
SE(3) Equivariant Neural
Networks for Regression on

Molecular Properties

The QM9 Benchmark

Benjamin Kurt Miller

A thesis presented for the degree of

Masters of Science (M.Sc.) in Computational Science

Supervised by

Prof. Dr. Frank Noé

Computational Sciences - Molecular Science
Freie Universität Berlin

Berlin, Germany
31 March 2020

Colloquium held on
17 March 2020

Contents

Abstract 1

Declaration of Authorship 2

Acknowledgments 3

1 Introduction 6

2 Theory 7
2.1 Machine Learning and Deep Learning . 7

2.1.1 The Bias-Variance Decomposition 8
2.1.2 Training and Optimization of the Loss Function 11

2.2 The QM9 Data Set . 12
2.2.1 Quantum Mechanical Calculations 14

2.3 Geometric Quantities . 16
2.3.1 Groups and Representations . 17
2.3.2 Group Representation . 18
2.3.3 The Spherical Harmonics and the Wigner D-Matrices 19
2.3.4 The Clebsch-Gordan Decomposition 20

2.4 Neural Networks Equivariant to SE(3) . 21
2.4.1 e3nn . 21
2.4.2 QM9 Output Layer . 29

3 Experiments 32
3.1 Comparison with SchNet-like Architecture 32

3.1.1 Effects of Higher Rotation Orders on Dipole Moment and Energy . . 36
3.1.2 Comparison of Radial Bases . 37
3.1.3 Effects of Batch Size . 37

3.2 e3nn with a Multi-Layer Perceptron Output 38
3.2.1 Multi-target Hyperparameter Search 40

3.3 Regression on QM9 Properties . 42
3.3.1 Dipole Moment . 42
3.3.2 Isotropic Polarizability . 44
3.3.3 Other Targets . 46

4 Conclusion 47

A Definitions of Common Operations 48

B Kernel Normalization Constants 49

Abstract

e3nn is an artificial neural network which operates on atomic coordinates and achieves
equivariance to the special euclidean group in three dimensions by using spherical har-
monics as features. The main experiment is to benchmark the model against a standard
chemical data set called QM9, on which e3nn achieves state of the art performance on three
of twelve regression targets. Along with empirical results, this thesis presents theoreti-
cal argumentation for why e3nn outperforms its closest relatives, SchNet and Cormorant,
on some regression targets. Significant background regarding machine learning, quantum
chemistry, and the special euclidean group is also presented.

Declaration of Authorship

I, Benjamin Kurt Miller, declare that this thesis and the work presented in it is my own.

This work was completed while in candidature for a master’s degree in Computational
Science at the Freie Universität Berlin. Whenever I have quoted from the work of others,
the source is always given and attributed.

Signed:

Date:

2

Acknowledgments

Learning about neural networks and the symmetries of Euclidean space has been a long
and winding road. I would like to acknowledge the people who helped me along the path.
I’ll start with my introduction to the subject through my advisor, Dr. Frank Noé, and his
PhD student, Moritz Hoffmann. My understanding of the subject was strengthened thanks
to the countless hours of discussion and problem solving during my summer at Lawrence
Berkeley National Laboratory where I worked closely with Dr. Tess Smidt (Berkeley Lab)
and Mario Geiger (EPFL). Upon return to the Freie Universität Berlin, the days in the
office were made much more enjoyable by discussing machine learning and physics with
Zeno Schätzle. I’ll remember fondly the “Mittagstisch” lunch group meetings of Eva,
Tracy, and myself. I acknowledge my colleagues from the entire Artificial Intelligence for
the Sciences group as well as the powerful deep learning tools which make this research
possible, TensorFlow [1] and PyTorch [2].

On the personal side of things, I appreciated the support of my family: Gretchen, Doug,
Abby, and Jeffrey. Finally, I’d like to dedicate this work to my friends and family who
were there at the beginning but did not make it to the finish: Asher, Katerina “Katy,”
Katharine “Grandma Kay,” and Lea.

3

https://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/staff/index.html
https://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/staff/index.html

Preamble: Why Data-Driven
Methods? Why Deep Learning?

Low-latency, high-capacity, and low-cost storage methods along with pervasive access
to fast internet connections has contributed to the proliferation of high-quality, easily-
distributed data. Navigating these large data sets has become a field unto itself and
competency in data science has emerged as a necessary skill for researchers of all back-
grounds. One of the great data-related challenges lies in drawing insights from sprawling
landscapes of tabulated strings, floats, and integers. Much like the adage, “Can’t see the
forest for the trees,” large data sets can obscure knowledge by drowning trends in over-
whelmingly large numbers of examples or embedding low-dimensional information in a
prohibitively high-dimensional space, i.e. including extraneous information. An effective
tool in the landscape of data-driven methods for transforming data into insights is called
machine learning.

The 2010s were characterized by a groundswell of interest in the development of algorithms
capable of learning from large quantities of data automatically. In particular, deep learn-
ing has enjoyed profound development due to a cocktail of factors including commercial
success, prevalence of highly parallel graphics processing units, easy-to-use modular im-
plementations of deep learning algorithms, and deep learning’s effectiveness in the regime
of large data sets. Deep learning helped overcome barriers in language translation [3]
and object classification in images [4] while also introducing groundbreaking techniques
in generative modeling including the Generative Adversarial Network [5] and the Varia-
tional Auto-encoder [6]. Generative models have made it possible to draw samples from
complicated distributions in physics like with Boltzmann Generators [7] but also from
distributions of pixels which look like cats, dogs, and even celebrities [8].

The success of deep learning in computer science has already inspired active research ef-
forts and a rich set of literature about using deep learning in chemistry and physics [9, 10].
The output of computational methods like density functional theory inadvertently produce
data sets which complement machine learning by providing labeled data for regression. A
common chemical benchmark data set, QM9 [11, 12], is a perfect example of the interplay
between computational chemistry and data-driven methods since the targets were calcu-
lated using density functional theory and have been tested extensively with a wide variety
of deep learning methods. In the future, the author predicts that existing attempts to ex-
plore chemical space, the term for the set of all possible chemicals, using high-throughput
screening pipelines will be significantly enhanced by the reduced computational cost of
using trained deep learning models.

The evidence of laboratory-confirmed effectiveness of machine learning methods to iden-
tify candidate molecules is growing. Notably, the message-passing molecular graph model
MoleculeNet [13] has recently been critical in the discovery of a novel, experimentally-
effective, and low human toxicity antibiotic called Halicin [14]. (Note the name was chosen

4

as a reference to the 2001: A Space Odyssey AI character.) Previous methods to identify
candidate antibiotics utilized a representation method known as fingerprint vectors, which
reflected the presence or absence of functional groups in the molecule and included other
computed molecular properties. Expert knowledge was required to create these finger-
print vectors and even after years of development, such methods were not very effective
[15]. In comparison, deep learning has reduced the expert knowledge required to compute
which molecules are strong antibiotic candidates and increased the speed at which these
candidates can be discovered.

The practical motivation for this work is to enhance the computational options of re-
searchers looking to understand and perhaps design chemicals using a data-driven ap-
proach. The experimental focus is on regression and the value of symmetry aware neural
networks for reducing generalization error. The primary experiment is on benchmarking
QM9 with a neural network equivariant to special euclidean symmetry. How does it help
researchers? The regression techniques explored in Chapter 3 represent a method similar
to the antibiotic selection method above, i.e. creating a neural network which can quickly
and accurately predict geometric quantities in order to sift through massive databases of
molecular data to find drug candidates.

What distinguishes this work from another prominent work in the field, SchNet [16],
is the focus on the connection between molecular properties and Euclidean geometry.
The argumentation is that, in order to accurately model properties that rotate, such as
geometric tensors, the internal features of the neural network must have the appropriate
rotation properties. This is achieved by using an architecture called e3nn [17]. It has a
similar design to another network called Cormorant [18], but includes gated nonlinearities
which empirically lead to better generalization on the QM9 benchmark. e3nn achieves
state of the art results on three of twelve targets while performing adequately on the rest.

Chapter 1

Introduction

Calculating the properties of molecules on the computer can lead to a better understanding
of chemistry, the discovery of new and useful chemical compounds, and the advancement
of physical approximation methods. The current workhorse of this field is density func-
tional theory which approximates the quantum mechanical properties of a molecule using
a combination of theoretically motivated and empirically tested tools. Right now, if a
scientist wants to understand the properties of a small to medium sized molecule, the tool
they usually reach for is density functional theory. For smaller molecules or more accurate
predictions, fully quantum theories are utilized including Hartree-Fock and Coupled Clus-
ter. For larger molecules, empirically determined force field models with fast calculation
times act as a cost effective approximation because quantum mechanical effects have less
influence at the macroscopic scale.

There is a fundamental friction between seeking higher accuracy calculations and keeping
computational costs low, even for small molecules. Chemical calculation complexity usu-
ally scales with the number of atoms and higher accuracy often leads to worse scaling. The
ambition of current research is to increase accuracy while maintaining, or even reducing,
computational costs. Machine learning has offered a solution by dividing the computa-
tional cost into a rather slow training procedure followed by a blazingly fast inference
phase.

There have already been significant efforts made in this field [16, 19, 20] with strong results.
However, the author critiques that these models, with the exception of [18], do not take
the underlying symmetries of the problem into account in a satisfactory way. Could we
improve the performance of these models by considering the symmetries of the problem?

This work investigates the performance of e3nn on a standard data set called QM9. e3nn
is an artificial neural network which restricts itself to operations which are equivariant to
the special euclidean group in three dimensions, which is to say, it handles rotations and
translations of input data naturally [17]. This is a very desirable property when the input
data are positions of constituent atoms which have no canonical orientation.

The content is broken into a theoretical section and an experiment section. The theoretical
section covers deep learning; the benchmark data set, including how it was calculated;
the basics of the special euclidean group; and finally explains how e3nn works. The
experiment section discusses the specifics of how accurately e3nn was able to predict
the targets of QM9. The performance of e3nn is systematically evaluated across several
hyperparameters: the rotation properties of the network, the radial model, and the batch
size. Finally, a random hyperparameter search yields a competitive e3nn model which is
compared with other literature.

6

Chapter 2

Theory

2.1 Machine Learning and Deep Learning

The field of machine learning has enjoyed an explosion of interest and development in the
2010s. For the curious reader, three strong textbooks regarding supervised and unsuper-
vised learning include Bishop [21], Murphy [22], and Goodfellow, Bengio, and Courville
[23].

The purpose of machine learning is to automatically extract useful patterns in a set of
training data which generalize well to another, unseen, set of data. The key components
are the machine learning algorithm used to identify those patterns, the nature of the data
itself, and this idea of generalization. A popular example machine learning data set called
MNIST [24] will be included to help guide the discussion.

Figure 2.1: The samples of MNIST are hand-written digits from United States Census Bu-
reau employees and high school students. The target vector is pair-wise identical between
images in the same row. Samples from MNIST. Grid organized by Wikipedia.org.

Consider a set of vector pairs called training data Di = {(x1, t1), ..., (xN , tN)} with x ∈ X
and t ∈ T . Each input xi is associated to its pair, the target ti. The form of the
inputs and targets can vary significantly between problems. In MNIST we define X to
be the set of black and white images which contain a hand written digit, X := {x ∈
R28×28 : x is a hand written digit} and the set of one-hot scalar array targets T is defined

as T :=

{
v ∈ {0, 1}n :

n∑
i=1

vi = 1

}
. Examples of input data can be seen in Figure 2.1.

The machine learning algorithm can be written as a function f : X × W → Y . The
specifics of the function, i.e. the parameters w ∈ W are determined during training

7

2.1. MACHINE LEARNING AND DEEP LEARNING

and fixed afterwards during evaluation. How the parameters are chosen is further dis-
cussed in Section 2.1.2, but the idea is to select parameters which perform well on data
which was drawn from the same distribution as the training set but was not included in
the training set, also known as test data. When an algorithm with trained parameters
performs well on test data we say that the algorithm generalizes well. In our MNIST
example a trained algorithm f with parameters w generalizes well when f(x̃,w) ≈ t̃ for
all
{

(x̃, t̃) ∈ (X,T) : (x̃, t̃) /∈ D
}

.

The class of problems where both input and target data enter the training is known as
supervised learning. The goal of the MNIST problem is to successfully recognize and
categorize each sample into a finite number of discrete categories. Settings of this type
are called classification problems. Another common supervised learning problem aims to
predict a continuous target vector. This setting is known as regression and is utilized in
this work.

2.1.1 The Bias-Variance Decomposition

Although there is some contention on the issue of generalization and overfitting regarding
neural networks [25], an important frequentist perspective on supervised learning in general
is the so-called bias-variance trade-off [21]. A set of predictive models has the property
that models with lower estimation bias exhibit higher variance across samples, and vice
versa. Bias measures the average distance between the predictions and the ground truth
while variance measures the average distance between predictions. Consider figure 2.2 in
order to gain a better intuition regarding bias and variance.

Figure 2.2: In this dartboard graphic from [26], the bullseye represents a ground truth
regression target f(x). The crosses correspond to predictions from multiple arbitrary
estimators, f̂ , trained on different data sets of a fixed size to regress on f(x). The labels
below describe the bias and variance properties of the model. Bias describes the distance
between the mean prediction and the bullseye while variance measures how far apart the
crosses are on average. Lower bias and lower variance is desirable since predictions of such
models are closer to the ground truth; however, due to the bias-variance trade-off, this is
not always possible to achieve in practice.

The bias-variance trade-off is a dilemma where attempting to minimize both the variance
and bias at the same time is in conflict and limits the ability of the model to generalize.
This property is inherent no matter the choice of loss function and can be demonstrated
using the bias–variance decomposition whereby the loss is analyzed as the sum of bias,
variance, and aleatoric (inherent or irreducible) terms. For this analysis we consider the
squared loss function in order to quantify the “wrongness” of a predicted value. The
bias–variance decomposition of the squared loss function is presented below. It closely
follows the derivation in [21] but has been summarized and clarified.

