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Abstract 

 

Introduction: BReast CAncer 1 (BRCA1) and BRCA2 interact during DNA repair with the tumor 

suppressor PArtner and Localizer of BRCA2 (PALB2). PALB2 gene mutations are associated with 

breast and ovary cancer risk, and high PALB2 expression levels associate with poor prognosis in 

breast cancer. We hypothesized a potential prognostic value of PALB2 expression in pancreatic 

ductal adenocarcinoma (PDAC). 

Materials and methods: PALB2 expression was down regulated by siRNA in PDAC cell lines, 

and effects on growth and migration were studied by cell viability and scratch wound healing 

assays, respectively. Tissue microarrays (TMAs) from 157 patients who underwent 

pancreatectomy for PDAC were analyzed by immunohistochemistry (IHC). PALB2 expression in 

tumors and surrounding tissue was quantified and compared with tumor characteristics and patient 

outcome using Kaplan-Meier analyses. 

Results: Reduced PALB2 expression in PDAC cells did not affect proliferation, but was 

associated with less cell migration in vitro. Increased PALB2 expression was observed in PDAC 

tissue in comparison to the peritumoral tissues (p<0.01). Overall survival (OS) was inversely 

related to PALB2 expression (p<0.05). The multivariate analysis indicated that regional lymph 

node involvement and PALB2 expression levels were independent prognostic factors for OS.  

Conclusion: Migration of PDAC cells may depend on PALB2 expression, and elevated PALB2 

in PDAC tissue indicates poor survival and may constitutes a novel prognostic marker that may 

help in the development and choice of therapeutic strategies in this devastating disease. 
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Zusammenfassung 

 

Einleitung: BReast CAncer 1 (BRCA1) und BRCA2 sind Proteine, die im Rahmen der 

Brustkrebsforschung identifiziert wurden und bei der Reparatur von DNA-Schäden mit dem 

Tumorsuppressor PArtner and Localizer of BRCA2 (PALB2) interagieren. Genetische Mutationen 

im Lokus von PALB2 sind mit dem Risiko für Brust- und Eierstockkrebs assoziiert; hohe 

Proteinkonzentrationen von PALB2 sind hierbei ein Zeichen für eine schlechte Prognose. In dieser 

Arbeit wird die Hypothese verfolgt, dass die PALB2 Expression auch von prognostischer 

Bedeutung für Adenokarzinome der der Bauchspeicheldrüse (PDAC) ist. 

Materialien and Methoden: In Zellkultur wurde die PALB2 Expression über siRNA in PDAC 

Zellen reduziert und die Effekte verringerter PALB2 Expression auf Zellproliferation und 

Zellmigration in Viabilitäts- und Migrationsversuchen analysiert. Kreisförmige, kleine 

Gewebestanzen (Gewebe-Microarrays) von 157 Patienten, die sich einer Operation zur 

Pankreatektomie unterzogen haben, wurden mittels Immunohistochemie zur Bestimmung der 

PALB2 Expression analysiert. Die Expression wurde in den Tumorbereichen mit denen des 

umgebenden Normalgewebes verglichen und zu den Tumorcharasteristika und Überlebensdaten 

der Patienten durch Kaplan-Meier Analysen in Beziehung gebracht. 

Ergebnisse: In Zellkultur zeigte sich kein Effekt der PALB2 Expression auf Zellproliferation, 

wohingegen die Migration durch reduzierte PALB2 Expression negative beeinflusst wurde. Die 

PALB2 Expressionsspiegel waren im Tumorgewebe der PDAC Patienten deutlich höher als im 

benachbarten Normalgewebe (p<0.01). Das mittlere Überleben war invers zu den PALB2 

Expressionsspiegeln korreliert, d.h., je höher die PALB2 Expression desto kürzer die verbliebene 

Überlebenszeit (p<0.05). In der multivariaten Analyse erwiesen sich der Lymphknotenbefall und 

die PALB2 Expression als unabhängige prognostische Parameter der Lebenserwartung. 

Schlussfolgerung: Die Migration von PDAC Zellen könnte direkt von PALB2 abhängen. Erhöhte 

PALB2 Expression im Tumorgewebe von Patienten mit Bauchspeicheldrüsenkrebs stellt einen 

neuen negativen prognostischen Biomarker der Lebenserwartung da. Die Bestimmung der PALB2 

Expression im Tumor könnte die Diagnostik und Prognose bei dieser schrecklichen Erkrankung 

verbessern und unter Umständen hilfreiche Informationen bei der Entwicklung und Auswahl 

therapeutischer Maßnahmen liefern.  
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1. Introduction 

 

1.1 About pancreatic cancer 

Pancreatic cancer is the fourth leading cause of cancer death worldwide, with an overall 5-year 

survival rate of <8%. These statistics have not changed in almost 50 years. Its incidence has risen 

gradually in recent years [1, 2]. About 95% of pancreatic cancer were ductal adenocarcinoma, and 

the remaining 5% include acinar cells carcinoma, pancreatic blastoma and cystic tumors [3]. 

Despite the better understanding of PDAC development and improvements in surgical techniques, 

the survival data have not changed much over the last 80 years. Up to now, surgical resection is 

still the only potentially curative way to treat for PDAC, but due to lack of early symptoms and a 

high tendency for metastasis development, about 80% of patients have lost the opportunity of 

surgical resection at the time of diagnosis [4]. The median survival time (MST) with non-resectable 

PDAC patients is only 3.5 months. Even after successful surgical resection, the 5-year survival 

rate is still below 20% [5]. The chemotherapeutic options are also very limited, with 

FOLFIRINOX (leucovorin (LV), 5-fluorouracil (5-FU), irinotecan, oxaliplatin), gemcitabine plus 

abraxane (albumin-bound paclitaxel) or gemcitabine plus Xeloda (Capecitabine), which have 

emerged as the standard of care for pancreatic adenocarcinoma patients [6, 7]. However, median 

recurrence free survival and median overall survival are still unsatisfactorily poor. 

