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1 Introduction 

1.1 Multimethod Measurement in Psychology 

What is multimethod measurement? Multimethod measurement is the use of more than one 

method to assess some or all of the constructs or traits of interest in a study. For example, a 

psychologist interested in aggressive behavior of children might use different sources (raters) 

to measure aggression. The different sources could be self-reports (e.g., through items like “I 

am often involved in fights at school”), parent, peer, and teacher reports (e.g., by using 

modified items like “My / This child is often involved in fights at school”). In addition, the 

psychologist might use observational data to study aggressive behavior. Note that the notion 

of a “method” is a rather heterogeneous and not very well-defined concept in psychology. In 

other words, almost anything can serve as a method: A particular test or rater, an observation, 

a physiological measure, or a specific questionnaire. Even single items are sometimes 

conceived of as different methods. For example, positively and negatively worded items 

supposed to measure the same latent trait are often found to produce method effects that can 

be attributed to the differences in wording (see, e.g., Maydeu-Olivares & Coffman, 2006; 

Rauch, Schweizer, & Moosbrugger, 2007). In addition, as discussed in detail in Chapter 3.2.1, 

method effects often occur in terms of indicator-specific effects in longitudinal studies where 

the same item or test is repeatedly measured. Others have considered different time points or 

situations to be different methods (e.g., Biesanz & West, 2004). 

Eid and Diener (2006) recently noticed that multimethod research strategies become more 

and more popular in almost all areas of psychology and are nowadays often preferred to 

designs that employ only a single method. The reasons for the growing interest in 

multimethod assessments are obvious. Studies that rely on a single method are often less 

informative than are studies that combine multiple sources of information. Results based on a 

single method may be specific to that particular measurement instrument (e.g., item set, test, 

rater, or observation). As a consequence, the generalizability of findings obtained from single 

method investigations might be limited. For example, the construct aggressive behavior might 

not be reliably captured by children’s self-report alone since children might respond in a 

socially desirable manner. The degree of method-specificity (“method bias”) of a particular 

method can only be estimated when multiple methods are employed. For a comprehensive 

overview of multimethod research strategies in psychology see Eid and Diener (2006). 
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1.2 Need for MTMM Longitudinal Models 

Many phenomena in psychology cannot be satisfactorily investigated by using cross-

sectional research designs. Researchers are often interested in the development and change of 

psychological attributes over time. Therefore, longitudinal research designs are often 

employed. In these designs, the constructs of interest are assessed on at least two occasions of 

measurement. With regard to longitudinal studies, the same issues mentioned above for cross-

sectional research designs apply: A multimethod longitudinal design is likely to be more 

informative than a monomethod longitudinal design and should be preferred if possible. As 

Burns and Haynes (2006) note “A single method (rating scale) with a single source (parent) at 

a single time point provide little information about the time course of the particular problem” 

(p. 417). Otherwise stated, the most comprehensive insights can be obtained if multiple 

methods, multiple constructs, and multiple occasions of measurement are used. As I will 

explain below, it is also beneficial to use multiple indicators (observed variables such as items 

or scales) per construct-method-occasion unit (CMOU). In the next section, I will briefly 

review existing models for analyzing MTMM data.  

1.3 Available Models for Analyzing MTMM Data 

In my discussion of existing approaches for analyzing MTMM data, I will focus on SEM-

based models (so called confirmatory factor analysis [CFA] models for MTMM data [CFA-

MTMM models]) for two reasons. First, CFA-MTMM models are nowadays the most popular 

models for analyzing MTMM data (Eid, Lischetzke, & Nussbeck, 2006). Second, the 

parameters of the MTMM-MO models that will be presented in this thesis can also be 

estimated using SEM. I start with existing models for cross-sectional MTMM data and then 

provide an overview of models for longitudinal MTMM data that have been developed so far. 

1.3.1 MTMM Models for Cross-Sectional Data 

1.3.1.1 Single Indicator Models 

Figure 1 shows the four CFA-MTMM models that are probably the best known models for 

analyzing cross-sectional MTMM data. Following the common conventions for path 

diagrams, the observed variables are shown in boxes and the latent variables (trait factors, 

method factors, and error variables [“unique factors”] Ejk) are shown in ellipses. Single 

headed arrows indicate linear regression paths (in this case factor loadings), whereas double-
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headed arrows symbolize covariances (or correlations). The models shown in Figure 1 are in 

line with the “classical” MTMM design, in which three traits and three methods are used. 

In cross-sectional MTMM models for single indicators, there is only one observed variable 

per trait-method-unit (TMU), for example only one depression self-report score. Hence, only 

two indices are needed for the observed variables Yjk. The index j denotes the trait and k 

indicates the method used to measure the trait (e.g., type of rater). Figure 1A shows the 

Correlated Trait-Correlated Uniqueness (CT-CU) model (Kenny, 1976; Marsh, 1989; Marsh 

& Bailey, 1991). In the CT-CU model, each observed variable is influenced by a trait factor 

and an error variable (unique factor) Ejk. All trait factors can be correlated. The correlations of 

the trait factors indicate discriminant validity. No method factors are included in this model. 

Instead, method effects due to the same method k are captured by correlations among error 

variables (“correlated uniquenesses”). Note that in the CT-CU model, the error variables Ejk 

comprise influences due to indicator-specificity, method-specificity, and random 

measurement error. As shown in Figure 1A, all error variables with the same method index k 

are allowed to correlate. These residual correlations mirror common (and reliable) variance 

specific to indicators pertaining to the same method. (The idea is that all variables Yjk with the 

same method index k share common variance due to the same method.) The CT-CU model is 

a straightforward MTMM model that is often used in substantive applications. It is easy to 

specify and avoids complications (e.g., estimation and convergence problems) that frequently 

occur in models in which method factors are included. Thus it is often preferred to other 

MTMM models. However, important limitations of the CT-CU model are that (1) model 

parsimony decreases as the number of traits and methods increases given that more error 

covariances need to be estimated (Lance, Noble, & Scullen, 2002), (2) it confounds random 

measurement error, indicator-specific variance, and method effects and thus underestimates 

the reliabilities of the indicators, (3) it does not permit correlations between different methods, 

(4) it does not “explain” method effects in terms of latent factors that could be related to other 

variables in the model (e.g., in order to explain method effects), and (5) it does not allow for a 

decomposition into trait, method, and unique components of variance. See Lance et al. (2002) 

for a detailed critique of the CT-CU model. 
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Figure 1. Single indicator CFA-MTMM models for analyzing cross-sectional MTMM data 
obtained from a design with three traits and three methods. Yjk = observed variable (j = trait, k 
= method); Ejk = unique factor (error variable). A: CT-CU model. B: CT-CM model. C: CT-
UM model. D: CT-C(M–1) model. Detailed explanations are provided in the text. 

 

In the Correlated Trait-Correlated Method (CT-CM) model (Marsh & Grayson, 1995; 

Widaman, 1985; see Figure 1B), the correlations among error variables are replaced by 

common method factors that account for the residual covariation among indicators sharing the 

same method. There is a trait factor for each trait and a method factor for each method. Trait 

and method factors are assumed to be uncorrelated, whereas correlations among traits and 

correlations among methods can be estimated. The CT-CM model overcomes several 

shortcomings of the CT-CU model. For a larger number of traits and methods, the CT-CM 

model tends to be more parsimonious than the CT-CU model. The reason is that the CT-CM 

model imposes a unidimensional method structure on the residual variables, whereas in the 

CT-CU model, all error correlations are freely estimated. (For a detailed comparison of the 

number of estimated parameters in both models for different MTMM designs see Lance et al., 

2002, Table 4.) The CT-CM model does not confound unique (indicator-specific + error) 
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sources of variance with method variance and, in contrast to the CT-CU model, it allows for a 

separation of variance components due to trait, method, and error influences to quantify the 

degree of convergent validity, method-specificity, and reliability of the observed variables. 

Moreover, in the CT-CM model, method effects can be correlated, and they can be related to 

external variables. The advantage is that one can study associations between different 

methods (e.g., do different raters share a common view of a target?), and that attempts can be 

made to relate method effects to covariates. Given these advantages, the CT-CM model also is 

a very popular model for analyzing MTMM data. Unfortunately, despite its greater theoretical 

soundness (compared to the CT-CU model), researchers applying the CT-CM model in 

practice often encounter serious problems. The CT-CM model is not globally identified and 

thus does not always lead to a convergent solution (Eid, 2000; Grayson & Marsh, 1994; 

Kenny & Kashy, 1992). In cases where the model does not converge, no parameter estimates 

are available and the user needs to specify a different type of model to obtain a solution for 

the data. Even if the model estimation procedure converges such that parameter estimates are 

available, improper solutions occur frequently in applications of the CT-CM model (Lance et 

al., 2002; Marsh & Bailey, 1991; Marsh, Byrne, & Craven, 1992). Improper solutions (so-

called Heywood cases, Chen, Bollen, Paxton, Curran, & Kirby, 2001) are solutions with out-

of-range parameter estimates such as negative variances or correlations estimated to be larger 

than |1|. Improper solutions pose serious problems, as they might indicate model 

misspecification(s) or serious estimation problems. Even if one attributes out-of-range 

parameter estimates to random sampling fluctuations (see e.g., Chen et al., 2001) and accepts 

an improper solution as valid, it is unclear how one should handle these improper parameter 

estimates and how they should be interpreted. Another weakness of the CT-CM model is that 

the interpretation of the method factors becomes dubious if all method factors are 

substantially correlated (Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; Widaman, 1985). 

The method factors would then mirror general trait effects rather than method-specific 

influences. 

A model nested within the CT-CM model that overcomes several of the shortcomings of 

the CT-CM model is the Correlated Trait-Uncorrelated Method (CT-UM) model depicted in 

Figure 1C. The CT-UM model is a special case of the CT-CM model in which the 

correlations among the method factors are set to zero. This constraint enhances the 

identification status of the model (unless there are fewer than three indicators for each method 

factor) and thus reduces the likelihood of estimation problems that are common in 

applications of the CT-CM model. Another consequence of the CT-UM specification is that 
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interpretation problems due to correlated method factors are avoided. At the same time, one 

can still separate method effects from uniqueness and the estimation of variance components 

is still possible. However, the CT-UM model does not permit correlations between any of the 

method factors. From a theoretical point of view, it is an appropriate model if method effects 

are orthogonal. This is likely the case if the methods considered represent a random sample 

from a set of interchangeable methods (e.g., students randomly chosen from the “set” of all 

students attending a lecture to rate their professor; Eid, Nussbeck, Geiser, Cole, Gollwitzer, & 

Lischetzke, in press). Yet this assumption is questionable if methods are not interchangeable, 

but differ structurally from one another. Structurally different methods are also referred to as 

fixed methods (Eid et al., in press). A method is considered fixed if it cannot be replaced by 

another method from the same set of equivalent methods. For example, a given self-report 

cannot be replaced by another self-report. Likewise, for a given individual (target), there is no 

set of fathers or mothers from which one could randomly draw different mothers or fathers to 

rate traits of their son or daughter. Mother and father are fixed for each individual—at least in 

our western society. Given that fixed methods probably represent the most frequently used 

type of method in psychology, the CT-UM model appears to be less appropriate for most 

psychological MTMM applications. 

The Correlated Trait-Correlated (Method Minus One) [CT-C(M–1)] model (Eid, 2000; see 

Figure 1D) overcomes limitations of both the CT-CM and CT-CU model, while retaining 

most of the advantages of these two models. The term in parentheses (M–1) indicates that the 

CT-C(M–1) model sets the method factor of one method to zero (in Figure 1D the first 

method, k = 1). That is, one uses one method factor less than methods considered. The 

remaining M – 1 method factors can be correlated as in the CT-CM model. Setting one 

method to zero implies that one method is selected as reference (or standard) method. In 

general, the most outstanding or established method should be taken as reference. For 

example, in many MTMM studies that use multiple raters as methods, the targets’ self-report 

will be the most prominent choice for the reference method. The reports of other raters (non-

reference methods; e.g., parent, peer, or teacher ratings) or observational data would then 

serve as non-reference methods to be contrasted against the self-report. This provides an 

answer to the question in which way the other-reports deviate from the values that would be 

predicted on the basis of the target’s own view of him or herself. In other cases, one might 

select the method judged to be the most objective or “gold standard” measure of a construct as 

reference method (e.g., a physiological measure or a well-established scale). For instance, a 

researcher who has developed a computerized version of a well-established intelligence test 
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might contrast the scores obtained from the paper-and-pencil version of this test against the 

computer version by using the paper-and-pencil version as reference method in the CT-C(M–

1) model. Such an application of the CT-C(M–1) approach has been presented by Feigenspan 

(2005). 

The method factors in the CT-C(M–1) model are defined as residual factors in a true score 

regression analysis. In this latent regression analysis, the true score variables of the non-

reference methods are regressed on the common true score of the reference method (Eid, 

2000). The residuals of this regression are the method factors. As a consequence, correlations 

between trait and method factors are not admitted by definition of the model and must be set 

to zero in empirical applications. As the CT-CM and the CT-UM model, the CT-C(M–1) 

model can be used to separate variance components due to trait, method, and error influences 

to study the convergent validity, method-specificity, and reliability of the measures. As in the 

CT-CM model, all method factors can be correlated to investigate similarities between 

methods. An important advantage of the CT-C(M–1) model is that although it allows method 

factors to be correlated, it is globally identified and appears to be less prone to estimation 

problems and improper solutions than the CT-CM model. A limitation of the CT-C(M–1) 

model is that a reference method needs to be selected and that it is not a symmetric model (as 

are the CT-CM and CT-UM models). Geiser, Eid, & Nussbeck (2008) provide detailed 

guidelines concerning the proper choice of a reference method when using the CT-C(M–1) 

model. However, it might not always be easy or even possible to choose an appropriate 

reference method based on theoretical considerations. If methods are interchangeable (i.e., 

none of the methods has any specific properties that makes it different from the remaining 

methods), the CT-UM model or a multilevel CFA approach would be more appropriate (Eid 

et al., in press). 

Given the asymmetry of the CT-C(M–1) model, its fit to a given data set as well as the 

parameter estimates are not invariant across different reference methods. For instance, a CT-

C(M–1) model in which self-report is selected as reference method might fit worse than an 

alternative version in which mother or father ratings are defined as reference method. 

However, as Geiser et al. (2008) have shown, this limitation can be overcome if an alternative 

restricted model that is conceptually similar and nested within the multiple indicator CT-

C(M–1) model is used. In this restricted model variant, specific constraints on the trait factor 

loadings of indicators pertaining to non-reference methods are imposed. As a consequence of 

these restrictions, the fit of the model remains invariant if an alternative reference method is 

selected. Given its theoretical and practical advantages and its apparent robustness to 
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convergence and estimation problems, the CT-C(M–1) model can be considered one of the 

most useful models currently available to analyze cross-sectional MTMM data. 

1.3.1.2 Multiple Indicator Models 

One important limitation of all MTMM models discussed so far is that each TMU is 

represented by only one observed variable Yjk in these models. The models in Figure 1 are 

therefore referred to as single indicator models in contrast to multiple indicator models that 

make use of multiple indicators per TMU. As an example, consider a classical MTMM design 

with three traits (depression, anxiety, and competence) and three methods (self, parent, and 

teacher report). In single indicator models, there would be only one Yjk variable for self-

reported depression, one Yjk variable for self-reported anxiety, one Yjk variable for self-

reported competence, one Yjk variable for parent-reported depression, and so on. In multiple 

indicator models, there would be multiple measures (e.g., several different items or scales) for 

self-reported depression, self-reported anxiety, self-reported competence, and so on. 

A consequence of model specifications with single indicators per TMU is the implicit 

assumption that method effects generalize perfectly across traits. The main problem of single 

indicator models is that the (rather restrictive) assumption of general method effects is not 

testable in these models. There is empirical evidence that this assumption is almost never 

tenable (e.g., Eid et al., 2003; in press). Therefore, several researchers have proposed 

extensions of single indicator models to models allowing for multiple indicators per TMU 

(Eid et al., 2003; Marsh, 1993; Marsh & Hocevar, 1988). Multiple indicator models enable 

researchers to test whether method effects are trait-specific or not. 

To illustrate this, consider the multiple indicator CT-C(M–1) model proposed by Eid et al. 

(2003), which is shown in Figure 2. We can see that the observed variables Yijk (and the error 

variables Eijk) now have three indices: i for the indicator, j for the trait, and k for the method. 

In the model shown in Figure 2, there are two traits, three methods, and three indicators per 

TMU. (An example with two traits has been selected simply to save space, but the model is 

not limited to only two traits.) The first method (k = 1) serves as reference method. Except for 

this reference method, there is a (trait-specific) method factor Mjk for each TMU. Correlations 

among the trait factors Tj again indicate discriminant validity with respect to the reference 

method. Correlations between trait and method factors belonging to the same TMU are not 

permitted by definition of the model. (For example, the method factor M12 is not allowed to 

correlate with the trait factor T1 in Figure 2.) 
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Correlations among method factors belonging to the same method but different traits can 

be studied to determine the degree to which method effects are trait-specific. For example, 

one could assess the correlation of M12 and M22 in Figure 2 to estimate the generalizability of 

the specificity of Method 2 across Trait 1 and Trait 2. Correlations close to unity indicate that 

the assumption of general method effects made in single indicator models is reasonable. In 

contrast, if the correlations are substantially smaller than unity, this would mean that method 

effects are to some degree trait-specific. For example, the method effects of computerized 

testing on the scores of an intelligence test might be different for a reasoning subscale 

(Trait 1) than for a mental speed subscale (Trait 2). Zero correlations would indicate that 

method effects for one trait could not be used to predict method effects of the same method 

for another trait. 

The correlations of method factors belonging to the same trait, but different methods can 

be used to study the degree to which non-reference methods show a common deviation from 

the reference method. For example, parents and teachers (non-reference methods) might share 

a common view of a child that is not shared with the child’s own view and thus is not 

predictable by the self-report (reference method). The shared view of parents and teachers 

would express itself in the correlation among method factors belonging to the same trait and 

different methods, for example M12 and M13 in Figure 2. A more detailed discussion of all 

available correlations in the multiple indicator CT-C(M–1) model can be found in Eid et al. 

(2003). 

The main advantage of multiple indicator models is that they allow for a test of whether 

method effects are trait-specific. A statistical omnibus test for this question is a chi-square test 

of model fit for a multiple indicator CT-C(M–1) model in which one specifies general method 

factors Mk instead of trait-specific method factors Mjk (see Figure 3). The specification of 

general method factors Mk is tantamount to assuming that all method factors Mjk with the 

same index k are perfectly correlated. If the chi-square test of model fit is significant for the 

model with general method factors Mk (but not significant for a model version with trait-

specific method factors Mjk as shown in Figure 2), the assumption of perfectly general method 

effects must be rejected in favor of the assumption of trait-specific method effects. 

Furthermore, the two model variants could be compared directly by using information criteria 

such as Akaike’s Information Criterion (AIC; Akaike, 1974). According to this criterion, the 

model with the smaller AIC value would be preferred. 
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Figure 2. Multiple indicator CT-C(M–1) model (Eid et al., 2003) with trait-specific method 
factors for two traits, three methods, and three indicators per TMU. Yijk = observed variable (i 
= indicator, j = trait, k = method). 

j
T  = trait factor. 

jk
M  = trait-specific method factor. 

ijk
E  = 

error variable. For reasons of clarity, factor loadings ( T
ijkλ , M

ijkλ ) and error variables are not 

shown for all indicators. Admissible correlations between trait and method factors belonging 
to different TMUs have also been omitted to avoid cluttering. 
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Figure 3. Multiple indicator CT-C(M–1) model (Eid et al., 2003) with general method 
factors for two traits, three methods, and three indicators per TMU. Yijk = observed variable (i 
= indicator, j = trait, k = method). 

j
T  = trait factor. 

k
M  = general method factor. 

ijk
E  = error 

variable. For reasons of clarity, trait factor loadings ( T
ijkλ ) and error variables are not shown 

for all indicators. Method factor loadings ( M
ijkλ ) as well as admissible correlations between 

trait and method factors belonging to different TMUs have also been omitted to avoid 
cluttering. 
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Figure 4. Multiple indicator CT-C(M–1) model with trait-specific method factors and 
indicator-specific trait factors (Eid et al., in press) for two traits, three methods, and three 
indicators per TMU. Yijk = observed variable (i = indicator, j = trait, k = method). 

ij
T  = 

indicator-specific trait factor. 
jk

M  = trait-specific method factor. 
ijk

E  = error variable. For 

reasons of clarity, factor loadings ( T
ijkλ , M

ijkλ ) and error variables are not shown for all 

indicators. Admissible correlations between trait and method factors belonging to different 
TMUs have also been omitted to avoid cluttering. 
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If multiple indicators per TMU are used, these indicators may not be perfectly 

homogeneous within a trait. For example, each item or subscale supposed to measure the 

same trait might reflect a slightly different aspect or facet of the trait. These indicator-specific 

effects might generalize across different methods, in particular if equivalent items or scales 

are used across different groups of raters. If such indicator-specific effects occur, neither the 

model depicted in Figure 2 nor the model in Figure 3 might show an acceptable fit to the data 

(given sufficient statistical power to detect such effects). 

An alternative, less restrictive specification of the multiple indicator CT-C(M–1) model 

that takes indicator-specific effects into account has been presented by Eid et al. (in press; see 

Figure 4). This model variant uses indicator-specific trait variables. Figure 4 shows that there 

are now as many trait factors Tij as there are different indicators per TMU. This is also 

indicated by the additional index i for the trait factors. The fit of the model in Figure 4 can be 

compared to the fit of the model in Figure 2 to find out whether the indicators are 

homogeneous or not. In case of very high (close to perfect) correlations among indicator-

specific trait factors belonging to the same trait (e.g., between T11, T21, and T31 in Figure 4), 

the more parsimonious solution with general trait factors Tj (see Figure 2) should be preferred. 

It should be noted that the multiple indicator CT-C(M–1) model is not the only CFA-

MTMM model for multiple indicators that has been proposed in the literature. Other 

approaches, such as the application of second order CFA, have for example been presented by 

Marsh and Hocevar (1988) as well as Marsh (1993). Empirical applications show that 

multiple indicator MTMM models are generally preferable to single indicator models given 

that method effects tend to be trait-specific—at least to some degree (see, e.g., Eid et al., in 

press). 

1.3.2 MTMM Models for Longitudinal Data 

Despite the popularity and widespread use of MTMM analysis and CFA-MTMM models 

in psychological research, relatively few attempts have been made to develop and use 

appropriate models for longitudinal MTMM data. Almost all currently available CFA-

MTMM models I know of are designed for MTMM analyses restricted to a single occasion of 

measurement. It has already been noted that many research questions in psychology cannot be 

satisfactorily answered by a cross-sectional research design. In evaluation research, for 

instance, the concepts of interest usually need to be measured on at least two occasions of 

measurement (e.g., before and after an intervention) and the focus is on change rather than on 

a single state. In clinical psychology, one is often interested in the stability and change of 
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particular psychiatric symptoms in the course of a therapy (e.g., Burns, Walsh, & Gomez, 

2003). In industrial psychology, employees may be evaluated on several occasions of 

measurement in order to study whether their performance changes over time. Likewise, many 

important research questions in developmental psychology are investigated by repeated 

assessments of children or adolescents (e.g., Cole, Martin, Peeke, Henderson, & Harwell, 

1998; Cole, Martin, Powers, & Truglio, 1996; Cole, Cho, Martin, Seroczynski, Tram, & 

Hoffman, 2001; Nolen-Hoeksema, Girgus, & Seligman, 1992).  

The tremendous number of publications devoted to statistical models for longitudinal data 

further underscores the importance of longitudinal research in the social sciences (e.g., Bollen 

& Curran, 2006; Collins & Sayer, 2001; Duncan, Duncan, Strycker, Li, & Alpert, 1999; 

Jöreskog, 1979a, 1979b; Little, Schnabel, & Baumert, 2000; Steyer, Ferring, & Schmitt, 1992; 

Steyer, Eid, & Schwenkmezger, 1997; Steyer, Schmitt, & Eid, 1999; Tisak & Tisak, 1996, 

2000). However, as I noted above, only very few approaches to longitudinal data modeling 

have explicitly integrated the idea of multimethod measurement into their modeling 

framework (exceptions are discussed below). This is rather surprising given the large number 

of applied MTMM-MO studies that have been conducted over the past years (e.g., Biesanz & 

West, 2004; Burns et al., 2003; Cole et al., 1996, 1998, 2001; Conley, 1985; Corwyn, 2000; 

Lambert, Salzer, & Bickman, 1998; Zhou, Eisenberg, Losoya, Fabes, Reiser, Guthrie et al., 

2002). 

MTMM-MO designs are particularly popular in developmental psychology. Recent 

examples of MTMM-MO studies in developmental psychology include the multimethod 

investigation of adolescent popularity, social adaptation, and deviant behavior conducted by 

Allen, Porter, McFarland, Marsh, and McElhaney (2005), the assessment of childhood 

depression and anxiety by multi-informant designs (e.g., Cole et al., 1998; Tram & Cole, 

2006), mediator analyses of the effects of positive parenting (measured by self- and parent 

reports) on mental health problems of bereaved children (Kwok, Haine, Sandler, Wolchik, 

Ayers, & Tein, 2005), the analysis of observed and parent-reported temperament in early 

childhood (Majdandzic & van den Boom, 2007), the study of the development of aggressive 

behavior in children as measured by observations and teacher reports (Ostrov & Crick, 2007), 

and Zhou et al.’s (2002) investigation of the relationship between parental warmth/positive 

expressiveness and children’s empathy-related responding and social functioning using 

multiple raters.  

One plausible explanation for the lack of comprehensive MTMM-MO measurement 

models may be that the covariance and mean structure associated with MTMM-MO data is 
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complex, even if only a moderate number of constructs1, methods, and time points are 

considered. This implies that measurement models for such type of data will be rather 

complicated, too. Many applied researchers may be overwhelmed by the difficulty of 

specifying and fitting an appropriate model in a simultaneous analysis of a complete MTMM-

MO data set. Some researchers might consider not using CFA models at all and analyze 

manifest (observed variable) MTMM correlation matrices instead. 

However, this approach has many serious limitations (Bollen, 1989). Observed variable 

correlation coefficients are likely attenuated by measurement error (e.g., Schmidt & Hunter, 

1999). Therefore, inferences with respect to convergent and discriminant validity based on 

correlation tables will likely be biased. Furthermore, by analyzing manifest correlation tables, 

no overall theoretical model can be tested and the investigator cannot separate variance 

components due to trait, method, and error influences. Likewise, neither the stability of trait 

and method effects nor possible changes in the convergent and discriminant validity over time 

can be analyzed in an optimal way. 

Another strategy that is sometimes applied to analyze MTMM-MO data is to use separate 

analyses for each time point (i.e., one specifies separate CFA-MTMM models for each wave). 

However, by specifying separate models, it is not possible to assess the fit of a comprehensive 

model including all observed variables. Therefore, no appropriate tests of measurement 

invariance over time can be conducted. Yet checking measurement invariance is very 

important in longitudinal studies in order to scrutinize whether the psychometric properties of 

the measures have changed over time. 

Related to this question is the problem of whether the meaning of the latent variables 

(which represent the psychological constructs of interest and the method effects) can be 

considered the same on each occasion of measurement (Meredith, 1993; Tisak & Tisak, 

2000). A second serious limitation of sequential CFA modeling approaches is that 

associations between constructs and method factors over time cannot be examined. 

Consequently, no statements about stability and change of constructs and method effects can 

be made. Moreover, questions with regard to possible changes in the convergent and 

discriminant validity cannot be studied in a satisfying way. Thus, in a sequential modeling 

                                                 
1 In my discussion of longitudinal MTMM approaches I use the term construct rather than trait given that in 
longitudinal modeling, a distinction can be made between states (i.e., the value on a construct on a specific 
measurement occasion comprising both stable and occasion-specific influences) and traits (i.e., the stable 
component of the state score; see e.g., Steyer et al., 1992, 1999). In cross-sectional data, strictly speaking, only 
one state score is available per construct. No distinction between stable (trait) and occasion-specific (state 
residual) influences is possible. 
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approach, valuable information inherent in MTMM-MO data is neglected and many important 

research questions cannot be examined. Therefore, there is a need for more adequate 

modeling techniques which consider the complex structure of an MTMM-MO matrix in a 

single model in order to analyze the data appropriately. In the following, I discuss three more 

comprehensive and sophisticated approaches to the analysis of MTMM-MO data. 

1.3.2.1 The Multi-Occasion CU Approach 

In MTMM-MO designs, either three or four indices are needed for the observed variables, 

depending on whether a single indicator or a multiple indicator model is used. In single 

indicator models, three indices are needed (Yjkl: j = construct, k = method, l = occasion of 

measurement), whereas one needs four indices in multiple indicator models (Yijkl: i = 

indicator, j = construct, k = method, l = occasion of measurement). 

In their discussion of methods for testing meditational hypotheses, Cole and Maxwell 

(2003) proposed a longitudinal correlated uniqueness (CU) approach in which three types of 

shared method variance can be represented by correlations among error variables (see Figure 

5): (1) within-wave, cross-construct correlated uniquenesses for indicators pertaining to the 

same method mirror method effects on a given time point as in the CT-CU model (see Path A 

in Figure 5), (2) cross-wave, within-construct correlated uniquenesses for the same indicator 

capture method variance caused by stable indicator-specific effects (Path B in Figure 5), (3) 

cross-wave, cross-construct correlated uniquenesses may be admitted to account for 

additional effects due to the same method (Path C in Figure 5). 

Cole and Maxwell’s approach of modeling different types of shared method effects 

through error correlations parallels Kenny’s (1976) CT-CU model for cross-sectional MTMM 

data (see Section 1.3.1.1 and Figure 1). The advantage of Cole and Maxwell’s multi-occasion 

CU model is that method and error effects are taken into account so that structural (e.g., 

meditational) hypotheses can be more accurately tested. 

On the other hand, the same disadvantages discussed above for the single-occasion CT-CU 

model apply to the multi-occasion CU model as well: (1) many uniqueness correlations need 

to be estimated in designs with many indicators, constructs, methods, and time points, (2) 

random measurement error cannot be separated from indicator-specific variance and shared 

method variance leading to an underestimation of the reliabilities of the measures, (3) 

variance components due to construct, method, indicator-specificity, and error are not 

available, (4) correlations between different methods cannot be estimated, and (5) method 
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effects cannot be related to external variables. Another limitation is that Cole and Maxwell’s 

model is a single indicator model that does not allow for construct-specific method effects. 

A model that overcomes some of the limitations of the multi-occasion CU model is Burns 

et al.’s (2003) multi-occasion extension of the CT-CM model (see also Burns & Haynes, 

2006). This model is discussed in the next section. 
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Figure 5. Multi-occasion CU model (Cole & Maxwell, 2003) for two constructs, three 
methods, and two occasions of measurement. Yjkl = observed variable (j = construct, k = 
method, l = occasion of measurement). Ejkl = error variable. Three types of correlated 
uniquenesses are shown. A: within-wave, cross-construct correlated uniquenesses, B: cross-
wave, within-construct correlated uniquenesses for the same indicator, C: cross-wave, cross-
construct correlated uniquenesses for the same method. Not all possible correlated 
uniquenesses are shown for reasons of clarity.  
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1.3.2.2 The CS-CM Model 

Figure 6 shows the multi-occasion extension of the single indicator CT-CM model 

proposed by Burns et al. (2003; see also Burns & Haynes, 2006) for three constructs, three 

methods, and two occasions of measurement. Instead of including various kinds of correlated 

uniquenesses, Burns et al.’s model uses occasion-specific method factors to capture cross-

sectional method effects. The model can be seen as a special kind of multistate model (see 

Chapter 2) with one state factor for each construct and one method factor for each method on 

each occasion of measurement. Hence, I will refer to it as Correlated State-Correlated 

Method (CS-CM) model. 

As in the CT-CM model for a single time point, all method factors can be correlated and all 

state factors can be correlated. (Note that a similar approach with uncorrelated method factors 

is discussed in Scherpenzeel & Saris, 2007.) In CS-CM model, correlations over time can also 

be examined. The admissible across-time correlations indicate the stability of inter-individual 

differences with respect to construct and method effects. Correlations between state and 

method factors are not admitted. 

Burns et al.’s approach allows separating occasion-specific variance due to a construct 

from occasion-specific method variance and error influences. Furthermore, different methods 

can be correlated and external variables can be included to explain method effects. 

A potential shortcoming is that the CS-CM model is based on the cross-sectional CT-CM 

model and thus might be prone to similar identification, estimation, and interpretation 

problems. Another limitation is that Burns et al. did not discuss whether a mean structure can 

be included in their model. Mean structures are generally of interest in longitudinal studies, as 

one often seeks to investigate mean changes over time. Furthermore, and related to the 

question of mean structures, Burns et al. did not address the issue of testing measurement 

invariance over time. Measurement invariance concerns the question of whether the same 

constructs are measured on each occasion of measurement (Meredith, 1993; Tisak & Tisak, 

2000; Raykov, 2006) and is a very important issue in longitudinal modeling. Finally, as Cole 

and Maxwell’s model, the CS-CM model is a single indicator model. Hence, it cannot be used 

to study construct-specific method effects. The next model overcomes this limitation. 
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Figure 6. CS-CM model (Burns et al., 2003) for three constructs, three methods, and two 
occasions of measurement. Yjkl = observed variable (j = construct, k = method, l = occasion of 
measurement). Ejkl = error variable. 

 

 

1.3.2.3 The Multi-Method Latent State-Trait Model 

Courvoisier (2006; Courvoisier, Nussbeck, Eid, Geiser, & Cole, in press) recently 

presented a multiple indicator model for analyzing MTMM-MO data. Courvoisier’s model 

represents an extension of the latent-state trait (LST) model (Steyer, 1988; Steyer et al., 1992, 

1999) for mono-method data to a multi-method LST model (see Figure 7). In general, LST 

models allow for a separation of situation-specific (state-like) influences from stable (trait-

like) and error components of variance (e.g., Steyer et al., 1999). Courvoisier’s multi-method 
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LST model makes it possible to determine occasion-specific (state residual) and trait 

influences separately for different methods. In this way, a researcher can scrutinize whether 

the strength of occasion-specific influences on psychological measures differs for different 

methods. 

Figure 7 shows an example in which one construct is measured by two methods on two 

occasions of measurement. Each construct-method-occasion unit (CMOU) is represented by 

two indicators Yijkl. As in Eid’s (2000) CT-C(M–1) approach, one method is selected as 

reference, here the first method (k = 1). Each indicator pertaining to the reference method 

loads on an indicator-specific trait factor and an (occasion-specific) state residual factor 

(shown on the right hand side of Figure 7). Note that trait factors are shown in grey circles, 

whereas state residual factors are shown in white circles in Figure 7. The trait factors 

represent stable inter-individual differences with respect to the reference method. The state-

residual factors capture reliable occasion-specific influences of the reference method. 

Indicators pertaining to the non-reference method also load on the trait and state residual 

factors of the reference method. In addition, these indicators are influenced by trait and state 

residual factors specific to the non-reference method (shown on the left hand side of Figure 

7). 

Method 2

Method 1

(Reference)

Method 2

Method 1

(Reference)

Time 1

Time 2

State Residual T1
(Reference Method)

Y1111

Y2111

Y1121

Y2121

State Residual T1

(Non-ref. Method)

Y1112

Y2112

Y1122

Y2122

State Residual T2
(Reference Method)

State Residual T2
(Non-ref. Method)

Trait (1st Indicator)
(Reference Method)

Trait (2nd Indicator)
(Reference Method)

Trait (1st Indicator)

(Non-ref. Method)

Trait (2nd Indicator)

(Non-ref. Method)

E1111

Method 2

Method 1

(Reference)

Method 2

Method 1

(Reference)

Time 1

Time 2

State Residual T1
(Reference Method)

Y1111

Y2111

Y1121

Y2121

State Residual T1

(Non-ref. Method)

Y1112

Y2112

Y1122

Y2122

State Residual T2
(Reference Method)

State Residual T2
(Non-ref. Method)

Trait (1st Indicator)
(Reference Method)

Trait (2nd Indicator)
(Reference Method)

Trait (1st Indicator)

(Non-ref. Method)

Trait (2nd Indicator)

(Non-ref. Method)

E1111

 

Figure 7. Multi-method LST model (Courvoisier, 2006) for one construct, two methods, 
and two occasions of measurement. Yijkl = observed variable (i = indicator, j = construct, k = 
method, l = occasion of measurement). Eijkl = error variable. 
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The multi-method LST model allows researchers to contrast trait and occasion-specific 

effects in a reference method against trait and occasion-specific effects in non-reference 

methods. Five different components of variance can be separated: (1) the proportion of 

variance explained by the reference method trait factor, (2) the proportion of variance 

explained by the particular non-reference method trait factor, (3) the proportion of variance 

due to occasion-specific effects shared with the reference method, (4) the proportion of 

variance due to occasion-specific effects specific to the particular non-reference method, and 

(5) the proportion of variance due to measurement error. 

The multi-method LST model can be estimated for a single or for multiple constructs. For 

perfectly homogeneous indicators, the indicator-specific trait factors can be replaced by 

general trait factors to make the model more parsimonious. Admissible and non-admissible 

correlations as well as applications of this model to multiple constructs are discussed in 

Courvoisier (2006; see also Courvoisier et al., in press). A related approach has been 

presented by Vautier (2004) who showed how method effects caused by bipolar items can be 

studied in a multi-method LST model. Scherpenzeel & Saris (2007) discussed how a multi-

occasion version of the CT-UM model can be extended to a multi-method state-trait model, 

but they considered only one indicator per CMOU. 

LST models assume that on the one hand, there is a stable construct (trait) that influences 

behavior, and on the other hand, there are occasion-specific fluctuations around the stable trait 

component (influences of the situation in which measurement takes place). The concept of a 

stable trait underlying behavior on the one hand and an occasion-specific part on the other 

hand has proven to be very useful in many areas of psychology (see, e.g., Eid, Schneider, and 

Schwenkmezger, 1999; Steyer et al., 1992, 1999). LST approaches are especially useful when 

the process to be analyzed is variability. 

However, this assumption does not hold for all phenomena in psychology. There are many 

examples of psychological constructs for which it does not make sense to assume an 

underlying stable trait value that remains the same across the life span. For example, many 

attributes studied in developmental psychology are subject to enduring changes (e.g., 

language acquisition, social behavior, school achievement, etc.). They are not just fluctuating 

around a stable trait. Likewise, in most intervention studies, it is not variability around a 

stable value that is of interest. Most interventions actually aim at causing (hopefully lasting) 

trait changes (e.g., changes in mental health, substance abuse, health behavior, etc.).  

Hence, researchers are often interested in trait changes over time rather than in separating 

trait effects from time-specific variability. An appropriate general MTMM model for 
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analyzing trait changes over time has not yet been presented. There is a need for a model that 

does not make the (often too restrictive) assumption of an underlying stable trait and that can 

be used to assess trait changes over time in a multimethod context. 

1.4 Aims and Structure of the Present Work 

The aim of the present work is to develop appropriate measurement models for MTMM-

MO data that are as general, flexible, and comprehensive as possible and that allow for an 

assessment of trait change over time. I will present two approaches: A general MTMM state 

model and a change version of this model. These models do not make the (sometimes too 

restrictive) assumption of an underlying stable trait. Instead, they focus on correlated latent 

states that may change over time. Hence, the models presented here are less restrictive than, 

for example, Courvoisier’s (2006) multi-method LST model. 

The new models will be formulated based on stochastic measurement theory (Steyer, 1989; 

Zimmermann, 1975). The advantage of this approach is that (1) all latent variables are clearly 

defined and have a clear psychometric meaning, (2) the assumptions of the model are clearly 

understandable, and (3) one can derive the implications of these assumptions for the 

identifiability of the model parameters and the testability of the model. 

The difference between Courvoisier’s (2006) and Vautier’s (2004) multi-method LST 

approaches and the models presented here is that the models developed in this thesis are not 

concerned with a separation of trait, time-specific, and error components of variance for 

different methods. Rather, my goal is to develop a general MTMM measurement model that 

can be used to study the important question of measurement invariance over time and to 

propose an alternative parameterization of the model that can be used to study inter-individual 

differences in intra-individual change on the level of latent state and method variables. As 

mentioned above, the models presented here are more general and less restrictive than models 

in which state factors are further decomposed into trait and state residual factors (such as the 

multi-method LST model). The present models can for example be applied in evaluation 

studies in which the goal is to investigate change between different time points. 

In the theoretical part, a detailed psychometric analysis of the models will be provided. In 

the empirical part, I will assess the applicability of the models to a real MTMM-MO data set 

and present results of a small Monte Carlo simulation study in which I studied the 

performance of the models for different sample sizes. In the final section, I will discuss 

advantages and limitations of the models. Furthermore, in the final discussion, I will provide a 
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comparison of the models presented here to already established methods for analyzing 

MTMM-MO data as well as detailed guidelines for potential users of the new models. 

The next chapter is an introduction to the basic concepts of classical test theory (CTT) and 

latent state (LS) theory. These concepts are reviewed here as they play a key role in the 

definition of the new MTMM-MO models described in Chapters 3 and 4. Readers may 

wonder why CTT is reviewed here, as it has little to do with longitudinal modeling or with 

measuring change. I nonetheless provide a brief introduction into CTT given that the concept 

of the true score variable plays an important role in the definition of the MTMM-MO models 

presented in this work. 
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2 Classical Test Theory and Latent State Theory 

2.1 Classical Test Theory 

In order to formulate psychometric models as stochastic measurement models, it is 

necessary to define a probability space for all variables considered in a model. A probability 

space consists of three components ( ), , PΩ A , where Ω  denotes the set of possible outcomes 

(the elements of Ω  are explained in detail below), A  denotes a -Algebraσ  consisting of 

subsets of Ω , and P is a non-negative, countable additive set function on A  with ( ) 1P Ω =  

(i.e., P is a probability function of Ω ; for a detailed explanation of the components of the 

probability space, see Eid, 1995; Steyer, 1988, 1989; or Steyer & Eid, 2001). The three 

components of the probability space describe the random experiment which transforms an 

empirical phenomenon into a statistical measurement model. In the random experiment a unit 

u is drawn from a set U of observational units. This unit u could for example be a child 

sampled from a group of children. Then, one may record the values of u with respect to 

certain attributes of interest. For example, the child may be asked to complete a self-report 

questionnaire that contains 6 binary items to measure depression. This experiment is 

considered random because neither do we know a priori which unit u (which child) will be 

drawn nor do we know how this child will respond to the items of the questionnaire. The set 

Ω  of possible outcomes of this random experiment can be expressed as a set product 

 ,U MΩ = ×  (1) 

where M represents the set of possible values (e.g., the possible scores on the depression 

self-report questionnaire, for example 0–6). An element ω∈Ω  is a possible outcome of the 

random experiment. For example, an outcome could be: 

 Jerry, 3ω = . (2) 

In this random experiment Jerry was drawn from the set of observational units U and Jerry 

achieved a total score of 3 on the depression self-report questionnaire. On the other hand, the 

set of possible values M may contain more than a single outcome such that 

 1 ... ,
m

M M M= × ×  (3) 
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where ,  1,...,
i

M i m= , represents the set of possible values of the ith observed attribute (for 

example, i could indicate the items of the 6-item depression questionnaire). Hence, a possible 

outcome of a random experiment at the item level could be 

 Jerry, agree, agree, disagree, agree, disagree, disagreeω = , (4) 

where again Jerry was drawn and he agreed with the first, second and fourth item 

statements, whereas he disagreed with the third, fifth and sixth item statements. 

The outcomes of such random experiments can also be expressed in terms of numerical 

random variables : ,  1,...,
i

Y i mΩ → =ℝ , where ℝ  denotes the set of real numbers. For 

example, the binary responses to the six items of the depression questionnaire may be 

transformed to numerical values by assigning the value of 0 for the response disagree and and 

1 for the response agree. Another possibility is that the variables 
i

Y  represent continuous test 

score variables (e.g., the sum score of the depression questionnaire). 

In CTT, the mapping :
U

p UΩ →  indicates which unit u has been drawn in the random 

experiment. In other words, the values of the mapping :
U

p UΩ →  are the observational units 

u U∈  (e.g., persons). This mapping is used to define the true score variables ,  1,..., ,
i

i mτ = : 

 : ( | )
i i U

E Y pτ = , (5) 

where ( | )
i U

E Y p  is the conditional expectation (regression) of the variables 
i

Y  given 
U

p . 

The values of ( | )
i U

E Y p  are the so-called true scores of the observational units u [i.e., 

( | )
i U

E Y p u= ]. The error variables ,  1,..., ,
i

E i m=  are defined as residuals of the regressions 

of the variables 
i

Y  on the true score variables 
i

τ : 

 ( ): |i i i U i iE Y E Y p Y= − = − τ . (6) 

A simple rearrangement of Equation 6 yields the well-know decomposition of an observed 

variable 
i

Y  in CTT: 

 .
i i i

Y E= τ +  (7) 
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The true score variables 
i

τ  represent that part of the observed variables 
i

Y , which is due to 

true inter-individual differences. The residuals 
i

E  comprise (unsystematic) influences due to 

measurement error. The definition of 
i

τ  and 
i

E  implies that the variables 
i

E  have an 

expectation of zero and that 
i

τ  and 
i

E  are uncorrelated with each other (for a more detailed 

description of the properties of 
i

τ  and 
i

E , see, e.g., Steyer, 1988, 1989; as well as Steyer & 

Eid, 2001). An important consequence of the uncorrelatedness of 
i

τ  and 
i

E  is that the 

variances of the observed variables 
i

Y  can be additively decomposed into true score and error 

variance: 

 ( ) ( ) ( )i i iVar Y Var Var E= τ + . (8) 

Hence we may define the reliability ( )iRel Y  as the ratio of true score variance to observed 

variance: 

 ( )
( )
( )

i

i

i

Var
Rel Y

Var Y

τ
= . (9) 

The reliability coefficient ( )iRel Y  varies between 0 and 1, where 0 indicates a completely 

unreliable measure and 1 indicates perfect reliability (no measurement error). 

To identify the parameters of the true score model, to separate measurement error from 

true inter-individual differences, and to test specific assumptions, special models of CTT have 

to be used. Furthermore, more than one observed variable of a construct needs to be assessed. 

An example of a just-identified CTT model is depicted in Figure 8. Figure 8 shows the model 

of τ-congeneric variables for three observed variables2. Figure 8A shows that each observed 

variable 
i

Y  is regressed on its own latent true score variable 
i

τ , corresponding to the true 

score model in Equation 7. In the model of -congenericτ  variables, the true score variables 

pertaining to indicators of the same construct are assumed to be linear functions of each other: 

 ' ' 'i ii ii i
τ = α + λ ⋅ τ , (10) 

                                                 
2 Not all models of CTT require three indicators to identify the parameters of the model. For example, for the 
model of essentially τ-equivalent variables with equal error variances (also know as model of τ-parallel 
variables) to be identified, two indicators are sufficient (see Steyer & Eid, 2001). I present the model of τ-
congeneric variables here as it is a general CTT model that is often implicitly used as measurement model in 
latent variable SEMs for continuous outcomes. 
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where ,  ' 1,...,i i m= , 'ii
α  is an intercept term, and 'ii

λ  denotes the slope. This assumption 

implies that the true score variables 
i

τ  are perfectly correlated and thus can be replaced by a 

common true score variable (or “common factor”) η, where 
i i i

τ = α + λ ⋅η  (see Steyer & Eid, 

2001). Furthermore, the assumption of uncorrelated error variables is made in Figure 8 [i.e., 

'( , ) 0
i i

Cov E E = , for 'i i≠ ]. Note that 1λ  has been set equal to unity in Figure 8 to identify the 

model. Notice also that the true score variables 
i

τ  have no associated residual terms because 

they are completely determined by the common factor η. One can therefore drop the 
i

τ ’s from 

the figure without loss of information, as is done in Figure 8B. In Figure 8B, the 
i

Y -variables 

load directly on η. As you can see, Figure 8B is in line with the reflective measurement model 

or “common factor model” commonly used in SEM (e.g., Bollen, 1989; Jöreskog, 1968, 

1971a). The model in Figure 8 is just-identified. Nine pieces of information are available 

(three observed means, three variances, and three covariances), and nine parameters are 

estimated (three intercepts, two loadings, three residual variances, and the variance of η)3. 

Hence, the model has zero degrees of freedom, implying that the assumption of τ-congenerity 

is not testable with only three observed variables (it would be testable for four or more 

measures of a construct). 
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Figure 8. Path diagram illustrating the 1-factor model implied by the CTT model of 
-congenericτ  variables for three observed variables. 

i
Y  = observed variable. 

i
τ  = indicator-

specific true score variable. η  = common true score variable. 
i

E  = error variable. Here, the 

loading 1λ  is set equal to 1 for identification. Intercepts 
i

α  are not shown. A: All indicator-

specific true score variables 
i

τ  are included. B: The indicator-specific true score variables 
i

τ  

have been dropped.  

                                                 
3 The mean of η is set to zero to identify the model. An alternative to this specification would be to set one αi to 
zero to achieve identification and estimate the mean of η. 
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The model of -congenericτ  variables is less restrictive than other models of CTT since the 

observed variables are allowed to differ in difficulty (they can have different intercepts 
i

α ) 

and in discrimination (they can have different loadings 
i

λ ). Other, more restricted models of 

CTT are nested within the model of -congenericτ  variables. For instance, the model of 

essentially -equivalentτ  variables can be derived from the model of -congenericτ  variables 

by constraining the factor loadings 
i

λ  to be equal for all indicators. The model of fully 

parallel variables is obtained by setting the intercepts 
i

α , the factor loadings 
i

λ , and the error 

variances ( )
i

Var E  equal for all indicators. For a more detailed discussion of different models 

of CTT see Steyer (1989) or Steyer and Eid (2001). 

An important limitation of CTT is that it does not explicitly consider situation-specific 

influences on psychological scores. It is well-known that most psychological variables (even 

attributes commonly understood as stable traits) cannot be measured completely 

independently of the situation in which measurement takes place. If we take the example of 

the depression self-report questionnaire, this questionnaire likely does not measure a 

depression trait but rather a depression state (i.e., depression at the particular occasion on 

which measurement takes place). Occasion-specific effects are likely to influence most 

observed variables. Ignoring such effects would cause no serious problems as long as 

situations could be assumed to vary randomly for all observational units. In many cases, 

however, this is not a reasonable assumption. Instead, psychological assessment often takes 

place in the same situation (i.e., the situation during assessment is the same for all units u, 

e.g., all children are tested at the same time in the same stuffy class-room). 

In order to account for the effects of situations and person-situation interactions on 

psychological measurement, CTT has been generalized to latent state (LS) and LST theory 

(Steyer, 1988; Steyer et al., 1992). The basic concepts of LS theory will be introduced in the 

next section. LST theory will not be treated in detail, as the concepts of LST theory are less 

important for the formulation of the MTMM-MO models defined in this thesis. 

2.2 Latent State Theory 

In LS theory, the random experiment considered in CTT is extended in order to take into 

account that persons are measured in situations. The set U of observational units has a 

different meaning. In LS theory, it is the set product 

 0 1 ...
n

U U U U= × × × , (11) 
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where 0U  is the set of persons and the sets 
l

U , l = 1, …, n, contain possible situations on a 

given occasion of measurement l. In other words, the observational units u in LS theory are 

not persons, but persons-in-a-situation. For example, Jerry is drawn and his score in the 

depression self-report questionnaire is recorded on a first occasion of measurement (l = 1). On 

this occasion, a certain situation from the set 1U  of situations is present (e.g., Jerry is in a 

particularly good mood because his grand-father was visiting him the day before his score on 

the depression questionnaire was recorded). On a second occasion of measurement (l = 2), 

Jerry is tested again. Now, he may be in a different situation (this time stemming from the set 

2U  of situations), where he is in a bad mood because he obtained a bad grade at school. It is 

important to notice that the situations are inner states. These states may depend on outer 

influences, but also on inner influences. Therefore, they are difficult to measure. Moreover, 

they do not have to be the same for all participants, but can vary from individual to individual. 

The set of possible outcomes has to be extended in order to include the possible influences of 

n occasions of measurement: 

 0 1 1... ...
n n

U U U M MΩ = × × × × × × . (12) 

There are now two mappings. First, there is the mapping 0 0:p UΩ → . The values of the 

mapping 0 0:p UΩ →  are the observational units (persons) as in CTT. Second, there is the 

mapping :
l l

p UΩ → . The values of the mapping 0 0:p UΩ →  are the situations in which 

persons are measured on a particular measurement occasion l. Finally, the values of ( )0 , lp p  

are the persons in situations on measurement occasion l. 

The counterpart to the true score variables 
i

τ  in CTT are the latent state variables 
il

S  in 

LS theory, where the index i again denotes the observed variable and l denotes the occasion of 

measurement: 

 ( )0: | ,il il lS E Y p p= . (13) 

In Equation 13, ( )0| ,il lE Y p p  is the conditional expectation (regression) of an observed 

variable 
il

Y  given the person and the situation. As in CTT, the measurement error variables 

il
E  are defined as residuals with respect to this regression: 

 ( )0: | ,il il il l il ilE Y E Y p p Y S= − = − . (14) 
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The decomposition of an observed variable in LS theory is analogous to the decomposition 

in CTT. Each observed variable is decomposed into a latent state variable (the occasion-

specific true score) and an error variable: 

 ,
il il il

Y S E= +  (15) 

where 
il

E  has an expected value of zero and is uncorrelated with 
il

S . The variance 

decomposition in LS theory is given by: 

 ( ) ( ) ( ).
il il il

Var Y Var S Var E= +  (16) 

The reliability coefficient may again be defined as the ratio of true score variance to 

observed variance: 

 ( )
( )
( )

.il

il

il

Var S
Rel Y

Var Y
=  (17) 

In the extension of LS theory to LST theory, the latent state variables 
il

S  are further 

decomposed into stable and occasion-specific parts (Steyer, 1988). The details of this 

decomposition will not be addressed here as they are not relevant for an understanding of the 

MTMM-MO models defined in Chapters 3 and 4. Readers interested in a detailed treatment of 

LST theory can refer to Steyer (1988) as well as Steyer et al. (1992, 1999). 

2.2.1 The Correlated State Model 

A well-known model derived from LS theory is the correlated state (CS) or multistate 

model (e.g., Steyer et al., 1992, see Figure 9). The CS model makes the assumption of 

occasion-specific congenerity (Steyer et al., 1992). Occasion-specific congenerity means that 

all latent state variables belonging to the same construct that are measured on the same 

occasion of measurement are linear functions of each other: 

 ,
il il il i l

S S ′= α + λ ⋅  (18) 

where ,  ' 1,...,i i m= , 
il

α  is an intercept, and 
il

λ  denotes a slope parameter (factor loading). 

As a consequence of Equation 18, one may assume that there is a common occasion-specific 

state factor 
l

S  on each occasion of measurement. Under this assumption, one obtains the 

following measurement model for the observed variables (see also Figure 9): 
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il il il l il

Y S E= α + λ ⋅ + . (19) 

The common latent state factors 
l

S  can be correlated. The size of these correlations 

indicates the degree of (covariance) stability over time. The CS model can be seen as a basic 

measurement model for longitudinal data (Tisak & Tisak, 2000). A CS model for one 

construct measured by two observed variables on two occasions of measurement is depicted 

in Figure 9. Note that the loadings 11λ  and 12λ  are fixed to unity for identification. 

Furthermore, the assumption of uncorrelated error variables is made [i.e., ' '( , ) 0
il i l

Cov E E = , 

for ,  ' 1,...,i i m= ; ,  ' 1,...,l l n= ; and ( , ) ( ', ')i l i l≠ ]. Figure 9A and B show two equivalent 

model versions. In Figure 9A, the latent state true score variables 
il

S  are still included. In 

Figure 9B, the variables 
il

S  have been dropped, in line with the more commonly used 

“common factor” approach. 
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Figure 9. Path diagram of a CS model for one construct measured on two occasions of 
measurement. 

il
Y  = observed variable (i = indicator, l = occasion of measurement). 

il
S  = 

indicator-specific latent state variable. 
l

S  = latent state factor. 
il

E  = error variable. Here, the 

loadings 11λ  and 12λ  are set equal to 1 for identification. Intercepts 
il

α  are not shown. A: All 

indicator-specific latent state variables 
il

S  are included. B: Indicator-specific latent state 

variables 
il

S  have been dropped. 

 

 

The minimum requirement for applying the CS model is that there are two observed 

variables of a construct that have been measured on two time points (as in Figure 9). The CS 

model can easily be extended to multiple constructs (the only difference is that an index, e.g., 
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j, is added for the construct). In Chapter 3, I describe an extension of this model to multiple 

constructs and multiple methods. 

2.2.2 The Latent Difference Model 

Steyer et al. (1997; Steyer, Partchev, & Shanahan, 2000) have shown how CS models with 

time invariant measurement parameters (intercepts and loadings) can be reformulated as latent 

difference (or latent change) models (see Figure 10). Latent difference models (see also 

McArdle & Hamagami, 1988) are straightforward models for studying inter-individual 

differences in intra-individual change. The basic idea of latent difference modeling is that any 

latent state factor 
l

S  can be decomposed into a preceding state factor (e.g., the initial state 

factor 1S ) and a latent difference factor [e.g., 1( )
l

S S− ] representing latent change from time 

1 (T1) to time l: 

 1 11 1 ( )
l l

S S S S= ⋅ + ⋅ − . (20) 

Equation 20 is a simple restatement and does not contain any restrictive assumptions. By 

implementing Equation 20 in the structural model (as shown in Figure 10B), the CS model 

shown in Figure 10A can easily be reformulated as a latent difference model (the 

measurement model remains unchanged). The latent difference factors ( )1lS S−  represent 

true inter-individual differences in intra-individual change from T1 to time l. Here, the term 

“true” means that the difference scores are corrected for measurement error. Therefore, these 

models have also been referred to as “true change” models (Steyer et al., 1997). 

Latent difference modeling offers a direct and flexible approach to investigating change. 

The latent difference model is statistically equivalent to the CS model. That is, one does not 

specify a new model but just makes the information about change more accessible (Steyer et 

al., 1997, 2000). 

Latent difference models do not make any restrictive assumptions with regard to a specific 

functional form of change as do, for example, growth curve models. The most restrictive 

assumption made in latent difference models is the assumption of measurement invariance 

over time. For the latent difference scores to be meaningful, factor loadings and measurement 

intercepts need to be time-invariant. (The decomposition into initial status and change in 

Equation 19 only makes sense if the same attribute is measured on both occasions of 

measurement.) Time-invariant intercepts and loadings imply that the measurement structure 

of the construct does not change over time. The assumption of measurement invariance is a 
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general requirement in longitudinal studies (e.g., Meredith & Horn, 2001; Tisak & Tisak, 

2000). Fortunately, this assumption can be empirically tested. When invariance constraints are 

imposed on intercepts and loadings, the measurement model of the CS/latent difference model 

simplifies to (see also Figure 10A): 

 
il i i l il

Y S E= α + λ ⋅ + , (21) 

where the occasion index l has been dropped from the intercepts and loadings to express 

that these parameters do not vary over time. This reduced model can be tested against the 

more general measurement model in Equation 19 to investigate whether measurement 

invariance is tenable. 
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Figure 10. Path diagram of a CS model with invariant parameters for one construct measured 
on two occasions of measurement. 

il
Y  = observed variable (i = indicator, l = occasion of 

measurement). 
l

S  = latent state factor. 2 1S S−  = latent difference variable. 
il

E  = error variable. 

A: State version. B: Latent difference version. The loading 1λ  of 11Y  and 12Y  is set equal to 1 

for identification. Intercepts 
i

α  are not shown. Note that there is no residual term for the 

latent state factor 2S  in Figure 10B. 

 

 

Latent difference variables can be included for investigating change between a given 

occasion of measurement and the first occasion (“baseline change model”; Steyer et al., 2000) 

or for change between any specific pair of state factors that is of interest (e.g., to study change 

between adjacent time points in a “neighbor change model”). I will discuss the different 

possibilities of including latent difference variables in greater detail in Chapter 4 where I 

present multi-method change models.  
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2.2.3 The CS Model Applied to MTMM-MO Data 

The CS model can directly be applied to MTMM-MO data. If multiple indicators are 

available for each CMOU, separate correlated state factors can be specified for each CMOU 

as shown in Figure 11. Such a multi-method CS model allows for the estimation of a latent 

MTMM-MO correlation matrix, containing the correlations among state factors pertaining to 

different constructs, methods, and time points. The latent MTMM-MO matrix is very useful 

to study the convergent and discriminant validity as well as the temporal stability of different 

methods over time, as the coefficients in this matrix are corrected for measurement error. An 

application of the multi-method CS model and its change version to MTMM-MO data has 

been described by Geiser, Eid, Nussbeck, Courvoisier, and Cole (2008). 

Although the multi-method CS model deals with method effects in an appropriate way and 

provides very useful information, it has some limitations for the analysis of MTMM-MO data. 

Given that there is a separate state factor for each CMOU (and no method factors), the multi-

method CS model does not allow determining the convergent validity and method-specificity 

in terms of variance components for the indicators. Each state factor represents a construct 

measured by a specific method. Hence, method effects are confounded with the state factors 

for all methods. Therefore, method-specific deviations cannot be isolated, and they cannot be 

related to external variables to explain these deviations. Geiser, Eid, Nussbeck, et al. (2008) 

offer a detailed comparison of the multi-method CS model and the CS-C(M–1) approach to be 

discussed in the following chapter. 
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Figure 11. Multi-method CS model for two constructs measured by two methods on two 
occasions of measurement. 

ijkl
Y  = observed variable (i = indicator, j = construct, k = method, l 

= occasion of measurement). 
jkl

S  = latent state factor. 
ijkl

E  = error variable. 
ijkl

λ  = state factor 

loading. All state factors can be correlated. 
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3 The Correlated State-Correlated (Method–1) Model 

In this chapter, I show how the CS model can be extended to a multimethod model that 

allows for a detailed analysis of method effects in longitudinal studies. This extended model 

represents a combination of the CS model introduced in Chapter 2.2.1 and the multiple 

indicator CT-C(M–1) model described in Chapter 1.3.1.2. It is therefore called Correlated 

State-Correlated (Method Minus One) [CS-C(M–1)] model. In the following section, I present 

the definition of the CS-C(M–1) model in four steps. Subsequently, I will discuss important 

properties of the model as well as admissible and non-admissible factor correlations. In 

Section 3.2, a variant of the CS-C(M–1) model with indicator-specific factors across time will 

be introduced. This variant is a useful extension if the same indicators share systematic (but 

indicator-specific) variance across time. In Section 3.5, I offer a more technical treatment of 

both model variants. In the more technical part, I show how both models can be defined based 

on stochastic measurement theory and analyze questions of uniqueness, meaningfulness, 

covariance structure, and identification for the variables and parameters of the models. 

3.1 The CS-C(M–1) Model  

3.1.1 Definition of the CS-C(M–1) Model  

As I mentioned in Section 1.3.1.2, indicators (i.e., items, test scores, test halves, or item 

parcels) within a TMU might not be perfectly unidimensional. Each indicator might represent 

a slightly different facet of the construct. In addition, indicators with the same index i, but 

different method index k, might share common aspects not shared with the other indicators of 

the same construct. For example, the Children’s Depression Inventory (CDI; Kovacs, 1985) is 

a self-report questionnaire for measuring childhood depression. Its parent-report version (CDI 

parent form) contains the same items as does the self-report form. Therefore, if item parcels 

are created in the same way for both the self-report and the parent form of the CDI, this may 

lead to shared indicator-specific variance across the two rater types. In order to account for 

such shared indicator-specific sources of variance, I will present a version of the CS-C(M–1) 

model in which the latent state factors are indicator-specific. The CS-C(M–1) model is thus a 

direct extension of the CT-C(M–1) model with indicator-specific trait factors discussed in 

Section 1.3.1.2 (see Figure 4). The model variant to be presented in Section 3.2 accounts for 

indicator-specific effects across time, while assuming homogeneity of indicators within the 

same time point. 
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Step 1.  Basic Decomposition of Latent State Theory 

As in the conventional CS model, the starting point is the basic decomposition of an 

observed variable 
ijkl

Y  into a latent state variable 
ijkl

S  and an error variable 
ijkl

E  (see also 

Chapter 2.2): 

 
ijkl ijkl ijkl

Y S E= + . (22) 

Note that, in order to formulate a general MTMM-MO model, we need two additional 

indices: j for the construct and k for the method. The index i again denotes the indicator and l 

denotes the occasion of measurement. It is important to understand that at this point, the state 

variables 
ijkl

S  are indicator-specific (see also Figure 12A) That is, there is a separate state 

variable for each indicator. Therefore, the model in Equation 22 is not identified. Identified 

models with common factors are obtained by introducing specific homogeneity assumptions 

with regard to the latent variables in later steps. 

Step 2.  Choice of the Reference Method 

As in the multiple indicator CT-C(M–1) model, one method is selected as the comparison 

standard (so-called reference method). As explained below, the latent state variables 

belonging to the reference method are then used as predictors in a latent regression analysis 

(Eid, 2000; Eid et al., 2003; see Step 3). Without loss of generality, the first method (k = 1) is 

selected as the reference method4. The general measurement equation for all reference method 

indicators is given by: 

 1 1 1ij l ij l ij l
Y S E= + . (23) 

Step 3.  Definition of Construct- and Occasion-Specific Method Factors 

In the following, we consider the latent state variables 
ijkl

S  belonging to non reference 

method indicators ( 1k ≠ ). How do these latent state variables relate to the latent state 

variables 1ij l
S , pertaining to the reference method? I assume that the latent state variables 

ijkl
S  

are linearly regressed on the variables 1ij l
S . This latent regression is expressed by the 

following equation: 

                                                 
4 For the sake of simplicity and consistency (and without loss of generality), I will assume throughout this work 
that the first method (k = 1) serves as the reference method. In empirical applications, researchers may in 
principle select any method as reference method. For guidelines regarding the proper choice of the reference 
method in practical applications, see Geiser, Eid, and Nussbeck (2008). 
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 1 S 1( | )
ijkl ij l ijkl ijkl ij l

E S S S= α + λ , for 1k ≠ , (24) 

where 1( | )
ijkl ij l

E S S  denotes the conditional expectation (regression) of a latent state variable 

ijkl
S  belonging to a non-reference method on the comparison standard latent state 

variable 1ij l
S . The residuals of this regression are the latent method variables 

ijkl
M . They are 

defined as 

 1: ( | )
ijkl ijkl ijkl ij l

M S E S S= − . (25) 

The latent residual variables 
ijkl

M  represent that part of a non-reference state variable 
ijkl

S  

that is not explained by the reference state variable 1ij l
S . Hence, 

ijkl
M  represents the method-

specific deviation of 
ijkl

S  from the expected value of 
ijkl

S  given 1ij l
S . For example, 1ij l

S  could 

represent the latent state true score variable associated with a self-rating (reference method) of 

depression. 
ijkl

S  could be the latent state true score variable of the corresponding friend rating. 