As this is a frequentist perspective we assume there is a deterministic function f mapping
from input data x to the target space plus noise, i.e. define the target random variable

8

2.1. MACHINE LEARNING AND DEEP LEARNING

T = f(x) + ε where ε is a zero mean Gaussian random variable with variance σ2. Given a
labeled data set Di = {(x1, t1), ..., (xN , tN) : (xi, ti) ∼ p(x, t)}, we choose an estimate of
t for each input x using the estimator f̂ . The estimate f̂(x) incurs a loss L(t, f̂(x)). The
expectation value, defined in (A.1), of the squared loss L(t, f̂(x)) = (f̂(x)− t)2 is given by

E[L] =

∫∫ (
f̂(x)− t

)2
p(x, t) dx dt. (2.1)

The machine learning model which achieves the minimum of the expectation value of the
squared loss function is called the optimal estimator. In order to find it, we choose an
f̂(x) which minimizes E[L] therefore we can apply the calculus of variations to find the
minimum by setting the derivative to zero,

δE[L]

δf̂(x)
= 2

∫
(f̂(x)− t)p(x, t) dt = 0. (2.2)

By solving for f̂(x) by using the sum (A.3) and product (A.4) rules of probability,

δE[L]

δf̂(x)
= 2

∫
(f̂(x)− t)p(x, t) dt = 0

=

∫
f̂(x)p(x, t) dt−

∫
tp(x, t) dt

= f̂(x)

∫
p(t|x)p(x) dt−

∫
tp(x, t) dt

= f̂(x)p(x)−
∫
tp(x, t) dt

=⇒ f̂(x) =

∫
tp(x, t) dt

p(x)

=

∫
tp(t|x) dt = E[t|x],

(2.3)

the optimal estimator is recovered, namely E[t|x]. (Note that E[t|x] implies ET [t|x] an
expectation value over a random variable T for the target; however, the T is left out for
lighter notation.) Armed with the knowledge of the optimal estimator, E[t|x], we can
expand the squared loss into an instructive form,

L = (f̂ − t)2 = (f̂ − E[t|x] + E[t|x]− t)2

= (f̂ − E[t|x])2 + 2(y(x)− E[t|x])(E[t|x]− t) + (E[t|x]− t)2
(2.4)

By substituting this expansion into the expected squared loss, the cross terms become
zero and we recover

E(L) =

∫ (
f̂ − E[t|x]

)2
p(x) dx+

∫
(E[t|x]− t)2 p(x) dx. (2.5)

Notice that we decomposed the squared loss into the first term which measures the differ-
ence between an arbitrary estimator f̂ and the optimal estimator, E[t|x], and the second
term which is aleatoric and can be regarded as irreducible noise. This can be seen be-
cause the arbitrary estimator to be optimized does not enter the second term. In the next
paragraphs, h(x) := E[t|x] for clarity.

9

2.1. MACHINE LEARNING AND DEEP LEARNING

We turn our attention to the first term in (2.5), the difference between an arbitrary
estimator and the optimal one. f̂ models h(x) using a parameter vector w, i.e. f̂(x,w),
which is estimated by using a learning algorithm on a data set D. Since the algorithm
will determine a different w depending on the data, the performance of f̂ is evaluated by
calculating the average of (f̂(x;D) − h(x))2 across an ensemble of data sets drawn from
p(t, x).

Given this insight, we add and subtract the expectation value of an arbitrary estimator
across data, ED[f̂(x;D)] to obtain

(
f̂(x;D)− ED[f̂(x;D)] + ED[f̂(x;D)]− h(x)

)2

=
(
f̂(x;D)− ED[f̂(x;D)]

)2
+
(
ED[f̂(x;D)]− h(x)

)2

+ 2
(
f̂(x;D)− ED[f̂(x;D)]

)(
ED[f̂(x;D)]− h(x)

)
.

(2.6)

Then we perform the analysis by taking the expectation value of this expression with
respect to D. Notice that the cross term will vanish due to the linearity of expectation.

ED
[(
f̂(x;D)− h(x)

)2
]

=
(
ED[f̂(x;D)]− h(x)

)2
+ ED

[(
f̂(x;D)− ED[f̂(x;D)]

)2
]

= (bias)2 + (variance)

(2.7)

As is explained succinctly in Bishop [21], “The difference between an arbitrary estimator
and an optimal one is therefore decomposed into the sum of two terms. The first term,
called the squared bias, represents the extent to which the average prediction over all data
sets differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function f̂(x;D) is sensitive to
the particular choice of data set.”

Looking back, we found that we can express the expectation value of the squared loss 2.1
as the sum of three terms,

expected loss = (bias)2 + (variance) + (noise), (2.8)

with

(bias)2 =

∫ (
ED[f̂(x;D)]− h(x)

)2
p(x) dx (2.9)

(variance) =

∫
ED
[(
f̂(x;D)− ED[f̂(x;D)]

)2
]
p(x) dx (2.10)

(noise) =

∫
(h(x)− t)2p(x, t) dx dt (2.11)

after integrating the bias and variance. This analysis was done across many data sets
but in practice we usually only have one training data set and one test data set to work
with. Instead of varying the data set, a practitioner can usually only tune the model

10

2.1. MACHINE LEARNING AND DEEP LEARNING

complexity. In a classical statistical learning setting this often corresponds to the number
of parameters.

Models with higher complexity trained on different data sets have a better capacity to
fit their training data exactly. This corresponds to an increase in variance (2.10) since
the expected value of a complex model across data sets is fixed while the predictions
of a specific complex model depends heavily on the training data. At the same time,
when considering the expectation across all possible data sets a complex model has the
capacity to capture the underlying distribution of the target and thus the bias (2.9) is
reduced. This property is exactly the bias-variance trade-off and points out the reason
why machine learning is difficult. Since practitioners do not have access to infinite data one
must carefully tune model complexity such that the bias and variance are simultaneously
minimized. For further information about this topic consider Section III in [10].

Figure 2.3: When fitting a data set (blue points) generated by a polynomial (blue) plus
noise, a low complexity parameterization yields models with low variance (orange) and
higher complexity yields higher variance (green).

As an example to show the increase in variance corresponding to an increase in model
complexity, let us consider a polynomial fit. In this case, our target function looks like,

t = f(x) + ε = x4 + 7.5x3 + 16.5x2 + 10x+ ε, (2.12)

where ε corresponds to Gaussian noise with mean zero and unit variance. After sampling
five points from the input and target random variables, two polynomial models of differing
complexity were trained on the input data. One model had five weight parameters and
the other had 30. The results corresponding fit functions along with f(x) and the data
points are plotted in Figure 2.3. Notice that the model with 30 parameters was able to
very accurately fit the training data but failed to capture the ground truth and would
perform very badly if asked to do regression on new input data, for example x = 3.5.

This polynomial fit is empirical evidence of the bias-variance trade-off and suggests that
the best generalizing model is of intermediate complexity. This concept is captured in
in Figure 2.4. The plot introduces Eout which measures a model’s error on data drawn
from p(x, t) but not included in the training data set. Notice that Eout is minimized at
intermediate model complexity.

2.1.2 Training and Optimization of the Loss Function

The previous section introduced the expected squared loss function (2.1) in order to quan-
tify the difference between predictions and the ground truth. Even though the optimal
estimator E[t|x] was uncovered using the calculus of variations, it is usually impossible to
solve for its exact closed formulation, especially, like in most machine learning problems,
when the distribution of the data is unknown.

11

2.2. THE QM9 DATA SET

E
rr

o
r

Model Complexity

O
p

ti
m

u
m

Bias

Variance

Eout

Figure 2.4: This schematic shows the typical out-of-sample error Eout as function of the
model complexity for a training data set of fixed size. Notice how the bias always decreases
with model complexity, but the variance, i.e. fluctuation in performance due to finite size
sampling effects, increases with model complexity. Thus, optimal performance is achieved
at intermediate levels of model complexity. The figure and caption is borrowed from [10].

Generally, we have access to the parameters w of a machine learning model f̂ and a loss
function L(f̂(x,w), t). The predictions of f̂ can be improved by modifying the weights
such that the L is minimized. The method explored here is called gradient descent where
w is iteratively updated in the direction of large negative gradient of L. This process
brings the model closer to a local minimum in L.

In most modern deep learning problems, performing gradient descent across the entire
batch of training data is not computationally sensible since there are simply too many
data points to iterate over. Instead, we use a modification of gradient descent applied on
mini-batches of data sequentially known as stochastic gradient descent. In this case, the
cost function is calculated as a sum over n data points L =

∑
n Ln followed by an update

step of the form

w(τ+1) = w(τ) − η∇Ln (2.13)

where τ is the iteration number and η is the learning rate parameter. The choice of η has
a qualitative effect on descent behavior. Consider, if η < 0 then the algorithm will take
steps towards higher values of L and would be better described as an ascent algorithm.
By contrast, if η is too small then the descent will not reach any minima in a reasonable
number of iterations [27]. A schematic of these regimes can be seen in Figure 2.5. In that
picture ηopt implies the learning rate which will jump to the minimum in one step in a
quadratic potential. In particular ηopt = (∂2

wL(w))−1.

It’s worth mentioning that there exist many schemes to improve the convergence of stochas-
tic gradient descent. A very popular one used in our experiments is called Adam [29].
Furthermore, techniques which adjust η during training have shown to reduce generaliza-
tion error empirically. Due to the extremely wide availability of information about how
these “tricks” work and the staggering number of possibilities out there, the author defers
explanation to the search engine of your choosing.

2.2 The QM9 Data Set

The data set at the center of this work is a collection of computed geometric, energetic,
electronic, and thermodynamic properties for 134k stable small organic molecules made
up of CHONF [11]. This collection corresponds to the subset of all 133,885 species with up
to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic

12

2.2. THE QM9 DATA SET

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

η�ηopt η�ηopt

η�ηopt η��ηopt

A B

C D

Figure 2.5: Effect of learning rate on convergence. For a one dimensional quadratic
potential, one can show that there exists four different qualitative behaviors for gradient
descent (GD) as a function of the learning rate η depending on the relationship between
η and ηopt = (∂2

wL(w))−1. (a) For η < ηopt , GD converges to the minimum. (b) For η =
ηopt , GD converges in a single step. (c) For ηopt < η < 2ηopt, GD oscillates around the
minima and eventually converges. (d) For η > 2ηopt, GD moves away from the minima.
This figure is drawn from [10, 28].

molecules [12]. In the field, it is known as QM9 and it has been heavily investigated,
especially with data-driven methods which operate on graphs and point geometries [18,
16, 20, 30]. For our purposes, every molecule in QM9 has contains three pieces of data:
Positions of constituent atoms ra, atomic number of constituent atoms Za, and the set of
calculated properties tp. Table 2.2 shows the list of calculated properties relevant to this
work along with converted units.

Property Unit Description

µ D Dipole moment
α a3

0 Isotropic polarizability
εHOMO eV Energy of HOMO
εLUMO eV Energy of LUMO
εgap eV Gap (εLUMO − εHOMO)
〈R2〉 a2

0 Electronic spatial extent
zpve eV Zero point vibrational energy
U0 eV Internal energy at 0 K
U eV Internal energy at 298.15 K
H eV Enthalpy at 298.15 K
G eV Free energy at 298.15 K

Cv
cal

molK Heat capacity at 298.15 K

Table 2.1: Calculated properties in QM9 along with units and description. In the original
paper, energy was presented in Hartree. a0 is defined to be the bohr radius.

The reported property values were calculated using density functional theory which takes
in {ra, Za} to estimate the electron density, the quantum mechanical energy, and other
properties. The reason QM9 is a significant work is because of this problem: Imagine
you only know Za and the bond connectivity, as is the case before quantum mechanical
calculations. That means the positions ra are unknown (along with the properties tp).
Finding the set of ra vectors which minimizes the energy prediction of density functional
theory requires an iterative optimization scheme. QM9’s reported positions are the result

13

2.2. THE QM9 DATA SET

of this optimization where the energy was computed using the B3LYP/6-31G(2df,p) level
of quantum theory for most molecules and using the G4MP2 level of quantum theory
for the 6095 constitutional isomers of C7H10O2, the most abundant constitutional isomer.
G4MP2 is a more accurate coupled cluster method, which is to say a post-Hartree-Fock
method [31]. B3LYP indicates the choice of density functional while 6-31G(2df,p) indicates
the choice of basis set.

Density functional theory has its roots in quantum mechanics. In particular, it is closely
related to the classical Hartree-Fock approximation. Since this data set is central to the
thesis, it is important to understand the basics of how the data was created, even if we do
not consider further quantum mechanical calculation in this work.

2.2.1 Quantum Mechanical Calculations

The goal of quantum chemical calculation is to find the approximate solution of the time-
independent, non-relativistic Schrödinger equation

HΨ(x1,x2, ...,xN ,R1,R2, ...,RM) = EΨ(x1,x2, ...,xN ,R1,R2, ...,RM) (2.14)

where H is the Hamilton operator for a molecule built from M nuclei and N electrons.
The wave function Ψ contains all knowable information about the quantum system and E
is the value of the energy of Ψ. One assumes there is no influence from external magnetic
or electric fields and that, since the nuclei are >1800 times the mass of the electron, they
are fixed compared to the electrons. This form of H is called the Born-Oppenheimer
approximation. The electron contribution looks like,

He = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
, (2.15)

where ∇2
i is the Laplacian on the electrons, ZA is the atomic number of atom A, riA is

the distance between electron i and nucleus A, and rij is the distance between electrons i
and j. The terms encode the kinetic energy of the electrons, the interactions between the
electrons and the nuclei, and the interaction between electrons. To accurately calculate
the energy, one must reintroduce the constant nuclear repulsion term,

En =

M∑
A=1

M∑
B>A

ZAZB
rAB

, (2.16)

resulting in, E = Ee + En. Where HeΨ = EeΨ. The problem is that, in general, finding
the wavefunction which fulfills this eigenvalue equation is not possible analytically, so we
turn to approximation. The variational principle saves the day, recall that

〈Ψtrial|H|Ψtrial〉 = Etrial ≥ E0 = 〈Ψ0|H|Ψ0〉 (2.17)

where Ψ0 is the true energy of the ground state. In other words, the lower bound on
the expectation value of the Hamiltonian is the true ground state energy and the true
ground state energy is recovered if and only if the trial wavefunction is identical to the
true wavefunction. This is useful because it allows us to solve the problem by minimizing
the expression Ψ0 = arg minΨ〈Ψ|H|Ψ〉.