 

1.2 Current diagnostic markers of PDAC  

Thus, additional diagnostic markers are needed for both an early detection, and for a better 

assessment of disease activity and prognosis, in order to guide therapeutic decisions and enable 

the monitoring and testing of novel treatment options. In recent years, the genomic analyses of 

PDAC tissues and expression patterns have been extensively conducted. Several new circulating 

molecules and panels of biomarkers like CA19-9, SYCN, and REG1B have been identified and 

developed to improve the early identification of first PDAC lesions [8]. Analysis of the genomic 

landscape of PDAC also revealed several mutations in tumor suppressor genes, such as KRAS, 

CDKN2A, TP53, and SMAD4 [9, 10], which are inactivated in over half the cases of PDAC. In 

addition, genes involved in the breast cancer susceptibility gene (BRCA) pathway, namely, 

BRCA1, BRCA2, and PALB2, have also been identified as being inactivated in PDAC. The 

relationship of PALB2 mutations with PDAC risk and incidence appears to have population-

specific characteristics [11-15].  
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1.3 Functions of PALB2 

A number of circulating molecules and panels of biomarkers have been identified and developed 

to improve the identification of early PDAC lesions [16]. BRCA1 and BRCA2 are two recognized 

tumor suppressor genes, which encode proteins that take part in transcription and DNA repair [17]. 

They are widely expressed in breast and other tissue. Partner and localizer of BRCA2 (PALB2) 

was first identified as colocalizing with BRCA2 in the nucleus [18]. The PALB2 gene is located 

on chromosome 16p12.2 and comprises 13 exons [19], which encode a protein that acts as a linker 

between BRCA1 and BRCA2 in the DNA repair processes (Figure 1) [20, 21]. Moreover, PALB2 

has also been found to support BRCA2 localization and stability in nuclear structures and 

promoting homologous recombination (HR). In PALB2-depleted cells, abrogation of BRCA2 

causes focus formation and a significant decrease in HR efficiency. In vitro studies also revealed 

that purified PALB2 is capable of stimulating D-loop and strand invasion using short 

oligonucleotides or resected DNA double-strand breaks (DSB). In addition, PALB2 uses two 

DNA-binding domains to interact directly with genomic DNA, and constitutes a key regulator of 

RAD51-mediated HR. This activity depends on the BRCA1-PALB2-BRCA2 complex formed, 

that enables PALB2 to interact with RAD51 and stimulate RAD51-mediated D-loop formation.  

 

 

Figure1. PALB2 is a mediator in the homologous repair of damaged DNA. In the course of the 

repair of DNA double strand breaks (DSB), when ssDNA is generated, it becomes protected from 
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degradation by the single-strand binding protein replication protein A (RPA). Then, BRCA1 

recruits PALB2 to the DSB and promotes the recruitment of BRCA2 along with RAD51, that 

stabilizes strand pairing during the repair process. Acting as homologous recombination mediators, 

PALB2 and BRCA2 remove RPA and facilitate the assembly of a RAD51 nucleoprotein filament. 

Picture modified from a template found in literature [20, 21]. 

 

1.4 Mechanisms of Regulation of PALB2 

Regulation of PALB2 function involves different kinds of pathways and interactions, including 

homodimerization, phosphorylation, and ubiquitinylation. It has been demonstrated that PALB2 

recruitment to DSBs in S/G2 cells is orchestrated by direct interaction with the RING finger (RNF) 

E3 ubiquitin ligase RNF168 [22]. A lot of evidence indicates that PALB2 indirectly recognizes 

ubiquitin marks on histone H2A by physical interaction with RNF168, prompting the assembly of 

the HR machinery and driving DSB repair in the S/G2 phase. PALB2 seems to accumulate at DSB 

sites in an RNF168-dependent and BRCA1-independent manner. In other experiments, it has been 

shown that PALB2 can switch from a low activity oligomer to a BRCA1-PALB2-BRCA2 active 

complex after DNA damage recognition (Figure 2) [23]. This molecular switch can be controlled 

by protein phosphorylation, e.g., some kinases like the ATM/ATR can phosphorylate PALB2 in 

response to genotoxic stress, enabling successive DSB repair [24-27]. Mass spectrometry analysis 

and immunoprecipitation experiments revealed that MORF related gene on chromosome 15 

(MRG15) may constitute the major binding partners of PALB2. MRG15 belongs to the highly 

conserved family of MRG domain-containing proteins. Several studies indicated a PALB2-

dependent role of MRG15 in the repair processes of DSB [28, 29]. 

 

Recent studies highlighted that PALB2 regulation is cell cycle-dependent and plays a critical role 

in the restriction of HR to the S/G2 phase. This activity might be of importance to prevent the 

potentially deleterious effects of unscheduled DNA recombination. Along this line, Orthwein et 

al. highlighted a mechanism whereby PALB2 is ubiquitinated during G1 on K20/25/30 residues 

in the coiled-coil (CC) domain by a complex comprising KEAP1, a PALB2-interacting protein, 

and CUL3, collectively leading to its degradation [30]. During this process, PALB2 becomes 

initially phosphorylated at serine 64 (S64) by cyclin-dependent kinases (CDK). Then, the activity 

of PALB2 promotes DNA end resection and activation of the ATR-Chk1 pathway. The ATR 

activation drives CDK inhibition and phosphorylation of PALB2 at serine 59 (S59) and stimulates 

PALB2–BRCA1 interactions and complex formation. 
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Figure 2. In the absence of DNA damage, PALB2 transforms from a low-activity oligomer to a 

complex with BRCA1 after DNA damage signaling. This process is regulated by a 

phosphorylation from S64 to S59 by CDK and ATR. Picture modified from a template found in 

literature [20, 21]. 

 

1.5 PALB2 and Oxidative Stress 

Except for playing a critical role in DSB, the KEAP1–PALB2 interaction also contributes to 

cellular redox homeostasis (Figure 2). KEAP1 acts as a cysteine-rich oxidative stress sensor. 

Under normal conditions, it binds to the antioxidant transcription factor NRF2 and marks this 

protein for ubiquitination and degradation [31]. PALB2 can competitively impede the inhibitory 

KEAP1–NRF2 interaction and thereby avoid KEAP1-stimulated NRF2 degradation. By this 

activity, PALB2 is considered crucial for promoting NRF2 accumulation. NRF2 in turn is known 

to control a set of antioxidant genes, and promote their expression, thereby reducing the burden of 

intracellular oxidative stress. In agreement with this notion, PALB2 dysfunction has shown to 
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result in increased levels of reactive oxygen species (ROS) and a pronounced downregulation of a 

subset of protective and antioxidative NRF2 target genes. These findings indicate a potential and 

novel connection between oxidative stress and the development of PALB2-associated cancers. 

