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CHAPTER 6 

PASTAA – Predicting TFs associated with 
groups of genes 
 

As shown in the previous two chapters, TRAP frequently detects known regulating 

factors for a given gene by ranking TFs according to their predicted affinities for the 

corresponding promoter. In this chapter I will extend this applicability of TRAP to the 

detection of TFs that play an important role in the regulation of groups of genes. The search 

for such TFs typically arises from expression studies (e.g. microarray or EST measurements) 

were changes in the transcriptome have been detected between different cell types or cell 

conditions and one seeks to understand the underlying regulatory processes responsible for 

the observed changes. Groups of genes with changed expression in a given condition are 

thereby assumed to share regulatory elements bound by the same transcription factor. While 

this appears to be a straight forward task, identifying the TFs responsible for establishing or 

maintaining the observed expression patterns constitutes a major challenge in bioinformatics.  

 

Aside from the problem of correctly predicting the target genes of a TF, another 

difficulty is hereby the selection of meaningful gene groups to be analyzed. For instance, if 

we seek to find TFs that play an important role in the regulation of pancreatic genes we may 

want to select those genes which play a specific role in pancreas. However, in general there 

will only be a small number of genes whose expression is restricted to only a particular tissue 

and thus we need to introduce a cutoff that specifies how strongly the gene has to be 

upregulated in the tissue and in how many other tissues it may be expressed in order to 

declare it as sufficiently specific. Unfortunately, the thresholds yielding an optimal enrichment 

with direct targets for a given condition specific TF are not known a priori and may vary 

between different factors and conditions. 

 

Another major obstacle for detecting regulating TFs in higher eukaryotes is the lack of 

well defined promoters. For instance, while the search for functional binding sites of a given 

TF to a yeast promoter can usually be limited to scanning the corresponding intergenic 

region of 50 to 1500 bps length, in vertebrates regulatory regions may lie kilobases away 

from the respective transcription start site. Solving this problem by simply annotating larger 

promoter regions is thereby impeded by the fast accumulation of random none functional 

binding sites, which blur any real binding signals. 
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Despite the difficulties posed by selecting appropriate cutoffs for gene set construction, 

choosing suitable promoter regions and subsequently predicting functional binding sites, 

computational approaches led to the detection of a number of well-known regulatory 

associations between TFs and sets of target genes. Pioneering this work for tissue specific 

gene groups Wyeth Wasserman and colleagues (1998) were the first to detect the functional 

relationship between a small handpicked set of muscle and heart specific genes and TFs 

with known muscle specific function including SRF, MEF2 and MYOD. Subsequent large 

scale studies recovered several additional TF-tissue associations, such as the association 

between immune related factors and gene sets derived from leukocytes, and the association 

between hepatocyte nuclear factors and liver specific genes (Pennacchio et al., 2007; Smith 

et al., 2006; Yu et al., 2006). However, while each of these studies was able to recover at 

least a subset of the known associations, for many tissues and TFs no experimentally known 

associations have been recovered. 

 

Here a new approach is introduce for detecting TF-gene set associations, which 

combines the affinity predictions of TRAP with two statistical tests that evaluate the 

enrichment of high affinity TF targets within a given input gene set. In case of non-categorical 

data such as presented by EST or microarray expression values, I introduce an iterative 

search for detecting optimal thresholds used to define the input gene sets. The performance 

of the resulting method, called PASTAA (Predicting ASsociated Transcription factors from 

Annotated Affinities), will first be assessed on various gene sets with known common 

transcriptional regulators. It will then be used to perform a large scale promoter analysis of 

tissue specific genes where its performance will be compared to a number of state of the art 

methods. 

 
6.1 Statistical measures for detecting affinity enrichments 
 
In order to detect candidate transcription factors responsible for the regulation of a group of 

genes two statistical test schemes have been implemented. The first scheme is based on 

applying a z-score measure to detect increased affinity of a TF within the genes of an input 

set. The second scheme utilizes a series of hypergeometric tests designed to identify the 

enrichment of TF targets within the top ranking genes of a given input list. This test is 

specifically designed to deal with the fact that in most cases only a subgroup of the genes in 

the input list will actually be regulated by the same factor. In the following, the acronym 

PASTAA will refer to the combination of either of these statistical tests with the affinity 

predictions from TRAP. 



Figure 6.1 – Affinity distribution for HNF1_01 
a) b) 
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6.1.1 Testing for increased average affinity (z-score test) 
The goal of detecting elevated average affinity of a given TF for the genes in a given input 

set pertains well to a z-test, which assesses whether a sample mean diverges significantly 

from the population average. In order to directly obtain valid p-values from the z-scores via 

the Standard Normal Distribution the sample means of the affinity values have to be normally 

distributed. 

 

 

    
c) d) 
 

   
 
a) For the 14 bases long matrix HNF1_01 raw affinities are log normal distributed over a set of 

100.000 random sequences of length 1000bps. b) Log-transformed distributions for the affinities 

from a). c) Distribution of the sample means (sample size 30) when sampling form the original 

distribution. d) Sample means (sample size 10) approach a normal distribution (red lines) when 

sampling form the log-transformed affinity distribution. This allows deriving p-values directly 

from measuring the area under the Standard Normal Curve to the right of the z-score. 