14

2.2. THE QM9 DATA SET

In practice, one uses Hatree-Fock approximation to find the minimum from a suitable
subset of possible wavefunctions. It consists of approximating the N-electron wave function
by an antisymmetrized product of N one-electron wave functions χi(xi) known as spin-
orbitals. The product is called a Slater determinant,

Ψ ≈ ΦSD =
1√
N !

det(χi(xj)) i, j = 1, 2, ..., N. (2.18)

Each of these spin-orbitals solves an eigenvalue equation involving the Fock operator,

f = −1

2
∇2
i −

M∑
A

ZA
riA

+ VHF . (2.19)

The first two terms are the kinetic energy and potential energy due to interaction with
the nucleus. The final potential element is the mean-field repulsive force experienced by
an electron due to the other electrons. It consists of a Coulomb interaction between an
electron and the charge density of the other electrons in the other spin orbitals as well as
a purely non-classical term called the exchange operator. Since electrons are fermions, the
wavefunction must be anti-symmetric when one swaps same-spin electrons. The exchange
operator implements this criterion. Since the fock operator depends on the solution to
the mean field, VHF , the eigenstates must be found iteratively. After an initial guess, the
iterative approach is taken until numerical convergence, known as self consistency.

The accurate application of Hartree-Fock depends on the judicious choice of basis set.
One often applies a linear combination of atomic orbitals. An example set of atomic
orbitals are the Slater-type orbitals which have exponential radial decay, satisfy Kato’s
cusp condition (for more information see [32]), and have no nodal structure (unlike the
hydrogen wave function). Another example which approximates the Slater-type orbitals
are the Gaussian-type orbitals which decay faster with a square exponential radial decay,
do not satisfy the cusp condition, and also have no nodal structure. The reason they are
so often used is because of the Gaussian Product Theorem. It constrains the product of
two Gaussians to be another Gaussian, avoiding integration and decreasing calculation
time by orders of magnitude.

The basis set 6-31G(2df,p) used in calculating the electron densities for most of QM9 is a
set of Gaussian-type orbitals. It is a so-called split-valence basis set where core orbitals
are modeled using a single basis function while valance orbitals are modeled by more than
one. In order to improve the quality of the atomic basis set, a fixed weighted sum of six
Gaussian-type orbitals, called a contracted Gaussian-type orbital, is sometimes used. In
the case of 6-31G(2df,p), the core orbitals are a contraction of six Gaussian-type orbitals
while the basis set for valance orbitals contains both a contraction of 3 Gaussian-type
orbitals and another uncontracted Gaussian-type orbital. The remaining letters indicate
inclusion of polarization and asymmetries into the basis sets by modulating the Gaussian-
type orbitals with the spherical harmonics, see Section 2.3.3. Specifically, two sets of d
functions and one set of f functions are added to heavy atoms (CONF) and one set of p
functions are added to hydrogen. Recall that p implies spherical harmonics of order 1, d
implies order 2, and f implies order 3.

The majority of compounds were calculated using density functional theory. The Hohenberg-
Kohn Theorems prove that for any potential, up to a constant factor, there exists a unique
ground state electron density. This has the consequence that knowing the electronic den-
sity is enough to completely characterize all knowable properties of a molecular system

15

2.3. GEOMETRIC QUANTITIES

[32]. Density functional theory studies the functionals which map from density to proper-
ties, such as ground state energy. Although it is possible to write them down symbolically,
only some of their explicit formulation is known and other parts must be approximated.
In particular, given a ground state electron density ρ0 and three functionals yielding ki-
netic energy, electron-electron interaction energy, and electron-nucleus interaction energy
T,Eee, and ENe, we write the ground state energy as

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0]. (2.20)

The nuclear-electron interaction term is defined ENe[ρ] =
∫
p(r)VNedr with VNe defining

the potential seen by the electrons from the nuclei. The electron-electron interaction is
expanded to,

Eee[ρ0] =
1

2

∫∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 + Eqm[ρ0], (2.21)

which includes a Coulomb interaction term and a term which contains all quantum elec-
tronic contributions including self-interaction correction, exchange of particles, and Coulomb
correlation. That leaves two functionals which are unknown explicitly, Eqm and T . Ap-
proximating these functionals has the effect of perturbing the Hamiltonian which implies
that the variational principle no longer holds, i.e. it is possible to return an energy which
is lower than the true ground state energy. This high price confers the benefit that it is sig-
nificantly cheaper to compute properties using density functionals than with Hartree-Fock
or related methods.

The successful approximation of these functionals is called the Kohn-Sham approach,
whereby as much of the kinetic energy is computed exactly as possible while leaving the
remaining portion for approximation. The kinetic energy of a non-interacting reference
system TS with an identical ground state electron density can be computed exactly using
a spin-orbital basis, as above. Given this decomposition, the Eqm functional is combined
with a functional for the unaccounted kinetic energy TC = T−TS and named the exchange
correlation functional, EXC = TC +Eqm. The choice of functional plays an important role
in the accuracy of results. B3LYP (Becke three-parameter Lee Yang Paar) is a so-called
hybrid functional which is a linear combination of the Hartree-Fock exchange functional
and other ad-hoc density functionals. The linear combination is set empirically.

2.3 Geometric Quantities

Consider a gas of atoms represented as a point cloud each with their own velocities and
accelerations. When that point cloud is rotated, the associated velocities and accelerations
rotate along with it. Each of those vectors is a geometric quantity and their rotation
properties are what differentiates them from an arbitrary grouping of components. When
presented after the atomic gas example, this may seem obvious; however, the distinction
becomes clearer when comparing a geometric vector to other arrays commonly used in
machine learning. Imagine instead a single frame from a movie of individually colored
ping pong balls represented as points, each with their own colors encoded as an array of
RGB scalars. When the scene is rotated, the ping pong balls rotate but since the colors do
not change upon rotation, the components of the RGB color array do not change. Unlike
velocity and acceleration, the RGB color array is a non-geometric arbitrary grouping of
scalars.

16

2.3. GEOMETRIC QUANTITIES

The design principle in e3nn, the core neural network in this study, is to utilize features
which are geometric quantities and therefore have well-defined rotation properties. The
effect of this choice is that two copies of the same input data presented in different orien-
tations would produce the same features in the network up to a rotation. For molecular
systems, this property is invaluable because they do not have a canonical orientation.

In order to implement this, it is useful to think of all possible rotations and translations
which ought to be well-defined on the features. This collection of transformations is called
a group. Those transformations act on the features by means of a representation. In this
work, we are interested in the group of rotations and translations. This section formalizes
how e3nn’s features transform.

2.3.1 Groups and Representations

The mathematical term for a set coupled with an operation that maps between elements of
the set is called a group. Important groups have names. For our purposes, an interesting
group is the special orthogonal group, SO(3): The set of rotations on R3 paired with
composition. The set of rotations and translations on R3 paired with composition is
called the special euclidean group, SE(3). When the parity operation is included as well,
the group is called the euclidean group, E(3). For completeness, we define a group.

Definition 2.3.1 A Group, G, is a set with a rule for assigning to every (ordered) pair
of elements, a third element, satisfying the following axioms:

Closure If f, g ∈ G then h = fg ∈ G.

Associativity For f, g, h ∈ G, f(gh) = (fg)h.

Identity There is an identity element, e, such that for all f ∈ G, ef = fe = f .

Inverse Every element f ∈ G has an inverse, f−1, such that ff−1 = f−1f = e.

When the underlying set of a group happens to be a smooth manifold and the group
action is compatible, that group is called a Lie group. The action is compatible when the
operators × : G × G → G, and (·)−1 : G → G are differentiable. Both SO(3) and SE(3)
are examples of Lie groups.

Figure 2.6: To transform a vector field (left) by a 90◦ rotation g, first move each arrow
to its new position (center), keeping its orientation the same, then rotate the vector itself
(right). This is described by the representation π = ρ, where ρ(g) is a 3 × 3 rotation
matrix that mixes the three coordinate channels. Figure and caption adapted from [33].

Let us consider the action of translation and rotation on a three-dimensional vector field
defined by the map f : R3 → R3, i.e. every point x ∈ R3 in space is associated with a
vector. Translation by t is simple, move each vector from the initial position x to x− t, i.e.
f(x) 7→ f(x− t). When rotated by r, first the vector at r−1x is moved to a new position x
and each vector is also rotated by a rotation matrix ρ(r) ∈ R3×3, i.e. f(x) 7→ ρ(r)f(r−1x).
The rotation matrix ρ introduces a coupling or dependency between the different channels
of f(x). ρ is what makes this vector quantity geometric; just as stated in the chapter’s
introduction.

17

2.3. GEOMETRIC QUANTITIES

Since we are interested in translations and rotations together, we consider the decomposi-
tion of g ∈ SE(3) into a rotation r ∈ SO(3) and translation t ∈ R3 written as g = tr. The
transformation law for the vector field f is given by

[π(tr)f](x) := ρ(r)f(r−1(x− t)). (2.22)

Where π is known as the representation of SE(3) induced by the representation ρ of SO(3).
(While representations are covered next, induced representations are beyond the scope of
this work, see [33].)

2.3.2 Group Representation

An n dimensional representation ρ maps every element in the group to an an invertible
n × n matrix. As seen in the last section, the form of this representation is the defining
geometric property of the field f . A representation is defined below [34].

Definition 2.3.2 A Representation of G is a mapping, D, of the elements of G onto a
set of linear operators with the following properties:

1. D(e) = 1 where 1 is the identity operator in the space on which the linear operators
act.

2. D(gi)D(gj) = D(gigj) ∀gi, gj ∈ G, in other words the group multiplication law
is mapped onto the natural multiplication in the linear space on which the linear
operators act.

In SO(3), every representation can be created from building blocks of so-called irreducible
representations. This concept is rather abstract so we consider an example from [33]
about a rank-2 tensor (i.e. a matrix). Our 3× 3 matrix A transforms under rotation like
A 7→ R(r)AR(r)T , where R(r) is the 3× 3 rotation matrix representation of the abstract
group element r ∈ SO(3). By flattening the matrix A into a vector using vec : R3×3 → R9,
we can rewrite the transformation using the tensor product form as vec(A) 7→ [R(r) ⊗
R(r)] vec(A) := ρ(r)vec(A). This example is a 9-dimensional representation of SO(3).

A can be divided up into two different linear subspaces, namely the symmetric and anti-
symmetric parts. The reason is because the 6-dimensional symmetric linear subspace of A
remains symmetric under rotations. The same goes for the 3-dimensional anti-symmetric
part. Since these two subspaces transform independently under rotation, they can be
considered distinct even if this is not obvious by analysis of the coordinates of Aij . The 6-
dimensional symmetric subspace can be further broken down because scalar matrices Aij =
αδij are invariant under rotation and transform independently from traceless symmetric
matrices. We are left with three independently transforming subspaces of dimension 1
(trace), 3 (anti-symmetric part), and 5 (traceless symmetric part). This division is called
reducing the 9-dimensional representation ρ into irreducible representations of dimension
1, 3, and 5. Since this decomposition is possible, it implies that there exists a change of
basis matrix Q such that,

ρ(r) = Q−1

[
2⊕
l=0

Dl(r)

]
Q, (2.23)

where ⊕ implies the construction of a block-diagonal matrix with blocks Dl(r). This hap-
pens to hold in general, which means that any representation of SO(3) can be decomposed
into a direct sum, ⊕, of irreducible representations of dimension 2l + 1 for l = 0, 1, 2, ...

18

2.3. GEOMETRIC QUANTITIES

It is natural to discuss representations of SO(3) in terms of direct sums of irreducible
representations. Specifically, each irreducible linear operator representation of SO(3) is
known as a Wigner D-Matrix, Dl(r). These matrices are linear operators on the vector
space of spherical harmonics Y l

m.

2.3.3 The Spherical Harmonics and the Wigner D-Matrices

The spherical harmonics are a complete orthonormal basis for functions on the sphere.
They arise from many different settings including the solution of Laplace’s equation on
the sphere, in the modeling of electric and magnetic dipoles, and they can be seen as
angular frequencies for the Fourier transformation on a sphere. For our purposes, they
serve as the basis for a vector space paired with the orthogonal linear operators on that
vector space, namely the Wigner D-Matrices.

In e3nn, every feature is encoded as a spherical harmonic, computed using the package
Lie Learn which in turn draws on SciPy [35, 36]. The complex-valued spherical harmonics
Ỹ l
m are defined like so,

Ỹ l
m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimθP lm(cos(φ)) (2.24)

P lm(x) = (−1)m(1− x2)m/2
dm

dxm
P l(x) (2.25)

P l(x) =
∞∑
k=0

(−l)k(l + 1)k
(k!)2

(
1− x

2

)k
, (2.26)

where P lm are the associated Legendre functions of integer order and real degree and the
Condon-Shortley phase convention is used [37]. e3nn operates only on the real-valued
spherical harmonics Y l

m which can be determined from the complex valued spherical har-
monics using the following transformation,

Y l
m =


i√
2
(Ỹ l
m − (−1)mỸ l

−m) m < 0

Y 0
l m = 0
1√
2
(Ỹ l
−m + (−1)mỸ l

m) m > 0.

(2.27)

Since the transformation is unitary, the orthogonality and normalization properties of Y l
m

are the same as those of the Ỹ l
m. An image of the first few orders of spherical harmonics

using these conventions are shown in Figure 2.7

How do the spherical harmonics rotate, i.e. what are the irreducible representations of
SO(3)? First note that the pair (θ, φ) can be written as a unit vector x̂. (The hat is not
to be confused with a prediction like in most other sections of this document.) With this
notation, the spherical harmonics are written Y l

m(x̂) and given rotation r ∈ SO(3) rotate
like,

Y l
m(x̂) 7→ Y l

m(r−1x̂) = Dl(r)Y l
m(x̂), (2.28)

where Dl(r) is a Wigner D-Matrix. Computing this quantity becomes involved rather
quickly so we suffice to say that given a rotation r(α, β, γ) parameterized by the z-y-z
Euler angles [38], the Wigner D-Matrix is defined using the inner product,

19

2.3. GEOMETRIC QUANTITIES

Dl
m′m = 〈Y l

m′ |r(α, β, γ)|Y l
m〉. (2.29)

For further conventions consult the Lie Learn package [35] or other standard sources about
representation theory.

Figure 2.7: These are the real spherical harmonics in e3nn’s convention. The order l
increases from top to bottom starting with zero and ending with four. Each of the columns
corresponds with setting the component with index m equal to one, while the other indices
are set to zero. Notice that the reason there are more spherical harmonics at higher orders
is because the number of m indices is |m| = 2l + 1.