 

 

 

Figure 3. In oxidative stress, PALB2 can binds to KEAP1 and enhance the transcriptional 

activation of antioxidant response element containing genes, this process mediates by NRF2, 

picture modified from a template found in literature [20]. 

 

1.6 PALB2 in Disease 

Recent research indicated a considerable prognostic value of BRCA mutations for breast, ovarian, 

and prostate cancers [32-34]. Some epidemiological studies suggested PALB2 mutations are 

responsible for Fanconi anemia complementation (FANCN) [35, 36], and are associated with 

childhood cancer [37, 38]. Fanconi anemia is a rare, inherited genome instability-associated 

syndrome, that it characterized by serval clinical phenotypes, including early-onset bone marrow 

failure and myeloid leukemia predisposition. PALB2 has also been connected with the risk for 

breast cancer [39, 40]. Several lines of research confirmed that PALB2 is a high-intermediate 

breast cancer predisposition gene. In addition, depending on the particular mutation and the 
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respective population, PALB2 truncating variations confer a relative increased cancer risk in the 

order of 2 to 30-fold [41-45]. 

 

 

2. Aim of the research  

 

Mutations in PALB2 have been identified in Fanconi anemia complementation group N and are 

associated with childhood cancer. Moreover, PALB2 mutations and expression levels have also 

been linked to breast cancer risk and prognosis, respectively. The relationship between hereditary 

mutations in PALB2 and PDAC risk appears to have population-specific characteristics.  

 

However, little is known about the expression of PALB2 in PDAC tissue and its potential 

diagnostic value. It is speculated that PALB2 expression is of prognostic relevance in PDAC. To 

address this hypothesis, PALB2 expression will be studied in human PDAC and peritumoral 

tissues, and expression levels will be analyzed in relation to disease characteristics and patient 

survival. 
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3. Materials and Methods 

 

3.1 Patients and sample collection 

The human PDAC tissue microarrays used together with human breast cancer and gastric cancer 

tissue sections were purchased from the National Engineering Center for BioChips (Shanghai 

Biochip Co. Ltd., Shanghai, China). The tissue microarray chip contained 157 tumor tissue 

samples and 121 peritumoral tissues, with a follow up of patients’ survival for a time range of 1.2-

7 years. TNM staging data were available for 128 patients (Table 1). All of the PDAC cases were 

diagnosed by positive histology of invasive ductal carcinomas. Overall survival (OS) was 

calculated as the interval between the date of surgery and the date of death or last follow-up visit. 

In total, 61 patients were followed up until November 2014, and 96 patients were followed up until 

December 2011. The use of the human tissues was approved by the Research Ethics Committees, 

Shanghai and Taizhou Zhejiang, China. Informed consent was obtained from all patients prior to 

analysis according to the committees’ regulations. 

 

3.2 Immunohistochemistry 

The expression of PALB2 in the tissues was evaluated by semi-quantitative 

immunohistochemistry (IHC) using a rabbit polyclonal serum to PALB2 (diluted 1:2000, 

ab202970, Abcam, Cambridge, MA) [46]. The IHC procedure was conducted as follows: paraffin-

embedded tissue sections were deparaffinized with xylene and rehydrated with a series of different 

graded ethanol in Autostainer (ST5010, LEICA, Germany). These steps were followed by antigen 

retrieval and inactivation of endogenous peroxidase using the PT Link pre-treatment system (Dako, 

USA). After blocking with bovine serum albumin, section slices were incubated with goat anti-

PALB2 antibodies at 4 °C overnight. The next day, slices were washed, processed, and signals 

were developed using the Dako REAL EnVision FLEX+ detection system (K8002, Dako, USA). 

Images of stained sections were imported into Aperio XT digital microscope (LEICA, Germany) 

for quantifying positive stained cells.  

 

3.3 Evaluation of immunostaining 

Tumor cells exhibiting a staining signal in their nucleus were categorized as positively stained and 

the ratio of stained versus unlabeled tumor cells was determined as percentage of PALB2-positive 
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tumor cells. The percentage of positive cells was classified into five categories; score 0 (0% of 

positively stained cells), score 1 (1% - 5% of positively stained cells), score 2 (6% - 30% of 

positively stained cells), score 3 (31% - 60% of positively stained cells) and score 4 (61% - 100% 

of positively stained cells). The scoring was conducted by two independent pathologists; in case 

of an inconsistent result (ca. 15% of samples), the sample in question was re-evaluated together 

and a consensus was achieved. Scores of 0 and 1 were combined and collectively considered as 

low expression; similarly, scores 2, 3 and 4 were combined and collectively considered as high 

expression. The reliability of staining with the commercial PALB2 antibody was tested with 

gastric cancer tissue, known to not expressing PALB2 protein (negative control), and breast cancer 

tissue with known high expression of PALB2 protein (positive control). 

 

3.4 The use of TCGA public database 

The cBio Cancer Genomics Portal (http://cbioportal.org) was used to examine the expression of 

PALB2 across different types of human cancers, based on The Cancer Genome Atlas (TCGA) 

public database [47, 48]. The level 3 TCGA pancreatic adenocarcinoma datasets encompassing 

178 tumors were downloaded from (https://tcga-data.nci.nih.gov/tcga/) for expression analysis, 

evaluating the Root Mean Squared Error (RMSE) normalized mRNA count (“count”)[49], which 

represents the gene expression of PALB2. For GSEA, the latest official tool was downloaded from 

http://software.broadinstitute.org/gsea (Ver. 3.0). 

 

3.5 Cell culture 

Human PANC1, SW1990 and CFPAC1 cell lines were purchased from the American Type Culture 

Collection (Manassas, USA). Routinely, the cells were maintained in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (GIBCO, Carlsbad, CA, 

USA). Cultures were grown at 37°C in a humidified atmosphere containing 5% CO2. 

 

3.6 siRNA transfection 

PALB2 knockdown siRNAs and control siRNAs were purchased from Santa Cruz Biotechnology 

(sc-93396, sc-37007, Dallas, USA). For cell transfection experiments, the following procedure 

was conducted: seeding of 2 x 105 cells per well in 2 ml antibiotic-free normal growth medium 

supplemented with 10% FBS in a six-well tissue culture plate, incubation of the cells at 37° C in 

a CO2 incubator until the cells have grown to 60-80% confluency. Then the siRNA duplex solution 

http://cbioportal.org/
https://tcga-data.nci.nih.gov/tcga/
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(Solution A) is added directly to the dilute Transfection Reagent (Solution B) at room temperature. 