In this example, a score on 
ijkl

M  would represent the unique view of a friend that is not 

shared with the depression self-rating. The friend might over- or underestimate an 

individual’s level of depression (with respect to the value predicted by the self-report), and 

this over- or underestimation would be expressed in the value of 
ijkl

M . 

Step 4.  Definition of Common Construct- and Occasion-Specific Method Factors 

Note that, like the variables 
ijkl

S , the method-specific residual variables 
ijkl

M  are indicator-

specific (see also Figure 12A). Each indicator pertaining to a non-reference method has its 

own method effect 
ijkl

M : 

 S 1ijkl ijkl ijkl ij l ijkl ijkl
Y S M E= α + λ + + , for 1k ≠ . (26) 

Of course, such a model is not identified. In order to obtain an identified model, I introduce 

a homogeneity assumption with regard to the indicator-specific method variables 
ijkl

M . I 

assume that all residuals 
ijkl

M , pertaining to the same construct j, method k, and occasion of 

measurement l, but different indicators i and i' are linear functions of each other: 

 M ' 'ijkl ii jkl i jkl
M M= λ ⋅ . (27) 
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This implies that all residuals 
ijkl

M  with the same indexes ,  j k , and l  are perfectly 

correlated (they differ only by a multiplicative constant, i.e., Mλ ii jkl′ ). Substantively, this 

means that I assume method effects to be homogeneous for all indicators supposed to measure 

the same construct by the same method on the same occasion of measurement. Note that there 

is no additive constant (intercept) in Equation 27. This is due to the method factors being 

defined as residuals (see Equation 25). Residuals have means of zero by definition and as a 

consequence, no intercept term appears in Equation 27. 

A consequence of the homogeneity assumption made introduced in Equation 27 is that we 

can define common method factors 
jkl

M . (The proofs are provided in Section 3.5.1.2.) All 

indicators that belong to a non-reference method ( 1k ≠ ) and the same CMOU ( , ,j k l ) then 

measure (1) an indicator-specific reference state factor 1ij l
S  and (2) a common occasion-

specific, construct-specific method factor 
jkl

M : 

 S 1 M λ λ
ijkl ijkl ijkl ij l ijkl jkl ijkl

Y S M E= α + + + . (28) 

(For the indicators of the reference method, Equation 23 holds.) Figure 12 shows a path 

diagram of a CS-C(M–1) model for one construct measured by one reference and one non-

reference method on two occasions of measurement. Note that there are two indicators per 

CMOU so that method effects can be construct-specific as well as occasion-specific. The 

model in Figure 12 can be identified by fixing one method factor loading per method factor to 

one (i.e., by setting M1121 M1122λ λ 1= = ). Possible factor covariances are not shown in Figure 

12 in order to avoid cluttering. Admissible and Non-admissible factor covariances are 

discussed below. Some important properties of the CS-C(M–1) model can be summarized as 

follows: 

 

1. As in the multiple indicator CT-C(M–1) model for cross-sectional data, a reference 

method is selected and there is no method factor for the reference method on any 

occasion of measurement. 

2. Method effects can be construct-specific. Only if all method factors belonging to the 

same method k, but different constructs j (on the same occasion l) are perfectly 

correlated [i.e., '( , ) 1,  '
jkl j kl

Cor M M j j= ≠ ], one may replace the construct-specific 
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method factors 
jkl

M  by general method factors klM . The property of construct-

specific method effects is also shared with the multiple indicator CT-C(M–1) model. 

3. In the CS-C(M–1) model, method effects can not only be construct-specific, but also 

occasion-specific. Consequently, one can use the model to study the generalizability 

of method effects across constructs and across situations / occasions of 

measurement. An implication of this property is that homogeneous (i.e., non-

construct-specific) and stable (i.e., time-invariant) method effects can only be 

assumed if method factors belonging to the same method but different constructs and 

different occasions of measurement are perfectly correlated [i.e., if 

' '( , ) 1,  ',  'jkl j klCor M M j j l l= ≠ ≠ ]. In this case, it would be sufficient to specify 

general method factors kM . Another, less restrictive assumption can also be tested. 

One may test whether method effects are perfectly stable over time. This hypothesis 

would be supported if the method factors belonging to the same method and the 

same construct but different occasions of measurement are perfectly correlated [i.e., 

if '( , ) 1,  'jkl jklCor M M l l= ≠ ]. In this case, one could specify a more parsimonious 

model with method factors jkM  (instead of jklM ). 

4. The CS-C(M–1) model relaxes the rather restrictive assumption that indicators are 

homogeneous by allowing for indicator-specific latent state variables. This property 

is shared with the CT-C(M–1) model with indicator-specific trait variables (see 

Figure 4). 
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Figure 12. Path diagram of a CS-C(M–1) model for one construct measured by two methods 
on two occasions of measurement. 

ijkl
Y  = observed variable (i = indicator, j = construct, k = 

method, l = occasion of measurement). 
ijkl

S  = latent state variable. 
ijkl

M  = latent method 

variable. 
jkl

M  = common method factor. 
ijkl

E  = error variable. Sijkl
λ  = state factor loading. 

Mijkl
λ  = method factor loading. A: All indicator-specific latent state variables 

ijkl
S  are 

included. B: Latent state variables 
ijkl

S  have been dropped (except 1ij l
S ). For the sake of 

clarity, no factor covariances are shown (but see text and Figure 13). 
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In the following, I discuss the latent variable covariance structure in the CS-C(M–1) 

model. In the first part, I explain which types of latent correlations are assumed to be zero or 

are equal to zero by definition of the model. In the second part, I discuss permissible latent 

correlations and their meaning for MTMM-MO analyses. In the third part, I present the 

variance decomposition of the observed and latent state variables and I show how coefficients 

for quantifying the convergent validity, method-specificity, and reliability of the indicators 

can be defined. 

3.1.2 Covariance Structure of the Latent Variables 

3.1.2.1 Non-Permissible Latent Correlations 

The following correlations are not permitted in the CS-C(M–1) model. In practical 

applications, researchers must think of fixing these correlations to zero.  

 

(A) State factors are not allowed to correlate with any method factor that belongs to the 

same construct on the same occasion of measurement: 

 1( , ) 0.jkl ij lCov M S =  (29) 

This follows from the definition of the method factors jklM  as residuals with respect 

to the state variables 1ij l
S . Residuals are always uncorrelated with their regressors (see, 

e.g., Steyer, 1988; as well as Steyer & Eid, 2001). 

(B) Error variables are assumed to be uncorrelated with all other error variables: 

 ' ' ' '( , ) 0,ijkl i j k lCov E E =  for ( , , , ) ( ', ', ', ')i j k l i j k l≠ . (30) 

(C) Correlations between error variables and other latent variables are not admissible 

either: 

 ' '1 ' ' ' '( , ) ( , ) 0.ijkl i j l ijkl j k lCov E S Cov E M= =  (31) 

3.1.2.2 Permissible Latent Correlations 

The following latent correlations can be estimated in the CS-C(M–1) model. Note that 

examples of all these correlations are given in Figure 13. The numbers in Figure 13 

correspond to the numeration in the text. 
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(1) The correlations 1 ' 1( , ),  'ij l i j lCor S S i i≠ , between indicator-specific latent state factors 

belonging to the same construct on the same occasion of measurement can be 

interpreted as indexes of the degree of homogeneity of the indicators. Low 

correlations indicate that the observed variables (e.g., tests, test halves or item parcels) 

are rather heterogeneous (i.e., capture different aspects or facets of a construct). In 

contrast, correlations close to unity point to a high homogeneity of the indicators. If 

1 ' 1( , ) 1ij l i j lCor S S = , it would be sufficient to specify a single common state factor 1j lS  

for all indicators 
ijkl

Y  and 'i jkl
Y  instead of multiple indicator-specific state factors. 

(2) The correlations 1 ' '1( , ),  'ij l i j lCor S S j j≠ , between latent state factors belonging to 

different constructs on the same occasion of measurement can be interpreted as 

coefficients of discriminant validity with respect to the reference method. If the 

correlation is rather small, there is evidence for discriminant validity of the constructs 

on a given time point l. 

(3) The correlations '( , ),  'jkl j klCor M M j j≠ , between method factors belonging to the 

same method but different constructs j  and 'j  on the same occasion of measurement 

characterize the generalizability of method effects across constructs on a given 

measurement occasion. A correlation of zero indicates that a method effect is perfectly 

construct-specific (does not generalize at all across constructs). For example, the bias 

of a teacher rating with respect to a child’s depression level might not generalize to an 

anxiety rating. In contrast, a correlation of unity means that a method effect is 

perfectly homogeneous across constructs. That would be the case, for example, if a 

teacher rating with respect to the construct depression perfectly generalized to the 

construct anxiety. In practice, correlations between .6 and .8 are often found, showing 

that method effects generalize across constructs to some degree, but not perfectly so. 

(4) The correlations '( , ),  'jkl jk lCor M M k k≠ , between method factors belonging to the 

same construct but different methods indicate the common deviation of non-reference 

methods from the reference method. To illustrate, imagine a study in which self, peer, 

and teacher ratings are used to measure children’s anxiety. The self-report is selected 

as reference method. Then, the correlation between the method factors for the peer-

report and the teacher-report of anxiety represents a partial correlation corrected for 

the influence of the self-report. A value of zero for this partial correlation means that 

peers and teachers do not share a common view of the target that is not shared with the 
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targets’ own view. On the other hand, if the correlation between the method factors is 

substantial, this means that there is a consistent method bias that generalizes across 

non-reference methods. For instance, peers and teachers might share a common view 

of the targets’ anxiety that is not shared with the targets’ own rating. 

(5) The correlations '1( , ),  'jkl ij lCor M S j j≠ , between a method factor of a construct j and 

any state factor belonging to another construct 'j  on the same occasion of 

measurement indicate “pure” discriminant validity corrected for method influences of 

the reference method. In practice, these correlations often do not significantly differ 

from zero. 

(6) Correlations between method factors belonging to different TMU’s on the same 

occasion of measurement [i.e., ' '( , ),  ',  'jkl j k lCor M M j j k k≠ ≠ ] are also measures of 

discriminant validity between methods, corrected for the discriminant validity with 

respect to the reference method. Significant correlations indicate that the reference 

method cannot completely explain the associations between different methods. For 

example, an over- or underestimation of anxiety by teachers (compared to the 

reference method) might be associated with over- or underestimation of depression by 

peers. 

 

So far, only admissible correlations between latent factors measured on the same 

occasion of measurement have been considered. All these correlations can also be 

investigated in the cross-sectional multiple indicator CT-C(M–1) model (see Chapter 1.3.1.2). 

In the following, I discuss additional correlation coefficients that cannot be examined in the 

CT-C(M–1) model, but can be calculated in the CS-C(M–1) model. 

 

(7) The correlations between the latent state factors belonging to the same construct 

assessed on different measurement occasions [i.e., 1 ' 1 '( , ),  'ij l i j lCor S S l l≠ ] represent 

coefficients of construct stability. Two different types can be distinguished: (a) the 

correlations 1 1 '( , ),  'ij l ij lCor S S l l≠ , are the correlations between the same indicator-

specific state factors over time. These correlations are stability coefficients not 

corrected for indicator-specific effects (number 7a in Figure 13); (b) the correlations 

1 ' 1 '( , ),ij l i j lCor S S  ',  'i i l l≠ ≠ , are the correlations between state factors of the same 

construct over time, but measured by different indicators. Hence, these state factors do 
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not share indicator-specific sources of variance. Their correlation thus represents 

construct stability corrected for indicator-specific influences (number 7b in Figure 13). 

One can expect the stability coefficients of type 7a to be higher than the coefficients of 

type 7b. The type-7a-coefficients might be inflated due to shared (construct-irrelevant) 

indicator-specific variance. In either case, if 1 ' 1 '( , ) 1 (for ')ij l i j lCor S S l l= ≠ , inter-

individual differences with respect to construct j remain perfectly stable between time 

l and time 'l . Correlations smaller than unity indicate that some individuals have 

changed more than others between two occasions of measurement. In sum, these 

correlations allow investigating whether there has been true differential change 

between two time points. 

(8) The correlations 1 ' '1 '( , ),  ',  'ij l i j lCor S S j j l l≠ ≠ , between latent state variables 

pertaining to different constructs j measured on different occasions l can be interpreted 

as discriminant validity coefficients with respect to the reference method that are 

corrected for common occasion-specific influences. In specific situations, these 

correlations may also be seen as coefficients of predictive validity with respect to the 

reference method. 

(9) The correlations 1 '( , ),  'jkl ij lCor M S l l≠ , between state factors and method factors 

belonging to the same construct, but different occasions of measurement are somewhat 

difficult to interpret. Significant correlations would indicate that the method-specific 

deviation of method k from the reference method at time l can predict the scores on the 

reference method state factor pertaining to the same construct at time 'l . Although it 

is conceivable that, for example, a self-report on one measurement occasion might 

influence an other-report on another occasion, one would not generally expect these 

correlations to be substantial and might therefore consider fixing them to zero for 

reasons of parsimony. 

(10) The correlations '1 '( , ),  ',  'jkl ij lCor M S j j l l≠ ≠ , between construct-specific method 

factors and state factors belonging to another construct on another occasion of 

measurement are coefficients of discriminant validity corrected for common method 

effects and common occasion-specific influences. My experience is that these 

correlations generally do not differ significantly from zero in empirical applications. 

(11) In order to assess the degree of stability of construct-specific method effects, one can 

investigate the correlations between method factors belonging to the same construct 
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and the same method, but different measurement occasions [i.e., '( , ),jkl jklCor M M  

'l l≠ ]. A high correlation indicates that the deviation of a method from the reference 

method is stable over time for a given construct. For example, teachers might 

consistently over- or underestimate the degree of anxiety of a child across different 

occasions of measurement. 

(12) The generalizability of method effects across constructs corrected for common 

occasion-specific influences can be estimated by means of the correlations 

' '( , ),jkl j klCor M M  ',  'j j l l≠ ≠ . A high correlation indicates that the method-specific 

deviation of method k from the reference method is both stable across constructs and 

stable over time. For instance, teachers might consistently over- or underestimate the 

level of anxiety and depression in children across different situations/occasions of 

measurement. 

(13) The correlations between method factors belonging to different methods, but the same 

construct measured on different occasions [ ' '( , ),jkl jk lCor M M  ',  'k k l l≠ ≠ ] indicate 

the consistency of method effects across constructs corrected for common occasion-

specific influences. 

(14) The discriminant validity of methods, corrected for construct-specific and common 

occasion-specific influences, can also be estimated. One can therefore correlate the 

method factors of a method k belonging to a construct j at time l with the method 

factors of other methods 'k , belonging to different constructs 'j  on different 

occasions of measurement 'l , formally expressed as ' ' '( , ),jkl j k lCor M M  

',  ',  'j j k k l l≠ ≠ ≠ . 
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Figure 13. Path diagram of a CS-C(M–1) model for two constructs, three methods, and two 
time points. 

ijkl
Y  = observed variable (i = indicator, j = construct, k = method, l = occasion of 

measurement). 1ij l
S  = latent state factor. 

jkl
M  = common method factor. 

ijkl
E  = error variable. 

The numbers 1–14 refer to various types of latent correlations that are discussed in the text. 
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3.1.3 Latent Variable Mean Structure 

In the CS-C(M–1) model, not only the latent variable covariance structure, but also the 

latent variable mean structure can be analyzed. For example, it might be of interest whether 

the means of the latent state factors 1ij l
S  change over time. The mean structure of the latent 

state factors is given by: 

 1 1( ) ( )
ij l ij l

E S E Y= . (32) 

Equation 32 follows given that (1) there is no intercept in the equation 1 1 1ij l ij l ij l
Y S E= +  and 

(2) the error variables 1ij l
E  have an expectation (mean) of zero by definition. The method 

factors 
jkl

M , being residual variables, also have means of zero: 

 ( ) 0
jkl

E M = . (33) 

Consequently, only the means of the latent state factors can be tested for invariance across 

occasions of measurement in the CS-C(M–1) model. Mean differences with respect to the 

indicators of non-reference methods can be assessed by fixing the latent state factor means to 

zero and estimating the intercepts for all indicators. The intercepts are then identical to the 

observed variable means. Tests for mean differences across time for all methods can be 

conducted by testing a constrained model in which some or all intercepts are set equal over 

time for the same indicator. 

3.1.4 Variance Decomposition and Variance Components 

As a consequence of Equation 29, the variances of the indicator-specific state variables can 

be decomposed in the following way: 

 2 2
S 1 M( ) ( ) ( ),  for 1ijkl ijkl ij l ijkl jklVar S Var S Var M k= λ + λ ≠ . (34) 

Furthermore, as a consequence of Equations 29 to 31, the variances of the observed 

variables can be decomposed as follows: 

 
1 1

2 2
S 1 M

( ) ( ),  for 1,                                     
( )

( ) ( ) ( ),  for 1.
ij l ij l

ijkl

ijkl ij l ijkl jkl ijkl

Var S Var E k
Var Y

Var S Var M Var E k

+ =
= 

λ + λ + ≠
 (35) 

The additive variance decomposition allows defining coefficients of consistency, method 

specificity, reliability, and unreliability. The consistency coefficient represents the proportion 
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of variance of an observed variable (indicator) that is explained by the reference method state 

factor on a given occasion of measurement. It can be interpreted as an index of the convergent 

validity with respect to the reference method: 

 
2
S 1( )

( )
( )

ijkl ij l

ijkl

ijkl

Var S
CO Y

Var Y

λ
= . (36) 

The method-specificity coefficient represents the proportion of the variance of an indicator 

that is due to method-specific influences on a given occasion of measurement: 

 
2
M ( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS Y

Var Y

λ
= , 1k ≠ . (37) 

Consistency and method-specificity coefficients add up to the reliability coefficient. The 

reliability coefficient represents the proportion of the variance of an indicator that is explained 

by the true score variable. It can also be calculated as the sum of consistency and method-

specificity coefficients: 

 
2 2
S 1 M( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

ijkl ijkl ij l ijkl jkl

ijkl ijkl ijkl

ijkl ijkl ijkl

Var S Var S Var M
Rel Y CO Y MS Y

Var Y Var Y Var Y

λ λ
= = + = + . (38) 

The consistency and method-specificity coefficients can also be defined with respect to the 

latent state variables: 

 
2
S 1( )

( )
( )

ijkl ij l

ijkl

ijkl

Var S
CO S

Var S

λ
= , (39) 

 
2
M ( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS S

Var S

λ
= , 1k ≠ . (40) 

Given that the variables 
ijkl

S  represent the “true states” (that do not contain measurement 

error), the coefficients ( )
ijkl

CO S  and ( )
ijkl

MS S  add up to unity. Table 1 summarizes the 

definition of the CS-C(M–1) model. 
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Table 1  

Summary of the CS-C(M–1) State Model 

Definition Equation 

Basic decomposition of 
latent state theory ijkl ijkl ijkl

Y S E= +  

True score regression 1 S 1( | )ijkl ij l ijkl ijkl ij lE S S S= α + λ  (for 1k ≠ ) 

Definition of method 
variables 1: ( | )ijkl ijkl ijkl ij lM S E S S= −  

Definition of common 
method factors Mλijkl ijkl jklM M=  

Covariances of method and 
state factors (same 
construct, same occasion) 

1( , ) 0jkl ij lCov M S =  

Covariances of error 
variables ' ' ' '( , ) 0,ijkl i j k lCov E E = ( , , , ) ( ', ', ', ')i j k l i j k l≠  

Covariances between error 
variables and other latent 
variables 

' '1 ' ' ' '( , ) ( , ) 0ijkl i j l ijkl j k lCov E S Cov E M= =  

Mean structure (state 
factors) 1 1( ) ( )

ij l ij l
E S E Y=  

Mean structure (method 
factors and error variables) 

( ) ( ) 0
jkl ijkl

E M E E= =  

Variance decomposition 
(observed variables) 

1 1

2 2
S 1 M

( ) ( ),  for 1                                 
( )

( ) ( ) ( ),  for 1
ij l ij l

ijkl

ijkl ij l ijkl jkl ijkl

Var S Var E k
Var Y

Var S Var M Var E k

+ =
= 

λ + λ + ≠
 

Consistency (observed 
variables) 

2
S 1( )

( )
( )

ijkl ij l

ijkl

ijkl

Var S
CO Y

Var Y

λ
=  

Method-specificity 
(observed variables) 

2
M ( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS Y

Var Y

λ
=  (for 1k ≠ ) 

 (Table continues) 

  

Definition Equation 
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Reliability 

2 2
S 1 M( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

ijkl ijkl ij l ijkl jkl

ijkl

ijkl ijkl ijkl

ijkl ijkl

Var S Var S Var M
Rel Y

Var Y Var Y Var Y

CO Y MS Y

λ λ
= = +

= +

 

Variance decomposition 
(state variables) 

2 2
S 1 M( ) ( ) ( ),  for 1ijkl ijkl ij l ijkl jklVar S Var S Var M k= λ + λ ≠  

Consistency (state 
variables) 

2
S 1( )

( )
( )

ijkl ij l

ijkl

ijkl

Var S
CO S

Var S

λ
=  

Method-specificity (state 
variables) 

2
M ( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS S

Var S

λ
=  (for 1k ≠ ) 

Note.  
ijkl

Y  = observed variable (i = indicator, j = construct, k = method, l = occasion of 

measurement). Without loss of generality, the first method (k = 1) is selected as reference 
method. 

ijkl
S  = latent state variable. 

ijkl
E  = error variable. 1( | )ijkl ij lE S S  denotes the 

conditional expectation (regression) of 
ijkl

S  on 1ij l
S . ijklα  = intercept. Sijklλ  = state factor 

loading. 
ijkl

M  = latent method-specific residual variable. 
jkl

M  = common method factor. 

Mλ ijkl  = method factor loading. 

 

3.2 The CS-C(M–1) Model With Indicator-Specific Factors Across Time 

3.2.1 Indicator-Specific Effects Across Time 

I already mentioned in Chapters 1.3.1.2 and 3.1 that perfectly homogeneous indicators are 

rarely available in practice and that indicator-specific effects might generalize across methods 

and across time. Therefore, the CS-C(M–1) model introduced in Chapter 3.1 was defined as a 

model with indicator-specific state factors. The CS-C(M–1) model with indicator-specific 

state factors as defined in Chapter 3.1 accounts for indicator-specific effects that generalize 

across different methods within the same measurement occasion. It may not, however, 

appropriately capture indicator-specific effects of the same indicator that generalize over time. 

As I pointed out before, indicator-specific effects over time are often encountered in 

longitudinal studies when the same indicators are repeatedly measured (Sörbom, 1975). The 

CS-C(M–1) model defined in Chapter 3.1 assumes that all error variables 
ijkl

E  are 

uncorrelated. This assumption may be too restrictive if indicator-specific effects generalize 

across time. Failure to model shared indicator-specific effects over time can lead to model 

misspecification and biased parameter estimates. One possibility to deal with indicator-
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specific effects over time is to admit correlations between specific error variables, that is, 

estimate some or all correlations between error variables associated with the same variable 

over time (e.g., Cole & Maxwell, 2003; Sörbom, 1975). 

A limitation of models with auto-correlated errors (correlated uniqueness models) is that in 

these models, indicator-specific effects are confounded with measurement error, leading to an 

underestimation of the reliabilities of the indicators (cp. Chapter 1.3). Hence, a better way to 

handle indicator-specific effects over time is to include indicator-specific factors in the model 

(e.g., Jöreskog, 1979; Marsh & Grayson, 1994; Raffalovich & Bohrnstedt, 1987; Tisak & 

Tisak, 2000). Models with indicator-specific factors make it possible to separate variance 

components due to indicator-specific effects from variance due to random measurement error. 

As a consequence, an underestimation of the observed variable reliabilities is avoided in these 

models. 

According to Eid et al. (1999), it is not necessary to include an indicator-specific factor for 

each repeatedly measured indicator i. Eid et al. (1999) have shown that it is sufficient to use 

i – 1 indicator specific factors per construct. (Specifying as many indicator-specific factors as 

there are different indicators often leads to an overfactorization as well as identification and 

estimation problems.) 

In the next section, I present an alternative variant of the CS-C(M–1) model that includes 

indicator-specific factors over time. In order to avoid an over-factorization that might lead to 

identification and estimation problems, the CS-C(M–1) model with indicator-specific factors 

across time is formulated as a model with general (instead of indicator-specific) latent state 

factors.  

3.2.2 Definition of the CS-C(M–1) Model With Indicator-Specific Factors 

The definition of the CS-C(M–1) model with indicator-specific factors is presented in five 

steps. 

Step 1. Basic Decomposition of Latent State Theory 

As in the CS-C(M–1) model defined in Chapter 3.1, the starting point is the basic 

decomposition of an observed variable 
ijkl

Y  (i = indicator, j = trait, k = method, l = occasion of 

measurement) into a latent state variable 
ijkl

S  and an error variable 
ijkl

E  (cp. Chapter 2.2): 

 
ijkl ijkl ijkl

Y S E= + . (41) 
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The error variable 
ijkl

E  is again defined as a residual with respect to 
ijkl

S . As a 

consequence, 
ijkl

E  has zero expectation, and 
ijkl

E  and 
ijkl

S  are uncorrelated with each other.  

Step 2. Choice of Reference Method, Reference Indicators, and Marker Indicators 

In the CS-C(M–1) model with indicator-specific factors, one method is again selected as 

reference method. In addition, for each construct-occasion unit, one indicator belonging to the 

reference method is selected as reference indicator. Without loss of generality, I again select 

the first method (k = 1) as the reference method, and I choose the first indicator (i = 1) 

measured by the reference method as the reference indicator. All reference indicators 

belonging to the reference method can be decomposed as follows: 

 1 1 1 1 1 1j l j l j l
Y S E= + . (42) 

The variables 1 1j l
S  can be interpreted as reference state variables. To introduce ( 1)i j k− ⋅ ⋅  

indicator-specific factors, marker indicators have to be defined for each construct-method 

unit for which no indicator-specific factors are specified. Without loss of generality, I select 

all indicators with index i = 1 ( 1 jkl
Y ) as marker indicators. Hence, the variables 1 1j l

Y  are at the 

same time reference and marker indicators. 

Step 3. Definition of Indicator-Specific Factors for the Reference Method 

In the next step, I consider only the latent state variables 1ij l
S , 1i ≠ , belonging to indicators 

of the reference method (k = 1). I assume that the variables 1ij l
S  are linearly regressed on the 

reference state variables 1 1j l
S , pertaining to the same construct and the same measurement 

occasion: 

 1 1 1 1 S 1 1 1( | )ij l j l ij l ij l j lE S S S= α + λ , for 1i ≠ , (43) 

where 1 1 1( | )ij l j lE S S  denotes the conditional expectation (regression) of 1ij l
S  on 1 1j l

S , and 

1ij lα  as well as S 1ij lλ  are real constants. The residuals of this regression are the indicator-

specific variables 1ij lIS  for the (non-marker) indicators of the reference method: 

 1 1 1 1 1: ( | )ij l ij l ij l j lIS S E S S= − . (44) 
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Common indicator-specific factors for the same indicators over time are obtained by 

assuming that all indicator-specific variables 1ij lIS  belonging to the same indicator and the 

same construct differ only by a multiplicative constant IS 1 'ij ll
λ : 

 1 IS 1 ' 1 'ij l ij ll ij l
IS IS= λ . (45) 

A consequence of this unidimensionality assumption is that the (indicator-specific) 

variables 1ij lIS  can be replaced by a common indicator-specific factor 1ij
IS . 

Hence, all latent state variables 1ij l
S , 1i ≠ , can be decomposed into (1) an intercept ( 1ij l

α ), 

(2) one part that is due to an occasion-specific state factor common to all indicators of the 

same construct measured on the same measurement occasion ( S 1 1 1ij l j l
Sλ ), and (3) an occasion-

unspecific (stable) indicator-specific part ( IS 1 1ij l ij
ISλ ): 

 1 1 S 1 1 1 IS 1 1ij l ij l ij l j l ij l ij
S S IS= α + λ + λ . (46) 

Step 4. Definition of Trait- and Occasion-Specific Method Variables 

In this step, I consider the latent state variables 
ijkl

S  belonging to non-reference method 

indicators ( 1k ≠ ). I assume that the latent state variables 
ijkl

S , 1k ≠ , are also linearly 

regressed on the reference state variables 1 1j l
S : 

 1 1 S 1 1( | )ijkl j l ijkl ijkl j lE S S S= α + λ , for 1k ≠ , (47) 

where ijklα  and Sijklλ  are real constants. The residuals of this regression are defined as: 

 1 1: ( | )ijkl ijkl ijkl j lM S E S S= − . (48) 

The variables ijklM  represent occasion-specific method-specific deviations of an indicator 

from the expected value given the reference state variable on measurement occasion l (i.e., the 

method variables ijklM  represent that part of the reliable variance of an indicator that is not 

shared with the reference method). 
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Step 5. Definition of Indicator-Specific Factors for the Non-Reference Methods 

To define indicator-specific factors also for the indicators pertaining to non-reference 

methods, I assume that the variables ijklM , 1i ≠ , are linearly regressed on the variables 1 jklM  

(which belong to the marker indicators 1 jklY , 1k ≠ ): 

 1 M 1( | )ijkl jkl ijkl jklE M M M= λ , for 1i ≠ , (49) 

where Mijklλ  denotes a real constant. The residuals of this regression represent the 

indicator-specific effects pertaining to the indicators of the non-reference methods: 

 1: ( | )ijkl ijkl ijkl jklIS M E M M= − . (50) 

It is then assumed that all variables ijklIS  with the same indices i, j, and k differ only by a 

multiplicative constant ( IS 'ijkll
λ ) such that: 

 IS ' 'ijkl ijkll ijkl
IS IS= λ . (51) 

Similarly to Equation 45, this assumption implies that indicator-specific effects are 

unidimensional for the same indicator over time. This is equivalent to assuming common 

occasion-unspecific factors 
ijk

IS  for all non-marker indicators pertaining to non-reference 

methods (the proofs are provided in Section 3.5.2.2). There is no additive constant (intercept) 

in Equation 51, given that the indicator-specific variables are residuals of a latent regression 

analysis. 

In sum, the state variables 1 jkl
S , belonging to the marker indicators (i = 1) of the non-

reference methods ( 1k ≠ ), can be decomposed into (1) an intercept ( 1 jklα ), (2) one part that is 

due to a common occasion-specific reference method state factor ( S1 1 1jkl j lSλ ), and (3) a 

common occasion-specific method factor ( 1 jklM ): 

 1 1 S1 1 1 1jkl jkl jkl j l jkl
S S M= α + λ + . (52) 

The state variables 
ijkl

S , belonging to the non-marker indicators ( 1i ≠ ) of the non-

reference methods ( 1k ≠ ), are decomposed into (1) an intercept (
ijkl

α ), (2) one part that is due 
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to a reference method state factor ( S 1 1ijkl j l
Sλ ), (3) one part that is due to a method factor 

( M 1ijkl jklMλ ), and (4) one part that is due to an indicator-specific factor ( ISijkl ijkISλ ): 

 S 1 1 M 1 ISijkl ijkl ijkl j l ijkl jkl ijkl ijk
S S M IS= α + λ + λ + λ . (53) 

The measurement equations for the extended CS-C(M–1) model with general state factors 

and i – 1 indicator-specific factors are given by: 

 

1 1 1 1

1 S 1 1 1 IS 1 1 1

1 S1 1 1 1 1

S 1 1 M 1 IS

,  for ,  = 1, 

,  for 1,  = 1,                   

,  for 1, 1,            

j l j l

ij l ij l j l ij l ij ij l

ijkl

jkl jkl j l jkl jkl

ijkl ijkl j l ijkl jkl ijkl

S E i k

S IS E i k
Y

S M E i = k

S M IS

+

α + λ + λ + ≠
=

α + λ + + ≠

α + λ + λ + λ ,  for , 1.       
ijk ijkl

E i  k






 + ≠

 (54) 

The CS-C(M–1) model with indicator-specific factors is illustrated in the path diagram in 

Figure 14. Note two important differences between this version of the CS-C(M–1) model and 

the version introduced in Section 3.1. First, the latent state factors in the CS-C(M–1) model 

with indicator-specific factors across time are general and not indicator-specific. Second, the 

CS-C(M–1) model with indicator-specific factors across time contains additional factors (the 

indicator-specific factors 
ijk

IS  shown in grey circles) for all but the marker indicators (i = 1) 

that capture indicator-specific effects over time. Admissible covariances between latent 

factors are not shown in Figure 14 for reasons of clarity. Admissible and non-admissible 

covariances are discussed in the next section. 
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Figure 14. Extended CS-C(M–1) model with general state factors and indicator-specific 
factors over time for two constructs, three methods, and two time points. 

ijkl
Y  = observed 

variable (i = indicator, j = construct, k = method, l = occasion of measurement). 1 1j l
S  = 

general latent state factor. 1 jkl
M  = latent method factor. 

ijk
IS  = indicator-specific factor. 

ijkl
E  

= error variable. For reasons of clarity, permissible factor correlations are not shown. 
 

3.2.3 Covariance Structure of the Latent Variables  

3.2.3.1 Non-Permissible Latent Correlations 

The following latent factor correlations are not permitted in the CS-C(M–1) model and 

must be fixed to zero in empirical applications: 

(A) State factors are not allowed to correlate with method factors belonging to the same  

construct on the same occasion of measurement: 

 1 1 1( , ) 0jkl j lCov M S = , (55) 

This follows from the definition of the method factors as residuals with respect to the  

state factors that pertain to the same construct on the same occasion of measurement. 

(B) All indicator-specific factors are uncorrelated with their regressors: 
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 1 1 1( , ) ( , ) 0.ijk j l ijk jklCor IS S Cor IS M= =  (56) 

(C) Error variables are uncorrelated with all other latent variables: 

 1 '1 ' 1 ' ' ' ' ' '( , ) ( , ) ( , ) 0.ijkl j l ijkl j k l ijkl i j kCor E S Cor E M Cor E IS= = =  (57) 

(D) Error variables are not correlated with other error variables: 

 ' ' ' '( , ) 0,ijkl i j k lCor E E =     ( , , , ) ( ', ', ', ')i j k l i j k l≠ . (58) 

Equations 55 to 57 are direct consequences of the definition of the latent variables in the 

model. Therefore, they cannot be empirically tested. In contrast, Equation 58 is not a direct 

consequence of the model definition. Equation 58 represents a testable assumption that could 

be falsified in an empirical application of the model. 

3.2.3.2 Permissible Latent Correlations 

In this section, I discuss the most important and most meaningful types of permissible 

latent correlations in the CS-C(M–1) model with indicator-specific factors. 

(1) The correlations 1 1 1 '1( , ),  'j l j lCor S S j j≠ , between state factors belonging to 

different constructs on the same occasion of measurement can be interpreted as 

coefficients of discriminant validity with respect to the reference method. 

Discriminant validity requires that these correlations not be too high. 

(2) Construct stability can be assessed by means of the correlations among state factors 

representing the same construct (measured by the reference method) on different 

measurement occasions [i.e., 1 1 1 1 '( , ),  'j l j lCor S S l l≠ , “construct stability 

coefficients”]. The finding of a strong positive correlation would suggest that 

individual differences with respect to the construct under study are stable over time 

(according to the reference method), and that situation-specific influences are 

negligible (i.e., that the attribute is trait-like rather than state-like). Weak to 

moderate correlations may be interpreted in terms of significant occasion-specific 

effects (i.e., the attribute is state-like rather than trait-like). 

(3) The correlations 1 1 1 '1 '( , ),  ',  'j l j lCor S S j j l l≠ ≠ , between latent state variables of 

different constructs measured on different measurement occasions can be 

interpreted as coefficients of discriminant validity with respect to the reference 

method that are corrected for common occasion-specific influences. Alternatively, 
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these correlations may be interpreted as coefficients of predictive validity with 

respect to the reference method. 

(4) The correlations 1 1 1 '( , ),  'j l j klCor S M j j≠ , between a state factor of a construct j and 

any method factor belonging to another construct 'j  on the same occasion of 

measurement represent pure discriminant validity coefficients corrected for 

common method influences of the reference method. 

(5) The correlations 1 1 '1 '( , ),  'jkl j lCor M S l l≠ , between state factors and method factors 

belonging to different occasions of measurement are generally difficult to interpret. 

In most applications, these correlations are not theoretically meaningful and 

therefore, I recommend fixing them to zero a priori unless strong hypotheses exist 

as to why such a correlation should differ from zero. 

(6) The correlations 1 1 '( , ),  'jkl j klCor M M j j≠ , between method factors belonging to the 

same method k but different constructs j  and 'j  on the same occasion of 

measurement again indicate the degree of generalizability of method effects across 

constructs on a given occasion of measurement. A correlation of one would indicate 

a perfectly general (not at all trait-specific) method effect. 

(7) The correlations 1 1 '( , ),  'jkl jk lCor M M k k≠ , between method factors belonging to 

the same construct but different methods are partial correlations between non-

reference methods that are corrected for the influence of the reference method (the 

reference method has been partialled out). They indicate that method-specific 

deviations from the reference method generalize across different (non-reference) 

methods. As an example, imagine a study in which self, parent, and teacher ratings 

are used to measure children’s anxiety, and the self-report is selected as the 

reference method. Then, the correlation between the method factors for the parent- 

and teacher report would be a partial correlation corrected for the influence of the 

self-report. A zero correlation would mean that parents and teachers do not share a 

common view of the children over and above the common view that is shared with 

the children’s own view. On the other hand, if the correlation between the method 

factors was substantial, this would mean that there is a consistent method bias 

across methods. For example, two or more raters (e.g., parents, teachers) might 

share a common view of a target that is not shared with the target’s (e.g., student’s) 

own view. 
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(8) Correlations between method factors belonging to different construct-method units 

on the same occasion of measurement [i.e., 1 1 ' '( , ),  ',  'jkl j k lCor M M j j k k≠ ≠ ] also 

indicate the generalizability of method effects. For example, overestimation of 

anxiety by teachers (compared to the reference method) might be associated with 

overestimation of depression by peers. 

(9) In order to assess the degree of stability of construct-specific method effects, one 

can investigate the correlations between method factors belonging to the same 

construct and the same method on different occasions of measurement [i.e., 

1 1 '( , ),  'jkl jklCor M M l l≠ ]. A high correlation indicates high stability of method-

specific deviations from the reference method. For example, parents might 

consistently underestimate the degree of anxiety of a child across different 

situations or occasions of measurement. 

(10) The generalizability of method effects across constructs corrected for common 

occasion-specific influences is mirrored by the correlations 

1 1 ' '( , ),  ',  'jkl j klCor M M j j l l≠ ≠ . A high correlation means that the bias of a given 

non-reference method k is both stable across constructs and stable over time. For 

instance, teachers might consistently underestimate both the level of anxiety and the 

level of depression in children across different situations / occasions of 

measurement. 

(11) The correlations between method factors belonging to different methods but the 

same construct measured on different occasions of measurement [i.e., 

1 1 ' '( , ),jkl jk lCor M M  ',  'k k l l≠ ≠ ] indicate the common method bias of non-

reference methods corrected for occasion-specific influences. 

(12) The generalizability of method effects, corrected for construct-specific and 

occasion-specific influences, can be investigated by means of the correlations 

1 1 ' ' '( , ),  ',  ',  'jkl j k lCor M M j j k k l l≠ ≠ ≠ . 

(13) Indicator-specific factors 
ijk

IS  may in principle be correlated with all other 

indicator-specific factors ' ' 'i j k
IS . In practical applications, it makes sense to admit 

the correlations '( , )ijk ijkCor IS IS  if highly similar measures are used across methods 

(e.g., similar questionnaire items). The higher the correlation, the greater is the 

generalization of indicator-specific effects across methods (e.g., due to similar item 

wording). In many other cases, correlations between indicator-specific factors and 
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other factors may not be theoretically meaningful or they may not be of substantial 

magnitude. For example, correlations between indicator-specific factors 
ijk

IS  and 

state factors 1 '1j l
S , as well as between indicator-specific factors 

ijk
IS  and method 

factors 1 'j kl
M  belonging to different constructs are permissible for 'j j≠ . However, 

in most cases, these correlations will be difficult to interpret. In addition, they are 

often estimated to be close to zero in empirical applications. Therefore, one should 

consider fixing them to zero for reasons of parsimony.  

3.2.4 Latent Variable Mean Structure 

In the CS-C(M–1) model with indicator-specific factors, the means of the latent state 

factors, 1 1( )
j l

E S , are given by: 

 1 1 1 1( ) ( )
j l j l

E S E Y= . (59) 

Equation 59 follows from Equation 54 given that 1 1 1 1 1 1j l j l j l
Y S E= +  and ( ) 0

ijkl
E E = . (All 

error variables have an expectation of zero by definition.) The method factors and indicator-

specific factors are defined as residual factors. Hence, they have zero means: 

 ( )
ijk

E IS  = 1( )
jkl

E M  = 0. (60) 

A consequence of Equation 60 is that neither 1 jkl
M  nor 

ijk
IS  contribute to the observed 

variable means. For any indicator (except the marker indicators of the reference method), the 

following mean structure holds: 

 S 1 1( ) ( ),    ( , ) (1,1)
ijkl ijkl ijkl j l

E Y E S i k= α + λ ≠ . (61) 

3.2.5 Variance Decomposition and Variance Components 

The variances of the latent state variables can be additively decomposed, given that their 

components are uncorrelated according to Equations 55 to 57: 

 

2 2
S 1 1 1 IS 1 1

2
S1 1 1 1

2 2 2
S 1 1 M 1 IS

( ) ( ),  for 1,  1,                     

( ) ( ),  for 1,  1,( )

( ) ( ) ( ),  for , 1.

ij l j l ij l ij

jkl j l jklijkl

ijkl j l ijkl jkl ijkl ijk

Var S Var IS i k

Var S Var M i kVar S

Var S Var M Var IS i k

λ + λ ≠ =

λ + = ≠= 


λ + λ + λ ≠

 (62) 

For the observed variables, the following variance decomposition is obtained:  
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1 1 1 1

2 2
S 1 1 1 IS 1 1 1

2
S1 1 1 1 1

2
S 1 1 M

( ) ( ),  for , 1,

( ) ( ) ( ),  for 1,  1,                     
( )

( ) ( ) ( ),  for 1,  1,

( )

j l j l

ij l j l ij l ij ij l

ijkl

jkl j l jkl jkl

ijkl j l

Var S Var E i k

Var S Var IS Var E i k
Var Y

Var S Var M Var E i k

Var S

+ =

λ + λ + ≠ =
=

λ + + = ≠

λ + λ2 2
1 IS( ) ( ) ( ),  for , 1.

ijkl jkl ijkl ijk ijkl
Var M Var IS Var E i k








+ λ + ≠

 (63) 

Due to the additive variance decomposition, coefficients of consistency, method specificity, 

indicator-specificity, and reliability can be defined. The consistency coefficient ( )
ijkl

CO Y  

represents the proportion of variance of an observed variable 
ijkl

Y  that can be explained by the 

corresponding state factor 1 1j l
S . Hence, ( )

ijkl
CO Y  indicates the degree of convergent validity 

with respect to the reference method: 

 
2
S 1 1( )

( )
( )

ijkl j l

ijkl

ijkl

Var S
CO Y

Var Y

λ
= . (64) 

The consistency coefficient is occasion-specific. One can compare the consistency 

coefficients calculated for different time points in order to find out whether the convergent 

validity of an indicator has changed over time. Note that ( )
ijkl

CO Y  = 1 1( , )
ijkl j l

Cor Y S . This 

correlation can be interpreted as a standardized validity coefficient in the sense of Bollen 

(1989, p. 199). 

The method specificity coefficient ( )
ijkl

MS Y is also occasion-specific and can be calculated 

for all indicators belonging to non-reference methods. ( )
ijkl

MS Y  represents the proportion of 

variance of an indicator that is due to method-specific influences of (non-reference) method k 

( 1k ≠ ) on a given occasion of measurement: 

 
2
M 1( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS Y

Var Y

λ
= , 1k ≠ . (65) 

The indicator-specificity coefficient ( )
ijkl

IS Y  gives the proportion of variance that can be 

attributed to indicator-specific effects. It can be calculated for all non-marker indicators 
ijkl

Y , 

1i ≠ : 

 
2
IS ( )

( )
( )

ijkl ijk

ijkl

ijkl

Var IS
IS Y

Var Y

λ
= , 1i ≠ . (66) 
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In contrast to the consistency and method-specificity coefficients, the indicator-specificity 

coefficient is occasion-unspecific. It represents the stable variable-specific part of a non-

marker-indicator. 

The sum of consistency, method-specificity, and indicator-specificity coefficients yields 

the reliability coefficient ( )
ijkl

Rel Y . The reliability coefficient represents the proportion of the 

variance of an indicator that is not due to random measurement error: 

 
2 2 2
S 1 1 M 1 IS

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

ijkl

ijkl

ijkl

ijkl j l ijkl jkl ijkl ijk

ijkl ijkl ijkl

ijkl ijkl ijkl

Var S
Rel Y

Var Y

Var S Var M Var IS

Var Y Var Y Var Y

CO Y MS Y IS Y

=

λ λ λ
= + +

= + +

 (67) 

The consistency, method-specificity, and indicator-specificity coefficients can also be 

defined for the latent state variables 
ijkl

S : 

 
2
S 1 1( )

( )
( )

ijkl j l

ijkl

ijkl

Var S
CO S

Var S

λ
= , (68) 

 
2
M 1( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS S

Var S

λ
= , 1k ≠ , (69) 

 
2
IS ( )

( )
( )

ijkl ijk

ijkl

ijkl

Var IS
IS S

Var S

λ
= , 1i ≠ . (70) 

Given that the latent state variables 
ijkl

S  do not contain measurement error, 

( ) ( ) ( ) 1
ijkl ijkl ijkl

CO S MS S IS S+ + = . Table 2 summarizes the definition of the CS-C(M–1) 

model with indicator-specific factors. 
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Table 2  

Summary of the CS-C(M–1) State Model With Indicator-Specific Factors 

Definition Equation 

Basic decomposition of latent state theory ijkl ijkl ijkl
Y S E= +  

True score regression for state variables pertaining to the 
reference method 1 1 1 1 S 1 1 1( | )

ij l j l ij l ij l j l
E S S S= α + λ  (for 1i ≠ ) 

Definition of indicator-specific variables for the reference 
method 1 1 1 1 1: ( | )

ij l ij l ij l j l
IS S E S S= −  

Definition of common indicator-specific factors for the 
reference method 1 IS 1 1ij l ij l ij

IS IS= λ  

True score regression for state variables pertaining to non-
reference methods 1 1 S 1 1( | )

ijkl j l ijkl ijkl j l
E S S S= α + λ  (for 1k ≠ ) 

Definition of method variables 1 1: ( | )
ijkl ijkl ijkl j l

M S E S S= −  

True score regression for method variables pertaining to non-
marker indicators 1 M 1( | )

ijkl jkl ijkl jkl
E M M M= λ  (for 1i ≠ ) 

Definition of indicator-specific variables for the non-
reference methods 1: ( | )

ijkl ijkl ijkl jkl
IS M E M M= −  

Definition of common indicator-specific factors for the non-
reference methods ISijkl ijkl ijk

IS IS= λ  

 (Table continues) 
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Definition Equation 

Covariances of indicator-specific factors and state factors 
(same construct) 1 1( , ) 0

ijk j l
Cov IS S =  

Covariances of method factors and state factors (same 
construct, same measurement occasion) 1 1 1( , ) 0

jkl j l
Cov M S =  

Covariances of method factors and indicator-specific factors 
(same construct, same method) 1( , ) 0

jkl ijk
Cov M IS =  

Covariances of error variables ' ' ' '( , ) 0,
ijkl i j k l

Cov E E = ( , , , ) ( ', ', ', ')i j k l i j k l≠  

Covariances between error variables and other latent 
variables ' '1 ' 1 ' ' ' ' ' '( , ) ( , ) ( , ) 0

ijkl i j l ijkl j k l ijkl i j k
Cov E S Cov E M Cov E IS= = =  

Mean structure (state factors) 1 1 1 1( ) ( )
j l j l

E S E Y=  

Mean structure (method factors, indicator-specific factors, 
and error variables) 1( ) ( ) ( ) 0

jkl ijk ijkl
E M E IS E E= = =  

Variance decomposition (observed variables) 

1 1 1 1

2 2
S 1 1 1 IS 1 1 1

2
S1 1 1 1 1

2
S 1 1 M

( ) ( ),  for , 1,

( ) ( ) ( ),  for 1,  1,                     
( )

( ) ( ) ( ),  for 1,  1,

( )

j l j l

ij l j l ij l ij ij l

ijkl

jkl j l jkl jkl

ijkl j l

Var S Var E i k

Var S Var IS Var E i k
Var Y

Var S Var M Var E i k

Var S

+ =

λ + λ + ≠ =
=

λ + + = ≠

λ + λ2 2
1 IS( ) ( ) ( ),  for , 1.

ijkl jkl ijkl ijk ijkl
Var M Var IS Var E i k








+ λ + ≠

 

 (Table continues) 
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Definition Equation 

Consistency (observed variables) 
2
S 1 1( )

( )
( )

ijkl j l

ijkl

ijkl

Var S
CO Y

Var Y

λ
=  

Method-specificity (observed variables) 
2
M 1( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS Y

Var Y

λ
=  (for 1k ≠ ) 

Indicator-specificity (observed variables) 
2
IS ( )

( )
( )

ijkl ijk

ijkl

ijkl

Var IS
IS Y

Var Y

λ
= , (for 1i ≠ ) 

Reliability 

2 2 2
S 1 1 M 1 IS( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ).

ijkl ijkl j l ijkl jkl ijkl ijk

ijkl

ijkl ijkl ijkl ijkl

ijkl ijkl ijkl

Var S Var S Var M Var IS
Rel Y

Var Y Var Y Var Y Var Y

CO Y MS Y IS Y

λ λ λ
= = + +

= + +

 

Variance decomposition (state variables) 

2 2
S 1 1 1 IS 1 1

2
S1 1 1 1

2 2 2
S 1 1 M 1 IS

( ) ( ),  for 1,  1,                       

( ) ( ),  for 1,  1,( )

( ) ( ) ( ),  for , 1.

ij l j l ij l ij

jkl j l jklijkl

ijkl j l ijkl jkl ijkl ijk

Var S Var IS i k

Var S Var M i kVar S

Var S Var M Var IS i k

λ + λ ≠ =


λ + = ≠= 


λ + λ + λ ≠

 

Consistency (state variables) 
2
S 1 1( )

( )
( )

ijkl j l

ijkl

ijkl

Var S
CO S

Var S

λ
=  

 (Table continues) 
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Definition Equation 

Method-specificity (state variables) 
2
M 1( )

( )
( )

ijkl jkl

ijkl

ijkl

Var M
MS S

Var S

λ
=  (for 1k ≠ ) 

Indicator-specificity (state variables) 
2
IS ( )

( )
( )

ijkl ijk

ijkl

ijkl

Var IS
IS S

Var S

λ
=  (for 1i ≠ ) 

Note. 
ijkl

Y  = observed variable (i = indicator, j = construct, k = method, l = occasion of measurement). Without loss of generality, the first method 

(k = 1) is selected as reference method and the first indicators (i = 1) are selected as marker indicators. 
ijkl

S  = latent state variable. 
ijkl

E  = error 

variable. 1 1( | )
ijkl j l

E S S  denotes the conditional expectation (regression) of 
ijkl

S  on 1 1j l
S . 

ijkl
α  = intercept. Sijkl

λ  = state factor loading. 
ijkl

IS  = latent 

indicator-specific residual variable. 
ijk

IS  = common indicator-specific factor. ISλ ijkl
 = indicator-specific factor loading.

ijkl
M  = latent method-specific 

residual variable. Mλ ijkl
 = method factor loading. 
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3.3 Modeling Strategies for Different Forms of Indicator-Specificity 

In this chapter, I have introduced two variants of the CS-C(M–1) model: A CS-C(M–1) 

model with indicator-specific state factors and a CS-C(M–1) model with general state factors 

and indicator-specific factors across time. Each model allows analyzing specific forms of 

indicator-specificity. The CS-C(M–1) model with indicator-specific state factors is most 

appropriate if indicator-specific effects are not expected to generalize across time (e.g., due to 

long intervals between the measurement occasions), but are expected to generalize across 

methods within an occasion of measurement (e.g., because similar items have been used 

across methods). The CS-C(M–1) model with general state factors and indicator-specific 

factors across time is useful if one does not expect indicator-specific effects to generalize 

across methods, but across time for the same indicator. This latter case is likely the one that is 

more frequently encountered in longitudinal MTMM studies. 

A useful modeling strategy is to estimate both versions of the CS-C(M–1) model in the 

first step of an MTMM-MO analysis. One may then compare the fit of both models (e.g., by 

means of information criteria) to decide which model more appropriately represents the data. 

In addition, one may estimate a parsimonious version of the CS-C(M–1) model with general 

state factors, in which the indicator-specific factors across time are dropped (see Figure 15). If 

this reduced model does not fit worse than the two other model variants, it should be selected 

given that it is more parsimonious than the two other CS-C(M–1) model variants. In 

Chapter 5, I illustrate the model selection issue in detail based on an empirical application to 

real data.  
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Figure 15. CS-C(M–1) model with general state factors without indicator-specific factors 

ijk
IS  over time for two constructs, three methods, and two time points. 

ijkl
Y  = observed 

variable (i = indicator, j = construct, k = method, l = occasion of measurement). 1 1j l
S  = latent 

state factor. 1 jkl
M  = latent method factor. 

ijkl
E  = error variable. For the sake of clarity, 

permissible factor correlations are not shown. 
 

3.4 Measurement Invariance 

An important issue in longitudinal modeling is the question of measurement invariance 

(Meredith & Horn, 2001). I have already briefly outlined this issue in Chapter 2.2.2 when I 

introduced the latent difference version of the CS model. Measurement invariance concerns 

the question of whether the latent variables to be measured are connected in the same way to 

their indicators on each measurement occasion (Tisak & Tisak, 2000; Raykov, 2006). In this 

respect, Meredith (1993) distinguishes between configural, weak, strong, and strict factorial 

invariance. Configural invariance only requires that the number of factors and the pattern of 

factor loadings is the same on each occasion of measurement—a very weak form of 

invariance. With respect to the CS-C(M–1) model, this would mean that the indicators load on 

the same state and method factors on each occasion of measurement, but that the parameters 

of the measurement model (i.e., the loadings, intercepts, and error variances) need not be 
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constant over time. Weak factorial invariance (or metric invariance) holds if, in addition to 

configural invariance, the links between the observed and latent variables (i.e., the loadings 

Sijkl
λ , Mijkl

λ , and ISijkl
λ ) are equal over time. Strong factorial invariance additionally requires 

the observed variable measurement intercepts 
ijkl

α  to be time-invariant. The condition of 

strict factorial invariance is satisfied if the measures show configural invariance as well as 

constant loadings, constant intercepts, and constant residual variances ( )
ijkl

Var E  across time. 

In addition, invariance tests can be conducted with respect to the factor means, variances, and 

covariances. In practical applications, researchers usually aim at establishing at least weak 

factorial invariance (constant loadings) in order to make sure that the measurement structure 

of the latent variables remains the same over time. If weak factorial invariance does not hold, 

interpretations of certain model parameters might become ambiguous. For example, what do 

the correlations between state factors measured on different occasions mean if the state factors 

are not measured in the same way? Measurement invariance is especially important if the 

latent difference versions of the CS-C(M–1) model are considered (see Chapter 4) given that 

change scores can only be meaningfully interpreted if certain invariance conditions hold. I 

will thus return to the issue of measurement invariance in Chapter 4. 

3.5 Formal Definition of the CS-C(M–1) Models 

In this chapter, the CS-C(M–1) models (with and without indicator-specific factors across 

time) are formally defined on the basis of stochastic measurement theory (Steyer & Eid, 

2001). That is, the assumptions of the CS-C(M–1) models which have already been 

introduced in the preceding section will be formalized. This formalization is necessary to 

define which assumptions must hold in order to logically deduce the existence of the latent 

variables and the associated parameters (e.g., loadings). 

In addition, important questions of measurement theory are discussed for both models. In 

particular, I examine the questions of uniqueness, meaningfulness, testability, and 

identifiability. The uniqueness problem concerns the question of which kinds of 

transformations of these variables and parameters are admissible. Related to the uniqueness 

problem is the question of meaningfulness: Which statements about the variables/parameters 

are meaningful? (Meaningful here means invariant with respect to the admissible 

transformations.) The fourth important issue that will be treated for the models is testability. 

Testability means that one wants to derive consequences of the model definition for the 

covariance and mean structure of the observed variables. In other words, which are the 

restrictions imposed by the models? Which covariance and mean structure is implied by the 
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models? Finally, I show under which conditions the parameters of the models can be uniquely 

determined and estimated from the empirical information (i.e., from the variances, 

covariances, and means of the observed variables). This concerns the question of 

identifiability of the model parameters. 

3.5.1 CS-C(M-1) Model Without Indicator-Specific Factors Across Time 

3.5.1.1 Model Definition 

The assumptions of the CS-C(M–1) model without indicator-specific factors across time 

are formally expressed in the following definition. 

 

 

Definition 1: CS-C(M–1) Model 

The random variables 1111,..., ,..., ,
ijkl mnop

Y Y Y  { }: 1,..., ,i I m∈ =  { }: 1,..., ,j J n∈ =  

{ }: 1,..., ,k K o∈ =  { }: 1,..., ,l L p∈ =  on a probability space ( ), , PΩ A  are variables of a CS-

C(M–1) model if and only if the following conditions hold: 

(a)  ( ), , PΩ A  is a probability space such that 0 1 1... ...
n n

U U U M MΩ = × × × × × × . 

(b)  The projections 0 0: ,  :
l l

p U p UΩ → Ω →  are random variables on ( ), , PΩ A . 

(c)  The variables :
ijkl

Y Ω →ℝ  are random variables on ( ), , PΩ A . 

(d)  Without loss of generality, the first method (k = 1) is selected as reference method. Then,  

       the variables 

 0: ( | , )
ijkl ijkl l

S E Y p p= , (71) 

 ( )1: |
ijkl ijkl ijkl ij l

M S E S S= − , and (72) 

 :
ijkl ijkl ijkl

E Y S= −  (73) 

are random variables on ( ), , PΩ A , where 0( | , )
ijkl l

E Y p p  denotes the conditional expectation 

of 
ijkl

Y  given the person ( )0p  and the situation ( )lp , and ( )1|
ijkl ij l

E S S  denotes the 

conditional expectation of 
ijkl

S  given the reference state variable 1ij l
S . The variables 

ijkl
E  are 

the measurement error variables. 

(e)  For each quadruple ( ), , ,  ,  ,  ,  ,  1i j k l i I j J k K l L k∈ ∈ ∈ ∈ ≠  there is a constant 
ijkl

α ∈ℝ  
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       as well as a constant Sijkl
λ ∈ℝ , S 0

ijkl
λ > , such that 

 ( )1 S 1|
ijkl ij l ijkl ijkl ij l

E S S S= α + λ . (74) 

(f)  For each quintuple ( ), ', , , ,  , ' ,  ,  ,  ,  1i i j k l i i I j J k K l L k∈ ∈ ∈ ∈ ≠  there is a constant 

      M 'ii jkl
λ ∈ℝ , M ' 0

ii jkl
λ > , such that 

 M ' 'ijkl ii jkl i jkl
M M= λ . (75) 

Explanations. Each observed variable 
ijkl

Y  has its own associated latent state (true score) 

variable 
ijkl

S . According to Condition (e), all latent state variables 
ijkl

S  belonging to the same 

construct and the same occasion of measurement are positive linear functions of the reference 

state variables 1ij l
S . The variables 1ij l

S  are labeled reference state variables because they 

pertain to indicators measured by the reference method (k = 1). Specifically, Condition (e) 

states that the latent state variables 
ijkl

S  are regressed on the respective reference state 

variables 1ij l
S  and that these regressions ( )1|

ijkl ij l
E S S  are linear. In other words, the reference 

state variables 1ij l
S  are used to predict the latent state variables belonging to the same 

indicator, construct and occasion, and a non-reference method ( 1k ≠ ) in a linear latent 

regression analysis. The residuals of this latent regression analysis are the method variables 

ijkl
M . These residuals represent inter-individual differences with respect to the variables 

ijkl
S  

that cannot be explained by the corresponding reference state variable 1ij l
S , but are due to 

construct- and occasion-specific method influences. Condition (f) states that the residuals 

ijkl
M  belonging to the same construct, method, and occasion are linear functions of each other 

(they may only differ by a multiplicative constant M 'ii jkl
λ ). Hence, the residuals 

ijkl
M  are 

assumed to be perfectly correlated. There is no additive constant in Equation 75 given that the 

expectation (mean) of residual variables is always zero (see, e.g., Steyer & Eid, 2001, p. 357). 

3.5.1.2 Existence of Common Method Factors Mjkl 

The following corollary shows that the assumption of perfectly correlated 
ijkl

M  variables 

(Equation 75) is equivalent to assuming a common method factor 
jkl

M  for all indicators 

belonging to the same construct, (non-reference) method, and measurement occasion. 
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Corollary 1: Existence of Common Latent Method Factors jklM  

The random variables 1111,..., ,..., ,
ijkl mnop

Y Y Y  { }: 1,..., ,i I m∈ =  { }: 1,..., ,j J n∈ =  

{ }: 1,..., ,k K o∈ =  { }: 1,..., ,l L p∈ =  on a probability space ( ), , PΩ A  are variables of a CS-

C(M–1) model if 

conditions (a) to (e) in Definition 1 hold and 

(f’)  for each quadruple ( ), , , ,  ,  ,  ,  ,  1i j k l i I j J k K l L k∈ ∈ ∈ ∈ ≠ , there is a constant 

       M M,  0
ijkl ijkl

λ ∈ λ >ℝ , and a real random variable 
jkl

M  on ( ), , PΩ A  such that: 

 Mijkl ijkl jkl
M M= λ . (76) 

Proof. If one defines, for example, 1:
jkl jkl

M M=  as well as M M 1:
ijkl i jkl

λ = λ  and inserts these 

parameters in Equation 75 (see Definition 1), this results in Mijkl ijkl jkl
M M= λ ⋅  (Equation 76). 

Furthermore, according to Equation 76, 
jkl

M  can be expressed as 
M

ijkl

jkl

ijkl

M
M =

λ
 as well as 

'

M '

i jkl

jkl

i jkl

M
M =

λ
. By setting both equations equal, it follows that M

'

M '

ijkl

ijkl i jkl

i jkl

M M
λ

=
λ

. By 

defining M

M '

M '

: ijkl

ii jkl

i jkl

λ
λ =

λ
 one obtains Equation 75. 

Explanations. Corollary 1 shows an important implication of Condition (f) in Definition 1, 

namely that all residuals 
ijkl

M  measure a common method factor 
jkl

M . This implication is 

obvious given that Condition (f) in Definition 1 postulates that all residuals 
ijkl

M  belonging to 

the same construct, method, and measurement occasion differ only by a multiplicative 

constant ( M 'ii jkl
λ ). It follows that all indicators 

ijkl
Y  pertaining to the same construct, method, 

and measurement occasion measure a latent state factor 1ij l
S  and a common construct- and 

occasion-specific method factor 
jkl

M . In sum, the measurement equations for the observed 

variables are given by: 

 
1 1

S 1 M

,  for 1,  and

,  for 1.
ij l ij l

ijkl

ijkl ijkl ij l ijkl jkl ijkl

S E k
Y

S M E k

+ =
= 

α + λ + λ + ≠
 (77) 
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The proof of Corollary 1 makes clear that the variables 
jkl

M  are not uniquely defined. Any 

of the residual variables 
ijkl

M  (or even any similarity transformation of a method variable 

ijkl
M ) could be chosen to play the role of 

jkl
M . The question of the uniqueness of the 

variables 
jkl

M  as well as the associated Mijkl
λ -parameters is treated in more detail in the next 

section. 

3.5.1.3 Admissible Transformations and Uniqueness 

After having defined the CS-C(M–1) model, it is useful to examine how unique the 

parameters of this model are defined given the assumptions in Definition 1 and Corollary 1. 

For example, the uniqueness issue concerns the question of whether there is only one possible 

“version” of the method factors given the above assumptions or whether there are many 

different versions all of which fulfill these assumptions. In general, the variables and 

parameters in a measurement model are not uniquely defined, as there are usually many 

different admissible versions of the variables and parameters. Hence, it is important to assess 

which transformations of the variables and model parameters are admissible (i.e., which kinds 

of transformations lead to other versions of a given parameter that also fulfill the model 

assumptions). The analysis of the degree of uniqueness is also important to determine which 

statements with respect to the variables are meaningful (the concept of meaningfulness will be 

explained in the next section). A synonym for “degree of uniqueness” is scale level. Thus, one 

could also say that with the question of uniqueness one seeks to determine the scale level of 

the variables of a given measurement model (for a more detailed discussion of the uniqueness 

problem see Steyer & Eid, 2001, Chapter 7.3).  

With respect to the CS-C(M–1) model, questions of uniqueness and meaningfulness need 

to be investigated only for the latent method factors 
jkl

M  and the method factor loadings 

Mijkl
λ . The reason is that the latent state variables 1ij l

S  are uniquely defined in the CS-C(M–1) 

model. This can be seen from Definition 1, in which the variables 1ij l
S  were defined as the 

conditional expectations of the variables 1ij l
Y  given the person and the situation [see 

Condition (d) in Definition 1]. Hence, the variables 1ij l
S  are uniquely defined as the latent 

state true score variables of the variables 1ij l
Y . In contrast, the variables 

jkl
M  and the 

coefficients Mijkl
λ  are not uniquely defined. Recall that in Corollary 1 I have shown that 

method effects are common for all variables measuring the same construct j by the same non-

reference method ( )1k ≠  on the same measurement occasion l: Mijkl ijkl jkl
M M= λ . Thus, the 
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variables 
jkl

M  (as well as the coefficients Mijkl
λ ) are uniquely defined only up to similarity 

transformations, that is, up to a multiplication with a positive real number. This is shown in 

Corollary 2: 

 

 

Corollary 2: Admissible Transformations 

If (a) ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model and (b) the 

variables *
jklM  as well as the coefficients *

Mijklλ , are defined as follows for all 

,  ,  ,  ,i I j J k K l L∈ ∈ ∈ ∈  and 1k ≠ : 

 * :jkl jkl jklM M= δ , (78) 

 *
M M

1
:ijkl ijkl

jkl

 
λ = λ  δ 

, (79) 

where 
jkl

δ ∈ℝ , 0
jkl

δ > , then (c) ( )* * *
S M: , , , , , , , ,

ijkl jkl ijkl ijkl ijkl ijkl
M P S M E= Ω α λ λA  is a CS-

C(M–1) model, too, given that the following equation holds for all ,  ,  ,  ,i I j J k K l L∈ ∈ ∈ ∈  

and 1k ≠ : 

 * *
Mijkl ijkl jklM M= λ . (80) 

Proof. In Equation 46, 
jkl

M  can be replaced by *
jklM  if the constant Mijkl

λ  is also replaced 

by *
Mijklλ : 

* *
M M M M

1
.ijkl ijkl jkl ijkl jkl ijkl jkl jkl ijkl jkl

jkl

M M M M M
 

= λ = λ = λ δ = λ  δ 
 

 

Consequently, there is a whole “family” of latent method factors 
jkl

M  with associated 

coefficients Mijkl
λ . All members of this family are similarity transformations of each other. 