2.3.4 The Clebsch-Gordan Decomposition

Pairs of spherical harmonics interact with each other via the tensor product in e3nn like
Y l1
m ⊗Y

l2
m′ . The output transforms with the tensor product of the corresponding irreducible

representations,

Y l1
m ⊗ Y

l2
m′ 7→ (Dl1(r)⊗Dl2(r))(Y l1

m ⊗ Y
l2
m′).

In general (Dl1(r)⊗Dl2(r)) is not an irreducible representation of SO(3); however, it does
have a decomposition into irreducibles called the Clebsch-Gordan decomposition [18]:

Dl1(r)⊗Dl2(r) = C−1
l1,l2

 l1+l2⊕
l=|l1−l2|

Dl(r)

Cl1,l2 (2.30)

where Cl1,l2 is a change of basis matrix called the Clebsch-Gordan coefficients. This matrix
is normally presented as Cl1,l2,l ∈ R(2l+1)×(2l1+1)(2l2+1) which is formed by taking the block
of 2l + 1 rows from Cl1,l2 corresponding to the l component in the direct sum. Note that

the product Cl1,l2,l(Y
l1
m ⊗ Y

l2
m′) is an lth order spherical harmonic.

At this point, all of the necessary rotation properties have been defined. We know how
scalars, vectors, spherical harmonics, and tensor products of spherical harmonics rotate.
(For clarity, scalar s rotates with arbitrary rotation r like s 7→ s.) With this knowledge,
it is possible to define a neural network which has inputs and outputs with well-defined
rotation properties.

20

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

2.4 Neural Networks Equivariant to SE(3)

Neural networks are often more successful when their design takes the geometry of the
underlying data into account. The most widespread example is the convolutional neural
network which introduces a strong prior that locality is necessary for determining useful
features. In contrast to multi-layer perceptrons, convolutional neural networks do not allow
arbitrary connections but rather calculate their features by passing a learned convolutional
kernel over the data.

We say that the parameters of a convolutional neural network are shared because every part
of the input data is treated using the same convolutional kernel. This reduces the number
of learned parameters and thus the model size. In addition, it introduces equivariance to
translation, i.e. translated input features return a translated output feature. In this way,
the network can easily learn to find features common throughout the input space. For a
visual example see Figure 2.8.

When a function f commutes with the action of a group g ∈ G, the function is said to
be equivariant to that group, f ◦ g = g ◦ f . The natural way to enforce the prior that
local features can be found anywhere in the input field is through translation equivariance.
For our problem, we want to enforce the prior that molecular features can be found at
arbitrary translations, rotations, and with arbitrary permutations of atoms. We achieve
this through SE(3) equivariance.

Figure 2.8: Let f be a function which transforms the dancer into a dot representation. Let
π be translation the domain of f while ψ is translation in the codomain of f . The function
f is said to be equivariant to translation when the right-down path or the down-right path
yields the same result. A convolution neural network is equivariant to translation up to
the convolution kernel. Image from [39].

The SE(3) equivariant neural network presented in this section, e3nn, takes the geome-
try of molecules represented as point clouds into account by utilizing continuous, atom-
centered convolutional kernels. Translation equivariance is achieved by only considering
the difference of atomic positions. Rotation equivariance is achieved by incorporating only
rotationally invariant operations like multiplication by a scalar and the rotationally equiv-
ariant Clebsch-Gordan product. In addition, parameters are shared across convolutional
kernels. Since each atom takes its turn acting as the convolutional center with shared
convolutional kernel parameters, this has the effect of treating the atoms like a set and
therefore introducing equivariance to permutation of atoms.

2.4.1 e3nn

The E(3) equivariant neural network utilized in this work takes labeled point geometry
and associates learned features to every point, represented as spherical harmonics, which
are correlated with the arrangement of the geometry itself. These features can be used for

21

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

regression on labeled data as in Section 3.3, as displacement vectors, and as higher-order
spherical Fourier representations of the local environment.

The development of the E(3) equivariant neural network was intertwined with the ne-
cessities and results of wide-ranging experiments beyond what is presented in this work.
Initial experiments utilized the Tensor Field Network [40] implementation. The regression
experiments in Section 3.3 called for more computational efficiency. These concerns were
met using e3nn [17], the result of the cross pollination between Tensor Field Networks and
se3cnn [33], an SE(3) equivariant neural network restricted to 3d volumetric data.

Features and Geometry

The core torch.tensor objects on which e3nn operates are called feature, which stores
the irreducible representations of the spherical harmonic signal on every atom, and geometry,
which contains the positional information of every atom. geometry is a rather simple
multi-dimensional array of batches of atoms in R3.

The feature, on a specific atom, encodes the mathematical tensor F lui. The index l
corresponds to the order of the spherical harmonic, u identifies the multiplicity, i indexes
the components of a spherical harmonic of order l which range from 0 to 2l + 1. Due
to the dependence of i on l and the option to have different multiplicities for each l, the
components representing this object cannot, in general, be stored in a rectangular multi-
dimensional array; however, it is possible to list them by organizing the list first by order
l, then by multiplicity u, then by representation component i. (Imagine the generalization
of the vectorize : RN×N → RN2

operation on matrices.) feature stores exactly said list.

Each feature has a representation shorthand, Rs, associated with it in order to address
the irreducible representations of the spherical harmonics it contains. Rs is a list of tuples
where every tuple has the form (multiplicity, order). The length of a feature can
be determined using a list comprehension, like in the dim function.

def dim(Rs) :
return sum(mul ∗ (2 ∗ l + 1) for mul , l in Rs)

An important point to understand is that, although feature is flat, it contains a direct
sum of irreducible representations of SO(3) which must be treated with great care to
retain the symmetries of the problem. Arbitrary operations along the array, like norm,
are usually not mathematically defined.

Consider an example, let F lui be a tensor of two zeroth order spherical harmonics and one
first order spherical harmonic with l ∈ {0, 1}, u(l = 0) ∈ {1, 2}, u(l = 1) ∈ {1}, i(l) ∈
{1, ..., 2l + 1},

F 0
11 = a F 1

11 = c

F 0
21 = b F 1

12 = d

F 1
13 = e.

(2.31)

Given Rs = [(2, 0), (1, 1)], there are two possible arrangements of the data feature

= tensor([a, b, c, d, e]) and feature = tensor([b, a, c, d, e]). We could also
take the same F lui but use a different Rs’ = [(1, 0), (1, 1), (1, 0)], which would
yield either feature’ = tensor([a, c, d, e, b]) or feature’ = tensor([b, c, d,

e, a]). We have enumerated some of the possible arrangements of feature; however, for
the network to learn, the user must pick a convention and stick to it. The layout is such
that the representation components for any specific spherical harmonic are contiguous in

22

https://github.com/tensorfieldnetworks/tensorfieldnetworks
https://github.com/e3nn/e3nn
https://github.com/mariogeiger/se3cnn

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

feature and the multiplicities are ordered consistently. Therefore, remember, while e3nn
is permutation equivariant with respect to atoms, feature is not permutation equivariant
with respect to the indices l, u, or i.

feature’s flat data arrangement allows for the creation of a rectangular multi-dimensional
array where one dimension is for features and the other dimensions are for atoms or
batches. This is useful so that geometry and feature can share the first indices, i.e.

>>> f e a t u r e . s i z e ()
torch . s i z e ([batch , atom , dim (Rs)])
>>> geometry . s i z e ()
torch . s i z e ([batch , atom , 3])

With this formulation it becomes simple to address specific atoms. For example, atom
2 in batch 3 has features feature[3, 2, :] and is located at position geometry[3, 2,

:]. A word of warning about the different bases in feature and in geometry. Even if Rs
= (1, 1), feature is not a vector in the same basis as geometry, rather it is a spherical
harmonic centered on an atom and a change of basis is required in order to convert it to
a displacement vector from that atomic center. The tools to do so are in the e3nn.o3

module and more information about spherical harmonics can be found in Section 2.3.3.

How do feature and geometry transform under rotation? Consider a rotation R ∈ SO(3).
geometry is written as an array of vectors ra and therefore it rotates like,

ra 7→ Rra. (2.32)

The tools for rotating geometry are available in the e3nn.o3 module under the name rot

which is parameterized using Euler angles.

Let F lui be the spherical harmonic signal encoded in feature. The features are always
written in an irreducible representation therefore we can write their rotation matrix as a
direct sum of Wigner D-matrices. Therefore F lui rotates like,

F lui 7→

(
l⊕

l′=1

u⊕
u′=1

Dl′
u′(R)

)
F lui. (2.33)

This feature is in the module e3nn.rs module under the name rep which is parameterized
using Euler angles and the Rs for the feature.

The Neural Network Layers

Now that we have introduced the core objects in e3nn, we ought to explain the operations
which are possible on those objects. This work will discuss the mathematics behind the
neural network building blocks of e3nn which are utilized in the experiments of Chapter
3. The network requires a learned radial model to expand the distances between atoms
in a radial basis using a continuous filter, a kernel and convolution which generates new
features from the geometry and combines them with existing features, and finally a gated
nonlinearity.

In the following tensor contractions and notations, note that the Einstein summation con-
vention is not employed, i.e. all summed indices are listed explicitly under the summation
symbol. When an index appears twice in the summand, but does not appear under the
summation symbol, then it is considered to be multiplied index-wise. Note that the upper

23

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

Index Description

lout, lin, lf Order of spherical harmonic. Out-
put, input, and filter respectively.

u, v Multiplicity.
i, j, k Representation components of

spherical harmonics at order l.
Often called m in literature. Can
take 2l + 1 values.

A, B Output atom index (which atoms
take the new features), Convolved
atom index.

Z Batches.
B,H, I,O In the radial model, corresponds to

basis, hidden, and output indices re-
spectfully. Each ranges from 1 to
nbasis, nhidden, nin, and nout.

Table 2.2: Index reference table.

or lower positioning of an index has no meaning when it comes to co- or contravariance of
that index. Since our problem is set in an orthonormal coordinate system, the transmu-
tation of vectors to covectors is merely the transpose operation. It is assumed that one
out of every pair of indices, i, j, k, is covariant in order to contract the tensor. This only
matters when it comes to calculating the Clebsch-Gordan decomposition. In general, the
other arrays are scalars like the radial model or the normalization factors and therefore
their co- or contravariance does not matter at all. Since the next few sections rely heavily
on many different indices, Table 2.2 acts as a reference to determine what is meant by
each particular index.

Radial Model

A discontinuous filter, like the ones used in convolutional neural networks, do not capture
subtle differences in position like continuous filters do. See Figure 2.9. The notion of using
a continuous learned convolutional kernel originated in SchNet in order to predict smooth
energy surfaces [16]. Like SchNet, e3nn’s radial model takes the magnitude of the distance
between atoms and expands it in a continuous radial basis. A non-linear combination of
basis elements using a multi-layer perceptron learns to scale, atom-wise and multiplicity-
wise (u, v), existing (lin), convolved (lfilter), and output (lout) features in the kernel. The
scalars predicted from the radial model are how e3nn learns. Their usage is made explicit
in the following section about the kernel.

The magnitude of the distance between atoms A and B is written dAB = ‖rB − rA‖.
Expanding dAB in an arbitrary radial basis with nbasis basis elements φ : R+ → Rnbasis

yields an array of scalars which we can address element-wise using DBAB = φ(dAB) with
B = 1, .., nbasis. A normal dense layer LO = σ(

∑
I x
IwIO), I = 1, ..., nin, O = 1, .., nout

with arbitrary input x ∈ Rnin , learned parameter matrix w ∈ Rnin×nout , and non-linearity
σ can be stacked to create a multi-layer perceptron. The radial model is flexible and can
use arbitrarily deep layers with an arbitrary number of hidden units to produce a non-
linear combination of distances expanded in the radial basis. The first layer of the radial
model using the basis expansion is written,

24

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

LHAB = σ

(∑
B
DBABw

B
H

)
,H = 1, ..., nhidden . (2.34)

If we choose nout = max lout×max lin×max lf×maxu×max v, we generate enough scalars
for the kernel. Therefore we can write the final layer of the linear model in terms of the
indices used in the kernel and the output of the previous hidden layer LH,

R
loutlinlf
uv =

∑
H
LH wH loutlinlf

uv , (2.35)

since, in the output layer, σ is the identity function. Note that since the A and B indices
persist through every layer, including the last one, it is more general to leave them out,
thereby simplifying the notation and offering the option of considering a radial model from
any positive real number input, i.e. dAB = d.

Figure 2.9: In this image from [16], one can see how using a discrete filter is not appropriate
for estimating energy since the prediction is discontinuous. Instead, a basis of continuous
filters allows for the prediction of a smooth energy function across all atomic positions. The
colors in the background indicate the learned radial filter while the atom in the foreground
is indicating an energy depending on position.

The choice of basis was shown to play an important role in the newly released DimeNet
[20] which used radial Bessel functions. The bases considered in this work include the
Gaussian basis φG, the cosine basis φC , and the radial Bessel basis φB. φB calls for a
cutoff c where interactions d > c go to zero. The Gaussian and cosine bases are centered
with µB ∈ R+ as the center for each basis element. If the centered basis elements were
each consistently separated by µB+1 − µB, then γ = 1/(µB+1 − µB). The bases are,

φG = exp(−γ‖d− µB‖2) (2.36)

φC =

{
cos2(π2γ(d− µB)) −1 ≤ γ(d− µB) ≤ 1

0 otherwise
(2.37)

φB =

√
2

c

sin(Bπc d)

d
. (2.38)

Fifteen φG, φC bases with evenly spaced µB are plotted in Figure 2.10 along with the first
ten φB with c = 10.