Affinities tend to be log-normally distributed 
A typical histogram of the raw affinities over 10.000 randomly generated sequences 

(according to b = {0.25, 0.25, 0.25, 0.25} and length L = 1000 bps) is shown in Figure 6.1 for 

the matrix HNF1_01. As shown, the affinities are approximately log-normal distributed, that 

is, the distribution of the log-transfomred affinities approaches a normal curve. The sample 

means, computed from the transformed affinities for randomly generated gene sets, follow a 

Gaussian distribution even for small sample sizes (n = 10). In contrast, deriving sample 

means from raw affinites clearly violates the assumption of having a normal distribution even 

for sample sizes with n > 30. For details on the distribution of binding affinities I refer to 

Manke, Roider, Vingron (2007) where we analyzed the affinity distributions in detail, showing 

how they can be derived either analytically using characteristic functions or approximated 

using extreme value distributions. For the purpose at hand, the sample means of all factors 

approach a Gaussian distribution even for small sample sizes of n ≈ 10 when using the log-

transformation. z-scores obtained from such transformed affinities can thus directly be 

converted into valid p-values and be compared between factors, without the need to apply 

time-consuming resampling. On the other hand, transforming the affinities distorts their 

relative values, which might harm any subsequent analysis. Therefore in the following both, 

raw and transformed affinities were assessed for their applicability to the z-score test. 

 

Applying the z-score test 
Following the workflow outlined in Figure 6.2, once an input gene set has been chosen the 

following z-score (Rice, 1995) is computed using either the raw or log-transformed affinities 

from a given transcription factor: 
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where 
SetTF

N
,

 is the mean affinity of the TF for the promoters in the input gene set, μTF,Pop 

and σTF,Pop are the mean and variance of the affinities over all promoters in the genome, and 

nSet is the size of the input gene set. While using raw affinities allows to keep the relative 

binding affinities intact it makes the z-score test sensitive to outliers, that is, a single gene 

with exceptionally high affinity can cause a significantly elevated mean affinity in a given 

input set. Such outliers can occur for instance, when a PFM recognizes a repetitive 

sequence in a given promoter. Applying the log-transformation on the affinities diminishes 

the effect of outliers however, as mentioned before, also distorts the meaningful difference in 

predicted affinities between high and weak binding sites. In addition, the log-transform puts 

as high weights on low affinities as it does on high ones (both tails of the Gaussian 



distribution contribute equally to the mean). In turn the average for a given input set might not 

be significantly elevated due to the presence of genes with spuriously low affinity. To avoid 

this dilemma and to deal with the fact that input gene sets are oftentimes badly defined a 

method relying on a series of hypergeometric tests, as described below, was implemented. 

Figure 6.2 – Workflow for PASTAA using the z-score test 
 

 
 
All genes of a given species are separated into categories (input gene sets) based on for instance 

EST expression data or ChIP-chip binding p-values (indicated for the Abf1 in vitro binding data). 

For a given TF the mean affinity of the promoters in each such category is then compared to the 

mean affinity of the population of all promoters in the genome. The computed z-scores are 

subsequently used to rank all TFs for a given category or alternatively, all categories for a given TF.

 

 

6.1.2 Testing for target gene enrichment (hypergeometric test) 
As mentioned above, spuriously low or high affinity predictions for individual genes can 

negatively influence the results of the z-score test. To avoid this problem I alternatively test 

for the enrichment of TF targets among the genes of an input set. To this end, for a given 

PFM all genes are first ranked according to their predicted affinity. Subsequently, a cutoff is 

applied to the ranked list that separates all genes in the genome into targets and non-targets 
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of the corresponding TF. Finally, following the scheme shown in Figure 6.3, a hyper-

geometric test is employed: 

Figure 6.3 – Workflow for PASTAA using the hypergeometric test 
 

 
 
All genes of a given species are ranked according to their association with a given category such as 

pancreas a). At the same time the genes are also ranked according to the predicted affinity for a 

given TF such as PTF1 b). After applying a cutoff to the lists in a) and b) a hypergeometric test is 

used to determine the overlap between the top ranking genes of the TF and the top ranking genes in 

the category (illustrated by the Venn diagram in c). Cutoffs are thereby chosen iteratively in such a 

way that the obtained hypergeometric p-values (ovals indicate the corresponding changes in set 

sizes) are minimized. The significance of the associations between all PFMs and the provided 

categories is stored in a matrix as depicted in d) where grey scales indicate the level of significance 

of a given TF-category association. 
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which computes the probability of observing exactly k or more genes in the intersection 

between the input set of size C and the target set of size T, given a total number of N genes.  
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Cutoff selection for TF targets and tissue specific genes 
The significance of the association between a given TF and the genes in the input set, as 

obtained from the hypergeometric test, depends on the cutoff used to select the genes for 

the input set and on the cutoff on 〈N〉 used to specify the targets of a given TF. Since the 

optimal values for these two thresholds are not known a priori PASTAA loops over a set of 

cutoffs on both, the values that determine association with an input set (e.g. significance of 

the expression of a gene in a tissue), as well as on 〈N〉. For the input set the cutoff is chosen 

in such a way that sets containing {1, 2, … , 99, 100, 110, 120, … , 290, 300, 400, … , 900, 