Therefore, 
jkl

M  as well as Mijkl
λ  are measured on a ratio scale. 
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3.5.1.4 Meaningfulness 

As shown in Corollary 2, the variables 
jkl

M  as well as the parameters Mijkl
λ  are uniquely 

defined only up to similarity transformations. Therefore, it has to be shown which statements 

concerning these model parameters are meaningful. A meaningful statement can be 

understood as a statement that remains true even if the parameter under consideration has 

been subject to one of the admissible transformation. The most important meaningful 

statements with respect to 
jkl

M  and Mijkl
λ  are provided in Corollary 3: 

 

 

Corollary 3: Meaningfulness 

If both ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  and 

( )* * *
S M: , , , , , , , ,

ijkl jkl ijkl ijkl ijkl ijkl
M P S M E= Ω α λ λA  are CS-C(M–1) models, then for 

(1)  , ' ,i i I∈  ,j J∈  ,k K∈  :l L∈  

 
*

M M

*
M ' M '

,ijkl ijkl

i jkl i jkl

λ λ
=

λ λ
 (81) 

(2)  1 2, ,  ,  ,  :j J k K l Lω ω ∈Ω ∈ ∈ ∈  

 
( )
( )

( )
( )

*
1 1

*
2 2

,jkl jkl

jkl jkl

M M

M M

ω ω
=

ω ω
 (82) 

(3)  1 2, ,  , ' ,  , ' ,  , ' :j j J k k K l l Lω ω ∈Ω ∈ ∈ ∈  

 
( )
( )

( )
( )

( )
( )

( )
( )

* *
1 ' ' ' 1 1 ' ' ' 1

* *
2 ' ' ' 2 2 ' ' ' 2

,jkl j k l jkl j k l

jkl j k l jkl j k l

M M M M

M M M M

ω ω ω ω
− = −

ω ω ω ω
 (83) 

(4)  ,  ,  ,  :i I j J k K l L∈ ∈ ∈ ∈  

 ( ) ( )2 *2 *
M M ,

ijkl jkl ijkl jkl
Var M Var Mλ = λ  (84) 

(5)  , ' ,  , ' ,  , ' :j j J k k K l l L∈ ∈ ∈  

 ( ) ( )* *
' ' ' ' ' ', ,

jkl j k l jkl j k l
Corr M M Corr M M= . (85) 
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(6)  ,  , ' ,  ,  , ' ,  ' :i I j j J k K l l L j j∈ ∈ ∈ ∈ ≠  

 ( ) ( )*
'1 ' '1 ', ,

jkl ij l jkl ij l
Corr M S Corr M S= , (86) 

where (.)Var  denotes the variance and ( ).,.Corr  denotes the correlation. 

Proofs. By inserting M

1
ijkl

jkl

 
λ   δ 

 for *
Mijklλ  as well as 

jkl jkl
Mδ  for *

jklM  one can easily show 

that Equations 81 to 86 hold. 

Explanations. For the factor loadings Mijkl
λ , statements with regard to absolute values of 

these parameters are not meaningful, given that the multiplication with a positive real number 

is permissible and would result in different values of the Mijkl
λ -parameters. The same 

argument holds for specific values of the variables 
jkl

M . However, statements with respect to 

the ratio of two coefficients Mijkl
λ  and M 'i jkl

λ  are meaningful (see Equations 81). Furthermore, 

statements with respect to the ratio of specific values of the method factors 
jkl

M  are 

meaningful, too (Equation 82). Consequently, it is meaningful to say, for instance, that the 

value of a person A on a common method factor is x-times larger that the value of a person B 

on the same method factor. Meaningful statements can also be made with respect to the 

differences between ratios of values of two different method factors 
jkl

M  and ' ' 'j k l
M  

(Equation 83). Since the product ( )2
Mijkl jkl

Var Mλ  is also invariant under similarity 

transformations (Equation 84), it follows that statements with respect to the method specificity 

coefficients (see Table 1) are meaningful, too. Moreover, correlations between method factors 

as well as correlations between method factors and state factors are meaningful—as far as 

they are admissible (see Equations 85 and 86). 

3.5.1.5 Covariance Structure 

In order to derive testable consequences of the CS-C(M–1) model for the covariance 

structure of the observed variables, it is necessary to introduce further assumptions that are 

not included in Definition 1 (cf. Steyer, 1988). These assumptions define a more restrictive 

variant of the CS-C(M–1) model, which I call CS-C(M–1) model with conditional regressive 

independence (see Definition 2). 
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Definition 2: CS-C(M–1) Model With Conditional Regressive Independence 

If ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model, then M is called a 

CS-C(M–1) model with conditional regressive independence if and only if the following 

assumption holds for all { }, ' : 1,..., ,i i I m∈ =  { }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  

{ }, ' : 1,..., :l l L p∈ =  

 ( ) ( )( ) ( )1 ' ' ' '| , ,..., , , ', ', ', ' , , , | ,
ijkl 0 p i j k l ijkl 0 l

E Y p p p Y i j k l i j k l E Y p p ≠ =  . (87) 

Explanations. Equation 87 states that given a person and a situation on a measurement 

occasion l, an observed variable 
ijkl

Y  does neither depend on other situations (on different 

measurement occasions ',  'l l l≠ ), nor on the values of other observed variables. As I will 

show, this assumption has important consequences for the covariance structure of the 

observed variables. Theorem 1 summarizes the implications of the CS-C(M–1) model with 

conditional regressive independence for the covariance structure of the observed variables. 

 

 

Theorem 1: Covariance Structure 

If ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model with conditional 

regressive independence and, without loss of generality, k = 1 is chosen as the reference 

method, then the following covariance structure holds for all { }, ' : 1,..., ,i i I m∈ =  

{ }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  { } , ' : 1,...,l l L p∈ =  and 

(a) for all observed variables: 

 

' ' ' ' S S ' ' ' ' 1 ' '1 ' S M ' ' ' ' 1 ' ' '

M S ' ' ' ' ' '1 ' M M ' ' ' ' ' ' '

( , ) ( , ) ( , )

                            ( , ) ( , )

            

ijkl i j k l ijkl i j k l ij l i j l ijkl i j k l ij l j k l

ijkl i j k l jkl i j l ijkl i j k l jkl j k l

Cov Y Y Cov S S Cov S M

Cov M S Cov M M

= λ λ + λ λ

+ λ λ + λ λ

' ' ' '                ( , )
ijkl i j k l

Cov E E+

 (88) 

(b) for all latent variables: 

 1( , ) 0,
ij l jkl

Cov S M =  (89) 
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 1 ' ' ' '( , ) 0,
ij l i j k l

Cov S E =  (90) 

 ' ' ' '( , ) 0,
jkl i j k l

Cov M E =  (91) 

 ' ' ' '( , ) 0,   ( , , , ) ( ', ', ', '),
ijkl i j k l

Cov E E i j k l i j k l= ≠  (92) 

where (.,.)Cov  denotes the covariance. 

 

Proofs. 

Equation 88 

The covariance structure of the observed variables follows from Equations 77, 90, and 91 by 

applying rules of covariance algebra (see, e.g., Bollen, 1989; Steyer & Eid, 2001, Box F.1): 

' ' ' '

S 1 M ' ' ' ' S ' ' ' ' ' '1 ' M ' ' ' ' ' ' ' ' ' ' '

' ' ' ' S ' ' ' ' ' '1 ' M ' ' ' ' ' '

( , )

( ), ( )

( , ) ( , ) ( ,

ijkl i j k l

ijkl ijkl ij l ijkl jkl ijkl i j k l i j k l i j l i j k l j k l i j k l

ijkl i j k l i j k l ijkl i j l i j k l ijkl j k

Cov Y Y

Cov S M E S M E

Cov Cov S Cov M

 = α + λ + λ + α + λ + λ + 

= α α + λ α + λ α ' ' ' ' '

S 1 ' ' ' ' S S ' ' ' ' 1 ' '1 ' S M ' ' ' ' 1 ' ' '

S 1 ' ' ' '

M ' ' ' ' M S ' ' ' '

) ( , )

( , ) ( , ) ( , )

( , )

( , ) (

l ijkl i j k l

ijkl ij l i j k l ijkl i j k l ij l i j l ijkl i j k l ij l j k l

ijkl ij l i j k l

ijkl jkl i j k l ijkl i j k l jkl

Cov E

Cov S Cov S S Cov S M

Cov S E

Cov M Cov M

+ α

+λ α + λ λ + λ λ

+λ

+λ α + λ λ ' '1 ' M M ' ' ' ' ' ' '

M ' ' ' '

' ' ' ' S ' ' ' ' ' '1 ' M ' ' ' ' ' ' ' ' ' ' '

, ) ( , )

( , )

( , ) ( , ) ( , ) ( , ).

i j l ijkl i j k l jkl j k l

ijkl jkl i j k l

ijkl i j k l i j k l ijkl i j l i j k l ijkl j k l ijkl i j k l

S Cov M M

Cov M E

Cov E Cov E S Cov E M Cov E E

+ λ λ

+λ

+ α + λ + λ +

 

Given that constants cannot covary with other constants or variables, ' ' ' '( , )
ijkl i j k l

Cov α α  = 

S ' ' ' ' ' '1 '( , )
i j k l ijkl i j l

Cov Sλ α  = M ' ' ' ' ' ' '( , )
i j k l ijkl j k l

Cov Mλ α  = ' ' ' '( , )
ijkl i j k l

Cov Eα  = 

S 1 ' ' ' '( , )
ijkl ij l i j k l

Cov Sλ α  = M ' ' ' '( , )
ijkl jkl i j k l

Cov Mλ α  = ' ' ' '( , )
ijkl i j k l

Cov E α  = 0. The terms 

S 1 ' ' ' '( , )
ijkl ij l i j k l

Cov S Eλ , M ' ' ' '( , )
ijkl jkl i j k l

Cov M Eλ , S ' ' ' ' ' '1 '( , )
i j k l ijkl i j l

Cov E Sλ , and 

M ' ' ' ' ' ' '( , )
i j k l ijkl j k l

Cov E Mλ  are equal to zero according to Equations 90 and 91. 

Equation 89 

The uncorrelatedness of the latent state variables with all method factors that belong to the 

same construct on the same measurement occasion follows since 
M

1
jkl ijkl

ijkl

M M=
λ

 (see 

Equation 76). Therefore, 1 1

M

1
( , ) ( , ).ij l jkl ij l ijkl

ijkl

Cov S M Cov S M=
λ

 

The covariance between 1ij l
S  and 

ijkl
M  is zero because 

ijkl
M  is a residual with respect to 1ij l

S  
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(see Equation 72; residuals are always uncorrelated with their regressors, see Steyer & Eid, 

2001, Box G.1). Hence, 1( , ) 0,
ij l jkl

Cov S M =  too. 

Equations 90–92 

These equations follow from the independence assumption introduced in Definition 2. 

Equation 92 can be rewritten as 

{ }' ' ' ' ' ' ' ' ' ' ' ' '( , ) ( | , ) , ( | , )
ijkl i j k l ijkl ijkl 0 l i j k l i j k l 0 l

Cov E E Cov Y E Y p p Y E Y p p   = − −    . According to 

Bauer (1978, p. 54, Satz 9.4) ' ' ' ' ' ' ' ' ' ' ' '( | , )
i j k l i j k l i j k l 0 l

E Y E Y p p= −  is a 

' ' ' '( , , )-measurable 
0 l i j k l

p p Y function (cf. Steyer, 1988, p. 368-369). The supposition made in 

Definition 2 allows replacing ( | , )
ijkl 0 l

E Y p p  by 

( ) ( )( )1 ' ' ' '| , ,..., , , ', ', ', ' , , ,
ijkl 0 p i j k l

E Y p p p Y i j k l i j k l ≠  . Hence, for ( ) ( )', ', ', ' , , ,i j k l i j k l≠ , 

ijkl
E  is a residual also with respect to the regressors ,

0 l
p p  and ' ' ' 'i j k l

Y . Given that a residual 

(here: 
ijkl

E ) is always uncorrelated with each numerically measurable function (here: ' ' ' 'i j k l
E ) 

of his regressors, ' ' ' '( , ) 0
ijkl i j k l

Cov E E =  for ( , , , ) ( ', ', ', ').i j k l i j k l≠  The derivation of equation 

(90) follows a similar logic: 

{ }' ' ' ' ' ' ' ' ' ' ' ' '( , ) ( | , ), ( | , ) .
ijkl i j k l ijkl 0 l i j k l i j k l 0 l

Cov S E Cov E Y p p Y E Y p p = −   According to 

Definition 2, ' ' ' ' '( | , )
i j k l 0 l

E Y p p  can be replaced by 

( ) ( )( )' ' ' ' 1| , ,..., , , , , , ', ', ', ' .
i j k l 0 p ijkl

E Y p p p Y i j k l i j k l ≠   The variable : ( | , )
ijkl ijkl 0 l

S E Y p p=  is a 

( , )
0 l

p p -measurable function and ' ' ' 'i j k l
E  is a residual with respect to the regressors 

0
p  and 

l
p . As stated before, a residual (here: ' ' ' 'i j k l

E ) is always uncorrelated with each numerically 

measurable function [in this case 1( | , )
ij l 0 l

E Y p p ] of his regressors. Therefore, Equation 90 

holds, too. 

Equation 91: By using Equations 76, 72 and 74, we may rewrite Equation 91 as follows: 
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( )( )

( ) ( )( )

( ) ( )

' ' ' ' ' ' ' ' 1 ' ' ' '

M M

' ' ' ' 1 ' ' ' '

M

' ' ' ' S 1

M

1 1
( , ) , | ,

1
, | ,

1
, ,

jkl i j k l ijkl i j k l ijkl ijkl ij l i j k l

ijkl ijkl

ijkl i j k l ijkl ij l i j k l

ijkl

ijkl i j k l ijkl ijkl ij l

ijkl

Cov M E Cov M E Cov S E S S E

Cov S E Cov E S S E

Cov S E Cov S

   
= = −   

λ λ      

= −
λ

= − α + λ
λ

( )

( ) ( )

' ' ' '

' ' ' ' S 1 ' ' ' '

M

1
, , .

i j k l

ijkl i j k l ijkl ij l i j k l

ijkl

E

Cov S E Cov S E= − λ
λ

 

Given that both 
ijkl

S  and 1ij l
S  are uncorrelated with ' ' ' 'i j k l

E , it follows that 
jkl

M  and ' ' ' 'i j k l
E  

are also uncorrelated. 

Explanations. Theorem 1 shows the implications of the model definition for the observed 

and latent variable covariance structure. Only the most general covariance structure equation 

for the observed variables is shown in Theorem 1 (Equation 88). To illustrate in more detail in 

which way the observed variances and covariances are functions of the parameters of the 

model, I provide the most important special cases of Equation 88 in Corollary 4. 

The independence of method factors and state factors belonging to the same construct on 

the same measurement occasion (Equation 89) is not a newly introduced assumption, but a 

direct consequence of the definition of the method factors 
jkl

M  as residuals with respect to 

1ij l
S  (Definition 1). The independence of state factors and error variables (Equation 90), 

method factors and error variables (Equation 91), as well as error variables and other error 

variables (Equation 62) is a consequence of the conditional regressive independence 

assumption in Definition 2. Note that in empirical applications of the model, the respective 

covariances must be set to zero.  
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Corollary 4: Covariance Structure of the Observed Variables 

If ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model with conditional 

regressive independence and, without loss of generality, k = 1 is chosen as the reference 

method, then the following covariance structure holds for all { }, ' : 1,..., ,i i I m∈ =  

{ }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  { } , ' : 1,...,l l L p∈ =  and 

(a) for all observed variables measured on the same occasion of measurement ( 'l l= ): 

1 1

2 2

S 1 M

S ' 1

S S ' 1 M

' ' '

( ) ( ),  ', ',  , ' 1,

( ) ( ) ( ),  ', ',  ',  ' 1,

( ),  ', ',  1,  ' 1,

( )

( , )

ij l ij l

ijkl ij l ijkl jkl ijkl

ijk l ij l

ijkl ijk l ij l ijkl

ijkl i j k l

Var S Var E i i j j k k

Var S Var M Var E i i j j k k k

Var S i i j j k k

Var S

Cov Y Y

+ = = =

λ + λ + = = = ≠

λ = = = ≠

λ λ + λ

=

M ' '

1 ' 1

S S ' 1 ' 1 M M '

S ' ' 1 ' 1

( , ),  ', ',  ',  , ' 1,

( , ),  ', ',  , ' 1,

( , ) ( ),  ', ',  ',  ' 1,

( , ),  ',  ',

ijk l jkl jk l

ij l i j l

ijkl i jkl ij l i j l ijkl i jkl jkl

i jk l ij l i j l

Cov M M i i j j k k k k

Cov S S i i j j k k

Cov S S Var M i i j j k k k

Cov S S i i j j

λ = = ≠ ≠

≠ = =

λ λ + λ λ ≠ = = ≠

λ ≠ =

S S ' ' 1 ' 1 M M ' ' '

1 '1

S S ' 1 '1 S M ' 1 '

 1,  ' 1,

( , ) ( , ),  ', ',  ',  , ' 1,

( , ),  ',  ',  , ' 1,

( , ) ( , )

  

ijkl i jk l ij l i j l ijkl i jk l jkl jk l

ij l ij l

ijkl ij kl ij l ij l ijkl ij kl ij l j kl

k k

Cov S S Cov M M i i j j k k k k

Cov S S i i j j k k

Cov S S Cov S M

= ≠

λ λ + λ λ ≠ = ≠ ≠

= ≠ =

λ λ + λ λ

+ λ
M S ' '1 M M ' '

S ' ' 1 '1 M ' ' 1 ' '

S S ' ' 1 '1 S M '

( , ) ( , ),  ',  ',  ',  ' 1,

( , ) ( , ),  ',  ',  1,  ' 1,

( , )

ijkl ij kl jkl ij l ijkl ij kl jkl j kl

ij k l ij l ij l ij k l ij l j k l

ijkl ij k l ij l ij l ijkl ij

Cov M S Cov M M i i j j k k k

Cov S S Cov S M i i j j k k

Cov S S

λ + λ λ = ≠ = ≠

λ + λ = ≠ = ≠

λ λ + λ λ
' 1 ' '

M S ' ' '1 M M ' ' ' '

1 ' '1

S S ' ' 1 ' '1 S M ' '

( , )

  ( , ) ( , ),  ',  ',  ',  , ' 1,

( , ),  ',  ',  , ' 1,

( , )

k l ij l j k l

ijkl ij k l jkl ij l ijkl ij k l jkl j k l

ij l i j l

ijkl i j kl ij l i j l ijkl i j kl

Cov S M

Cov M S Cov M M i i j j k k k k

Cov S S i i j j k k

Cov S S Cov

+ λ λ + λ λ = ≠ ≠ ≠

≠ ≠ =

λ λ + λ λ
1 '

M S ' ' ' '1 M M ' ' '

S ' ' ' 1 ' '1 M ' ' ' 1 ' '

S S ' ' '

( , )

  ( , ) ( , ),  ',  ',  ',  ' 1,

( , ) ( , ),  ',  ',  1,  ' 1,

(

ij l j kl

ijkl i j kl jkl i j l ijkl i j kl jkl j kl

i j k l ij l i j l i j k l ij l j k l

ijkl i j k l

S M

Cov M S Cov M M i i j j k k k

Cov S S Cov S M i i j j k k

Cov S

+ λ λ + λ λ ≠ ≠ = ≠

λ + λ ≠ ≠ = ≠

λ λ
1 ' '1 S M ' ' ' 1 ' '

M S ' ' ' ' '1 M M ' ' ' ' '

, ) ( , )

  ( , ) ( , ),  ',  ',  ',  , ' 1,

ij l i j l ijkl i j k l ij l j k l

ijkl i j k l jkl i j l ijkl i j k l jkl j k l

S Cov S M

Cov M S Cov M M i i j j k k k k

+ λ λ

+ λ λ + λ λ ≠ ≠ ≠ ≠



































(93) 
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(b) for all observed variables measured on different occasions of measurement ( 'l l≠ ): 

1 1 '

S S ' 1 1 ' S M ' 1 '

M S ' 1 ' M M ' '

' ' ' '

( , ),   ',  ',  , ' 1,

( , ) ( , )

  ( , ) ( , ),   ',  ',  '

( , )

ij l ij l

ijkl ijkl ij l ij l ijkl ijkl ij l jkl

ijkl ijkl jkl ij l ijkl ijkl jkl jkl

ijkl i j k l

Cov S S i i j j k k

Cov S S Cov S M

Cov M S Cov M M i i j j k k

Cov Y Y

= = =

λ λ + λ λ

+ λ λ + λ λ = = =

=

S ' ' 1 1 ' M ' ' 1 ' '

S S ' ' 1 1 ' S M ' ' 1 ' '

M S ' ' 1 ' M M ' '

,  ' 1,

( , ) ( , ),  ',  ',  1,  ' 1,

( , ) ( , )

  ( , ) (

ijk l ij l ij l ijk l ij l jk l

ijkl ijk l ij l ij l ijkl ijk l ij l jk l

ijkl ijk l jkl ij l ijkl ijk l jk

k

Cov S S Cov S M i i j j k k

Cov S S Cov S M

Cov M S Cov M

≠

λ + λ = = = ≠

λ λ + λ λ

+ λ λ + λ λ ' '

1 ' 1 '

S S ' ' 1 ' 1 ' S M ' ' 1 '

M S ' ' ' 1 ' M M ' '

, ),   ',  ',  ',  , ' 1,

( , ),   ',  ',  , ' 1,

( , ) ( , )

  ( , ) ( ,

l jk l

ij l i j l

ijkl i jkl ij l i j l ijkl i jkl ij l jkl

ijkl i jkl jkl i j l ijkl i jkl jkl j

M i i j j k k k k

Cov S S i i j j k k

Cov S S Cov S M

Cov M S Cov M M

= = ≠ ≠

≠ = =

λ λ + λ λ

+ λ λ + λ λ
'

S 1 S ' ' ' 1 ' 1 ' S 1 M ' ' ' 1 ' '

S S ' ' ' 1 ' 1 ' S M ' ' ' 1 ' '

M S '

),   ',  ',  ',  ' 1,

( , ) ( , ),  ',  ',  1,  ' 1,

( , ) ( , )

  

kl

ij l i jk l ij l i j l ij l i jk l ij l jk l

ijkl i jk l ij l i j l ijkl i jk l ij l jk l

ijkl i j

i i j j k k k

Cov S S Cov S M i i j j k k

Cov S S Cov S M

≠ = = ≠

λ λ + λ λ ≠ = = ≠

λ λ + λ λ

+ λ λ ' ' ' 1 ' M M ' ' ' ' '

1 '1 '

S S ' ' 1 '1 ' S M ' ' 1 ' '

M S '

( , ) ( , ),   ',  ',  ',  , ' 1,

( , ),   ',  ',  , ' 1,

( , ) ( , )

  

k l jkl i j l ijkl i jk l jkl jk l

ij l ij l

ijkl ij kl ij l ij l ijkl ij kl ij l j kl

ijkl ij k

Cov M S Cov M M i i j j k k k k

Cov S S i i j j k k

Cov S S Cov S M

+ λ λ ≠ = ≠ ≠

= ≠ =

λ λ + λ λ

+ λ λ ' '1 ' M M ' ' ' '

S ' ' ' 1 '1 ' M ' ' ' 1 ' ' '

S S ' ' ' 1 '1 ' S M '

( , ) ( , ),   ',  ',  ',  ' 1,

( , ) ( , ),  ',  ',  1,  ' 1,

( , )

l jkl ij l ijkl ij kl jkl j kl

ij k l ij l ij l ij k l ij l j k l

ijkl ij k l ij l ij l ijkl ij

Cov M S Cov M M i i j j k k k

Cov S S Cov S M i i j j k k

Cov S S

+ λ λ = ≠ = ≠

λ + λ = ≠ = ≠

λ λ + λ λ
' ' 1 ' ' '

M S ' ' ' '1 ' M M ' ' ' ' ' '

1 ' '1 '

S S ' ' ' 1 ' '1 ' S

( , )

  ( , ) ( , ),   ',  ',  ',  , ' 1,

( , ),   ',  ',  , ' 1,

( , )

k l ij l j k l

ijkl ij k l jkl ij l ijkl ij k l jkl j k l

ij l i j l

ijkl i j kl ij l i j l ijkl

Cov S M

Cov M S Cov M M i i j j k k k k

Cov S S i i j j k k

Cov S S

+ λ λ + λ λ = ≠ ≠ ≠

≠ ≠ =

λ λ + λ M ' ' ' 1 ' '

M S ' ' ' ' '1 ' M M ' ' ' ' '

S ' ' ' ' 1 ' '1 ' M ' ' ' ' 1 ' ' '

( , )

  ( , ) ( , ),   ',  ',  ',  ' 1,

( , ) ( , ),  ',  ',  1,  '

i j kl ij l j kl

ijkl i j kl jkl i j l ijkl i j kl jkl j kl

i j k l ij l i j l i j k l ij l j k l

Cov S M

Cov M S Cov M M i i j j k k k

Cov S S Cov S M i i j j k k

λ

+ λ λ + λ λ ≠ ≠ = ≠

λ + λ ≠ ≠ = ≠

S S ' ' ' ' 1 ' '1 ' S M ' ' ' ' 1 ' ' '

M S ' ' ' ' ' '1 ' M M ' ' ' ' ' ' '

1,

( , ) ( , )

  ( , ) ( , ),   ',  ',  ',  , ' 1.

ijkl i j k l ij l i j l ijkl i j k l ij l j k l

ijkl i j k l jkl i j l ijkl i j k l jkl j k l

Cov S S Cov S M

Cov M S Cov M M i i j j k k k k

λ λ + λ λ

+ λ λ + λ λ ≠ ≠ ≠ ≠













































(94) 

Proof. Equations 63 and 64 directly follow from Equation 58 by applying Equations 59 to 62. 

Explanations. As I will illustrate below, Equations 63 and 64 are useful to prove the 

identifiability of the unknown model parameters.  

3.5.1.6 Mean Structure 

Theorem 2 shows the consequences of the model definition for the observed and latent 

variable mean structure. 

 

 

Theorem 2: Mean Structure 

If ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model and, without loss 

of generality, k = 1 is chosen as the reference method, then the following mean structure 
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holds for all { } { } { }: 1,..., ,   : 1,..., ,  : 1,..., ,i I m j J n k K o∈ = ∈ = ∈ =  and { } : 1,...,l L p∈ = : 

 S 1( ) ( )
ijkl ijkl ijkl ij l

E Y E S= α + λ , (95) 

 1 1( ) ( )
ij l ij l

E S E Y= , (96) 

 ( ) 0
jkl

E M = , (97) 

 ( ) 0
ijkl

E E = , (98) 

where (.)E  denotes the expected value (mean). 

Proof. According to Equation 77, S 1 Mijkl ijkl ijkl ij l ijkl jkl ijkl
Y S M E= α + λ + λ + . Hence, 

S 1 M( ) ( ) ( ) ( ) ( )
ijkl ijkl ijkl ij l ijkl jkl ijkl

E Y E E S E M E E= α + λ + λ + . The terms M( )
ijkl jkl

E Mλ  and 

1( )
ij l

E E  are zero according to Equations 97 and 98 so that this equation simplifies to 

Equation 95. Equation 96 follows from Equation 95, given that 1 0
ij l

α =  and S 1 1
ij l

λ =  (see 

Equation 77). Equations 97 and 98 follow from the definition of 
jkl

M  and 
ijkl

E  as residuals 

(see Equations 72 and 73). Residuals always have an expected value of zero (Steyer & Eid, 

2001, Box G.1). 

Explanations. Equation 95 shows that the mean of an observed variable is identical to the 

mean of the corresponding state factor if and only if 0
ijkl

α =  and S 1
ijkl

λ = . According to 

Equation 96, the means of the latent state factors are identical to the means of the indicators 

pertaining to the reference method. Equations 97 and 98 show an important implication of the 

model definition, namely that the method factors and error variables, being defined as 

residuals, have means of zero. Therefore, in empirical applications of the model, the means of 

the method factors and error variables have to be set to zero. Note that this is not a testable 

assumption, but a direct consequence of the model definition.  

3.5.1.7 Identification 

In this section, I show how the parameters of the CS-C(M–1) model can be identified. In 

general, the parameters of a SEM (i.e., the intercepts, loading parameters, latent means, latent 

variances, and latent covariances) are identified if it can be shown that they can be uniquely 

determined from the means, variances, and covariances of the observed variables (Bollen, 

1989). Uniquely determined means that there is one and only one mathematical solution for 
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each model parameter. The relevant parameters for which identification needs to be proven in 

the CS-C(M–1) model are the intercepts (
ijkl

α ), the state factor loadings ( Sijkl
λ ), the method 

factor loadings ( Mijkl
λ ), the variances of the common state factors [ 1( )

ij l
Var S ], the variances 

of the method factors [ ( )
jkl

Var M ], the admissible covariances between the latent factors and 

the variances of the error variables [ ( )
ijkl

Var E ]. 

A prerequisite for the identification of latent variable SEMs is that each latent factor is 

assigned a scale (Bollen, 1989). From Definition 1, it follows that 1 0
ij l

α =  and S 1 1
ij l

λ =  (see 

also Equation 47). These constraints identify the scale of the indicator-specific state factors 

1ij l
S . In order to assign a scale to the method factors, one factor loading Mijkl

λ  per method 

factor must be fixed to a non-zero value. Alternatively, one may fix the method factor 

variances to a positive value. Fixing one loading is generally preferable in longitudinal SEMs, 

given that one is often interested in estimating and comparing the factor variances over time. 

To simplify the present identification corollary, I assume without loss of generality that the 

method factor loading of the first indicator is set to one for each method factor (i.e., 

M1 1
jkl

λ = ). Corollary 5 shows how each parameter of the CS-C(M–1) model is identified 

under this condition. Note that parameters are either expressed in terms of observed means, 

variances, and covariances or in terms of other identified model parameters. The latter is done 

in cases where the terms would become very complicated if all parameters were replaced by 

observed covariances.  

 

 

Corollary 5: Identification 

If ( ) S M: , , , , , , , ,
ijkl jkl ijkl ijkl ijkl ijkl

M P S M E= Ω α λ λA  is a CS-C(M–1) model with conditional 

regressive independence, k = 1 is chosen as the reference method without loss of generality, and all 

method factor loadings M1 jkl
λ  are set to 1, then for all 

{ } { } { }, ' : 1,..., ,   , ' : 1,..., ,  , ' : 1,..., ,i i I m j j J n k k K o∈ = ∈ = ∈ =  { } , ' : 1,...,l l L p∈ = : 

 ' 1
1

1 1 ' 1

( , )
( ) ( ),

( , )
ijkl i j l

ijkl ijkl ij l

j l i j l

Cov Y Y
E Y E Y

Cov Y Y
α = −  (99) 
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 ' 1
S

1 ' 1

( , )
,  ',  1,

( , )
ijkl i j l

ijkl

ij l i j l

Cov Y Y
i i k

Cov Y Y
λ = ≠ ≠  (100) 

 1 1( ) ( ),
ij l ij l

E S E Y=  (101) 

 1 1 ' 1
1

' 1

( , ) ( , )
( ) ,  ',  1

( , )
ij l ijkl ij l i j l

ij l

ijkl i j l

Cov Y Y Cov Y Y
Var S i i k

Cov Y Y
= ≠ ≠ , (102) 

 1 ' '1 ' 1 ' '1 '( , ) ( , ),  '
ij l i j l ij l i j l

Cov S S Cov Y Y i i= ≠ , ( , , ) ( ', ', ')i j l i j l≠ , (103) 

 
1 ' S S1 ' 1 1 1

M

'

( , ) ( , )
,  1,  ',  , ' 1

( , )

ijkl jk l ijkl jk l ij l j l

ijkl

jkl jk l

Cov Y Y Cov S S
i k k k k

Cov M M

 − λ λ λ = ≠ ≠ ≠ , (104) 

 ' S S ' 1 ' 1

M M '

( , ) ( , )
( ) ,  ',  1ijkl i jkl ijkl i jkl ij l i j l

jkl

ijkl i jkl

Cov Y Y Cov S S
Var M i i k

− λ λ
= ≠ ≠

λ λ
, (105) 

1 ' ' 1 1 1 1

' 1 1 '

1 1 ' 1

( , ) ( , )
( , ) ( , ) ,   ' 1,  ',  , ' 1,

( , )
jk l i j l j l jkl

jkl jk l jkl jk l

j l i j l

Cov Y Y Cov Y Y
Cov M M Cov Y Y i k k k k

Cov Y Y
= − ≠ ≠ ≠  (106) 

 

' ' '

' ' ' ' S S ' ' ' ' 1 ' '1 '

S M ' ' ' ' 1 ' ' ' M S ' ' ' ' ' '1 '

M M ' ' ' '

( , )

[ ( , ) ( , )

1
   ( , ) ( , )] ,

                                 

jkl j k l

ijkl i j k l ijkl i j k l ij l i j l

ijkl i j k l ij l j k l ijkl i j k l jkl i j l

ijkl i j k l

Cov M M

Cov Y Y Cov S S

Cov S M Cov M S

= − λ λ

− λ λ − λ λ
λ λ

                                                                                  , ' 1,k k ≠

 (107) 

 
1 ' ' ' S ' ' ' 1 ' '1 '

1 ' '

M ' ' '

( , ) ( , )
( , ) ,

                                                                             for '  if  ',  and 1,

ij l i j kl i j kl ij l i j l

ij l j kl

i j kl

Cov Y Y Cov S S
Cov S M

j j l l k

 − λ =
λ

≠ = ≠

 (108) 

 1 1 ' 1
1 1

' 1

( , ) ( , )
( ) ( ) ,  ', 1,

( , )
ij l ijkl ij l i j l

ij l ij l

ijkl i j l

Cov Y Y Cov Y Y
Var E Var Y i i k

Cov Y Y
= − ≠ ≠  (109) 

 2 2
S 1 M( ) ( ) ( ) ( ),  for 1.ijkl ijkl ijkl ij l ijkl jklVar E Var Y Var S Var M k= − λ − λ ≠  (110) 

Proofs. In order to make the proofs more easily understandable, I present them in the order in 

which the parameters are most easily identified and not in the same order as in Corollary 4. 
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Equation 101: Identifiability of 1( )
ij l

E S  

1 1( ) ( )
ij l ij l

E S E Y=  directly follows from Theorem 3 (Equation 96). 

Equation 99: Identifiability of 
ijkl

α  

According to Equation 95 (Theorem 3), S 1( ) ( ).
ijkl ijkl ijkl ij l

E Y E S= α + λ  Hence, 

S 1

' 1
1

1 1 ' 1

( ) ( ) 

( , )
( ) ( ).

( , )

ijkl ijkl ijkl ij l

ijkl i j l

ijkl ij l

j l i j l

E Y E S

Cov Y Y
E Y E Y

Cov Y Y

α = − λ

= − ⋅
 

Equation 103: Identifiability of 1 ' '1 '( , )
ij l i j l

Cov S S  

According to Equation 94 (Theorem 2), 1 ' '1 ' 1 ' '1 '( , ) ( , )
ij l i j l ij l i j l

Cov S S Cov Y Y=  for 'i i≠  and 

( , , ) ( ', ', ')i j l i j l≠ . 

Equation 100: Identifiability of Sijkl
λ  (for k 1≠ ) 

According to Equation 93 (Theorem 2), ' 1 S 1 ' 1( , ) ( , ),
ijkl i j l ijkl ij l i j l

Cov Y Y Cov S S= λ  for ',  1.i i k≠ ≠  

Therefore, ' 1
S 1 ' 1

1 ' 1

( , )
,  for ',  1, and ( , ) 0.

( , )
ijkl i j l

ijkl ij l i j l

ij l i j l

Cov Y Y
i i k Cov S S

Cov S S
λ = ≠ ≠ ≠  Equation 103 allows 

replacing the interstate covariances 1 ' 1( , )
ij l i j l

Cov S S  by 1 ' 1( , )
ij l i j l

Cov Y Y  which leads to Equation 100. 

Equation 102: Identifiability of 1( )
ij l

Var S  

According to Equation 93 (Theorem 2), 1 S 1( , ) ( ),
ij l ijkl ijkl ij l

Cov Y Y Var S= λ  where 1.k ≠  Therefore 

1 1 1 1 ' 1
1

' 1S ' 1

1 ' 1

( , ) ( , ) ( , ) ( , )
( ) ,

( , ) ( , )

( , )

ij l ijkl ij l ijkl ij l ijkl ij l i j l

ij l
ijkl i j lijkl ijkl i j l

ij l i j l

Cov Y Y Cov Y Y Cov Y Y Cov Y Y
Var S

Cov Y Y Cov Y Y

Cov Y Y

= = =
λ

 for ',  1,i i k≠ ≠  and 

' 1( , ) 0
ijkl i j l

Cov Y Y ≠ . 

Equation 106: Identifiability of '( , ),  '
jkl jk l

Cov M M k k≠  

According to Equation 93 (Theorem 2), 

' S S ' 1 M M ' '( , ) ( ) ( , )
ijkl ijk l ijkl ijk l ij l ijkl ijk l jkl jk l

Cov Y Y Var S Cov M M= λ λ + λ λ . For i = 1 and 'k k≠ , we obtain: 

1 1 ' S1 S1 ' 1 1 '( , ) ( ) ( , )
jkl jk l jkl jk l j l jkl jk l

Cov Y Y Var S Cov M M= λ λ + , given that M1 jkl
λ  = M1 'jk l

λ  = 1. Solving 
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for '( , )
jkl jk l

Cov M M  and inserting the observed information for the already identified parameters 

yields: 

' 1 1 ' S1 S1 ' 1 1

1 ' 1 1 ' ' 1 1 1 1 1 1 ' 1
1 1 '

1 1 ' 1 1 1 ' 1 1 ' 1

( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

(

jkl jk l jkl jk l jkl jk l j l

jkl i j l jk l i j l j l jkl j l i j l

jkl jk l

j l i j l j l i j l jkl i j l

Cov M M Cov Y Y Var S

Cov Y Y Cov Y Y Cov Y Y Cov Y Y
Cov Y Y

Cov Y Y Cov Y Y Cov Y Y

Cov

= − λ λ

= −

=
1 ' ' 1 1 1 1

1 1 '

1 1 ' 1

( , ) ( , )
, ) ,

( , )
jk l i j l j l jkl

jkl jk l

j l i j l

Cov Y Y Cov Y Y
Y Y

Cov Y Y
−

 

where 1i ≠ , 'k k≠ , and 1 1 ' 1( , ) 0
j l i j l

Cov Y Y ≠ . 

Equation 104: Identifiability of Mijkl
λ  (for i 1≠ ) 

According to Equation 93 (Theorem 2), 

' ' S S ' ' 1 ' 1 M M ' ' '( , ) ( , ) ( , ),
ijkl i jk l ijkl i jk l ij l i j l ijkl i jk l jkl jk l

Cov Y Y Cov S S Cov M M= λ λ + λ λ  where ',  'i i k k≠ ≠  and 

, ' 1.k k ≠  For ' 1i = , we obtain: 1 ' S S1 ' 1 1 1 M '( , ) ( , ) ( , ),
ijkl jk l ijkl jk l ij l j l ijkl jkl jk l

Cov Y Y Cov S S Cov M M= λ λ + λ  

given that M1 ' 1
jk l

λ = . Solving for Mijkl
λ  yields: 

1 ' S S1 ' 1 1 1

M '

'

( , ) ( , )
, where ( , ) 0

( , )

ijkl jk l ijkl jk l ij l j l

ijkl jkl jk l

jkl jk l

Cov Y Y Cov S S
Cov M M

Cov M M

 − λ λ λ = ≠ . 

(All terms on the right hand side have already been shown to be identified.) 

Equation 108: Identifiability of 1 ' '( , )
ij l j kl

Cov S M (for 'j j≠  if 'l l= ) 

According to Equation 94 (Theorem 2), 

1 ' ' ' S ' ' ' 1 ' '1 ' M ' ' ' 1 ' '( , ) ( , ) ( , ),
ij l i j kl i j kl ij l i j l i j kl ij l j kl

Cov Y Y Cov S S Cov S M= λ + λ  for 'j j≠  if 'l l=  1.k ≠  Solving 

for 1 ' '( , )
ij l j kl

Cov S M  yields: 

1 ' ' ' S ' ' ' 1 ' '1 '

1 ' ' M ' ' '

M ' ' '

( , ) ( , )
( , ) ,  where 0.

ij l i j kl i j kl ij l i j l

ij l j kl i j kl

i j kl

Cov Y Y Cov S S
Cov S M

 − λ = λ ≠
λ

 

(All terms on the right hand side have already been shown to be identified.) 

Equation 107: Identifiability of ' ' '( , )
jkl j k l

Cov M M  

According to Equation 94 (Theorem 2), 
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' ' ' ' S S ' ' ' ' 1 ' '1 ' S M ' ' ' ' 1 ' ' '

M S ' ' ' ' ' '1 ' M M ' ' ' ' ' ' '

( , ) ( , ) ( , )

( , ) ( , ),

ijkl i j k l ijkl i j k l ij l i j l ijkl i j k l ij l j k l

ijkl i j k l jkl i j l ijkl i j k l jkl j k l

Cov Y Y Cov S S Cov S M

Cov M S Cov M M

= λ λ + λ λ

+λ λ + λ λ
 

where  , ' 1.k k ≠  Solving for ' ' '( , )
jkl j k l

Cov M M  yields: 

' ' ' ' ' ' ' S S ' ' ' ' 1 ' '1 '

S M ' ' ' ' 1 ' ' ' M S ' ' ' ' ' '1 '

M M ' ' ' '

( , ) [ ( , ) ( , )

1
  ( , ) ( , )] ,

jkl j k l ijkl i j k l ijkl i j k l ij l i j l

ijkl i j k l ij l j k l ijkl i j k l jkl i j l

ijkl i j k l

Cov M M Cov Y Y Cov S S

Cov S M Cov M S

= − λ λ

− λ λ − λ λ
λ λ

 

where M M ' ' ' ' 0
ijkl i j k l

λ λ ≠ . (All terms on the right hand side have already been shown to be 

identified.) 

Equation 105: Identifiability of ( )
jkl

Var M  

According to Equation 93 (Theorem 2), 

' S S ' 1 ' 1 M M '( , ) ( , ) ( ),  where ',  1.
ijkl i jkl ijkl i jkl ij l i j l ijkl i jkl jkl

Cov Y Y Cov S S Var M i i k= λ λ + λ λ ≠ ≠  

Solving for ( )
jkl

Var M  yields: 

' S S ' 1 ' 1

M M '

M M '

( , ) ( , )
( ) ,  where ',  1,  and 0.

ijkl i jkl ijkl i jkl ij l i j l

jkl ijkl i jkl

ijkl i jkl

Cov Y Y Cov S S
Var M i i k

 − λ λ = ≠ ≠ λ λ ≠
λ λ

 

(All terms on the right hand side have already been shown to be identified.) 

Equation 109 and 110: Identifiability of ( )
ijkl

Var E  

According to Equation 93 (Theorem 2), 1 1 1( ) ( ) ( )
ij l ij l ij l

Var Y Var S Var E= +  and 

2 2
S 1 M( ) ( ) ( ) ( ),  for 1.ijkl ijkl ij l ijkl jkl ijklVar Y Var S Var M Var E k= λ + λ + ≠  Hence, 

1 1 1

1 1 ' 1
1

' 1

( ) ( ) ( )

( , ) ( , )
( ) ,  where '  and 1,  and

( , )

ij l ij l ij l

ij l ijkl ij l i j l

ij l

ijkl i j l

Var E Var Y Var S

Cov Y Y Cov Y Y
Var Y i i k

Cov Y Y

= −

= − ≠ ≠
 

2 2
S 1 M( ) ( ) ( ) ( ),  for 1.ijkl ijkl ijkl ij l ijkl jklVar E Var Y Var S Var M k= − λ − λ ≠  

(All terms on the right hand side have already been shown to be identified.) 

 

The minimal condition for identification of the CS-C(M–1) model is that there is a 

2x1x2x2 MTMM-MO design, that is, one construct (n = 1) assessed by two methods (o = 2) 
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on two measurement occasions (p = 2), with two indicators per method (m = 2). This design is 

sufficient for obtaining an identified model, given substantial parameter values. In particular, 

under this design, there would be six latent variables (four latent state factors and two latent 

method factors), each of which would be measured by only two indicators. Therefore, a 

requirement for the identification of the “minimal model” is that each latent variable is 

substantially correlated (has a non-zero covariance) with at least one other latent variable (or 

an external covariate) in the model. If a latent variable in this minimal model does not covary 

with another variable in the model, the factor loadings of both indicators of this latent variable 

must be fixed to a non-zero value to identify the model. 
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3.5.2 CS-C(M–1) Model With Indicator-Specific Factors Across Time 

3.5.2.1 Model Definition 

The assumptions of the CS-C(M–1) model with indicator-specific factors are summarized 

in Definition 3. 

 

 

Definition 3: CS-C(M–1) Model With Indicator-Specific Factors 

The random variables 1111,..., ,..., ,
ijkl mnop

Y Y Y  { }: 1,..., ,i I m∈ =  { }: 1,..., ,j J n∈ =  

{ }: 1,..., ,k K o∈ =  { }: 1,..., ,l L p∈ =  on a probability space ( ), , PΩ A  are variables of a CS-

C(M–1) model with indicator-specific factors if and only if the following conditions hold: 

(a)  ( ), , PΩ A  is a probability space such that 0 1 1... ...
n n

U U U M MΩ = × × × × × × . 

(b)  The projections 0 0: ,  :
l l

p U p UΩ → Ω →  are random variables on ( ), , PΩ A . 

(c)  The variables :
ijkl

Y Ω →ℝ  are random variables on ( ), , PΩ A . 

(d)  Without loss of generality, the first method (k = 1) is selected as reference method. 

(e)  Without loss of generality, the first indicators (i = 1) are selected as marker indicators. 

Then, the variables 

 0: ( | , )
ijkl ijkl l

S E Y p p= , (111) 

 ( )1 1 1 1 1: |= −
ij l ij l ij l j l

IS S E S S , (112) 

 ( )1 1: |= −
ijkl ijkl ijkl j l

M S E S S , 1≠k , (113) 

 ( )1: |= −
ijkl ijkl ijkl jkl

IS M E M M , 1≠k , and (114) 

 :
ijkl ijkl ijkl

E Y S= −  (115) 

are random variables on ( ), , PΩ A , where 0( | , )
ijkl l

E Y p p  denotes the conditional expectation 

of 
ijkl

Y  given the person ( )0p  and the situation ( )lp , the variables 
ijkl

IS  represent the 

indicator-specific effects, ( )1 1|
ijkl j l

E S S  denotes the conditional expectation of 
ijkl

S  given the 

marker state variable 1 1j l
S , and ( )1|

ijkl jkl
E M M  denotes the conditional expectation of a 
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method variable 
ijkl

M  given the method variable for the first indicator 1 jkl
M . The variables 

ijkl
E  are measurement error variables. 

(f)  For each quadruple ( ), , ,  ,  ,  ,  ∈ ∈ ∈ ∈i j k l i I j J k K l L  there is a constant 
ijkl

α ∈ℝ  

      as well as a constant Sijkl
λ ∈ℝ , S 0

ijkl
λ > , such that 

 ( )1 1 S 1 1|
ijkl j l ijkl ijkl j l

E S S S= α + λ . (116) 

(g)  For each quadruple ( ), , ,  ,  ,  ,  ,  1i j k l i I j J k K l L k∈ ∈ ∈ ∈ ≠  there is a constant 

      Mλ ∈ℝ
ijkl

, M 0λ >
ijkl

, such that 

 ( )1 M 1|
ijkl jkl ijkl jkl

E M M M= λ . (117) 

(h)  For each quintuple ( ), , , , ' ,  ,  ,  ,  , '∈ ∈ ∈ ∈i j k l l i I j J k K l l L  there is a constant 

      IS 'λ ∈ℝ
ijkll

, IS ' 0λ >
ijkll

, such that 

 IS ' 'ijkl ijkll ijkl
IS IS= λ . (118) 

Explanations. As in the CS-C(M–1) model without indicator-specific factors (see 

Definition 1 in Section 3.5.1), the basis for the model definition are the observed variables 

ijkl
Y , each of which has its own associated latent state (true score) variable 

ijkl
S . According to 

Condition (f), all latent state variables 
ijkl

S  belonging to the same construct and the same 

occasion of measurement are linearly regressed on the state variables 1 1j l
S , pertaining to the 

first indicator (i.e., the marker indicator) of the reference method. 

Note that all state variables within the same construct-occasion unit are now regressed on 

the same state variable 1 1j l
S , belonging to the marker indicator of the reference method. In 

the model without indicator-specific factors across time defined in Section 3.5.1, the 

regressions were assumed to be indicator-specific. That is, the state variables 
ijkl

S  were 

regressed on the corresponding reference method state variable 1ij l
S , with the same index i, 

instead of a single “common” state variable. As a result of this difference, we obtain general 

state factors in the CS-C(M–1) model with indicator-specific factors, whereas indicator-

specific state factors were obtained in the model defined in Section 3.5.1.  
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The second difference is that in contrast to the model defined in Section 3.5.1, there are 

now two types of latent residual variables of the latent regression analysis 

( )1 1 S 1 1|
ijkl j l ijkl ijkl j l

E S S S= α + λ . For the state variables 1ij l
S , pertaining to the reference method 

(k = 1), the residuals are the indicator-specific variables 1ij l
IS . These variables mirror that part 

of the state variables 1ij l
S , 1≠i , that cannot be predicted from the state variable pertaining to 

the marker indicator 1 1j l
S . For the state variables 

ijkl
S , 1≠k , the residuals of this regression 

are the method variables 
ijkl

M  (as in the model defined in Section 3.5.1). 

The third difference is that a second latent regression analysis is assumed in addition to the 

regression ( )1 1 S 1 1|
ijkl j l ijkl ijkl j l

E S S S= α + λ . In this second latent regression analysis, the 

method variables 
ijkl

M , 1≠i , are regressed on the method variables belonging to the first 

indicator of a non-reference method, 1 jkl
M : ( )1 M 1|

ijkl jkl ijkl jkl
E M M M= λ . The residuals of this 

second latent regression analysis are the indicator-specific variables 
ijkl

IS , 1≠k , for state 

variables belonging to the non-reference methods.  

Finally, in Condition (h) I introduce the assumption that all indicator-specific variables 

ijkl
IS  that belong to the same indicator i, the same construct j, and the same method k, but 

different measurement occasions l and 'l  are unidimensional (i.e., they differ only by a 

multiplicative constant IS 'ijkll
λ ). Hence, in Condition (h) a homogeneity assumption with 

regard to the indicator-specific effects across time is made. There are no additive constants in 

Equations 117 and 118 given that the expectation (mean) of residual variables is always zero 

(see, e.g., Steyer & Eid, 2001, p. 357). 

3.5.2.2 Existence of Common Indicator-Specific Factors ISijk 

Corollary 6 shows that Condition (h) in Definition 3 implies the existence of common 

indicator-specific factors 
ijk

IS .  

 

 

Corollary 6: Existence of Common Indicator-Specific Factors ISijk 

The random variables 1111,..., ,..., ,
ijkl mnop

Y Y Y  { }: 1,..., ,i I m∈ =  { }: 1,..., ,j J n∈ =  

{ }: 1,..., ,k K o∈ =  { }: 1,..., ,l L p∈ =  on a probability space ( ), , PΩ A  are variables of a CS-

C(M–1) model with indicator-specific factors if 
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conditions (a) to (g) in Definition 1 hold and 

(f’)  for each quadruple ( ), , , ,  ,  ,  ,  ,  1∈ ∈ ∈ ∈ ≠i j k l i I j J k K l L i , there is a constant 

       IS IS,  0λ ∈ λ >ℝ
ijkl ijkl

, and a real random variable 
ijk

IS  on ( ), , PΩ A  such that: 

 ISijkl ijkl ijk
IS IS= λ . (120) 

Proof. If one defines, for example, 1:
ijk ijk

IS IS=  as well as IS IS 1:
ijkl ijkl

λ = λ  and inserts these 

parameters in Equation 118 (see Definition 3), this results in ISijkl ijkl ijk
IS IS= λ  (Equation 120). 

Furthermore, according to Equation 120, 
ijk

IS  can be expressed as 
IS

=
λ

ijkl

ijk

ijkl

IS
IS  as well as 

'

IS '

ijkl

ijk

ijkl

IS
IS =

λ
. By setting both equations equal, it follows that IS

'

IS '

ijkl

ijkl ijkl

ijkl

IS IS
λ

=
λ

. By defining 

IS
IS '

IS '

: ijkl

ijkll

ijkl

λ
λ =

λ
 one obtains Equation 118. 

Explanations. The similarity of Corollary 1 and Corollary 6 is obvious. In Corollary 1, the 

existence of common method factors was shown based on the assumption of homogeneous 

method effects (see Definition 1). In Corollary 6, it is shown that the assumption of 

homogeneous indicator-specific effects across time (Equation 118) implies the existence of 

common indicator-specific factors. In sum, the following measurement equations for the 

observed variables result from the assumptions made in Definition 3: 

 

1 1 1 1

1 S 1 1 1 IS 1 1 1

1 S1 1 1 1 1

S 1 1 M

,  for  = 1,

,  for 1,  = 1,                      

,  for 1, 1,                           

j l j l

ij l ij l j l ij l ij ij l

ijkl

jkl jkl j l jkl jkl

ijkl ijkl j l ijk

S E i k

S IS E i k
Y

S M E i = k

S

+ =

α + λ + λ + ≠
=

α + λ + + ≠

α + λ + λ 1 IS ,  for , 1       
l jkl ijkl ijk ijkl

M IS E i  k






 ⋅ + λ + ≠

 (121) 

It is obvious from Corollary 6 that the variables 
ijk

IS  are not uniquely defined. One could 

choose any variable 
ijkl

IS  to serve as “common indicator-specific factor” 
ijk

IS . Note again the 

similarity to Corollary 1, which revealed that the method factors 
jkl

M  in the model defined in 

Section 3.5.1 were not uniquely defined. 



The Correlated State-Correlated (Method–1) Model 101 

3.5.2.3 Admissible Transformations and Uniqueness 

In the CS-C(M–1) model with indicator-specific factors, both the common state variables 

1 1j l
S  and the common method variables 1 jkl

M  are uniquely defined. In Definition 3, the 

variables 1 1j l
S  were defined as the conditional expectations of the variables 1 1j l

Y  given the 

person and the situation [see Condition (e) in Definition 3]. Therefore, the variables 1 1j l
S  are 

uniquely defined as the latent state true score variables of the variables 1 1j l
Y . According to 

Condition (e) in Definition 3, the common method variables 1 jkl
M  are defined as 

( )1 1 1 1 1: |= −
jkl jkl jkl j l

M S E S S , that is, as the residuals of the latent regression 

( )1 1 1 1 S1 1 1|
jkl j l jkl jkl j l

E S S S= α + λ . This shows that the common method variables 1 jkl
M  are also 

uniquely defined. They represent that part of the state variables 1 jkl
S , 1≠k , which cannot be 

predicted from 1 1j l
S . Given that both 1 jkl

S  and 1 1j l
S  are uniquely defined, the residual of the 

regression of 1 jkl
S  on 1 1j l

S  (i e., 1 jkl
M ) is also uniquely defined. 

I already noted that the common indicator-specific factors 
ijk

IS  are not uniquely defined. 

As shown in Corollary 6, the variables 
ijk

IS  and the coefficients ISλ
ijkl

 are uniquely defined 

only up to similarity transformations (i.e., up to a multiplication with a positive real number). 

This is shown in Corollary 7: 

 

 

Corollary 7: Admissible Transformations 

If (a) ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors and (b) the variables *
ijkIS  as well as the coefficients *

ISλ ijkl , are 

defined as follows for all ,  ,  ,  ,i I j J k K l L∈ ∈ ∈ ∈  and 1i ≠ : 

 * :ijk ijk ijkIS IS= δ , (122) 

 *
IS IS

1
:ijkl ijkl

ijk

 
λ = λ  δ 

, (123) 

where δ ∈ℝ
ijk

, 0δ >
ijk

, then (c) ( )* * *
S M IS: , , , , , , , , , ,= Ω α λ λ λ

ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl
M P S M IS EA  
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is a CS-C(M–1) model with indicator-specific factors, too, given that the following equation 

holds for all ,  ,  ,  ,i I j J k K l L∈ ∈ ∈ ∈  and 1i ≠ : 

 * *
ISijkl ijkl ijkIS IS= λ . (124) 

Proof. 
ijk

IS  can be replaced by *
ijkIS  in Equation 120 if the constant ISλ

ijkl
 is also replaced by 

*
ISλ ijkl : 

* *
IS M IS IS

1
.ijkl ijkl ijk ijkl ijk ijkl ijk ijk ijkl ijk

ijk

IS IS IS IS IS
 

= λ = λ = λ δ = λ  δ 
  

 

 

Explanations. Corollary 7 shows that similarity transformations of 
ijk

IS  and ISλ
ijkl

 are 

admissible. Hence, the scale level for 
ijk

IS  and ISλ
ijkl

 is a ratio scale. 

3.5.2.4 Meaningfulness 

Important meaningful statements that can be made with respect to 
ijk

IS  and ISλ
ijkl

 are 

presented in Corollary 8. 

 

 

Corollary 8: Meaningfulness 

If both ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  and 

( )* * *
S M IS: , , , , , , , , , ,= Ω α λ λ λ

ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl
M P S M IS EA  are CS-C(M–1) models with 

indicator-specific factors, then for 

(1)  ,∈i I  ,∈j J  ,∈k K  , ' :l l L∈  

 
*

IS IS

*
IS ' IS '

,
λ λ

=
λ λ

ijkl ijkl

ijkl ijkl

 (125) 

(2)  1 2, ,  ,  ,  :ω ω ∈Ω ∈ ∈ ∈i I j J k K  

 
( )
( )

( )
( )

*
1 1

*
2 2

,
ω ω

=
ω ω

ijk ijk

ijk ijk

IS IS

IS IS
 (126) 
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(3)  1 2, ,  , ' ,  , ' ,  , ' :ω ω ∈Ω ∈ ∈ ∈i i I j j J k k K  

 
( )
( )

( )
( )

( )
( )

( )
( )

* *
1 ' ' ' 1 1 ' ' ' 1

* *
2 ' ' ' 2 2 ' ' ' 2

,
ω ω ω ω

− = −
ω ω ω ω

ijk i j k ijk i j k

ijk i j k ijk i j k

IS IS IS IS

IS IS IS IS
 (127) 

(4)  ,  ,  ,  :i I j J k K l L∈ ∈ ∈ ∈  

 ( ) ( )2 *2 *
IS IS ,

ijkl ijk ijkl ijk
Var IS Var ISλ = λ  (128) 

(5)  , ' ,  , ' ,  , ' :i i I j j J k k K∈ ∈ ∈  

 ( ) ( )* *
' ' ' ' ' ', ,

ijk i j k ijk i j k
Corr IS IS Corr IS IS= . (129) 

where (.)Var  denotes the variance and ( ).,.Corr  denotes the correlation. 

Proofs. To show that Equations 125 to 129 hold, one simply needs to replace *
ISλ ijkl  by 

IS

1
ijkl

ijk

 
λ   δ 

 and *
ijkIS  by 

ijk ijk
ISδ . 

Explanations. The explanations are essentially the same as for Corollary 3. Statements that 

concern absolute values of ISλ
ijkl

 and 
ijk

IS  are not meaningful, given that the multiplication 

with a positive real number is permissible and that ISλ
ijkl

 as well as 
ijk

IS  would take on 

different values after such a transformation. In contrast, statements with respect to the ratio of 

two coefficients ISλ
ijkl

 and IS 'λ
ijkl

 as well as statements with respect to the ratio of specific 

values of the indicator-specific factors 
ijk

IS  are meaningful (see Equations 125 and 126). 

Meaningful statements can also be made with respect to the differences between ratios of 

values of two different indicator-specific factors 
ijk

IS  and ' ' 'i j k
IS  (Equation 127). Given that 

the term ( )2
ISijkl ijk

Var ISλ  can be meaningfully interpreted according to Equation 128, it 

follows that statements concerning the indicator-specificity coefficient (see Table 2) are also 

meaningful. Furthermore, meaningful statements can be made with respect to the correlations 

between indicator-specific factors (see Equation 129). 

3.5.2.5 Covariance Structure 

To derive testable consequences for the covariance structure implied by the CS-C(M–1) 

model with indicator-specific factors, it is necessary to make the assumption of conditional 
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regressive independence for this model variant, too. The assumption of conditional regressive 

independence for this model is introduced in Definition 4. 

 

 

Definition 4: CS-C(M–1) Model With Indicator-Specific Factors 

And Conditional Regressive Independence 

If ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors, then M is called a CS-C(M–1) model with indicator-specific factors 

and conditional regressive independence if and only if the following assumptions hold  

(a) for all { }, ' : 1,..., ,i i I m∈ =  { }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  { }, ' : 1,...,l l L p∈ = : 

 ( ) ( )( ) ( )1 ' ' ' '| , ,..., , , ', ', ', ' , , , | ,
ijkl 0 p i j k l ijkl 0 l

E Y p p p Y i j k l i j k l E Y p p ≠ =  . (130) 

 

Explanations. Definition 4 is equivalent to Definition 2. As will be shown below, a 

consequence of the assumption of conditional regressive independence is that correlations 

among error variables as well as correlations between error variables and other latent 

variables are excluded. Theorem 3 summarizes the implications of the CS-C(M–1) model 

with indicator-specific factors and conditional regressive independence for the covariance 

structure of the observed variables. 

 

 

Theorem 3: Covariance Structure 

If ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors and conditional regressive independence, without loss of generality 

k = 1 is chosen as the reference method, and without loss of generality all indicators 1 jkl
Y  

have been selected as marker indicators, then the following covariance structure holds for all 

{ }, ' : 1,..., ,i i I m∈ =  { }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  { } , ' : 1,...,l l L p∈ =  and 

(a) for all observed variables: 
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' ' ' ' S S ' ' ' ' 1 1 1 '1 ' S M ' ' ' ' 1 1 1 ' ' '

S IS ' ' ' ' 1 1 ' ' '

M S ' ' '

( , ) ( , ) ( , )

                            ( , )

                            

ijkl i j k l ijkl i j k l j l j l ijkl i j k l j l j k l

ijkl i j k l j l i j k

ijkl i j k l

Cov Y Y Cov S S Cov S M

Cov S IS

= λ λ + λ λ

+ λ λ

+ λ λ ' 1 1 '1 ' M M ' ' ' ' 1 1 ' ' '

M IS ' ' ' ' 1 ' ' '

IS S ' ' ' ' 1 '1 ' IS M ' ' '

( , ) ( , )

                            ( , )

                            ( , )

jkl j l ijkl i j k l jkl j k l

ijkl i j k l jkl i j k

ijkl i j k l ijk j l ijkl i j k

Cov M S Cov M M

Cov M IS

Cov IS S

+ λ λ

+ λ λ

+ λ λ + λ λ ' 1 ' ' '

IS IS ' ' ' ' ' ' ' ' ' ' '

( , )

                            ( , ) ( , ),

l ijk j k l

ijkl i j k l ijk i j k ijkl i j k l

Cov IS M

Cov IS IS Cov E E+ λ λ +

 (131) 

(b) for all latent variables: 

 1 1 1( , ) 0,
j l jkl

Cov S M =  (132) 

 1 1( , ) 0,
j l ijk

Cov S IS =  (133) 

 1 1 ' ' ' '( , ) 0,
j l i j k l

Cov S E =  (134) 

 1( , ) 0,=
jkl ijk

Cov M IS  (135) 

 1 ' ' ' '( , ) 0,=
jkl i j k l

Cov M E  (136) 

 ' ' ' '( , ) 0,
ijk i j k l

Cov IS E =  (137) 

 ' ' ' '( , ) 0,   ( , , , ) ( ', ', ', '),
ijkl i j k l

Cov E E i j k l i j k l= ≠  (138) 

where (.,.)Cov  denotes the covariance. 

 

Proofs. 

Equation 131 

The covariance structure of the observed variables follows from Equations 121, 134, 136, 

and 137 by applying rules of covariance algebra (see, e.g., Bollen, 1989; Steyer & Eid, 2001, 

Box F.1): 
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' ' ' ' S 1 1 M 1 IS

' ' ' ' S ' ' ' ' 1 '1 ' M ' ' ' ' 1 ' ' ' IS ' ' ' ' ' ' ' ' ' ' '

' ' ' ' S ' ' ' '

( , ) [( ),

          ( )]

( , )

ijkl i j k l ijkl ijkl j l ijkl jkl ijkl ijk ijkl

i j k l i j k l j l i j k l j k l i j k l i j k i j k l

ijkl i j k l i j k l

Cov Y Y Cov S M IS E

S M IS E

Cov Cov

= α + λ + λ + λ +

α + λ + λ + λ +

= α α + λ 1 '1 ' M ' ' ' ' 1 ' ' '

IS ' ' ' ' ' ' ' ' ' ' '

S 1 1 ' ' ' ' S S ' ' ' ' 1 1 1 '1 '

S M ' ' ' ' 1 1 1 ' ' '

( , ) ( , )

 ( , ) ( , )

 ( , ) ( , )

 ( , )

ijkl j l i j k l ijkl j k l

i j k l ijkl i j k ijkl i j k l

ijkl j l i j k l ijkl i j k l j l j l

ijkl i j k l j l j k l

S Cov M

Cov IS Cov E

Cov S Cov S S

Cov S M

α + λ α

+ λ α + α

+ λ α + λ λ

+ λ λ + λS IS ' ' ' ' 1 1 ' ' '

S 1 1 ' ' ' '

M 1 ' ' ' ' M S ' ' ' ' 1 1 '1 '

M M ' ' ' ' 1 1 ' ' ' M IS ' ' ' ' 1 ' ' '

( , )

 ( , )

 ( , ) ( , )

 ( , ) ( , )

ijkl i j k l j l i j k

ijkl j l i j k l

ijkl jkl i j k l ijkl i j k l jkl j l

ijkl i j k l jkl j k l ijkl i j k l jkl i j k

Cov S IS

Cov S E

Cov M Cov M S

Cov M M Cov M IS

λ

+ λ

+ λ α + λ λ

+ λ λ + λ λ

M 1 ' ' ' '

IS ' ' ' ' IS S ' ' ' ' 1 '1 '

IS M ' ' ' ' 1 ' ' ' IS IS ' ' ' ' ' ' '

IS ' ' ' '

 ( , )

 ( , ) ( , )

 ( , ) ( , )

 ( , )

 

ijkl jkl i j k l

ijkl ijk i j k l ijkl i j k l ijk j l

ijkl i j k l ijk j k l ijkl i j k l ijk i j k

ijkl ijk i j k l

Cov M E

Cov IS Cov IS S

Cov IS M Cov IS IS

Cov IS E

+ λ

+ λ α + λ λ

+ λ λ + λ λ

+ λ

+ ' ' ' ' S ' ' ' ' 1 '1 ' M ' ' ' ' 1 ' ' '

IS ' ' ' ' ' ' ' ' ' ' '

( , ) ( , ) ( , )

 ( , ) ( , ).

ijkl i j k l i j k l ijkl j l i j k l ijkl j k l

i j k l ijkl i j k ijkl i j k l

Cov E Cov E S Cov E M

Cov E IS Cov E E

α + λ + λ

+ λ +
 

Given that constants cannot covary with other constants or variables, ' ' ' '( , )
ijkl i j k l

Cov α α  = 

S ' ' ' ' 1 '1 '( , )
i j k l ijkl j l

Cov Sλ α  = M ' ' ' ' 1 ' ' '( , )λ α
i j k l ijkl j k l

Cov M  = IS ' ' ' ' ' ' '( , )λ α
i j k l ijkl i j k

Cov IS  = 

' ' ' '( , )
ijkl i j k l

Cov Eα  = S 1 1 ' ' ' '( , )
ijkl j l i j k l

Cov Sλ α  = M 1 ' ' ' '( , )λ α
ijkl jkl i j k l

Cov M  = IS ' ' ' '( , )λ α
ijkl ijk i j k l

Cov IS  

= ' ' ' '( , )
ijkl i j k l

Cov E α  = 0. Furthermore, the terms S 1 1 ' ' ' '( , )
ijkl j l i j k l

Cov S Eλ , 

M 1 ' ' ' '( , )λ
ijkl jkl i j k l

Cov M E , IS ' ' ' '( , )λ
ijkl ijk i j k l

Cov IS E , S ' ' ' ' 1 '1 '( , )
i j k l ijkl j l

Cov E Sλ , 

M ' ' ' ' 1 ' ' '( , )λ
i j k l ijkl j k l

Cov E M , and IS ' ' ' ' ' ' '( , )λ
i j k l ijkl i j k

Cov E IS  are equal to zero according to 

Equations 134, 136, and 137. 

