effector CD8+ T cells with low killing rates were also less likely to undergo activation-

induced cell death and, therefore, are more likely to differentiate into memory T cells. 

Hence, maximal cytolytic activity involving a high frequency of antigen-specific T cells 

prevented the formation of a memory T cell pool[170]. This hypothesis appears to 

contradict to the results obtained with EBAG9-deficient mice. Loss of EBAG9 released 

the break on effector molecule secretion from CD8+ T cells, thereby, increasing T cell 
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cytotoxicity on a single cell basis. Yet, higher numbers of memory CD8+ T cells were 

also detected in these mice. Based on these observations, for the removal of identical 

amounts of antigen, EBAG9-deficient effector CD8+ T cells were more efficient, with 

a reduction of the duration of antigen availability over time, and thus, favoring memory 

differentiation. Specifically, maximal cytolytic activity was not required for the removal 

of a given amount of antigen, because individual T cells have a higher cytolytic 

capacity. This hypothesis is supported by the decreasing potential model of memory 

formation and by studies that showed an enhanced memory pool upon the truncated 

duration of antigen exposure[19,20,146,176]. Accordingly, Blair et al. reported that memory 

differentiation of T cells is influenced by the duration of antigen availability. By using 

MHC peptide-specific blocking antibodies, the authors were able to modulate antigen 

access to CD8+ T cells and observed an impact on memory development. Yet, there 

was no correlation between memory generation and the magnitude of the primary 

response and therefore, the requirements for continued T cell expansion and memory 

differentiation are different[177].  

 

Another interpretation of the increased CD8+ memory T cell pool upon enhanced 

cytolytic activity in EBAG9-deficient mice is in accordance with Opferman et al[170]. 

The authors also hypothesized about memory development based on antigen access 

over time. Effector CD8+ T cells that arrive early at the site of infection would be 

confronted with high antigen levels, perform cytolysis, and undergo apoptosis. 

Effector CD8+ T cells arriving at a later stage would encounter a lowered antigen 

amount. Therefore, they would be less cytolytically active, but are, in turn, capable of 

differentiating into memory T cells[170]. Applying this hypothesis to the results from 

EBAG9-deficient mice, it appears plausible that the increased cytolytic activity of 

EBAG9-deficient CD8+ T cells would lead to activation-induced cell death. Because 

only a few cells would be necessary to clear an infection or an antigenic challenge, 

more antigen-specific T cells remain and eventually form the CD8+ T cell memory 

pool. 

 

To further substantiate the consequences of an increased cytolytic activity on memory 

differentiation, the fate of individual CD8+ T cells needs to be followed. This approach 

might help to solve the question of whether individual CD8+ T cells with higher 

cytotoxic activity differentiate preferentially into a memory T cell, or if a more efficient 

antigen clearance enables additional cells to form a memory T cell pool. 
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6.1.2 Transcriptional regulation of memory formation depends on the 
antigenic challenge 

Many cell-intrinsic factors regulate the generation of terminally differentiated effector 

versus memory CD8+ T cells. On the molecular level, the graded expression of 

opposing pairs of transcription factors facilitates either effector or memory CD8+ T cell 

lineage decision in the primary immune response[12]. Stimulation with the strong Tag 

neoantigen induced substantial upregulation of Eomes and a graded effect in regard 

to T-bet-encoding Tbx21 expression. Both effects are consistent with the preferential 

formation of Tag-specific memory CD8+ T cells in EBAG9-deficient mice. EOMES and 

T-bet are among the best-studied pairs of counterregulatory transcription factors. 

They are highly homologous and appear to be master regulators of CD8+ T cell 

differentiation and function. Both have cooperative and partially redundant functions 

in the early stages of CD8+ T cell activation as they promote cytotoxic T cell generation 

by inducing the expression of effector molecules like perforin and granzyme B[178,179]. 

In the context of memory CD8+ T cell formation, EOMES and T-bet cooperate to 

sustain a memory phenotype. This is achieved by stabilizing the expression of IL-2Rb 

(CD25) and promoting IL-15 signaling, as well as the continued proliferation of 

memory CD8+ T cells[23]. However, EOMES and T-bet also have unique functions in 

regard to CD8+ T cell differentiation. The early stages of effector CD8+ T cells are 

known to be characterized by high levels of T-bet expression, while a graded decline 

of this expression can be observed as cells differentiate towards memory T cells. 

EOMES is also upregulated in early effector CD8+ T cells but its expression increases 

with the progression from effector to memory CD8+ T cells[176,180]. In mice lacking 

either EOMES, T-bet, or both, high T-bet expression was shown to drive terminal 

effector differentiation, whereas EOMES is important for long-term memory formation 

and homeostatic renewal[176,181,182]. Yet, upon LCMV infection, T-bet deficiency leads 

to an impaired formation of effector T cells, and, surprisingly, also of memory 

T cells[183]. 

 

In contrast to the results obtained with the Tag neoantigen, increased expression of 

T-bet-encoding Tbx21 could be observed in the polyclonal anti-HY primary response, 

whereas Eomes expression was similar to the wild-type. This result is in accordance 

with the aforementioned importance of T-bet in sustaining memory T cell generation. 