Kernel

The kernel serves two primary purposes: First, it acts like a partial evaluation of the
Clebsch-Gordan decomposition of the tensor product of two spherical harmonic signals by

25

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

0.0

0.5

1.0

Ga
us

sia
n

RB
F

0.0

0.5

1.0

Co
sin

e
RB

F

0 2 4 6 8 10
dAB

0

1

Be
ss

el
 R

BF

Figure 2.10: The radial bases are plotted, in different colors for each B basis, versus
dAB − µB. The φG is non-zero for the entire positive number line with a much slower
decay while φC is zero everywhere except on the region −1 ≤ γ(dAB − µB) ≤ 1. φB is not
centered but instead higher index B corresponds to larger oscillations. Past the cutoff, 10
in this example, φB takes the value zero.

filling in the signal generated by the radial filter. Secondly, assuming the output of the

radial model, R
loutlinlf
uv , is normalized, the kernel output is normalized through a multi-

dimensional array of scalars nloutlin .

e3nn generates v multiplicity of filters with order lf and components k ∈ {−lf ,−lf +
1, ..., lf −1, lf} by evaluating the radial model on the distance between atoms dAB and the
spherical harmonics on the unit vector between atoms r̂AB = rB−rA

dAB
. The resulting filters

can be indexed using,

R
lf
v (dAB)Y

lf
k (r̂AB). (2.39)

e3nn combines this filter with the existing spherical harmonic signal on each atom using
the Clebsch-Gordan decomposition of the tensor product of two spherical harmonics, see
Section 2.3.4. If we call this function G and the existing features F , we can sketch the
function G (with significant omission of indices) by writing,

G(R(dAB)Y (r̂AB), F). (2.40)

The kernel K represents partial evaluation of G where (2.39) is already “filled in”, i.e.

K(·) := G(R(dAB)Y (r̂AB), ·). (2.41)

The advantage of partial evaluation of G is that there is more flexibility computationally.
By computing K, one can reuse the filter multiple times without having to recompute it.
However, in the regression task in Section 3.3, this technique significantly slowed down
the calculation and increased the memory footprint. In order to combat this problem, the

26

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

author defined a function which computed G directly in PyTorch. This is discussed below,
in the subsection KernelConv.

The remaining piece of the kernel is the normalization, n. The goal is to have a convolution
output G in which the magnitude of each spherical harmonic is normalized. We assume
that the radial model R is mean zero with unit variance and the magnitude of each
spherical harmonic feature in F should have mean one. It is discussed in greater detail in
Appendix B.

Given the radial model, the spherical harmonics, and the normalization coefficients, we can
write the definition of the forward and backward passes of the Kernel. In the definition
of Kernel, the radial model produces enough scalars to multiply each of the spherical
harmonics from the filter but it also produces scalars which multiply the input and output
features and their multiplicities. This introduces new indices lin, lout for spherical harmonic
orders and index u for multiplicity. We write the forward pass of the kernel,

K loutlin
ui vj =

∑
lf k

C
loutlinlf
ijk Y

lf
k R

loutlinlf
uv nloutlin , (2.42)

and the backward pass,

∂

∂R
loutlinlf
uv

=
∑
i j k

∂

∂K loutlin
ui vj

C
loutlinlf
ijk Y

lf
k nloutlin (2.43)

∂

∂Y
lf
k

=
∑

lout lin ui vj

∂

∂K loutlin
ui vj

C
loutlinlf
ijk R

loutlinlf
uv nloutlin . (2.44)

Convolution

Once a Kernel has been calculated, the complete evaluation of G is finished in the Con-
volution by combining the existing features per convolved atom. Since the ideas were
introduced in the Kernel, there isn’t much else to say except see the equations for the
forward,

Gloutui A =
∑

B lin vj

K loutlin
ui vj AB F linvj B, (2.45)

and backward passes,

∂

∂F linvj B
=

∑
A lout ui

∂

∂Gloutui A

K loutlin
ui vj AB (2.46)

∂

∂K loutlin
ui vj AB

=
∂

∂Gloutui A

F linvj B. (2.47)

(2.48)

KernelConv

While splitting the Kernel and the Convolution into different operations allows for more
flexibility, it also increases the memory footprint and decreases the speed of evaluation.

27

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

The Kernel has six indices without explicitly writing the atoms indices and the batch
indices. In practice with the QM9 data set, the forward pass of the Kernel was over half a
gigabyte of memory per layer in mini-batches of 12 with 30 atoms per batch. Even on gpus
with ∼10.5 gigabytes of memory, this severely limited data throughput. This problem can
be solved by avoiding saving the Kernel and instead calculating G in one step. That step
is KernelConv. To get the 2x speed up, both the forward and backward passes needed
to be custom implemented in PyTorch. The memory footprint was reduced such that it
became possible to train on mini-batches of 30 molecules with 30 atoms each. Access this
code in e3nn [17].

When the Kernel and the Convolution are combined into one operation, it is no longer pos-
sible to leave out the indices A,B; therefore, they return to the radial model R, spherical
harmonics Y , normalization n, input features F , and output features G in this section. In
the previous definitions they were always there, but since the summation did not depend
on them, it is strictly more general to leave them out. One final index, Z, is still left out
because batches never enter the summation. The forward pass is written,

GloutuiA =
∑

B lf lin vj k

C
loutlinlf
ijk Y

lf
k AB R

loutlinlf
uv AB nloutlinAB F linvj B, (2.49)

and the backward pass looks like,

∂

∂F linvjB
=

∑
A lout lf ui k

∂

∂GloutuiA

C
loutlinlf
ijk Y

lf
kABR

loutlinlf
uv AB nloutlinAB (2.50)

∂

∂R
loutlinlf
uv AB

=
∑
i j k

∂

∂Gloutui A

C
loutlinlf
ijk Y

lf
k AB nloutlinAB F linvj B (2.51)

∂

∂Y
lf
k AB

=
∑

lout lin ui vj

∂

∂Gloutui A

C
loutlinlf
ijk R

loutlinlf
uv AB nloutlinAB F linvj B. (2.52)

Gated Block

The gated block introduces nonlinearities to e3nn. For the scalar features, i.e. lout = 0,
with nonlinearity σ, it works just like a multi-layer perceptron,

G0
uiA 7→ σ(G0

uiA). (2.53)

However, for the other features, a general nonlinearity is not an option since the operation
will not be equivariant. We take advantage of the fact that multiplication by a scalar
is equivariant and then use a nonlinearity on that scalar. Gated Block, therefore, needs
access to the Kernel in order to calculate an extra scalar for every non-scalar output
feature. The pair is multiplied together before being passed to the next layer. Explicitly,
given another nonlinearity σ̃, for every non-scalar feature Glout 6=0

ui , calculate an extra paired
scalar G0 lout

ui in the Kernel then write,

Glout 6=0
ui 7→ σ̃(G0 lout

ui)Glout 6=0
ui . (2.54)

28

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

Equivariance to SE(3)

To show the equivariance of e3nn to SE(3), we consider KernelConv and GatedBlock

separately. Given a rotation r ∈ SO(3), translation t ∈ R3, atom positions x, and input
features F linvj B, KernelConv transforms like

GloutuiA(x, F linvj B) 7→ GloutuiA(ρ(r)−1(x− t), Dlin
jj′(r) F

lin
vj′B) (2.55)

Recall that R
loutlinlf
uv AB only depends on the pairwise distances, ‖xA−xB‖, which implies that

R is invariant to translation and rotation because ‖ρ(r)−1z‖ = ‖z‖ and (xA−t)−(xB−t) =

xA − xB. C
loutlinlf
ijk and nloutlinAB both do not have a dependence on the input so they

are invariant to translation and rotation. The spherical harmonics are calculated on a
unit vector of pairwise displacements, therefore the evaluation is invariant to transla-

tion, i.e. Y
lf
k AB(z − t) = Y

lf
k AB(z). By the properties of spherical harmonics from (2.28),

Y
lf
k AB(ρ(r)−1z) =

∑
k′ D

lf
kk′(r)Y

lf
k′ AB(z). Using the defining property of the Clebsch-

Gordan decomposition followed by relabeling the primed indices, we can rewrite (2.55)
after transformation and rotation as,

∑
B lf lin vjj′ kk′

C
loutlinlf
ijk D

lf
kk′(r) D

lin
jj′(r) Y

lf
k′ AB R

loutlinlf
uv AB nloutlinAB F linvj′B

= Dlout
i′i (r)

∑
B lf lin vj′ k′

C
loutlinlf
ij′k′ Y

lf
k′ AB R

loutlinlf
uv AB nloutlinAB F linvj′B

= Dlout
ii′ (r) Gloutui′ A(x, F linvj B),

(2.56)

which proves the equivariance of KernelConv to SE(3). Now GatedBlock is rather simple.
The case that Y lout=0 = 1, implies that the angular part is invariant to input entirely. We
already know that the radial part is invariant to rotation and translation. For the other
orders, we know that multiplication by a scalar is equivariant to rotation and,

σ̃(G0 lout
ui)Glout 6=0

ui 7→ σ̃(G0 lout
ui)GloutuiA(ρ(r)−1(x− t), Dlin

jj′(r) F
lin
vj′B)

= σ̃(G0 lout
ui) Dlout

ii′ (r) Gloutui′ A(x, F linvj′B)

= Dlout
ii′ (r) σ̃(G0 lout

ui) Gloutui′ A(x, F linvj′B)

(2.57)

from the last proof and commutative properties of scalars. Finally, since a single layer of
convolution and gated block is equivariant, an entire network is equivariant by induction.

2.4.2 QM9 Output Layer

Neural networks operate best when they are predicting values close to one. For this
reason, we perform a decomposition of the target value such that the regression network’s
output fits this criteria. The implementation of this part of the network was handled by
schnetpack [41]. The decomposition utilizes the reference values in the QM9 data set so
the network starts with a good guess and predicts a perturbation from that guess. The
network’s prediction is decomposed into a reference bias, an atom-wise sum from the Table
2.3, and a scaled contribution from each atom.

For any target in Table 2.3 and atom in qm9, we can create a map from element Z
and prediction column C to the corresponding reference value R called ref(Z,C). For
example, ref(H,U0) = −0.5 Hartree. Given a training set of M molecules indexed by

29

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

Element ZPVE U (0 K) U (298.15 K) H (298.15 K) G (298.15 K) Heat Capacity
Hartree Hartree Hartree Hartree Hartree Cal/(Mol Kelvin)

H 0.000 -0.500 -0.499 -0.498 -0.511 2.981
C 0.000 -37.847 -37.845 -37.844 -37.861 2.981
N 0.000 -54.584 -54.582 -54.582 -54.599 2.981
O 0.000 -75.065 -75.063 -75.062 -75.080 2.981
F 0.000 -99.719 -99.717 -99.716 -99.734 2.981

Table 2.3: Table is adapted from the qm9 paper [11].

m ∈ {1, 2, ...,M} each with Am atoms indexed by am ∈ {1, 2, ..., Am} with a corresponding
element Zam , we write the reference bias

pm =

Am∑
am=1

ref(Zam , C). (2.58)

To further our decomposition consider the target regression value for a certain molecule
tm. From the ground truth, we can write the atom-wise deviation from the reference value,

t̃m =
tm − pm
Am

. (2.59)

By gathering statistics from the training data on this t̃m, we will achieve our goal of
normalizing the output of the regression network to something near one. Let ¯̃t and σt̃ be
the mean and standard deviation of t̃m over molecules respectively. Given the atom-wise
output of a regression network Ram , we predict the ground truth target t̂m by

t̂m = pm +

Am∑
am=1

(
¯̃t+ σt̃Ram

)

= pm +Am
¯̃t+ σt̃

Am∑
am

Ram

= pm +
Am
M

M∑
n=1

t̃n + σt̃

Am∑
am

Ram .

(2.60)

Tetris Experiment

The tetris experiment empirically demonstrates that e3nn can learn on data in any orienta-
tion and trivially generalize to any other orientation without data augmentation [40]. It is
presented here to emphasize something different than its initial formalization, specifically,
that some predictions require the presence of rotating internal features to be accurate,
even when the output prediction itself is invariant to rotation.

It is a simple supervised learning problem, given the positions of the 3d tetris blocks:
Identify the block from the eight possible classes. The network predicts a target array
t̂ ∈ R8, such that t̂i > 0 and

∑
i t̂i = 1 where every t̂i is a scalar quantity which is

invariant to rotation. The correct class is identified using a one-hot scalar array and the
network learns by minimizing ‖t̂− t‖2.

There are two chiral pieces in the problem as seen in Figure 2.11. The radial part of
the filter is determined using pairwise distances, which are invariant under the parity

30

2.4. NEURAL NETWORKS EQUIVARIANT TO SE(3)

transformation. (Parity is a transformation which takes a chiral piece to its mirror image).
If the contribution from the spherical harmonics to the learned filter is only of order
zero, i.e. Y 0

m = 1, then the model only has access to pairwise distance information. The
consequence of this is that, to a network which only learns scalar features, the chiral pieces
are indistinguishable; however, for a network which has spherical harmonic features of
order one or greater, they can be uniquely identified. This is an example of when the target
is a scalar feature invariant to rotation, namely, probability; however, a network which
only uses scalars as internal representation cannot solve the learning problem exactly.

TR
A
IN

TE
ST

Chiral

Figure 2.11: Images of the blocks in the 3d tetris problem. The training set is in a single
fixed orientation but the network is evaluated on a test set which is presented at a random
rotation. Networks invariant to rotation will not be able to distinguish the chiral pieces.

The evidence for the claim can be seen in Figure 2.12. The plots indicate that networks
which contain internal spherical harmonic features order >0 are able to correctly predict
the identity of the shapes with 100% accuracy; however, training does not improve the
accuracy of a scalar-only network past 7/8. This core result will resurface in Section 3.3
when the network learns to predict the dipole moment.

0.0

0.5

1.0

M
ea

n
Ar

gm
ax

 A
cc

ur
ac

y Y l
m order = [0] [0, 1] [0, 1, 2] [0, 1, 2, 3]

0 10 20
training

chiral_shape_1

chiral_shape_2

square

line

corner

0 10 20
training

0 10 20
training

0 10 20
training

Figure 2.12: Results of the tetris task are shown. Each column identifies the rotation order
of the network’s spherical harmonic features. The top row plots the average accuracy of
the network on the test set versus training. The network makes a prediction using the
argmax function over the probability array. Networks with spherical harmonics of order
one or greater complete the task accurately, but the network with scalar internal features
cannot distinguish the chiral shapes –no matter the length of the training. The second
row of color plots clarifies the performance per class. Within each color plot, the y-axis
is divided into rows labeled with shapes. Each row of color represents how accurately the
network can identify that shape as it trains. Evidently, some shapes are easier to identify
than others.

31

Chapter 3

Experiments

The benchmark results of e3nn on the QM9 data set are the core products of this work.