Thereafter, the solution is gently mixed by pipetting it up and down and incubating the mixture for 

15-45 min at room temperature. Then, the cells are washed once with 2 ml of siRNA Transfection 

Medium (Santa Cruz Biotechnology). For each transfection, 0.8 ml siRNA Transfection Medium 

are added to each tube containing the siRNA Transfection Reagent mixture (Solution A + Solution 

B) are gently mixed and used as overlay for the washed cells. The cells are then incubated for 5-7 

h at 37° C in a CO2 incubator. Finally, 1 ml of normal growth medium containing 2 times the 

normal serum and antibiotics concentration (2x normal growth medium) are added without 

removing the transfection mixture, and cells are incubated and grown for 2 days.  

 

3.7 Cell proliferation and wound healing assay 

The cell proliferation assay was performed using the cell counting kit 8 (CCK8, Dojindo, Japan). 

Briefly, cells were seeded in 96-well plates and the substrate, i.e., a water-soluble tetrazolium salt 

is added. This chemical is reduced to an orange formazan dye by life cells only. Numbers of viable 

cells can then be quantified at each 24 h interval by measuring OD450 with a microplate reader. 

For analyzing the cells in a wound healing assay, the cells were seeded and transfected on six-well 

plates with si-PALB2 or si-NC. 24 h after transfection, an artificial scratch wound is applied to the 

confluent monolayer of cells by using a 200 μl pipette tip. Thereafter, serum-free medium was 

added, and cells were imaged at baseline and 24 h after applying the scratch wound. 

 

3.8 Quantitative real-time PCR (qRT-PCR) 

Total RNA was isolated with Trizol reagent (Invitrogen) and converted to cDNA with 1 µg RNA 

using the reverse transcription kit (TOYOBO, Japan). Applied Biosystems SYBR Green Gene 

Expression Assays were performed using an Applied Biosystems 7500 Real-Time PCR System. 

GAPDH was used as an endogenous control for normalization. The DDCT method was applied to 

quantify relative gene expression. The primer used in qRT-PCR are indicated below: 

 

PALB2-F:  5-ACG CGT CGA CAG GCC GAA TGG TGG ATTTA-3 

PALB2-R:  5-CAA GAT ATC GCA CAT GTA CAA ATG TGGGAA-3, 

Vimentin-F:  5- GAC GCC ATC AAC ACC GAG TT-3 

Vimentin-R:  5- CTT TGT CGT TGG TTA GCT GGT-3 

Snail-F:  5-ACC ACT ATG CCG CGC TCT T-3 



16 

 

Snail-R:  5-GGT CGT AGG GCT GCT GGA A-3 

Slug-F:  5-ATG AGG AAT CTG GCT GCT GT-3 

Slug-R:  5-CAG GAG AAA ATG CCT TTG GA-3 

Zeb1-F:  5-GCA CCT GAA GAG GAC CAG AG-3 

Zeb1-R: 5-TGC ATC TGG TGT TCC ATT TT-3 

 

3.9 Statistical analysis 

The continuous variables in the different subgroups were compared using an unpaired t-test. Chi-

square test was used to analyze the distribution of each categorical variable between PALB2-

negative and PALB2-positive groups. OS was plotted using Kaplan-Meier survival curves with 

95% confidence intervals (CIs), and the differences between subgroups were compared using the 

log-rank test. A multivariate COX regression analysis was used to identify independent prognostic 

factors. All the tests were two sided, and p<0.05 was considered statistically significant. The 

statistical analyses were performed using GraphPad Prism 8.0 (Graphpad Software Inc., San Diego, 

CA) or IBM SPSS Statistics software Version 24.0 (IBM Corp., Armonk, NY, USA). 
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4. Results 

 

4.1 Establishment of the immunohistological method and test for antibody specificity 

To establish the immunohistological method and test if the commercial antibody yielded congruent 

data in agreement with current knowledge, gastric and breast cancer tissues were analyzed as 

negative and positive controls for PALB2 expression, respectively. In agreement with the results 

from the public TCGA database (see below), no IHC signals were seen for the stomach cancer 

negative control (Figure 4, upper panel). Strong IHC signals were seen with the breast cancer 

positive controls, verifying the suitability of the antibody and IHC protocol (Figure 4, lower panel). 

 

 

 

Figure 4. PALB2 protein expression in breast cancer samples as compared to gastric cancer 

samples. Surgical samples from stomach and breast cancer (n=3 per tissue) were analyzed by 

immunohistochemistry and signals were developed in parallel by the analytical technique 

described. While there was no positive staining in the stomach samples, the breast samples showed 

a consistent and intensive uniform PALB2 immunoreactivity. 
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Table 1. Clinicopathologic characteristics of patients, and PALB2 expression in PDAC tissue 

 

Features PALB2 negative PALB2 positive p value 

Age [years +/- SD] 64.1+/-11.0 62.6+/-10.1 0.3851 

Total number  

Gender 

91 60 
 

Male 56 (60.8%) 36 (39.2%)   

Female 35 (59.3%) 24 (40.7%)   

   0.8496 

TNM staging n=128       

T (1-2) 54 (66.7%) 27 (33.3%)   

T3 25 (53.1%) 22 (46.9%)   

      0.1306 

N0 46 (63.8%) 26 (36.2%)   

N1 33 (58.9%) 23 (41.1%)   

      0.5668 

AJCC staging n=128                

I 28 (68.2%) 13 (31.8%)   

IIA 18 (58.1%) 13 (41.9%)   

IIB 33 (60.0%) 22 (40.0%)   

   0.6108 

Tumor location       

Head 52 (57.7%) 38 (42.2%)   

Body/Tail 38(63.3%) 22 (36.7%)   

    

Ki-67 n=89 
 

  0.4962 

Positive 47 (72.3%) 15 (62.5%)  

Negative 18 (27.7%) 9 (37.5%)  

   0.3718 

P53 n=89    

Positive 49 (74.2%) 21 (87.5%)  

Negative 17 (25.8%) 3 (12.5%)  

   0.1810 

 

 

T: primary tumor site; N: regional lymph node involvement; Chi-square test was used to analyze 

the distribution of each categorical variable between PALB2-negative and PALB2-positive 

groups. p-value < 0.05 (bold) indicates a significant difference. 
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4.2 PALB2 has lower expression in the in the peritumoral tissues than PDAC tissue 

Among the tissues analyzed, there were slightly more PALB2-negative cancer tissues than 

PALB2-positive ones (Table 1). When expression of PALB2 was positive, the staining was lower 

in the peritumoral tissues as compared to the PDAC tissue (Figure 5).  