In addition, the Id3 to Id2 ratio was 1.6-fold higher and Il12rb gene expression was 

upregulated by 1.6-fold in EBAG9-deficient CD8+ T cells. ID2 and ID3 partly act by 

inhibiting the DNA-binding activity of transcription factors belonging to the E-protein 
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family; however, they function in a non-redundant manner. While ID2 mediates the 

expression of apoptosis-regulating genes like BCL-2, ID3 induces the expression of 

genes involved in DNA replication and genome stability such as FOXO1[184,185]. ID2 

and ID3 are expressed by effector CD8+ T cells but their activity appears to be 

temporally separated. On the one hand, ID2 promotes the survival of effector CD8+ 

T cells during the naive to effector transition[185]. On the other hand, ID3 is important 

at a later stage for the survival during effector to memory transition[184]. Thus, ID2 is 

essential for the formation of KLRG1high CD127low effector CD8+ T cells; a loss of ID2 

impairs the survival of these acute effector cells. Overexpression of ID3 sustains the 

survival of CD8+ effector cells that would normally undergo apoptosis during the 

contraction phase[149]. Therefore, ID3 mediates the formation of long-lived memory 

CD8+ T cells. In contrast, the role of signaling through the IL-12 receptor in CD8+ T cell 

fate is less clear. There is evidence that IL-12 favors the generation of short-lived, 

terminally differentiated, effector CD8+ T cells mediated by a repressive effect on 

EOMES expression, while T-bet expression is stimulated simultaneously[186]. 

However, in support of a memory-promoting function, Xiao et al. demonstrated that 

IL-12 receptor deficiency in CD8+ T cells impairs the formation of a memory CD8+ 

T cell pool upon Listeria monocytogenes infection[187]. Moreover, Garcia et al. 

reported that loss of the IL-12 receptor led to reduced CD127 and increased KLRG1 

expression. As a consequence, memory expansion was virtually undetectable[188]. 

Mechanistically, IL-12 appears to mediate STAT4 phosphorylation upon antigen 

stimulation that, in turn, prolongs the survival of effector CD8+ T cells through 

activation of anti-apoptotic BCL-2/BCL-3-regulated gene expression[188,189]. Notably, 

IL-12-conditioned CD8+ T cells have been shown to exhibit increased sensitivity to 

IL-7/IL-15 signals that are important for homeostatic self-renewal and memory 

maintenance[189]. 

 

Interestingly, the transcriptional profile mediating enhanced memory formation in 

EBAG9-deficient mice was distinct between the strong Tag neoantigen and the 

weakly immunogenic HY system. As immunization with the HY antigen lacks a strong 

inflammatory stimulus, the kinetics and potentially the magnitude of a T cell response 

is lengthened. The effector phase usually peaks at day seven after immunization in 

response to strong infection-associated antigens or neoantigens[176]. In contrast, a 

primary immune response against the HY antigen could be observed at day 11 

(unpublished data). Thus, memory formation is seemingly dependent on the antigenic 

challenge and the inflammatory milieu. A possible reason for these differences in the 
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expression of transcriptional regulators might be the different kinetics of T cell fate 

decision upon strong or weak antigen challenge. 

 

Altogether, the first part of this thesis showed that CD8+ T cell programming is 

associated with the cytolytic strength. The increased cytolytic activity, due to the loss 

of EBAG9, favored the generation of an antigen-specific CD8+ T cell memory pool 

orchestrated by different sets of memory-promoting transcription factors depending 

on the antigen stimulus. 

 

6.2 RNAi-mediated targeting of the secretory pathway 
increases the cytolytic activity of mouse CD8+ T cells 

6.2.1 EBAG9 is a suitable target for RNAi-mediated T cell engineering 
Genetic engineering of T cells prior to infusion into the patient provides the opportunity 

to enhance T cell function and overcome therapeutic obstacles such as poor tumor 

immunogenicity, limited in vivo survival and efficacy of transferred T cells. There have 

been numerous studies focusing on the suppressive influence of the tumor 

microenvironment on the functionality of tumor-specific T cells[166,190,191]. Yet, efficient 

ATT depends on the generation of high-avidity, long-lived, tumor-specific T cells. 

Therefore, to improve the therapeutical outcome, enhancing the functional avidity of 

these transferred effector T cells is desirable. The avidity of T cells refers to as the 

accumulated strength of multiple affinities. In other words, avidity integrates the 

combined effect of all affinities participating in the molecular interaction between the 

tumor and the T cell. The functional avidity of a T cell is, therefore, composed of all 

cellular responses in addition to antigen recognition as controlled by i) the structural 

avidity of a TCR or CAR with their antigen, ii) the transcriptional maturation of the 