3.1 Comparison with SchNet-like Architecture

The primary difference between e3nn and SchNet is the inclusion of features which are
not invariant to rotation. SchNet is strictly a special case of e3nn in which there are no
spherical harmonic features greater than order zero. In order to determine the value of
higher-order spherical harmonic features it is natural to compare e3nn to SchNet across dif-
ferent hyperparameter ranges and levels of training. Using the hyperparameters reported
in schnetpack [41] as a starting point, this section compares the effects of hyperparameter
variation on networks with higher-order spherical harmonic features to those without.

To easily refer to the rotation properties of the internal features, unless stated otherwise,
we use the shorthand L·Net where the · is filled with the highest order spherical harmonic
included, i.e. L2Net implies that spherical harmonics of order two, one, and zero are
all included in the network. Given this shorthand, a SchNet-like model would be called
an L0Net. Another way of referring to the rotation properties is to say that an L0Net
has internal features which do not rotate while L1Nets and above have rotating internal
features. The basic architecture of an example L1Net is diagrammed in Figure 3.1. For
further “default” hyperparameter values of L0Net and L1Net, consult Table 3.1. It is
mentioned specifically whenever values differ from this table.

As a starting experiment, an L0Net and an L1Net were trained to reduce the batch-wise
mean squared error between the prediction and the target for 55 epochs using the Adam
optimizer [29] with default parameters. The data was divided, like in the SchNet paper
[16], into a training set of 10900 molecules, validation set of 1000 molecules, and a test
set containing all remaining molecules. The same data split and randomization seed was
used throughout all experiments. In this section, each target was trained using a different
set of initial weights and only trained to predict a single property at a time.

The results of the experiment are presented in Figure 3.2 where the mean average error
of L0Net and L1Net on the validation set is plotted against the number of epochs. The
performance of the two models against the test data set is shown in Table 3.2. Throughout
training, the most obvious finding is that the prediction on the dipole moment is signifi-
cantly improved by the L1Net compared with the L0Net. Other targets including enthalpy
(H), energy (U & U0), isotropic polarizability (alpha), LUMO, and the electronic spatial
extent (r2) are slightly more accurate; however, the difference looks like a perturbation
rather than a seismic difference in predictive power.

32

3.1. COMPARISON WITH SCHNET-LIKE ARCHITECTURE

Recall bias-variance decomposition from Section 2.1.1. When limited to only one training
example, we are effectively estimating the expected squared error using a single sample,
which does not tell us anything about the variance in the model given these hyperparam-
eters. Although this is not ideal, it is common practice in the machine learning literature
and given technological constraints, i.e. access to limited gpus and time, the variance es-
timation was not possible. (The calculations in Figure 3.2 would take 24 days on a single
Nvidia GeForce GTX 1080 Ti, even with the 2x speedup from the author’s formulation
of KernelConv in Section 2.4.1.) Given the unknown noise characteristics, it is difficult
to say definitively whether the L1Net is outperforming the L0Net on the values other
than the dipole moment; however, the consistency of higher performance across different
targets implies a prediction improvement from L1Net which may not be attributable to
noise. It is worth mentioning that this dipole prediction accuracy is currently state
of the art; however, the accuracy will be further improved in the following section after
a hyperparameter search.

Shift by atom-wise
reference & mean. Scale by

std. & aggregate atoms

[0, 1]

[0, 1] [0, 1]

[0, 1]

[0, 1][0, 1]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

Geometry: ri

Atom Type: Zi

Embedding

 21 x L=1

128 x L=0

Convolution & Gated Block

Convolution & Gated Block

Convolution & Gated Block

Convolution & Gated Block

Convolution

 1 x L=0

MSE Loss

Target: U0

Prediction: U0

 64 x L=0

 64 x L=0

 64 x L=0

 64 x L=0

 21 x L=1

 21 x L=1

 21 x L=1

^

Figure 3.1: Diagram of a sample qm9 regression network “L1Net” designed to train on a
single target. Atom type information, encoded as a one-hot scalar array, passes through
a learned embedding and the into the network as a scalar feature. The geometry is fed
to the filter in every convolutional layer. Each feature is then transformed by the gated
block. The color of the arrows indicates what type of data is transmitted. Black is a
one-hot array, red implies scalar information, blue means a feature which rotates, purple
is a direct sum of both scalar and rotating data. The last layer of the network does not
apply a nonlinearity in order to mimic the output layer of other neural networks. Finally,
the output of the network is scaled by statistics and shifted by reference atomization
values and statistical deviations from atomization values, i.e. (2.60), yielding the final
prediction. That prediction is compared with the ground truth with the mean squared
error loss. The hyper-parameters written in the diagram, like the target and number of
features, are merely an example. The important hyper-parameters will be specified when
discussing the results of training, for example in Table 3.1.

33

3.1. COMPARISON WITH SCHNET-LIKE ARCHITECTURE

Hyperparameter L0Net L1Net

Batch Size 16 16
Learning Rate 10−4 10−4

Size of Embedding 128 128
Representation 128× Y 0

m 64× Y 0
m ⊕ 21× Y 1

m

Convolutional Layers 5 5
Gated Block Layers 4 4
Residual Network True True

Radial Basis Cosine φC Cosine φC
Number of Radial Bases 50 50

Radial Maximum 10.0 Å 10.0 Å
Radial MLP Layers 2 2

Radial MLP Neurons 128 128

Table 3.1: These hyperparameters are used throughout the section unless stated otherwise.
A few notes: The gated blocks follow the first four convolutions. The Radial Maximum
implies the maximum center for a radial basis, therefore it is possible to convolve over
atoms farther away than the Radial Maximum. The basis determines how far. The design
principle in choosing the size of the representation was to maintain approximately the
same number of components to SchNet, which has 128 element scalar arrays as features.

Target L0Net L1Net

µ (D) 0.053 0.016
α (a3

0) 0.027 0.025
εHOMO (eV) 0.085 0.080
εLUMO (eV) 0.074 0.064
εgap (eV) 0.113 0.106
〈R2〉 (a2

0) 0.647 0.482
zpve (eV) 0.003 0.003
U0 (eV) 0.052 0.050
U (eV) 0.049 0.050
H (eV) 0.074 0.047
G (eV) 0.050 0.048

Cv (cal
molK) 0.070 0.073

Table 3.2: This table presents the mean average error of L0Net and L1Net on the test data.
Without significant hyperparameter optimization, the dipole moment result is already
state of the art. a0 is defined to be the bohr radius. The results are reported after
fifty-five epochs of training.

34

3.1. COMPARISON WITH SCHNET-LIKE ARCHITECTURE

10 1

100

Cv

10 1

100

G

10 1

100

H

10 1

100

U

10 1

100

U0

10 1

100
alpha

10 1

2 × 10 1
3 × 10 1
4 × 10 1
6 × 10 1

gap

10 1

homo

10 1

100

lumo

0 20 40 60
epochs

10 1

mu

0 20 40 60
epochs

100

101

r2

0 20 40 60
epochs

10 2

10 1

zpve
L0Net
L1Net

Figure 3.2: The mean average error on the validation set is plotted against the number
of epochs with a logarithic vertical axis for various targets. The blue line has no rotating
internal features while the orange line contains spherical harmonic features of up to order
one. The performance of L1Net is qualitatively superior on the dipole moment and possibly
superior on enthalpy (H), energy (U & U0), isotropic polarizability (alpha), LUMO, and
the electronic spatial extent (r2); however, without error bars it is hard to tell. The
hyperparameters for these models can be found in Table 3.1.

35

3.1. COMPARISON WITH SCHNET-LIKE ARCHITECTURE

3.1.1 Effects of Higher Rotation Orders on Dipole Moment and Energy

Including the first order spherical harmonic in the internal features of L1Net significantly
improved the dipole moment prediction but only somewhat improved the energy pre-
diction. Would the inclusion of higher order spherical harmonics further increase the
prediction accuracy? The answer to that question can be seen in the plot of the mean
average error on the validation set in Figure 3.3.

10 1
M

AE

0 20 40 60
epochs

10 1

100

M
AE

 u
0

Y0
m

Y0, 1
m

Y0, 1, 2
m

Figure 3.3: The mean average error on the validation set for dipole moment and energy at
0K versus the number of training epochs. The blue line has no rotating internal features,
the orange line includes spherical harmonics up to order one, the green line includes spher-
ical harmonics up to order two. The first order spherical harmonic seems very important
to accurately predict the dipole moment but the inclusion of the second order spherical
harmonic doesn’t have a qualitatively stronger effect. In the energy, the story is mostly
the same for all different models. There is a level of symmetry after which higher rotation
orders give diminishing returns.

The blue, orange, and green lines correspond to L0Net, L1Net, and L2Net respectively.
L2Net’s hyperparameters are not listed in the table above, but they would be the same
except for representation which is 42 × Y 0

m ⊕ 14 × Y 1
m ⊕ 8 × Y 2

m. Since each spherical
harmonic has 2l+ 1 components, the sum of all of the multiplicities of spherical harmonic
components is approximately the same size as SchNet’s 128 feature scalar arrays.

Depending on the target, rotating internal features can have a positive effect on accuracy;
however, qualitatively, the performance of L2Net is not better, on either target, than
L1Net. The benefits of including higher order spherical harmonics have diminishing returns
when predicting the dipole moment. From this experiment, it appears important to include
the first order spherical harmonic but not necessarily the second one.

36

3.1. COMPARISON WITH SCHNET-LIKE ARCHITECTURE

3.1.2 Comparison of Radial Bases

The different radial bases were introduced in Section 2.4.1. In DimeNet, the radial Bessel
basis contributed to strong results on QM9 benchmarking [20]. How does e3nn respond to
the choice of radial basis? Recall, the cosine basis is sharply peaked and evaluates to zero
for all but a small range of the positive real numbers; the Gaussian basis has a broader
peak and no part of the positive reals evaluates to zero; the Bessel basis has multiple peaks
and a cutoff, outside of which there are no contributions. L0Net and L1Net were trained
to predict the dipole moment using all three basis functions and the results are plotted in
Figure 3.4.

0 20 40
epochs

10 2

10 1

100

101

M
AE

Y l
m order = {0}

0 20 40
epochs

Y l
m order = {0, 1}

Cosine
Gaussian
Bessel

Figure 3.4: The mean average error in the prediction of the dipole moment is plotted
against the number of training epochs. The blue, orange, and green lines correspond with
the cosine, Gaussian, and Bessel bases respectively. The left plot corresponds to the L0Net
while the plot on the right corresponds to an L1Net. With these hyperparameters, the
choice of basis function does not have a strong effect on the L0Net; however, the effect is
more pronounced on the L1Net with the Bessel basis performing best.

Given a relatively high number of radial bases along with a long max radius (long because
most atoms can see all other atoms at 10.0 Å), the effect of basis choice is not very pro-
nounced on L0Net. The Bessel basis performed noticeably better in the L1Net. The choice
of radial hyperparameters inducing qualitatively different training dynamics between net-
works with different rotation properties implies that there might be a connection worth
investigating in the future. Notably, despite the strong performance of the Bessel basis
on this task, it was not selected as the radial basis in any of the top performing networks
during a random hyperparameter search in Section 3.2.1.

3.1.3 Effects of Batch Size

Even with powerful multiprocessing gpus, it takes a very long time to calculate a gradient
for every example in a large data set. For this reason, it is common to split the training
into mini-batches where, after every mini-batch, the parameters are updated. (Mini-
batches are often referred to as batches in this document.) It is a middle ground between
seeing all of the training data before making a parameter update and updating with every
training example. In addition to the increase of parallelism, there are also theoretical
motivations for using large batch sizes. Consider, if an estimator were shown a number
of similar training examples in a row, it may perturb training away from a generalized
solution. Larger batch sizes contain more of the variance of the data set, which ought to
be reflected in the parameter updates.

37

3.2. E3NN WITH A MULTI-LAYER PERCEPTRON OUTPUT

Despite the theoretical motivation to use a large batch size, there is empirical evidence
that using smaller batch sizes can decrease the generalization error [42, 43, 44]. The gist of
the argument is: By increasing the batch size, one effectively slows the traversal of param-
eter space. Large batches have large variance in the magnitude of the gradient updates,
implying that large batches can yield very small steps in parameter space. Meanwhile,
reducing the number of parameter update steps per epoch by increasing the batch size
leads to slower traversal as well.

The effects of batch size on the training of L0Net and L1Net is shown in Figure 3.5.
In L1Net, it was noticeable that using larger batch sizes increased the generalization
error. Whether this can be attributed to the gradient arguments from the papers above
is left for future work. However, this insight was utilized in determining the batch size
hyperparameter range in the random hyperparameter search.

0 20 40 60
epochs

10 1

100

101

M
AE

Y l
m order = {0}

0 20 40 60
epochs

Y l
m order = {0, 1}

cos bs12
gauss bs16
gauss bs20
gauss bs30

Figure 3.5: The mean average error in the prediction of the dipole moment is plotted
against the number of training epochs. The different colored lines correspond to different
batch sizes. The Gaussian basis was used for all colors, except blue which used the cosine
basis. The left plot corresponds to the L0Net while the plot on the right corresponds
to an L1Net. Although the effect is smaller on L0Net, larger batch sizes increased the
generalization error for a given epoch. The greatest difference is between the 30 molecules
per batch option compared with the others where the 30 molecule batches performed worst.
(If one removes the cosine basis, this is true across both plots for all epochs.) Reducing
the batch size may reduce the generalization error, but it also comes at the cost of slower
calculation.

3.2 e3nn with a Multi-Layer Perceptron Output

In order to offer more flexibility on multi-target training, an alternative architecture was
developed which divides the network into a featurization section followed by an output
section. Each output block receives a copy of the same learned featurization; however, the
output blocks do not share gradients or other information. This allows for each output
block to transform the learned input features in parallel, each predicting a single target;
thereby, the whole network makes predictions on multiple targets. The network design is
depicted in Figure 3.6.

The featurization section is much like the network depicted above, i.e. an embedding
followed by layers of Convolutions and Gated Blocks. A combination of order zero and
order one spherical harmonic features are copied and passed to each output block. Each
output block then passes those features through Convolutions and Gated Blocks and

38

3.2. E3NN WITH A MULTI-LAYER PERCEPTRON OUTPUT

calculates an array of scalar features. Since they are scalar features, we can pass them
through a multi-layer perceptron with a rectified linear unit activation without breaking
equivariance (invariance in this case). The last layer of that multi-layer perceptron predicts
a single scalar using a linear weighted sum of the previous layer’s features, which is then
passed to the shift and scale operation as seen in Section 2.4.2.