 

 

 

Figure 5. IHC for PALB2 expression in PDAC and peritumoral tissue. PALB2 staining was more 

intense in PDAC as compared to peritumoral tissues. Relative number of positively stained cells 

was significantly lower in peritumoral tissues (n=30) as compared to tumor (n=60) tissue, unpaired 

t-test was used to compare positive percentage of PALB2 between tumor and peritumoral tissues, 

p-value=0.0011 indicates a significant difference. 

 

 

PALB2-positive cell nuclei in PDAC and in the peritumoral tissues were identified and counted in 

relation to unlabeled cells. The overall rate of positive labeling of PALB2 in normal pancreas 

tissue was 24.8% of cells, while 40.8% of cells in PDAC tissue showed positive staining in their 

nuclei (Table 2).  
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Table 2. Nuclear PALB2 expression in peritumoral versus adenocarcinoma tissues 

 

 

 

 

 

 

Positively labeled tumor tissues exhibited a dense and intensive staining throughout the malignant 

area, different to the rather faint signals observed in untransformed tissues (Figure 6).  

 

 

 

Figure 6. The levels of PALB2 expression were scored into five categories according to the 

percentage of positively stained cells. An example picture of an intensively stained tissue sample 

(score of 4) versus a poorly stained sample (score of 1) is shown on the left and right, respectively, 

along with a magnified tissue area. The magnification is 100- and 1000-fold, respectively. 

Tissue type PALB2 positive (rate) 

Peritumoral tissues (n=121) 30 (24.8%) 

Adenocarcinoma (n=157) 60 (38.2%) 
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Next, the relationship between patients’ characteristics including PALB2 expression in the tumors 

and the patients’ OS was analyzed. The multivariate Cox regression analysis identified age 

(p=0.037), N classification (p<0.001) and PALB2 expression levels (p=0.021) as tumor parameters 

significantly associated with OS in PDAC patients (Table 3). 

 

4.3 High expression of PALB2 was associated with poor prognosis in surgical resectable 

PDAC patients 

 

The relationships between the patient characteristics including PALB2 expression in tumors and 

patient OS are presented in Table 3. Multivariate Cox regression analysis identified age (p=0.037), 

N classification (p<0.001) and PALB2 levels (p=0.021) as tumor parameters significantly 

associated with OS in PDAC patients (Table 3). 

 

Table 3. Multivariate Cox regression analyses of OS of patients with PDAC (n=128) 

Factors HR (95CI%) p value 

Gender 1.357 (0.892-2.064) 0.154 

Age (≥64 years/<64 years) 1.586 (1.029-2.445) 0.037* 

Tumor location 1.188 (0.757-1.864) 0.454 

T Classification 1.106 (0.657-1.596) 0.944 

N Classification 2.222 (1.437-3.436) <0.001* 

PALB2 (high/low) 1.736 (1.087-2.773) 0.021* 

 

CI: confidence interval; HR: hazard ratio; OS: overall survival; T: primary tumor site;  

N: regional lymph node involvement; p-value < 0.05 (bold) indicates a significant difference. 

Survival data were available for most patients. Kaplan-Meier analysis indicated that patients with 

positive PALB2 expression had reduced OS compared to patients with samples with negative 

staining (log rank p=0.0384, Figure 7A). Patients with PDAC tissues with positive PALB2 staining 

were divided into two groups: low PALB2 expression (scores 0 and 1 combined, n=119) versus 

high PALB2 expression (scores 2, 3 and 4 combined, n=38). A significant negative correlation 

was observed between PALB2 expression scores and long-term survival rate in Kaplan-Meier 

analysis (log-rank p=0.0195, Figure 7B). Consequently, a high rate of PALB2 expression may 

indicate poor prognosis for patients with surgically resectable PDAC. 
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Figure 7. Kaplan-Meier estimates of OS according to the expression levels of PALB2 in patients 

with resectable PDAC. (A) The PALB2 positive PDAC group exhibited a worse survival rate as 

compared to the group without detectable PALB2 expression. (B) High expression of PALB2 was 

associated with a poor OS in comparison to low expression rates. Log-rank test was used to 

compare differences in OS; p-value < 0.05 indicates a significant difference. 

 

4.4 Upregulation of PALB2 RNA expression was detected in the most types of cancers. 

To investigate the spectrum of cancer related PALB2 expression on a larger scale, the TCGA 

public database was analyzed. Scatterplots of PALB2 mRNA expression across 14 types of cancers 

were generated by the cBioPortal (Figure 8). The levels of PALB2 mRNA in the cancers were 

compared to respective normal tissues and plotted in a log-scale format. Many cancer types in the 

TCGA database showed upregulated PALB2 mRNA, including breast, cervical and pancreatic 

cancers. The only notable exception in this analysis was stomach cancer, which did not show 

increased PALB2 mRNA, in agreement with our analysis of stomach cancer as negative control 

tissue (please compare above, Figure 4). 
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Figure 8. (A) PALB2 expression in 14 types of human cancers. Ascending scatter plots of relative 

PALB2 mRNA levels in different cancer types were sorted by median PALB2 transcriptional level 

in comparison to the normal tissues. Stomach showed lowest relative PALB2 expression, whereas 

strong signals were obtained from pancreas.  

 

 

4.5 High expression of PALB2 was associated with poor prognosis in the PDAC patients 

present in the TCGA database 

The 178 PDAC samples were then separated into a relatively high PALB2 expression group (n=88) 

above the median, and a relatively low PALB2 expression group (n=89) below the median. A 

Kaplan Meier curve analysis demonstrated a significant negative correlation between PALB2 

expression and long-term survival rate (log-rank p<0.001, Figure 9).  
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Figure 9. Kaplan-Meier estimates of OS according to the expression levels of PALB2 in PDAC 

from TCGA database. Separation of the PDAC patients by medianPALB2 expression levels 

(higher 88 vs. lower 89): the group with relatively low PALB2 expression showed a better survival 

(log-rank p-value<0.001). Log-rank test was used to compare differences in OS; p-value < 0.05 

indicates a significant difference. 