Equation 132 

The uncorrelatedness of the latent state variables with all method factors that pertain to the 

same construct on the same measurement occasion follows given that the variables 1 jkl
M  are 

residuals with respect to 1 1j l
S  (as defined in Equation 132). Residuals are always 

uncorrelated with their regressors (see Steyer & Eid, 2001, Box G.1).  

Equation 133 

According to Equation 120, 
IS

1
=

λ
ijk ijkl

ijkl

IS IS . Therefore, 1 1( , )
j l ijk

Cov S IS  can be rewritten as 
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1 1 1 1

IS

1
( , ) ( , ).=

λ
j l ijk j l ijkl

ijkl

Cov S IS Cov S IS  According to Equation 112, 1ij l
IS  is a residual with 

respect to 1 1j l
S . Hence, 1 1 1( , )

j l ij
Cov S IS  = 0. According to Equation 114, 

ijkl
IS , 1≠k , can be 

replaced by ( )1|−
ijkl ijkl jkl

M E M M , leading to 

( ){ }1 1 1 1 1

IS

1
( , ) , | = − λ

j l ijk j l ijkl ijkl jkl

ijkl

Cov S IS Cov S M E M M . Using Equation 117, we can 

replace ( )1|−
ijkl ijkl jkl

M E M M  by M 1ijkl jkl
Mλ :  

{ }1 1 1 1 M 1

IS

1 1 M 1 1 1

IS

1
( , ) ,

1
( , ) ( , ) .

j l ijk j l ijkl ijkl jkl

ijkl

j l ijkl ijkl j l jkl

ijkl

Cov S IS Cov S M M

Cov S M Cov S M

 = − λ λ

 = − λ λ

. 

Given that both 
ijkl

M  and 1 jkl
M  are residuals with respect to 1 1j l

S  according to Equation 113, 

1 1 1 1 1( , ) ( , ) 0
j l ijkl j l jkl

Cov S M Cov S M= = . Hence, 1 1( , )
j l ijk

Cov S IS  = 0, too. 

Equation 135 

According to Equation 120, 
IS

1
=

λ
ijk ijkl

ijkl

IS IS . Therefore, 1( , )
jkl ijk

Cov M IS  can be rewritten 

as 1 1

IS

1
( , ) ( , ).=

λ
jkl ijk jkl ijkl

ijkl

Cov M IS Cov M IS  Given that 
ijkl

IS  is a residual with respect to 

1 jkl
M  according to Equation 114, it follows that 1( , ) 0

jkl ijkl
Cov M IS = . Hence, 

1( , ) 0
jkl ijk

Cov M IS = , too. 

Equation 138 

The uncorrelatedness of the error variables follows from the independence assumption 

introduced in Definition 4. Equation 138 can be rewritten as 

{ }' ' ' ' ' ' ' ' ' ' ' ' '( , ) ( | , ) , ( | , )
ijkl i j k l ijkl ijkl 0 l i j k l i j k l 0 l

Cov E E Cov Y E Y p p Y E Y p p   = − −    . According to 

Bauer (1978, p. 54, Satz 9.4) ' ' ' ' ' ' ' ' ' ' ' '( | , )
i j k l i j k l i j k l 0 l

E Y E Y p p= −  is a 

' ' ' '( , , )-measurable 
0 l i j k l

p p Y function (cf. Steyer, 1988, p. 368-369). The assumption made in 

Definition 4 allows replacing ( | , )
ijkl 0 l

E Y p p  by 

( ) ( )( )1 ' ' ' '| , ,..., , , ', ', ', ' , , ,
ijkl 0 p i j k l

E Y p p p Y i j k l i j k l ≠  . Hence, for ( ) ( )', ', ', ' , , ,i j k l i j k l≠ , 

ijkl
E  is a residual also with respect to the regressors ,

0 l
p p  and ' ' ' 'i j k l

Y . Given that a residual 
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(here: 
ijkl

E ) is always uncorrelated with each numerically measurable function (here: ' ' ' 'i j k l
E ) 

of his regressors, ' ' ' '( , ) 0
ijkl i j k l

Cov E E =  for ( , , , ) ( ', ', ', ').i j k l i j k l≠  

Equation 134 

The derivation of Equation 134 follows a similar logic: 

{ }' ' ' ' ' ' ' ' ' ' ' ' '( , ) ( | , ), ( | , ) .
ijkl i j k l ijkl 0 l i j k l i j k l 0 l

Cov S E Cov E Y p p Y E Y p p = −   According to 

Definition 4, ' ' ' ' '( | , )
i j k l 0 l

E Y p p  can be replaced by 

( ) ( )( )' ' ' ' 1| , ,..., , , , , , ', ', ', ' .
i j k l 0 p ijkl

E Y p p p Y i j k l i j k l ≠   The variable : ( | , )
ijkl ijkl 0 l

S E Y p p=  is a 

( , )
0 l

p p -measurable function and ' ' ' 'i j k l
E  is a residual with respect to the regressors 

0
p  and 

l
p . As stated before, a residual (here: ' ' ' 'i j k l

E ) is always uncorrelated with each numerically 

measurable function [in this case 1( | , )
ij l 0 l

E Y p p ] of his regressors. Therefore, 

1 1 ' ' ' '( , ) 0
j l i j k l

Cov S E = . 

Equation 136 

By using Equations 113 and 116, we may rewrite Equation 136 as follows: 

( )( )

( ) ( )( )
( ) ( )( )
( ) ( )

1 ' ' ' ' 1 1 1 1 ' ' ' '

1 ' ' ' ' 1 1 1 ' ' ' '

1 ' ' ' ' 1 S1 1 1 ' ' ' '

1 ' ' ' ' S1 1 1 ' ' ' '

( , ) | ,

, | ,

, ,

, , .

jkl i j k l jkl jkl j l i j k l

jkl i j k l jkl j l i j k l

jkl i j k l jkl jkl j l i j k l

jkl i j k l jkl j l i j k l

Cov M E Cov S E S S E

Cov S E Cov E S S E

Cov S E Cov S E

Cov S E Cov S E

 = −
 

= −

= − α + λ

= − λ

 

Given that both 1 jkl
S  and 1 1j l

S  are uncorrelated with ' ' ' 'i j k l
E  as has been shown above, it 

follows that 1 jkl
M  and ' ' ' 'i j k l

E  are also uncorrelated. 

Equation 137 

For the non-marker indicators of the reference method (k = 1), we may rewrite Equation 137 

as follows (by using Equations 120, 112, and 116): 
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( )( )

( ) ( )( )

( )

1 ' ' ' 1 ' ' ' ' 1 1 1 1 ' ' ' '

IS 1 IS 1

1 ' ' ' ' 1 1 1 ' ' ' '

IS 1

1 ' ' ' ' 1 S 1

IS 1

1 1
( , ) , | ,

1
, | ,

1
,

ij i j k l ij l i j k l ij l ij l j l i j k l

ij l ij l

ij l i j k l ij l j l i j k l

ij l

ij l i j k l ij l ij l

ij l

Cov IS E Cov IS E Cov S E S S E

Cov S E Cov E S S E

Cov S E Cov S

   
= = −   

λ λ      

= −
λ

= − α + λ
λ

( )( )

( ) ( )

1 1 ' ' ' '

1 ' ' ' ' S 1 1 1 ' ' ' '

IS 1

,

1
, , .

j l i j k l

ij l i j k l ij l j l i j k l

ij l

E

Cov S E Cov S E= − λ
λ

 

Given that both 1 jkl
S  and 1 1j l

S  are uncorrelated with ' ' ' 'i j k l
E  as has been shown above, it 

follows that 1 jkl
M  and ' ' ' 'i j k l

E  are also uncorrelated. 

For the non-marker indicators of the non-reference method ( 1k ≠ ), we may rewrite 

Equation 137 as follows (by using Equations 120, 114, and 117): 

( )( )

( ) ( )( )

( )

' ' ' ' ' ' ' 1 ' ' ' '

IS IS

' ' ' ' 1 ' ' ' '

IS

' ' ' ' M 1

IS

1 1
( , ) , | ,

1
, | ,

1
, ,

ijk i j k l ijkl i j k l ijkl ijkl jkl i j k l

ijkl ijkl

ijkl i j k l ijkl jkl i j k l

ijkl

ijkl i j k l ijkl jkl

ijkl

Cov IS E Cov IS E Cov M E M M E

Cov M E Cov E M M E

Cov M E Cov M E

   
= = −   

λ λ      

= −
λ

= − λ
λ

( )' ' ' ' .
i j k l

 

Given that both 
ijkl

M  and 1 jkl
M  are uncorrelated with ' ' ' 'i j k l

E  as has been shown above, it 

follows that 
ijk

IS , 1k ≠ , and ' ' ' 'i j k l
E  are also uncorrelated. 

Explanations. Theorem 3 shows the implications of the model definition for the observed 

and latent variable covariance structure. Only the most general covariance structure equation 

for the observed variables is shown in Theorem 3 (Equation 131). To illustrate in more detail 

how the observed variances and covariances can be expressed in terms of the parameters of 

the model, I provide the most important special cases in Corollary 8. 

The independence of method factors and state factors belonging to the same construct on 

the same measurement occasion (Equation 132) is again a direct consequence of the definition 

of the method factors 1 jkl
M  as residuals with respect to 1 1j l

S  (see Definition 3). The 

independence of state factors 1 1j l
S  and indicator-specific factors 1ij

IS  belonging to the same 

construct also follows directly from the definition of the variables 1ij
IS  as residuals with 

respect to 1 1j l
S . In contrast, the uncorrelatedness of 

ijk
IS , 1k ≠ , and 1 1j l

S  follows indirectly, 

given that 
ijk

IS  is a residual in a regression analysis including two method variables 
ijkl

M  and 
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1 jkl
M , both of which are residuals with respect to 1 1j l

S . Furthermore, the variables 
ijk

IS  are 

uncorrelated with the method factors 1 jkl
M , belonging to the same construct and the same 

method, given that 
ijk

IS  is a residual with respect to 1 jkl
M . 

The independence of state factors and error variables (Equation 134), method factors and 

error variables (Equation 136), indicator-specific factors and error variables (Equation 137), 

as well as error variables and other error variables (Equation 138) is a consequence of the 

assumption of conditional regressive independence made in Definition 4. Note that in 

empirical applications of the model, the respective covariances must be fixed to zero.  
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Corollary 8: Covariance Structure of the Observed Variables 

If ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors and conditional regressive independence, without loss of generality 

k = 1 is chosen as the reference method, and without loss of generality all indicators 1 jkl
Y  are 

selected as marker indicators, then the following covariance structure holds for all 

{ }, ' : 1,..., ,i i I m∈ =  { }, ' : 1,..., ,j j J n∈ =  { }, ' : 1,..., ,k k K o∈ =  { } , ' : 1,...,l l L p∈ =  and 

(a) for all observed variables measuring the same construct ( '=j j ) on the same  

 measurement occasion ( 'l l= ): 

1 1 1 1

S ' 1 1 1

S1 ' 1 1

S ' ' 1 1

2 2
S 1 1 1 IS 1

' '

( ) ( ),  , ' 1,  , ' 1,

( ),  1,  ' 1,  , ' 1,

( ),  , ' 1,  1,  ' 1

( ),  1,  ' 1,  1,  ' 1,

( )

( , )

j l j l

i j l j l

jk l j l

i jk l j l

ij l j l ij l

ijkl i jk l

Var S Var E i i k k

Var S i i k k

Var S i i k k

Var S i i k k

Var S Var

Cov Y Y

+ = =

λ = ≠ =

λ = = ≠

λ = ≠ = ≠

λ + λ

=

1 1

S 1 S ' 1 1 1 IS 1 IS ' 1 1 ' 1

S 1 S1 ' 1 1 IS 1 1 1 '

S 1 S

( ( ),  ',  , ' 1,  , ' 1,

( ) ( ,  ',  , ' 1,  , ' 1,

( ) ( ,  1,  ' 1,  1,  ' 1,

)

, )

, )

ij ij l

ij l i j l j l ij l i j l ij i j

ij l jk l j l ij l ij jk l

ij l i

IS Var E i i i i k k

Var S Cov IS IS i i i i k k

Var S Cov IS M i i k k

+ = ≠ =

λ λ + λ λ ≠ ≠ =

λ λ + λ ≠ = = ≠

λ λ ' ' 1 1 IS 1 M ' ' 1 1 '

IS 1 IS ' ' 1 ' '

2
S1 1 1 1 1

S1 S ' 1 1 M '

( ) (

( ,  , ' 1,  1,  ' 1,

( ) ( ) ( ),  , ' 1,  ',  , ' 1,

( )

, )

 , )

jk l j l ij l i jk l ij jk l

ij l i jk l ij i jk

jkl j l jkl jkl

jkl i jkl j l i jkl

Var S Cov IS M

Cov IS IS i i k k

Var S Var M Var E i i k k k k

Var S Var

+ λ λ

λ λ ≠ = ≠

λ + + = = ≠

λ λ + λ

+

1

S1 S1 ' 1 1 1 1 '

S1 S ' ' 1 1 M ' ' 1 1 '

IS ' 1 1 ' '

( ),  1,  ' 1,  ',  , ' 1,

( ) ( ),  , ' 1,  ',  , ' 1,

( ) ( )

 ( ),  1,  ' 1,  ',  , ' 1

,

,

,

jkl

jkl jk l j l jkl jk l

jkl i jk l j l i jk l jkl jk l

i j l jkl i jk

M i i k k k k

Var S Cov M M i i k k k k

Var S Cov M M

Cov M IS i i k k k k

= ≠ = ≠

λ λ + = ≠ ≠

λ λ + λ

+ λ = ≠ ≠ ≠

2 2 2
S 1 1 M 1 IS

S S ' 1 1 M M ' 1

IS IS ' '

,

( ) ( ) ( ( ),  ',  , ' 1,  ',  , ' 1,

( ) ( )

 ( ),  ',  , ' 1,  ',  ,

)

,

ijkl j l ijkl jkl ijkl ijk ijkl

ijkl i jkl j l ijkl i jkl jkl

ijkl i jkl ijk i jk

Var S Var M Var IS Var E i i i i k k k k

Var S Var M

Cov IS IS i i i i k k k

λ + λ + λ + = ≠ = ≠

λ λ + λ λ

+ λ λ ≠ ≠ =

S S ' ' 1 1 M M ' ' 1 1 '

M IS ' ' 1 ' ' IS M ' ' 1 '

IS IS ' ' ' '

' 1,

( ) ( )

 ( ) ( )

 ( ),  , ' 1,  ',  , ' 1,

,

, ,

,

ijkl i jk l j l ijkl i jk l jkl jk l

ijkl i jk l jkl i jk ijkl i jk l ijk jk l

ijkl i jk l ijk i jk

k

Var S Cov M M

Cov M IS Cov IS M

Cov IS IS i i k k k k

≠

λ λ + λ λ

+ λ λ + λ λ

+ λ λ ≠ ≠ ≠
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(b) for all observed variables measuring different constructs ( '≠j j ) on the same  

 measurement occasion ( 'l l= ): 

 

1 1 1 '1

S ' '1 1 1 1 '1 IS ' '1 1 1 ' '1

S1 ' ' 1 1 1 '1 1 1 1 ' '

S ' ' '

' ' '

( , ),  , ' 1,  , ' 1,

( , ) ( , ),  1,  ' 1,  , ' 1,

( , ) ( , ),  , ' 1,  1,  ' 1,

( , )

j l j l

i j l j l j l i j l j l i j

j k l j l j l j l j k l

i j k l

ijkl i j k l

Cov S S i i k k

Cov S S Cov S IS i i k k

Cov S S Cov S M i i k k

Cov Y Y

= =

λ + λ = ≠ =

λ + = = ≠

λ

=

1 1 1 '1 M ' ' ' 1 1 1 ' '

IS ' ' ' 1 1 ' ' '

S 1 S ' '1 1 1 1 '1 S 1 IS ' '1 1 1 '1

IS 1 S ' '1 1 ' '1

( , ) ( , )

 ( , ),  1,  ' 1,  1,  ' 1,

( , ) ( , )

 ( , )

j l j l i j k l j l j k l

i j k l j l i j k

ij l i j l j l j l ij l i j l j l ij

ij l i j l ij i j l

Cov S S Cov S M

Cov S IS i i k k

Cov S S Cov S IS

Cov IS S

+ λ

+ λ = ≠ = ≠

λ λ + λ λ

+ λ λ + λIS 1 IS ' '1 1 ' '1

S 1 S1 ' ' 1 1 1 '1 S 1 1 1 1 ' '

IS 1 S1 ' ' 1 1 '1 IS 1 1 1 ' '

S 1 S '

( , ),  , ' 1,  , ' 1,

( , ) ( , )

 ( , ) ( , ),  1,  ' 1,  1,  ' 1,

ij l i j l ij i j

ij l j k l j l j l ij l j l j k l

ij l j k l ij j l ij l ij j k l

ij l i j

Cov IS IS i i k k

Cov S S Cov S M

Cov IS S Cov IS M i i k k

λ ≠ =

λ λ + λ

+ λ λ + λ ≠ = = ≠

λ λ )' ' 1 1 1 '1 S 1 M ' ' ' 1 1 1 ' '

S 1 IS ' ' ' 1 1 ' ' ' IS 1 S ' ' ' 1 1 '1

IS 1 M ' ' ' 1 1 ' ' IS 1 IS ' ' ' 1 ' ' '

( , ) ( ,

 ( , ) ( , )

 ( , ) ( , ),

k l j l j l ij l i j k l j l j k l

ij l i j k l j l i j k ij l i j k l ij j l

ij l i j k l ij j k l ij l i j k l ij i j k

Cov S S Cov S M

Cov S IS Cov IS S

Cov IS M Cov IS IS

+ λ λ

+ λ λ + λ λ

+ λ λ + λ λ

S1 S1 ' ' 1 1 1 '1 S1 1 1 1 ' '

S1 ' ' 1 1 ' ' 1 1 ' '

S1 S ' ' ' 1 1 1 '1 S1 M ' ' ' 1 1 1

 , ' 1,  1,  ' 1,

( , ) ( , )

 ( ) ( , ),  , ' 1,  , ' 1,

( , ) ( ,

,

jkl j k l j l j l jkl j l j k l

j k l jkl j k l jkl j k l

jkl i j k l j l j l jkl i j k l j l j

i i k k

Cov S S Cov S M

Cov M S Cov M M i i k k

Cov S S Cov S M

≠ = ≠

λ λ + λ

+ λ + = ≠

λ λ + λ λ ' '

S1 IS ' ' ' 1 1 ' ' ' S ' ' ' 1 1 '1

M ' ' ' 1 1 ' ' IS ' ' ' 1 ' ' '

S S ' ' ' 1 1 1 '1 S M ' ' '

)

 ( , ) ( , )

 ( , ) ( , ),  1,  ' 1,  , ' 1,

( , ) (

k l

jkl i j k l j l i j k i j k l jkl j l

i j k l jkl j k l i j k l jkl i j k

ijkl i j k l j l j l ijkl i j k l

Cov S IS Cov M S

Cov M M Cov M IS i i k k

Cov S S Cov

+ λ λ + λ

+ λ + λ = ≠ ≠

λ λ + λ λ 1 1 1 ' '

S IS ' ' ' 1 1 ' ' ' M S ' ' ' 1 1 '1

M M ' ' ' 1 1 ' ' M IS ' ' ' 1 ' ' '

IS S ' ' ' 1 '1 IS M

, )

 ( , ) ( , )

 ( , ) ( , )

 ( , )

j l j k l

ijkl i j k l j l i j k ijkl i j k l jkl j l

ijkl i j k l jkl j k l ijkl i j k l jkl i j k

ijkl i j k l ijk j l ijkl

S M

Cov S IS Cov M S

Cov M M Cov M IS

Cov IS S

+ λ λ + λ λ

+ λ λ + λ λ

+ λ λ + λ λ ' ' ' 1 ' '

IS IS ' ' ' ' ' '

( , )

 ( , ),  , ' 1,  , ' 1,

i j k l ijk j k l

ijkl i j k l ijk i j k

Cov IS M
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(c) for all observed variables measuring the same construct ( '=j j ) on different  

 measurement occasions ( 'l l≠ ): 

1 1 1 1 '

S ' 1 ' 1 1 1 1 '

S1 ' ' 1 1 1 1 ' 1 1 1 ' '

S ' ' ' 1 1 1 1 ' M ' ' '

' ' '

( , ),  , ' 1,  , ' 1,

( , ),  1,  ' 1,  , ' 1,

( , ) ( , ),  , ' 1,  1,  ' 1,

( , )

( , )

j l j l

i j l j l j l

jk l j l j l j l jk l

i jk l j l j l i jk l

ijkl i jk l

Cov S S i i k k

Cov S S i i k k

Cov S S Cov S M i i k k

Cov S S C

Cov Y Y

= =

λ = ≠ =

λ + = = ≠
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=

1 1 1 ' '

S 1 S 1 ' 1 1 1 1 ' IS 1 IS 1 ' 1

S 1 S ' 1 ' 1 1 1 1 ' IS 1 IS ' 1 ' 1 ' 1
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( , ) ( ),  ',  , ' 1,  , ' 1,
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j l jk l

ij l ij l j l j l ij l ij l ij

ij l i j l j l j l ij l i j l ij i j

ov S M i i k k

Cov S S Var IS i i i i k k

Cov S S Cov IS IS i i i i

= ≠ = ≠

λ λ + λ λ = ≠ =

λ λ + λ λ ≠ ≠

S 1 S1 ' ' 1 1 1 1 ' S 1 1 1 1 ' '

IS 1 1 1 ' '

S 1 S ' ' ' 1 1 1 1 ' S 1 M ' ' ' 1 1 1 ' '

IS 1 M ' ' '

, ' 1,

( , ) ( , )

 ( , ),  1,  ' 1,  1,  ' 1,

( , ) ( , )

 

ij l jk l j l j l ij l j l jk l

ij l ij jk l

ij l i jk l j l j l ij l i jk l j l jk l

ij l i jk l

k k

Cov S S Cov S M

Cov IS M i i k k

Cov S S Cov S M

Cov

=

λ λ + λ
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S1 S
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ij jk l ij l i jk l ij i jk
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jkl jkl j l jkl jkl

jkl

IS M Cov IS IS i i k k

Cov S S Cov S M

Cov M S Cov M M i i k k k k
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j l i jkl jkl jkl
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i jk l jkl j l i jk l jkl jk l

i jk l j

S Cov M M i i k k k k

Cov S S Cov S M

Cov M S Cov M M

Cov M
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IS IS '
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 ( ),  ',  , '

kl i jk

ijkl ijkl j l j l ijkl ijkl j l jkl

ijkl ijkl jkl j l ijkl ijkl jkl jkl

ijkl ijkl ijk

IS i i k k k k

Cov S S Cov S M

Cov M S Cov M M

Var IS i i i i

= ≠ ≠ ≠

λ λ + λ λ

+ λ λ + λ λ

+ λ λ =

S S ' ' 1 1 1 1 ' S M ' ' 1 1 1 '

M S ' ' 1 1 1 ' M M ' ' 1 1 '

IS IS ' ' '
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( , ) ( , )

 ( , ) ( , )

 ( , ),  ',  , ' 1,  '

ijkl i jkl j l j l ijkl i jkl j l jkl

ijkl i jkl jkl j l ijkl i jkl jkl jkl

ijkl i jkl ijk i jk

k k k k

Cov S S Cov S M

Cov M S Cov M M

Cov IS IS i i i i k k

≠ = ≠

λ λ + λ λ

+ λ λ + λ λ

+ λ λ ≠ ≠ =

S S ' ' ' 1 1 1 1 ' S M ' ' ' 1 1 1 ' '

M S ' ' ' 1 1 1 ' M M ' ' ' 1 1 ' '

M IS ' ' ' 1 ' ' IS M ' ' '

,  , ' 1,

( , ) ( , )

 ( , ) ( , )

 ( , ) (
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(d) for all observed variables measuring different constructs ( '≠j j ) on different  

 measurement occasions ( 'l l≠ ): 

1 1 1 '1 '

S ' '1 ' 1 1 1 '1 ' IS ' '1 ' 1 1 ' '1

S1 ' ' ' 1 1 1 '1 ' 1 1 1 ' ' '

' ' ' '
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( , ) ( , ),  , ' 1,  1,  ' 1,

( , )

j l j l

i j l j l j l i j l j l i j

j k l j l j l j l j k l

ijkl i j k l

Cov S S i i k k

Cov S S Cov S IS i i k k

Cov S S Cov S M i i k k

Cov Y Y
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λ + λ = ≠ =
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=

S ' ' ' ' 1 1 1 '1 ' M ' ' ' ' 1 1 1 ' ' '

IS ' ' ' ' 1 1 ' ' '
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ij l j k l ij j k l ij l ij j k l

v IS S Cov IS IS i i k k

Cov S S Cov S M

Cov IS S Cov IS M i i

+ λ λ ≠ =

λ λ + λ

+ λ λ + λ ≠

S 1 S ' ' ' ' 1 1 1 '1 ' S 1 M ' ' ' ' 1 1 1 ' ' '

S 1 IS ' ' ' ' 1 1 ' ' ' IS 1 S ' ' ' ' 1 1 '1 '

IS 1 M ' ' ' ' 1 1 ' ' ' I

' 1,  1,  ' 1,

( , ) ( , )

 ( , ) ( , )

 ( , )

ij l i j k l j l j l ij l i j k l j l j k l
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Cov IS M
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Cov M S Cov M M i i k k
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S S Cov S M
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Cov S S Cov S M

Cov S IS Cov M S

Cov M M Cov
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jkl i j k

ijkl i j k l ijk j l ijkl i j k l ijk j k l

ijkl i j k l ijk i j k

M IS

Cov IS S Cov IS M

Cov IS IS i i k k

+ λ λ + λ λ

+ λ λ ≠ ≠







































(142) 

Proof. Equations 139 to 142 directly follow from Equation 131 by applying Equations 132 to 

138. 
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3.5.2.6 Mean Structure 

Theorem 4 shows the consequences of the model definition for the observed and latent 

variable mean structure. 

 

 

Theorem 4: Mean Structure 

If ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors, without loss of generality k = 1 is chosen as the reference method, 

and without loss of generality all indicators 1 jkl
Y  are selected as marker indicators, then the 

following mean structure holds for all { } { } { }: 1,..., ,   : 1,..., ,  : 1,..., ,i I m j J n k K o∈ = ∈ = ∈ =  

and { } : 1,...,l L p∈ = : 

 S 1 1( ) ( )
ijkl ijkl ijkl j l

E Y E S= α + λ , (143) 

 1 1 1 1( ) ( )=
j l j l

E S E Y , (144) 

 1( ) 0=
jkl

E M , (145) 

 ( ) 0=
ijk

E IS , (146) 

 ( ) 0
ijkl

E E = , (147) 

where (.)E  denotes the expected value (mean). 

Proof. According to Equation 121, S 1 1 M 1 ISijkl ijkl ijkl j l ijkl jkl ijkl ijk ijkl
Y S M IS E= α + λ + λ + λ +  for 

, 1i k ≠ . Hence, S 1 1 M 1 IS( ) ( ) ( ) ( ) ( ) ( )
ijkl ijkl ijkl j l ijkl jkl ijkl ijk ijkl

E Y E E S E M E IS E E= α + λ + λ + λ + . The 

terms M( )
ijkl jkl

E Mλ , IS( )
ijkl ijk

E ISλ , and 1( )
ij l

E E  are zero according to Equations 145, 146, 

and 147 so that this equation simplifies to Equation 143. Equation 144 follows from 

Equation 143, given that 1 1 0α =
j l

 and S1 1 1λ =
j l

 (see Equation 121). Equations 145, 146, and 

147 follow from the definition of 1 jkl
M , 

ijk
IS , and 

ijkl
E  as residuals in a latent regression 

analysis (see Equations 112, 113, and 114). Residuals have an expected value (mean) of zero 

by definition (see Steyer & Eid, 2001, Box G.1). 
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Explanations. Equation 143 shows that the mean of an observed variable is identical to the 

mean of the corresponding state factor if and only if 0
ijkl

α =  and S 1
ijkl

λ = . According to 

Equation 144, the means of the latent state factors are identical to the means of the marker 

indicators (i = 1) pertaining to the reference method. Equations 145, 146, and 147 show an 

important implication of the model definition, namely that the method factors, indicator-

specific factors, and error variables, being defined as residuals, have means of zero. 

Therefore, in empirical applications of the model, the means of the method factors, indicator-

specific factors, and error variables have to be fixed to zero. Note that this is not a testable 

assumption, but a direct consequence of the model definition.  

3.5.2.7 Identification 

The relevant parameters for which identification needs to be proven in the CS-C(M–1) 

model with indicator-specific factors are the intercepts (
ijkl

α ), the state factor loadings ( Sijkl
λ ), 

the method factor loadings ( Mijkl
λ ), the indicator-specific factor loadings ( ISλ

ijkl
), the 

variances of the state factors [ 1 1( )
j l

Var S ], the variances of the method factors [ 1( )
jkl

Var M ], 

the variances of the indicator-specific factors [ ( )
ijk

Var IS ], the admissible covariances 

between the latent factors and the variances of the error variables [ ( )
ijkl

Var E ]. 

A prerequisite for the identification is that each latent factor is assigned a scale (Bollen, 

1989). From Definition 3, it follows that 1 1 0α =
j l

 and S1 1 M1 1λ = λ =
j l jkl

 (see also 

Equation 121). These implicit constraints identify the scales of the state factors 1 1j l
S  and of 

the method factors 1 jkl
M . In order to assign a scale to the indicator-specific factors 

ijk
IS , one 

factor loading ISλ
ijkl

 per indicator-specific factor must be fixed to a non-zero value. 

Alternatively, one may fix ( )
ijk

Var IS  to a positive value. To simplify the present 

identification corollary, I assume without loss of generality that the indicator-specific factor 

loadings are set to one at the first measurement occasion for all indicators (i.e., IS 1 1λ =
ijk

). 

Corollary 9 shows how each parameter of the CS-C(M–1) model with indicator-specific 

factors can be identified under this condition. Note that the unknown parameters to be 

identified are either expressed in terms of observed means, variances, and covariances or in 

terms of other known-to-be-identified model parameters. The latter is done in cases in which 

the terms would become very complicated if all parameters were replaced by observed 

covariances.  
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Corollary 9: Identification 

If ( ) S M IS: , , , , , , , , , ,= Ω α λ λ λ
ijkl ijkl ijk ijkl ijkl ijkl ijkl ijkl

M P S M IS EA  is a CS-C(M–1) model with 

indicator-specific factors and conditional regressive independence, the first indicators ( 1 jkl
Y ) are 

chosen as marker indicators, k = 1 is chosen as the reference method, and all indicator-specific 

factor loadings IS 1λ
ijk

 are set to 1, then for all 

{ } { } { }, ' : 1,..., ,   , ' : 1,..., ,  , ' : 1,..., ,i i I m j j J n k k K o∈ = ∈ = ∈ =  { } , ' : 1,...,l l L p∈ = : 

 S 1 1( ) ( ),
ijkl ijkl ijkl j l

E Y E Yα = − λ  (148) 

 1 1 1 '

S 1

1 1 1 1 '

( , )
,  1,  ',

( , )
ij l j l

ij l

j l j l

Cov Y Y
i l l

Cov Y Y
λ = ≠ ≠  (149) 

 1 1

S

1 1

( , )
,  1,

( )
j l ijkl

ijkl

j l

Cov Y Y
k

Var S
λ = ≠  (150) 

 1 1 1 1( ) ( ),
j l j l

E S E Y=  (151) 

 1 1 1 1 1 1 1 '

1 1

1 1 1 '

( , ) ( , )
( ) ,  1,  ',

( , )
j l ij l j l j l

j l

ij l j l

Cov Y Y Cov Y Y
Var S i l l

Cov Y Y
= ≠ ≠  (152) 

 1 1 1 '1 ' 1 1 1 '1 '( , ) ( , ),  ( , ) ( ', ')= ≠
j l j l j l j l

Cov S S Cov Y Y j l j l , (153) 

 1 1 1 ' ' 1 1 1 ' ' S1 ' ' 1 1 1 '1 '( , ) ( , ) ( , ),  ( , ) ( ', '),  1,
j l j kl j l j kl j kl j l j l

Cov S M Cov Y Y Cov S S j l j l k= − λ ≠ ≠  (154) 

 1 1 '1 1 1 '11 S '11 1 1 1 '11( , ) ( , ) ( , ),  1,  ',= − λ ≠ ≠
j l ij j l ij ij j l j

Cov S IS Cov Y Y Cov S S i j j  (155) 

 
1 1 ' 1 1 ' 1 S ' 1 1 1 1 '11

M ' 1 1 1 1 ' 1

( , ) ( , ) ( , )

                            ( , ),  , 1,  ',

j l ij k j l ij k ij k j l j

ij k j l j k

Cov S IS Cov Y Y Cov S S

Cov S M i k j j

= − λ

− λ ≠ ≠
 (156) 

 
1 1 ' S 1 1 1 1 '

M

1 1 1 '

( , ) ( , )
,  , 1,  ',

( , )

ijkl j l ijkl j l j l

ijkl

jkl j l

Cov Y Y Cov S S
i k l l

Cov M S

 − λ λ = ≠ ≠  (157) 
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1 S1 S 1 1

1

M

( , ) ( )
( ) ,  , 1,

jkl ijkl jkl ijkl j l

jkl

ijkl

Cov Y Y Var S
Var M i k

 − λ λ = ≠
λ

 (158) 

 1 1 ' 1 1 ' S1 S1 ' 1 1( , ) ( , ) ( ),  ',= − λ λ ≠
jkl jk l jkl jk l jkl jk l j l

Cov M M Cov Y Y Var S k k  (159) 

 

1 1 ' ' ' 1 1 ' S1 S1 ' ' ' 1 1 1 '1 '

S1 1 1 1 ' ' ' S1 ' ' ' 1 1 '1 '

( , ) ( , ) ( , )

                                 ( , ) ( , ),

                                         

jkl j k l jkl jk l jkl j k l j l j l

jkl j l j k l j k l jkl j l

Cov M M Cov Y Y Cov S S

Cov S M Cov M S

= − λ λ

− λ − λ

                                          , ' 1,  ( , ) ( ', '),k k j l j l≠ ≠

 (160) 

 1 1 S 1 S1 1 1

1 1

IS 1

[ ( , ) ( )]
( , ) ,  , 1,ij l jkl ij l jkl j l

jkl ij

ij l

Cov Y Y Var S
Cov M IS i k

− λ λ
= ≠

λ
 (161) 

 

1 '1 1 '1 S1 S '1 1 1 1 '1

S '1 1 1 '1

S1 IS '1 1 1 '1

IS '1

( , ) [ ( , ) ( , )

                              ( , )

1
                              ( , )] ,  ,

jkl ij jkl ij l jkl ij l j l j l

ij l jkl j l

jkl ij l j l ij

ij l

Cov M IS Cov Y Y Cov S S

Cov M S

Cov S IS i k

= − λ λ

− λ

− λ λ ≠
λ

1,  ',j j≠

 (162) 

 
1 1 ' 1 1 '1 S1 1 S '1 1 11

M '1 1 1 1 '1

( , ) ( , ) ( )

                              ( , ),  1,  ',  , ' 1,

jk ijk jk ijk jk ijk j

ijk jk jk

Cov M IS Cov Y Y Var S

Cov M M i k k k k

= − λ λ

− λ ≠ ≠ ≠
 (163) 

 

1 ' 1 '1 S1 S '1 1 1 1 11

S1 M '1 1 1 1 '1 S '1 1 1 11

M '1 1 1

( , ) ( , ) ( , )

                              ( , ) ( , )

                              ( ,

jkl ijk jkl ijk jkl ijk j l j

jkl ijk j l jk ijk jkl j

ijk jkl

Cov M IS Cov Y Y Cov S S

Cov S M Cov M S

Cov M M

= − λ λ

− λ λ − λ

− λ '1),  1,  ',  , ' 1,  ',
jk

i k k k k l l≠ ≠ ≠ ≠

 (164) 

 

1 ' ' 1 ' ' S1 S ' ' 1 1 1 '1

S1 M ' ' 1 1 1 ' ' S1 IS ' ' 1 1 ' '

( , ) [ ( , ) ( , )

                               ( , ) ( , )

                               

jkl ij k jkl ij k l jkl ij k l j l j l

jkl ij k l j l j k l jkl ij k l j l ij k

Cov M IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

− S ' ' 1 1 '1 M ' ' 1 1 ' '

IS ' '

1
( , ) ( , )] ,

                                                                                         1,  ',  ',  , ' 1,

ij k l jkl j l ij k l jkl j k l

ij k l

Cov M S Cov M M

i j j k k k k

λ − λ
λ

≠ ≠ ≠ ≠

(165) 

 1 ' 11 S 1 S ' 11 1 1 1 11

IS 1

1 ' 1

[ ( , ) ( , )]
,  ',  , ' 1,  1,

( , )
ij l i j ij l i j j l j

ij l

ij i j

Cov Y Y Cov S S
i i i i l

Cov IS IS

− λ λ
λ = ≠ ≠ ≠  (166) 
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IS ' 1 S S ' 1 1 1 1 11

S M ' 1 1 1 1 1 M S ' 1 1 1 11

M M ' 1 1 1 1

'

[ ( , ) ( , )

           ( , ) ( , )

1
           ( , )] ,  ',  , '

( , )

ijkl ijkl i jk ijkl i jk j l j

ijkl i jk j l jk ijkl i jk jkl j

ijkl i jk jkl jk

ijk i jk

Cov Y Y Cov S S

Cov S M Cov M S

Cov M M i i i i
Cov IS IS

λ = − λ λ

− λ λ − λ λ

− λ λ ≠ ≠ 1,  , 1,k l ≠

 (167) 

 1 1 1 ' S 1 S 1 ' 1 1 '

IS 1 IS 1 '

1
( ) [ ( , ) ( , )] ,  1,  ',ij ij l ij l ij l ij l ij l ij l

ij l ij l

Var IS Cov Y Y Cov S S i l l= − λ λ ≠ ≠
λ λ

 (168) 

 

' S S ' 1 1 '

S M ' 1 1 ' M S ' 1 1 '

M M ' 1 1 '

IS I

( ) [ ( , ) ( , )

                  ( , ) ( , )

1
                  ( , )]

ijk ijkl ijkl ijkl ijkl ij l ij l

ijkl ijkl ij l jkl ijkl ijkl jkl ij l

ijkl ijkl jkl jkl

ijkl

Var IS Cov Y Y Cov S S

Cov S M Cov M S

Cov M M

= − λ λ

− λ λ − λ λ

− λ λ
λ λ S '

,  , 1,  ',
ijkl

i k l l≠ ≠

 (169) 

 1 ' 1 11 ' 11 S 11 S ' 11 1 11( , ) ( , ) ( ),  ',  , ' 1,
ij i j ij i j ij i j j

Cov IS IS Cov Y Y Var S i i i i= − λ λ ≠ ≠  (170) 

 

1 ' '1 1 ' '1 ' S 1 S ' '1 ' 1 1 1 '1 '

S 1 IS ' '1 ' 1 1 ' '1

IS 1 S ' '1 ' 1 1 '1 '

( , ) [ ( , ) ( , )

                             ( , )

                             ( ,

ij i j ij l i j l ij l i j l j l j l

ij l i j l j l i j

ij l i j l ij j l

Cov IS IS Cov Y Y Cov S S

Cov S IS

Cov IS S

= − λ λ

− λ λ

− λ λ
IS 1 IS ' '1 '

1
)] ,  , ' 1,  ',  ',

ij l i j l

i i j j l l≠ ≠ ≠
λ λ

 (171) 

 

1 ' 1 ' ' S 1 S ' ' 1 1 1 1 '

S 1 M ' ' 1 1 1 '

IS 1 M ' ' 1 1 '

IS 1

( , ) [ ( , ) ( , )

                            ( , )

1
                            ( , )]

ij i jk ij l i jkl ij l i jkl j l j l

ij l i jkl j l jkl

ij l i jkl ij jkl

ij l

Cov IS IS Cov Y Y Cov S S

Cov S M

Cov IS M

= − λ λ

− λ λ

− λ λ
λ λIS ' '

,  , ' 1,  1,  ',
i jkl

i i k l l≠ ≠ ≠

 (172) 

 

1 ' ' 1 ' ' ' S 1 S ' ' ' 1 1 1 '1 '

S 1 M ' ' ' 1 1 1 ' ' S 1 IS ' ' ' 1 1 ' '

( , ) [ ( , ) ( , )

                              ( , ) ( , )

                            

ij i j k ij l i j kl ij l i j kl j l j l

ij l i j kl j l j kl ij l i j kl j l i j k

Cov IS IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

IS 1 S ' ' ' 1 1 '1 '

IS 1 M ' ' ' 1 1 ' '

IS 1 IS ' ' '

  ( , )

1
                              ( , )] ,

                                                                              

ij l i j kl ij j l

ij l i j kl ij j kl

ij l i j kl

Cov IS S

Cov IS M

− λ λ

− λ λ
λ λ

        , ' 1,  ',  1,  ',i i j j k l l≠ ≠ ≠ ≠

 (173) 

 
' 1 ' 1 S 1 S ' 1 1 11

M 1 M ' 1 1 1

( , ) ( , ) ( )

                             ( ),  ',  , ' 1,  1,

ijk i jk ijk i jk ijk i jk j

ijk i jk jk

Cov IS IS Cov Y Y Var S

Var M i i i i k

= − λ λ

− λ λ ≠ ≠ ≠
 (174) 
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' ' ' ' S S ' ' 1 1

M M ' ' 1 1 ' M IS ' ' 1 ' '

IS M '

( , ) [ ( , ) ( )

                             ( , ) ( , )

                             

ijk i jk ijkl i jk l ijkl i jk l j l

ijkl i jk l jkl jk l ijkl i jk l jkl i jk

ijkl i j

Cov IS IS Cov Y Y Var S

Cov M M Cov M IS

= − λ λ

− λ λ − λ λ

− λ λ ' 1 '

IS IS ' '

1
( , )] ,

                                                                                           , ' 1,  ',  , ' 1,

k l ijk jk l

ijkl i jk l

Cov IS M

i i k k k k

λ λ

≠ ≠ ≠

 (175) 

' ' ' ' ' ' ' S S ' ' ' ' 1 1 1 '1 '

S M ' ' ' ' 1 1 1 ' ' ' S IS ' ' ' ' 1 1 ' ' '

( , ) [ ( , ) ( , )

                              ( , ) ( , )

                     

ijk i j k ijkl i j k l ijkl i j k l j l j l

ijkl i j k l j l j k l ijkl i j k l j l i j k

Cov IS IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

M S ' ' ' ' 1 1 '1 ' M M ' ' ' ' 1 1 ' ' '

M IS ' ' ' ' 1 ' ' ' IS S ' ' ' ' 1 '1 '

         ( , ) ( , )

                              ( , ) ( , )

                 

ijkl i j k l jkl j l ijkl i j k l jkl j k l

ijkl i j k l jkl i j k ijkl i j k l ijk j l

Cov M S Cov M M

Cov M IS Cov IS S

− λ λ − λ λ

− λ λ − λ λ

IS M ' ' ' ' 1 ' ' '

IS IS ' ' ' '

1
             ( , )] ,

                                                                                                 , ' 1,  ',  , ' 1,

ijkl i j k l ijk j k l

ijkl i j k l

Cov IS M

i i j j k k

− λ λ
λ λ

≠ ≠ ≠

 (176) 

 1 1 1 1 1 1( ) ( ) ( )
j l j l j l

Var E Var Y Var S= −  (177) 

 2 2
1 1 S 1 1 1 IS 1 1( ) ( ) ( ) ( ),  1,ij l ij l ij l j l ij l ijVar E Var Y Var S Var IS i= − λ − λ ≠  (178) 

 2
1 1 S1 1 1 1( ) ( ) ( ) ( ),  for 1,jkl jkl jkl j l jklVar E Var Y Var S Var M k= − λ − ≠  (179) 

2 2 2
S 1 1 M 1 IS( ) ( ) ( ) ( ) ( ),  for , 1.ijkl ijkl ijkl j l ijkl jkl ijkl ijkVar E Var Y Var S Var M Var IS i k= − λ − λ − λ ≠  (180) 

Proofs. In order to make the proofs more accessible, I present them in the order in which the 

unknown parameters are most easily identified and not in the same order as in Corollary 9. 

Equation 151: Identifiability of 1 1( )
j l

E S  

Equation 151 is the same as Equation 144. The proof of Equation 144 is available in Theorem 4. 

Equation 148: Identifiability of 
ijkl

α  

According to Equation 143 (Theorem 4), S 1 1( ) ( )
ijkl ijkl ijkl j l

E Y E S= α + λ . According to Equation 151, 

1 1 1 1( ) ( ).
j l j l

E S E Y=  Hence, S 1 1( ) ( )
ijkl ijkl ijkl j l

E Y E Yα = − λ . 

Equation 153: Identifiability of 1 1 1 '1 '( , )
j l j l

Cov S S  

According to Equations 140–142, 1 1 1 '1 ' 1 1 1 '1 '( , ) ( , )=
j l j l j l j l

Cov Y Y Cov S S  for ( , ) ( ', ')≠j l j l . 

Equation 149: Identifiability of S 1λ
ij l

 (for 1i ≠ ) 
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According to Equation 141, 1 1 1 ' S 1 1 1 1 1 '( , ) ( , ),= λ
ij l j l ij l j l j l

Cov Y Y Cov S S  for 1.≠i  Therefore, 

1 1 1 '
S 1

1 1 1 1 '

( , )
,  for 1,  ',

( , )
ij l j l

ij l

j l j l

Cov Y Y
i l l

Cov S S
λ = ≠ ≠  and 1 1 1 1 'and ( , ) 0.

j l j l
Cov S S ≠  Equation 153 allows 

replacing 1 1 1 1 '( , )
j l j l

Cov S S  by 1 1 1 1 '( , )
j l j l

Cov Y Y  which leads to Equation 149. 

Equation 152: Identifiability of 1 1( )
j l

Var S  

According to Equation 139, 1 1 1 S 1 1 1( , ) ( ),= λ
j l ij l ij l j l

Cov Y Y Var S  for 1.i ≠  Therefore, 

1 1 1 1 1 1 1 1 1 1 1 1 1 '
1 1

1 1 1 'S 1 1 1 1 '

1 1 1 1 '

( , ) ( , ) ( , ) ( , )
( ) ,

( , ) ( , )

( , )

j l ij l j l ij l j l ij l j l j l

j l
ij l j lij l ij l j l

j l j l

Cov Y Y Cov Y Y Cov Y Y Cov Y Y
Var S

Cov Y Y Cov Y Y

Cov Y Y

= = =
λ

 for 1≠i , ',l l≠  and 

1 1 1 '( , ) 0≠
ij l j l

Cov Y Y . 

Equation 150: Identifiability of Sλ
ijkl

 (for 1k ≠ ) 

According to Equation 139, 1 1 S 1 1( , ) ( ),= λ
j l ijkl ijkl j l

Cov Y Y Var S  where 1k ≠ . Hence, 

1 1
S

1 1

( , )

( )
j l ijkl

ijkl

j l

Cov Y Y

Var S
λ = , for 1 1( ) 0

j l
Var S ≠ . 1 1( )

j l
Var S  is identified according to Equation 152. 

Equation 154: Identifiability of 1 1 1 ' '( , )
j l j kl

Cov S M  [for ( , ) ( )j l j',l'≠ ] 

According to Equations 140–142, 1 1 1 ' ' S1 ' ' 1 1 1 '1 ' 1 1 1 ' '( , ) ( , ) ( , )
j l j kl j kl j l j l j l j kl

Cov Y Y Cov S S Cov S M= λ +  for 

( , ) ( )j l j',l'≠  and 1≠k . Hence, 1 1 1 ' ' 1 1 1 ' ' S1 ' ' 1 1 1 '1 '( , ) ( , ) ( , )
j l j kl j l j kl j kl j l j l

Cov S M Cov Y Y Cov S S= − λ . The 

parameters S1 ' 'j kl
λ  and 1 1 1 '1 '( , )

j l j l
Cov S S  are identified according to Equations 150 and 153. 

Equation 155: Identifiability of 1 1 '1( , )
j l ij

Cov S IS  (for ≠j j' ) 

According to Equations 140 and 142, 

1 1 '1 ' S '1 ' 1 1 1 '1 ' IS '1 ' 1 1 '1( , ) ( , ) ( , )= λ + λ
j l ij l ij l j l j l ij l j l ij

Cov Y Y Cov S S Cov S IS  for 1≠i  and ≠j j' . For l'  = 1, 

IS '1 'λ
ij l

 is set to unity (i.e., IS '11 1λ =
ij

), so that we obtain: 

1 1 '1 1 1 '11 S '11 1 1 1 '11( , ) ( , ) ( , )= − λ
j l ij j l ij ij j l j

Cov S IS Cov Y Y Cov S S . The parameters S '11ij
λ  and 

1 1 1 '11( , )
j l j

Cov S S  are identified according to Equations 149 and 153. 

Equation 157: Identifiability of Mijkl
λ  

According to Equation 141, 1 1 ' S 1 1 1 1 ' M 1 1 1 '( , ) ( , ) ( , )
ijkl j l ijkl j l j l ijkl jkl j l

Cov Y Y Cov S S Cov M S= λ + λ  for 
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, 1i k ≠  and l l'≠ . Hence, M 1 1 ' S 1 1 1 1 '

1 1 1 '

1
( , ) ( , ) ,

( , )
ijkl ijkl j l ijkl j l j l

jkl j l

Cov Y Y Cov S S
Cov M S

 λ = − λ   for 

1 1 1 '( , ) 0
jkl j l

Cov M S ≠ . The parameters Sijkl
λ , 1 1 1 1 '( , )

j l j l
Cov S S , and 1 1 1 '( , )

jkl j l
Cov M S  are identified 

according to Equations 150, 153, and 154. 

Equation 156: Identifiability of 1 1 '( , )
j l ij k

Cov S IS  (for 1k ≠  and ≠j j' ) 

According to Equations 140 and 142, 

1 1 ' ' S ' ' 1 1 1 '1 ' M ' ' 1 1 1 ' ' IS ' ' 1 1 '( , ) ( , ) ( , ) ( , )
j l ij kl ij kl j l j l ij kl j l j kl ij kl j l ij k

Cov Y Y Cov S S Cov S M Cov S IS= λ + λ + λ  for 

, 1i k ≠  and ≠j j' . For l'  = 1, IS ' 'ij kl
λ  is set to unity (i.e., IS ' 1 1

ij k
λ = ), so that we obtain: 

1 1 ' 1 1 ' 1 S ' 1 1 1 1 '11 M ' 1 1 1 1 ' 1( , ) ( , ) ( , ) ( , )
j l ij k j l ij k ij k j l j ij k j l j k

Cov S IS Cov Y Y Cov S S Cov S M= − λ − λ . The parameters 

S ' 1ij k
λ , M ' 1ij k

λ , 1 1 1 '11( , )
j l j

Cov S S , and 1 1 1 ' 1( , )
j l j k

Cov S M  are identified according to Equations 150, 

153, 154, and 157. 

Equation 158: Identifiability of 1( )
jkl

Var M  

According to Equation 139, 1 S1 S 1 1 M 1( , ) ( ) ( )
jkl ijkl jkl ijkl j l ijkl jkl

Cov Y Y Var S Var M= λ λ + λ  for 1≠i  and 

1k ≠ . Hence, 1 1 S1 S 1 1

M

1
( ) ( , ) ( ) ,jkl jkl ijkl jkl ijkl j l

ijkl

Var M Cov Y Y Var S = − λ λ  λ
 for M 0

ijkl
λ ≠ . The 

parameters S1 jkl
λ , Sijkl

λ , 1 1( )
j l

Var S , and Mijkl
λ  are identified according to Equations 150, 152, and 

157. 

Equation 159: Identifiability of 1 1 '( , )
jkl jk l

Cov M M  (for ≠k k' ) 

According to Equation 139, 1 1 ' S1 S1 ' 1 1 1 1 '( , ) ( ) ( , )= λ λ +
jkl jk l jkl jk l j l jkl jk l

Cov Y Y Var S Cov M M  for ≠k k' . 

Hence, 1 1 ' 1 1 ' S1 S1 ' 1 1( , ) ( , ) ( )= − λ λ
jkl jk l jkl jk l jkl jk l j l

Cov M M Cov Y Y Var S . The parameters S1 jkl
λ , S1 'jk l

λ , 

and 1 1( )
j l

Var S  are identified according to Equations 150 and 152. 

Equation 160: Identifiability of 1 1 ' ' '( , )
jkl j k l

Cov M M , [for ( , ) ( ', ')j l j l≠ ] 

According to Equations 140–142, 

1 1 ' ' ' S1 S1 ' ' ' 1 1 1 '1 ' S1 1 1 1 ' ' ' S1 ' ' ' 1 1 '1 '

1 1 ' ' '

( , ) ( , ) ( , ) ( , )

                            ( , ),  for ( , ) ( ', ').

jkl j k l jkl j k l j l j l jkl j l j k l j k l jkl j l

jkl j k l

Cov Y Y Cov S S Cov S M Cov M S

Cov M M j l j l

= λ λ + λ + λ

+ ≠
 

Hence, 

1 1 ' ' ' 1 1 ' ' ' S1 S1 ' ' ' 1 1 1 '1 ' S1 1 1 1 ' ' '

S1 ' ' ' 1 1 '1 '

( , ) ( , ) ( , ) ( , )

                                  ( , ),  for ( , ) ( ', ').

jkl j k l jkl j k l jkl j k l j l j l jkl j l j k l

j k l jkl j l

Cov M M Cov Y Y Cov S S Cov S M

Cov M S j l j l

= − λ λ − λ

− λ ≠
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All parameters on the right hand side of Equation 160 are identified according to Equations 150, 

153, and 154. 

Equation 170: Identifiability of 1 ' 1( , )
ij i j

Cov IS IS  (for 'i i≠ ) 

According to Equation 139, 1 ' 1 S 1 S ' 1 1 1 IS 1 IS ' 1 1 ' 1( , ) ( ) ( , )
ij l i j l ij l i j l j l ij l i j l ij i j

Cov Y Y Var S Cov IS IS= λ λ + λ λ  for 

'i i≠  and , ' 1i i ≠ . For l = 1, IS 1ij l
λ  and IS ' 1i j l

λ  are set to unity (i.e., IS 11 IS ' 11 1
ij i j

λ = λ = ), so that we 

obtain: 1 ' 1 11 ' 11 S 11 S ' 11 1 11( , ) ( , ) ( ).
ij i j ij i j ij i j j

Cov IS IS Cov Y Y Var S= − λ λ  The parameters S 11ij
λ , S ' 11i j

λ , and 

1 11( )
j

Var S  are identified according to Equations 149 and 152. 

Equation 166: Identifiability of IS 1ij l
λ  

According to Equation 141, 

1 ' 1 ' S 1 S ' 1 ' 1 1 1 1 ' IS 1 IS ' 1 ' 1 ' 1( , ) ( , ) ( , )
ij l i j l ij l i j l j l j l ij l i j l ij i j

Cov Y Y Cov S S Cov IS IS= λ λ + λ λ  for 'i i≠ , , ' 1i i ≠ , and 

'l l≠ . For 'l  = 1, IS ' 1 'i j l
λ  is set to unity (i.e., IS ' 11 1

i j
λ = ), so that we obtain: 

IS 1 1 ' 11 S 1 S ' 11 1 1 1 11

1 ' 1

1
[ ( , ) ( , )] ,

( , )
ij l ij l i j ij l i j j l j

ij i j

Cov Y Y Cov S S
Cov IS IS

λ = − λ λ  for 1l ≠  and 

1 ' 1( , ) 0
ij i j

Cov IS IS ≠ . The parameters S 1ij l
λ , S ' 11i j

λ , 1 1 1 11( , )
j l j

Cov S S , and 1 ' 1( , )
ij i j

Cov IS IS  are 

identified according to Equations 149, 153, and 170. 

Equation 174: Identifiability of '( , )
ijk i jk

Cov IS IS  (for 'i i≠  and 1k ≠ ) 

According to Equation 139, 

' S S ' 1 1 M M ' 1

IS IS ' '

( , ) ( ) ( )

                         ( , ),

ijkl i jkl ijkl i jkl j l ijkl i jkl jkl

ijkl i jkl ijk i jk

Cov Y Y Var S Var M

Cov IS IS

= λ λ + λ λ

+ λ λ
 

for 'i i≠ , , ' 1i i ≠ , and 1k ≠ . For l = 1, ISijkl
λ  and IS 'i jkl

λ  are set to unity (i.e., IS 1 IS ' 1 1
ijk i jk

λ = λ = ), 

so that we obtain: 

' 1 ' 1 S 1 S ' 1 1 11 M 1 M ' 1 1 1( , ) ( , ) ( ) ( )
ijk i jk ijk i jk ijk i jk j ijk i jk jk

Cov IS IS Cov Y Y Var S Var M= − λ λ − λ λ  

All parameters on the right hand side of Equation 174 are are identified according to Equations 

150, 152, 157, and 158. 

Equation 167: Identifiability of ISijkl
λ  (for 1k ≠ ) 

According to Equation 141, 
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' ' S S ' ' 1 1 1 1 ' S M ' ' 1 1 1 '

M S ' ' 1 1 1 ' M M ' ' 1 1 '

IS

( , ) ( , ) ( , )

                         ( , ) ( , )

                         

ijkl i jkl ijkl i jkl j l j l ijkl i jkl j l jkl

ijkl i jkl jkl j l ijkl i jkl jkl jkl

Cov Y Y Cov S S Cov S M

Cov M S Cov M M

= λ λ + λ λ

+ λ λ + λ λ

+ λ IS ' ' '( , ),
ijkl i jkl ijk i jk

Cov IS ISλ

 

for 'i i≠ , , ' 1i i ≠ , 1k ≠ , and 'l l≠ . For 'l  = 1, IS ' 'i jkl
λ  is set to unity (i.e., IS ' 1 1

i jk
λ = ), so that we 

obtain: 

IS ' 1 S S ' 1 1 1 1 11 S M ' 1 1 1 1 1

M S ' 1 1 1 11 M M ' 1 1 1 1

'

[ ( , ) ( , ) ( , )

1
           ( , ) ( , )] ,

( , )

ijkl ijkl i jk ijkl i jk j l j ijkl i jk j l jk

ijkl i jk jkl j ijkl i jk jkl jk

ijk i jk

Cov Y Y Cov S S Cov S M

Cov M S Cov M M
Cov IS IS

λ = − λ λ − λ λ

− λ λ − λ λ
 

for 1l ≠  and '( , ) 0ijk i jkCov IS IS ≠ . All parameters on the right hand side of Equation 167 are are 

identified according to Equations 150, 153, 154, 157, 160, and 174. 

Equation 168: Identifiability of 1( )
ij

Var IS  

According to Equation 141, 

1 1 ' S 1 S 1 ' 1 1 ' IS 1 IS 1 ' 1( , ) ( , ) ( ),
ij l ij l ij l ij l ij l ij l ij l ij l ij

Cov Y Y Cov S S Var IS= λ λ + λ λ  for 1i ≠  and 'l l≠ . Hence 

1 1 1 ' S 1 S 1 ' 1 1 '

IS 1 IS 1 '

1
( ) [ ( , ) ( , )] ,ij ij l ij l ij l ij l ij l ij l

ij l ij l

Var IS Cov Y Y Cov S S= − λ λ
λ λ

 for IS 1 IS 1 ' 0
ij l ij l

λ λ ≠ . All 

parameters on the right hand side of Equation 168 are identified according to Equations 149, 153, 

and 166. 

Equation 169: Identifiability of ( )
ijk

Var IS  (for 1k ≠ ) 

According to Equation 141, 

' S S ' 1 1 ' S M ' 1 1 '

M S ' 1 1 ' M M ' 1 1 '

IS IS

( , ) ( , ) ( , )

                        ( , ) ( , )

                        

ijkl ijkl ijkl ijkl ij l ij l ijkl ijkl ij l jkl

ijkl ijkl jkl ij l ijkl ijkl jkl jkl

ijkl

Cov Y Y Cov S S Cov S M

Cov M S Cov M M

= λ λ + λ λ

+ λ λ + λ λ

+ λ λ ' ( ),
ijkl ijk

Var IS

 

for , 1i k ≠  and 'l l≠ . Hence 

' S S ' 1 1 '

S M ' 1 1 ' M S ' 1 1 '

M M ' 1 1 '

IS I

( ) [ ( , ) ( , )

                  ( , ) ( , )

1
                  ( , )]

ijk ijkl ijkl ijkl ijkl ij l ij l

ijkl ijkl ij l jkl ijkl ijkl jkl ij l

ijkl ijkl jkl jkl

ijkl

Var IS Cov Y Y Cov S S

Cov S M Cov M S

Cov M M

= − λ λ

− λ λ − λ λ

− λ λ
λ λ S '

,
ijkl

 

for IS IS ' 0
ijkl ijkl

λ λ ≠ . All parameters on the right hand side of Equation 169 are identified according 

to Equations 150, 153, 154, 157, 160, and 167. 

Equation 161: Identifiability of 1 1( , )
jkl ij

Cov M IS  
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According to Equation 139, 1 1 S 1 S1 1 1 IS 1 1 1( , ) ( ) ( , )
ij l jkl ij l jkl j l ij l ij jkl

Cov Y Y Var S Cov IS M= λ λ + λ  for 1≠i  

and 1k ≠ . Hence, 1 1 1 1 S 1 S1 1 1

IS 1

1
( , ) [ ( , ) ( )] ,jkl ij ij l jkl ij l jkl j l

ij l

Cov M IS Cov Y Y Var S= − λ λ
λ

 for IS 1 0
ij l

λ ≠ . The 

parameters S 1ij l
λ , S1 jkl

λ , 1 1( )
j l

Var S , and IS 1ij l
λ  are identified according to Equations 149, 150, 152, 

and 166. 

Equation 162: Identifiability of 1 '1( , )
jkl ij

Cov M IS  (for 'j j≠ ) 

According to Equation 140, 

1 1 ' S 1 S1 ' 1 1 1 '1 S 1 1 1 1 '

IS 1 S1 ' 1 1 '1 IS 1 1 1 '

( , ) ( , ) ( , )

                          ( , ) ( , ),

ij l j kl ij l j kl j l j l ij l j l j kl

ij l j kl ij j l ij l ij j kl

Cov Y Y Cov S S Cov S M

Cov IS S Cov IS M

= λ λ + λ

+ λ λ + λ
 

for 1≠i , 1k ≠ , and 'j j≠ . Hence, 

1 1 ' 1 1 ' S 1 S1 ' 1 1 1 '1 S 1 1 1 1 '

IS 1 S1 ' 1 1 '1

IS 1

( , ) [ ( , ) ( , ) ( , )

1
                              ( , )] ,

ij j kl ij l j kl ij l j kl j l j l ij l j l j kl

ij l j kl ij j l

ij l

Cov IS M Cov Y Y Cov S S Cov S M

Cov IS S

= − λ λ − λ

− λ λ
λ

  

for IS 1 0
ij l

λ ≠ . This is equivalent to 

1 '1 1 '1 S1 S '1 1 1 1 '1 S '1 1 1 '1

S1 IS '1 1 1 '1

IS '1

( , ) [ ( , ) ( , ) ( , )

1
                              ( , )] .

jkl ij jkl ij l jkl ij l j l j l ij l jkl j l

jkl ij l j l ij

ij l

Cov M IS Cov Y Y Cov S S Cov M S

Cov S IS

= − λ λ − λ

− λ λ
λ

 

All parameters on the right hand side of Equation 162 are identified according to Equations 149, 

150, 153, 154, 155, and 166. 

Equation 163: Identifiability of 1 1 '( , )
jk ijk

Cov M IS  (for 'k k≠  and ' 1k ≠ ) 

According to Equation 139, 

1 ' S1 S ' 1 1 M ' 1 1 ' IS 1 1 '( , ) ( ) ( , ) ( , )
jkl ijk l jkl ijk l j l ijk l jkl jk l ij l jkl ijk

Cov Y Y Var S Cov M M Cov M IS= λ λ + λ + λ  for 1≠i , 

'k k≠ , and , ' 1k k ≠ . For l = 1, IS 1ij l
λ  is set to unity (i.e., IS 11 1

ij
λ = ) so that we obtain: 

1 1 ' 1 1 '1 S1 1 S '1 1 11 M '1 1 1 1 '1( , ) ( , ) ( ) ( , )
jk ijk jk ijk jk ijk j ijk jk jk

Cov M IS Cov Y Y Var S Cov M M= − λ λ − λ . 