T cell, iii) cytokine signaling and iv) costimulation[192]. Efforts to enhance the T cell 

avidity often focus on increasing TCR or CAR affinities[193-195]. However, the secretory 

pathway of T cells is also of importance for the functional avidity. The cytolytic 

efficiency of a T cell depends on the synthesis and storage of effector molecules, 

intracellular vesicle transport, as well as the maturation and secretion competence of 

secretory lysosomes. Therefore, targeting the secretory pathway of T cells might 

represent an alternative and universally applicable strategy to enhance the functional 

avidity of tumor-reactive T cells. In detail, this thesis focused on the RNAi-mediated 

downregulation of EBAG9. EBAG9 is a negative regulator of the regulated effector 

molecule secretion, therefore, EBAG9-deficiency increases the cytolytic activity of 
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CD8+ T cells[64]. It was suggested that EBAG9 is associated with the immune escape 

of cancers as it negatively impacts host T cell cytotoxicity and further suppresses 

T cell infiltration into the tumor[196]. Moreover, Miyazaki and colleagues demonstrated 

that tumor formation and metastasis of transplanted bladder tumor cells were 

repressed, whereas there was an increased infiltration of the tumor with CD8+ T cells 

in an EBAG9-deficient host[197]. Recently, Miyazaki et al. discovered EBAG9 

expression in extracellular vesicles prepared from the supernatant of the prostate 

cancer cell line LNCaP by Western Blot analysis. These LNCaP-derived, EBAG9-

containing extracellular vesicles decreased the in vitro cytotoxicity of T cell leukemia 

MOLT4 cells against LNCaP cells. Therefore, extracellular vesicles secreted by tumor 

cells are supposed to carry tumor-derived EBAG9 to the host T cells in order to 

negatively modulate immune cells in the tumor microenvironment[198]. As a novel 

aspect, the present thesis showed that loss of EBAG9 further favors the generation 

of a long-lived and antigen-specific memory CD8+ T cell population. Collectively, 

these findings strongly suggest that EBAG9 qualifies as a prime target for enhancing 

the functional avidity and killing capacity of CD8+ T cells. 

 

6.2.2 EBAG9 knockdown using the RNAi pathway 
The RNAi pathway can be induced by several dsRNA molecules. First, cells can be 

transfected with siRNAs that are useful for rapidly screening of the target gene 

knockdown phenotype[199]. However, one disadvantage is that the intracellular half-

time is relatively short as siRNAs can be degraded by RNase A-like nucleases. More 

importantly, siRNAs can only mediate a transient silencing effect and are therefore 

limited in their applicability[200,201]. For long-term manipulation of gene expression, it is 

necessary to deliver dsRNA molecules by integrating gene transfer vectors. One 

possibility is the transfer of shRNAs that mimic the pre-miRNA stem-loop structure. 

Expression of these shRNAs is driven by the strong RNA polymerase III promoters 

that lead to high-level expression and stable gene knockdown[202-205]. However, there 

are concerns about this approach as shRNA overexpression was shown to mediate 

toxicity by saturation of the miRNA processing pathways. The considerable disruption 

of the cellular miRNA pathway was caused by the rate-limiting amounts of Ago2 and 

Exportin-5 and led to serious consequences such as brain damages, liver dysfunction, 

and death in animal models[206-208]. Furthermore, the toxicity of shRNA vectors in 

transduced human T cells has been reported[209]. In this thesis, artificial miRNAs were 

chosen to mediate a stable knockdown within primary T cells. These artificial miRNAs 

are analogous to the pri-miRNA and, therefore, are a step further towards mimicking 
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natural miRNA biology[210,211]. This has several advantages for potential clinical 

applications. Most importantly, using the endogenous miRNA processing machinery 

does not trigger cellular self-defense mechanisms such as interferon induction[212]. In 

addition, artificial miRNAs are transcribed by RNA polymerase II promoters 

comparable to most of the natural miRNAs. These promoters mediate regulated and 

tissue-specific expression and further enable the simultaneous expression of selector 

or therapeutic transgenes[201,213]. Moreover, it is possible to combine multiple miRNAs 

in one expression cassette to target regions in the same or different mRNAs, 

therefore, gaining an additive effect in target downregulation[199,211,214]. 

 

The risk of off-target effects is a critical aspect in using RNAi-mediated gene silencing 

and was described for the first time in 2003 by Jackson and colleagues[215]. Off-target 

effects are gene perturbations caused by unintended interactions between RNAi-

inducing dsRNA molecules and cellular components. In addition to the 

aforementioned toxicity reliant on the saturation effect of the endogenous RNAi 

machinery, sequence-specific off-target effects are possible. As the RNA sequence 

loaded to the RISC can guide the complex to mRNAs with partial complementarity, 

sequence-specific off-target effects can occur[216]. For the recognition of targets by the 

endogenous miRNA, a complementary region of six to eight nucleotides within the 

3’UTR of the mRNA is important[217]. Therefore, unique target regions should be 

selected in the process of dsRNA molecule design to avoid the unintentional 

regulation of several transcripts. Indeed, previously reported siRNA-mediated off-

target effects were shown to be caused by sequence complementarity[215,218,219]. For 

efficient targeting of specific mRNAs, the AU content of the surrounding sequence 

and the presence of other miRNA target sites need be considered. In addition, the 

3’UTR located binding motif is important[220]. Thus, the likelihood of sequence-specific 

off-target effects is quite low. To date, sequence-specific off-target effects were 

reported only for siRNAs and might be caused by high cytosolic siRNA 

concentrations. Recently, circular siRNAs were identified to increase the safety of 

siRNA-mediated gene silencing[221]. 