 

Multivariate Cox regression analysis identified tumor location (p=0.026), N classification (p= 

0.019) and PALB2 levels (p=0.004) as tumor parameters significantly associated with OS of the 

PDAC patients represented in the TCGA database (Table 4).  

 

Table 4. Multivariate Cox regression analyses of OS of PDAC samples     

represented in the TCGA database (May 2019) (n=171) 

Factors HR (95CI%) p value 

Gender 0.963 (0.548-1.693) 0.896 

Age (≥65 years/<65 years) 1.005 (0.549-1.841) 0.986 

Tumor location 1.970 (1.083-3.585) 0.026* 

T Classification 1.032 (0.508-2.097) 0.930 

N Classification 1.894 (1.109-3.234) 0.019* 

PALB2 (high/low) 1.980 (1.245-3.249) 0.004* 

CI: confidence interval; HR: hazard ratio; OS: overall survival; T: primary tumor site;  

N: regional lymph node involvement; p-value < 0.05 (bold) indicates a significant difference. 
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An analysis of the clinicopathological information from the PDAC samples indicated a positive 

correlation of high levels of PALB2 mRNA expression with the primary tumor site (Table 5). 

 

Table 5. Clinicopathologic characteristics of patients, and PALB2 expression in PDAC samples 

represented in the TCGA database (May 2019) 

 

Features 

 

PALB2 high 

 

PALB2 low 

 

p value 

Age [years +/- SD] 65.8+/-11.0 63.4+/-10.8 0.1393 

Total number  

Gender 

89 89  

Male 46 (51.7%) 52 (58.4%)  

Female 43 (48.3%) 37 (41.6%)  

   0.4513 

TNM staging    

T (1-2) 9 (10.1%) 22 (25.2%)  

T (3-4) 80 (89.9%) 65 (74.8%)  

    0.0099* 

N0 24 (27.2%) 25 (29.4%)  

N1 64 (63.8%) 60 (70.6%)  

    0.8661 

AJCC staging            

I-IIA 23 (25.8%) 26 (29.8%)  

IIB-IV 66 (74.2%) 61 (70.2%)  
 

  0.6151 

Tumor location    

Head 69 (77.5%) 70 (78.6%)  

Body/Tail 20 (22.5%) 19 (21.4%)  

    >0.9999 

 

T: primary tumor site; N: regional lymph node involvement; p-value < 0.05 (bold) indicates a 

significant difference. Chi-square test was used to analyze the distribution of each categorical 

variable between PALB2-negative and PALB2-positive groups. p-value < 0.05 (bold) indicates a 

significant difference. 
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4.6  Generating a PALB2 knock down cell model in vitro 

 

In order to better investigating the biological function of PALB2, we constructed a PALB2 knock 

down model in vitro. Commercial siRNAs were selected, commercially obtained and used for 

PALB2 knockdown. As first quality check, we followed mRNA expression of PALB2 in cells 

transfected with PALB2-specific siRNA in comparison to control-transfected cells. The results of 

the Realtime-PCR analysis indicated that PALB2-siRNAs were able to effectively knockdown 

PALB2 mRNA expression levels in the three different PDAC cell lines studied (Figure 10).  

 

 

Figure 10. Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) to test for 

successful PALB2 knockdown by siRNA. Cells were incubated with PALB2-specific siRNA or 

control siRNA. After 48 h, cells were harvested, mRNA was prepared and used for qRT-PCR 

analysis of PALB2 gene expression. The results indicate that PALB2 was successfully knocked 

down by the PALB2-specific siRNAs in all three human cell lines tested, i.e., in PANC1, SW1990 

and CFPAC1 cells. Relative mean values (plus SD) of triplicate analyses are shown. 

  



27 

 

4.7 Analysis of cell growth and cell migration in relation to PALB2 expression  

Next, functional readouts of cells with native or reduced PALB2 expression were studied. To this 

end, wound healing experiments and cell proliferation experiments were conducted in order to 

investigating the biological function of PALB2 in vitro. Using the three different human cell lines,  

PALB2 knock down appeared not to affect cell growth and proliferation rates (Figure 11).  

 

 

Figure11. Analysis of cell growth and proliferation in relation to PALB2 gene expression. 

Using PALB2-specific siRNA, PALB2 was down regulated in PANC1, SW1990 and CFPAC1 

cells. Growth and proliferation of the cells was assessed by the analysis of OD450 every 24 h. The 

data indicate that the knockdown of PALB2 did not affect growth and proliferation of pancreatic 

ductal adenocarcinoma (PDAC) cells in vitro. The formazan-dye formation assay (CCK8 assay) 

was used to quantify the effects of PALB2 knockdown on cell proliferation. Biological triplicates 

were performed and tested by two-sided paired sample t-test (*P < 0.05). 

 

 

* 

* 
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Then as next functional readout, migration of cells with native or reduced PALB2 expression were 

compared. To this end, a scratch wound was applied to a confluent monolayer of the different cell 

lines after transfection with PALB2-specific or control siRNA. Migration efficiency into the 

wound was quantified by live cell imaging using time-lapse microscopy. The results obtained 

indicate that migration rates are affected by PALB2-knockdown in a cell type specific manner 

(Figure 12).  