Sum of Normalized MSE Loss

Shift &
Scale

[0, 1]

[0, 1] [0, 1]

[0, 1]

[0, 1][0, 1]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

[1, 0]

Geometry: ri

Atom Type: Zi

Embedding
L=0

 1 x L=0

Target: U0

Prediction: U0

L=0 L=1

^

Featurization
Convolutions & Gated

Blocks

Output
Block

Output
Block

Output
Block

Shift &
Scale

Shift &
Scale

Target: Cv

Prediction: Cv
^

Target: μ ...

Prediction: μ̂

Multi-layer Convolutions &
Gated Blocks
L=0

Multi-layer Perceptron

 Output Block

L=0

...

Figure 3.6: Diagram of the network designed for multi-target training. This design divides
the featurization section from the output section. All output blocks are fed by the fea-
turization layers, but information does not flow between output blocks. The color scheme
and general layout follows the other network depicted in Figure 3.1. One of the only dif-
ferences between the layers of this network and the previous one, is that the output layer
has a multi-layer perceptron as the last layer. This is possible without breaking rotational
equivariance because only scalar information is passed to the multi-layer perceptron.

The loss calculation is different from other learning problems because we attempt to nor-
malize the losses across targets. Since all targets are equally important, we normalize their
variance to one based off of statistics from our training data. This formulation depends on
the assumption that each output block predicts mean zero at initialization. Recall, (2.60),
the prediction is written,

t̂m = pm +Am
¯̃t+ σt̃

Am∑
am

Ram . (3.1)

Therefore, using the notation from Section 2.4.2, we write the loss using the the total
molecule-wise offset sm = pm +Am

¯̃t. The molecule-wise loss for target tm looks like,

Lm(tm, t̂m) = (
tm − sm

σt̃
− t̂m − sm

σt̃
)2 =

1

σ2
t̃

(tm − t̂m − 2sm)2. (3.2)

For a batch of molecules M and pairs of targets with corresponding predictions {(tm, t̂m) :
m ∈M}, the total loss is calculated by

1

M

∑
(tm, t̂m)

∑
m

Lm(tm, t̂m). (3.3)

39

3.2. E3NN WITH A MULTI-LAYER PERCEPTRON OUTPUT

Although it is possible to train a model against all targets at the same time using this
methodology, it is often much more difficult to achieve simultaneously good performance
across targets.

3.2.1 Multi-target Hyperparameter Search

Even considering the potential difficulty of multi-target training, the computational ben-
efits of training on all targets at the same time is very appealing for a hyperparameter
search. The search would be organized by first finding an architecture which performs
“well” on the multi-target task. The best performing architecture would then be trained
on each target individually, thus eliminating the difficulty of multi-target training. This
scheme rests on the assumption that an architecture which performs well on all targets si-
multaneously will also perform well on each target individually. This approach was utilized
in finding the best performing models.

Finding the best hyperparameters is difficult because determining their quality requires
training the network to convergence, which is expensive. The two most straightforward
methods for finding hyperparameters are grid search and random search. To perform a grid
search, one selects ranges of parameters and tests every possible combination of parameters
within this multidimensional grid up to a certain granularity. Given n hyperparameters
and m grid values per hyperparameter, this scales like O(mn). In our problem, this
is a completely unacceptable scaling. Therefore, random search is utilized, where one
draws hyperparameter values at random from within the ranges specified. Although it is
less comprehensive, it still explores the possible configurations without taking excessively
large amounts of time and computational power.

Along with numerical hyperparameters, the choice of radial basis is determined by se-
lecting one of the cosine, Gaussian, and Bessel bases with one third probability for each.
Otherwise, the ranges for the random hyperparameter search are shown in Table 3.3. The
representation, i.e. amount of order zero spherical harmonics and order one spherical har-
monics per convolutional layer, is determined like so: Let 0 ≤ p ≤ 1 be a random number
and C is the number of components, the multiplicity of order zero R0 and order one R1

spherical harmonics are determined by

R0 = pC, R1 = (1− p)C. (3.4)

The hyperparameter search involved sampling forty different sets of hyperparameters from
the ranges in Table 3.3 and doing multi-target training for ten epochs with each set of
hyperparameters. The test set performance for each of the forty models was compared.
Two models performed well on multiple targets: ARandNet outperformed all other hyper-
parameter sets on five targets while BRandNet outperformed other hyperparameter sets
on four disjoint targets. The specific hyperparameters for those models can be found in
Table 3.4. ARandNet and BRandNet were selected for further single-target training.

40

3.2. E3NN WITH A MULTI-LAYER PERCEPTRON OUTPUT

Hyperparameter Minimum Maximum

Batch Size 8 25
Learning Rate 10−6 3× 10−1

Size of Embedding 80 144
Featurization Components (FC) 80 144

Featurization Representation (FC) randomly divided between Y 0
m and Y 1

m

Featurization Conv & GBs 2 5
Residual Network True True

Radial Basis φC , φG, φB φC , φG, φB
Number of Radial Bases 25 100

Radial Maximum 1.2 Å 30.0 Å
Radial MLP Layers 1 3

Radial MLP Neurons 80 144
Output Components (OC) 64 128

Output Representation (OC) randomly divided between Y 0
m and Y 1

m

Output Conv & GBs 1 2
Output MLP Layers 1 3

Output MLP Neurons 80 144

Table 3.3: The ranges of hyperparameters for the random hyperparameter search are writ-
ten in this table. Featurization Representation and Output Representation is determined
by (3.4).

Hyperparameter ARandNet BRandNet

Batch Size 16 18
Learning Rate 0.0065 0.0194

Size of Embedding 93 80
Featurization Components (FC) 107 94

Featurization Representation 20× Y 0
m ⊕ 29× Y 1

m 94× Y 0
m ⊕ 1× Y 1

m

Featurization Conv & GBs 2 4
Residual Network True True

Radial Basis φC φG
Number of Radial Bases 84 51

Radial Maximum 11.1 Å 2.87 Å
Radial MLP Layers 2 1

Radial MLP Neurons 101 100
Output Components (OC) 89 84

Output Representation 5× Y 0
m ⊕ 28× Y 1

m 48× Y 0
m ⊕ 12× Y 1

m

Output Conv & GBs 1 1
Output MLP Layers 1 2

Output MLP Neurons 67 51

Table 3.4: The hyperparameters of two networks determined randomly. On the multi-
target task, ARandNet had the lowest mean average error across five targets, while BRand-
Net had the lowest mean average error across four (different) targets. Since there are
twelve total targets, these two architechtures were nearly tied for best performance on the
multi-target task.

41

3.3. REGRESSION ON QM9 PROPERTIES

3.3 Regression on QM9 Properties

The SchNet-like and e3nn with MLP Output network architectures were described in
sections 3.1 and 3.2. The multi-target hyperparameter search was explained in Section
3.2.1 along with the results for the best performing set of hyperparameters. Finally,
we consider the performance of L0Net, L1Net, ARandNet, and BRandNet against other
competitive models in the field.

The other neural networks have already been discussed, but as a refresher: SchNet [16, 41]
is a neural network which performs continuous convolutions over a graph of euclidean
distances. It uses scalar features and is completely invariant to translation, rotation, or
parity transformations. Cormorant [18] is quite similar to e3nn in that it offers spherical
harmonic features which can rotate; however, it does not include the gated block, i.e. no
gated nonlinearities. Furthermore, it includes another interaction between atoms, they
call a two-body interaction, which is absent from e3nn. DimeNet [20] is another graph
model but includes angular information by means of calculating scalars which depend on
the bond angles in the problem. In this way, they include angular information which
rotates along with the molecule.

A comprehensive list of results on all targets is presented in Table 3.5. The random
hyperparameter search yielded ARandNet which now holds the state of the art prediction
on three of twelve QM9 targets: dipole moment, isotropic polarizability, and electronic
spatial extent.

Target L0Net L1Net ARandNet BRandNet schnetpack Cormorant DimeNet

µ (D) 0.053 0.016 0.009 0.136 0.021 0.038 0.0286
α (a3

0) 0.027 0.025 0.013 0.038 0.124 0.085 0.0469
εHOMO (meV) 85 80 46.246 232.226 47 34 27.8
εLUMO (meV) 74 64 34.351 1012.791 39 38 19.7
εgap (meV) 113 106 68.381 903.469 74 61 34.8
〈R2〉 (a2

0) 0.647 0.482 0.132 15.434 0.158 0.961 0.331
zpve (meV) 3 3 1.644 2.695 1.616 2.027 1.29
U0 (meV) 52 50 13.94 39.344 12 22 8.02
U (meV) 49 50 13.72 862.5 12 21 7.89
H (meV) 74 47 13.93 120.063 12 21 8.11
G (meV) 50 48 14.597 33.233 13 20 8.11

Cv (cal
molK) 0.070 0.073 0.031 0.172 0.034 0.026 0.0249

Table 3.5: L0Net and L1Net were defined in Section 3.1 and trained for 55 epochs. The ar-
chitectures from the random hyperparameter search, ARandNet and BRandNet, are listed
in the next two columns and were trained for 100 epochs. The other benchmarks are taken
from schnetpack [41], Cormorant [18], and DimeNet [20] papers. Details about their im-
plementations and hyperparameters can be found in the corresponding publications. The
first random hyperparameter model, ARandNet, holds state of the art predictions
on this data set for the targets dipole moment µ, isotropic polarizability α,
and electronic spatial extent 〈R2〉. a0 is defined to be the bohr radius.

3.3.1 Dipole Moment

To determine why e3nn performs so well on the dipole moment, let us consider how to
calculate the magnitude of the dipole moment of a charge distribution. For a continuous
distribution of charge contained in a volume V with charge density ρ, the dipole moment
is defined,

42

3.3. REGRESSION ON QM9 PROPERTIES

p(r) =

∫∫∫
V
ρ(r0)(r0 − r)d3r0, (3.5)

where r denotes the position of observation and d3r0 an infinitesimal volume element.
If we model the interaction between two dipoles as the interaction between two pairs of
positively and negatively charged Dirac delta peaks separated by an small displacement,
we can write the integral as a sum,

p(r) =
4∑
i=1

q(ri − r) = q(rA − rB + rC − rD) = p1 + p2, (3.6)

where particles A and C have charge q while particle B and D have charge -q, and the pairs
A and B have dipole moment p1 while the pairs C and D have dipole moment p2. The
result is that the dipole moment is independent of position of observation, i.e. p(r) = p.
See Figure 3.7.

Our goal was to calculate the magnitude of the net dipole moment. For explanatory
purposes, we instead calculate the squared magnitude, which can be written,

p2 = ‖p1 + p2‖2 = p2
1 + 2p1p2 cos θ12 + p2

2, (3.7)

where ‖p‖ = p and p1·p2

p1p2
= cos θ12.

d1

d2

d1

d2

p
p

Figure 3.7: The total dipole from the addition of constituent dipoles depends on their
relative orientation. Consider the addition of two constituent dipole moments with equal
magnitude. In the left pane, the sum of the two constituents yields a non-zero net dipole,
while in the right pane they cancel out. This is an interaction between two vector quan-
tities; it cannot be captured across relative orientations as a function of the constituent’s
(scalar) magnitudes alone.

It is already apparent that modeling this equation without a dependence on θ12 will
inevitably lead to irreducible error. Let f be the output of an estimator which does
not depend on θ12 but estimates the squared magnitude of the dipole moment. We can
write the expectation value of the mean squared error between this prediction and the
ground truth,

43

3.3. REGRESSION ON QM9 PROPERTIES

E[(f − p2)2] =E[f2 − 2fp2 − p2]

=E[f2 − 2f(p2
1 + p2

2)− 4fp1p2 cos θ12

+ (p2
1 + p2

2)2 + 4(p2
1 + p2

2)p1p2 cos θ12 + 4p2
1p

2
2 cos2 θ12]

=f2 − 2f(p2
1 + p2

2)− 4fp1p2E[cos θ12]

+ (p2
1 + p2

2)2 + 4(p2
1 + p2

2)p1p2E[cos θ12] + 4p2
1p

2
2E[cos2 θ12].

(3.8)

We assume the best case scenario for an estimator with no θ12 dependence, i.e. that
E[cos θ12] = 0. In other words, on average the dot products between dipole moments
cancel out. It is unlikely that all constituent dipoles in every molecule are orthogonal.
For that reason, we assume that E[cos2 θ12] > 0, which is true as long as θ12 6= n3π

2 with
n ∈ {x : x ∈ N, x 6= 0}. Considering these assumptions, let our estimator predict the best
possible (non-complex) estimation given its restrictions, f = (p2

1 + p2
2), then we see that

E[(f − p2)2] = f2 − 2f(p2
1 + p2

2) + (p2
1 + p2

2)2 + 4p2
1p

2
2E[cos2 θ12]

= 4p2
1p

2
2E[cos2 θ12] > 0.

(3.9)

Therefore, it is shown that any estimator which is θ12 independent is biased when pre-
dicting the squared dipole moment magnitude, i.e. there exists irreducible error in the
prediction of the expectation value of the squared loss.

Since L0Net and SchNet only have access to pairwise distances and only calculate scalars,
talking about the addition of dipoles is nonsensical. These networks can only do calcula-
tions which involve the addition of magnitudes of dipoles. From the argumentation above,
that means they are biased estimators for predicting the magnitude of the dipole moment.

Another way to see it is that L1Net allows vectors to interact by including the dot product
operation within the Clebsch-Gordon decomposition, i.e. when two vector features are
combined into a scalar feature using the Clebsch-Gordon decomposition their dot product
is calculated. Since the Clebsch-Gordon coefficients are all equal to one for scalar valued
inputs, L0Net does not include the dot product and cannot accurately interact vectors,
which is necessary for predicting the magnitude of the dipole moment without bias.

The effects of this are seen empirically due to the significant increase in accuracy when
including the first order spherical harmonic component in Figure 3.3 as well as in the state
of the art prediction of the dipole moment in Table 3.5.