 

6.2.3 Silencing of EBAG9 increases the cytolytic activity of adoptively 
transferred mouse T cells 

In the present thesis, EBAG9 silencing was achieved by the generation of a specific 

EBAG9-targeting miRNA. The knockdown efficiency of different miRNAs in cell lines 

and primary mouse T cells was quantified on an RNA level by qRT-PCR and on the 
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protein level by Western Blot analysis. Adoptively transferred mouse T cells with an 

engineered knockdown of EBAG9 showed an almost 2-fold higher cytolytic capacity 

compared to the GFP-transduced control T cell population. Differences in T cell 

engraftment or proliferation were excluded as the basis of the enhanced killing 

capacity. Interestingly, in the EBAG9 knockdown T cell population, the frequencies of 

CD8+ T cells were modestly higher compared to the GFP control group. Although it 

cannot be excluded that this may have influenced the killing rate of the EBAG9 

knockdown population, antigen-specific killing can also be mediated by CD4+ CTLs. 

In addition to CD8+ T cells, CD4+ CTLs are also capable of secreting cytotoxic 

granules containing perforin and granzymes for the direct killing of target cells. CD4+ 

CTLs were previously believed to be an in vitro artifact associated with long culturing 

times. However, they were also identified in vivo, and shown to play an important role 

in antiviral and antitumor responses[222,223]. 

 

Studies analyzing the siRNA-mediated knockdown of EBAG9 have so far focused on 

targeting EBAG9 in the tumor. Ogushi et al. reported of a tumor-promoting function of 

EBAG9 in vivo as the intratumoral administration of EBAG9-specific siRNA led to the 

regression of subcutaneously implanted renal cancer cell growth. They further 

concluded that EBAG9 does not function as an oncogene, but rather alters the tumor 

microenvironment by decreasing the local immune response[224]. In addition, siRNA-

mediated silencing of EBAG9 within the highly malignant, spontaneously 

metastasizing 4T1 mouse mammary carcinoma was shown to suppress both tumor 

growth and metastasis. In mice that received the EBAG9-targeting siRNA, an 

enhanced specific cytotoxic activity of CTLs and enhanced IFN-g and IL-2 production 

was observed. In line with these observations, silencing EBAG9 prolonged the 

survival of tumor-bearing mice and induced intensive tumor infiltration of CD8+ 

T cells[225]. As the consequences of the intratumoral EBAG9 silencing is more likely to 

modulate the host cytotoxic T cell activity instead of tumor cell intrinsic properties, the 

approach chosen within the scope of this thesis did not target EBAG9 in tumor cells 

themselves by a transient siRNA-mediated knockdown. Instead, the aim was to stably 

silence EBAG9 within cytotoxic CD8+ T cells by using a specific miRNA to increase 

their killing capacity. Indeed, T cell avidity was shown to be enhanced due to the 

downregulation of EBAG9, therefore increasing the specific target cell killing capacity. 

Alternative molecular targets analyzed that modulate the cytotoxic activity of T cells 

are the E3 ubiquitin ligase Casitas B-lineage lymphoma b (Cbl-b) and the member of 

the suppressor of cytokine signaling family Cish[168,169]. Both are negative regulators 

of intracellular TCR signaling. Abrogation of Cbl-b was described by Stromnes et al. 
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to rescue IL-2 production and proliferation following target recognition[168]. However, 

it is known that genetically engineered Cbl-b-deficient mice have an increased 

susceptibility to autoimmunity[226,227]. Palmer et al. reported that the deletion of Cish 

enhanced CD8+ T cell expansion, functional avidity, and polycytokine release[169]. 

Furthermore, by using an adoptive transfer model, they demonstrated a profound and 

durable regression of a poorly immunogenic established cancer following the loss of 

Cish[169]. Therefore, boosting the immune response by silencing cell-intrinsic negative 

regulators emerges as a promising approach for increasing the efficiency of ATT. 

However, to the best of our knowledge, the present thesis is the first study showing 

that targeting the secretory pathway of T cells leads to an increase of their cytolytic 

activity, an effect that is applicable to therapy. 