All parameters on the right hand side of Equation 163 are identified according to Equations 150, 

152, 157, and 159. 

Equation 164: Identifiability of 1 '( , )
jkl ijk

Cov M IS  (for 'k k≠  and ' 1k ≠ ) 

According to Equation 141, 
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1 ' ' S1 S ' ' 1 1 1 1 ' S1 M ' ' 1 1 1 ' ' S ' ' 1 1 1 '

M ' ' 1 1 ' ' IS ' ' 1 '

( , ) ( , ) ( , ) ( , )

                          ( , ) ( , ),

jkl ijk l jkl ijk l j l j l jkl ijk l j l jk l ijk l jkl j l

ijk l jkl jk l ijk l jkl ijk

Cov Y Y Cov S S Cov S M Cov M S

Cov M M Cov M IS

= λ λ + λ λ + λ

+ λ + λ
 

for 1≠i , 'k k≠ , , ' 1k k ≠ , and 'l l≠ . For 'l  = 1, IS ' 'ijk l
λ  is set to unity (i.e., IS '1 1

ijk
λ = ), so that we 

obtain: 

1 ' 1 '1 S1 S '1 1 1 1 11 S1 M '1 1 1 1 '1

S '1 1 1 11 M '1 1 1 '1

( , ) ( , ) ( , ) ( , )

                              ( , ) ( , ).

jkl ijk jkl ijk jkl ijk j l j jkl ijk j l jk

ijk jkl j ijk jkl jk

Cov M IS Cov Y Y Cov S S Cov S M

Cov M S Cov M M

= − λ λ − λ λ

− λ − λ
  

All parameters on the right hand side of Equation 164 are identified according to Equations 150, 

153, 154, 157, and 160. 

Equation 165: Identifiability of 1 ' '( , )
jkl ij k

Cov M IS  (for 'j j≠ , 'k k≠ , and ' 1k ≠ ) 

According to Equation 140, 

1 ' ' S1 S ' ' 1 1 1 '1 S1 M ' ' 1 1 1 ' '

S1 IS ' ' 1 1 ' ' S ' ' 1 1 '1

M

( , ) ( , ) ( , )

                          ( , ) ( , )

                          

jkl ij k l jkl ij k l j l j l jkl ij k l j l j k l

jkl ij k l j l ij k ij k l jkl j l

ij

Cov Y Y Cov S S Cov S M

Cov S IS Cov M S

= λ λ + λ λ

+ λ λ + λ

+ λ ' ' 1 1 ' ' IS ' ' 1 ' '( , ) ( , ),
k l jkl j k l ij k l jkl ij k

Cov M M Cov M IS+ λ

 

for 1≠i , 'j j≠ , 'k k≠ , and , ' 1k k ≠ . Hence, 

1 ' ' 1 ' ' S1 S ' ' 1 1 1 '1

S1 M ' ' 1 1 1 ' ' S1 IS ' ' 1 1 ' '

( , ) [ ( , ) ( , )

                               ( , ) ( , )

                               

jkl ij k jkl ij k l jkl ij k l j l j l

jkl ij k l j l j k l jkl ij k l j l ij k

Cov M IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

− S ' ' 1 1 '1 M ' ' 1 1 ' '

IS ' '

1
( , ) ( , )] ,

ij k l jkl j l ij k l jkl j k l

ij k l

Cov M S Cov M Mλ − λ
λ

  

for IS ' ' 0
ij k l

λ ≠ . All parameters on the right hand side of Equation 165 are identified according to 

Equations 150, 153, 154, 156, 157, 160, and 167. 

Equation 171: Identifiability of 1 ' '1( , )
ij i j

Cov IS IS  (for 'j j≠ ) 

According to Equation 142, 

1 ' '1 ' S 1 S ' '1 ' 1 1 1 '1 ' S 1 IS ' '1 ' 1 1 ' '1

IS 1 S ' '1 ' 1 1 '1 ' IS 1 IS ' '1 ' 1 ' '1

( , ) ( , ) ( , )

                           ( , ) ( , ),

ij l i j l ij l i j l j l j l ij l i j l j l i j

ij l i j l ij j l ij l i j l ij i j

Cov Y Y Cov S S Cov S IS

Cov IS S Cov IS IS

= λ λ + λ λ

+ λ λ + λ λ
 

for , ' 1i i ≠ , 'j j≠ , and 'l l≠ . Hence, 

1 ' '1 1 ' '1 ' S 1 S ' '1 ' 1 1 1 '1 '

S 1 IS ' '1 ' 1 1 ' '1 IS 1 S ' '1 ' 1 1 '1 '

IS 1 IS ' '1 '

( , ) [ ( , ) ( , )

1
                             ( , ) ( , )] ,

ij i j ij l i j l ij l i j l j l j l

ij l i j l j l i j ij l i j l ij j l

ij l i j l

Cov IS IS Cov Y Y Cov S S

Cov S IS Cov IS S

= − λ λ

− λ λ − λ λ
λ λ

  

for IS 1 IS ' '1 ' 0
ij l i j l

λ λ ≠ . All parameters on the right hand side of Equation 171 are identified according 

to Equations 149, 153, 155, and 166. 



The Correlated State-Correlated (Method–1) Model 127 

Equation 172: Identifiability of 1 '( , )
ij i jk

Cov IS IS  (for 1k ≠ ) 

According to Equation 141, 

1 ' ' S 1 S ' ' 1 1 1 1 ' S 1 M ' ' 1 1 1 '

IS 1 M ' ' 1 1 ' IS 1 IS ' ' 1 '

( , ) ( , ) ( , )

                          ( , ) ( , ),

ij l i jkl ij l i jkl j l j l ij l i jkl j l jkl

ij l i jkl ij jkl ij l i jkl ij i jk

Cov Y Y Cov S S Cov S M

Cov IS M Cov IS IS

= λ λ + λ λ

+ λ λ + λ λ
 

for , ' 1i i ≠ , 1k ≠ , and 'l l≠ . Hence, 

1 ' 1 ' ' S 1 S ' ' 1 1 1 1 '

S 1 M ' ' 1 1 1 ' IS 1 M ' ' 1 1 '

IS 1 IS ' '

( , ) [ ( , ) ( , )

1
                            ( , ) ( , )] ,

ij i jk ij l i jkl ij l i jkl j l j l

ij l i jkl j l jkl ij l i jkl ij jkl

ij l i jkl

Cov IS IS Cov Y Y Cov S S

Cov S M Cov IS M

= − λ λ

− λ λ − λ λ
λ λ

  

for IS 1 IS ' ' 0
ij l i jkl

λ λ ≠ . All parameters on the right hand side of Equation 172 are identified according 

to Equations 149, 150, 153, 154, 157, 161, 166, and 167. 

Equation 173: Identifiability of 1 ' '( , )
ij i j k

Cov IS IS  (for 'j j≠  and 1k ≠ ) 

According to Equation 142, 

1 ' ' ' S 1 S ' ' ' 1 1 1 '1 ' S 1 M ' ' ' 1 1 1 ' '

S 1 IS ' ' ' 1 1 ' ' IS 1 S ' ' ' 1 1 '1 '

( , ) ( , ) ( , )

                           ( , ) ( , )

                

ij l i j kl ij l i j kl j l j l ij l i j kl j l j kl

ij l i j kl j l i j k ij l i j kl ij j l

Cov Y Y Cov S S Cov S M

Cov S IS Cov IS S

= λ λ + λ λ

+ λ λ + λ λ

IS 1 M ' ' ' 1 1 ' ' IS 1 IS ' ' ' 1 ' '           ( , ) ( , ),
ij l i j kl ij j kl ij l i j kl ij i j k

Cov IS M Cov IS IS+ λ λ + λ λ

 

for , ' 1i i ≠ , 1k ≠ , 'j j≠ , and 'l l≠ . Hence, 

1 ' ' 1 ' ' ' S 1 S ' ' ' 1 1 1 '1 '

S 1 M ' ' ' 1 1 1 ' ' S 1 IS ' ' ' 1 1 ' '

( , ) [ ( , ) ( , )

                              ( , ) ( , )

                            

ij i j k ij l i j kl ij l i j kl j l j l

ij l i j kl j l j kl ij l i j kl j l i j k

Cov IS IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

IS 1 S ' ' ' 1 1 '1 ' IS 1 M ' ' ' 1 1 ' '

IS 1 IS ' ' '

1
  ( , ) ( , )] ,

ij l i j kl ij j l ij l i j kl ij j kl

ij l i j kl

Cov IS S Cov IS M− λ λ − λ λ
λ λ

  

for IS 1 IS ' ' ' 0
ij l i j kl

λ λ ≠ . All parameters on the right hand side of Equation 173 are identified 

according to Equations 149, 150, 153, 154, 155, 156, 157, 162, 166, and 167. 

Equation 175: Identifiability of ' '( , )
ijk i jk

Cov IS IS  (for 'k k≠  and , ' 1k k ≠ ) 

According to Equation 139, 

' ' S S ' ' 1 1 M M ' ' 1 1 '

M IS ' ' 1 ' ' IS M ' ' 1 '

IS

( , ) ( ) ( , )

                         ( , ) ( , )

                         

ijkl i jk l ijkl i jk l j l ijkl i jk l jkl jk l

ijkl i jk l jkl i jk ijkl i jk l ijk jk l

ijkl

Cov Y Y Var S Cov M M

Cov M IS Cov IS M

= λ λ + λ λ

+ λ λ + λ λ

+ λ IS ' ' ' '( , ),
i jk l ijk i jk

Cov IS ISλ

 

for , ' 1i i ≠ , 'k k≠ , and , ' 1k k ≠ . Hence, 
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' ' ' ' S S ' ' 1 1

M M ' ' 1 1 ' M IS ' ' 1 ' '

IS M '

( , ) [ ( , ) ( )

                             ( , ) ( , )

                             

ijk i jk ijkl i jk l ijkl i jk l j l

ijkl i jk l jkl jk l ijkl i jk l jkl i jk

ijkl i j

Cov IS IS Cov Y Y Var S

Cov M M Cov M IS

= − λ λ

− λ λ − λ λ

− λ λ ' 1 '

IS IS ' '

1
( , )] ,

k l ijk jk l

ijkl i jk l

Cov IS M
λ λ

  

for IS IS ' ' 0
ijkl i jk l

λ λ ≠ . All parameters on the right hand side of Equation 175 are identified according 

to Equations 150, 152, 157, 159, 164, and 167. 

Equation 176: Identifiability of ' ' '( , )
ijk i j k

Cov IS IS  (for 'j j≠ ) 

According to Equations 140 and 142, 

' ' ' ' S S ' ' ' ' 1 1 1 '1 ' S M ' ' ' ' 1 1 1 ' ' '

S IS ' ' ' ' 1 1 ' ' ' M S ' ' ' ' 1 1 '1 '

( , ) ( , ) ( , )

                            ( , ) ( , )

         

ijkl i j k l ijkl i j k l j l j l ijkl i j k l j l j k l

ijkl i j k l j l i j k ijkl i j k l jkl j l

Cov Y Y Cov S S Cov S M

Cov S IS Cov M S

= λ λ + λ λ

+ λ λ + λ λ

M M ' ' ' ' 1 1 ' ' ' M IS ' ' ' ' 1 ' ' '

IS S ' ' ' ' 1 '1 ' IS M ' ' ' ' 1 ' ' '

                   ( , ) ( , )

                            ( , ) ( , )

       

ijkl i j k l jkl j k l ijkl i j k l jkl i j k

ijkl i j k l ijk j l ijkl i j k l ijk j k l

Cov M M Cov M IS

Cov IS S Cov IS M

+ λ λ + λ λ

+ λ λ + λ λ

IS IS ' ' ' ' ' ' '                     ( , ),
ijkl i j k l ijk i j k

Cov IS IS+ λ λ

 

for , ' 1i i ≠ , 'j j≠ , and , ' 1k k ≠ . Hence, 

' ' ' ' ' ' ' S S ' ' ' ' 1 1 1 '1 '

S M ' ' ' ' 1 1 1 ' ' ' S IS ' ' ' ' 1 1 ' ' '

( , ) [ ( , ) ( , )

                              ( , ) ( , )

                     

ijk i j k ijkl i j k l ijkl i j k l j l j l

ijkl i j k l j l j k l ijkl i j k l j l i j k

Cov IS IS Cov Y Y Cov S S

Cov S M Cov S IS

= − λ λ

− λ λ − λ λ

M S ' ' ' ' 1 1 '1 ' M M ' ' ' ' 1 1 ' ' '

M IS ' ' ' ' 1 ' ' ' IS S ' ' ' ' 1 '1 '

         ( , ) ( , )

                              ( , ) ( , )

                 

ijkl i j k l jkl j l ijkl i j k l jkl j k l

ijkl i j k l jkl i j k ijkl i j k l ijk j l

Cov M S Cov M M

Cov M IS Cov IS S

− λ λ − λ λ

− λ λ − λ λ

IS M ' ' ' ' 1 ' ' '

IS IS ' ' ' '

1
             ( , )] ,

ijkl i j k l ijk j k l

ijkl i j k l

Cov IS M− λ λ
λ λ

  

for IS IS ' ' ' ' 0
ijkl i j k l

λ λ ≠ . All parameters on the right hand side of Equation 176 are identified 

according to Equations 150, 153, 154, 156, 157, 160, 165, and 167. 

Equation 177: Identifiability of 1 1( )
j l

Var E  

According to Equation 139, 1 1 1 1 1 1 1 1 1 1( , ) ( ) ( ) ( )
j l j l j l j l j l

Cov Y Y Var Y Var S Var E= = + . Hence, 

1 1 1 1 1 1( ) ( ) ( )
j l j l j l

Var E Var Y Var S= − . The parameter 1 1( )
j l

Var S  is identified according to 

Equation 152. 

Equation 178: Identifiability of 1( )
ij l

Var E  (for 1i ≠ ) 

According to Equation 139, 

2 2
1 1 1 S 1 1 1 IS 1 1 1( , ) ( ) ( ) ( ) ( )ij l ij l ij l ij l j l ij l ij ij lCov Y Y Var Y Var S Var IS Var E= = λ + λ + , for 1i ≠ . Hence, 

2 2
1 1 S 1 1 1 IS 1 1( ) ( ) ( ) ( )ij l ij l ij l j l ij l ijVar E Var Y Var S Var IS= − λ − λ . All parameters on the right hand side of 
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Equation 178 are identified according to Equations 149, 152, 166, and 168.  

Equation 179: Identifiability of 1( )
jkl

Var E  (for 1k ≠ ) 

According to Equation 139, 

2
1 1 1 S1 1 1 1 1( , ) ( ) ( ) ( ) ( )jkl jkl jkl jkl j l jkl jklCov Y Y Var Y Var S Var M Var E= = λ + + , for 1k ≠ . Hence, 

2
1 1 S1 1 1 1( ) ( ) ( ) ( ).jkl jkl jkl j l jklVar E Var Y Var S Var M= − λ −  All parameters on the right hand side of 

Equation 179 are identified according to Equations 150, 152, and 158. 

Equation 180: Identifiability of ( )
ijkl

Var E  (for , 1i k ≠ ) 

According to Equation 139, 

2 2 2
S 1 1 M 1 IS( , ) ( ) ( ) ( ) ( ) ( )ijkl ijkl ijkl ijkl j l ijkl jkl ijkl ijk ijklCov Y Y Var Y Var S Var M Var IS Var E= = λ + λ + λ + , for 

, 1i k ≠ . Hence, 2 2 2
S 1 1 M 1 IS( ) ( ) ( ) ( ) ( ).ijkl ijkl ijkl j l ijkl jkl ijkl ijkVar E Var Y Var S Var M Var IS= − λ − λ − λ  All 

parameters on the right hand side of Equation 180 are identified according to Equations 150, 152, 

157, 158, 167 and 169. 

 

The minimal condition for identification of the CS-C(M–1) model with general state 

factors and indicator-specific factors across time is again a 2x1x2x2 MTMM-MO design (one 

construct [n = 1] measured by two methods [o = 2] on two measurement occasions [p = 2], 

with two indicators per method [m = 2]). This design is sufficient for obtaining an identified 

model, given substantial parameter values. In particular, under this minimal condition, both 

the method factors and the indicator-specific factors are measured by only two indicators, 

respectively. Therefore, each method factor and each indicator-specific factor must have a 

substantial (non-zero) covariance with at least one other latent variable (or an external 

covariate) in the model. If a method factor or an indicator-specific factor in this 2x1x2x2 

MTMM-MO design does not covary with another variable in the model, the factor loadings of 

both indicators must be fixed to a non-zero value to identify the model. Furthermore, 

identification problems can occur in this “minimal model” if the indicator-specific effects are 

not substantial. In this case, one possible solution is to drop the indicator-specific factors. 
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3.6 Summary and Discussion 

The CS-C(M–1) model represents a general longitudinal MTMM measurement model for 

multiple, potentially heterogeneous indicators per CMOU. Depending on the type of 

indicator-specificity present in the data (generalization of indicator-specific effects across 

methods vs. across time points), users can choose between a model version with indicator-

specific state variables and a version with general state factors in conjunction with indicator-

specific factors across time. If there are no indicator-specific effects at all, a parsimonious 

version with general state factors without additional indicator-specific factors can be used (see 

Figure 15). 

Either variant of the CS-C(M–1) model enables researchers to investigate the convergent 

and discriminant validity of their measures in a longitudinal context. By comparing the 

consistency and method-specificity coefficients over time, researchers can check whether the 

convergent validity of different methods changes in the course of a longitudinal investigation. 

Furthermore, (changes in) the discriminant validity, associations among different constructs 

and methods, as well as the stability of inter-individual differences with regard to constructs 

and methods can be studied through latent correlations. By including a mean structure in the 

analysis, also hypotheses with regard to mean differences between different methods and 

across time can be tested. 

An important advantage of the CS-C(M–1) approach is that the entire information of the 

MTMM-MO covariance matrix and mean vector of the observed variables are analyzed in a 

single model. Hence, researchers do not need to (a) analyze separate models for each wave 

and (b) do not loose important information through a fragmentation of the data. Furthermore, 

as in MTMM models for cross-sectional data, measurement error influences are taken into 

account. Due to the specification of indicator-specific state factors (or indicator-specific 

factors across time), indicators do not necessarily have to be perfectly homogeneous, which is 

also an advantage given that perfectly unidimensional measures of a construct are rarely 

available in psychology. Note, however, that I nonetheless strongly recommend that 

indicators be selected that are as homogeneous as possible. I return the problem of indicator-

specific effects in the final discussion. 

An additional advantage of the CS-C(M–1) model is that important assumptions can be 

scrutinized—particularly the assumption of construct-specific method effects and questions of 

measurement invariance over time. A number of more specific longitudinal MTMM models 

can be derived from the CS-C(M–1) model. For example, the multi-method latent difference 
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models that I will present in the next chapter are directly obtained from the basic CS-C(M–1) 

model by simple reformulations. Furthermore, the CS-C(M–1) model can easily be extended 

to a latent autoregressive model (e.g., Jöreskog, 1979a, 1979b; Hertzog & Nesselroade, 1987) 

by specifying an autoregressive structure among the latent state and/or latent method factors. 

The model can also be extended to analyze latent growth curves by imposing a second-order 

growth structure on the latent state factors (the principle of extending CS models to second-

order growth models is described in Ferrer, Balluerka, & Widaman, 2008; Hancock, Kuo, & 

Lawrence, 2001; McArdle, 1988; as well as Sayer & Cumsille, 2001). In the next chapter, I 

show how researchers can study latent change in MTMM-MO studies by including latent 

difference variables in the CS-C(M–1) model. 
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4 The CS-C(M–1) Change Model 

Steyer et al. (1997, 2000; see also Steyer, 1988, 2005) have demonstrated how the 

conventional (mono-method) CS model can be reformulated as a latent difference model (see 

Section 2.2.2). Here, I show how the same principle can be applied to the CS-C(M–1) model 

with indicator-specific state variables defined in Chapter 3.1. [The CS-C(M–1) model with 

indicator-specific factors across time introduced in Section 3.2 can also be formulated as a 

latent difference model. As the principle is exactly the same and can easily be transferred, I 

describe this possibility only for the CS-C(M–1) model defined in Chapter 3.1.] 

The change version of the CS-C(M–1) model [henceforth referred to as CS-C(M–1) change 

model] can be used to study inter-individual differences in intra-individual change 

simultaneously for different methods. It is a particularly useful model for intervention and 

evaluation studies that employ a multi-method design (e.g., multiple informants rating 

behavior problems in children before and after an intervention as in Barquero, Scheithauer, 

Bondü, & Mayer, 2007). 

4.1 Introducing Latent Difference Variables in the CS-C(M–1) Model 

First, I consider the measurement equations for the indicators pertaining to the reference 

method, using two indicators 1ij l
Y  and 1 'ij l

Y , measured on two measurement occasions l and 'l , 

where 'l l> : 

 1 1 1 ,
ij l ij l ij l

Y S E= +  (181) 

 1 ' 1 ' 1 'ij l ij l ij l
Y S E= + . (182) 

To include the latent difference between state 'l  and state l as a latent variable, 

Equation 182 can be rewritten as follows without making any restrictive assumptions: 

 1 ' 1 1 ' 1 1 '( )
ij l ij l ij l ij l ij l

Y S S S E= + − + . (183) 

Hence, 1 'ij lS  is decomposed into the preceding latent state 1ij lS  plus the latent difference 

1 ' 1( )
ij l ij l

S S− , representing change from the preceding state 1ij lS  to state 1 'ij lS : 

 1 ' 1 1 ' 1( )
ij l ij l ij l ij l

S S S S= + − . (184) 
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The principle is exactly the same as for the mono-method CS model discussed in 

Chapter 2.2.2. To illustrate, let us assume that l = 1 (the first measurement occasion) and 

' 2l =  (the second measurement occasion). Then, 11ijS  represents the initial status (the latent 

state at T1) as measured by the reference method, and the latent difference variable 

12 11( )
ij ij

S S−  represents change (growth or decline) from T1 to T2 as measured by the 

reference method. 

A value of zero on 12 11( )
ij ij

S S−  would indicate that an individual’s latent score has not 

changed over time (according to the reference method). A positive value of 12 11( )
ij ij

S S−  

would indicate growth (a larger latent state score at T2 than at T1), whereas a negative value 

of 12 11( )
ij ij

S S−  indicates a decline (a smaller latent state score at T2 than at T1). If there is no 

change for any individual [i.e., all individuals have values of zero on 12 11( )
ij ij

S S− ], or all 

individuals change by the same amount [i.e., all individuals have identical values on 

12 11( )
ij ij

S S− ], 11ijS  and 12ijS  would be perfectly correlated and hence it would be sufficient to 

specify a model with a single (trait) factor (e.g., 11ijS ). This shows that the latent difference 

model is a model for measuring differential change. The latent difference variables will have 

non-zero variances only if some individuals change more (or less) than do others.  

Next, I consider the measurement equations for two indicators 
ijkl

Y  and 'ijkl
Y  pertaining to a 

non-reference method k, 1k ≠ , measured on two measurement occasions l  and 'l , 'l l> : 

 S 1 Mλ λ ,
ijkl ijkl ijkl ij l ijkl jkl ijkl

Y S M E= α + + +  (185) 

 ' ' S ' 1 ' M ' ' 'λ λ ,  where 1.
ijkl ijkl ijkl ij l ijkl jkl ijkl

Y S M E k= α + + + ≠  (186) 

 Given that we can replace 1 'ij lS  by 1 1 ' 1( )
ij l ij l ij l

S S S + −   and 'jklM  by 

'( )
jkl jk l jkl

M M M + −   without making any restrictive assumptions, Equation 186 can be 

restated as: 

 
' ' S ' 1 1 ' 1 M ' ' '

' S ' 1 S ' 1 ' 1 M ' M ' ' '

λ ( ) λ ( )

λ λ ( ) λ λ ( ) .

ijkl ijkl ijkl ij l ij l ij l ijkl jkl jk l jkl ijkl

ijkl ijkl ij l ijkl ij l ij l ijkl jkl ijkl jk l jkl ijkl

Y S S S M M M E

S S S M M M E

   = α + + − + + − +   

= α + + − + + − +
 (187) 

In the following, I will refer to the variables 1 ' 1( )
ij l ij l

S S−  as latent state difference 

variables and to the variables '( )
jk l jkl

M M−  as latent method difference variables. The latent 



The CS-C(M–1) Change Model 134 

state difference variables represent inter-individual differences in intra-individual change with 

respect to the reference method. The latent method difference variables mirror inter-individual 

differences in intra-individual change with respect to method-specific deviations from the 

reference method. That is, the latent method difference variables represent residual change in 

the non-reference methods not accounted for by change in the reference method (the over- or 

underestimation by non-reference methods with respect to the reference method). The latent 

method difference variables can for example be used to study the question of why different 

methods diverge in the assessment of change. One can introduce potential explanatory 

variables in the model that might explain the deviation of the change scores from the 

reference method. Figure 16 shows the state and change versions of a CS-C(M–1) model for 

one construct measured by two methods on two measurement occasions. 
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Figure 16. Path diagram of a CS-C(M–1) model for one construct measured by two methods 
on two measurement occasions. 

ijkl
Y  = observed variable (i = indicator, j = construct, k = 

method, l = occasion of measurement). 1ij l
S  = latent state factor. 1 ' 1ij l ij l

S S−  = latent state 

difference factor. 
jkl

M  = common method factor. 'jk l jkl
M M−  = latent method difference 

factor. 
ijkl

E  = error variable. A: state version. B: latent difference version. For the sake of 

clarity, not all possible factor correlations are shown. 
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4.2 Baseline Versus Neighbor Change Version 

The principle of introducing latent difference variables can be applied in different ways. 

Steyer et al. (1997, 2000) presented a baseline change version and a neighbor change version. 

In the baseline change version, the latent difference variables represent change between a 

given measurement occasion l and the first measurement occasion (l = 1). Hence, T1 serves as 

the “baseline” against which change is assessed. In the neighbor change version, the latent 

difference variables represent true change between adjacent (“neighbored”) occasions of 

measurement. The same distinction can be made for the CS-C(M–1) change model. I will first 

present the baseline change version of the CS-C(M–1) change model. 

4.2.1 Baseline Change Version 

The general measurement equations for the CS-C(M–1) baseline change model can be 

written as follows: 

(a) for the reference method ( 1k = ): 

 1 11 1 11 1( ) ,
ij l ij ij l ij ij l

Y S S S E= + − +  and (188) 

(b) for the non-reference methods ( 1k ≠ ): 

 S 11 S 1 11 M 1 M 1λ λ ( ) λ λ ( )
ijkl ijkl ijkl ij ijkl ij l ij ijkl jk ijkl jk l jk ijkl

Y S S S M M M E= α + + − + + − + . (189) 

4.2.2 Neighbor Change Version 

As mentioned above, in the neighbor change version, the change variables represent 

change between adjacent measurement occasions. For 3,4,...,l p= , the general measurement 

equations for the neighbor change version can be expressed as5: 

(a) for the reference method ( 1k = ): 

 1 11 1 1( 1) 1( 1) 1( 2) 12 11 1( ) ( ) ... ( ) ,
ij l ij ij l ij l ij l ij l ij ij ij l

Y S S S S S S S E− − −= + − + − + + − +  and (190) 

(b) for the non-reference methods ( 1k ≠ ): 

                                                 
5 The neighbor change version can also be used if there are fewer than three time points. However, for only two 
time points, the neighbor change model is identical to the baseline change model. 
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S 11 S 1 1( 1) S 1( 1) 1( 2)

S 12 11

M 1 M ( 1) M ( 1) ( 2)

M 2

λ λ ( ) λ ( )

        ... λ ( )

        λ λ ( ) λ ( )

        ... λ (

ijkl ijkl ijkl ij ijkl ij l ij l ijkl ij l ij l

ijkl ij ij

ijkl jk ijkl jkl jk l ijkl jk l jk l

ijkl jk

Y S S S S S

S S

M M M M M

M M

− − −

− − −

= α + + − + −

+ + −

+ + − + −

+ + − 1 1) .
jk ij l

E+

 (191) 

To further illustrate the difference between the baseline and neighbor change versions 

imagine that there are three occasions of measurement, l = 1, 2, 3. In this case, the 

measurement equations for the baseline version of the model are given by: 

(a) for the reference method ( 1k = ): 

 11 11 11ij ij ij
Y S E= + , (192) 

 12 11 12 11 12( )
ij ij ij ij ij

Y S S S E= + − + , and (193) 

 13 11 13 11 13( )
ij ij ij ij ij

Y S S S E= + − + . (194) 

(b) for the non-reference methods ( 1k ≠ ): 

 1 1 S 1 11 M 1 1 1λ λ ,
ijk ijk ijk ij ijk jk ijk

Y S M E= α + + +  (195) 

 2 2 S 2 12 S 2 12 11 M 2 2 M 2 2 1 2λ λ ( ) λ λ ( ) ,
ijk ijk ijk ij ijk ij ij ijk jk ijk jk jk ijk

Y S S S M M M E= α + + − + + − +  (196) 

 3 3 S 3 13 S 3 13 11 M 3 3 M 3 3 1 3λ λ ( ) λ λ ( ) .
ijk ijk ijk ij ijk ij ij ijk jk ijk jk jk ijk

Y S S S M M M E= α + + − + + − +  (197) 

For the neighbor change version, we obtain in this case: 

(a) for the reference method ( 1k = ): 

 11 11 11,ij ij ij
Y S E= +  (198) 

 12 11 12 11 12( ) ,
ij ij ij ij ij

Y S S S E= + − +  and (199) 

 13 11 13 12 12 11 13( ) ( ) .
ij ij ij ij ij ij ij

Y S S S S S E= + − + − +   (200) 

(b) for the non-reference methods ( 1k ≠ ): 

 1 1 S 1 11 M 1 1 1λ λ ,
ijk ijk ijk ij ijk jk ijk

Y S M E= α + + +  (201) 
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2 2 S 2 12 S 2 12 11 M 2 2 M 2 2 1 2λ λ ( ) λ λ ( ) ,
ijk ijk ijk ij ijk ij ij ijk jk ijk jk jk ijk

Y S S S M M M E= α + + − + + − +  (202) 

 
3 3 S 3 11 S 3 13 12 S 3 12 11

M 3 1 M 3 3 2 M 3 2 1 1

λ λ ( ) λ ( )

         λ λ ( ) λ ( ) .

ijk ijk ijk ij ijk ij ij ijk ij ij

ijk jk ijk jk jk ijk jk jk ij l

Y S S S S S

M M M M M E

= α + + − + −

+ + − + − +
 (203) 

Figure 17 shows the baseline and neighbor change versions for one construct, two 

methods, and three time points as path diagrams. 

4.3 Measurement Invariance 

In Chapters 2.2.2 and 3.4, I already pointed out that measurement invariance over time is a 

crucial issue in longitudinal modeling. For the models of latent change presented here, the 

question of measurement invariance is of particular importance, given that we are studying 

the differences in latent variable scores. What do the latent difference scores mean if we are 

not measuring the same construct on each measurement occasion? We need to assure that we 

are not “subtracting apples from oranges”. To be more concrete, we can only meaningfully 

interpret the latent difference variables if the factor loadings and measurement intercepts are 

time-invariant. Time-invariant intercepts and loadings imply that the measurement structure 

of the construct has not changed over time (so-called stationarity condition; Tisak & Tisak, 

2000). As for the CS model, the stationarity condition can be tested. When invariance 

constraints are imposed on all intercepts and loadings, the general measurement model of the 

CS-C(M–1) model (cp. Equation 77) simplifies to 

 
1 1

S 1 M

,  for 1,  and

,  for 1,
ij l ij l

ijkl

ijk ijk ij l ijk jkl ijkl

S E k
Y

S M E k

+ =
= 

α + λ + λ + ≠
 (204) 

where the occasion index l has been dropped from the intercepts and loadings to express 

that these parameters are time-invariant. The fit of the invariance model in Equation 204 can 

be tested against the fit of the more general model in Equation 77 to investigate whether the 

assumption of measurement invariance is tenable.  
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Figure 17. Path diagram of a CS-C(M–1) change model for one construct measured by two 
methods on three measurement occasions. 

ijkl
Y  = observed variable (i = indicator, j = 

construct, k = method, l = occasion of measurement). 1ij l
S  = latent state factor. 1 ' 1ij l ij l

S S−  = 

latent state difference factor. 
jkl

M  = common method factor. 'jk l jkl
M M−  = latent method 

difference factor. 
ijkl

E  = error variable. A: baseline change version. B: neighbor change 

version. For the sake of clarity, not all possible factor correlations are shown. 
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The reduced model with time-invariant parameters should be used as the base for specifying 

the change versions of the CS-C(M–1) model, as shown in Equation 205 for the non-reference 

method (the equation for k = 1 remains unchanged given that 1 0
ij l

α =  and S 1 1
ij l

λ = ): 

 ' S 1 S 1 ' 1 M M ' 'λ λ ( ) λ λ ( ) .
ijkl ijk ijk ij l ijk ij l ij l ijk jkl ijk jk l jkl ijkl

Y S S S M M M E= α + + − + + − +  (205) 

If measurement invariance is not tenable, the latent difference scores should not be 

interpreted.  

4.4 Non-Permissible Latent Correlations 

The same types of latent correlations that are assumed to be zero in the state version of the 

CS-C(M–1) model (or that are zero by definition of the model) also have to be constrained to 

zero in the CS-C(M–1) change model: 

 1( , ) 0,
jkl ij l

Cov M S =  (29, repeated) 

 ' ' ' '( , ) 0,
ijkl i j k l

Cov E E =  for ( , , , ) ( ', ', ', ')i j k l i j k l≠ , (30, repeated) 

 ' '1 ' ' ' '( , ) ( , ) 0.
ijkl i j l ijkl j k l

Cov E S Cov E M= =  (31, repeated) 

Given that the state and method factors are uncorrelated with the error variables, the latent 

state and latent method difference variables are also uncorrelated with the error variables: 

 ' ' '' ' ' ' ' ' '' ' ' '[ , ( ), ] ( , ) ( , ) 0,
ijkl j k l j k l ijkl j k l ijkl j k l

Cov E M M Cov E M Cov E M− = − =  (206) 

 ' '1 '' ' '1 ' ' '1 '' ' '1 '[ , ( ), ] ( , ) ( , ) 0.
ijkl i j l i j l ijkl i j l ijkl i j l

Cov E S S Cov E S Cov E S− = − =  (207) 

In addition, I recommend that the following covariances be fixed to zero in empirical 

applications: 

 1 '( , ) 0.
jkl ij l

Cov M S =  (208) 

 ' 1 ''' 1 ''[( ), ( )] 0.
jkl jkl ij l ij l

Cov M M S S− − =  (209) 

According to Equation 208, state factors are not correlated with any method factors 

belonging to the same construct, irrespective of the measurement occasion. Equation 209 is a 

direct consequence of Equation 208. According to Equation 209, state difference variables are 
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not correlated with any method difference variables belonging to the same construct, 

irrespective of the measurement occasion. These additional independence assumptions are 

important for several reasons. First, they make the model more parsimonious, since fewer 

parameters have to be estimated. Second, in most practical applications, the correlations 

between state and method factors pertaining to different measurement occasions are estimated 

to be close to (and not significantly different from) zero anyway. Third, if one constrains 

these correlations to zero, the state version and the change version of the CS-C(M–1) model 

are equivalent models that produce exactly the same fit for a given data set. This is practical, 

given that one may be interested in parameter estimates from both types of models. If the state 

version with the additional independence assumptions fits the data, one can be sure that any 

change version will show the same fit. Fourth, and most important, variance components for 

quantifying the convergent validity and method-specificity of observed difference variables 

(see Section 4.7) can only be separated if the state and method difference variables are 

uncorrelated. 

4.5 Permissible Latent Correlations 

Using the latent difference parameterization of the CS-C(M–1) model, one can estimate a 

number of interesting correlations that are not directly available in the state version of the 

model. In the following, some of these correlations are discussed: 

 

(1) The correlations 11 1 ' 1[ , ( )]
ij ij l ij l

Cor S S S− , 'l l> , between initial (T1) state factors and 

state difference variables belonging to the same construct, indicate the association 

between initial status and change. Positive correlations imply that individuals with 

higher latent state scores at T1 tend to have higher change scores between time l and 'l  

than individuals with lower latent T1 scores.  

(2) The correlations 11 ' '1 ' ' '1[ , ( )]
ij i j l i j l

Cor S S S− , 'j j≠  and 'l l> , between T1 state factors 

and state difference variables belonging to a different construct, can be used to find out 

whether the initial state with respect to one construct can be used to predict change in 

another construct. For example, in therapy studies, it might be interesting to correlate 

background variables such as the degree of social support at T1 (before psychotherapy) 

with symptom change (e.g., the degree of decline in depressive symptoms). A negative 

correlation would indicate that the higher the social support at T1, the greater the decline 

in depression. 
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(3) The correlations 1 ' 1 1 ''' 1 ''[( ), ( )]
ij l ij l ij l ij l

Cor S S S S− − , 'l l>  and ''' ''l l> , between state 

difference factors belonging to the same construct, characterize the association between 

change scores pertaining to different measurement occasions. Positive values of these 

correlations indicate that individuals with higher change scores between time l and 'l  

tend to have higher change scores also between time ''l  and '''l . 

(4) The correlations 1 ' 1 ' '1 ' ' '1[( ), ( )]
ij l ij l i j l i j l

Cor S S S S− − , 'j j≠  and 'l l> , between state 

difference factors belonging to different constructs, indicate to which degree inter-

individual differences in change with respect to one construct are associated with inter-

individual differences in change with respect to another construct. Positive correlations 

indicate that individuals with higher change scores (e.g., with respect to depression) tend 

to have higher change scores also with regard to a second construct (e.g., anxiety). 

Hence, these correlations can be used to investigate the discriminant validity of change 

with respect to the reference method. High correlations indicate low discriminant 

validity of change. (One can distinguish between correlations among difference 

variables capturing change between the same measurement occasions and correlations 

among difference variables capturing change between different measurement occasions.) 

(5) The correlations 1 '[ , ( )]
jk jkl jkl

Cor M M M− , 'l l> , between T1 method factors and 

method difference factors belonging to the same construct and the same method, 

indicate the association between the method-specific deviation from the reference 

method at T1 with the method-specific deviation in change. 

(6) The correlations 1 ' ' '[ , ( )]
jk j kl j kl

Cor M M M− , 'j j≠  and 'l l> , between T1 method 

factors and method difference factors belonging to a different construct, indicate the 

association between the method-specific deviation from the reference method at T1 with 

the method-specific deviation in change for the same method but a different construct. 

These correlations are relatively difficult to interpret and probably not substantial in 

most applications. 

(7) The correlations 1 ' ' '[ , ( )]
jk jk l jk l

Cor M M M− , 'k k≠  and 'l l> , between T1 method 

factors and method difference factors belonging to the same construct, but a different 

method, indicate the association between the method-specific deviation of a method k 

from the reference method at T1 with the method-specific deviation in change for a 

different method 'k . These correlations are also relatively difficult to interpret. 

(8) The correlations 1 ' ' ' ' '[ , ( )]
jk j k l j k l

Cor M M M− , 'j j≠ , 'k k≠ , and 'l l> , between initial 

T1 method factors and method difference factors belonging to a different construct and a 
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different method, indicate the association between the method-specific deviation of a 

method k from the reference method at T1 with the method-specific deviation in change 

for a different construct 'j  and a different method 'k . For most applications, one would 

not expect these correlations to be substantial. 

(9) The correlations ' ''' ''[( ), ( )]
jkl jkl jkl jkl

Cor M M M M− − , 'l l>  and ''' ''l l> , between method 

difference factors belonging to the same construct and the same method, characterize the 

association between the method-specific deviation in change scores pertaining to 

different measurement occasions. Positive values of these correlations indicate that 

individuals with higher method-specific residual change scores between time l and 'l  

also tend to have higher method-specific residual change scores between time ''l  and 

'''l . 

(10) The correlations ' ' ' '[( ), ( )]
jkl jkl j kl j kl

Cor M M M M− − , 'j j≠  and 'l l> , between method 

difference factors belonging to the same method, but different constructs, can be used to 

investigate the discriminant validity of change corrected for influences of the reference 

method. High correlations indicate low discriminant validity of change with respect to 

the non-reference methods. 

(11) The correlations ' ' ' '[( ), ( )]
jkl jkl jk l jk l

Cor M M M M− − , 'k k≠  and 'l l> , between method 

difference factors belonging to the same construct, but different methods, indicate the 

degree to which different methods agree in the assessment of change over and above 

what they have in common with the reference method. High positive correlations 

indicate a common “view of change” of different non-reference methods that is not 

shared with the reference method. For example, change scores based on parent and 

teacher ratings might deviate from change scores based on the self-report (reference 

method). If, in addition, the parent and teacher ratings lead to a common view of change 

that is not shared with the self-report, the latent method difference factors for parents 

and teachers will be correlated. 

(12) The correlations ' ' ' ''' ' ' ''[( ), ( )]
jkl jkl j k l j k l

Cor M M M M− − , 'j j≠ , 'k k≠ , 'l l> , and 

''' ''l l> , between method difference factors belonging to different constructs, different 

methods, and different time points indicate to which degree inter-individual differences 

in method-specific residual change with respect to one construct are associated with 

inter-individual differences in method-specific residual change with respect to another 

construct. It is likely that these correlations are close to zero in most applications. 
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(13) For different constructs ( 'j j≠ ), the correlations between (a) initial state factors and 

method difference factors { 11 ' ' '[ , ( )]
ij j kl j kl

Cov S M M− }, (b) initial method factors and 

state difference factors { 1 '1 ' '1[ , ( )]
jk ij l ij l

Cov M S S− }, and (c) state difference and method 

difference factors { 1 ' 1 ' ''' ' ''[( ), ( )]
ij l ij l j kl j kl

Cov S S M M− − } are admissible. However, in most 

research contexts, these correlations can be expected to be negligible and not of 

substantive interest. One might therefore consider constraining them to zero in empirical 

applications for reasons of model parsimony. 

4.6 Mean Structure 

The latent change versions of the CS-C(M–1) model enable researchers to study latent 

mean change over time in a straightforward way. For this purpose, the means of the latent 

state difference variables can be estimated. These means represent the difference in latent 

state factor means between time 'l  and time l: 

 1 ' 1 1 ' 1 1 ' 1( ) ( ) ( ) ( ) ( ).
ij l ij l ij l ij l ij l ij l

E S S E S E S E Y E Y− = − = −  (210) 

Hence, if 1 ' 1( )
ij l ij l

E S S−  is significantly different from zero, this indicates that there has 

been mean change (mean growth or decline) over time with respect to the reference method. 

A positive value of 1 ' 1( )
ij l ij l

E S S−  implies average growth (an increase in the latent state 

means over time), whereas a negative value implies average decline (a decrease in the latent 

state means over time). The means of the latent method difference variables are always zero, 

given that the method factor means are zero on all occasions of measurement: 

 ' '( ) ( ) ( ) 0.
jkl jkl jkl jkl

E M M E M E M− = − =  (211) 

As in the state version of the model, mean changes regarding non-reference methods can 

be studied by comparing the intercepts over time (see Chapter 3.1.3). 

4.7 Variance Decomposition and Variance Components 

Given (a) independence between state and method difference variables (Equation 209) and 

(b) strong factorial invariance6 (i.e., equal intercepts 'ijkl ijkl ijk
α = α = α , equal state factor 

                                                 
6 For the variance decomposition, the assumption of time-invariant intercepts is not mandatory. Being constants, 
the intercepts drop out in the variance decomposition, no matter whether they are time-invariant or not. 
However, given that it is strongly advisable to establish strong factorial invariance in latent difference modeling 
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loadings S S ' Sijkl ijkl ijk
λ = λ = λ , and equal method factor loadings M M ' Mijkl ijkl ijk

λ = λ = λ ; 

Meredith, 1993), the variance of a latent state difference score can be decomposed as: 

 2 2
S 1 1 M( ) ( ) ( ),  for 1.ijkl ijkl ijk ij l ij l ijk jkl jklVar S S Var S S Var M M k′ ′ ′− = λ − + λ − ≠  (212) 

 

Proof. In the case of strong factorial invariance, for two latent state variables, we obtain : 

              S 1 M ,
ijkl ijk ijk ij l ijk jkl

S S M= α + λ + λ  as well as 

' S 1 ' M '.ijkl ijk ijk ij l ijk jkl
S S M= α + λ + λ  

The state difference score is then given by: 

S 1 ' M ' S 1 M

S 1 ' 1 M '

( ) ( ) ( )

( ) ( ).

ijkl ijkl ijk ijk ij l ijk jkl ijk ijk ij l ijk jkl

ijk ijk ijk ij l ij l ijk jkl jkl

S S S M S M

S S M M

′ − = α + λ + λ − α + λ + λ

= α − α + λ − + λ −
 

Equation 212 follows by applying rules of covariance algebra, since 
ijk

α  drops out and 

1 ' 1( )
ij l ij l

S S−  and '( )
jkl jkl

M M−  are assumed to be uncorrelated according to Equation 176. 

Given the independence conditions in Equations 30, 173, 174, and 176, as well as strong 

factorial invariance, the variance of an observed difference score can be decomposed as: 

 

1 1 1 1

2 2
S 1 1 M

( ) ( ) ( ),  for 1,

( ) ( )( )

( ) ( ),  for 1.                          

ij l ij l ij l ij l

ijk ij l ij l ijk jkl jkl
ijkl ijkl

ijkl ijkl

Var S S Var E Var E k

Var S S Var M MVar Y Y

Var E Var E k

′ ′

′ ′
′

′

− + + =
λ − + λ −− = 


+ + ≠

 (213) 

Proof. In the case of strong factorial invariance, for two observed variables, we obtain : 

             S 1 M ,
ijkl ijk ijk ij l ijk jkl ijkl

Y S M E= α + λ + λ + as well as 

' S 1 ' M ' '.ijkl ijk ijk ij l ijk jkl ijkl
Y S M E= α + λ + λ +  

                                                                                                                                                         

(i.e., time-invariant loadings and time-invariant intercepts, see discussion below), I assume intercept invariance 
here as well. 
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The observed difference score is then given by: 

S 1 ' M ' ' S 1 M

S 1 ' 1 M ' '

( ) ( ) ( )

( ) ( ) .

ijkl ijkl ijk ijk ij l ijk jkl ijkl ijk ijk ij l ijk jkl ijkl

ijk ijk ijk ij l ij l ijk jkl jkl ijkl ijkl

Y Y S M E S M E

S S M M E E

′ − = α + λ + λ + − α + λ + λ +

= α − α + λ − + λ − + −
 

Equation 213 follows by applying rules of covariance algebra, since 
ijk

α  drops out, and all 

variables on the right hand side of the equation are assumed to be uncorrelated according to 

Equations 30, 206, 207, and 209. 

An important difference between the observed and the latent state difference score variance 

decomposition should be noted: For the observed difference score variances, the error 

variances of both time points are part of the equation. 

On the basis of the additive variance decomposition, we can define coefficients of 

consistency, method-specificity, and reliability for observed change scores. The consistency 

coefficient indicates the proportion of variance of an observed change score that is determined 

by change in the reference method state factor and can thus be interpreted as an index of the 

convergent validity of change. It represents that part of the variance of a change score that is 

shared with the reference method: 

 
2
S 1 1( )

( )
( )

ijk ij l ij l

ijkl ijkl

ijkl ijkl

Var S S
CO Y Y

Var Y Y

′

′

′

λ −
− =

−
. (214) 

The method-specificity coefficient represents the proportion of variance of an observed 

change score that is due to method-specific deviations from change as measured by the 

reference method (i.e., change score variance that is specific to a particular non-reference 

method): 

 
2
M ( )

( )
( )

ijk jkl jkl

ijkl ijkl

ijkl ijkl

Var M M
MS Y Y

Var Y Y

′

′

′

λ −
− =

−
. (215) 

The reliability of an observed change score can be calculated as: 

 

( ) ( )
( ) 1

( )

( ) ( ).

ijkl ijkl

ijkl ijkl

ijkl ijkl

ijkl ijkl ijkl ijkl

Var E Var E
Rel Y Y

Var Y Y

CO Y Y MS Y Y

′

′

′

′ ′

+
− = −

−

= − + −

 (216) 
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The reliability coefficient indicates that part of the variance of an observed change score 

that is not due to measurement error. It is well-known that observed difference scores are 

often less reliable than are conventional scores. The reason becomes clear from Equation 183: 

The sum of the two error variances of both time points l and 'l  are in the numerator of the 

reliability formula. Hence, error influences of both time points have an impact on observed 

difference scores. This underscores the need for latent variable models of change: We should 

study change through latent difference scores [as is done in the CS-C(M–1) change model] 

rather than through observed difference scores that may be very unreliable indicators of 

change. 

The consistency and method-specificity coefficients can also be defined for the latent state 

difference variables ( )
ijkl ijkl

Var S S′ − : 

 
2
S 1 1( )

( )
( )

ijk ij l ij l

ijkl ijkl

ijkl ijkl

Var S S
CO S S

Var S S

′

′

′

λ −
− =

−
, (217) 

 
2
M ( )

( )
( )

ijk jkl jkl

ijkl ijkl

ijkl ijkl

Var M M
MS S S

Var S S

′

′

′

λ −
− =

−
. (218) 

( )
ijkl ijkl

CO S S′ −  and ( )
ijkl ijkl

MS S S′ −  add up to unity. Table 3 summarizes the most 

important equations for the CS-C(M–1) change models. 

4.8 Extensions of the CS-C(M–1) Change Model 

The CS-C(M–1) change model can be extended by including external variables in the 

model. For example, researchers can add potential explanatory variables of change or study 

the effect of change in one construct on (change in) other constructs. In other words, the latent 

difference variables can serve as endogenous variables (outcomes) or predictor variables in 

extended SEMs including observed and/or latent covariates. For example, one might be 

interested in finding predictor variables that explain why intervention programs (e.g., 

watching Sesame street) cause greater changes in cognitive abilities in some children than in 

others. On the other hand, change scores may themselves be used as predictors of other 

variables (e.g., change in one variable, say cognitive abilities, may cause [or at least correlate 

with] change in another variable, for example school grades). The latent difference variables 

might also serve as mediator variables. For example, in intervention studies, a certain 

treatment (exogenous variable) might cause change in a construct j which in turn might 

trigger change in another construct 'j . The latent change score for construct j might then 
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mediate the influence of the treatment on change in construct 'j . For example, an 

intervention designed to modify behavior problems in Kindergarten may cause change 

aggressive behavior in children. Change in aggressive behavior might have a causal impact on 

distal outcomes such as achievement and the number of friends in primary school, or alcohol 

and drug abuse in adolescence. 

4.9 Summary and Discussion 

In this Chapter, I demonstrated how Steyer et al.’s (1997, 2000) approach of analyzing 

change in terms of latent (difference) variables can be transferred to the multi-method 

situation. Latent difference modeling offers a direct and flexible approach to investigating 

change. When the additional assumption of independence between all state and method 

factors belonging to the same construct is made, the latent difference model is equivalent to 

the state version. That is, one does not specify a “new” model but just makes the information 

about change inherent in state models more accessible through reparameterization (Steyer et 

al., 1997, 2000). In contrast to growth curve models, latent difference models do not make 

any restrictive assumptions regarding the specific functional form of change. 

The CS-C(M–1) change model enables researchers to investigate change simultaneously 

for different methods. In particular, this model makes it possible to contrast change as 

assessed by a reference method against change as measured by other (non-reference) methods. 

Researchers can use the model to study the convergent and discriminant validity of change. 

The convergent validity and method-specificity of change can be assessed in terms of 

variance components for the observed variables. The discriminant validity of change can be 

quantified by means of latent correlations. Mean differences over time are captured by the 

means of the latent difference variables and the intercepts of the observed variables. 

Depending on the research question, researchers can choose between a baseline and a 

neighbor change version of the CS-C(M–1) model. The baseline change version is most useful 

if a researcher is interested in change with respect to a baseline occasion of measurement (in 

many studies the initial status, i.e., T1). The neighbor change version should be applied if a 

researcher has specific hypotheses regarding change between adjacent time points. For 

example, in an intervention study, there might be specific phases, in which an effect is to be 

expected. The neighbor change version can be used to investigate change between two or 

more specific time points. It should be noted that the CS-C(M–1) change model is more 

general and not limited to a baseline or neighbor assessment of change. The specification can 

be modified to study change between any specific measurement occasions of interest. 
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A potentially limiting factor in latent difference modeling is the required assumption of 

measurement invariance over time. For the latent difference scores to be meaningful, factor 

loadings and measurement intercepts should be time-invariant. The condition of strong 

factorial invariance may not always be tenable, especially when the intervals between the 

measurement occasions are large or when individuals are assessed at different stages in their 

development (e.g., from childhood to adolescence). As I already mentioned, an advantage of 

the models presented here is that the assumption of measurement invariance is testable for all 

methods. If full invariance for all indicators is not tenable, it might at least be possible to 

establish partial invariance (Byrne, Shavelson, & Muthén, 1989). Partial invariance means 

that invariance holds only for some, but not all indicators. Under specific conditions, partial 

invariance may be sufficient to warrant proper interpretation of the latent difference variables 

(see Byrne et al., 1989). 

Given that latent change models focus on inter-individual differences in intra-individual 

change, these models are especially useful for analyzing treatment effects in intervention and 

evaluation studies. For this purpose, the CS-C(M–1) change model can easily be extended to a 

multiple group CFA model (e.g., Jöreskog, 1971b, Thompson & Green, 2006), in which the 

parameters of the model are simultaneously estimated in (and can be compared across) several 

groups. For example, one might be interested in comparing change in behavior problems of 

children in a control group and an intervention group in which a special treatment is applied 

(e.g., Barquero et al., 2007). If a multi-method design is used, a multi-group CS-C(M–1) 

change analysis can be used to test various hypotheses with regard to (a) measurement 

invariance across time and groups as well as (b) differences in structural parameters 

(difference factor means, variances, and covariances) across time and groups. Steyer (2005) 

discusses such a multi-group latent difference approach for the mono-method case. 

Note that the principle of reformulating the CS-C(M–1) state model as a change model was 

shown here only for the CS-C(M–1) model variant presented in Chapters 3.1 and 3.5.1. 

However, this principle can equally well be applied to the CS-C(M–1) model version with 

general state factors and indicator-specific factors across time introduced in Chapters 3.2 and 

3.5.2. In fact, in Chapter 5.5, I present an application of the CS-C(M–1) model with general 

state factors and indicator-specific factors across time, in which this model variant is 

parameterized as a change model. 
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Table 3  

Summary of the CS-C(M–1) Change Models 

Definition Equation 

General decomposition of state factors on 
measurement occasions l and 'l , 'l l≥  1 ' 1 1 ' 1( )

ij l ij l ij l ij l
S S S S= + −  

General decomposition of method factors on 
measurement occasions l and 'l , 'l l≥  ' '( )

jkl jkl jkl jkl
M M M M= + −  

Measurement equation for indicators 
pertaining to the reference method on 
measurement occasions l and 'l , 'l l≥  

1 ' 1 1 ' 1 1 '( )
ij l ij l ij l ij l ij l

Y S S S E= + − +  

Measurement equation for indicators 
pertaining to non-reference methods on 
measurement occasions l and 'l , 'l l≥  

' ' S ' 1 S ' 1 ' 1 M ' M ' ' 'λ λ ( ) λ λ ( )
ijkl ijkl ijkl ij l ijkl ij l ij l ijkl jkl ijkl jk l jkl ijkl

Y S S S M M M E= α + + − + + − +  

Covariances of method factors and state 
factors 1 '( , ) 0

jkl ij l
Cov M S =  

Covariances of state difference variables and 
method difference variables ' 1 ''' 1 ''[( ), ( )] 0

jkl jkl ij l ij l
Cov M M S S− − =  

Covariances of error variables ' ' ' '( , ) 0,
ijkl i j k l

Cov E E =  ( , , , ) ( ', ', ', ')i j k l i j k l≠  

Covariances of error variables and other latent 
variables 

' '1 ' ' ' '

' '1 '' ' '1 ' ' ' '' ' ' '

( , ) ( , )

[ , ( )] [ , ( )] 0

ijkl i j l ijkl j k l

ijkl i j l i j l ijkl j k l j k l

Cov E S Cov E M

Cov E S S Cov E M M

=

= − = − =
 

 (Table continues) 
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Definition Equation 

Mean structure (state difference variables) 1 ' 1 1 ' 1( ) ( ) ( )
ij l ij l ij l ij l

E S S E Y E Y− = −  

Mean structure (method difference variables 
and error variables) '( ) ( ) 0

jkl jkl ijkl
E M M E E− = =  

Variance decomposition (observed difference 
variables) 

1 1 1 1

2 2
S 1 1 M

( ) ( ) ( ),  for 1,                                                  
( )

( ) ( ) ( ) ( ),  for 1     
ij l ij l ij l ij l

ijkl ijkl

ijk ij l ij l ijk jkl jkl ijkl ijkl

Var S S Var E Var E k
Var Y Y

Var S S Var M M Var E Var E k

′ ′

′
′ ′ ′

− + + =
− =

λ − + λ − + + ≠    





 

Consistency (observed difference variables) 
2
S 1 1( )

( )
( )

ijk ij l ij l

ijkl ijkl

ijkl ijkl

Var S S
CO Y Y

Var Y Y

′

′

′

λ −
− =

−
 

Method-specificity (observed difference 
variables) 

2
M ( )

( )
( )

ijk jkl jkl

ijkl ijkl

ijkl ijkl

Var M M
MS Y Y

Var Y Y

′

′

′

λ −
− =

−
 

Reliability 
( ) ( )

( ) 1 ( ) ( )
( )

ijkl ijkl

ijkl ijkl ijkl ijkl ijkl ijkl

ijkl ijkl

Var E Var E
Rel Y Y CO Y Y MS Y Y

Var Y Y

′

′ ′ ′

′

+
− = − = − + −

−
 

Variance decomposition (state difference 
variables) 

2 2
S 1 1 M( ) ( ) ( ),  for 1ijkl ijkl ijk ij l ij l ijk jkl jklVar S S Var S S Var M M k′ ′ ′− = λ − + λ − ≠  

Consistency (state difference variables) 
2
S 1 1( )

( )
( )

ijk ij l ij l

ijkl ijkl

ijkl ijkl

Var S S
CO S S

Var S S

′

′

′

λ −
− =

−
 

 (Table continues) 
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Definition Equation 

Method-specificity (state difference variables) 
2
M ( )

( )
( )

ijk jkl jkl

ijkl ijkl

ijkl ijkl

Var M M
MS S S

Var S S

′

′

′

λ −
− =

−
 

Baseline change model 

Decomposition of state factors on 
measurement occasions l , 1l ≥  1 11 1 11( )

ij l ij ij l ij
S S S S= + −  

Decomposition of method factors on 
measurement occasions l , 1l ≥  1 1( )

jkl jk jkl jk
M M M M= + −  

Measurement equation for indicators 
pertaining to the reference method on 
measurement occasions l , 1l ≥  

1 11 1 11 1( )
ij l ij ij l ij ij l

Y S S S E= + − +  

Measurement equation for indicators 
pertaining to non-reference methods on 
measurement occasions l , 1l ≥  

S 11 S 1 11 M 1 M 1λ λ ( ) λ λ ( )ijkl ijkl ijkl ij ijkl ij l ij ijkl jk ijkl jk l jk ijklY S S S M M M E= α + + − + + − +  

Neighbor change model 

Decomposition of state factors on 
measurement occasions 3,4,...,l p=  1 11 1 1( 1) 1( 1) 1( 2) 12 11( ) ( ) ... ( )

ij l ij ij l ij l ij l ij l ij ij
S S S S S S S S− − −= + − + − + + −  

Decomposition of method factors on 
measurement occasions 3,4,...,l p=  M 1 M ( 1) M ( 1) ( 2) M 2 1λ λ ( ) λ ( ) ... λ ( )

jkl ijkl jk ijkl jkl jk l ijkl jk l jk l ijkl jk jk
M M M M M M M M− − −= ⋅ + ⋅ − + ⋅ − + + ⋅ −  

 (Table continues) 
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Definition Equation 

Measurement equation for indicators 
pertaining to the reference method on 
measurement occasions 3,4,...,l p=  

1 11 1 1( 1) 1( 1) 1( 2) 12 11 1( ) ( ) ... ( )
ij l ij ij l ij l ij l ij l ij ij ij l

Y S S S S S S S E− − −= + − + − + + − +  

Measurement equation for indicators 
pertaining to non-reference methods on 
measurement occasions 3,4,...,l p=  

S 11 S 1 1( 1) S 1( 1) 1( 2) S 12 11

M 1 M ( 1) M ( 1) ( 2) M 2 1 1

λ λ ( ) λ ( ) ... λ ( )

        λ λ ( ) λ ( ) ... λ ( )

ijkl ijkl ijkl ij ijkl ij l ij l ijkl ij l ij l ijkl ij ij

ijkl jk ijkl jkl jk l ijkl jk l jk l ijkl jk jk ij l

Y S S S S S S S

M M M M M M M E

− − −

− − −

= α + + − + − + + −

+ + − + − + + − +
 

Note. Without loss of generality, the first method (k = 1) is selected as reference method. 
ijkl

Y  = observed variable (i = indicator, j = construct, k = 

method, l = occasion of measurement). 1ij l
S  = latent state factor. 

jkl
M  = common method factor. 

ijkl
E  = error variable. ijklα  = intercept. Sijklλ  = state 

factor loading. Mλ ijkl  = method factor loading. 
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5 Applications 

In this chapter, I illustrate the practical use of the CS-C(M–1) state and change models by 

discussing applications to a real MTMM-MO data set provided by Prof. David A. Cole from 

the Vanderbilt University (USA). His longitudinal MTMM study focused on three different 

constructs (i.e., Depression, Anxiety, and Competence) in several hundred American school 

children over several years. He used four different methods (i.e., self, parent, teacher, and 

peer reports) to assess these constructs on a total of eight occasions of measurement (for 

details concerning these studies, see Cole, Martin, & Powers, 1997; Cole, Martin, Powers, & 

Truglio, 1996; as well as Cole, Truglio, & Peeke, 1997). All constructs were assessed by 

repeatedly administered questionnaires. The subset of data used for the present analyses is 

described in some detail in the following section. 

5.1 Description of the Data Set 

5.1.1 Sample 

A subset of Cole et al.’s data including two constructs (depression and anxiety), three 

methods (self-report, parent rating, and teacher rating), and four occasions of measurement 

was analyzed. (I used only two constructs to keep the analyses as simple as possible. Two 

constructs allow illustrating all relevant features of the models.) The total sample size was 

N = 906. The children were nested within 49 school classrooms. Assessments took place 

every six months during a period of two years. The children were not rated by the same 

teacher on all measurement occasions. The same teachers rated the children on the first and 

the second measurement occasion; different teachers provided ratings for the third and fourth 

occasion. This has consequences for the model specification as discussed below. 

5.1.2 Measures 

Depression was measured by the self-report and parent form of the Child Depression 

Inventory (CDI and CDI-PF; Kovacs, 1985), as well as the Teacher Report Index of 

Depression (TRID; Cole, 1995). Anxiety was assessed by the child and parent form of the 

Revised Children’s Manifest Anxiety Scale (RCMAS-CF and RCMAS-PF; Reynolds & 

Richmond, 1978), as well as the Teacher Report Index of Anxiety (TRIA; Cole, 1995). Table 

4 provides an overview of these measures (for more details see Cole, Truglio, & Peeke, 

1997). As discussed in Chapter 3.1, the CS-C(M–1) model is a multiple indicator MTMM 

model (i.e., at least two indicators are required for each CMOU). Multiple indicators per 
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CMOU allow researchers to analyze construct- and occasion-specific method effects. In 

Cole’s MTMM-MO study, each construct was measured by only one scale. However, the 

scales consisted of multiple items. To illustrate the CS-C(M–1) model as a multiple indicator 

model at least two continuous indicators per CMOU were necessary. Therefore, I created two 

continuous indicators for each CMOU by splitting each scale into two parcels (test halves). 

For each scale, the parcels were compiled by calculating the mean of half of the items, 

respectively. Care was taken to create parcels that were as homogeneous as possible7. 

Furthermore, the parcels consisted of identical items across raters8 (as far as possible) and 

across time. 

 

Table 4  

Questionnaires Used in the Cole et al. Studies 

 Self report Parent report Teacher report 

Depression Child Depression 
Inventory (CDI; 
Kovacs, 1985; 26 
items measured on a 
3-point rating 
scale) * 

Child Depression 
Inventory – Parent Form 
(CDI-PF; Kovacs, 1985; 
26 items measured on a 3-
point rating scale) * 

Teacher Report Index of 
Depression (TRID; Cole, 
1995; 13 items measured on 
a 4-point rating scale) 

Anxiety Revised Children’s 
Manifest Anxiety 
Scale (RCMAS; 
Reynolds & 
Richmond, 1978; 28 
items measured on a 
3-point rating 
scale) # 

Revised Children’s 
Manifest Anxiety Scale – 
Parent Form (RCMAS-PF; 
Reynolds & Richmond, 
1978; 28 items measured 
on a 3-point rating scale) # 

Teacher Report Index of 
Anxiety (TRIA; Cole, 1995; 
12 items measured on a 4-
point rating scale) 

Note. Only the scales relevant to the present application are shown. Scales that are 
equivalent (consist of the same items) across methods are indicated with the same symbol 
(* or #).  

 

Another possibility to obtain multiple indicators per CMOU would have been to use the 

items themselves as indicators. However, as the item responses were based on relatively few 

response categories (see Table 4), this would have added the additional complication of 

dealing with ordinal variables. Ordinal variables require special CFA models, the treatment of 

                                                 
7 For this purpose, I conducted principal component analyses separately for each scale. I then distributed the 
items evenly according to their loadings on the first unrotated principal component. 
8 As mentioned above, the teachers used different scales than did the children and the parents. Hence, the parcels 
for the teacher report consisted of different items than the parcels for the self- and parent report. 
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which is beyond the scope of the present work. Furthermore, the large number of items per 

construct would have led to extremely large models with an excessive number of estimated 

parameters. 

The use of item parcels is a somewhat controversial issue (Little, Cunningham, Shahar, & 

Widaman, 2002), as item parcels often do not consist of perfectly unidimensional, tau-

equivalent items (as it should be). If multidimensional parcels are used, it is unclear what a 

parcel score really means and whether different parcels should be used as indicators of a 

single common factor. 

In the present application, I conducted preliminary item level factor analyses. These 

analyses revealed that the items of all scales almost exclusively measured a single common 

factor, although unidimensionality was not perfectly achieved—which is not surprising given 

the large number of items per scale. Hence, I believe that the use of item parcels was justified 

in this case—bearing in mind that the present analyses primarily serve illustrative purposes. In 

actual applications, researchers should either conduct the CS-C(M–1) analyses using items as 

indicators or use item parcels only if the items show no or only marginal departures from 

unidimensionality. 

In all models, the children’s self-report was used as the reference method. The parent 

report and teacher ratings were used as non-reference methods to be contrasted against the 

self-report. As such, the contrast in methods represents the degree to which parent and teacher 

reports deviate from children’s self-perceptions.  