 

Figure 12. Migration analysis of cells with wildtype or down regulated PALB2 expression in 

a wound healing test. Human PDAC cells were transfected with PALB2-specific or control 

siRNA and grown to confluency. A wound into the monolayer was applied by scratching with a 

200 µl pipette tip. Cell migration was analyzed by automatic quantification of the scratch area and 

distance between the two borders of life cells. The results indicate that down regulation of PALB2 

suppressed the migration of pancreatic ductal adenocarcinoma (PDAC) cells in a cell-type specific 

fashion. Efficient wound healing was observed independent of PALB2 expression in PANC1 cells, 

whereas cell migration was strongly decreased by PALB2 knockdown in SW1990 cells. the results 

for CFPAC1 cells were in between the other two human cell lines. Biological triplicates were 

performed and tested by two-sided paired sample t-test (*P < 0.05, **P < 0.01). 
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4.8 Identification of PALB2 gene associated biological pathways 

In order to better explore the potential biological function of the PALB2 in PDAC, an in-silico 

approach was chosen. First, gene set enrichment analysis (GSEA) was used to map the available 

data into the biocarta pathways database. GSEA is a bioinformatic approach that can analyze the 

possible correlation of a target gene with known functional gene sets [50, 51]. To this end, the data 

of the patients with highest PALB2 expression, i.e., those in the top 11% with regards to their 

PALB2 mRNA levels, were compared to the patients with lowest PALB2 expression, i.e., those 

localized in the bottom 11% of PALB2 mRNA levels. As information source, The Cancer Genome 

Atlas (TCGA) gene expression database was used. The most significantly enriched signaling 

pathways were chosen, based on their normalized enrichment score (NES). The results indicate 

that high PALB2 expression samples were also enriched for the TNF-alpha, epithelial to 

mesenchymal transition (EMT), TGF-beta, p53, NOTCH and mTORC1 pathways (Figure 13).  
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Figure 13. Gene set enrichment analysis (GSEA) associated with PALB2 expression. The gene 

sets of TNF-alpha, EMT, TGF-beta, NOTCH, p53 and mTORC1 pathways were enriched in 

PDAC samples with high expression levels of PALB2. (A) TNF-alpha pathway (NES=2.35, 

FDR<0.01) (B) EMT pathway (NES=2.27 FDR<0.01) (C) TGF-beta pathway (NES=1.84, 

FDR<0.01) (D) NOTCH pathway (NES=1.75, FDR<0.01) (E) p53 pathway (NES=1.63, 

FDR<0.01) (F) mTORC1pathway (NES=1.61, FDR<0.01). For GSEA, the latest official tool was 

downloaded from http://software.broadinstitute.org/gsea (Ver. 3.0). The results of GSEA that had 

a false discovery rate (FDR) < 0.25, and Normalized Enrichment Score (NES) > 1 were considered 

to indicate a statistically significant difference. 

 

4.9 PALB2 is associated with epithelial mesenchymal transition (EMT) in PDAC 

As the GSEA results indicated, the epithelial mesenchymal transition (EMT) constitutes one of the  

pathways most strongly associated with the PALB2 gene expression level. In order to verify this 

notion, PALB2 expression was reduced (knockdown) by PALB2-specific siRNA, and gene 

expression was compared to control cells exposed to control siRNA application. In order to analyze 

the effects, gene expression of several transcription factors known to be of central importance for 

EMT were quantified, such as the Snail family. Hence, expression of several EMT markers were 

compared between PALB2 knockdown and negative control cells. The results indicate that knock 

down of PALB2 was not affecting mRNA levels of Snail in SW1990 or CFPAC1 cells, whereas 

Slug and Zeb1 was efficiently down regulated in both SW1990 and CFPAC1 cells. Importantly, 

mRNA levels of the mesenchymal marker Vimentin were down regulated in both cell lines, 

indicating a direct association of PALB2 levels with vimentin gene expression (Figure 14). 
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Figure 14. Effects of siRNA-mediated down regulation of PALB2 expression on the 

epithelial–mesenchymal transition (EMT). SW1990 and CFPAC1 cells showed reduced 

migration behavior in the scratch wound test upon PALB2 down regulation. In order to test for 

effects of PALB2 on EMT markers, gene expression of snail, slug, zeb1 and vimentin were 

analysed in relation to siRNA medicated PALB2 knock down. Down regulation of PALB2 was 

associated with reduced gene expression of the EMT markers slug, zeb1 and vimentin. Biological 

triplicates were performed and tested by two-sided paired sample t-test (*P < 0.05, **P < 0.01). 
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5. Discussion 

 

In this study, the expression and biological function of the tumor suppressor gene PALB2 was 

studied in several PDAC cell lines. In addition, the expression of PALB2 was quantified in 

peritumoral and tumoral tissue samples, and compared to the clinicopathological characterization 

of the patients. The experiments were intended to support the attempts for better diagnostic 

methods, given that PDAC belongs to the leading causes of cancer-related mortality [52]. The 

results indicate that PALB2 affects important cellular processes like EMT and tumor cell migration. 

In the clinical samples, the protein levels were increased in the tumor as compared to the 

peritumoral tissues. Notably, high PALB2 expression was negatively associated with OS of 

surgical resectable PDAC patients. These findings qualify elevated PALB2 expression levels as a 

negative prognostic marker for survival in surgical resectable PDAC. Interestingly, PALB2 

expression appears to become upregulated in most tumor types, with the notable exception of 

stomach cancer. This notion was verified when analyzing stomach in comparison to breast cancer 

tissue slices. In PDAC, the three parameters age, N classification and PALB2 expression levels 

may be combined for obtaining a valuable marker of OS and mortality. Knockdown of PALB2 in 

vitro supported this notion, as the results indicated that PALB2 knockdown inhibited the migration 

ability of pancreatic cancer cells, i.e., high PALB2 expression may support cancer cell migration. 

On the molecular level, the gene expression of several EMT-related transcription factors were 

down regulated by PALB2 knock down, indicating that PALB2 expression is positively associated 

with EMT-related transcription factors and the transition process. These data indicate that PALB2 

may directly affect EMT via up regulation of crucial transcription factors, thereby promoting the 

ability to metastasis of PDAC tumor cells, finally contributing to the poor outcomes of PDAC 

patients and their low overall survival rates.  

 

In terms of function, PALB2 is known to colocalize with BRCA1 and BRCA2 and to take part in 

error-free homologous recombination repair [53]. Dysfunctions of BRCA1 and BRCA2 are known 

to promote carcinogenesis [54]. PALB2 mutations also have been reported in other types of cancer, 

such as lung or breast and ovarian cancer [55, 56]. Mutations in PALB2 appear to associate with 

a high risk of breast cancer in both men and women [57], and the increased risks seem to be 

particularly resulting from protein truncation mutations [58]. This was most evident in a mutation 

screening study conducted in Finland and identifying c.1592delT as a recurrent mutation in 

familial breast cancer cases, encoding a truncated protein with impaired BRCA2-binding capacity 
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[59]. Notably, loss-of-function mutations in PALB2 are reported to confer an eight to nine times 

increased breast cancer risk for females below 40 years of age, partly overlapping with increased 

breast cancer risk from BRCA2 mutations [60].  