 

6.3 EBAG9 knockdown increases the cytolytic activity of 
human CAR T cells 

6.3.1 Simultaneous expression of EBAG9-targeting miRNAs and 
transgenes 

One of the major advantages of using miRNA-based EBAG9 silencing is the potential 

to co-express the miRNA with a transgene because both are under the control of the 

polymerase II promoter[199]. Therefore, miRNA expression is tightly coupled to the 

appropriate transgene, which can be a selector or marker protein such as GFP, 

allowing for the enrichment of positively transduced cells. In addition, combining 

miRNA-mediated silencing with the expression of a specific TCR or CAR to confer 

antigen-specific target cell recognition is also possible. In this thesis, EBAG9-specific 

miRNA expression in mouse T cells was associated with GFP expression, whereas 

in human T cells, expression was combined with either a BCMA-targeting or a CD19-

targeting CAR. Both CARs are of relevance in current clinical trials[228-230]. The 

expression of GFP and the BCMA-targeting CAR was observed to be markedly 

reduced by up to 50% upon the simultaneous expression of the miRNA. Co-

expression of a miRNA and a transgene can lead to decreased transgene protein 

levels. This is caused by the g-retroviral vector architecture used for transduction. To 

avoid the production of a truncated transgene mRNA due to miRNA processing, the 

miRNA is located within an intron. This intronic miRNA location usually allows for a 

robust co-expression of the linked transgene as an efficient splicing reaction 

segregates mRNA and miRNA maturation process[210,231,232]. However, there are 

limitations of transgene expression because retroviral vectors require the packaging 
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signal (Y) that ensures for the packaging of unspliced messages into the viral 

particles. The retroviral MP71 vector, that was used in the present thesis, encodes for 

an intron containing the miRNA and the packaging signal[233]. This intron is only 

weakly spliced and can partially restore the transgene expression. Using a more 

efficient intron could improve transgene expression but would simultaneously 

decrease the virus titer and is, therefore, not a suitable alternative. A possible way to 

increase the efficiency of transgene expression would be the use of a lentiviral vector 

system. In contrast to the retroviral system, the nuclear export of the unspliced mRNA 

and their translation is mediated through interaction of the viral Rev protein with the 

intronic-located Rev-responsive element. Thus, the presence of the Rev protein 

supports virus titers independently of the splicing efficiency[211,234,235]. Another strategy 

for the efficient co-expression of the miRNA and the transgene would be the use of 

bacterial plasmids instead of viral vectors as they would enable the use of strong 

introns. To overcome the problem of stable genomic integration, transposases such 

as Sleeping Beauty could be used[236-239]. Transposases are enzymes that can 

precisely excise a defined DNA region flanked by recognition sequences, integrating 

this region into the genome[240]. 

 

6.3.2 EBAG9 silencing enhances the capacity of human CAR T cells to 
eradicate tumor cells in vitro and in vivo 

Functional validation of the human EBAG9-targeting miRNA revealed that the 

granzyme A secretion was increased substantially from transduced T cells harboring 

a silenced EBAG9 function, whereas the antigen-specific secretion of effector 

cytokines remained unaltered. Furthermore, in vitro cytotoxicity assays demonstrated 

that EBAG9 knockdown endowed CAR T cells with a higher cytolytic activity without 

causing antigen-independent T cell activation. Because this could be observed for 

BCMA and CD19 CAR T cells, it can be inferred that silencing EBAG9 to enhance the 

killing capacity of CAR T cells is a universally applicable principle that can be 

combined with any other CAR or TCR. Previously, Bluhm et al. performed in vitro 

cytotoxicity assays with the same BCMA CAR construct but revealed 2-fold higher 

cytotoxic activities against OPM-2, DOHH-2, and JeKo-1 target cells[154]. It should be 

noted that the different transduction rates in this thesis were normalized with 

untransduced T cells prior to functional in vitro assays. Transduction rates of only 20% 

to 30% were achieved, however, CAR T cells were not enriched, therefore, a 

heterogeneous population containing a large number of untransduced T cells was 

analyzed. The aforementioned study by Bluhm et al. used BCMA CAR T cells with a 
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transduction rate of approximately 50%-60%[154]. Although there is no linear 

correlation between transduction and the killing rate, it can be deduced that CAR 

T cell-mediated effects in the present thesis are relatively underestimated because of 

the presence of a large fraction of untransduced T cells. The target cell lines 

investigated expressed BCMA on their surface at different intensities. Bluhm et al. 

applied the Quantibrite quantification method to determine BCMA antigen density on 

the target cell surface. In accordance with the flow cytometry results, the MM cell line 

OPM-2 exhibited the highest density of BCMA molecules with approximately 5000 

receptors per cell, whereas BCMA frequencies in the B-NHL cell lines DOHH-2 and 

JeKo-1 were in the range of 500 and less than 100 BCMA molecules, respectively[154]. 

BCMA CAR T cells killed all cell lines with similarly efficiency and largely independent 

from the antigen density. However, although EBAG9 silencing increased the cytolytic 

activity of BCMA CAR T cells against all applied cell lines, this effect was most 

pronounced when targeting OPM-2 and less distinctive when targeting JeKo-1. Thus, 

increasing the efficiency of the cytolytic activity of CAR T cells by the RNAi-mediated 

downregulation of EBAG9 appears to be dependent on the antigen density. However, 

additional low BCMA-expressing cell lines such as the follicular lymphoma cell line 

SC-1 may further confirm this observation and analyze the underlying mechanism. 

 

Using an MM1.S xenotransplantation model, the in vivo efficacy of BCMA CAR-

transduced T cells was compared to BCMA CAR T cells with a knockdown of EBAG9. 