5.2 3-Step Approach to Model Testing 

In this section, I propose a 3-Step approach to model testing using the CS-C(M–1) 

approach. I suggest that a “top down” strategy be used, in which one begins with two rather 

unrestrictive model variants in the first step. Starting with rather general and unrestrictive 

baseline models is a useful strategy to approach complex MTMM-MO data. 

The analysis steps discussed in the following serve three basic goals: (1) determining 

whether a CS-C(M–1) structure fits the data at all, (2) finding out whether indicator-specific 

effects are present and if so how these are most appropriately modeled, and (3) testing for 

measurement invariance over time and determining the degree of invariance that is tenable for 

the data. 

Note that the 3-Step approach presented here does not cover all possible constellations one 

might find in real data situations, as there are simply too many. However, I believe that such 

an idealized framework is nonetheless useful as a guide for practical applications. 
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(Figure continues) 
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Figure 18. CS-C(M–1) model variants tested in Step 1 of the MTMM-MO analysis. Each 
model is shown for the case of two constructs, three methods, and two time points. 

ijkl
Y  = 

observed variable (i = indicator, j = construct, k = method, l = occasion of measurement). 1ij l
S  

= latent state factor. 
jkl

M  and 1 jkl
M  = common method factors. 

ijk
IS  = indicator-specific 

factor. 
ijkl

E  = error variable. Model 1A: CS-C(M–1) model with indicator-specific state 

variables. Model 1B: CS-C(M–1) model with general state factors and indicator-specific 
factors across time. Model 1C: CS-C(M–1) model with general state factors without indicator-
specific factors across time. For the sake of clarity, factor correlations are not shown in the 
path diagrams. 

 

5.2.1 Step 1: Determination of a Baseline Model 

Step 1 serves (1) to test whether a CS-C(M–1) structure fits the data and (2) to establish the 

type of indicator-specificity present in the data (if any). Are there indicator-specific effects at 

all? If yes, is it more important to model indicator-specific effects across methods or across 

time? For answering these questions, I recommend that three variants of the CS-C(M–1) 

model be estimated in Step 1 (see Figure 18): Model 1A is the CS-C(M–1) model with 

indicator-specific state variables presented in Section 3.1. Model 1B is the CS-C(M–1) model 

with general state factors and indicator-specific factors across time presented in Section 3.2. 

Model 1C is the CS-C(M–1) model with general state factors without indicator-specific 



Applications 159 

factors across time (first presented in Figure 15). For convenience, these three models are 

shown once again in Figure 18. 

The three models considered in Step 1 should be estimated without imposing any 

parameter invariance constraints over time other than those implied by the model definition9. 

Substantively, this means that in the models estimated in Step 1, the observed variables are 

allowed to change their psychometric properties over time (i.e., only configural invariance is 

assumed to hold, i.e., the same pattern of loadings for all variables; Meredith, 1993). In 

addition, there are no constraints on latent variable variances or means. 

The absolute fit of the three models (1A-1C) is then evaluated to find out whether a CS-

C(M–1) structure adequately fits the data. Moreover, the fit of the three model variants is 

compared to determine the type of indicator-specificity present in the data. Note that the fit of 

the three models (1A–1C) should not be compared by a likelihood ratio χ2 test (χ2 difference 

test), because the more restricted variants without indicator-specific factors are obtained from 

the less restricted models by fixing variances or correlations of factors to their boundary 

values of zero or one, respectively. This violates regularity assumptions of the likelihood ratio 

χ
2 test (e.g., Takane, van der Heijden, & Browne, 2003). Instead, information criteria such as 

the AIC measure (Akaike, 1974) can be used to compare the models estimated in Step 1. 

If Model 1C does not fit worse than the two other models, then either type of indicator-

specificity is negligible and Model 1C should be selected as the base for the following 

analysis steps as it is the most parsimonious model. If Model 1A is the best-fitting model, this 

means that indicator-specific effects are present that generalize across methods. In this case, 

Model 1A should be retained for further analyses. If Model 1B fits best, then indicator-

specific effects generalize across time rather than across methods. This is probably the case 

that researchers will most frequently encounter in practice. In this case, one should retain 

Model 1B as the baseline model for the invariance tests conducted in Steps 2 and 3. 

If none of the three model variants fits the data, it would be useful to first study the 

structure for each occasion of measurement and / or for each construct separately to detect the 

source(s) of the lack of fit. In this case, it is possible that other models than those presented 

here would have to be looked for. 

The next logical step (Step 2) is to test for measurement invariance of the indicators 

belonging to the reference method. In general, different hypotheses about measurement 

                                                 
9 In its most general form, the CS-C(M–1) model (with or without indicator-specific factors across time) does not 
impose any parameter invariance constraints over time. The marker indicators are an exception. Their loadings 
and/or intercepts are fixed to identify the metric of the latent factors. If the same indicators are selected as 
markers on each occasion of measurement, this implies measurement invariance for these indicators. 
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invariance over time can be tested by specifying different versions of the CS-C(M–1) model, 

in which different sets of parameter equality constraints are imposed. These model versions 

are nested within the baseline model selected in Step 1 and can be tested against the baseline 

model and against each other using χ2 difference testing.  

5.2.2 Step 2: Assessing Invariance for the Reference Method 

Step 2 allows determining (1) whether the psychometric properties of the reference method 

indicators have changed over time and (2) whether the measurement structure (intercepts and 

loadings) of the state factors is the same on each measurement occasion (as the state factors 

are defined by the reference method). A useful sequence of invariance tests for the reference 

method is: 

2A Test for loading invariance (possible change in regression slopes / scale 

discrimination). 

2B If loading invariance holds, additionally test for intercept invariance (possible change 

in origin / scale difficulty). 

2C If at least loading invariance holds, additionally test for invariance of error variances 

(possible change in indicator-specific / measurement error influences). 

2D If at least loading invariance holds, additionally test for invariance of the state factor 

variances. 

2E If a model with indicator-specific factors 
ijk

IS  across time was selected as the 

baseline model in Step 1, one can also test whether the loadings on the indicator-

specific factors are invariant over time. 

2F If at least state factor loading and intercept invariance is tenable (Case #2B), an 

additional test of equality of latent state means over time for the same construct can 

be performed. This would imply a test of mean change over time with respect to the 

reference method. 

If strict invariance holds (i.e., if loadings, intercepts, residual variances, and state factor 

variances are equal over time), the reliabilities of the reference method indicators would also 

be constant over time.  

5.2.3 Step 3: Assessing Invariance for the Non-Reference Methods 

If at least loading and intercept invariance has been established for the indicators of the 

reference method, one may want to study invariance with respect to the indicators pertaining 

to the non-reference methods. A useful strategy is to study invariance for one non-reference 
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method at a time, following the sequence of invariance tests proposed for the reference 

method in Step 2.  

It is important to repeat that the three steps proposed above represent an idealized 

framework for testing measurement invariance in a MTMM-MO context. In practical 

applications, one may find less clear-cut situations in which for instance indicator-specific 

effects are present for some but not all indicators or in which invariance can be established 

only for some indicators within a method or construct, or only across some but not all 

measurement occasions. Clearly, not all possible constellations of partial invariance can be 

discussed here. However, researchers may refer to Byrne, Shavelson, and Muthén (1989) who 

proposed a framework of partial measurement invariance for standard multigroup CFA 

models. This framework can be transferred to the MTMM-MO situation and to analyses using 

the CS-C(M–1) approach. 

5.3 Details on the Statistical Analysis 

5.3.1 Estimation and Software 

All analyses were conducted based on the raw data (i.e., individual data were used, not 

summary data such as, e.g., a covariance matrix). Both the observed variable covariances and 

means were included in the analysis. Robust Maximum Likelihood (ML) estimation was used 

for all models due to non-normality and clustering of the data (see discussion below). All 

models were analyzed using the Mplus program (Muthén & Muthén, 1998–2007). All 

covariances between state and method factors belonging to the same construct were 

constrained to zero [i.e., 1 1 '( , ) 0
j l jkl

Cor S M =  and 1 1 1 '( , ) 0
j l jkl

Cor S M = ]. 

5.3.2 Multilevel Structure of the Data 

A complication that often arises in psychological studies is that observations are not 

independent, but clustered within a hierarchical structure. In the present data set, the children 

were nested within school classrooms. Such complex or cluster sample structure is also 

referred to as multilevel structure and requires a special treatment. When the non-

independence of observations is ignored, standard errors and test statistics in conventional 

covariance structure analyses can be biased (Julian, 2000). In the present analysis, I handled 

this problem by using an appropriate robust ML estimator. This estimator is referred to as 

MLR estimator in the software Mplus (Muthén & Satorra, 1995; Muthén & Muthén, 1998-

2007). The MLR estimator provides the conventional ML parameter estimates, but computes 

corrected standard errors and fit statistics that allow for a more accurate statistical inference 



Applications 162 

with clustered and non-normal data (option TYPE = COMPLEX in Mplus; Muthén & 

Muthén, 1998-2007). 

5.3.3 Handling of Missing Data 

I used full information maximum likelihood (FIML) estimation in order to handle missing 

data (Arbuckle, 1996; Little & Rubin, 2003; Wothke, 2000). The FIML method is generally 

preferred to listwise deletion and other ad hoc approaches to handling missing data (Schafer 

& Graham, 2002; Wothke, 2000). (In Mplus, FIML estimation is also available in conjunction 

with the MLR estimator.) 

5.3.4 Goodness-of-Fit Assessment 

Goodness-of-fit was assessed using the χ2 test of model fit, the Root Mean Square Error of 

Approximation (RMSEA; Steiger, 1990), and the Comparative Fit Index (CFI; Bentler, 1990). 

A nonsignificant χ2 value indicates that the assumption of exact fit in the population is not 

rejected, suggesting a good fit of the model to the data. The RMSEA coefficient is a measure 

of approximate fit. RMSEA values smaller than .05 point to an acceptable fit. The CFI 

compares the fit of the target model with the fit of a baseline model. The baseline model is a 

null model that assumes zero covariation among the observed variables. For a good model, 

the CFI should be greater than .95 (Schermelleh-Engel, Moosbrugger, & Müller, 2003). I 

performed χ2 difference tests in order to compare nested models. Given the large sample size 

and the large number of model comparisons, I considered a χ2 difference as significant only if 

the p-value was < .01. As an additional index for model comparisons, I report the AIC 

measure (Akaike, 1974). According to this criterion, the model with the smallest AIC value 

fits the data best. 

5.4 Application of the CS-C(M–1) State Model 

5.4.1 Assessment of Indicator-Specific Effects 

I used the 3-Step approach to model testing described in Section 5.2 to determine the most 

appropriate model variant for the Cole et al. data set. In the first step, I tested the three models 

shown in Figure 18 to find out whether indicator-specific effects were present. I specified the 

indicator-specific factors to capture the indicator-specificity of the second parcels (i = 2), 

respectively. 

Given that the children were not rated by the same teacher on all occasions of 

measurement, the assumption of a single indicator-specific factor for each construct seemed 
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too strong for the teacher rating. I therefore included school-year specific factors instead. That 

is, I specified four (instead of two) indicator-specific factors for the teacher rating (i.e., for 

both constructs there were separate correlated indicator-specific factors for time one [T1] and 

T2 as well as for T3 and T4, respectively.) Table 5 contains the goodness-of-fit measures for 

all analysis steps. The χ2 difference test for a given step always represents a test against the 

less restricted model mentioned in parentheses (italicized). 

All three baseline model variants (1A-1C) showed a good fit according to the CFI and 

RMSEA coefficients. Model 1A contained indicator-specific state factors, but no indicator-

specific factors over time. Although this model fit relatively well, it returned parameter 

estimates that clearly indicated model misspecifications due to an overfactorization. In this 

model, all correlations between the indicator-specific state variables pertaining to the same 

construct on the same measurement occasion were estimated to be between r = .95 and 

r = 1.04. These perfect or close to perfect latent correlations showed that the indicator-specific 

state factors were homogeneous, implying that indicator-specific effects did not generalize 

across different methods. This result indicated that it was more appropriate to specify general 

instead of indicator-specific state factors for each construct on each measurement occasion (as 

done in Model 1B). 

In Model 1B, the indicator-specific state factors belonging to the same construct on the 

same measurement occasion were assumed to be homogeneous, whereas indicator-specific 

effects over time were modeled through indicator-specific factors 
ijk

IS . The estimation of 

Model 1B returned no offending parameter estimates and it showed the best (smallest) AIC 

value of all three models. Dropping the indicator-specific factors over time (Model 1C) to 

make the model still more parsimonious led to a strong increase in the χ2 value (indicating 

worse fit) and a decrease in fit also according to the AIC index. 

In sum, Step 1 clearly revealed that the generalization of indicator-specificity across 

methods within the same measurement occasion was negligible in the present data, whereas 

the generalization of indicator-specificity for the same indicator over time was not. Given 

these unequivocal results, I proceeded to Step 2 (measurement invariance testing for the 

reference method) using Model 1B as the baseline model. 

5.4.2 Assessment of Measurement Invariance and Model Selection 

Step 2 of the analysis revealed that strict measurement invariance was tenable for the self-

report measures, as indicated by the non-significant χ2 difference values for Models 2A–2E. 

Step 2F yielded a large and significant χ2 difference value, implying that the assumption of 
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constant state factor means over time had to be rejected. Detailed analyses showed that the 

latent means were not invariant, neither for anxiety nor for depression. I thus proceeded to 

Step 3 (invariance testing for the non-reference methods) using Model 2E (with unconstrained 

state factor means for both constructs) as the base. 

In Step 3, I first considered the parent report variables. It turned out that invariance was 

tenable for the state and method factor loadings, as well as for the error variances of the 

parent report measures (ps > .01 for the χ2 difference test in Steps 3A_1, 3B_1, and 3D_1). 

The variances of the method factors pertaining to the parent report were also invariant over 

time (Step 3E_1). In contrast, the intercepts of the parent report indicators, as well as the 

loadings on the indicator-specific factors did not show invariance over time (see Steps 3C_1 

and 3F_1). Hence, I continued my analyses with Model 3E_1 and tested for invariance of the 

teacher report variables. The analysis of the teacher variables revealed that invariance was 

tenable only for the method factor loadings and error variances (Model 3D_2). All other 

invariance constraints led to a significant increase in the χ2 values (p < .01). This was also the 

case when I tested for invariance separately across T1 – T2 and T3 – T4 (where the teachers 

were the same, respectively). The implication is that for the teachers, there was a change in 

structural bias as will be discussed below. 

To summarize, strict measurement invariance was not rejected for the self-report measures, 

whereas weaker forms of invariance were established for the parent and teacher report 

indicators. One explanation for the non-invariance of the parameters pertaining to the teacher 

variables may be that different teachers rated the children on the last two measurement 

occasions. 

In the following, I report detailed outcomes for Model 3D_2 because (1) it was the most 

parsimonious model that was not rejected by a χ2 difference test and (2) it was still acceptable 

when tested against the baseline Model 1B [ 2 (90) 117.47diffχ = , p = .03]. An annotated Mplus 

input script for estimating this model is provided in the appendix (see Section 13.1). 



Applications 165 

Table 5  

Goodness-of-Fit Measures for Different CS-C(M–1) Model Variants 

 χ
2 test  χ

2 difference test    

Step value df p  value df p CFI RMSEA AIC 

Step 1: Determination of the baseline modela           

1A (indicator-specific state factors + no indicator-specific 
factors across time) 

1,257.05b 680b <.01b  —c —c —c .98b .03b –97.63b 

1B (general state factors + indicator-specific factors across 
time) 

707.55 636   .03  —c —c —c 1.00 .01 –580.59 

1C (general state factors + no indicator-specific factors 
across time) 

1,611.03 836 <.01  —c —c —c .97 .03 –7.40 

Step 2: Assessment of measurement invariance and mean change 
for the reference method (self-report = SR) 

          

2A (Model 1B + loadings invariant for SR) 722.70 642   .02  12.99 6 .04 1.00 .01 –574.14 

2B (Model 2A + intercepts invariant for SR) 725.66 648   .02  2.94 6 .82 1.00 .01 –582.82 

2C (Model 2B + error variances invariant for SR) 743.67 660   .01  16.42 12 .17 1.00 .01 –578.90 

2D (Model 2C + state factor variances invariant for SR) 756.03 666   .01  10.86 6 .09 1.00 .01 –574.60 

2E (Model 2D + loadings on indicator-specific factors 
invariant) 

765.54 672   .01  8.95 6 .18 1.00 .01 –574.01 

2F (Model 2E + state factor means invariant) 932.90 678 <.01  176.06 6 <.01 .99 .02 –402.91 

Step 3: Assessment of measurement invariance for the non-
reference methods (parent report = PR, teacher report = TR) 

          

3A_1 (Model 2E + state factor loadings invariant for PR) 774.45 684   .01  9.05 12 .70 1.00 .01 –587.35 

         (Table continues) 
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 χ
2 test  χ

2 difference test    

Step value df p  value df p CFI RMSEA AIC 

3B_1 (Model 3A_1 + method factor loadings invariant for 
PR) 

776.84 690   .01  2.77 6 .84 1.00 .01 –595.94 

3C_1 (Model 3B_1 + intercepts invariant for PR) 801.69 702   .01  26.84 12 <.01 1.00 .01 –593.94 

3D_1 (Model 3B_1 + error variances invariant for PR) 789.81 702   .01  13.10 12 .36 1.00 .01 –602.12 

3E_1 (Model 3D_1 + method factor variances invariant PR) 800.53 708   .01  9.27 6 .16 1.00 .01 –596.35 

3F_1 (Model 3E_1 + indicator-specific factor loadings 
invariant for PR) 

823.39 714 <.01  21.04 6 <.01 1.00 .01 –582.60 

3A_2 (Model 3E_1 + state factor loadings invariant for TR) 830.07 720 <.01  28.94 12 <.01 1.00 .01 –587.33 

3B_2 (Model 3E_1 + method factor loadings invariant for 
TR) 

802.01 714   .01  3.01 6 .81 1.00 .01 –603.64 

3C_2 (Model 3B_2 + intercepts invariant for TR) 836.71 726 <.01  27.76 12 <.01 1.00 .01 –582.17 

3D_2 (Model 3B_2 + error variances invariant for TR) 831.07 726 <.01  22.74 12 .03 1.00 .02 –585.68 

3E_2 (Model 3D_2 + method factor variances invariant for 
TR) 

854.96 732 <.01  18.24 6 <.01 1.00 .01 –566.61 

Note. N = 906. SR = self-report. PR = parent report. TR = teacher report. aAll models tested in Step 1 assume non-invariant parameters, except 
for the marker indicators. bImproper solution with .95 ≤  r ≤  1.04 for eight state factors. c

χ
2 difference test not applicable due to violation of 

regularity conditions (see discussion in the text). χ2 = robust (MLR) chi-square value computed under the complex sample option in Mplus. The 
procedure described in Satorra & Bentler (1999) was used in order to calculate the correctly scaled χ2 difference value for the MLR estimator. The 
χ

2 difference test for a given step is always a test against the less restricted model in mentioned in parentheses (italicized). In case of a significant χ2 
difference, the more restricted model was rejected and invariance testing in the next step was continued using the less restricted model. CFI = 
Comparative Fit Index. RMSEA = Root Mean Square Error of Approximation. AIC = Akaike’s Information Criterion.  
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5.4.3 Convergent Validity and Variance Components 

The estimated intercepts, factor loadings, and error variances are presented in Table 6 (for 

depression) and Table 7 (for anxiety). An important finding is that the state factor loadings of 

the parent and teacher report measures are much smaller than the loadings of the self-report 

indicators. This indicates a rather low degree of convergent validity between the self-rating 

and the other ratings. The lack of convergent validity is still more clearly seen from the 

variance components (see Table 8 and Table 9). All other-report indicators show very low 

consistency, but high method-specificity coefficients. For depression, all consistency 

coefficients associated with the parent and teacher report measures are below .10, indicating 

that the reference method (self-report) accounts for less than 10% of the variance of these 

measures. The consistencies of the other-report indicators are even smaller for anxiety (< .05). 

In fact, for the teacher report, most of them are not significantly different from zero. One 

might conclude that self-reported anxiety and teacher-reported anxiety represent two almost 

independent constructs in this age group. An alternative or additional explanation may be that 

the questionnaires completed by the teachers were different from the questionnaires 

administered to the children and their parents. It is also likely that the teacher ratings mirror a 

different facet of anxiety (i.e., anxiety at school/in class) than do the self- and parent reports. 

However, convergent validity is not much higher for the parent ratings either (although 

equivalent items were used for the self- and parent report of depression and anxiety). This 

might indicate that the use of a different questionnaire cannot fully explain the lack of 

convergence.  

With regard to changes in the convergent validity over time, an interesting finding is the 

slight tendency for the teacher ratings to show somewhat higher convergent validity at the end 

of a school year (i.e., at the 2nd and 4th occasion of measurement)—whereas the consistency 

coefficients for the parent ratings remain stable over time. A possible explanation is that 

teachers get to know their students better in the course of a school year. 

In general, the indicator-specific factors over time account for less than 10% of the 

variance of the indicators (the values are higher for some of the parent indicators). This shows 

that the observed variables are rather (but not perfectly) homogeneous indicators of the latent 

variables. Measurement error plays a minor role in the present application as shown by the 

high reliability coefficients for all observed variables. 
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Table 6  

Unstandardized Parameter Estimates for Depression (Model 3D_2) 

 Intercept (
ijkl

α )  
State factor loading 

( Sijkl
λ )  

Method factor 
loading ( Mijkl

λ )  

Indicator-specific 
factor loading 

( ISijkl
λ ) 

 
Error variance 

[ ( )
ijkl

Var E ] 

 Estimate SE  Estimate SE  Estimate SE  Estimate SE  Estimate SE 

Model-
implied 
mean 

DS11    0.00* —   1.00* —  — —  — —  0.01 0.00 0.32 

DS21 –0.01 0.01  0.93 0.02  — —   1.00* —  0.01 0.00 0.29 

DP11   0.15 0.01  0.16 0.04   1.00* —  — —  0.01 0.00 0.20 

DP21   0.19 0.01  0.16 0.03  1.03 0.04   1.00* —  0.01 0.00 0.24 

DT11   0.62 0.06  0.29 0.07   1.00* —  — —  0.02 0.00 0.71 

DT21   0.70 0.06  0.34 0.07  1.06 0.02   1.00* —  0.04 0.00 0.81 

DS12    0.00* —   1.00* —  — —  — —  0.01 0.00 0.29 

DS22 –0.01 0.01  0.93 0.02  — —   1.00* —  0.01 0.00 0.26 

DP12   0.14 0.01  0.16 0.04   1.00* —  — —  0.01 0.00 0.18 

DP22   0.18 0.01  0.16 0.03  1.03 0.04  0.92 0.12  0.01 0.00 0.22 

DT12   0.71 0.06  0.49 0.07   1.00* —  — —  0.02 0.00 0.85 

DT22   0.82 0.06  0.54 0.07  1.06 0.02   1.00* —  0.04 0.00 0.98 

DS13    0.00* —   1.00* —  — —  — —  0.01 0.00 0.29 

DS23 –0.01 0.01  0.93 0.02  — —   1.00* —  0.01 0.00 0.27 

DP13   0.14 0.01  0.16 0.04   1.00* —  — —  0.01 0.00 0.19 

DP23   0.18 0.01  0.16 0.03  1.03 0.04  0.74 0.12  0.01 0.00 0.22 

              (Table continues) 
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 Intercept (
ijkl

α )  
State factor loading 

( Sijkl
λ )  

Method factor 
loading ( Mijkl

λ )  

Indicator-specific 
factor loading 

( ISijkl
λ ) 

 
Error variance 

[ ( )
ijkl

Var E ] 

 Estimate SE  Estimate SE  Estimate SE  Estimate SE  Estimate SE 

Model-
implied 
mean 

 

DT13   0.60 0.03  0.30 0.07   1.00* —  — —  0.02 0.00 0.69 

DT23   0.70 0.04  0.33 0.08  1.06 0.02   1.00* —  0.04 0.00 0.80 

DS14    0.00* —   1.00* —  — —  — —  0.01 0.00 0.27 

DS24 –0.01 0.01  0.93 0.02  — —   1.00* —  0.01 0.00 0.25 

DP14   0.16 0.01  0.16 0.04   1.00* —  — —  0.01 0.00 0.20 

DP24   0.19 0.01  0.16 0.03  1.03 0.04  0.59 0.14  0.01 0.00 0.24 

DT14   0.62 0.04  0.57 0.06   1.00* —  — —  0.02 0.00 0.78 

DT24   0.78 0.05  0.58 0.08  1.06 0.02   1.00* —  0.04 0.00 0.94 

Note. DS = depression self-report; DP = depression parent report; DT = depression teacher report; the first number refers to the indicator, 
whereas the second number indicates the occasion of measurement. Intercepts are time-invariant for the self-report indicators. State factor loadings 
are time-invariant for the self- and parent report indicators. Method factor loadings are time-invariant for the parent- and teacher report measures. 
Indicator-specific factor loadings are time-invariant for the self- and teacher indicators. Error variances are time-invariant for all indicators. Fixed 
parameters are marked with asterisks (*). Dashes (—) indicate factor loadings fixed to zero and standard errors not estimated due to a fixed 
parameter. The model-implied means can be directly compared across self- and parent indicators, but they are not comparable to the teacher report 
means given that the teachers used different questionnaires. 
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Table 7  

Unstandardized Parameter Estimates for Anxiety (Model 3D_2) 

 Intercept (
ijkl

α )  
State factor loading 

( Sijkl
λ )  

Method factor 
loading ( Mijkl

λ )  

Indicator-specific 
factor loading 

( ISijkl
λ ) 

 
Error variance 

[ ( )
ijkl

Var E ] 

 Estimate SE  Estimate SE  Estimate SE  Estimate SE  Estimate SE 

Model-
implied 
mean 

AS11   0.00* —   1.00* —  — —  — —  0.02 0.00 0.72 

AS21 0.05 0.01  0.96 0.02  — —   1.00* —  0.02 0.00 0.74 

AP11 0.41 0.02  0.12 0.03   1.00* —  — —  0.01 0.00 0.50 

AP21 0.38 0.02  0.12 0.03  1.07 0.03   1.00* —  0.01 0.00 0.47 

AT11 1.49 0.06  0.13 0.05   1.00* —  — —  0.03 0.00 1.58 

AT21 1.57 0.06  0.04 0.05  0.94 0.02   1.00* —  0.03 0.00 1.60 

AS12   0.00* —   1.00* —  — —  — —  0.02 0.00 0.62 

AS22 0.05 0.01  0.96 0.02  — —   1.00* —  0.02 0.00 0.64 

AP12 0.39 0.02  0.12 0.03   1.00* —  — —  0.01 0.00 0.46 

AP22 0.35 0.02  0.12 0.03  1.07 0.03  0.79 0.06  0.01 0.00 0.43 

AT12 1.59 0.07  0.19 0.04   1.00* —  — —  0.03 0.00 1.70 

AT22 1.64 0.07  0.14 0.05  0.94 0.02   1.00* —  0.03 0.00 1.72 

AS13   0.00* —   1.00* —  — —  — —  0.02 0.00 0.56 

AS23 0.05 0.01  0.96 0.02  — —   1.00* —  0.02 0.00 0.59 

AP13 0.37 0.02  0.12 0.03   1.00* —  — —  0.01 0.00 0.44 

AP23 0.36 0.02  0.12 0.03  1.07 0.03  0.87 0.10  0.01 0.00 0.43 

              (Table continues) 
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 Intercept (
ijkl

α )  
State factor loading 

( Sijkl
λ )  

Method factor 
loading ( Mijkl

λ )  

Indicator-specific 
factor loading 

( ISijkl
λ ) 

 
Error variance 

[ ( )
ijkl

Var E ] 

 Estimate SE  Estimate SE  Estimate SE  Estimate SE  Estimate SE 

Model-
implied 
mean 

 

AT13 1.56 0.03  0.06 0.04   1.00* —  — —  0.03 0.00 1.59 

AT23 1.56 0.04  0.05 0.05  0.94 0.02   1.00* —  0.03 0.00 1.59 

AS14   0.00* —   1.00* —  — —  — —  0.02 0.00 0.52 

AS24 0.05 0.01  0.96 0.02  — —   1.00* —  0.02 0.00 0.55 

AP14 0.39 0.02  0.12 0.03   1.00* —  — —  0.01 0.00 0.45 

AP24 0.36 0.02  0.12 0.03  1.07 0.03  0.68 0.07  0.01 0.00 0.42 

AT14 1.56 0.05  0.21 0.07   1.00* —  — —  0.03 0.00 1.67 

AT24 1.58 0.05  0.19 0.06  0.94 0.02   1.00* —  0.03 0.00 1.68 

Note. AS = anxiety self-report; AP = anxiety parent report; AT = anxiety teacher report; the first number refers to the indicator whereas the 
second number indicates the occasion of measurement. Intercepts are time-invariant for the self-report indicators. State factor loadings are time-
invariant for the self- and parent report indicators. Method factor loadings are time-invariant for the parent- and teacher report measures. Indicator-
specific factor loadings are time-invariant for the self- and teacher indicators. Error variances are time-invariant for all indicators. Fixed parameters 
are marked with asterisks (*). Dashes (—) indicate factor loadings fixed to zero and standard errors not estimated due to a fixed parameter. The 
model-implied means can be directly compared across self- and parent indicators, but they are not comparable to the teacher report means given that 
the teachers used different questionnaires. 
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Table 8  

Variance Components for Depression (Model 3D_2) 

 Observed variables 
ijkl

Y   Latent state variables 
ijkl

S  

 
Consistency 

( )
ijkl

CO Y  

Method-
specificity 

( )
ijkl

MS Y  

Indicator-
specificity 

( )
ijkl

IS Y  

Reliability 
( )

ijkl
Rel Y  

 
Consistency 

( )
ijkl

CO S  

Method-
specificity 

( )
ijkl

MS S  

Indicator-
specificity 

( )
ijkl

IS S  

DS11 .86   .86  1.00   

DS21 .82  .04 .87    .95  .05 

DP11 .05 .80  .85    .06 .94  

DP21 .04 .71 .13 .87    .04 .81 .15 

DT11 .02 .91  .93    .02 .98  

DT21 .02 .83 .06 .91    .03 .91 .06 

DS12 .86   .86  1.00   

DS22 .82  .04 .87    .95  .05 

DP12 .05 .80  .85    .06 .94  

DP22 .04 .72 .11 .87    .04 .83 .13 

DT12 .05 .88  .94    .06 .94  

DT22 .05 .81 .05 .92    .06 .88 .06 

DS13 .86   .86  1.00   

DS23 .82  .04 .87    .95  .05 

DP13 .05 .80  .85    .06 .94  

DP23 .04 .75 .07 .86    .05 .87 .09 

DT13 .03 .89  .92    .03 .97  

DT23 .03 .81 .06 .89    .03 .90 .07 

DS14 .86   .86  1.00   

DS24 .82  .04 .87    .95  .05 

DP14 .05 .80  .85    .06 .94  

DP24 .04 .77 .05 .86    .05 .90 .06 

DT14 .10 .82  .92    .11 .89  

DT24 .08 .75 .06 .89    .09 .84 .07 

Note. DS = depression self-report; DP = depression parent report; DT = depression teacher 
report; the first number refers to the indicator, whereas the second number indicates the 
occasion of measurement. Rounding errors may prevent the consistency, method-specificity, 
and indicator-specificity coefficients to exactly add up to the reliability coefficient for the 
observed variables. For the same reason, the consistency, method-specificity, and indicator-
specificity coefficients may not exactly add up to one for the latent state variables. 
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Table 9  

Variance Components for Anxiety (Model 3D_2) 

 Observed variables 
ijkl

Y   Latent state variables 
ijkl

S  

 
Consistency 

( )
ijkl

CO Y  

Method-
specificity 

( )
ijkl

MS Y  

Indicator-
specificity 

( )
ijkl

IS Y  

Reliability 
( )

ijkl
Rel Y  

 
Consistency 

( )
ijkl

CO S  

Method-
specificity 

( )
ijkl

MS S  

Indicator-
specificity 

( )
ijkl

IS S  

AS11 .89   .89  1.00   

AS21 .84  .05 .90    .94  .06 

AP11 .03 .85  .88    .03   .97  

AP21 .02 .70 .17 .90    .02   .79 .19 

AT11 .01 .89  .90    .01   .99  

AT21 .00 .80 .10 .90  1.00   .89 .11 

AS12 .89   .89    .00   

AS22 .84  .05 .90    .94  .06 

AP12 .03 .85  .88    .03   .97  

AP22 .02 .75 .11 .89    .03   .85 .13 

AT12 .02 .90  .91    .02   .98  

AT22 .01 .81 .08 .91    .01   .90 .09 

AS13 .89   .89  1.00   

AS23 .84  .05 .90    .94  .06 

AP13 .03 .85  .88    .03   .97  

AP23 .02 .73 .13 .89    .03   .82 .15 

AT13 .00 .88  .88    .00 1.00  

AT23 .00 .83 .04 .88    .00   .95 .05 

AS14 .89   .89  1.00   

AS24 .84  .05 .90    .94  .06 

AP14 .03 .85  .88    .03   .97  

AP24 .02 .77 .09 .88    .03   .88 .10 

AT14 .03 .87  .90    .03   .97  

AT24 .02 .83 .04 .89    .03   .93 .04 

Note. AS = anxiety self-report; AP = anxiety parent report; AT = anxiety teacher report; 
the first number refers to the indicator, whereas the second number indicates the occasion of 
measurement. Rounding errors may prevent the consistency, method-specificity, and 
indicator-specificity coefficients to exactly add up to the reliability coefficient for the 
observed variables. For the same reason, the consistency, method-specificity, and indicator-
specificity coefficients may not exactly add up to one for the latent state variables. 
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5.4.4 Discriminant Validity 

The latent state factors representing depression and anxiety are highly correlated (see Table 

10). The correlations are particularly high on the same occasion of measurement, indicating 

the presence of occasion-specific effects. One plausible explanation for the high correlations 

is that depression and anxiety constitute two closely related concepts. An alternative 

interpretation is that the measures do not sufficiently discriminate between the two constructs 

(low discriminant validity of the scales). 

5.4.5 Construct Stability and Mean Change 

Correlations between latent state factors belonging to the same construct measured on 

different occasions are also rather high, indicating that inter-individual differences with regard 

to both constructs are stable over time (see Table 10). However, none of the stability 

coefficients is equal to one, which means that neither depression nor anxiety can be conceived 

of as perfectly stable traits. 

As indicated by the series of invariance tests, the state factor means changed for both, 

depression and anxiety. The latent means reported in Table 10 reveal a decrease in the mean 

level of latent self-reported depression and anxiety over time. Interestingly, the mean decrease 

appears to be stronger for anxiety than for depression, indicating discriminant validity with 

regard to mean change over time. A detailed analysis of the means of the parent report 

indicators revealed that the depression means did not significantly change over time, whereas 

the means of the parent indicators of anxiety differed significantly over time. For the teachers, 

the means of both the depression and anxiety indicators changed significantly over time. 

The estimated model-implied means for the parent report (see Table 6 and Table 7) 

indicate that parents on average underestimated the depression and anxiety level of their 

children (as compared to the children’s self-report). Furthermore, the model-implied means of 

the parent ratings were almost constant over time for both constructs. Hence, the mean 

trajectories derived from self-report do not match the mean trajectories according to the parent 

ratings. This can be interpreted as a lack of “convergent validity of mean change”. On 

average, parents appeared to be rather insensitive to changes in their children’s depression and 

anxiety levels. The mean trajectories derived from the teacher ratings are not directly 

comparable to the self- and parent report means given that the teachers used different scales 

and given that different teachers rated the children on the last two measurement occasions. 
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Table 10  

State Factor Covariances, Correlations, Means, and Variances (Model 3D_2) 

 1 2 3 4 5 6 7 8 

1. 11S  (Depression T1) — 
0.06 

(0.01) 
0.05 

(0.01) 
0.05 

(0.01) 
0.09 

(0.01) 
0.07 

(0.01) 
0.07 

(0.01) 
0.07 

(0.01) 

2. 12S  (Depression T2) .72 — 
0.07 

(0.01) 
0.06 

(0.01) 
0.07 

(0.01) 
0.09 

(0.01) 
0.08 

(0.01) 
0.08 

(0.01) 

3. 13S  (Depression T3) .62 .75 — 
0.07 

(0.01) 
0.06 

(0.01) 
0.08 

(0.01) 
0.10 

(0.01) 
0.09 

(0.01) 

4. 14S  (Depression T4) .58 .68 .81 — 
0.06 

(0.01) 
0.07 

(0.01) 
0.08 

(0.01) 
0.11 

(0.01) 

5. 21S  (Anxiety T1) .74 .59 .52 .48 — 
0.13 

(0.01) 
0.12 

(0.01) 
0.11 

(0.01) 

6. 22S  (Anxiety T2) .60 .74 .62 .58 .75 — 
0.14 

(0.01) 
0.13 

(0.01) 

7. 23S  (Anxiety T3) .56 .65 .78 .66 .67 .80 — 
0.15 

(0.01) 

8. 24S  (Anxiety T4) .57 .65 .71 .85 .61 .76 .84 — 

Means 
0.32 

(0.01) 
0.29 

(0.01) 
0.29 

(0.01) 
0.27 

(0.01) 
0.72 

(0.02) 
0.62 

(0.02) 
0.56 

(0.02) 
0.52 

(0.02) 

Variances 
0.09 

(0.01) 
0.09 

(0.01) 
0.09 

(0.01) 
0.09 

(0.01) 
0.18 

(0.01) 
0.18 

(0.01) 
0.18 

(0.01) 
0.18 

(0.01) 

Note. Correlations are printed below, and covariances above the main diagonal. Values in 
parentheses are standard errors. The state factor variances were constrained to be time-
invariant. 

 

5.4.6 Generalizability and Stability of Method Effects 

The correlations and covariances among the method factors are shown in Table 11. It can 

be seen that method effects generalized to a large degree across constructs in the present 

application. This is shown by the high correlations among method factors belonging to the 

same method (i.e., parent or teacher report), but different constructs, on the same 

measurement occasion. These correlations are smaller for method factors belonging to the 

same method, different constructs, and different occasions (for the teacher report, I consider 

only the correlations between the T1 and T2, as well as T3 and T4 method factors since 

teachers changed from T2 to T3). Another important result is that method effects were highly 

stable over time. This is shown by the high correlations between method factors belonging to 

the same construct-method unit, but different occasions of measurement. In sum, the high 
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correlations found for the same type of rater across constructs and across time indicate the 

presence of general rater-specific influences. 

The correlations between method factors belonging to the same construct, the same 

measurement occasion, and different methods are all positive and of small to medium size. 

This shows that parents and teachers exhibit a common rater bias: There is a tendency for 

parents and teachers to have a common view of a child that is not shared with the child’s own 

view. However, the correlations are not very large, indicating that the common bias is rather 

small compared to the specific bias of each method.  

Finally, indicator-specific effects generalize to some degree across self- and parent-ratings 

as indicated by medium-size correlations between the indicator-specific factors pertaining to 

the self- and parent-ratings and the same construct (for depression: r = .262; for anxiety: 

r = .270; not shown in a table). Correlations including indicator-specific factors pertaining to 

the teacher-rating were not considered given that the teacher-rating scales of depression and 

anxiety differed from the self- and parent report scales. 
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Table 11  

Method Factor Covariances, Correlations, and Variances (Model 3D_2) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. 121M  (PR depression 1) — 
0.03 

(0.00) 
0.02 

(0.00) 
0.02 

(0.00) 
0.04 

(0.00) 
0.03 

(0.00) 
0.03 

(0.00) 
0.03 

(0.00) 
0.03 

(0.01) 
0.03 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 
0.03 

(0.01) 
0.03 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 

2. 122M  (PR depression 2) .82 — 
0.03 

(0.00) 
0.03 

(0.00) 
0.04 

(0.00) 
0.04 

(0.00) 
0.03 

(0.01) 
0.03 

(0.01) 
0.02 

(0.01) 
0.03 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 

3. 123M  (PR depression 3) .67 .70 — 
0.03 

(0.00) 
0.03 

(0.00) 
0.03 

(0.00) 
0.04 

(0.00) 
0.03 

(0.00) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 

4. 124M  (PR depression 4) .64 .73 .79 — 
0.03 

(0.00) 
0.03 

(0.00) 
0.04 

(0.00) 
0.04 

(0.00) 
0.01 

(0.01) 
0.01 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 

5. 221M  (PR anxiety 1) .76 .70 .53 .60 — 
0.06 

(0.01) 
0.06 

(0.01) 
0.05 

(0.01) 
0.04 

(0.01) 
0.04 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.04 

(0.01) 
0.03 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 

6. 222M  (PR anxiety 2) .65 .83 .59 .61 .79 — 
0.06 

(0.01) 
0.06 

(0.01) 
0.03 

(0.01) 
0.03 

(0.01) 
0.01 

(0.01) 
0.02 

(0.01) 
0.03 

(0.01) 
0.03 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 

7. 223M  (PR anxiety 3) .57 .62 .81 .69 .73 .76 — 
0.06 

(0.01) 
0.04 

(0.01) 
0.03 

(0.01) 
0.03 

(0.01) 
0.02 

(0.01) 
0.03 

(0.01) 
0.03 

(0.01) 
0.02 

(0.01) 
0.01 

(0.01) 

8. 224M  (PR anxiety 4) .54 .61 .63 .83 .70 .75 .83 — 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 
0.03 

(0.01) 
0.02 

(0.01) 
0.02 

(0.01) 

9. 131M  (TR depression 1) .30 .23 .21 .10 .27 .22 .23 .14 — 
0.23 

(0.02) 
0.07 

(0.01) 
0.06 

(0.02) 
0.24 

(0.03) 
0.20 

(0.02) 
0.03 

(0.01) 
0.03 

(0.02) 

10. 132M  (TR depression 2) .31 .23 .19 .13 .24 .17 .19 .13 .72 — 
0.07 

(0.01) 
0.06 

(0.02) 
0.19 

(0.02) 
0.26 

(0.02) 
0.05 

(0.01) 
0.03 

(0.02) 

11. 133M  (TR depression 3) .16 .15 .25 .20 .12 .08 .20 .15 .24 .23 — 
0.16 

(0.02) 
0.05 

(0.01) 
0.05 

(0.02) 
0.21 

(0.01) 
0.13 

(0.02) 

12. 134M  (TR depression 4) .13 .14 .20 .22 .13 .11 .17 .13 .21 .20 .65 — 
0.03 

(0.02) 
0.04 

(0.02) 
0.14 

(0.02) 
0.19 

(0.02) 

13. 231M  (TR anxiety 1) .29 .22 .22 .12 .25 .21 .22 .15 .82 .63 .17 .11 — 
0.23 

(0.02) 
0.02 

(0.02) 
0.02 

(0.02) 

14. 232M  (TR anxiety 2) .24 .23 .19 .15 .22 .21 .20 .16 .62 .80 .18 .14 .77 — 
0.03 

(0.02) 
0.03 

(0.02) 

15. 233M  (TR anxiety 3) .12 .12 .18 .13 .04 .05 .12 .14 .12 .16 .85 .58 .09 .11 — 
0.16 

(0.02) 

16. 234M  (TR anxiety 4) .08 .10 .11 .12 .07 .09 .09 .12 .10 .10 .52 .78 .07 .09 .62 — 

Variances 
0.04 

(0.00) 
0.04 

(0.00) 
0.04 

(0.00) 
0.04 

(0.00) 
0.08 

(0.01) 
0.08 

(0.01) 
0.08 

(0.01) 
0.08 

(0.01) 
0.31 

(0.03) 
0.33 

(0.02) 
0.25 

(0.02) 
0.23 

(0.02) 
0.28 

(0.03) 
0.32 

(0.03) 
0.24 

(0.01) 
0.26 

(0.01) 

Note. PR = parent report. TR = teacher report. Correlations are printed below, and covariances above the main diagonal. Values in parentheses are 
standard errors. 
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5.5 Application of the CS-C(M–1) Change Models 

For the illustration of the CS-C(M–1) change models, I analyzed a reduced set of variables. 

Depression and anxiety were again selected as constructs. I did not consider the teacher report 

indicators for the change models given that the teacher rating scales had failed to show 

measurement invariance over time in the application of the CS-C(M–1) state model reported 

in Section 5.4. Furthermore, I did not consider the fourth occasion of measurement given that 

three waves are sufficient to illustrate both the baseline and the neighbor change version. I 

again used the children’s self-report as the reference method and the parent report as non-

reference method to be contrasted against the self-report. 

5.5.1 Assessment of Measurement Invariance and Model Selection 

In the first step, I again tested for measurement invariance over time by comparing three 

models. A model with general state factors and indicator-specific factors over time for the 

second indicator served as the base, as this model had shown the best fit to the data in the 

application of the state version of the CS-C(M–1) model. The first version of this model 

included no equality constraints for any parameter over time (except for the marker 

indicators). In the second model, I constrained the state, method, and indicator-specific factor 

loadings as well as the measurement intercepts of all indicators to be time-invariant. In the 

third model, also the error variances were set equal over time for all indicators. 

Table 12 shows goodness-of-fit statistics for the three model variants. (Note that the fit 

measures are shown only once given that the state, baseline change, and neighbor change 

versions are statistically equivalent and produce the same fit to the data.) As shown in Table 

12, all three models fit the data very well according to the χ2 test, the CFI coefficient, and the 

RMSEA coefficient. According to the χ2 difference test, the most restricted version, in which 

all parameters of the measurement model were constrained to be time-invariant (Model 3), did 

not fit significantly worse than the less constrained version, in which the error variances were 

allowed to take on any value (Model 2). The AIC values for Model 2 and Model 3 differed 

only marginally. Therefore, I will report detailed outcomes for Model 3. Annotated Mplus 

input scripts for estimating the change versions of Model 3 are available from the Appendix 

(see Section 13.1.2). 

5.5.2 Convergent Validity and Variance Components 

Table 13 provides the parameter estimates for the CS-C(M–1) measurement model. These 

parameters can be obtained either from the state or from the change versions of the model 
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(and they are identical across these model variants). Table 14 contains the variance 

components for the observed variables calculated from the state version of the CS-C(M–1) 

model. Again, for both depression and anxiety, the parent rating indicators show very low 

consistency and very high method-specificity coefficients. Parents’ views of the children 

strongly diverged from the children’s own perspective. Indicator-specific effects play a larger 

role in the parent than in the self-report variables. An explanation may be that parents 

differentiate more strongly between different facets of depression and anxiety than do the 

children themselves. The highest indicator-specificity coefficient is .16. This shows that 

although indicator-specific effects are present, they play a relatively minor role (the indicators 

of a construct are rather homogeneous). 

 

Table 12  

Goodness-of-Fit Measures for Different CS-C(M–1) Change Model Variants  

 χ
2 test  

χ
2 difference 

test 
   

 value df p  value df p CFI RMSEA AIC 

Model 1 (Configural 
invariance) 

171.24 150 .11     1.00 .01 -5,489.09 

Model 2 (Strong 
factorial invariance) 

203.43 186 .18  32.51 36 .64 1.00 .01 -5,521.26 

Model 3 (Strict factorial 
invariance) 

227.83 202 .10  23.43 16 .10 1.00 .01 -5,520.78 

Note. N = 906. Configural invariance = no invariance constraints on any parameters, except 
for the marker indicators. Strong factorial invariance = time invariant loadings and intercepts 
for all indicators. Strict factorial invariance = time invariant loadings, intercepts, and error 
variances for all indicators. The χ2 difference test for a given model is always a test against 
the previous, less restricted model. CFI = Comparative Fit Index. RMSEA = Root Mean 
Square Error of Approximation. AIC = Akaike’s Information Criterion. 

 

Table 15 shows the estimated variance components for the observed change scores from 

both the baseline and the neighbor change version (shaded cells). The estimates in Table 15 

provide information on the convergent validity of change of the indicators. The observed 

change scores based on the parent ratings show very low consistencies and very high method-

specificities. The reliability estimates for the observed change scores are clearly lower than 

the reliabilities of the variables 
ijkl

Y  on a single time point (see Table 14). The reason is that 

measurement error influences of both time points (l and l′ ) have an impact on the change 

scores ( )
ijkl ijkl

Y Y ′− , as discussed in Chapter 4.7. This is not the case for the observed variables 



Applications 180 

ijkl
Y  on a single time point. The unreliability of the observed change scores clearly 

demonstrates the advantages of using SEM for studying change. As I noted before, observed 

change scores are greatly distorted by measurement error. In contrast, latent change scores are 

corrected for measurement error.  
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Table 13  

Estimated Intercepts, Factor Loadings, and Error Variances (Model 3) 

State factor loading S( )
ijkl

λ   Method factor loading M( )
ijkl

λ  
 Indicator-specific factor 

loading IS( )
ijkl

λ  
 

Intercept 

( )
ijkl

α  
Estimate SE 

Standardized 
estimate 

 Estimate SE 
Standardized 

estimate 

 
Estimate SE 

Standardized 
estimate 

Error 
variance 

[ ( )]
ijkl

Var E  

DS11     0.00*   1.00* — .94  — — —  — — — 0.01 

DS21 –0.00 0.92 0.02 .91  — — —  1.00* — .21 0.01 

DP11   0.13 0.18 0.03 .26   1.00* — .89  — — — 0.01 

DP21   0.17 0.19 0.03 .24  1.01 0.03 .83  1.00* — .33 0.01 

DS12     0.00*   1.00* — .93  — — —  — — — 0.01 

DS22 –0.00 0.92 0.02 .90  — — —  1.00* — .22 0.01 

DP12   0.13 0.18 0.03 .27   1.00* — .87  — — — 0.01 

DP22   0.17 0.19 0.03 .25  1.01 0.03 .80  1.00* — .36 0.01 

DS13     0.00*   1.00* — .93  — — —  — — — 0.01 

DS23 –0.00 0.92 0.02 .90  — — —  1.00* — .22 0.01 

DP13   0.13 0.18 0.03 .25   1.00* — .89  — — — 0.01 

DP23   0.17 0.19 0.03 .23  1.01 0.03 .83  1.00* — .33 0.01 

AS11     0.00*   1.00* — .95  — — —  — — — 0.01 

AS21   0.06 0.94 0.02 .91  — — —  1.00* — .24 0.02 

AP11   0.36 0.16 0.02 .22   1.00* — .92  — — — 0.01 

            (Table continues) 
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State factor loading S( )
ijkl

λ   Method factor loading M( )
ijkl

λ  
 Indicator-specific factor 

loading IS( )
ijkl

λ  
 

Intercept 

( )
ijkl

α  
Estimate SE 

Standardized 
estimate 

 Estimate SE 
Standardized 

estimate 
 Estimate SE 

Standardized 
estimate 

Error 
variance 

[ ( )]
ijkl

Var E  

 

AP21   0.33 0.17 0.03 .20  1.07 0.04 .85  1.00* — .36 0.01 

AS12     0.00*   1.00* — .95  — — —  — — — 0.01 

AS22   0.06 0.94 0.02 .92  — — —  1.00* — .23 0.02 

AP12   0.36 0.16 0.02 .24   1.00* — .91  — — — 0.01 

AP22   0.33 0.17 0.03 .22  1.07 0.04 .83  1.00* — .37 0.01 

AS13     0.00*   1.00* — .95  — — —  — — — 0.01 

AS23   0.06 0.94 0.02 .91  — — —  1.00* — .24 0.02 

AP13   0.36 0.16 0.02 .22   1.00* — .91  — — — 0.01 

AP23   0.33 0.17 0.03 .20  1.07 0.04 .84  1.00* — .37 0.01 

Note. DS = depression self report indicator; DP = depression parent report indicator; AS = anxiety self report indicator; AP = anxiety parent 
report indicator; the first number refers to the indicator, whereas the second number refers to the occasion of measurement. Fixed parameters are 
marked with an asterisk (*). Standard errors are not available for fixed parameters. All unstandardized parameters are time-invariant. 
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Table 14  

Variance Components (Model 3) 

 Observed variables 
ijkl

Y   Latent state variables 
ijkl

S  

 
Consistency 

( )
ijkl

CO Y  

Method-
specificity 

( )
ijkl

MS Y  

Indicator-
specificity 

( )
ijkl

IS Y  

Reliability 
( )

ijkl
Rel Y  

 
Consistency 

( )
ijkl

CO S  

Method-
specificity 

( )
ijkl

MS S  

Indicator-
specificity 

( )
ijkl

IS S  

DS11 .87   .87  1.00   

DS21 .83  .04 .88    .95  .05 

DP11 .07 .78  .85    .08 .92  

DP21 .06 .69 .11 .85    .07 .80 .13 

DS12 .86   .86  1.00   

DS22 .82  .04 .87    .95  .05 

DP12 .07 .76  .83    .09 .91  

DP22 .06 .65 .12 .84    .07 .78 .15 

DS13 .86   .86  1.00   

DS23 .82  .05 .86    .95  .05 

DP13 .06 .79  .85    .07 .93  

DP23 .05 .70 .11 .86    .06 .81 .13 

AS11 .91   .91  1.00   

AS21 .83  .06 .89    .94  .06 

AP11 .05 .84  .89    .05 .95  

AP21 .04 .72 .13 .89    .05 .81 .14 

AS12 .91   .91  1.00   

AS22 .84  .05 .89    .94  .06 

AP12 .06 .82  .87    .06 .94  

AP22 .05 .69 .14 .88    .05 .79 .16 

AS13 .90   .90  1.00   

AS23 .82  .06 .88    .93  .07 

AP13 .05 .83  .88    .05 .95  

AP23 .04 .71 .13 .88    .04 .80 .15 

Note. DS = depression self-report indicator; DP = depression parent report indicator; AS = 
anxiety self-report indicator; AP = anxiety parent report indicator; the first number refers to 
the indicator, whereas the second number refers to the occasion of measurement. Rounding 
errors may prevent the consistency, method-specificity, and indicator-specificity coefficients 
to exactly add up to the reliability coefficient for the observed variables. For the same reason, 
the consistency, method-specificity, and indicator-specificity coefficients may not exactly add 
up to one for the latent state variables. 
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Table 15  

Variance Components for Change Scores (Model 3) 

 Observed difference variables ( )
ijkl ijkl

Y Y′ −  
 Latent difference variables 

( )
ijkl ijkl

S S′ −  

 
Consistency 

( )
ijkl ijkl

CO Y Y′ −  

Method-
specificity 

( )
ijkl ijkl

MS Y Y′ −  

Reliability 
( )

ijkl ijkl
Rel Y Y′ −  

 
Consistency 

( )
ijkl ijkl

CO S S′ −  

Method-
specificity 

( )
ijkl ijkl

MS S S′ −  

(DS12-DS11) .64  .64  1.00  

(DS22-DS21) .64  .64  1.00  

(DP12-DP11) .06 .43 .49    .12 .88 

(DP22-DP21) .06 .41 .47    .12 .88 

(DS13-DS11) .71  .71  1.00  

(DS23-DS21) .71  .71  1.00  

(DS13-DS12) .62  .62  1.00  

(DS23-DS22) .61  .61  1.00  

(DP13-DP11) .06 .60 .66    .09 .91 

(DP23-DP21) .05 .58 .64    .09 .91 

(DP13-DP12) .04 .59 .63    .06 .94 

(DP23-DP22) .04 .56 .60    .06 .94 

(AS12-AS11) .70  .70  1.00  

(AS22-AS21) .65  .65  1.00  

(AP12-AP11) .04 .57 .61    .07 .93 

(AP22-AP21) .04 .54 .58    .07 .93 

(AS13-AS11) .75  .75  1.00  

(AS23-AS21) .69  .69  1.00  

(AS13-AS11) .65  .65  1.00  

(AS23-AS21) .59  .59  1.00  

(AP13-AP11) .04 .64 .68    .06 .94 

(AP23-AP21) .04 .62 .66    .06 .94 

(AP13-AP12) .03 .61 .64    .05 .95 

(AP23-AP22) .03 .59 .62    .04 .96 

Note. DS = depression self-report indicator; DP = depression parent report indicator; AS = 
anxiety self-report indicator; AP = anxiety parent report indicator; the first number refers to the 
indicator, whereas the second number refers to the occasion of measurement. Shaded cells indicate 
estimates derived from the neighbor change version. Rounding errors may prevent the consistency, 
method-specificity, and indicator-specificity coefficients to exactly add up to the reliability 
coefficient for the observed variables. For the same reason, the consistency, method-specificity, and 
indicator-specificity coefficients may not exactly add up to one for the latent state variables.  
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5.5.3 Structural Model: Discriminant Validity of Change 

Table 16 and Table 17 contain the estimated covariances, correlations, variances, and 

means for the latent state and latent difference version, respectively. The variances of all 

latent difference factors are statistically significant. This shows that there are inter-individual 

differences in intra-individual change for all constructs and method effects in the present 

application. This can also be seen from the state version, in which the stability coefficients for 

the state and method factors are all smaller than one, see Table 16. 

The means of the state difference factors are all negative indicating that on average there is 

a decline in both depression and anxiety over time. All means are significantly different from 

zero except the mean of the latent state difference factor for depression T3–T2. The 

standardized mean differences are rather small for depression (effect size measure Cohen’s d: 

–0.20 [T2–T1], –0.16 [T3–T1], and .01 [T3–T2]10) and moderate for anxiety [d values: –0.48 

[T2–T1], –0.66 [T3–T1], and –0.30 [T3–T2]). 

The estimated covariances and correlations between the latent state and latent state 

difference factors (see Table 17) show that for both constructs, the latent difference variables 

are negatively correlated with the initial status (T1) state factors. Hence, on average, children 

with smaller T1 scores have larger change scores than children with larger T1 scores. The 

correlations among the latent difference variables are positive, indicating that individuals with 

greater change scores for one time interval tend to have greater change scores also for the 

remaining intervals. The inter-correlations of latent difference scores across constructs 

indicate discriminant validity of change processes. In the present case, these correlations are 

positive. Hence, there is a tendency for children showing an increase (or decrease) in 

depression over time to show an increase (or decrease) in anxiety as well. The correlations are 

relative high indicating low discriminant validity of change. 

An interesting finding is that some of the correlations between latent difference variables 

belonging to the same construct are negative: The correlation between Depression 2 – 

Depression 1 and Depression 3 – Depression 2 is –.27, and between Anxiety 2 – Anxiety 1 and 

Anxiety 3 – Anxiety 2 the correlation is estimated to be –.10. These negative correlations show 

that although there is a slight mean decrease of depression and anxiety over time, change 

scores for adjacent time points do not generally agree with respect to the direction of change. 

For example, there is a tendency for a child with an increasing depression score from T1 to 
                                                 

10 Cohen’s d was calculated using the following formula: 
1 ' 1

1 ' 1

2 [ ( )]

( )

j l j l

j l j l

E S S
d

Var S S

⋅ −
=

−
, where 'l l> . 
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T2 to show a decrease in depression from T2 to T3 rather than a continuing increase. This 

indicates that the underlying process is variability rather than general growth or decline, 

especially for depression. 

The correlations among the method and method difference factors show a similar pattern. 

Like the state difference factors, the method change scores are also negatively correlated with 

the corresponding T1 method factors. In contrast, the method difference factors are positively 

correlated with other method difference factors belonging to the same TMU. Furthermore, 

method difference factors are highly positively correlated with other method difference 

factors belonging to the same method and different constructs for the same change period.  

5.5.4 Structural Model: Correlations With Sex 

In order to demonstrate the inclusion of covariates, I added the variable sex as a correlate 

of the latent state and latent difference factors. The extended model also fit the data well 

(χ2 = 229.61, df = 210, p = .17; RMSEA = .01; CFI = 1.00). The Mplus input files for 

estimating the baseline and neighbor change versions of this model are provided in the 

appendix (see Sections 13.1.2 and 13.1.3). 

Given that (1) I had no specific a priori hypotheses and (2) there were 12 correlations of 

interest (I did not attempt to interpret the correlations between sex and the indicator-specific 

factors), I used two-tailed z-tests in conjunction with a Bonferroni adjusted alpha level of 

.05/12 = .004 to identify significant correlations with sex (i.e., I did not interpret correlations 

with sex as significantly different from zero unless the actually calculated two-tailed p-value 

was smaller than .004.) According to this criterion, five correlations in the state version and 

two correlations in the change version were significantly different from zero (all ps < .001). 

For the state version, these were the correlations between sex and (1) the depression state 

factor at T3 (r = .17, SE = .04; z = 3.95), (2) the method factor for depression at T1 (r = –.14, 

SE = .04; z = –3.57), and (3) the anxiety state factors at all three time points T1–T3 (rs = .23, 

.27, .28; all SEs = .03; z-scores = 6.97, 8.52, 7.99, respectively). For the change version, the 

only significant correlations with sex were found for the anxiety state factor at T1 and the T1 

method factor for depression. There were no significant correlations between sex and any of 

the latent change factors. The negative correlation of the T1 parent report method factor for 

depression with sex is interesting as it shows that parents’ specific view in their assessment of 

children’s depression depends in part on the children’s sex. To understand this, recall that the 

method factors are residual factors from which the effect of self-report has been partialled out. 

Hence, the correlations between the method factors and external variables are semipartial 

correlations. The method factors represent the “pure” (specific) parent method, not shared 
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with the self-report method. The weak negative correlation of the method factor with sex 

indicates that parents tend to overestimate the depression more strongly if the child is a boy 

than they do if the child is a girl. (This finding is small, however, and should not be over-

interpreted.) 
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Table 16  

State and Method Factor Covariances, Correlations, Means, and Variances (Model 3, State Model) 

 1 2 3 4 5 6 7 8 9 10 11 12 

1. 11S  (Depression T1) — 
0.07 

(0.01) 
0.06 

(0.01) 
0.10 

(0.01) 
0.08 

(0.01) 
0.07 

(0.01) 
— — — 

0.01 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

2. 12S  (Depression T2) .73 — 
0.06 

(0.01) 
0.08 

(0.01) 
0.10 

(0.01) 
0.08 

(0.01) 
— — — 

0.00 
(0.00) 

0.01 
(0.00) 

0.00 
(0.00) 

3. 13S  (Depression T3) .62 .74 — 
0.06 

(0.01) 
0.08 

(0.01) 
0.09 

(0.01) 
— — — 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

4. 21S  (Anxiety T1) .75 .59 .50 — 
0.14 

(0.01) 
0.12 

(0.01) 
–0.00 
(0.00) 

–0.00 
(0.00) 

–0.00 
(0.00) 

— — — 

5. 22S  (Anxiety T2) .61 .75 .60 .76 — 
0.14 

(0.01) 
–0.00 
(0.00) 

0.00 
(0.00) 

–0.00 
(0.00) 

— — — 

6. 23S  (Anxiety T3) .55 .65 .77 .68 .81 — 
–0.01 
(0.00) 

–0.00 
(0.00) 

0.00 
(0.00) 

— — — 

7. 121M  (PR depression T1) — — — –.03 –.02 –.07 — 
0.03 

(0.00) 
0.03 

(0.00) 
0.04 

(0.00) 
0.03 

(0.00) 
0.03 

(0.00) 

8. 122M  (PR depression T2) — — — –.02 .02 –.01 .83 — 
0.02 

(0.00) 
0.03 

(0.01) 
0.04 

(0.00) 
0.03 

(0.00) 

9. 123M  (PR depression T3) — — — –.02 –.05 .01 .66 .68 — 
0.03 

(0.00) 
0.03 

(0.00) 
0.04 

(0.01) 

10. 221M  (PR anxiety T1) .08  .05  .04 — — — .76 .69 .50 — 
0.06 

(0.01) 
0.06 

(0.01) 

          (Table continues) 
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 1 2 3 4 5 6 7 8 9 10 11 12 

11. 222M  (PR anxiety T2) .04 .06 .02 — — — .64 .81 .56 .79 — 
0.05 

(0.01) 

12. 223M  (PR anxiety T3) .03 .04 .02 — — — .58 .61 .80 .72 .74 — 

Means 
0.32 

(0.01) 
0.29 

(0.01) 
0.29 

(0.01) 
0.72 

(0.02) 
0.62 

(0.02) 
0.56 

(0.02) 
— — — — — — 

Variances 
0.10 

(0.01) 
0.09 

(0.01) 
0.08 

(0.01) 
0.18 

(0.01) 
0.19 

(0.01) 
0.17 

(0.01) 
0.04 

(0.00) 
0.03 

(0.00) 
0.04 

(0.01) 
0.08 

(0.01) 
0.07 

(0.01) 
0.08 

(0.01) 

Note. Correlations are printed below, and covariances above the main diagonal. Values in parentheses are standard errors. All correlations 
between state and method factors were fixed to zero a priori. 
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Table 17  

State and Method Factor Covariances, Correlations, Means, and Variances (Model 3, Change Models) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. 11S  (Depression T1) — 
–0.03 
(0.00) 

–0.04 
(0.00) 

–0.01 
(0.00) 

0.10 
(0.01) 

–0.02 
(0.00) 

–0.03 
(0.01) 

–0.01 
(0.01) 

— — — — 0.01 
(0.00) 

–0.00 
(0.00) 

–0.00 
(0.00) 

–0.00 
(0.00) 

2. 12 11S S−  (Depression T2-T1) –.41 — 
0.04 

(0.00) 
–0.01 
(0.00) 

–0.02 
(0.01) 

0.04 
(0.01) 

0.03 
(0.01) 

–0.01 
(0.00) 

— — — — –0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

–0.00 
(0.00) 

3. 13 11S S−  (Depression T3-T1) –.49 .63 — — 
–0.04 
(0.01) 

0.03 
(0.01) 

0.06 
(0.01) 

— — — — — 
–0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

— 

4. 13 12S S−  (Depression T3-T2) –.17 –.27 — — 
–0.01 
(0.00) 

–0.01 
(0.00) 

 
0.03 

(0.00) 
— — — — 

–0.00 
(0.00) 

–0.00 
(0.00) 

— 
0.00 

(0.00) 

5. 21S  (Anxiety T1) .75 –.24 –.32 –.15 — 
–0.04 
(0.01) 

–0.06 
(0.01) 

–0.02 
(0.01) 

–0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

— — — — 

6. 22 21S S−  (Anxiety T2-T1) –.18 .56 .38 –.12 –.33 — 
0.07 

(0.01) 
–0.02 
(0.01) 

0.00 
(0.00) 

0.00 
(0.00) 

–0.00 
(0.00) 

–0.01 
(0.00) 

— — — — 

7. 23 21S S−  (Anxiety T3-T1) –.28 .43 .65 — –.45 .66 — — 
–0.00 
(0.00) 

0.00 
(0.00) 

0.01 
(0.00) 

— — — — — 

8. 23 22S S−  (Anxiety T3-T2) –.14 –.10 — .60 –.19 –.30 — — 
–0.00 
(0.00) 

0.00 
(0.00) 

0.01 
(0.00) 

0.01 
(0.00) 

— — — — 

9. 121M  (PR depression T1) — — — — –.03 .01 –.05 –.07 — 
–0.01 
(0.00) 

–0.01 
(0.00) 

–0.00 
(0.00) 

0.04 
(0.00) 

–0.01 
(0.00) 

–0.01 
(0.00) 

–0.00 
(0.00) 

10. 122 121M M−  (PR depression T2-T1) — — — — .01 .08 .11 .05 –.44 — 
0.01 

(0.00) 
–0.00 
(0.00) 

–0.01 
(0.00) 

0.01 
(0.00) 

0.01 
(0.00) 

–0.01 
(0.00) 

11. 123 121M M−  (PR depression T3-T1) — — — — .01 –.07 .10 — –.41 .44 — — 
–0.01 
(0.00) 

0.01 
(0.00) 

–0.03 
(0.00) 

— 

12. 123 122M M−  (PR depression T3-T2) — — — — .00 –.13 .18 .18 –.11 –.27 — — 
–0.01 
(0.00) 

–0.00 
(0.00) 

— 
0.02 

(0.00) 

              (Table continues) 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

13. 221M  (PR anxiety T1) .08 –.04 –.04 –.01 — — — — .76 –.24 –.32 –.17 — 
–0.02 
(0.00) 

–0.03 
(0.01) 

–0.00 
(0.00) 

14. 222 221M M−  (PR anxiety T2-T1) –.07 .11 .04 –.06 — — — — –.26 .63 .36 –.08 –.42 — 
0.02 

(0.00) 
–0.01 
(0.00) 

15. 223 221M M−  (PR anxiety T3-T1) –.07 .08 .05 — — — — — –.28 .26 .79 — –.42 .51 — — 

16. 223 222M M−  (PR anxiety T3-T2) –.01 –.01 — 0.03 — — — — –.06 –.30 — .78 –.06 –.37 — — 

Means 
0.32 

(0.01) 
–0.03 
(0.01) 

–0.03 
(0.01) 

0.00 
(0.01) 

0.72 
(0.02) 

–0.10 
(0.01) 

–0.16 
(0.02) 

–0.06 
(0.01) 

— — — — — — — — 

Variances 
0.10 

(0.01) 
0.05 

(0.01) 
0.07 

(0.01) 
0.05 

(0.01) 
0.18 

(0.01) 
0.09 

(0.01) 
0.11 

(0.01) 
0.07 

(0.01) 
0.04 

(0.00) 
0.01 

(0.00) 
0.03 

(0.01) 
0.02 

(0.01) 
0.08 

(0.01) 
0.03 

(0.00) 
0.04 

(0.01) 
0.04 

(0.01) 

Note. Correlations are printed below, and covariances above the main diagonal. Values in parentheses are standard errors. All correlations between 
state and method factors were fixed to zero a priori. Shaded cells indicate estimates derived from the neighbor change version.
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5.6 Summary and Discussion of the Applications 

The application of both the state and the latent difference CS-C(M–1) models revealed that 

these models is appropriate to analyze the complex structure of a MTMM-MO matrix and that 

they provide interesting insights into the data. The CS-C(M–1) approach is useful to study a 

variety of research questions with regard to the psychometric properties of measures (i.e., 

convergent validity, method-specificity, indicator-specificity, and reliability) as well as the 

discriminant validity and stability of constructs and method effects in a longitudinal setting. 