Why did e3nn perform well on this task compared with Cormorant? The major difference
between e3nn and Cormorant is the inclusion of the Gated Block. (As well as the lack
of the so-called two-body term.) One of the core reasons neural networks are universal
function approximators is because of their nonlinearities. Cormorant claims that the
Clebsch-Gordon transformation is nonlinear “enough” that they do not need to include
other nonlinearities; however, the performance on this task is empirical evidence that
e3nn is generalizing better. Unlike below with the isotropic polarizability, Cormorant
used a similar batch size of 25 molecules per batch. Without another obvious culprit, the
author hypothesizes that the Gated Block is necessary for accurate predictions on QM9
and especially on the dipole moment.

3.3.2 Isotropic Polarizability

The isotropic polarizability of a molecule is the constant which couples an applied electric
field E to the induced dipole p by the following equation,

44

3.3. REGRESSION ON QM9 PROPERTIES

p = αE. (3.10)

The isotropic polarizability is merely an approximation of a higher-order tensor that cou-
ples an applied electric field to its induced dipole p using this equation,

pi =
∑
j

αijEj . (3.11)

The approximation (3.10) assumes that polarizability is a linear effect, i.e. applied electric
fields induce a dipole which is proportional to the electric field. In reality this is not the
whole story and there are anti-isotropic effects; however, that information is not contained
in the QM9 data set so we cannot attempt to model it. It is a shame because this quantity
would be a perfect tensor to approximate with an L2Net. L2Nets have features which share
the rotation order of the polarizability tensor itself, therefore an L2Net would probably
predict those quantities quite accurately.

Since the network performed so well predicting the isotropic polarizability α, it is worth
figuring out why. Unlike with the dipole moment µ, L0Net and L1Net have approximately
the same generalization error on this quantity. It’s very possible that L1Net included
necessary rotations like with µ; however, we presume that these effects are small and offer
another explanation.

e3nn has been trained on very small batch sizes compared to SchNet which was trained on
batch sizes of 100 molecules per batch. As discussed in Section 3.1.3, we can validate that
batch size played a role by training the a SchNet network with smaller batch sizes. This
is easily done by modifying the tutorial example in schnetpack [41]. In Figure 3.8, one
can see the training progress of a basic SchNet model against the isotropic polarizability
target. Although the test set was not evaluated, the mean average validation error reduced
by nearly an order of magnitude to rival the predictions of ARandNet. The validation
mean average error after training turned out to be 0.0130.

0 100 200 300
epochs

10 1

M
AE

SchNet bs 64

Figure 3.8: Mean average error in isotropic polarizability is plotted against epochs. The
batch size was set to 64 molecules per batch. The training was accomplished using schnet-
pack with the default settings as found in qm9 tutorial.py. Using a small batch size
significantly reduced the validation mean average error from schnetpack’s reported 0.124
test error down to 0.0130 validation error.

45

3.3. REGRESSION ON QM9 PROPERTIES

3.3.3 Other Targets

The performance on other targets was varied. Notably, the electronic spatial extent, 〈R2〉,
was also a state of the art prediction. However, it was difficult to find information about
what this quantity really means. The computational chemistry tool Gaussian [45] reports
it. It seems like this was the only reason why it is included in QM9. Given the lack of
information all we can do is celebrate the high accuracy of the prediction.

The core target of many previous papers is the energy at absolute zero U0. Although
e3nn did not outperform other networks on this target, it is worth nothing that L1Net
performed better than L0Net. It is plausible that including higher rotation orders in the
calculation of energy has only a perturbative effect for most molecules in QM9. The same
might be the case for other targets but more study is required. In particular, it would
be interesting to calculate the energy of a system which contained a large number of
interacting dipoles and then compare the energy prediction of L0Net and L1Net. On such
a data set, we predict that L0Net and SchNet would perform poorly while L1Net would
more accurately predict the energy.

46

Chapter 4

Conclusion

This document presented the results of the benchmark performance of e3nn on the QM9
data set as well as the necessary background for said task. The theory section explained
how to train machine learning algorithms in general along with a break down of their error
into bias, variance, and irreducible error. The methods which produced the QM9 data
set itself were presented, namely density functional theory. The background for building
a neural network equivariant to the special euclidean (3) group was presented along with
the specifics of how e3nn works. The author contributed to e3nn in several ways during
this project, rising to the third place in number of contributions to the software. Those
contributions can be enumerated specifically on GitHub [17]. The most relevant addition
was the introduction of the KernelConv module which reduced the memory footprint by
slightly less than half and increased the speed by nearly two times. This module made
doing the experiment on QM9 possible without prohibitively long wait times.

The experiment section included a comparison of other architectures to e3nn on different
targets in QM9. The most important advantage of e3nn is in the accuracy of predictions
on the dipole moment. Other hyperparameters were compared systematically including
batch size and radial basis. The random hyperparameter search uncovered an architecture
of e3nn which had state of the art performance on three of twelve QM9 targets, dipole
moment, isotropic polarizability, and electronic spatial extent. The performance improve-
ment on the dipole moment was very clearly the result of including the first order spherical
harmonic features within the network. The isotropic polarizability accuracy was mostly
attributable to the use of small batch sizes for training. Since electronic spatial extent
was not clearly defined, it is not obvious why L1Net performed so well on that target.

The final messages of this work are: When predicting geometric tensors, consider utilizing
features which have a similar rotation order to the predicted tensor. This applies even when
calculating magnitudes as seen in the dipole moment. Gated nonlinearities have shown
their value empirically; they should be used when possible. Considering the batch size
has a strong effect in networks which operate on point clouds like these ones: Choose the
hyperparameter carefully, erring on the side of smaller batches. Applying these techniques
led to state of the art performance on the QM9 data set.

47

Appendix A

Definitions of Common Operations

The expectation value E : (Ω → R) → R of a random variable U : Ω → R with sample
space Ω and probability distribution pU is defined as

E[U] =

∫
RN

u · pU (u) du. (A.1)

The variance of var of U is defined

var[U] =

∫
RN

(u− E[U]) · (u− E[U])> · pU (u) du. (A.2)

The rules of probability for random variable X,Y with corresponding probability distri-
butions p(X), p(Y) are as follows. The sum rule is given as

p(X) =
∑
Y

p(X,Y) (A.3)

where p(X,Y) is called the joint probability distribution and means the probability of
both X and Y . The product rule of probability is given as

p(X,Y) = p(Y |X) (A.4)

where p(Y |X) is called the conditional probability distribution and it means the probability
of Y given that X has occurred. Together these rules are commonly applied to write a
relationship between conditional probabilities and called Bayes’ Theorem

p(Y |X) =
p(X|Y)p(Y)

p(X)
=

p(X|Y)p(Y)∑
Y p(X|Y)p(Y)

. (A.5)

48

Appendix B

Kernel Normalization Constants

The author acknowledges the help of Mario Geiger with these calculations; a calculation
of the normalization constants follows. We use the notation 〈H〉 for the mean of H. We
first write four useful statements:

(by independence) var

∑
lin vj

K loutlin
ui vj F linvj

 =
∑
lin vj

var
[
K loutlin
ui vj F linvj

]
, (B.1)

(by independence) var
[
K loutlin
ui vj F linvj

]
= 〈(KF)2〉−〈KF 〉2 = 〈K2〉〈F 2〉−〈K〉2〈F 〉2, (B.2)

(since 〈R〉 = 0) 〈K loutlin
ui vj 〉 =

∑
lf k

〈C loutlinlfijk Y
lf
k R

loutlinlf
uv nloutlin〉 = 0, (B.3)

〈(K loutlin
ui vj)2〉 =

∑
lf k

∑
l′f k

′

〈C loutlinlfijk C
loutlinl

′
f

ijk′ Y
lf
k Y

l′f
k′ R

loutlinlf
uv R

loutlinl
′
f

uv (nloutlin)2〉

(since 〈RR〉 = δ) =
∑
lf

∑
kk′

C
loutlinlf
ijk C

loutlinlf
ijk′ Y

lf
k Y

lf
k′ (nloutlin)2

= (nloutlin)2
∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

.

(B.4)

Now we can combine (B.3) and (B.4) with (B.2) to write,

var
[
K loutlin
ui vj F linvj

]
= (nloutlin)2〈(F linvj)2〉

∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

, (B.5)

which means that (B.1) can be written

49

(B.1) =
∑
lin

(nloutlin)2
∑
vj

τ2
lin

∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

=
∑
lin

(∑
v

1

)
(nloutlin)2τ2

lin

∑
lf

∑
j

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

=
∑
lin

(∑
v

1

)
(nloutlin)2τ2

lin

∑
lf

(4π(2lout + 1))−1

= (4π(2lout + 1))−1
∑
lin

(∑
v

1

)
(nloutlin)2 τ2

lin

∑
lf

1

 ,

(B.6)

where 〈(F linvj)2〉 := τ2
lin

. Note that we want (B.1) = τ2
lin

, and we assume that τ2
lin

= 1.
Therefore,

4π(2lout + 1) =
∑
lin

(∑
v

1

)
(nloutlin)2

∑
lf

1


(nloutlin)2 =

4π(2lout + 1)

(
∑

v 1)
(∑

lf
1
) (∑

lin
1
) . (B.7)

50

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[3] Gideon Lewis-Kraus. The great ai awakening. The New York Times, Dec 2016.

[4] From not working to neural networking. The Economist, June 2016.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[7] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators:
Sampling equilibrium states of many-body systems with deep learning. Science,
365(6457):eaaw1147, 2019.

[8] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

[9] Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi. Ma-
chine learning for molecular simulation. arXiv preprint arXiv:1911.02792, 2019.

[10] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richard-
son, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction
to machine learning for physicists. Physics Reports, 2019.

51

BIBLIOGRAPHY

[11] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von
Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. Sci-
entific Data, 1, 2014.

[12] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond.
Enumeration of 166 billion organic small molecules in the chemical universe database
gdb-17. Journal of chemical information and modeling, 52(11):2864–2875, 2012.

[13] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse,
Aneesh S. Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for
molecular machine learning. Chem. Sci., 9:513–530, 2018.

[14] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zo-
har Bloom-Ackerman, Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran,
Ian W. Andrews, Emma J. Chory, George M. Church, Eric D. Brown, Tommi S.
Jaakkola, Regina Barzilay, and James J. Collins. A deep learning approach to antibi-
otic discovery. Cell, 180(4):688–702.e13, Feb 2020.

[15] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao,
Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew
Palmer, Volker Settels, Tommi Jaakkola, Klavs Jensen, and Regina Barzilay. Correc-
tion to analyzing learned molecular representations for property prediction. Journal
of Chemical Information and Modeling, 59(12):5304–5305, 2019. PMID: 31814400.

[16] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller.
Schnet – a deep learning architecture for molecules and materials. The Journal of
Chemical Physics, 148(24):241722, 2018.

[17] Mario Geiger, Tess Smidt, Benjamin K. Miller, Wouter Boomsma, Kos-
tiantyn Lapchevskyi, Maurice Weiler, Micha l Tyszkiewicz, and Jes Frellsen.
github.com/e3nn/e3nn, March 2020.

[18] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molec-
ular neural networks. In Advances in Neural Information Processing Systems, pages
14510–14519, 2019.

[19] Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible
neural network potential with dft accuracy at force field computational cost. Chemical
science, 8(4):3192–3203, 2017.

[20] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message pass-
ing for molecular graphs. In International Conference on Learning Representations
(ICLR), 2020.

[21] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[22] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.
ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

52

http://www.deeplearningbook.org

BIBLIOGRAPHY

[25] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization, 2016.

[26] Claude Sammut and Geoffrey I. Webb, editors. Bias Variance Decomposition.
Springer US, Boston, MA, 2017.

[27] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[28] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[30] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1263–1272, Interna-
tional Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[31] Larry A Curtiss, Paul C Redfern, and Krishnan Raghavachari. Gaussian-4 the-
ory using reduced order perturbation theory. The Journal of chemical physics,
127(12):124105, 2007.

[32] Wolfram Koch and Max C Holthausen. A chemist’s guide to density functional theory.
John Wiley & Sons, 2015.

[33] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data, 2018.

[34] Howard Georgi. Lie Algebras in Particle Physics: From Isospin to Unified Theories.
Westview Press, 1999.

[35] Taco Cohen, Mario Geiger, Jonas Köhler, Pim de Haan, K. T. Schütt, and Ben-
jamin K. Miller. Lie learn. https://github.com/AMLab-Amsterdam/lie_learn/

releases/tag/v1.0_b, 2020.

[36] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill-
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

[37] Wikipedia contributors. Spherical harmonics, 2020. [Online; accessed 12-March-2020].

[38] Wikipedia contributors. Euler angles, 2020. [Online; accessed 27-March-2020].

[39] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Bros-
tow. Harmonic networks: Deep translation and rotation equivariance. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5028–
5037, 2017.

53

https://github.com/AMLab-Amsterdam/lie_learn/releases/tag/v1.0_b
https://github.com/AMLab-Amsterdam/lie_learn/releases/tag/v1.0_b

BIBLIOGRAPHY

[40] Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff,
and Patrick Riley. Tensor field networks: Rotation- and translation-equivariant neural
networks for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

[41] K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-R. Müller.
Schnetpack: A deep learning toolbox for atomistic systems. Journal of Chemical
Theory and Computation, 15(1):448–455, 2019.

[42] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural
networks, 2018.

[43] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Advances in
Neural Information Processing Systems, pages 1731–1741, 2017.

[44] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay
the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-
man, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.
Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V.
Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini,
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Za-
krzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J.
Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyen-
gar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox.
Gaussian˜16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.

54

	Abstract
	Declaration of Authorship
	Acknowledgments
	Introduction
	Theory
	Machine Learning and Deep Learning
	The Bias-Variance Decomposition
	Training and Optimization of the Loss Function

	The QM9 Data Set
	Quantum Mechanical Calculations

	Geometric Quantities
	Groups and Representations
	Group Representation
	The Spherical Harmonics and the Wigner D-Matrices
	The Clebsch-Gordan Decomposition

	Neural Networks Equivariant to SE(3)
	e3nn
	QM9 Output Layer

	Experiments
	Comparison with SchNet-like Architecture
	Effects of Higher Rotation Orders on Dipole Moment and Energy
	Comparison of Radial Bases
	Effects of Batch Size

	e3nn with a Multi-Layer Perceptron Output
	Multi-target Hyperparameter Search

	Regression on QM9 Properties
	Dipole Moment
	Isotropic Polarizability
	Other Targets

	Conclusion
	Definitions of Common Operations
	Kernel Normalization Constants