The BCMA CAR used in the present thesis was generated and previously analyzed 

in our group. In this context, the xenotransplantation model has been proven to be 

suitable for analyzing BCMA-targeting CAR T cells[154]. MM1.S cells were 

transplanted to NSG mice and tumor location in the bone marrow was detected by 

bioluminescence. Furthermore, flow cytometry analysis was performed to determine 

tumor load and T cell persistence. BCMA CAR T cells with silenced EBAG9 were 

shown to control tumor growth with a considerably higher efficiency. Almost no tumor 

cells were detectable after BCMA CAR T cell transfer with an engineered loss of 

EBAG9. In contrast, tumor load in mice treated with BCMA CAR T cells was reduced 

compared to control mice with maximal tumor outgrowth; however, this did not lead 

to a complete tumor remission. Previously published data revealed a strong effect of 

this CAR in targeting MM cells within a xenotransplantation model similar to those 

applied in this thesis. In contrast to the data presented here, BCMA CAR T cells were 

able to control tumor growth within the first 21 days after CAR T cell transfer[154]. 

However, Bluhm et al. transferred 2-3 x 106 CAR+ T cells in contrast to the 

1 x 106 CAR+ T cells used in this study. This reduced CAR T cell number might be the 
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cause for the modest activity of the BCMA CAR T cells. In line with this observation, 

the group of Michel Sadelain published a “CAR stress test” study. Applying CD19 

CAR T cells in a pre-B ALL model, the authors lowered CAR T cell doses to levels in 

which CAR T cell therapy starts to fail. Tumor cell eradication efficacy decreased with 

the CAR T cell dose reduction[241]. In addition to tumor growth, BCMA CAR T cell 

persistence within the bone marrow was analyzed. Only modest numbers of CAR 

T cells were present. Surprisingly, the lowest cell number was detected for BCMA 

CAR T cells with silenced EBAG9, although these T cells exhibited the highest in vivo 

tumor eradication efficacy. This may be due to activation-induced cell death, a 

programmed cell death induced by repetitive antigen stimulation that is mediated by 

Fas/FasL-induced apoptosis and triggered by the expression of several signaling 

molecules[242,243]. However, BCMA CAR T cells with an engineered knockdown of 

EBAG9 modestly expressed the activation and exhaustion markers PD-1, LAG-3, and 

TIM-3. Indeed, their expression was similar to the control SP6 CAR T cells with 

silenced EBAG9. In contrast, not only higher numbers of BCMA CAR T cells could be 

detected, but the CD8+ T cell population also expressed the highest levels of the 

exhaustion markers. It appears that the number of BCMA CAR T cells with silenced 

EBAG9 peaked at an early stage or the onset of contractions was faster. It would also 

imply that activation-induced cell death occurred earlier due to the higher cytolytic 

activity of these cells in comparison to the BCMA CAR T cells. Remaining T cells that 

have not undergone activation-induced cell death could still be activated following 

tumor eradication but express only low levels of the exhaustion markers. In contrast, 

the kinetics of BCMA CAR T cells may be delayed compared to CAR T cells with 

silenced EBAG9. From this perspective, the time point analyzed may reflect the peak 

of T cell expansion and exhaustion marker expression, just prior to activation-induced 

cell death. To investigate this hypothesis in more detail, kinetic studies and analysis 

of the characteristics of transferred CAR T cells at a higher frequency are required. 

Furthermore, analysis of FasL expression throughout the observation time period 

could provide further insight into the activation-induced cell death of CAR T cells. In 

addition, the recording of data regarding T cell contraction could be also informative. 

 

In summary, EBAG9 silencing reduces the threshold for T cell activation, therefore, 

enhances the cytolytic activity of CAR T cells. The strategy of targeting the secretory 

pathway of T cells has several advantages in terms of increasing ATT efficacy. First, 

it offers the opportunity to reduce the number of CAR T cells in ATT and still achieve 

the same cytotoxic efficacy. This can be advantageous when limiting the risks of 

adverse side effects, the occurrence of which clearly correlates with effector cell 
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numbers. The most frequent and serious side effect of CAR T cells is cytokine release 

syndrome, a systemic inflammatory response especially characterized by the release 

of IL-6[244,245]. In an allogeneic setting, lowering the risk of graft-versus-host effects is 

important as it can lead to extensive tissue damage and life-threatening 

complications[246]. Furthermore, treatment of patients with the adoptive transfer of 

T cells is often performed after several rounds of chemotherapy. Therefore, because 

of a reduced regenerative potential of normal bone marrow cells, a limited number of 

T cells would be available that could be modified and reinfused into the patient. 

Another advantage of reducing CAR T cell numbers for ATT is accelerating the 

manufacturing process because shorter culture times and less effector T cells are 

required. The group of Nicholas Restifo reported that long ex vivo culturing times 

promote the differentiation of T cells to potent effector cells with increased antitumor 

response in vitro. Still, these cells are often less effective in triggering tumor 

regression in vivo as they exhaust their proliferative and survival capabilities and, 

therefore, disappear rapidly after adoptive transfer. The use of IL-2 to generate high 

numbers of tumor-reactive T cells appears rather problematic as T cells rapidly 

differentiate under IL-2 conditions[167]. Moreover, high capacity T cells would enable 

the targeting of tumor entities with low antigen density and could be able to 

compensate for low-affinity CARs or TCRs, particularly in the case of patient-derived 

low affinity but also tumor-reactive TILs that are, in part, dysfunctional in vivo. 