For example, in the first application, it turned out that the reference method (self-report) 

showed strict measurement invariance over time, whereas the non-reference methods (parent 

and teacher ratings) exhibited weaker forms of invariance11. The analysis thus revealed a 

change in the psychometric properties of the measures belonging to the non-reference 

methods. 

Another substantively important finding was that parent and teacher ratings of depression 

and anxiety consistently showed poor convergent validity with respect to self-reports. This 

finding was consistent across both applications. The convergent validity of teacher ratings 

was slightly higher at the end of a school year than at the beginning, possibly reflecting the 

fact that the teachers’ ability to judge the mental state of their students increased as they got to 

know the children better. 

Poor convergent validity was also found with regard to the depression and anxiety means 

and regarding mean change. Parent ratings appeared to produce underestimates of the mean 

depression and anxiety levels relative to the self-report and were rather insensitive to mean 

changes. High correlations between depression and anxiety were found on the level of the 

state factors (reference method), on the level of the method factors (non-reference methods), 

and on the level of the latent difference factors indicating a rather low degree of discriminant 

validity. However, there was evidence for discriminant validity of mean changes over time (a 

relatively strong mean decrease in anxiety versus a rather weak mean decrease in depression). 

Furthermore, inter-individual differences with regard to the constructs and rater biases turned 

out to be quite stable over time. 

The CS-C(M–1) change model allows quantifying the convergent and discriminant validity 

of observed and latent change scores by means of variance components. Covariates of the 

latent state and change factors can be included in both model versions. In this way, 

                                                 
11 In the second application, for both the self- and parent report scales, strict factorial invariance was not rejected. 
This may be due to the fact that in this application, only three time points were considered. 
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researchers can test potential predictors or outcomes of states and change. Furthermore, 

attempts can be made to explain method-specific deviations of non-reference methods by 

external variables. For instance, in the present reanalysis, I identified sex as a significant 

predictor of anxiety states as measured by self-report (there was a tendency for girls to have 

higher latent anxiety scores), but not of any of the parent report states or of any change scores. 

Moreover, sex was slightly correlated with the specific view of parents regarding children’s 

depression at T1. I will discuss the most important advantages and limitations of the CS-

C(M–1) approach in the final discussion. 
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6 Monte Carlo Simulation Study 

6.1 Rational and Aims 

In order to study the applicability of the CS-C(M–1) approach in more detail, a Monte 

Carlo (MC) simulation study was carried out for both the state and change versions using the 

Mplus program. Simulation studies are useful to determine the minimum sample size (and 

other conditions) required for valid results, as these can not be determined analytically. 

Studying the limits of applicability is particularly important for models that are rather 

complex [like the CS-C(M–1) model]. 

The basic principle of MC studies is that a researcher predetermines the “true” population 

parameters for one or several theoretical models of interest and then draws random samples of 

the desired size from this “population”. The model (or a different model) is then fit to each of 

these “Monte Carlo samples” and the parameters and fit statistics are estimated and recorded 

for each MC sample. By comparing the (averaged) parameters and fit statistics from the MC 

samples to the known population values or theoretical distributions (e.g., the χ2 distribution), 

one can estimate bias in parameter estimates, standard errors, fit statistics, and so on. By 

relating bias to different MC conditions (e.g., different sample sizes, model misspecification 

etc.), one may identify favorable and unfavorable conditions for proper estimation of 

parameters, standard errors, fit statistics etc. (e.g., too small N). For a more detailed 

introduction into the rational and implementation of MC studies in SEM, see Bandalos (2006) 

as well as Muthén and Muthén (2002). 

Several simulation studies examining the performance of SEM under various conditions 

have already been conducted (e.g., Boomsma, 1982; Gerbing & Anderson, 1985; Jackson, 

2001; Marsh, Hau, Balla, & Grayson, 1998). In general, it has been found that SEM results 

become more reliable as the sample size and the number of unidimensional indicators per 

factor increase (e.g., Anderson & Gerbing, 1984; Boomsma, 1982; Marsh et al., 1998). The 

performance of cross-sectional MTMM models has also been investigated in a number of 

simulation studies (e.g., Conway, Lievens, Scullen, & Lance, 2004; Marsh & Bailey, 1991; 

Nussbeck, Eid, & Lischetzke, 2006; Tomás, Hontangas, & Oliver, 2000). However, the 

performance of complex longitudinal SEM-MTMM models with multiple indicators per 

CMOU has not yet been thoroughly studied. An exception is Crayen’s (2008) simulation 

study, in which she investigated the performance of the CS-C(M–1) state model under various 

conditions. The principal findings of Crayen’s (2008) study were that the parameters of the 

CS-C(M–1) state model are generally well recovered, even for relatively small sample sizes 
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(N = 125). Significant biases occurred for the standard errors of some parameters, but only 

when relatively small samples were used (N = 125). The inclusion of indicator-specific factors 

across time tended to cause estimation problems when a model for only two time points was 

simulated. Furthermore, it was found that the χ2 distribution was not well approximated for 

complex models (with many variables and degrees of freedom) unless the sample size was 

extremely large. 

In the present work, I conducted a small application-oriented simulation study in which I 

studied both the CS-C(M–1) state and change models. In contrast to Crayen (2008), I used 

actual parameter estimates obtained from applications to the MTMM-MO data set of Cole et 

al. (see Chapter 5.1) as “true” population values for the simulation. This made it possible to 

study the performance of the models under realistic conditions. I was particularly interested in 

the adequacy of the χ2 test statistic for evaluating goodness-of-fit, the parameter estimates, 

and the standard errors. Furthermore, as outlined in Chapter 1.3.1.1, cross-sectional MTMM 

models are often prone to convergence problems and improper solutions (Kenny & Kashy, 

1992; Marsh & Bailey, 1991). The longitudinal MTMM models presented in this work are 

even more complex models, given that more factors and an additional facet (indicator-

specificity over time) are considered. Hence, I was interested in determining the frequency of 

convergence problems and improper solutions for the CS-C(M–1) model. It is well-known 

that problems of nonconvergence and improper solutions are more likely for complex 

structural equation models, especially in small samples (Anderson & Gerbing, 1984). 

Researchers often do not have time and money to collect large samples, particularly when 

employing a MTMM longitudinal design. It is thus very important to determine to which 

degree the results obtained from the CS-C(M–1) state and change models are trustworthy also 

for relatively small samples (e.g., for N = 125 or 250).  

6.2 Method 

6.2.1 Population Models 

In line with a “classical” MTMM design, I fit a state, baseline change, and neighbor 

change CS-C(M–1) model with three constructs (depression, anxiety, and competence), three 

methods (self-, parent-, and teacher report), three occasions of measurement, and two 

indicators per CMOU (3 x 3 x 3 x 2 version) to the data set of Cole et al. (1996). The models 

assumed general state factors, invariance of factor loadings for all indicators over time, and 

included indicator-specific factors over time for all methods in line with the model variant 

introduced in Section 3.2. All indicator-specific factor loadings were fixed to unity. Each 
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model was rather complex, comprising 837 df and 702 freely estimated parameters. [The 

models fit the actual data well, χ2 (837, N = 906) = 1,095.01, p < .01; CFI = 0.99; 

RMSEA = .02.] The parameter estimates obtained for the models were used as true population 

values for the MC simulations12. Five different sample sizes were employed for each model 

variant (N = 125, 250, 500, 750, and 1000), leading to a 3 (model variant) x 5 (sample size) 

MC design. I used 500 replications (MC samples) for each condition and ML estimation, 

thereby assuming complete data (no missing values) for each condition. 

6.2.2 Criteria for Evaluating the Performance of the Models 

The following six criteria were used to evaluate the performance of the ML estimator for 

the models and a given sample size (see also Muthén & Muthén, 2002; as well as Nussbeck et 

al., 2006): 

6.2.2.1 Non-Convergence 

Non-convergence refers to the inability of SEM software to find unique solutions for the 

parameters of a model after a certain number of iterations. I recorded the number of 

replications for which the estimation process did not converge to a solution after 1000 

iterations. The criterion in the present study was that the rate of non-convergence should be 

below 1%. 

6.2.2.2 Improper Solutions 

The number of replications in which non-positive definite residual covariance matrices 

(“Heywood cases”) occurred was recorded. No more than 5% of the replications should 

produce such improper solutions. 

6.2.2.3 χ
2 Test 

I investigated the adequacy of the χ2 statistic for evaluating goodness-of-fit by comparing 

the observed MC χ2 distribution with the theoretical χ2 distribution. Large discrepancies 

between the distributions indicate that the χ2 approximation does not work well for a given 

sample size. (It is expected that both distributions become more and more similar with 

increasing sample size, implying that the χ2 test is generally more reliable in larger samples.) 

The present criterion was that the proportion of models that would be rejected at the 5% level 

based on the theoretical χ2 distribution should not be larger than .10 according to the MC χ2 

distribution. 

                                                 
12 Sample Mplus input files used for the simulations are provided in the appendix (see Sections 13.2 to 13.2.3). 
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6.2.2.4 Parameter Estimation Bias 

The parameter estimation bias (peb) is a measure of the reliability of the model parameters 

estimates and is given by: 

 p p

p

M e
peb

e

−
= , (219) 

where 
p

M  is the mean of the parameter estimates over all replications and 
p

e  is the true 

population value. The smaller the bias, the closer are the estimates to the true population 

values. It is commonly accepted that peb should not exceed .10 (i.e., 10%).  

6.2.2.5 Standard Error Bias 

The standard error bias (seb) is useful as a measure of the appropriateness of tests of 

significance of the model parameters. Biased standard errors lead to inaccurate significance 

testing (i.e., increased type I or type II error rates). seb is calculated by comparing the mean of 

the estimated standard errors over all replications (
SE

M ) with the standard deviation of the 

estimated model parameters over the MC replications (
p

SD ) and is given by: 

 SE p

p

M SD
seb

SD

−
= . (220) 

The criterion in the present simulation study was that seb should not exceed .10. 

6.2.2.6 Coverage 

Coverage refers to the proportion of replications for which the 95% confidence interval for 

an estimate contains the true population parameter value. Coverage should be between .91 

and .98. 

6.3 Results 

6.3.1 CS-C(M–1) State Model 

6.3.1.1 Non-Convergence 

Problems of non-convergence did not occur for any sample size. 
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6.3.1.2 Improper Solutions 

Although all replications converged to a solution, the number of replications in which a 

Heywood case (improper solution) occurred was unacceptably high for smaller sample sizes. 

For N = 125, 218 out of 500 replications (43.6%) showed a non-positive definite residual 

covariance matrix (i.e., a solution with at least one negative residual variance). For N = 250, 

there were still 59 replications (11.8%) with an improper solution, and for N = 500, 11 

replications (2.2%) with an improper solution were encountered. For the larger sample sizes, 

there were almost no Heywood cases: One improper solution (0.2%) was encountered for N = 

750 and none for N = 1000. 

6.3.1.3 χ
2 Test 

Table 18 shows the expected and observed proportions of the χ2 distribution for the 

different sample sizes (shown under the header Large model in Table 18). It can be seen that 

the χ2 approximation was not appropriate for any of the sample sizes considered, although it 

seemed to work better for larger sample sizes. (I added N = 1500 and 2000 as sample sizes in 

order to check whether the approximation would be better in still larger samples.) The 

observed proportions were larger than the theoretical proportions in all cases, implying a 

strongly increased type I error rate. That is, too many correctly specified models would be 

rejected according to the usual ML χ2 test statistic. The χ2 approximation was especially bad 

for N = 125, 250, and 500. Even for a relatively large sample size of 500, there was a type I 

error rate of 25% for a nominal alpha level of 5%.) 

Consequently, when fitting a 3 x 3 x 3 x 2 version of the CS-C(M–1) model, the 

conventional ML-χ2 test cannot be trusted unless the sample size is extremely large. This 

finding can be explained by the fact that the 3 x 3 x 3 x 2 version represents a very complex 

model. In many practical applications, researchers use simpler models with fewer constructs 

or methods. It is likely that the χ2 approximation works better for less complicated variants of 

the CS-C(M–1) model. 

To further investigate this issue, I extended the simulations to a smaller model version with 

only one construct (depression), two methods (self and parent report), two occasions of 

measurement, and two indicators per CMOU. This 1 x 2 x 2 x 2 version of the model is useful 

for many applications in psychology since research designs with one construct and two 

methods are very common in psychological intervention and evaluation studies (e.g., in 

clinical psychology, when the goal is to evaluate the effectiveness of a therapy for a specific 

disorder in a pre-post design including multiple raters). 
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The simulation results for the small model were encouraging in terms of both, the number 

of improper solutions and the χ2 approximation. In fact, all runs converged properly and only 

a very small number of Heywood cases were encountered for this model (four Heywood cases 

[0.8%] were encountered for N = 125, and none for the remaining sample sizes). The results 

for the smaller model are shown in the left part of Table 18 (under the header Small model). It 

can be seen that the χ2 approximation works much better for the smaller model, even for 

smaller sample sizes. Especially for the critical proportions (i.e., .05, .02, and .01), the 

observed values approximate the theoretical values reasonably well. 

 

Table 18  

Expected and Observed Proportions of the χ
2
 Statistic for Different Sample Sizes 

 Observed proportions 
 Small model  Large model 
Expected 

proportions 
125 250 500 750 1000  125 250 500 750 1000 1500 2000 

.99 .99 .99 .99 .99 1.00  1.00 1.00 1.00 1.00 1.00 .99 .99 

.98 .99 .98 .99 .98   .98  1.00 1.00 1.00 1.00 1.00 .99 .99 

.95 .95 .96 .97 .94   .95  1.00 1.00 1.00   .99   .99 .98 .97 

.90 .89 .93 .91 .89   .90  1.00 1.00   .99   .97   .98 .95 .93 

.80 .81 .84 .79 .78   .79  1.00   .99   .96   .91   .90 .87 .87 

.70 .73 .74 .69 .70   .70  1.00   .99   .92   .86   .83 .79 .77 

.50 .55 .52 .49 .49   .48  1.00   .98   .83   .73   .67 .61 .59 

.30 .34 .32 .28 .28   .28  1.00   .91   .66   .51   .46 .42 .41 

.20 .23 .22 .17 .19   .17  1.00   .85   .56   .39   .35 .31 .29 

.10 .14 .12 .08 .09   .08  1.00   .76   .39   .23   .19 .16 .16 

.05 .08 .07 .04 .04   .04    .99   .63   .25   .13   .12 .10 .08 

.02 .03 .04 .02 .02   .02    .99   .50   .14   .07   .06 .04 .04 

.01 .02 .03 .01 .01   .01    .99   .40   .07   .05   .03 .03 .02 

Note. Small model = one construct, two methods, two occasions of measurement, and two 
indicators per CMOU (1 x 2 x 2 x 2 version); Large model = three constructs, three methods, 
three occasions of measurement, and two indicators per CMOU (3 x 3 x 3 x 2 version); 
Expected proportions = proportions based on the theoretical chi-square distribution; 125, 250, 
500, 750, 1000, 1500, and 2000 indicate the sample size. 

 

6.3.1.4 Parameter Bias, Standard Error Bias, and Coverage 

I assessed parameter bias, standard error bias and coverage separately for different types of 

model parameters (e.g., loadings, variances, covariances etc.) given that possible bias might 

not affect all parameters in the same way. A detailed list of the simulation results for the 

3 x 3 x 3 x 2 model version is provided in Table 19. The peb and seb values presented in 

Table 19 represent averages of the absolute peb and seb values for each type of parameter. 
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(There were too many parameters to consider every single parameter separately.) 

Furthermore, mean coverage values are provided. Note that simulation results for 

theoretically meaningless covariances (see Chapter 3) have been omitted from Table 19 to 

save space. It can be seen that mean parameter bias is negligible regardless of the sample size 

(all mean peb values are .02≤ ). Mean standard error bias is also generally low (below .10), 

except for the state factor loadings (mean seb = .14), method factor loadings (mean seb = .19), 

and error variances (mean seb = .23) for the smallest sample size (N = 125). Also, for N = 

250, the error variances show a non-negligible mean seb of .11. Coverage is close to the 

optimal value of .95 for most parameters and sample sizes. Values outside the desired range 

of .91–.98 were found only for the method factor loadings and error variances for N = 125. 

These parameters also showed problematic values in terms of seb for N = 125. In sum, the 

peb, seb, and coverage values are rather encouraging and show that the ML model parameters 

and standard errors of complex versions of the CS-C(M–1) model can reliably be estimated, 

even in samples of moderate size. 
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Table 19  

Parameter Estimate Bias, Standard Error Bias, and Coverage for the Parameters of the CS-C(M–1) State Model 

 Sample size 
 125  250  500  750  1000 
Type of Parameter peb seb Coverage  peb seb Coverage  peb seb Coverage  peb seb Coverage  peb seb Coverage 
Intercepts .02 .08 .93  .02 .05 .94  .01 .04 .94  .01 .02 .95  .01 .02 .95 
State factor loadings .01 .14 .91  .01 .07 .93  .01 .04 .94  .01 .02 .94  .00 .02 .95 
Method factor 
loadings 

.00 .19 .88  .00 .09 .93  .00 .05 .93  .00 .04 .94  .00 .03 .94 

Error variances .02 .23 .87  .01 .11 .92  .01 .05 .94  .01 .04 .94  .00 .03 .94 
State factor means .00 .03 .95  .00 .03 .94  .00 .03 .95  .00 .01 .95  .00 .01 .95 
State factor variances .01 .07 .92  .00 .02 .94  .00 .02 .94  .00 .01 .95  .00 .02 .95 
Method factor 
variances 

.01 .05 .93  .01 .02 .94  .00 .02 .94  .00 .01 .95  .00 .02 .95 

Indicator-specific 
variances 

.01 .05 .94  .01 .03 .94  .00 .02 .95  .00 .01 .94  .00 .01 .95 

Inter-State 
covariances 

.02 .06 .92  .01 .02 .95  .00 .02 .94  .00 .03 .95  .00 .03 .95 

Inter-method 
covariances 

.02 .04 .94  .01 .02 .95  .01 .03 .95  .01 .02 .95  .01 .02 .95 

Note. peb = mean absolute parameter bias; seb = mean absolute standard error bias; coverage = mean proportion of replications for which the 
95% confidence interval contained the true population value. 
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6.3.2 CS-C(M–1) Change Models 

6.3.2.1 Non-Convergence, Improper Solutions, and χ2 Test 

Given that the baseline and neighbor change versions are just reformulations of the CS-

C(M–1) state model (cp. Chapter 4), the simulation results with respect to convergence, 

improper solutions, and χ2 approximation are identical to the results obtained for the state 

version (identical seeds were used in the simulations of the state and change versions). Hence, 

these findings do not need to be repeated here. In the following, only the peb, seb, and 

coverage values for the change versions are discussed. 

6.3.2.2 Parameter Bias, Standard Error Bias, and Coverage 

The mean peb, seb, and coverage results for parameters not available in the CS-C(M–1) 

state model (i.e., the means, variances, and covariances of the latent difference variables) are 

shown in Table 20. The results are similar to the results obtained for the state version. As 

expected, the values become generally better as N increases. For 500N ≥ , peb and seb values 

are negligible and coverage is close to .95. There is one exception: For the neighbor 

difference version, the mean peb values are large for the state difference factor means for all 

sample sizes (.18 .46peb≤ ≤ ). These high values are caused by the very small population 

mean of the difference factor for the construct competence (competence 3 – competence 2) 

which equals –0.001. This mean shows a large bias in all samples. However, as this mean 

practically equals zero, it is not of great theoretical interest so that this result can be neglected. 

6.4 Summary and Recommendations 

Although the generalizability of the findings of this small simulation study is limited to the 

specific model versions and parameter sets used here, some general trends are obvious. It 

turned out that the parameters of the CS-C(M–1) model can reliably be estimated for an 

MTMM-MO design with three constructs, three methods, three time points, and two 

indicators per CMOU, even if the sample size is as small as N = 125. For most parameters, 

negligible mean parameter and standard error biases were found, and coverage differed only 

marginally from .95 for most cases. Standard error bias was only found for small sample sizes 

(i.e., N = 125 and 250). These small samples were also found to be problematic in terms of 

Heywood cases. The large number of improper solutions that were encountered for sample 

sizes ≤  250, as well as large standard error biases for some parameters for N ≤  250 indicates 

that the 3 x 3 x 3 x 2 model version should be fit only with great caution and as many 
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parameter-reducing restrictions as possible if N is ≤  250. In this respect, it is interesting that 

in Marsh et al.’s (1998) MC study on the performance of conventional CFA models, 

increasing the number of appropriate indicators per factor had a positive effect in terms of 

fewer improper solutions. It would be worthwhile to investigate whether the use of more 

indicators per CMOU would lead to fewer improper solutions if N is small in the case of the 

CS-C(M–1) model as well. 

With respect to the ML χ2 test of model fit, it was found that the χ2 statistic may not 

approximate the theoretical χ2 distribution well if a 3 x 3 x 3 x 2 model version is used. This is 

true even when the sample size is very large. Strongly inflated type I error rates were found 

even for N = 1000, and the approximation was still bad for N as large as 2000. Sample sizes 

greater than N = 2000 seem to be needed to obtain reliable χ2 values that approximate the 

theoretical χ2 distribution well if the remaining assumptions (e.g., random sample, correct 

specification, multivariate normality) are met. Hence, an important finding of the present 

simulation study is that researchers who fit a 3 x 3 x 3 x 2 version of the CS-C(M–1) model 

and use the conventional χ2 test to evaluate the fit of the model take a large risk of incorrectly 

rejecting a proper model even if they use multivariate normal data and a very large sample 

size. 

An extension of the simulations revealed that for a smaller model, the χ2 approximation 

was quite accurate. These findings are in agreement with the simulation studies of other 

researchers (e.g., Crayen, 2008; Kenny & McCoach, 2003; Marsh et al., 1998), who also 

reported inflated type I error rates for the χ2 statistic when SEMs with a large number of df 

were analyzed. 

Crayen’s (2008) simulation study of a small and a complex version of the CS-C(M–1) state 

model yielded very similar results as did the present simulation: The χ2 approximation worked 

well for the small model version, but lead to strongly increased type I error rates for the 

complex model version, even when large samples were considered. Herzog, Boomsma, and 

Reinecke (2007) recommend that a corrected version of the χ2 statistic as proposed by Swain 

(1975) be used for the evaluation of SEMs with a large number of df. This appears to be a 

promising way to avoid an incorrect rejection of too many proper models. Another possible 

solution for the problem could be specific bootstrapping methods (e.g., Bollen & Stine, 1992). 

Further research investigating the adequacy of such methods for the case of the CS-C(M–1) 

model would be worthwhile. 

In addition, more research is needed to determine under which special conditions reliable 

χ
2 results are obtained also with larger model variants. For example, it might be that for a 
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highly constrained model, more constructs and methods could be used. In the present case, I 

only assumed invariance of factor loadings. Furthermore, many latent variable covariances 

were admitted that were not theoretically meaningful, and that turned out to be very close to 

zero in the application. It is likely that the χ2 approximation will be better for larger model 

variants if the number of free parameters can be reduced by imposing additional meaningful 

(and tenable) restrictions (e.g., equal loadings also within occasions of measurement, time-

invariant intercepts and error variances, time-invariant factor variances). This seems possible 

at least for some data sets if one carefully selects appropriate indicators that show strict 

measurement invariance over time and constrains all theoretically meaningless factor 

covariances to zero. In sum, the results of the simulation are rather encouraging, although 

researchers should not select too small samples if they plan to estimate very complex model 

versions.  



Monte Carlo Simulation Study 205 

Table 20  

Parameter Estimate Bias, Standard Error Bias, and Coverage for the Parameters of the CS-C(M–1) Change Models 

 Sample size 
 125  250  500  750  1000 
Type of parameter peb seb coverage  peb seb coverage  peb seb coverage  peb seb coverage  peb seb coverage 

 Baseline difference version 
State difference factor 
means 

.03 .02 .95  .04 .02 .94  .02 .03 .96  .02 .02 .95  .02 .02 .95 

State difference factor 
variances 

.01 .09 .92  .00 .05 .94  .00 .03 .95  .00 .02 .95  .00 .03 .94 

State difference factor 
covariances 

.03 .11 .92  .01 .04 .94  .01 .03 .94  .01 .02 .95  .01 .03 .94 

Method difference factor 
variances 

.01 .11 .92  .00 .04 .93  .00 .04 .94  .00 .02 .94  .00 .03 .95 

Method difference factor 
covariances 

.05 .07 .93  .04 .04 .94  .03 .03 .95  .02 .03 .95  .01 .03 .95 

 Neighbor difference version 
State difference factor 
means 

.29 .02 .95  .46 .03 .95  .20 .03 .95  .22 .03 .95  .18 .03 .95 

State difference factor 
variances 

.01 .08 .92  .00 .05 .94  .00 .03 .94  .00 .03 .95  .00 .02 .95 

State difference factor 
covariances 

.03 .11 .92  .02 .04 .94  .01 .04 .94  .01 .02 .95  .01 .03 .95 

Method difference factor 
variances 

.01 .10 .92  .01 .05 .94  .00 .04 .94  .00 .02 .94  .00 .03 .94 

Method difference factor 
covariances 

.06 .07 .93  .05 .04 .94  .02 .03 .95  .02 .03 .95  .02 .03 .95 

Note. peb = mean absolute parameter bias; seb = mean absolute standard error bias; coverage = mean proportion of replications for which the 
95% confidence interval contained the true population value. 
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7 Final Discussion 

In this work, I presented new SEMs for analyzing longitudinal MTMM data, the CS-C(M–

1) state and change models. My aim was to develop models that are general and flexible and 

that allow for an assessment of latent change in a MTMM context. It is for this reason that the 

models were developed as multiple indicator models that allow analyzing construct-specific, 

occasion-specific method effects. Furthermore, I presented two different model variants that 

take different forms of generalizing indicator-specific effects into account. In the final 

discussion, I summarize the most important advantages and limitations of the models, provide 

guidelines and tips for applied researchers, discuss links to other modeling approaches, and 

outline directions for future research. 

7.1 Advantages 

7.1.1 Simultaneous Analysis of MTMM-MO Data 

First of all, the CS-C(M–1) model overcomes a number of serious limitations of other 

approaches to analyzing MTMM-MO data by allowing for a simultaneous analysis of an 

entire MTMM-MO matrix in a single model. The first consequence is that it is no longer 

necessary to analyze separate models for each wave, rendering the analysis more practical and 

comprehensive. The second consequence is that there is no loss of information. Both the 

information at each time point and the (longitudinal) information about stability and change 

are taken into account. The model allows scrutinizing relationships among latent variables 

within and across time. For example, the discriminant validity as well as stability of 

constructs and method effects can be analyzed through latent correlations. (Note that in order 

to study the discriminant validity of constructs and the generalizability of method effects 

across constructs, at least two constructs are needed.) The model can also be used to study 

mean change over time. Hence, a complete longitudinal MTMM model can in principle be 

tested in a single step. (Note, however, that for practical reasons, I recommend an analysis 

strategy that makes use of several steps; see Section 5.2 and discussion below.)  

7.1.2 Separation of Variance Components 

Another important advantage of the models presented here is that they explicitly take 

measurement error into account. A detailed variance decomposition allows separating true 

score variance from random error variance, and the true variance can be further partitioned 

into up to three different sources (occasion-specific consistency, method-specificity, and 
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indicator-specificity). Hence, the models allow for a very fine-grained analysis of the 

psychometric properties of the measures at each time point. 

7.1.3 Determination of the Degree of Indicator-Specificity 

Indicator-specific effects that generalize across time frequently cause problems in 

longitudinal investigations if these are not properly represented in the model used to analyze 

the data. In MTMM(-MO) designs, issues of indicator-specificity are particularly 

complicated, especially when equivalent scales are used across methods. It might then be 

necessary to deal with specific variance that generalizes across methods. 

In the past, approaches to handle these types of indicator-specificity have often focused on 

correlated uniqueness (CU) models (models with correlated error variables; e.g., the multi-

occasion CU approach presented by Cole & Maxwell, 2003, see Chapter 1.3.2.1). Although 

CU models are relatively straightforward, one disadvantage of these models is that they do 

not model indicator-specificity directly by latent factors, but indirectly through correlated 

uniquenesses. Hence, random error is confounded with reliable specific variance in CU 

models, leading to an underestimation of the reliabilities of the indicators (see discussion in 

Chapter 1.3.1.1). The present models allow modeling different forms of indicator-specificity 

appropriately. They make it possible to disentangle reliable specific and error components of 

variance. Different CS-C(M–1) model variants have been presented in Chapter 3, and 

additional strategies for detecting and handling different forms of indicator-specificity have 

been discussed in Chapter 5.2. 

7.1.4 Measurement Invariance Testing 

By analyzing a series of nested models, fine-grained tests of measurement invariance over 

time can be conducted. Measurement invariance is crucial for many types of research 

questions in longitudinal research. In the CS-C(M–1) model, different degrees of 

measurement invariance over time are represented by different sets of parameter equality 

constraints. Different nested models can be statistically tested against each other to determine 

the degree of (non)invariance for different methods. In this way, it is possible to detect 

changes in the psychometric properties of the indicators over time (e.g., changes in the degree 

of convergent validity or method-specificity). Detailed guidelines for a useful sequential 

modeling strategy were provided in Chapter 5.2. 
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7.1.5 Analysis of Latent Change 

Both the CS-C(M–1) state and change models allow for an analysis of inter-individual 

differences in intra-individual change and of mean change over time. In the state model, 

change is indicated by correlations < 1.0 between state factors over time. Mean differences 

between state variables can also be analyzed. In the change versions, inter-individual 

differences in intra-individual change are directly represented by latent difference variables. 

The advantage of latent difference variables is that they are corrected for measurement error, 

whereas observed change scores are often greatly distorted by measurement error (cp. 

Chapter 4.7). Although the CS-C(M–1) change versions represent just reparameterizations of 

the CS-C(M–1) state models, they are very useful as they make the information about change 

more directly available. Thus, the change models are useful if one seeks to analyze individual 

differences in change more thoroughly, for instance by relating latent change scores to 

external variables. 

Furthermore, the latent difference models offer a variance decomposition of the change 

score into consistency, method-specificity, and reliability. In contrast to growth curve models, 

no specific functional form of change is assumed in the change models, making these models 

rather general and unrestrictive. Note, however, that the CS-C(M–1) state model can easily be 

extended to a second-order growth model, in which specific hypotheses with respect to the 

form of change (i.e., linear vs. curvilinear) can also be tested on the level of the latent state 

factors. 

7.1.6 Inclusion of Covariates 

An important advantage of either CS-C(M–1) model version (state vs. change) is that 

additional external variables can be added to the model. Such variables can be correlates, 

predictors, or outcomes of the latent factors in the model. For example, in the application 

presented in this work, I found that the factors representing change in anxiety were positively 

related to the factors representing change in depression. One might also attempt to explain 

method-specific deviations (the deviation from the reference method; lack of convergent 

validity) by external variables. Method factors can be regressed on such explanatory 

variables. In this way, a researcher can try to answer the question of why different methods 

diverge in the assessment of states and change. In the present application, I found that sex was 

correlated with parent’s rater bias with respect to the depression state at T1—although the 

effect was rather small. 
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7.2 Limitations 

7.2.1 Model Complexity and Required Sample Size 

An important limitation of the CS-C(M–1) models concerns their complexity. Even with a 

moderate number of indicators, constructs, methods, and time points, the number of estimated 

parameters is rather large. Therefore, the models are not appropriate for small samples. This 

was shown in the application-oriented MC simulation study presented in Chapter 6. Although 

convergence problems did not occur at all, the likelihood of improper solutions, parameter 

bias, and standard error bias increased significantly for N’s smaller than 250, at least for a 

complex model version with three constructs, three methods, and three time points. With 

larger N, these problems were less common, but the χ2 approximation of the χ2 goodness-of-fit 

test was still bad for the complex model version considered. These results were in line with 

Crayen’s (2008) extended simulation study of different CS-C(M–1) state models. 

It is a practical problem that large sample sizes are often unavailable, especially in a 

MTMM-MO context, where data collection is very costly in the first place. A possible 

solution for this problem is to reduce model complexity (i.e., the number of freely estimated 

parameters) by adding additional constraints (such as fixing theoretically meaningless factor 

correlations to zero, setting intercepts, loadings, and variances equal where this is appropriate 

etc.). This has the additional benefit of making (1) the model more parsimonious and (2) the 

model test even more stringent as additional hypotheses are tested. Furthermore, indicators 

should be selected that are as homogeneous as possible to avoid additional model complexity 

due to indicator-specific factors. 

Note, however, that greater model complexity does not always lead to more problems in 

SEM. More information (e.g., a larger number of appropriate indicators per factor) can also 

have beneficial effects as has been shown by Marsh et al. (1998). Further research is needed 

to determine the specific conditions under which complex versions of the CS-C(M–1) model 

can be used even with small N. Until then, given potential estimation problems with complex 

models in small samples, I recommend that researchers who are in doubt as to whether their 

sample is large enough conduct an application-oriented simulation study to determine the 

minimum sample size required for valid results (e.g., Bandalos, 2006). Muthén and Muthén 

(2002) discuss how such a simulation can easily be implemented in the Mplus program. 

Furthermore, I provide sample Mplus scripts that were used for the present simulation study 

in the appendix (see Section 13.2). 
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7.2.2 Types of Indicators 

The models presented in this work assume continuous indicators (e.g., test sum scores). In 

practice, one often has only categorical (ordinal) items. In principle, the models presented 

here can also be applied to ordinal or dichotomous items. However, in this case, special CFA 

models and appropriate estimators for ordinal/dichotomous variables should be employed, 

especially if the indicators have few response categories and are skewed (Finney & 

DiStefano, 2006). The Mplus program offers a special adjusted weighted least squares 

estimator (so-called WLSMV estimator, Muthén & Muthén, 1998-2007) for such type of data. 

The basis for a WLSMV analysis is the matrix of polychoric correlations (tetrachoric 

correlations for dichotomous outcomes), which is estimated by the program. The WLSMV 

estimator has been found to perform well for SEMs with ordinal latent variable indicators 

(Beauducel & Herzberg, 2006; Muthén, du Toit, & Spisic, 1997; Nussbeck et al., 2006). 

If the indicators are continuous but non-normal, robust versions of the ML estimator (e.g., 

Satorra & Bentler, 1994) or bootstrap methods (Bollen & Stine, 1992) are available to obtain 

robust standard errors and test statistics. 

7.2.3 Reference Method 

Another aspect that may be conceived as a limitation is related to the choice of a reference 

method. Recall that the CS-C(M–1) approach requires that one method be selected as 

reference method. The choice of the reference method has important consequences for the 

interpretation of the model results, as the meaning of the latent state, method, and indicator-

specific factors depends on the choice of the reference method. Therefore, I recommend that 

researchers make an informed choice based on substantive considerations and ease of 

interpretation. Which method is most outstanding? Which comparison or contrast between 

methods is most interesting from a theoretical or substantive point of view? Also, the 

guidelines provided in Geiser et al. (2008) for the cross-sectional CT-C(M–1) model should 

be considered when applying the CS-C(M–1) approach. 

Furthermore, it should be noted that the CS-C(M–1) model is not symmetric across 

different reference methods. That is, the fit of the model may (and in general will) change if 

an alternative reference method is selected. However, this issue can be solved by specifying a 

slightly more restricted variant of the model that is nested within the general CS-C(M–1) 

model. In the restricted version, specific constraints are imposed on loading parameters, 

leading to a model variant whose fit is invariant across different reference methods. This 

restricted specification has been described in detail for the cross-sectional CT-C(M–1) 
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approach (Geiser et al., 2008). This specification was not discussed here in detail to simplify 

the presentation and to keep the focus on the main goals of this work. However, readers may 

consult Geiser et al. (2008) and transfer the restricted specification to the CS-C(M–1) model.  

7.2.4 Types of Methods 

Given that a reference method needs to be selected, the CS-C(M–1) model is most 

appropriate for MTMM-MO designs that employ structurally different methods (Eid et al., 

2003; Geiser et al., 2008). Structurally different means that the methods (raters) considered 

are not a random sample drawn from a common set of raters (Eid et al., in press). For 

example, in the application presented in this thesis, depression and anxiety were assessed by 

self-, parent, and teacher ratings, representing three different types of raters. It is obvious that 

self-, parent, and teacher reports cannot be conceived of as interchangeable methods, given 

that, for instance, a given self-report is fixed and cannot be replaced by another self-report 

drawn from a set of equivalent self-reports. In the case of structurally different methods, it 

makes sense to select one method (e.g., the self-rating) as the reference against which the 

remaining methods are contrasted. Yet the choice of a reference method may be difficult (and 

not really meaningful) if one uses interchangeable methods. Methods are considered 

interchangeable if they are randomly drawn from a set of structurally equivalent methods (Eid 

et al., 2003, in press). As an example, consider the case of university teachers who are 

evaluated by a random sample of their students. Given that all students have more or less the 

same access to the teacher’s behavior, it does not really matter which students are chosen. The 

different “methods” can therefore be regarded as interchangeable which implies that one 

could equally well select another sample of raters. (For a detailed discussion of different types 

of methods see Eid et al., in press.) In the present work, I only considered the case of 

structurally different methods, given that structurally different methods are most often used in 

MTMM research designs. An important task for future research is to develop appropriate 

MTMM-MO models for interchangeable methods. 

7.2.5 Measurement Invariance 

I return to the issue of measurement invariance here once again as it is a very important 

issue in longitudinal data analysis. As I pointed out before, a requirement for the proper 

interpretation of latent difference variables as considered in the CS-C(M–1) change models is 

that the measurement structure remains invariant over time. This means that at least intercept 

and factor loading invariance is required. As I illustrated in Chapter 5.5, this assumption is 

testable, and in the present application, it was not rejected by the goodness-of-fit criteria. 
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However, measurement invariance might not always be tenable. If it is not tenable, a 

meaningful interpretation of the latent change factors might not be possible. However, as 

discussed above, in many cases, researchers will be able to establish at least partial 

measurement invariance (Byrne et al., 1989), meaning that invariance is tenable for at least 

some indicators of a construct. Partial invariance might under certain circumstances be 

sufficient to the warrant proper interpretation of the latent change factors. However, future 

research is needed to clearly determine invariance conditions that are necessary and sufficient 

for a sound interpretation of the results. 

7.2.6 Detection of Invariance and Changes in Method Effects 

An interesting question is whether all kinds of non-invariance and changes in method 

effects over time are detectable by the CS-C(M–1) model under various research designs. In 

principal, changes in parameter values over time can be detected whenever a parameter can be 

freely estimated. Whether a parameter is freely estimable or not depends on the identification 

status of the model. For example, in a 2 x 1 x 2 x 2 design (one construct measured by two 

methods on two occasions of measurement; two indicators per CMOU), loading invariance 

over time for the method factors can only be detected if the method factor at T1 is correlated 

with the method factor at T2 (given that both factors are measured by only two indicators in 

this design). Otherwise, the model with free method factor loadings for the second indicator 

would be underidentified (unless the method factors are correlated with some kind of external 

variable that is also included in the model). Likewise, under this design, it may not be 

possible to detect changes in the indicator-specific factor loadings over time, unless the 

indicator-specific factor for the second indicator of the reference method is substantially 

correlated with the indicator-specific factor for the second indicator of the non-reference 

method (or the factors are correlated with an external variable). 

In this respect, it is noteworthy that Crayen (2008) found the 2 x 1 x 2 x 2 case to be prone 

to improper solutions if indicator-specific factors were included. I therefore recommend that 

at least three homogeneous indicators per CMOU be used in this case to avoid indicator-

specific factors and to ensure the proper identification of the method factors. Another 

recommendation is that it is better to have at least three occasions of measurement, as this 

enhances the identification status of the indicator-specific factors. 

7.2.7 Indicator-Specific Effects 

The parameters of models with i – 1 indicator-specific factors over time (see Section 3.2) 

may be difficult to interpret if the indicator-specific factors account for a large portion (say 
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more than 20–30%) of the variance of the indicators. High indicator-specificity implies that 

the indicators are heterogeneous and mirror distinct facets of a construct. (This problem is 

neither specific to the case of only two time points nor is it specific to the models presented 

here.) 

The choice of the reference indicators for which no indicator-specific factors are included 

has consequences for the interpretation of the state factors. This is especially true if the 

proportion of indicator-specific variance is large. The results obtained from the structural 

model (e.g., the latent variable correlation matrix and correlations with covariates) might then 

strongly depend on the choice of the reference indicators for which no indicator-specific 

factors are specified. (This is essentially the same issue as with the selection of a reference 

method, see discussion above.) 

Given these potentially problematic issues, I recommend that researchers make an effort to 

identify and use indicators that are as homogeneous as possible to avoid potential estimation 

and interpretation problems associated with indicator-specific effects. If this is not possible, 

researchers should carefully check the degree of indicator-specificity and make a theoretically 

sound choice of the reference indicator for each latent state factor. The reference indicator 

should be a “gold standard” measure that allows for an unambiguous interpretation of the 

latent state factors. Furthermore, a sensitivity analysis in which different reference indicators 

are used can help clarifying the consequences of choosing a particular reference indicator. If 

the results differ strongly for different reference indicators, researchers should be very careful 

in deciding which model version to use. 

7.2.8 State-Trait Distinction 

Finally, it should be noted that the CS-C(M–1) model does not allow for a separation of 

occasion-specific influences from stable (trait-like) components of variance (e.g., Courvoisier 

et al., in press; Steyer et al., 1992, 1999). The state and method factors in the CS-C(M–1) 

model comprise both, error-free variance due to momentary states and variance due to stable 

trait influences. The model is therefore most appropriate for studies in which researchers are 

interested in trait change over time. 

Nonetheless, the strengths of occasion-specific influences can be evaluated indirectly in the 

CS-C(M–1) model by assessing the correlations between the same state and method factors 

over time. Correlations close to one indicate that a construct is trait-like, rather than strongly 

influenced by occasion-specific influences. However, if the goal is not to assess trait change, 

but to separate variance components due to trait and occasion-specific influences in a multi-
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method context, the multi-method LST model should be applied (Courvoisier et al., in press; 

see Chapter 1.3.2.3 and Figure 7). 

7.3 Summary of Guidelines and Tips for Applications 

Given the limitations discussed in the previous section, some general guidelines and tips 

for the use of the CS-C(M–1) approach in practice can be summarized as follows: 

 

1. Use the CS-C(M–1) model only for structurally different methods. 

2. Conduct an application-oriented simulation study if you are not sure whether 

your (anticipated) sample size is large enough to obtain valid results from a 

CS-C(M–1) analysis. 

3. Be careful in interpreting the conventional χ2 test for complex model versions 

unless the sample size is very large. 

4. Introduce as many parameter-reducing constraints as possible as long as these 

are tenable (do not lead to a distortion in model fit) and theoretically 

meaningful. 

5. Use appropriate estimation methods (e.g., WLSMV) if ordinal items are 

selected as latent variable indicators. 

6. Select the reference method based on careful theoretical considerations and 

ease of interpretation. 

7. Select indicators that are as homogeneous as possible and carefully check the 

degree of indicator-specificity (see also Point 8 and Point 9). If you use the 

CS-C(M–1) model with indicator-specific factors across time, conduct 

sensitivity analyses using different reference indicators to determine the 

consequences of changing the reference indicator. 

8. If the proportion of indicator-specific variance over time is strong, possibly 

select a “gold standard” measure as reference indicator for each latent state 

factor. 

9. Use the 3-Step procedure described in Chapter 5.2 to test for indicator-

specificity and measurement invariance across time. 

10. If measurement invariance is not tenable for all indicators, try to establish 

partial measurement invariance. 
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11. Collect data on more than two time points if possible and possibly use more 

than two indicators per factor to ensure proper identification and to minimize 

the likelihood of improper solutions. 

12. Use Courvoisier et al.’s (in press) multi-method LST model if the goal is to 

separate variance components due to stable trait influences from momentary 

states. 

7.4 Comparison With Other Approaches 

To my knowledge, Burns et al. (2003; see also Burns & Haynes, 2006) were the first who 

explicitly proposed a CFA model for analyzing MTMM-MO data. As mentioned above, their 

model represents an extension of the single occasion CT-CM model (Marsh, 1989; Marsh & 

Bailey, 1991; Marsh & Grayson, 1995). The difference between Burns et al.’s multioccasion 

CT-CM model and the CS-C(M–1) model is that by defining one method as reference, the 

CS-C(M–1) model needs one method factor less than methods considered. In this way, an 

overfactorization that often leads to estimation problems in applications of the CT-CM model 

is avoided. Furthermore, the CS-C(M–1) model is in some sense less restrictive than Burns et 

al.’s model as it makes use of multiple indicators per CMOU. In this way, method effects can 

be conceptualized as being construct-specific and are not forced to generalize perfectly across 

different constructs. The use of multiple indicators per CMOU makes it possible to define 

construct-specific change factors also on the level of the method factors as illustrated in this 

paper. This would not be possible in Burns et al.’s model unless one would extend this model 

to a multiple indicator model. 

Scherpenzeel and Saris (2007) presented a similar model, but with uncorrelated method 

factors and specific equality assumptions with regard to method effects. Their model 

represents an extension of the single indicator CT-UM model (see Chapter 1.3.1.1) to a 

longitudinal model. Scherpenzeel and Saris (2007) also discussed how their model can be 

extended to a multi-method LST model.  

Vautier et al. (in press) recently presented a true change model with method effects. Their 

model is useful to deal with heterogeneous indicators in longitudinal studies. However, it is 

not specifically designed to analyze MTMM-MO data. Vautier et al.’s model includes only 

one indicator per CMOU, whereas the models discussed here are multiple indicator models. 

As a consequence, Vautier et al.’s model assumes perfect temporal stability of method effects 

and thus is not suitable for analyzing the convergent and discriminant validity of change. In 

contrast, the models presented here are specifically designed to deal with changes in all 
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methods. Note, however, that Vautier et al.’s model could be extended to a multiple indicator 

model in which the assumption of perfect stability of method effects could be tested. Yet the 

extended model would still be different from the CS-C(M–1) change model in that the method 

factors in Vautier et al.’s model are defined as difference factors (Vautier et al., in press), 

whereas the method factors in the CS-C(M–1) model are defined as residual factors (Geiser et 

al., 2007). The detailed variance decomposition into consistency, method-specificity, 

indicator-specificity, and reliability available in the CS-C(M–1) model is not available in 

Vautier et al.’s model. 

As mentioned above, some research questions are less concerned with trait change (as 

assessed by the models presented here), but rather with situation-specific fluctuations around 

a stable trait value. For example, a researcher might be less interested in inter-individual 

differences in intra-individual change with respect to anxiety, but rather in the degree of 

situation-specific influences on the measurement of anxiety (e.g., Vautier, 2004). If the goal is 

to separate stable from situation-specific components of variance (in addition to the separation 

of method and error variance) in a MTMM-MO study, the multi-method LST model proposed 

by Courvoisier et al. (in press) can be applied. A related approach has been presented by 

Vautier (2004) who showed how method effects caused by bipolar items can be studied in an 

extended LST model. Scherpenzeel and Saris (2007) also presented a multi-method LST 

approach, but based on single indicators per CMOU. 

7.5 Directions for Future Research 

Finally, I think that it is useful to point out some aspects of MTMM-MO modeling that 

deserve attention in future studies. First of all, as was obvious from the simulation study 

presented in Chapter 6, further research is needed to identify optimal conditions for the 

applicability of the CS-C(M–1) approach and for MTMM-MO models in general. Although 

my preliminary findings were rather encouraging, more detailed analyses of the limits of 

SEMs for MTMM-MO data are necessary. 

Second, I already mentioned that MTMM-MO models specifically designed for 

interchangeable methods have not yet been developed. Interchangeable methods are quite 

common in psychology, so that the development of appropriate models for MTMM-MO data 

obtained from interchangeable methods is an important task for future research. 

Third, given the omnipresence of categorical data in psychology and other social science 

disciplines, it would be worthwhile to consider MTMM-MO modeling approaches for 

categorical data in more detail. Which kind of specific problems are associated with the 
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analysis of ordered categorical (ordinal) and dichotomous MTMM-MO data (e.g., regarding 

item-specificity and measurement invariance over time)? How can latent variable MTMM-

MO models for non-ordered categorical (nominal) data (e.g., multimethod latent transition 

models) be defined?  

Fourth, as I showed in my discussion of the indicator-specificity issue, this is an important 

practical modeling problem in facetted data structures such as MTMM-MO data. Although I 

presented two approaches to dealing with indicator specificity (one model for indicator-

specific effects that generalize across methods but not across time, and one model for 

indicator-specific effects that generalize across time but not across methods), these two 

models might not cover all possible constellations of indicator-specificity that might occur in 

real data. Although this was not the case in the application presented in this work, it might be 

possible that indicator-specific effects generalize across both, different methods and across 

time. Future research should define and explore models that are able to handle both types of 

generalizing indicator-specificity simultaneously, as homogeneous indicators are rare in the 

social sciences. Moreover, the models presented here assume that indicator-specific effects 

are unidimensional. This might not always be a reasonable assumption. For example, 

indicator-specific effects may change in the course of a longitudinal investigation and the 

residual covariance structure might not be in line with a unidimensional model. Hence, it 

seems worthwhile to explore possibilities for modeling heterogeneous indicator-specific 

effects appropriately in the future. 

Furthermore, it would be interesting to consider further extensions of the CS-C(M–1) 

approach. For instance, I mentioned that the CS-C(M–1) model can easily be extended to a 

latent autoregressive model or to a second-order latent growth curve model by imposing a 

second order growth structure on the latent state factors. Second-order growth models are 

very useful to test various hypotheses about change (Ferrer, Balluerka, & Widaman, 2008; 

Hancock, Kuo, & Lawrence, 2001; McArdle, 1988; Sayer & Cumsille, 2001). Another useful 

extension would be a multiple groups CS-C(M–1) model that could for example be used to 

analyze data obtained from multi-method intervention or evaluation studies.  
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8 Conclusion 

Longitudinal multi-method research designs have become increasingly popular in 

psychology over the past years. MTMM-MO data offer exciting new insights into 

psychological phenomena. In the present work, my goal was to show how sophisticated 

statistical models can be defined and applied to properly analyze MTMM-MO data and to 

extract as much information as possible from such kind of data. Although MTMM-MO data 

sets are very complex, with a theoretically sound and well-structured step-by-step analysis 

strategy, there is no need for researchers to be afraid of SEM analyses of such data. 
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9 Summary 

In the present work, new structural equation models (SEMs) for the analysis of multitrait-

multimethod-multioccasion (MTMM-MO) data are presented. The definition and 

psychometric analysis of the models is based on stochastic measurement theory (Steyer, 1989; 

Suppes & Zinnes, 1963). The applicability of the new models is evaluated through a 

reanalysis of a real MTMM-MO data set and a Monte Carlo simulation study.  

In the introduction, an overview of existing SEMs for cross-sectional MTMM data is 

provided. The Correlated Trait-Correlated Uniqueness (CT-CU; Marsh, 1989), Correlated 

Trait-Correlated Method (CT-CM; Widaman, 1985), Correlated Trait-Uncorrelated Method- 

(CT-UM), and Correlated Trait-Correlated (Method Minus One)- [CT-C(M–1); Eid, 2000] 

models are briefly reviewed and compared. It is concluded that the CT-C(M–1) model for 

multiple indicators per trait-method unit (Eid et al., 2003) is one of the most useful models 

currently available for cross-sectional MTMM data. Subsequently, three different SEM 

approaches to the analysis of longitudinal MTMM data are discussed: Cole and Maxwell’s 

(2003) multi-occasion CU model; Burns, Walsh, and Gomez’ (2003) Correlated State-

Correlated Method model (Burn & Haynes, 2006); and Courvoisier’s (2006) multi-method 

latent state trait model (Courvoisier, Nussbeck, Eid, Geiser, & Cole, 2007). It is shown that a 

general measurement model for analyzing MTMM data and for analyzing change in MTMM-

MO studies has not yet been developed. 

Subsequently, basic principles of classical test theory (Steyer, 1989, Steyer & Eid, 2001) 

and latent state theory (Steyer, 1988; Steyer, Ferring, & Schmitt, 1992) are reviewed. These 

concepts are used in the formulation of the new MTMM-MO models. Afterwards, two 

versions of the Correlated State-Correlated (Method Minus One) [CS-C(M–1)] model are 

introduced. These models represent a combination of Eid et al.’s (2003) multiple indicator 

CT-C(M–1) model and the correlated state model for mono-method data (Steyer et al., 1992). 

A detailed psychometric analysis of the CS-C(M–1) models is provided. It is then shown how 

CS-C(M–1) models can be extended to latent difference models to study inter-individual 

differences in intra-individual change over time. The so-called CS-C(M–1) change model 

represents a multimethod extension of Steyer, Eid, and Schwenkmezger’s (1997) true change 

model (Steyer, Partchev, & Shanahan, 2000). The CS-C(M–1) change model can be used to 

study change in different methods simultaneously and to determine the degree of convergent 

validity and method-specificity of observed and latent change scores. 
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In the empirical part, a 3-Step procedure for analyzing, testing and selecting an appropriate 

CS-C(M–1) model is presented and the applicability of the new models is investigated in a 

reanalysis of a MTMM-MO data set and a Monte Carlo simulation study. The results show 

that the new models are useful to analyze the complex structure of a MTMM-MO matrix 

obtained from multiple indicators per construct-method-occasion unit. In the final part, 

advantages and limitations of the models as well as detailed guidelines for potential users are 

discussed. Furthermore, the new models are compared with already established methods for 

analyzing MTMM-MO data and directions for future research are pointed out. 
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13 Appendix 

13.1 Mplus Scripts for Estimating the CS-C(M–1) Model 

13.1.1 CS-C(M–1) State Model 

TITLE: Correlated State-Correlated (Methods-1) Model 

  State version with general state factors  

  and indicator-specific factors over time (see Figure 17) 

  Constructs: Depression, Anxiety 

  Methods: Self-report (reference method), parent report,  

  teacher report 

  4 measurement occasions (T1-T4) 

  Model variant 3D_2 reported in Chapter 5.4 

  Lines beginning with an exclamation mark (!) represent  

  comments 

 

! Name of the ASCII file containing the data to be analyzed: 
DATA: FILE = mtmmmo.dat; 

 

VARIABLE: 

 

! Names of the variables to be analyzed: 
NAMES =  class 

    ds11 ds21 ds12 ds22 ds13 ds23 ds14 ds24 

    dp11 dp21 dp12 dp22 dp13 dp23 dp14 dp24 

    dt11 dt21 dt12 dt22 dt13 dt23 dt14 dt24 

    as11 as21 as12 as22 as13 as23 as14 as24 

    ap11 ap21 ap12 ap22 ap13 ap23 ap14 ap24 

    at11 at21 at12 at22 at13 at23 at14 at24; 

 

! class is the cluster variable indicating the 
! hierarchical (multilevel) structure of the data 
! (children nested within school classes) 
! ds = depression self-report (reference method) 
! dp = depression parent report 
! dt = depression teacher report 

! as = anxiety self-report (reference method) 
! ap = anxiety parent report 
! at = anxiety teacher report 
! The first number refers to the indicator 
! The second number indicates the occasion of measurement 
 

! Variables to be used in the model: 
USEVAR = ds11 ds21 ds12 ds22 ds13 ds23 ds14 ds24 

         dp11 dp21 dp12 dp22 dp13 dp23 dp14 dp24 

         dt11 dt21 dt12 dt22 dt13 dt23 dt14 dt24 

         as11 as21 as12 as22 as13 as23 as14 as24 

         ap11 ap21 ap12 ap22 ap13 ap23 ap14 ap24 

         at11 at21 at12 at22 at13 at23 at14 at24; 

 

! Missing value flag: 
! Missing values are coded with “99” for all variables 
MISSING = ALL(99); 

 

! Grouping variable indicating in which way 
! the observations are clustered (school class number) 
CLUSTER = class; 
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! Multilevel structure is accounted for by using a robust 
! Maximum Likelihood (ML) estimator (TYPE = COMPLEX) 
! In Mplus 4, Full information ML (FIML) estimation with missing data 
! is requested by choosing “MISSING H1” 
! (as of Mplus version 5, FIML estimation is the default) 
ANALYSIS:  TYPE = COMPLEX MISSING H1; 

 

! Model to be estimated: 
MODEL: 

! Depression: Latent state factors T1-T4 
! factor loadings are set equal over time 
! for the self- and parent report indicators 
! the teacher report loadings are unconstrained 
! (note: the loading of the first indicator following 
! the BY statement is set equal to 1 for identification as the default) 
! dep1 by ds11 
        ds21 (1) 

        dp11 (2) 

        dp21 (3) 

        dt11 

        dt21; 

 

dep2 by ds12 

        ds22 (1) 

        dp12 (2) 

        dp22 (3) 

        dt12 

        dt22; 

 

dep3 by ds13 

        ds23 (1) 

        dp13 (2) 

        dp23 (3) 

        dt13 

        dt23; 

 

dep4 by ds14 

        ds24 (1) 

        dp14 (2) 

        dp24 (3) 

        dt14 

        dt24; 

 

! Depression: Method factors parent rating T1-T4 
! The loadings are constrained to be time-invariant 
mpd1 by dp11 

        dp21 (4); 

 

mpd2 by dp12 

        dp22 (4); 

 

mpd3 by dp13 

        dp23 (4); 

 

mpd4 by dp14 

        dp24 (4); 

 

! Depression: Method factors teacher rating T1-T4 
! The loadings are constrained to be time-invariant 
mtd1 by dt11 

        dt21 (5); 
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mtd2 by dt12 

        dt22 (5); 

 

mtd3 by dt13 

        dt23 (5); 

 

mtd4 by dt14 

        dt24 (5); 

 

! Depression: Indicator-specific factors for the second indicator 
! Self-report T1-T4 
! The loadings are fixed to one on all occasions of measurement 
isd by ds21 ds22@1 ds23@1 ds24@1; 

 

! Parent report T1-T4 
! The first loading is fixed to one by default 
! The loadings at T2, T3, and T4 are freely estimated 
ipd by dp21 dp22 dp23 dp24; 

 

! Teacher report T1-T2 
! The loadings are fixed to one on both occasions of measurement 
itd1 by dt21 dt22@1; 

 

! Teacher report T3-T4 
! The loadings are fixed to one on both occasions of measurement 
itd2 by dt23 dt24@1; 

 

! Depression: Factor covariances that are constrained to zero 
mpd1 with dep1@0 dep2@0 dep3@0 dep4@0; 

mpd2 with dep1@0 dep2@0 dep3@0 dep4@0; 

mpd3 with dep1@0 dep2@0 dep3@0 dep4@0; 

mpd4 with dep1@0 dep2@0 dep3@0 dep4@0; 

mtd1 with dep1@0 dep2@0 dep3@0 dep4@0; 

mtd2 with dep1@0 dep2@0 dep3@0 dep4@0; 

mtd3 with dep1@0 dep2@0 dep3@0 dep4@0; 

mtd4 with dep1@0 dep2@0 dep3@0 dep4@0; 

isd with dep1@0 dep2@0 dep3@0 dep4@0; 

ipd with dep1@0 dep2@0 dep3@0 dep4@0 mpd1@0 mpd2@0 mpd3@0 mpd4@0; 

itd1 with dep1@0 dep2@0 mtd1@0 mtd2@0; 

itd2 with dep3@0 dep4@0 mtd3@0 mtd4@0; 

 

! Depression: Variances 
! Factor variances are constrained to be time-invariant 
! for the state factors and method factors 
! pertaining to the parent rating 
dep1-dep4 (6); 

 

mpd1-mpd4 (7); 

 

! Depression: Residual variances 
! Residual variances are constrained to be 
! time-invariant for all indicators 
ds11 (8); 

ds12 (8); 

ds13 (8); 

ds14 (8); 

ds21 (9); 

ds22 (9); 

ds23 (9); 

ds24 (9); 
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dp11 (10); 

dp12 (10); 

dp13 (10); 

dp14 (10); 

dp21 (11); 

dp22 (11); 

dp23 (11); 

dp24 (11); 

 

dt11 (12); 

dt12 (12); 

dt13 (12); 

dt14 (12); 

dt21 (13); 

dt22 (13); 

dt23 (13); 

dt24 (13); 

 

! Depression: Intercepts and latent means 
! Measurement intercepts for first indicator of the reference 
! method are constrained to zero to identify 
! the depression state factor means 
! on each occasion of measurement 
[ds11@0]; 

[ds12@0]; 

[ds13@0]; 

[ds14@0]; 

 

! Measurement intercepts constrained to be time-invariant 
! for the second indicator of the reference method 
[ds21] (14); 

[ds22] (14); 

[ds23] (14); 

[ds24] (14); 

 

! Latent state factor means for depression are freely estimated 
[dep1]; 

[dep2]; 

[dep3]; 

[dep4]; 

 

! The means of the method factors and 
! indicator-specific factors are fixed to zero. 
! This is done because these factors are residual factors 
[mpd1@0]; 

[mpd2@0]; 

[mpd3@0]; 

[mpd4@0]; 

[mtd1@0]; 

[mtd2@0]; 

[mtd3@0]; 

[mtd4@0]; 

[isd@0]; 

[ipd@0]; 

[itd1@0]; 

[itd2@0]; 

 

 

! Anxiety: Latent state factors T1-T4 
! factor loadings are held equal over time 
! for the self- and parent report indicators 
! the teacher report loadings are unconstrained 
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anx1 by as11 

        as21 (15) 

        ap11 (16) 

        ap21 (17) 

        at11 

        at21; 

 

anx2 by as12 

        as22 (15) 

        ap12 (16) 

        ap22 (17) 

        at12 

        at22; 

 

anx3 by as13 

        as23 (15) 

        ap13 (16) 

        ap23 (17) 

        at13 

        at23; 

 

anx4 by as14 

        as24 (15) 

        ap14 (16) 

        ap24 (17) 

        at14 

        at24; 

 

! Anxiety: Method factors parent rating T1-T4 
! The loadings are constrained to be time-invariant 
mpa1 by ap11 

        ap21 (18); 

 

mpa2 by ap12 

        ap22 (18); 

 

mpa3 by ap13 

        ap23 (18); 

 

mpa4 by ap14 

        ap24 (18); 

 

! Anxiety: Method factors teacher rating T1-T4 
! The loadings are constrained to be time-invariant 
mta1 by at11 

        at21 (19); 

 

mta2 by at12 

        at22 (19); 

 

mta3 by at13 

        at23 (19); 

 

mta4 by at14 

        at24 (19); 

 

! Depression: Indicator-specific factors for the second indicator 
! Self-report T1-T4 
! The loadings are fixed to one on all occasions of measurement 
 

isa by as21 as22@1 as23@1 as24@1; 

 



Appendix 240 

! Parent report T1-T4 
! The first loading is fixed to one by default 
! The loadings at T2, T3, and T4 are freely estimated 
ipa by ap21 ap22 ap23 ap24; 

 

! Teacher report T1-T2 
! The loadings are fixed to one on both occasions of measurement 
ita1 by at21 at22@1; 

 

! Teacher report T3-T4 
! The loadings are fixed to one on both occasions of measurement 
ita2 by at23 at24@1; 

 

! Anxiety: Covariances constrained to zero 
mpa1 with anx1@0 anx2@0 anx3@0 anx4@0; 

mpa2 with anx1@0 anx2@0 anx3@0 anx4@0; 

mpa3 with anx1@0 anx2@0 anx3@0 anx4@0; 

mpa4 with anx1@0 anx2@0 anx3@0 anx4@0; 

mta1 with anx1@0 anx2@0 anx3@0 anx4@0; 

mta2 with anx1@0 anx2@0 anx3@0 anx4@0; 

mta3 with anx1@0 anx2@0 anx3@0 anx4@0; 

mta4 with anx1@0 anx2@0 anx3@0 anx4@0; 

isa with anx1@0 anx2@0 anx3@0 anx4@0; 

ipa with anx1@0 anx2@0 anx3@0 anx4@0 mpa1@0 mpa2@0 mpa3@0 mpa4@0; 

ita1 with anx1@0 anx2@0 mta1@0 mta2@0; 

ita2 with anx3@0 anx4@0 mta3@0 mta4@0; 