 

In patients with pancreatic cancer, germline truncating mutations in PALB2 were also detected 

supporting PALB2 as a susceptibility gene for tumorigenesis of the pancreas [61]. A European 

study provided evidence that truncating mutations of PALB2 predispose to both pancreatic and 

breast cancer risk [62]. Despite these convincing lines of evidence for a causal involvement of 

PALB2 for tumorigenesis, the relative importance of dysregulated PALB2 expression for disease 

course and mortality risk are poorly known. 

 

Missense polymorphisms in BRCA1 have been described to exert only a very moderate effect on 

prognosis of PDAC patients [63]. Certain mutations in other BRCA pathway genes were in general 

associated with better prognosis of PDAC patients [64]. In terms of expression levels, elevated 

BRCA2 mRNA expression predicts poor prognosis in breast cancer patients [65], and similarly, 

increased PALB2 expression was associated with poor overall survival of patients with advanced 

breast cancer [66]. The relationship between PALB2 expression levels and prognosis of patients 

with PDAC remained uncharacterized. 

 

The data from the analyses presented here now indicate a considerable prognostic significance of 

PALB2 overexpression in PDAC. The Kaplan Meier survival analysis highlighted a strong 

association of elevated PALB2 expression levels with poor OS odds. The expression of PALB2 

was not associated with the other clinicopathological parameters analyzed. PALB2 may thus 

constitute an independent prognostic factor of OS in resectable PDAC patients and may serve as 

an additional marker besides classical parameters of cancer staging and grading. Notably, the 

results were obtained from patients residing in Asia (our immunohistochemical analysis of tissue 

arrays from Chinese patients) and in America (the TCGA database is mainly composed of US 

American patients), respectively, indicating a population-independent finding. 

 

The occurrence and development of pancreatic cancer is associated with a dysregulation of a 

variety of signaling pathways. In order to gain some additional insight into the potential biological 

function of PALB2, a GSEA using TCGA gene expression data was conducted to identify those 

pathways that may be directly affected by an increased or decreased PALB2-expression. Many of 

the signaling pathways associated with an upregulated expression of PALB2, i.e., those enriched 
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in the PALB2 high expression group, were related to cell cycle control and proliferation, including 

the TNF-alpha, EMT, TGF-beta, p53, NOTCH and mTORC1 pathways. This notion is in 

agreement with previous research indicating that PALB2 might be involved in tumor cell 

proliferation, invasion and migration, particularly via the P53 and NF-κB signaling pathways [67].  

In the vitro experiments, PALB2 knockdown affected the PDAC cells’ migration ability, but not 

the proliferation rates. According to the GSEA results, EMT emerged as one strongly associated 

pathway that could be a downstream mechanism affected by PALB2 knockdown. EMT is a 

multistep process during which the epithelial phenotype of cells is progressively lost and their 

differentiated characteristics fade while undergoing characteristic changes in adhesion and motility 

[68-70]. The mesenchymal cancer cells acquire a more invasive, metastatic and chemo resistant 

phenotype [71-74]. In order to testing this hypothesis, the expression levels of EMT relevant 

transcription factors were quantified in relation to PALB2 expression. It became obvious that 

PALB2 knockdown caused reduced gene expression of Slug, Zeb1 and Vimentin. These findings 

were consistent with previous reports that RNA silencing of PALB2 is capable of inhibiting breast 

cancer cell proliferation and migration, and may lead furthermore to a downregulated activity of 

the epithelial to mesenchymal transition (EMT) pathways [66]. However, the underlying 

regulatory alterations and effects require further clarification, and the findings presented should 

next be verified by an in-depth analysis of clinical data sets. 

 

In the Kaplan Meier based analysis, the relation between PALB2 expression and OS was relatively 

strong. This relation was found both on the mRNA and protein expression levels. The analyses 

conducted were of sufficient size to identifying these interactions, however, some limitations need 

to be mentioned. As a retrospective study, not all data of the PDAC patients were available for 

analysis, and due to the observational type of our study, mechanistic conclusions from our data 

cannot be drawn. Additional functional studies have not yet been conducted but are essentially 

needed to better highlight the biological role exerted by elevated PALB2 protein levels in tumor 

cells, and their relevance for cell proliferation and the tumor's susceptibility to oncostatic 

medication. These analyses have been initiated and hopefully will contribute further to a better 

understanding of the proteins and its relevance for diagnosis and prognosis in this most devastating 

disease, i.e., PDAC.  
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6. Conclusion 

 

In conclusion, the experiments presented above indicate a functional role of PALB2 for cancer 

cell migration and EMT. Increased expression levels of PALB2 were observed in PDAC tissues, 

and an association of high PALB2 levels with reduced survival odds was found. These findings 

suggest that PALB2 may serve as a diagnostic marker to better categorize the PDAC patients into 

subgroups of OS chances, better predicting their mortality risk and potentially to help in selecting 

the most suitable treatment plan. The findings may eventually aid in the management of PDAC 

patients in clinical practice and in the choice of individualized therapy strategies in the future.  
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7. Outlook 

 

The results obtained in this study indicate an increased expression level of PALB2 in most PDAC 

tumor tissues, and an association of high expression levels of PALB2 with poor prognosis. Besides, 

knockdown of PALB2 inhibited the PDAC cells’ migration in vitro. However, the mechanisms 

underlying the phenotype and the molecular effects of PALB2 in PDAC are still unclear. Based 

on the TCGA public database, an analysis the top 20 PALB2 patients with respect to expression 

levels in comparison to the respective bottom 20 PALB2 expression patients was conducted. The 

results indicate that several pathways, including TNF-alpha, EMT, TGF-beta, p53, NOTCH and 

mTORC1 are potentially involved in the phenotype resulting from an altered PALB2 expression. 

It is thus assumed that the epithelial to mesenchymal transition (EMT) might be a central and most 

important downstream mechanism of PALB2 dysregulation in PDAC. PALB2 may also act as an 

independent factor to regulate the metastasis of the pancreatic cancer cells. The roles of PALB2 in 

pancreatic cancer progression need further investigation.  
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