 

6.3.3 In vitro long-term persistence of CAR T cells is not influenced by 
a loss of EBAG9 

Inhibitory receptors associated with T cell exhaustion were identified and 

characterized during chronic viral infection models. Proving strong parallels, most of 

these receptors were also found in tumor-reactive T cells in cancer. For example, in 

the context of established progressing tumors, T cells exhibit an exhausted phenotype 

due to high tumor-antigen load and immunosuppressive factors within the tumor 

microenvironment. Isolated TILs are deficient in effector cytokine production and 

express inhibitory receptors such as PD-1, LAG-3, TIM-3, 2B4, and CTLA-4. 

Therefore, to achieve efficient tumor eradication, engineered T cells need to be 

generated that are persistent and remain functional[247-251]. T cells expressing high-

affinity and high-avidity TCRs have been associated with reduced serial killing, 

leading to exhaustion or activation-induced cell death[252]. Because EBAG9 silencing 

enhances T cell avidity, the question arose whether this effect might be linked to an 

increased T cell exhaustion or an altered T cell persistence. Recursive antigen 
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stimulation was performed for five rounds with a total of 15 days. A similar 

experimental set up was performed for CD19 CAR T cells and revealed that serial 

antigen stimulation triggered activation-induced cell death[144]. In contrast, BCMA CAR 

T cells were shown to maintain their functionality over a period of 24 days[154]. In line 

with these results, this thesis demonstrated that BCMA CAR T cells with a knockdown 

of EBAG9 conserved their proliferative potential, viability, and capability of effector 

cytokine secretion. Accordingly, tumor cell clearance remained high and was 

associated with antigen-specific T cell proliferation. In the absence of FasL 

determination, direct conclusions concerning activation-induced cell death are not 

possible. Yet, the activation and exhaustion markers PD-1, LAG-3, and TIM-3 

revealed an activation-induced expression pattern in CD4+ and CD8+ CAR T cells. 

The expression of these markers was not substantially altered throughout repetitive 

antigen stimulation and did not indicate increased cell death. Most importantly, 

increasing the cytolytic activity of BCMA CAR T cells by silencing EBAG9 did not 

influence the in vitro persistence or functionality of CAR T cells upon recursive antigen 

encounter. 

 

In addition to CAR T cell functionality, the T cell subset composition was analyzed 

upon in vitro repetitive antigen stimulation. Surprisingly, the subset composition 

differed considerably between BCMA CAR T cells and BCMA CAR T cells with an 

engineered knockdown of EBAG9. Even at the beginning of the repetitive antigen 

stimulation, the CD4+:CD8+ ratio was higher within the BCMA CAR T cells. This further 

increased reaching an ratio of approximately 90% of CD4+ to 10% of 

CD8+ CAR T cells upon recursive stimulation with the tumor-antigen. In contrast, 

BCMA CAR T cells with silenced EBGA9 had a lower initial CD4+:CD8+ ratio of 

60%:40%. Upon repetitive antigen stimulation, an equal distribution was reached. The 

transfer of a defined CD4+:CD8+ CAR T cell composition has recently become more 

important in ATT and has already been applied in clinical trials in adult B cell acute 

lymphoblastic leukemia patients[253,254]. As a 1:1 ratio of CD4+:CD8+ CAR T cells was 

shown to be remarkably potent, the BCMA CAR T cells with an engineered loss of 

EBAG9 might be superior as they inherently achieved this composition. Yet, it remains 

unclear how these differences in T cell subset composition develop and if the 

introduction of the EBAG9-targeting miRNA may be caused by a preferential CD8+ 

CAR T cell proliferation or whether CD4+ CAR T cell equipment is toxic to their 

persistence. A recent study showed CD19 CAR T cells to be differentially influenced 

by signals through the endogenous TCR in a syngeneic mouse model. While the 

presence of the TCR antigen led to a loss of CD8+ CAR T cell efficacy that was 
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associated with exhaustion and apoptosis, CD4+ CAR T cells retained their in vivo 

efficacy[255]. However, this model cannot be applied to the results of the present thesis 

as both CAR T cell populations were derived from the same donors and, therefore, 

equipped with the same endogenous TCR repertoire. Nonetheless, cell-intrinsic 

differences appear to be involved in transducing CAR T cell signaling in CD4+ and 

CD8+ T cells. This differences require a further elucidation to better understand the in 

vivo biology of engineered CAR T cells.  

 

6.3.4 CAR T cells change their memory phenotype in vitro over time 
independently of EBAG9 

In immunotherapy, an inverse correlation between T cell differentiation and antitumor 

efficacy has been described. The transfer of fully differentiated effector T cells was 

less effective and found to be linked to poor in vivo expansion and survival[167]. 