 

! Anxiety: Variances 
! State factor variances and method factor variances 
! pertaining to the parent rating are constrained to be time-invariant 
anx1-anx4 (20); 

 

mpa1-mpa4 (21); 

 

! Anxiety: Residual variances 
! Residual variances are constrained to be 
! time-invariant for all indicators 
as11 (22); 

as12 (22); 

as13 (22); 

as14 (22); 

as21 (23); 

as22 (23); 

as23 (23); 

as24 (23); 

 

ap11 (24); 

ap12 (24); 

ap13 (24); 

ap14 (24); 

ap21 (25); 

ap22 (25); 

ap23 (25); 

ap24 (25); 

 

at11 (26); 

at12 (26); 

at13 (26); 

at14 (26); 

at21 (27); 

at22 (27); 

at23 (27); 
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at24 (27); 

 

! Anxiety: Intercepts and latent means 
! Measurement intercepts for first indicator of the reference 
! method are constrained to zero to identify the 
! anxiety state factor means 
! on each occasion of measurement 
[as11@0]; 

[as12@0]; 

[as13@0]; 

[as14@0]; 

 

! Measurement intercepts constrained to be time-invariant 
! for the second indicator of the reference method 
[as21] (28); 

[as22] (28); 

[as23] (28); 

[as24] (28); 

 

! Latent state factor means for anxiety are freely estimated 
[anx1]; 

[anx2]; 

[anx3]; 

[anx4]; 

 

! The means of the method factors and 
! indicator-specific factors are fixed to zero. 
! This is done because these factors are residual factors 
[mpa1@0]; 

[mpa2@0]; 

[mpa3@0]; 

[mpa4@0]; 

[mta1@0]; 

[mta2@0]; 

[mta3@0]; 

[mta4@0]; 

[isa@0]; 

[ipa@0]; 

[ita1@0]; 

[ita2@0]; 

 

! The following commands request additional output (sample statistics, 
! the completely standardized solution, and 
! the observed missing data patterns) 
OUTPUT:  SAMPSTAT STANDARDIZED STDYX PATTERNS; 
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13.1.2 CS-C(M–1) Baseline Change Model 

TITLE: Correlated State-Correlated (Methods-1) Model 

  with general state factors, 

  indicator-specific factors over time, and strict factorial  

  invariance 

  Baseline change version with sex as a covariate 

  Constructs: Depression, Anxiety 

  Methods: Self-report (reference method), parent report 

  4 measurement occasions (T1-T4) 

  Model reported in Chapter 5.5 

  Lines beginning with an exclamation mark (!) represent  

  comments 

 

! Name of the ASCII file containing the data to be analyzed: 
DATA: FILE = mtmmmo.dat; 

 

VARIABLE: 

 

! Definition of the names of the observed variables 
! in the file “mtmmmo.dat” 
! class = cluster variable indicating the 
! hierarchical (multilevel) structure of the data 
! (children nested within school classes) 
! ds = depression self-report 
! dp = depression parent report 
! as = anxiety self-report 
! ap = anxiety parent report 
! the first number refers to the indicator 
! the second number indicates the occasion of measurement 
NAMES =  class sex 

    ds11 ds21 ds12 ds22 ds13 ds23 

    dp11 dp21 dp12 dp22 dp13 dp23 

    as11 as21 as12 as22 as13 as23 

    ap11 ap21 ap12 ap22 ap13 ap23; 

 

! Variables to be used in the model: 
USEVAR = ds11 ds21 ds12 ds22 ds13 ds23 

         dp11 dp21 dp12 dp22 dp13 dp23 

         as11 as21 as12 as22 as13 as23 

         ap11 ap21 ap12 ap22 ap13 ap23 sex; 

 

! Missing value flag: 
! Missing values are coded with “99” for all variables 
MISSING = ALL(99); 

 

! Grouping variable indicating in which way 
! the observations are clustered (school class number) 
CLUSTER = class; 

 

! Multilevel structure is accounted for by using a robust 
! Maximum Likelihood (ML) estimator (TYPE = COMPLEX) 
! In Mplus 4, Full information ML (FIML) estimation with missing data 
! is requested by choosing “TYPE = MISSING H1” 
! (as of Mplus version 5, FIML estimation is the default) 
ANALYSIS:  TYPE = COMPLEX MISSING H1; 

 

! Model to be estimated 
! Note: the loading of the first indicator following 
! the BY statement is always fixed to 1 for identification as the default. 
! For example, the loading of ds11 on dep1 is fixed to 1 automatically. 
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MODEL:  

! Depression state factors 
! Loadings are constrained to be time-invariant 
 

        dep1 by ds11 

                ds21 (1) 

                dp11 (2) 

                dp21 (3); 

 

        dep2 by ds12 

                ds22 (1) 

                dp12 (2) 

                dp22 (3); 

 

        dep3 by ds13 

                ds23 (1) 

                dp13 (2) 

                dp23 (3); 

 

! Depression method factors for the parent report indicators 
! Loadings are constrained to be time-invariant 
        md1 by dp11 

               dp21 (4); 

 

        md2 by dp12 

               dp22 (4); 

 

        md3 by dp13 

               dp23 (4); 

 

! Specification of depression state change factors (self report) 
! Introducing names for the latent difference variables 
! Latent difference dep2 minus dep1 
        dep21 by ds11@0; 

 

! Latent difference dep3 minus dep1 
        dep31 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        dep2 on dep1@1 dep21@1; 

        dep3 on dep1@1 dep31@1; 

 

! The latent residual variances of the states 
! are constrained to zero as the states at T2 and T3 
! are completely determined by 
! the initial status (dep1) and change (dep21, dep31) 
        dep2@0; 

        dep3@0; 

 

! Specification of depression method change factors (parent report) 
! Introducing names for the latent difference variables 
! Latent difference md2 minus md1 
        md21 by ds11@0; 

 

! Latent difference md3 minus md1 
        md31 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        md2 on md1@1 md21@1; 

        md3 on md1@1 md31@1; 

 

! The latent residual variances of the method factors 
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! are constrained to zero as the method factors at T2 and T3 
! are completely determined by 
! the initial status (md1) and change (md21, md31) 
        md2@0; 

        md3@0; 

 

! Indicator-specific factors 
! Loadings are constrained to be time-invariant 
 

! Self-report 
        isd by ds21 ds22@1 ds23@1; 

! Parent report 
        ipd by dp21 dp22@1 dp23@1; 

 

! Correlations between method (change) factors 
! and state (change) factors are fixed to zero 
        md1 with dep1@0 dep21@0 dep31@0; 

        md21 with dep1@0 dep21@0 dep31@0; 

        md31 with dep1@0 dep21@0 dep31@0; 

 

! Correlations between indicator-specific factors and 
! method (change) factors / state (change) factors are fixed to zero 
        isd with dep1@0 dep21@0 dep31@0 md1@0 md21@0 md31@0; 

        ipd with dep1@0 dep21@0 dep31@0 md1@0 md21@0 md31@0; 

 

! Measurement intercepts 
! The intercepts of the marker indicators are fixed to zero 
! in order to identify the means of the state/change factors. 
! The remaining intercepts are constrained to be time-invariant 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [ds21] (5); 

        [ds22] (5); 

        [ds23] (5); 

        [dp11] (6); 

        [dp12] (6); 

        [dp13] (6); 

        [dp21] (7); 

        [dp22] (7); 

        [dp23] (7); 

 

! Estimation of the latent state/change factor means 
        [dep1]; 

        [dep21]; 

        [dep31]; 

 

! The means of the method (change) factors and indicator-specific factors 
! are fixed to zero 
        [md1@0]; 

        [md21@0]; 

        [md31@0]; 

        [isd@0]; 

        [ipd@0]; 

 

! Variances of all error variables are constrained to be time-invariant 
        ds11 (15); 

        ds12 (15); 

        ds13 (15); 

        ds21 (16); 

        ds22 (16); 

        ds23 (16); 
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        dp11 (17); 

        dp12 (17); 

        dp13 (17); 

        dp21 (18); 

        dp22 (18); 

        dp23 (18); 

 

! Anxiety state factors 
! Loadings are constrained to be time-invariant 
        anx1 by as11 

                as21 (8) 

                ap11 (9) 

                ap21 (10); 

 

        anx2 by as12 

                as22 (8) 

                ap12 (9) 

                ap22 (10); 

 

        anx3 by as13 

                as23 (8) 

                ap13 (9) 

                ap23 (10); 

 

! Anxiety method factors for the parent report indicators 
! Loadings are constrained to be time-invariant 
        ma1 by ap11 

               ap21 (11); 

 

        ma2 by ap12 

               ap22 (11); 

 

        ma3 by ap13 

               ap23 (11); 

 

! Specification of anxiety state change factors (self report) 
! Introducing names for the latent difference variables 
! Latent difference anx2 minus anx1 
        anx21 by ds11@0; 

 

! Latent difference anx3 minus anx1 
        anx31 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        anx2 on anx1@1 anx21@1; 

        anx3 on anx1@1 anx31@1; 

 

! The latent residual variances of the states 
! are constrained to zero as the states at T2 and T3 
! are completely determined by 
! the initial status (anx1) and change (anx21, anx31) 
        anx2@0; 

        anx3@0; 

 

! Specification of anxiety method change factors (parent report) 
! Introducing names for the latent difference variables 
! Latent difference ma2 minus ma1 
        ma21 by ds11@0; 

 

! Latent difference ma3 minus ma1 
        ma31 by ds11@0; 
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! Latent “regressions” defining the change scores 
        ma2 on ma1@1 ma21@1; 

        ma3 on ma1@1 ma31@1; 

 

! The latent residual variances of the method factors 
! are constrained to zero as the method factors at T2 and T3 
! are completely determined by 
! the initial status (ma1) and change (ma21, ma31) 
        ma2@0; 

        ma3@0; 

 

! Indicator-specific factors 
! Loadings are constrained to be time-invariant 
 

! Self-report 
        isa by as21 as22@1 as23@1; 

! Parent report 
        ipa by ap21 ap22@1 ap23@1; 

 

! Correlations between method (change) factors 
! and state (change) factors are fixed to zero 
        ma1 with anx1@0 anx21@0 anx31@0; 

        ma21 with anx1@0 anx21@0 anx31@0; 

        ma31 with anx1@0 anx21@0 anx31@0; 

 

! Correlations between indicator-specific factors and 
! method (change) factors / state (change) factors are fixed to zero 
        isa with anx1@0 anx21@0 anx31@0 ma1@0 ma21@0 ma31@0; 

        ipa with anx1@0 anx21@0 anx31@0 ma1@0 ma21@0 ma31@0; 

 

! Measurement intercepts 
! The intercepts of the marker indicators are fixed to zero 
! in order to identify the means of the state/change factors. 
! The remaining intercepts are constrained to be time-invariant 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [as21] (12); 

        [as22] (12); 

        [as23] (12); 

        [ap11] (13); 

        [ap12] (13); 

        [ap13] (13); 

        [ap21] (14); 

        [ap22] (14); 

        [ap23] (14); 

 

! Estimation of the latent state/change factor means 
        [anx1]; 

        [anx21]; 

        [anx31]; 

 

! The means of the method (change) factors and indicator-specific factors 
! are fixed to zero 
        [ma1@0]; 

        [ma21@0]; 

        [ma31@0]; 

        [isa@0]; 

        [ipa@0]; 

 

! Variances of all error variables are constrained to be time-invariant 
        as11 (19); 
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        as12 (19); 

        as13 (19); 

        as21 (20); 

        as22 (20); 

        as23 (20); 

        ag11 (21); 

        ag12 (21); 

        ag13 (21); 

        ag21 (22); 

        ag22 (22); 

        ag23 (22); 

 

! Correlations between T2 and T3 state and method factors 
! and other variables must be fixed to zero 
        dep2 with sex@0; 

        dep3 with sex@0 dep2@0; 

 

        md2 with sex@0 dep2@0 dep3@0; 

        md3 with sex@0 dep2@0 dep3@0 md2@0; 

 

        anx2 with sex@0 dep2@0 dep3@0 md2@0 md3@0; 

        anx3 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0; 

 

        ma2 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0 anx3@0; 

        ma3 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0 anx3@0 ma2@0; 

 

! Estimation of the admissible correlations between sex 
! and latent state/method/change/indicator-specific factors 
        sex with dep1 dep21 dep31 md1 md21 md31 

                 anx1 anx21 anx31 ma1 ma21 ma31 

                 isd ipd isa ipa; 

 

! The following commands request additional output (sample statistics, 
! the completely standardized solution (STANDARDIZED STDYX), and 
! the observed missing data patterns 
OUTPUT:  SAMPSTAT STANDARDIZED STDYX PATTERNS; 
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13.1.3 CS-C(M–1) Neighbor Change Model 

TITLE: Correlated State-Correlated (Methods-1) Model 

  with general state factors, 

  indicator-specific factors over time, and strict factorial  

  invariance 

  Neighbor change version with sex as a covariate 

  Constructs: Depression, Anxiety 

  Methods: Self-report (reference method), parent report 

  4 measurement occasions (T1-T4) 

  Model reported in Chapter 5.5 

  Lines beginning with an exclamation mark (!) represent  

  comments 

 

! Name of the ASCII file containing the data to be analyzed: 
DATA: FILE = mtmmmo.dat; 

 

VARIABLE: 

 

! Definition of the names of the observed variables 
! in the file “mtmmmo.dat” 
! class = cluster variable indicating the 
! hierarchical (multilevel) structure of the data 
! (children nested within school classes) 
! ds = depression self-report 
! dp = depression parent report 
! as = anxiety self-report 
! ap = anxiety parent report 
! the first number refers to the indicator 
! the second number indicates the occasion of measurement 
NAMES =  class sex 

    ds11 ds21 ds12 ds22 ds13 ds23 

    dp11 dp21 dp12 dp22 dp13 dp23 

    as11 as21 as12 as22 as13 as23 

    ap11 ap21 ap12 ap22 ap13 ap23; 

 

! Variables to be used in the model: 
USEVAR = ds11 ds21 ds12 ds22 ds13 ds23 

         dp11 dp21 dp12 dp22 dp13 dp23 

         as11 as21 as12 as22 as13 as23 

         ap11 ap21 ap12 ap22 ap13 ap23 sex; 

 

! Missing value flag: 
! Missing values are coded with “99” for all variables 
MISSING = ALL(99); 

 

! Grouping variable indicating in which way 
! the observations are clustered (school class number) 
CLUSTER = class; 

 

! Multilevel structure is accounted for by using a robust 
! Maximum Likelihood (ML) estimator (TYPE = COMPLEX) 
! In Mplus 4, Full information ML (FIML) estimation with missing data 
! is requested by choosing “TYPE = MISSING H1” 
! (as of Mplus version 5, FIML estimation is the default) 
ANALYSIS:  TYPE = COMPLEX MISSING H1; 

 

! Model to be estimated 
! Note: the loading of the first indicator following 
! the BY statement is always fixed to 1 for identification as the default. 
! For example, the loading of ds11 on dep1 is fixed to 1 automatically. 
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MODEL:  

! Depression state factors 
! Loadings are constrained to be time-invariant 
 

        dep1 by ds11 

                ds21 (1) 

                dp11 (2) 

                dp21 (3); 

 

        dep2 by ds12 

                ds22 (1) 

                dp12 (2) 

                dp22 (3); 

 

        dep3 by ds13 

                ds23 (1) 

                dp13 (2) 

                dp23 (3); 

 

! Depression method factors for the parent report indicators 
! Loadings are constrained to be time-invariant 
        md1 by dp11 

               dp21 (4); 

 

        md2 by dp12 

               dp22 (4); 

 

        md3 by dp13 

               dp23 (4); 

 

! Specification of depression state change factors (self report) 
! Introducing names for the latent difference variables 
! Latent difference dep2 minus dep1 
        dep21 by ds11@0; 

 

! Latent difference dep3 minus dep2 
        dep32 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        dep2 on dep1@1 dep21@1; 

        dep3 on dep2@1 dep32@1; 

 

! The latent residual variances of the states 
! are constrained to zero as the states at T2 and T3 
! are completely determined by 
! the initial status (dep1) and change (dep21, dep32) 
        dep2@0; 

        dep3@0; 

 

! Specification of depression method change factors (parent report) 
! Introducing names for the latent difference variables 
! Latent difference md2 minus md1 
        md21 by ds11@0; 

 

! Latent difference md3 minus md2 
        md32 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        md2 on md1@1 md21@1; 

        md3 on md2@1 md32@1; 

 

! The latent residual variances of the method factors 
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! are constrained to zero as the method factors at T2 and T3 
! are completely determined by 
! the initial status (md1) and change (md21, md32) 
        md2@0; 

        md3@0; 

 

! Indicator-specific factors 
! Loadings are constrained to be time-invariant 
 

! Self-report 
        isd by ds21 ds22@1 ds23@1; 

! Parent report 
        ipd by dp21 dp22@1 dp23@1; 

 

! Correlations between method (change) factors 
! and state (change) factors are fixed to zero 
        md1 with dep1@0 dep21@0 dep32@0; 

        md21 with dep1@0 dep21@0 dep32@0; 

        md32 with dep1@0 dep21@0 dep32@0; 

 

! Correlations between indicator-specific factors and 
! method (change) factors / state (change) factors are fixed to zero 
        isd with dep1@0 dep21@0 dep32@0 md1@0 md21@0 md32@0; 

        ipd with dep1@0 dep21@0 dep32@0 md1@0 md21@0 md32@0; 

 

! Measurement intercepts 
! The intercepts of the marker indicators are fixed to zero 
! in order to identify the means of the state/change factors. 
! The remaining intercepts are constrained to be time-invariant 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [ds21] (5); 

        [ds22] (5); 

        [ds23] (5); 

        [dp11] (6); 

        [dp12] (6); 

        [dp13] (6); 

        [dp21] (7); 

        [dp22] (7); 

        [dp23] (7); 

 

! Estimation of the latent state/change factor means 
        [dep1]; 

        [dep21]; 

        [dep32]; 

 

! The means of the method (change) factors and indicator-specific factors 
! are fixed to zero 
        [md1@0]; 

        [md21@0]; 

        [md32@0]; 

        [isd@0]; 

        [ipd@0]; 

 

! Variances of all error variables are constrained to be time-invariant 
        ds11 (15); 

        ds12 (15); 

        ds13 (15); 

        ds21 (16); 

        ds22 (16); 

        ds23 (16); 
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        dp11 (17); 

        dp12 (17); 

        dp13 (17); 

        dp21 (18); 

        dp22 (18); 

        dp23 (18); 

 

! Anxiety state factors 
! Loadings are constrained to be time-invariant 
        anx1 by as11 

                as21 (8) 

                ap11 (9) 

                ap21 (10); 

 

        anx2 by as12 

                as22 (8) 

                ap12 (9) 

                ap22 (10); 

 

        anx3 by as13 

                as23 (8) 

                ap13 (9) 

                ap23 (10); 

 

! Anxiety method factors for the parent report indicators 
! Loadings are constrained to be time-invariant 
        ma1 by ap11 

               ap21 (11); 

 

        ma2 by ap12 

               ap22 (11); 

 

        ma3 by ap13 

               ap23 (11); 

 

! Specification of anxiety state change factors (self report) 
! Introducing names for the latent difference variables 
! Latent difference anx2 minus anx1 
        anx21 by ds11@0; 

 

! Latent difference anx3 minus anx2 
        anx32 by ds11@0; 

 

! Latent “regressions” defining the change scores 
        anx2 on anx1@1 anx21@1; 

        anx3 on anx2@1 anx32@1; 

 

! The latent residual variances of the states 
! are constrained to zero as the states at T2 and T3 
! are completely determined by 
! the initial status (anx1) and change (anx21, anx32) 
        anx2@0; 

        anx3@0; 

 

! Specification of anxiety method change factors (parent report) 
! Introducing names for the latent difference variables 
! Latent difference ma2 minus ma1 
        ma21 by ds11@0; 

 

! Latent difference ma3 minus ma2 
        ma32 by ds11@0; 
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! Latent “regressions” defining the change scores 
        ma2 on ma1@1 ma21@1; 

        ma3 on ma2@1 ma32@1; 

 

! The latent residual variances of the method factors 
! are constrained to zero as the method factors at T2 and T3 
! are completely determined by 
! the initial status (ma1) and change (ma21, ma32) 
        ma2@0; 

        ma3@0; 

 

! Indicator-specific factors 
! Loadings are constrained to be time-invariant 
 

! Self-report 
        isa by as21 as22@1 as23@1; 

! Parent report 
        ipa by ap21 ap22@1 ap23@1; 

 

! Correlations between method (change) factors 
! and state (change) factors are fixed to zero 
        ma1 with anx1@0 anx21@0 anx32@0; 

        ma21 with anx1@0 anx21@0 anx32@0; 

        ma32 with anx1@0 anx21@0 anx32@0; 

 

! Correlations between indicator-specific factors and 
! method (change) factors / state (change) factors are fixed to zero 
        isa with anx1@0 anx21@0 anx32@0 ma1@0 ma21@0 ma32@0; 

        ipa with anx1@0 anx21@0 anx32@0 ma1@0 ma21@0 ma32@0; 

 

! Measurement intercepts 
! The intercepts of the marker indicators are fixed to zero 
! in order to identify the means of the state/change factors. 
! The remaining intercepts are constrained to be time-invariant 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [as21] (12); 

        [as22] (12); 

        [as23] (12); 

        [ap11] (13); 

        [ap12] (13); 

        [ap13] (13); 

        [ap21] (14); 

        [ap22] (14); 

        [ap23] (14); 

 

! Estimation of the latent state/change factor means 
        [anx1]; 

        [anx21]; 

        [anx32]; 

 

! The means of the method (change) factors and indicator-specific factors 
! are fixed to zero 
        [ma1@0]; 

        [ma21@0]; 

        [ma32@0]; 

        [isa@0]; 

        [ipa@0]; 

 

! Variances of all error variables are constrained to be time-invariant 
        as11 (19); 
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        as12 (19); 

        as13 (19); 

        as21 (20); 

        as22 (20); 

        as23 (20); 

        ag11 (21); 

        ag12 (21); 

        ag13 (21); 

        ag21 (22); 

        ag22 (22); 

        ag23 (22); 

 

! Correlations between T2 and T3 state and method factors 
! and other variables must be fixed to zero 
        dep2 with sex@0; 

        dep3 with sex@0 dep2@0; 

 

        md2 with sex@0 dep2@0 dep3@0; 

        md3 with sex@0 dep2@0 dep3@0 md2@0; 

 

        anx2 with sex@0 dep2@0 dep3@0 md2@0 md3@0; 

        anx3 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0; 

 

        ma2 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0 anx3@0; 

        ma3 with sex@0 dep2@0 dep3@0 md2@0 md3@0 anx2@0 anx3@0 ma2@0; 

 

! Estimation of the admissible correlations between sex 
! and latent state/method/change/indicator-specific factors 
        sex with dep1 dep21 dep32 md1 md21 md32 

                 anx1 anx21 anx32 ma1 ma21 ma32 

                 isd ipd isa ipa; 

 

! The following commands request additional output (sample statistics, 
! the completely standardized solution (STANDARDIZED STDYX), and 
! the observed missing data patterns 
OUTPUT:  SAMPSTAT STANDARDIZED STDYX PATTERNS; 
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13.2 Mplus Scripts for the Monte Carlo Simulation Study 

13.2.1  CS-C(M–1) State Model 

TITLE:  Monte Carlo Simulation of the CS-C(M–1) State Model 

        Simulations reported in Chapter 6 

        State version with general state factors 

        fit to the data set of Prof. David Cole 

        3 Constructs (Depression, Anxiety, Competence) 

        3 Methods (Self, Parent, Teacher) 

        3 Measurement Occasions 

        2 Indicators per CMOU 

        Estimates based on FIML analysis (file: state_complex_FIML.out) 

        Sample size condition N = 125 

 

MONTECARLO: 

 

! Names of the observed variables 
! d = depression, a = anxiety, c = competence 
! s = self report, g = guardian (parent) report, t = teacher report 
! the first number refers to the indicator, 
! the second number refers to the measurement occasion 
  NAMES = ds11 ds21 

          ds12 ds22 

          ds13 ds23 

          dg11 dg21 

          dg12 dg22 

          dg13 dg23 

          dt11 dt21 

          dt12 dt22 

          dt13 dt23 

          as11 as21 

          as12 as22 

          as13 as23 

          ag11 ag21 

          ag12 ag22 

          ag13 ag23 

          at11 at21 

          at12 at22 

          at13 at23 

          cs11 cs21 

          cs12 cs22 

          cs13 cs23 

          cg11 cg21 

          cg12 cg22 

          cg13 cg23 

          ct11 ct21 

          ct12 ct22 

          ct13 ct23; 

 

! Sample size for the MC samples (here: N = 125) 
NOBSERVATIONS = 125; 

 

! Number of replications (here: 500) 
NREPS = 500; 

 

! Seed used for the simulation 
SEED = 111111; 

 

! File containing the actual parameter estimates 
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! obtained for Prof. Cole’s data. 
! These estimates are used as population values for the simulation, 
! for determining coverage, and as starting values. 
! Note: The population values are available from the author 
! upon request 
Population = state_3traits_FIML.dat; 

Coverage = state_3traits_FIML.dat; 

starting = state_3traits_FIML.dat; 

 

! Definition of the population model 
MODEL POPULATION: 

! Depression state factors 
        dep1 by ds11 

                ds21 (1) 

                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5); 

 

        dep2 by ds12 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5); 

 

        dep3 by ds13 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

! Method factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6); 

 

        mgd2 by dg12 

                dg22 (6); 

 

        mgd3 by dg13 

                dg23 (6); 

 

! Method factors teacher rating 
        mtd1 by dt11 

                dt21 (7); 

 

        mtd2 by dt12 

                dt22 (7); 

 

        mtd3 by dt13 

                dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 

        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep2@0 dep3@0; 

        mgd2 with dep1@0 dep2@0 dep3@0; 

        mgd3 with dep1@0 dep2@0 dep3@0; 
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        mtd1 with dep1@0 dep2@0 dep3@0; 

        mtd2 with dep1@0 dep2@0 dep3@0; 

        mtd3 with dep1@0 dep2@0 dep3@0; 

        isd with dep1@0 dep2@0 dep3@0; 

        igd with dep1@0 dep2@0 dep3@0; 

        igd with mgd1@0 mgd2@0 mgd3@0; 

        itd with dep1@0 dep2@0; 

        itd with mtd1@0 mtd2@0; 

 

! Intercepts and latent means 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep2]; 

        [dep3]; 

        [mgd1@0]; 

        [mgd2@0]; 

        [mgd3@0]; 

        [mtd1@0]; 

        [mtd2@0]; 

        [mtd3@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12); 

 

        anx2 by as12 

                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12); 

 

        anx3 by as13 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 

                at23 (12); 

 

! Method factors guardian rating 
        mga1 by ag11 

                ag21 (13); 

 

        mga2 by ag12 

                ag22 (13); 

 

        mga3 by ag13 

                ag23 (13); 

 

! Method factors teacher rating 
        mta1 by at11 

                at21 (14); 
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        mta2 by at12 

                at22 (14); 

 

        mta3 by at13 

                at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx2@0 anx3@0; 

        mga2 with anx1@0 anx2@0 anx3@0; 

        mga3 with anx1@0 anx2@0 anx3@0; 

        mta1 with anx1@0 anx2@0 anx3@0; 

        mta2 with anx1@0 anx2@0 anx3@0; 

        mta3 with anx1@0 anx2@0 anx3@0; 

        isa with anx1@0 anx2@0 anx3@0; 

        iga with anx1@0 anx2@0 anx3@0; 

        iga with mga1@0 mga2@0 mga3@0; 

        ita with anx1@0 anx2@0; 

        ita with mta1@0 mta2@0; 

 

! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx2]; 

        [anx3]; 

        [mga1@0]; 

        [mga2@0]; 

        [mga3@0]; 

        [mta1@0]; 

        [mta2@0]; 

        [mta3@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19); 

 

        com2 by cs12 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19); 

 

        com3 by cs13 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 
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! Method factors guardian rating 
        mgc1 by cg11 

                cg21 (20); 

 

        mgc2 by cg12 

                cg22 (20); 

 

        mgc3 by cg13 

                cg23 (20); 

 

! Method factors teacher rating 
        mtc1 by ct11 

                ct21 (21); 

 

        mtc2 by ct12 

                ct22 (21); 

 

        mtc3 by ct13 

                ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com2@0 com3@0; 

        mgc2 with com1@0 com2@0 com3@0; 

        mgc3 with com1@0 com2@0 com3@0; 

        mtc1 with com1@0 com2@0 com3@0; 

        mtc2 with com1@0 com2@0 com3@0; 

        mtc3 with com1@0 com2@0 com3@0; 

        isc with com1@0 com2@0 com3@0; 

        igc with com1@0 com2@0 com3@0; 

        igc with mgc1@0 mgc2@0 mgc3@0; 

        itc with com1@0 com2@0; 

        itc with mtc1@0 mtc2@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com2]; 

        [com3]; 

        [mgc1@0]; 

        [mgc2@0]; 

        [mgc3@0]; 

        [mtc1@0]; 

        [mtc2@0]; 

        [mtc3@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! Definition of the analysis type 
ANALYSIS: 

  Type = MEANSTRUCTURE; 

  Estimator = ML; 

 

! Model to be fit to each MC sample 
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 MODEL: 

! Depression state factors 
        dep1 by ds11 

                ds21 (1) 

                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5); 

 

        dep2 by ds12 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5); 

 

        dep3 by ds13 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

! Method factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6); 

 

        mgd2 by dg12 

                dg22 (6); 

 

        mgd3 by dg13 

                dg23 (6); 

 

! Method factors teacher rating 
        mtd1 by dt11 

                dt21 (7); 

 

        mtd2 by dt12 

                dt22 (7); 

 

        mtd3 by dt13 

                dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 

        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep2@0 dep3@0; 

        mgd2 with dep1@0 dep2@0 dep3@0; 

        mgd3 with dep1@0 dep2@0 dep3@0; 

        mtd1 with dep1@0 dep2@0 dep3@0; 

        mtd2 with dep1@0 dep2@0 dep3@0; 

        mtd3 with dep1@0 dep2@0 dep3@0; 

        isd with dep1@0 dep2@0 dep3@0; 

        igd with dep1@0 dep2@0 dep3@0; 

        igd with mgd1@0 mgd2@0 mgd3@0; 

        itd with dep1@0 dep2@0; 

        itd with mtd1@0 mtd2@0; 

 

! Intercepts and latent means 



Appendix 260 

        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep2]; 

        [dep3]; 

        [mgd1@0]; 

        [mgd2@0]; 

        [mgd3@0]; 

        [mtd1@0]; 

        [mtd2@0]; 

        [mtd3@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12); 

 

        anx2 by as12 

                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12); 

 

        anx3 by as13 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 

                at23 (12); 

 

! Method factors guardian rating 
        mga1 by ag11 

                ag21 (13); 

 

        mga2 by ag12 

                ag22 (13); 

 

        mga3 by ag13 

                ag23 (13); 

 

! Method factors teacher rating 
        mta1 by at11 

                at21 (14); 

 

        mta2 by at12 

                at22 (14); 

 

        mta3 by at13 

                at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 
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! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx2@0 anx3@0; 

        mga2 with anx1@0 anx2@0 anx3@0; 

        mga3 with anx1@0 anx2@0 anx3@0; 

        mta1 with anx1@0 anx2@0 anx3@0; 

        mta2 with anx1@0 anx2@0 anx3@0; 

        mta3 with anx1@0 anx2@0 anx3@0; 

        isa with anx1@0 anx2@0 anx3@0; 

        iga with anx1@0 anx2@0 anx3@0; 

        iga with mga1@0 mga2@0 mga3@0; 

        ita with anx1@0 anx2@0; 

        ita with mta1@0 mta2@0; 

 

! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx2]; 

        [anx3]; 

        [mga1@0]; 

        [mga2@0]; 

        [mga3@0]; 

        [mta1@0]; 

        [mta2@0]; 

        [mta3@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19); 

 

        com2 by cs12 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19); 

 

        com3 by cs13 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 

 

! Method factors guardian rating 
        mgc1 by cg11 

                cg21 (20); 

 

        mgc2 by cg12 

                cg22 (20); 

 

        mgc3 by cg13 

                cg23 (20); 
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! Method factors teacher rating 
        mtc1 by ct11 

                ct21 (21); 

 

        mtc2 by ct12 

                ct22 (21); 

 

        mtc3 by ct13 

                ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com2@0 com3@0; 

        mgc2 with com1@0 com2@0 com3@0; 

        mgc3 with com1@0 com2@0 com3@0; 

        mtc1 with com1@0 com2@0 com3@0; 

        mtc2 with com1@0 com2@0 com3@0; 

        mtc3 with com1@0 com2@0 com3@0; 

        isc with com1@0 com2@0 com3@0; 

        igc with com1@0 com2@0 com3@0; 

        igc with mgc1@0 mgc2@0 mgc3@0; 

        itc with com1@0 com2@0; 

        itc with mtc1@0 mtc2@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com2]; 

        [com3]; 

        [mgc1@0]; 

        [mgc2@0]; 

        [mgc3@0]; 

        [mtc1@0]; 

        [mtc2@0]; 

        [mtc3@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! TECH9 output provides possible error messages (e.g. for Heywood cases) 
! for each replication 
OUTPUT:  TECH9; 
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13.2.2 CS-C(M–1) Baseline Change Model 

TITLE:  Monte Carlo Simulation of the CS-C(M–1) Baseline Change Model 

        Simulations reported in Chapter 6 

        Model version with general state factors 

        fit to the data set of Prof. David Cole 

        3 Constructs (Depression, Anxiety, Competence) 

        3 Methods (Self, Parent, Teacher) 

        3 Measurement Occasions 

        2 Indicators per CMOU 

        Estimates based on FIML analysis 

        (file: baseline_complex_FIML.out) 

        Sample size condition N = 125 

 

MONTECARLO: 

 

! Names of the observed variables 
! d = depression, a = anxiety, c = competence 
! s = self report, g = guardian (parent) report, t = teacher report 
! the first number refers to the indicator, 
! the second number refers to the measurement occasion 
  NAMES = ds11 ds21 

          ds12 ds22 

          ds13 ds23 

          dg11 dg21 

          dg12 dg22 

          dg13 dg23 

          dt11 dt21 

          dt12 dt22 

          dt13 dt23 

          as11 as21 

          as12 as22 

          as13 as23 

          ag11 ag21 

          ag12 ag22 

          ag13 ag23 

          at11 at21 

          at12 at22 

          at13 at23 

          cs11 cs21 

          cs12 cs22 

          cs13 cs23 

          cg11 cg21 

          cg12 cg22 

          cg13 cg23 

          ct11 ct21 

          ct12 ct22 

          ct13 ct23; 

 

! Sample size for the MC samples (here: N = 125) 
NOBSERVATIONS = 125; 

 

! Number of replications (here: 500) 
NREPS = 500; 

 

! Seed used for the simulation 
SEED = 111111; 

 

! File containing the actual parameter estimates 
! obtained for Prof. Cole’s data. 
! These estimates are used as population values for the simulation, 
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! for determining coverage, and as starting values. 
! Note: The population values are available from the author 
! upon request 
Population = baseline_3traits_FIML.dat; 

Coverage = baseline_3traits_FIML.dat; 

Starting = baseline_3traits_FIML.dat; 

 

! Definition of the population model 
MODEL POPULATION: 

! Depression state and difference factors 
        dep1 by ds11 

                ds21 (1) 

                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5) 

                ds12@1 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5) 

                ds13@1 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

        dep21 by ds12 

                 ds22 (1) 

                 dg12 (2) 

                 dg22 (3) 

                 dt12 (4) 

                 dt22 (5); 

 

        dep31 by ds13 

                 ds23 (1) 

                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

! Method (difference) factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6) 

                dg12@1 

                dg22 (6) 

                dg13@1 

                dg23 (6); 

 

        mgd21 by dg12 

                 dg22 (6); 

 

        mgd31 by dg13 

                 dg23 (6); 

 

! Method (difference) factors teacher rating 
        mtd1 by dt11 

                dt21 (7) 

                dt12@1 

                dt22 (7) 
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                dt13@1 

                dt23 (7); 

 

        mtd21 by dt12 

                 dt22 (7); 

 

        mtd31 by dt13 

                 dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 

        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep21@0 dep31@0; 

        mgd21 with dep1@0 dep21@0 dep31@0; 

        mgd31 with dep1@0 dep21@0 dep31@0; 

        mtd1 with dep1@0 dep21@0 dep31@0; 

        mtd21 with dep1@0 dep21@0 dep31@0; 

        mtd31 with dep1@0 dep21@0 dep31@0; 

        isd with dep1@0 dep21@0 dep31@0; 

        igd with dep1@0 dep21@0 dep31@0; 

        igd with mgd1@0 mgd21@0 mgd31@0; 

        itd with dep1@0 dep21@0; 

        itd with mtd1@0 mtd21@0; 

 

! Intercepts and latent means 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep21]; 

        [dep31]; 

        [mgd1@0]; 

        [mgd21@0]; 

        [mgd31@0]; 

        [mtd1@0]; 

        [mtd21@0]; 

        [mtd31@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state and difference factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12) 

                as12@1 

                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12) 

                as13@1 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 
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                at23 (12); 

 

        anx21 by as12 

                 as22 (8) 

                 ag12 (9) 

                 ag22 (10) 

                 at12 (11) 

                 at22 (12); 

 

        anx31 by as13 

                 as23 (8) 

                 ag13 (9) 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

! Method (difference) factors parent (guardian) rating 
        mga1 by ag11 

                ag21 (13) 

                ag12@1 

                ag22 (13) 

                ag13@1 

                ag23 (13); 

 

        mga21 by ag12 

                 ag22 (13); 

 

        mga31 by ag13 

                 ag23 (13); 

 

! Method (difference) factors teacher rating 
        mta1 by at11 

                at21 (14) 

                at12@1 

                at22 (14) 

                at13@1 

                at23 (14); 

 

        mta21 by at12 

                 at22 (14); 

 

        mta31 by at13 

                 at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx21@0 anx31@0; 

        mga21 with anx1@0 anx21@0 anx31@0; 

        mga31 with anx1@0 anx21@0 anx31@0; 

        mta1 with anx1@0 anx21@0 anx31@0; 

        mta21 with anx1@0 anx21@0 anx31@0; 

        mta31 with anx1@0 anx21@0 anx31@0; 

        isa with anx1@0 anx21@0 anx31@0; 

        iga with anx1@0 anx21@0 anx31@0; 

        iga with mga1@0 mga21@0 mga31@0; 

        ita with anx1@0 anx21@0; 

        ita with mta1@0 mta21@0; 
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! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx21]; 

        [anx31]; 

        [mga1@0]; 

        [mga21@0]; 

        [mga31@0]; 

        [mta1@0]; 

        [mta21@0]; 

        [mta31@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state and difference factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19) 

                cs12@1 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19) 

                cs13@1 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 

 

        com21 by cs12 

                 cs22 (15) 

                 cg12 (16) 

                 cg22 (17) 

                 ct12 (18) 

                 ct22 (19); 

 

        com31 by cs13 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

! Method (difference) factors parent (guardian) rating 
        mgc1 by cg11 

                cg21 (20) 

                cg12@1 

                cg22 (20) 

                cg13@1 

                cg23 (20); 

 

        mgc21 by cg12 

                 cg22 (20); 
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        mgc31 by cg13 

                 cg23 (20); 

 

! Method (difference) factors teacher rating 
        mtc1 by ct11 

                ct21 (21) 

                ct12@1 

                ct22 (21) 

                ct13@1 

                ct23 (21); 

 

        mtc21 by ct12 

                 ct22 (21); 

 

        mtc31 by ct13 

                 ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com21@0 com31@0; 

        mgc21 with com1@0 com21@0 com31@0; 

        mgc31 with com1@0 com21@0 com31@0; 

        mtc1 with com1@0 com21@0 com31@0; 

        mtc21 with com1@0 com21@0 com31@0; 

        mtc31 with com1@0 com21@0 com31@0; 

        isc with com1@0 com21@0 com31@0; 

        igc with com1@0 com21@0 com31@0; 

        igc with mgc1@0 mgc21@0 mgc31@0; 

        itc with com1@0 com21@0; 

        itc with mtc1@0 mtc21@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com21]; 

        [com31]; 

        [mgc1@0]; 

        [mgc21@0]; 

        [mgc31@0]; 

        [mtc1@0]; 

        [mtc21@0]; 

        [mtc31@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! Definition of the analysis type 
ANALYSIS: 

  Type = MEANSTRUCTURE; 

  Estimator = ML; 

 

! Model to be fit to each MC sample 
 MODEL: 

! Depression state and difference factors 
        dep1 by ds11 

                ds21 (1) 
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                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5) 

                ds12@1 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5) 

                ds13@1 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

        dep21 by ds12 

                 ds22 (1) 

                 dg12 (2) 

                 dg22 (3) 

                 dt12 (4) 

                 dt22 (5); 

 

        dep31 by ds13 

                 ds23 (1) 

                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

! Method (difference) factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6) 

                dg12@1 

                dg22 (6) 

                dg13@1 

                dg23 (6); 

 

        mgd21 by dg12 

                 dg22 (6); 

 

        mgd31 by dg13 

                 dg23 (6); 

 

! Method (difference) factors teacher rating 
        mtd1 by dt11 

                dt21 (7) 

                dt12@1 

                dt22 (7) 

                dt13@1 

                dt23 (7); 

 

        mtd21 by dt12 

                 dt22 (7); 

 

        mtd31 by dt13 

                 dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 
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        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep21@0 dep31@0; 

        mgd21 with dep1@0 dep21@0 dep31@0; 

        mgd31 with dep1@0 dep21@0 dep31@0; 

        mtd1 with dep1@0 dep21@0 dep31@0; 

        mtd21 with dep1@0 dep21@0 dep31@0; 

        mtd31 with dep1@0 dep21@0 dep31@0; 

        isd with dep1@0 dep21@0 dep31@0; 

        igd with dep1@0 dep21@0 dep31@0; 

        igd with mgd1@0 mgd21@0 mgd31@0; 

        itd with dep1@0 dep21@0; 

        itd with mtd1@0 mtd21@0; 

 

! Intercepts and latent means 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep21]; 

        [dep31]; 

        [mgd1@0]; 

        [mgd21@0]; 

        [mgd31@0]; 

        [mtd1@0]; 

        [mtd21@0]; 

        [mtd31@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state and difference factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12) 

                as12@1 

                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12) 

                as13@1 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 

                at23 (12); 

 

        anx21 by as12 

                 as22 (8) 

                 ag12 (9) 

                 ag22 (10) 

                 at12 (11) 

                 at22 (12); 

 

        anx31 by as13 

                 as23 (8) 

                 ag13 (9) 



Appendix 271 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

! Method (difference) factors parent (guardian) rating 
        mga1 by ag11 

                ag21 (13) 

                ag12@1 

                ag22 (13) 

                ag13@1 

                ag23 (13); 

 

        mga21 by ag12 

                 ag22 (13); 

 

        mga31 by ag13 

                 ag23 (13); 

 

! Method (difference) factors teacher rating 
        mta1 by at11 

                at21 (14) 

                at12@1 

                at22 (14) 

                at13@1 

                at23 (14); 

 

        mta21 by at12 

                 at22 (14); 

 

        mta31 by at13 

                 at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx21@0 anx31@0; 

        mga21 with anx1@0 anx21@0 anx31@0; 

        mga31 with anx1@0 anx21@0 anx31@0; 

        mta1 with anx1@0 anx21@0 anx31@0; 

        mta21 with anx1@0 anx21@0 anx31@0; 

        mta31 with anx1@0 anx21@0 anx31@0; 

        isa with anx1@0 anx21@0 anx31@0; 

        iga with anx1@0 anx21@0 anx31@0; 

        iga with mga1@0 mga21@0 mga31@0; 

        ita with anx1@0 anx21@0; 

        ita with mta1@0 mta21@0; 

 

! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx21]; 

        [anx31]; 

        [mga1@0]; 

        [mga21@0]; 

        [mga31@0]; 

        [mta1@0]; 

        [mta21@0]; 
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        [mta31@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state and difference factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19) 

                cs12@1 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19) 

                cs13@1 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 

 

        com21 by cs12 

                 cs22 (15) 

                 cg12 (16) 

                 cg22 (17) 

                 ct12 (18) 

                 ct22 (19); 

 

        com31 by cs13 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

! Method (difference) factors parent (guardian) rating 
        mgc1 by cg11 

                cg21 (20) 

                cg12@1 

                cg22 (20) 

                cg13@1 

                cg23 (20); 

 

        mgc21 by cg12 

                 cg22 (20); 

 

        mgc31 by cg13 

                 cg23 (20); 

 

! Method (difference) factors teacher rating 
        mtc1 by ct11 

                ct21 (21) 

                ct12@1 

                ct22 (21) 

                ct13@1 

                ct23 (21); 

 

        mtc21 by ct12 
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                 ct22 (21); 

 

        mtc31 by ct13 

                 ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com21@0 com31@0; 

        mgc21 with com1@0 com21@0 com31@0; 

        mgc31 with com1@0 com21@0 com31@0; 

        mtc1 with com1@0 com21@0 com31@0; 

        mtc21 with com1@0 com21@0 com31@0; 

        mtc31 with com1@0 com21@0 com31@0; 

        isc with com1@0 com21@0 com31@0; 

        igc with com1@0 com21@0 com31@0; 

        igc with mgc1@0 mgc21@0 mgc31@0; 

        itc with com1@0 com21@0; 

        itc with mtc1@0 mtc21@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com21]; 

        [com31]; 

        [mgc1@0]; 

        [mgc21@0]; 

        [mgc31@0]; 

        [mtc1@0]; 

        [mtc21@0]; 

        [mtc31@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! TECH9 output provides possible error messages (e.g. for Heywood cases) 
! for each replication 
OUTPUT:  TECH9; 
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13.2.3 CS-C(M–1) Neighbor Change Model 

TITLE:  Monte Carlo Simulation of the CS-C(M–1) Neighbor Change Model 

        Simulations reported in Chapter 6 

        Model version with general state factors 

        fit to the data set of Prof. David Cole 

        3 Constructs (Depression, Anxiety, Competence) 

        3 Methods (Self, Parent, Teacher) 

        3 Measurement Occasions 

        2 Indicators per CMOU 

        Estimates based on FIML analysis 

        (file: neighbor_complex_FIML.out) 

        Sample size condition N = 125 

 

MONTECARLO: 

 

! Names of the observed variables 
! d = depression, a = anxiety, c = competence 
! s = self report, g = guardian (parent) report, t = teacher report 
! the first number refers to the indicator, 
! the second number refers to the measurement occasion 
  NAMES = ds11 ds21 

          ds12 ds22 

          ds13 ds23 

          dg11 dg21 

          dg12 dg22 

          dg13 dg23 

          dt11 dt21 

          dt12 dt22 

          dt13 dt23 

          as11 as21 

          as12 as22 

          as13 as23 

          ag11 ag21 

          ag12 ag22 

          ag13 ag23 

          at11 at21 

          at12 at22 

          at13 at23 

          cs11 cs21 

          cs12 cs22 

          cs13 cs23 

          cg11 cg21 

          cg12 cg22 

          cg13 cg23 

          ct11 ct21 

          ct12 ct22 

          ct13 ct23; 

 

! Sample size for the MC samples (here: N = 125) 
NOBSERVATIONS = 125; 

 

! Number of replications (here: 500) 
NREPS = 500; 

 

! Seed used for the simulation 
SEED = 111111; 

 

! File containing the actual parameter estimates 
! obtained for Prof. Cole’s data. 
! These estimates are used as population values for the simulation, 
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! for determining coverage, and as starting values. 
! Note: The population values are available from the author 
! upon request 
Population = neighbor_3traits_FIML.dat; 

Coverage = neighbor_3traits_FIML.dat; 

Starting = neighbor_3traits_FIML.dat; 

 

! Definition of the population model 
MODEL POPULATION: 

! Depression state and difference factors 
        dep1 by ds11 

                ds21 (1) 

                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5) 

                ds12@1 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5) 

                ds13@1 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

        dep21 by ds12 

                 ds22 (1) 

                 dg12 (2) 

                 dg22 (3) 

                 dt12 (4) 

                 dt22 (5) 

                 ds13@1 

                 ds23 (1) 

                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

        dep32 by ds13 

                 ds23 (1) 

                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

! Method (difference) factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6) 

                dg12@1 

                dg22 (6) 

                dg13@1 

                dg23 (6); 

 

        mgd21 by dg12 

                 dg22 (6) 

                 dg13@1 

                 dg23 (6); 
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        mgd32 by dg13 

                 dg23 (6); 

 

! Method (difference) factors teacher rating 
        mtd1 by dt11 

                dt21 (7) 

                dt12@1 

                dt22 (7) 

                dt13@1 

                dt23 (7); 

 

        mtd21 by dt12 

                 dt22 (7) 

                 dt13@1 

                 dt23 (7); 

 

        mtd32 by dt13 

                 dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 

        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep21@0 dep32@0; 

        mgd21 with dep1@0 dep21@0 dep32@0; 

        mgd32 with dep1@0 dep21@0 dep32@0; 

        mtd1 with dep1@0 dep21@0 dep32@0; 

        mtd21 with dep1@0 dep21@0 dep32@0; 

        mtd32 with dep1@0 dep21@0 dep32@0; 

        isd with dep1@0 dep21@0 dep32@0; 

        igd with dep1@0 dep21@0 dep32@0; 

        igd with mgd1@0 mgd21@0 mgd32@0; 

        itd with dep1@0 dep21@0; 

        itd with mtd1@0 mtd21@0; 

 

! Intercepts and latent means 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep21]; 

        [dep32]; 

        [mgd1@0]; 

        [mgd21@0]; 

        [mgd32@0]; 

        [mtd1@0]; 

        [mtd21@0]; 

        [mtd32@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state and difference factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12) 

                as12@1 
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                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12) 

                as13@1 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 

                at23 (12); 

 

        anx21 by as12 

                 as22 (8) 

                 ag12 (9) 

                 ag22 (10) 

                 at12 (11) 

                 at22 (12) 

                 as13@1 

                 as23 (8) 

                 ag13 (9) 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

        anx32 by as13 

                 as23 (8) 

                 ag13 (9) 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

! Method (difference) factors parent (guardian) rating 
        mga1 by ag11 

                ag21 (13) 

                ag12@1 

                ag22 (13) 

                ag13@1 

                ag23 (13); 

 

        mga21 by ag12 

                 ag22 (13) 

                 ag13@1 

                 ag23 (13); 

 

        mga32 by ag13 

                 ag23 (13); 

 

! Method (difference) factors teacher rating 
        mta1 by at11 

                at21 (14) 

                at12@1 

                at22 (14) 

                at13@1 

                at23 (14); 

 

        mta21 by at12 

                 at22 (14) 

                 at13@1 

                 at23 (14); 

 

        mta32 by at13 
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                 at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx21@0 anx32@0; 

        mga21 with anx1@0 anx21@0 anx32@0; 

        mga32 with anx1@0 anx21@0 anx32@0; 

        mta1 with anx1@0 anx21@0 anx32@0; 

        mta21 with anx1@0 anx21@0 anx32@0; 

        mta32 with anx1@0 anx21@0 anx32@0; 

        isa with anx1@0 anx21@0 anx32@0; 

        iga with anx1@0 anx21@0 anx32@0; 

        iga with mga1@0 mga21@0 mga32@0; 

        ita with anx1@0 anx21@0; 

        ita with mta1@0 mta21@0; 

 

! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx21]; 

        [anx32]; 

        [mga1@0]; 

        [mga21@0]; 

        [mga32@0]; 

        [mta1@0]; 

        [mta21@0]; 

        [mta32@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state and difference factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19) 

                cs12@1 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19) 

                cs13@1 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 

 

        com21 by cs12 

                 cs22 (15) 

                 cg12 (16) 

                 cg22 (17) 

                 ct12 (18) 
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                 ct22 (19) 

                 cs13@1 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

        com32 by cs13 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

! Method (difference) factors parent (guardian) rating 
        mgc1 by cg11 

                cg21 (20) 

                cg12@1 

                cg22 (20) 

                cg13@1 

                cg23 (20); 

 

        mgc21 by cg12 

                 cg22 (20) 

                 cg13@1 

                 cg23 (20); 

 

        mgc32 by cg13 

                 cg23 (20); 

 

! Method (difference) factors teacher rating 
        mtc1 by ct11 

                ct21 (21) 

                ct12@1 

                ct22 (21) 

                ct13@1 

                ct23 (21); 

 

        mtc21 by ct12 

                 ct22 (21) 

                 ct13@1 

                 ct23 (21); 

 

        mtc32 by ct13 

                 ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com21@0 com32@0; 

        mgc21 with com1@0 com21@0 com32@0; 

        mgc32 with com1@0 com21@0 com32@0; 

        mtc1 with com1@0 com21@0 com32@0; 

        mtc21 with com1@0 com21@0 com32@0; 

        mtc32 with com1@0 com21@0 com32@0; 

        isc with com1@0 com21@0 com32@0; 

        igc with com1@0 com21@0 com32@0; 

        igc with mgc1@0 mgc21@0 mgc32@0; 
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        itc with com1@0 com21@0; 

        itc with mtc1@0 mtc21@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com21]; 

        [com32]; 

        [mgc1@0]; 

        [mgc21@0]; 

        [mgc32@0]; 

        [mtc1@0]; 

        [mtc21@0]; 

        [mtc32@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! Definition of the analysis type 
ANALYSIS: 

  Type = MEANSTRUCTURE; 

  Estimator = ML; 

 

! Model to be fit to each MC sample 
MODEL: 

! Depression state and difference factors 
        dep1 by ds11 

                ds21 (1) 

                dg11 (2) 

                dg21 (3) 

                dt11 (4) 

                dt21 (5) 

                ds12@1 

                ds22 (1) 

                dg12 (2) 

                dg22 (3) 

                dt12 (4) 

                dt22 (5) 

                ds13@1 

                ds23 (1) 

                dg13 (2) 

                dg23 (3) 

                dt13 (4) 

                dt23 (5); 

 

        dep21 by ds12 

                 ds22 (1) 

                 dg12 (2) 

                 dg22 (3) 

                 dt12 (4) 

                 dt22 (5) 

                 ds13@1 

                 ds23 (1) 

                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

        dep32 by ds13 

                 ds23 (1) 
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                 dg13 (2) 

                 dg23 (3) 

                 dt13 (4) 

                 dt23 (5); 

 

! Method (difference) factors parent (guardian) rating 
        mgd1 by dg11 

                dg21 (6) 

                dg12@1 

                dg22 (6) 

                dg13@1 

                dg23 (6); 

 

        mgd21 by dg12 

                 dg22 (6) 

                 dg13@1 

                 dg23 (6); 

 

        mgd32 by dg13 

                 dg23 (6); 

 

! Method factors teacher rating 
        mtd1 by dt11 

                dt21 (7) 

                dt12@1 

                dt22 (7) 

                dt13@1 

                dt23 (7); 

 

        mtd21 by dt12 

                 dt22 (7) 

                 dt13@1 

                 dt23 (7); 

 

        mtd32 by dt13 

                 dt23 (7); 

 

! Indicator-specific factors 
        isd by ds21 ds22@1 ds23@1; 

        igd by dg21 dg22@1 dg23@1; 

        itd by dt21 dt22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgd1 with dep1@0 dep21@0 dep32@0; 

        mgd21 with dep1@0 dep21@0 dep32@0; 

        mgd32 with dep1@0 dep21@0 dep32@0; 

        mtd1 with dep1@0 dep21@0 dep32@0; 

        mtd21 with dep1@0 dep21@0 dep32@0; 

        mtd32 with dep1@0 dep21@0 dep32@0; 

        isd with dep1@0 dep21@0 dep32@0; 

        igd with dep1@0 dep21@0 dep32@0; 

        igd with mgd1@0 mgd21@0 mgd32@0; 

        itd with dep1@0 dep21@0; 

        itd with mtd1@0 mtd21@0; 

 

! Intercepts and latent means 
        [ds11@0]; 

        [ds12@0]; 

        [ds13@0]; 

        [dep1]; 

        [dep21]; 

        [dep32]; 
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        [mgd1@0]; 

        [mgd21@0]; 

        [mgd32@0]; 

        [mtd1@0]; 

        [mtd21@0]; 

        [mtd32@0]; 

        [isd@0]; 

        [igd@0]; 

        [itd@0]; 

 

! Anxiety state and difference factors 
        anx1 by as11 

                as21 (8) 

                ag11 (9) 

                ag21 (10) 

                at11 (11) 

                at21 (12) 

                as12@1 

                as22 (8) 

                ag12 (9) 

                ag22 (10) 

                at12 (11) 

                at22 (12) 

                as13@1 

                as23 (8) 

                ag13 (9) 

                ag23 (10) 

                at13 (11) 

                at23 (12); 

 

        anx21 by as12 

                 as22 (8) 

                 ag12 (9) 

                 ag22 (10) 

                 at12 (11) 

                 at22 (12) 

                 as13@1 

                 as23 (8) 

                 ag13 (9) 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

        anx32 by as13 

                 as23 (8) 

                 ag13 (9) 

                 ag23 (10) 

                 at13 (11) 

                 at23 (12); 

 

! Method (difference) factors parent (guardian) rating 
        mga1 by ag11 

                ag21 (13) 

                ag12@1 

                ag22 (13) 

                ag13@1 

                ag23 (13); 

 

        mga21 by ag12 

                 ag22 (13) 

                 ag13@1 

                 ag23 (13); 
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        mga32 by ag13 

                 ag23 (13); 

 

! Method (difference) factors teacher rating 
        mta1 by at11 

                at21 (14) 

                at12@1 

                at22 (14) 

                at13@1 

                at23 (14); 

 

        mta21 by at12 

                 at22 (14) 

                 at13@1 

                 at23 (14); 

 

        mta32 by at13 

                 at23 (14); 

 

! Indicator-specific factors 
        isa by as21 as22@1 as23@1; 

        iga by ag21 ag22@1 ag23@1; 

        ita by at21 at22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mga1 with anx1@0 anx21@0 anx32@0; 

        mga21 with anx1@0 anx21@0 anx32@0; 

        mga32 with anx1@0 anx21@0 anx32@0; 

        mta1 with anx1@0 anx21@0 anx32@0; 

        mta21 with anx1@0 anx21@0 anx32@0; 

        mta32 with anx1@0 anx21@0 anx32@0; 

        isa with anx1@0 anx21@0 anx32@0; 

        iga with anx1@0 anx21@0 anx32@0; 

        iga with mga1@0 mga21@0 mga32@0; 

        ita with anx1@0 anx21@0; 

        ita with mta1@0 mta21@0; 

 

! Intercepts and latent means 
        [as11@0]; 

        [as12@0]; 

        [as13@0]; 

        [anx1]; 

        [anx21]; 

        [anx32]; 

        [mga1@0]; 

        [mga21@0]; 

        [mga32@0]; 

        [mta1@0]; 

        [mta21@0]; 

        [mta32@0]; 

        [isa@0]; 

        [iga@0]; 

        [ita@0]; 

 

! Competence state and difference factors 
        com1 by cs11 

                cs21 (15) 

                cg11 (16) 

                cg21 (17) 

                ct11 (18) 

                ct21 (19) 
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                cs12@1 

                cs22 (15) 

                cg12 (16) 

                cg22 (17) 

                ct12 (18) 

                ct22 (19) 

                cs13@1 

                cs23 (15) 

                cg13 (16) 

                cg23 (17) 

                ct13 (18) 

                ct23 (19); 

 

        com21 by cs12 

                 cs22 (15) 

                 cg12 (16) 

                 cg22 (17) 

                 ct12 (18) 

                 ct22 (19) 

                 cs13@1 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

        com32 by cs13 

                 cs23 (15) 

                 cg13 (16) 

                 cg23 (17) 

                 ct13 (18) 

                 ct23 (19); 

 

! Method (difference) factors parent (guardian) rating 
        mgc1 by cg11 

                cg21 (20) 

                cg12@1 

                cg22 (20) 

                cg13@1 

                cg23 (20); 

 

        mgc21 by cg12 

                 cg22 (20) 

                 cg13@1 

                 cg23 (20); 

 

        mgc32 by cg13 

                 cg23 (20); 

 

! Method (difference) factors teacher rating 
        mtc1 by ct11 

                ct21 (21) 

                ct12@1 

                ct22 (21) 

                ct13@1 

                ct23 (21); 

 

        mtc21 by ct12 

                 ct22 (21) 

                 ct13@1 

                 ct23 (21); 

 



Appendix 285 

        mtc32 by ct13 

                 ct23 (21); 

 

! Indicator-specific factors 
        isc by cs21 cs22@1 cs23@1; 

        igc by cg21 cg22@1 cg23@1; 

        itc by ct21 ct22@1; 

 

! Non-admissible latent correlations constrained to zero 
        mgc1 with com1@0 com21@0 com32@0; 

        mgc21 with com1@0 com21@0 com32@0; 

        mgc32 with com1@0 com21@0 com32@0; 

        mtc1 with com1@0 com21@0 com32@0; 

        mtc21 with com1@0 com21@0 com32@0; 

        mtc32 with com1@0 com21@0 com32@0; 

        isc with com1@0 com21@0 com32@0; 

        igc with com1@0 com21@0 com32@0; 

        igc with mgc1@0 mgc21@0 mgc32@0; 

        itc with com1@0 com21@0; 

        itc with mtc1@0 mtc21@0; 

 

! Intercepts and latent means 
        [cs11@0]; 

        [cs12@0]; 

        [cs13@0]; 

        [com1]; 

        [com21]; 

        [com32]; 

        [mgc1@0]; 

        [mgc21@0]; 

        [mgc32@0]; 

        [mtc1@0]; 

        [mtc21@0]; 

        [mtc32@0]; 

        [isc@0]; 

        [igc@0]; 

        [itc@0]; 

 

! TECH9 output provides possible error messages (e.g. for Heywood cases) 
! for each replication 
OUTPUT:  TECH9; 
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14 German Appendix (Anhang in deutscher Sprache) 

Zusammenfassung in deutscher Sprache 

In der vorliegenden Arbeit werden Strukturgleichungsmodelle zur Analyse von 

längsschnittlich erhobenen Multitrait-Multimethod-(MTMM) Daten präsentiert, 

messtheoretisch analysiert und auf ihre praktische Nützlichkeit hin überprüft. Die Definition 

der Modelle erfolgt auf der Basis der stochastischen Messtheorie (Steyer, 1989; Suppes & 

Zinnes, 1963). Die Überprüfung der praktischen Anwendbarkeit der Modelle wird anhand 

einer Reanalyse von empirischen Daten sowie einer Monte-Carlo-Simulationsstudie 

vorgenommen. 

In der Einleitung werden zunächst mit dem Correlated Trait-Correlated Uniqueness- (CT-

CU; Marsh, 1989), Correlated Trait-Correlated Method- (CT-CM; Widaman, 1985), 

Correlated Trait-Uncorrelated Method- (CT-UM) und dem Correlated Trait-Correlated 

(Method Minus One)- [CT-C(M–1); Eid, 2000] Modell die bekanntesten 

Strukturgleichungsmodelle zur Analyse von querschnittlichen MTMM-Daten diskutiert (siehe 

auch Eid, Lischetzke, & Nussbeck, 2006, Eid, Nussbeck, & Lischetzke, 2006; Geiser, Eid, 

Nussbeck, & Lischetzke, im Druck). Im Vergleich erweist sich dabei das CT-C(M–1)-Modell 

für multiple Indikatoren (Eid, Lischetzke, Nussbeck, & Trierweiler, 2003) als eines der 

leistungsfähigsten derzeit verfügbaren MTMM-Modelle. Anschließend werden verschiedene 

bereits etablierte Ansätze zur Analyse längsschnittlicher MTMM-Daten präsentiert. Dazu 

zählen das Multi-Occasion-CU-Modell (Cole & Maxwell, 2003), das Multi-Occasion-CT-

CM-Modell (Burns, Walsh, & Gomez, 2003, Burns & Haynes, 2006) und das Multimethod-

Latent-State-Trait-Modell (Courvoisier, 2006; Courvoisier, Nussbeck, Eid, Geiser, & Cole, 

2007). Es wird gezeigt, dass ein allgemeines längsschnittliches MTMM-Messmodell für 

multiple Indikatoren und für die Analyse latenter Veränderung über die Zeit bislang noch 

fehlt. 

In einem weiteren Einleitungskapitel werden die für die Entwicklung der neuen Modelle 

benötigten messtheoretischen Grundlagen der Klassischen Testtheorie (Steyer, 1989, Steyer 

& Eid, 2001) und der Latent-State-Theorie (Steyer, 1988; Steyer, Ferring, & Schmitt, 1992) 

besprochen. Anschließend werden zwei Versionen des Correlated State-Correlated (Method 

Minus One)- [CS-C(M–1)] Modells eingeführt, welche Kombinationen aus dem CT-C(M–1)-

Modell für multiple Indikatoren (Eid et al., 2003) und dem Correlated-State-Modell (Steyer et 

al., 1992) darstellen. Nach einer messtheoretischen Analyse der CS-C(M–1)-Modelle wird die 

Erweiterung zu einem Modell mit latenten Differenzvariablen zur Untersuchung von 
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interindividuellen Unterschieden in intraindividuellen Veränderungen über die Zeit 

vorgestellt. Dieses sogenannte CS-C(M–1)-Change-Modell stellt eine multimethodale 

Erweiterung des True-Change-Ansatzes von Steyer, Eid und Schwenkmezger (1997; Steyer, 

Partchev, & Shanahan, 2000) dar. Mit Hilfe des CS-C(M–1)-Change-Modells kann latente 

Veränderung simultan für mehrere Methoden untersucht werden. Zudem können die 

konvergente Validität und Methodenspezifität von beobachteten und latenten 

Differenzenscores bestimmt werden. 

Nach der theoretischen Analyse der CS-C(M–1)-State- und Change-Modelle wird die 

Anwendbarkeit der Modelle auf reale Daten anhand einer umfangreichen Reanalyse eines 

längsschnittlichen MTMM-Datensatzes und einer anwendungsbezogenen Simulationsstudie 

überprüft. In der Anwendung wird ein 3-stufiger Ansatz zur Analyse, Testung und Selektion 

von Modellvarianten vorgeschlagen. Die Ergebnisse beider Studien zeigen, dass sich die 

Modelle gewinnbringend zur Analyse von MTMM-MO-Daten einsetzen lassen. Im letzten 

Teil der Arbeit werden Vorteile und Einschränkungen der Modelle diskutiert, detaillierte 

Hinweise und Tipps für potentielle Anwender gegeben, Vergleiche zu anderen Ansätzen zur 

Analyse von längsschnittlichen MTMM-Daten gezogen sowie Aufgaben und Ziele für die 

zukünftige Forschung aufgezeigt.  
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