Instead, TCM and memory stem cells (TSCM) showed long-term persistence, 

exhibited enhanced metabolic fitness, and were more effective in their antitumor 

efficacy[256-259]. Thus, the application of a defined composition of T cell memory 

subsets is important for a long-lasting and successful tumor response. In the present 

thesis, the differentiation of BCMA CAR T cells and BCMA CAR T cells with an 

engineered knockdown of EBAG9 were analyzed upon in vitro repetitive antigen 

stimulation. While an equal distribution of TCM and TEM was initially present, TEM 

gained predominance and only minor amounts of TCM remained detectable. Of note, 

miRNA-mediated silencing of EBAG9 did not alter the memory phenotype 

differentiation of CAR T cells. However, these differentiation processes may be the 

result of culturing conditions. During T cell activation, transduction, and expansion, 

CAR T cells were cultured with IL-7 and IL-15. These are homeostatic cytokines that 

support T cell expansion and maintain a TCM phenotype[257,260,261]. Upon recursive 

antigen encounter, CAR T cells were co-cultured with tumor cells and only minor 

amounts of IL-7 and IL-15 were added. At the same time, activated CAR T cells were 

able to secrete the pro-proliferative cytokine IL-2, which favors effector 

differentiation[260,262]. To further control the impact of T cell culture conditions, it would 

be tempting to inhibit the IL-2Ra signaling pathway using the mTOR inhibitor 

rapamycin[263]. 
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6.4 Alternative silencing of EBAG9 by genome editing 
Gene transfer for T cell engineering in ATT has been, to date, performed mainly in 

retroviral or lentiviral vectors leading to permanent integration into the genome. As 

the insertion sites cannot be controlled, this integration is rather random and might 

lead to side effects by oncogenic transformation, transcriptional silencing, or 

differences within transgene expression levels[264-266]. Although retroviral vectors have 

been used in clinical trials with a long-term safety record, alternative methods for 

sequence-specific interventions are currently under development[267-270]. Most 

recently, genome editing was used to specifically integrate a CAR into a defined locus 

within the genome. The group of Michel Sadelain used the CRISPR/Cas9 technology 

to insert a CD19 CAR gene into the TRAC locus encoding for the TCRa chain and 

gained consistent CAR expression in human T cells. Furthermore, through the 

analysis of different loci as sites of CAR integration, targeting the TRAC locus yielded 

greater antitumor potency in a mouse model of acute lymphoblastic leukemia, most 

likely caused by delayed effector differentiation and exhaustion[271]. In regard to 

targeting the secretory pathway of T cells to increase their cytolytic activity, this 

technique can be used to integrate a CAR with any desired specificity into the EBAG9 

locus. Thus, EBAG9 silencing could be accomplished without the need to induce the 

RNAi pathway or use of randomly integrating vectors. Although the benefits of using 

the TRAC locus in regard to increased antitumor efficacy would not be achieved, 

expression would, at least, be stable and no longer negatively influenced by the 

presence of miRNA. However, it remains to be shown whether the EBAG9 locus is 

suitable for CAR expression as transcriptional configuration and expression levels are 

important for effective CAR activity. 

 

6.5 Conclusions 
In summary, the present study shows that targeting the secretory pathway of T cells 

is a promising strategy in improving ATT efficacy. As high-avidity and long-lived 

T cells are important for successful und remission-free immunotherapy, the negative 

regulator of effector molecule secretion EBAG9 is an attractive target. First, the fate 

of CD8+ T cells was shown to be linked to their cytolytic strength in EBAG9-deficient 

mice because the loss of EBAG9 led to the preferential formation of an antigen-

specific CD8+ T cell memory pool. Second, the miRNA-mediated knockdown of 

EBAG9 in primary mouse and human T cells caused a substantially enhanced T cell 

avidity and therapeutic efficacy. Adoptive transfer of engineered mouse T cells with 

silenced EBAG9 increased antigen-specific cytotoxicity in in vivo killing assays. 
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Moreover, human CAR T cells were proven to kill their target cells in vitro and in vivo 

with enhanced efficiency due to the miRNA-mediated knockdown of EBAG9. 

Importantly, the effective CAR T cell numbers needed for efficient target cell killing 

could be decreased, which may lead to multiple advantages in terms of T cell 

manufacturing and reducing clinical adverse effects. The repetitive antigen 

stimulation assay in vitro ruled out that the engineered loss of EBAG9 altered 

functionality, persistence, or exhaustion of CAR T cells. Yet, to analyze memory 

formation and long-term in vivo persistence of T cells with miRNA-mediated silencing 

of EBAG9, a syngeneic mouse model is required.  

 

Altogether, EBAG9 was found to be a novel type immune checkpoint inhibitor 

negatively regulating T cell memory formation and avidity. Therefore, targeting 

EBAG9 represents a feasible approach to increase the efficacy of adoptively 

transferred T cells by lowering the T cell activation threshold. Furthermore, this 

strategy provides the opportunity to overcome therapeutic limits due to the availability 

of low amounts or low-affinity T cells. 
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