1000} genes are generated. On 〈N〉 the threshold is chosen so that target gene sets of size 

{25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 

1000} are obtained. The choice to put the maximal set size to 1000 genes will be explained 

in context of Section 6.3.1. In general, each of the resulting 2413 cutoff combinations will 

yield a different hypergeometric p-value. I assume that the smallest achieved hypergeometric 

p-value thereby corresponds to the most meaningful detectable association between a given 

TF and a set of genes. The obtained p-values are directly used to rank the TFs for a given 

input list. However, due to the apparent multiple testing problem the p-values need to be 

corrected if one seeks to accurately determine the significance of a given association. This is 

done by applying 100.000 rounds of resampling for any given input set size. For each 

resampling the gene labels are thereby shuffled randomly between all N genes of the 

genome before performing the analysis. 

 

Next to expression data, groups of genes could also be derived from categorical data 

as presented by databases such as KEGG (Aoki et al., 2005) or Gene Ontology (Hill et al., 

2002). In such a case one might seek to find TFs that regulate the expression of genes 

unambiguously assigned to a particular metabolic pathway such as glycolysis or a process 

such as DNA repair. The genes belonging to the corresponding categories are in general not 

ranked and are thus all treated equal, that is, no additional cutoff is applied to the input set. 

 

It has to be stressed that the cutoffs on 〈N〉 are introduced not on the level of 

individual binding sites but on the affinity scores for entire promoters. While this still 

constitutes an arbitrary separation between targets and non-targets, the relative contributions 

of the binding sites to 〈N〉 are retained, which allows to take advantage of the improved gene 

ranking introduced by TRAP. In principle, the method of varying cutoffs can also be applied 

to define the input gene set for the z-score test. However, due to the problem of outliers in 

the affinity of individual promoters, the minimal input set size has to be chosen rather large in 

order to avoid spuriously high z-scores for small input sets. This in turn limits the usability of 
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flexible thresholds. This is underlined by the fact that for the following analyses I was not able 

to significantly improve the TF rankings obtained from the z-score test by applying flexible 

cutoffs (data not shown). 

 

6.2 Data and methods used for analyzing tissue specific 
gene sets 
 
Section 6.5 deals with a detailed analysis of tissue specific genes and TFs. This analysis 

requires, next to the definition of tissue specific input gene sets, also the generation of sets of 

vertebrate promoter sequences. In the following it will briefly be outlined how the sequences 

and expression data used for the tissue analysis were obtained and how to detect a general 

expression bias of TFs across different tissue categories. 

 

6.2.1 Sequence data 
All mouse and human genomic sequences as well as the annotation of the corresponding 

transcription start sites (TSSs) for 26.609 mouse and 30.423 human genes were taken from 

the Ensembl database version 31 (Birney et al., 2006). As representation of the promoter 

regions of the genes two different sequence sets were generated. The first set consists of the 

full genomic mouse sequence up to 10kb upstream of each TSS. The second set consists of 

all sequence blocks conserved between the mouse and human genes with annotated one to 

one orthology relationship in Ensembl. The alignments, as provided by Stefan Haas, were 

generated from a region of 20kb upstream of the respective TSSs and applying the BLASTZ 

algorithm (Schwartz et al., 2003). Repetitive sequences were thereby masked beforehand 

using RepeatMasker (Smit et al., 1996). 

 

6.2.2 Defining tissue specific gene expression 
 
EST data 
The expression of a given gene in a given tissue from human and mouse was determined by 

analysing corresponding EST clusters from the database GeneNest (see Section 2.4.2, Haas 

et al., 2000), which includes the annotation of the originating tissue for each EST. To detect 

EST clusters whose distribution of ESTs derived from various tissues differ significantly from 

the expected distribution all clusters were subjected to a binomial test such that a p-value 

describing the likelihood of observing a given number of ESTs from a given tissue in an EST 

cluster of given size was obtained. These EST cluster p-values reflect the extent of 



overexpression of a given gene in a given tissue and were successfully used previously to 

predict tissue-specific expression of genes (Gupta et al., 2005). To minimize the problem of 

insufficient EST sampling for genes the tissue lists from human and mouse were combined 

by always taking the more significant p-value for each orthologous gene and tissue from 

either species. To speed up computations and to allow for a meaningful comparison with 

alternative approaches that do not adjust the input set size (PAP, Clover, oPOSSUM) only 

EST clusters with p-value < 10-6 in at least one of the 72 tissue categories were used 

subsequently as input to the statistical tests. For the hypergeometric test all genes in a given 

set were ranked according to their tissue p-values. 

 

GNF data 
Alternatively, I retrieved the expression values from the mouse GNF data set (Su et al., 

2004) that contains MAS5 treated expression values for 12.191 Ensembl mouse genes in 54 

tissue categories, 32 of which have a corresponding category in the EST data set. The 

expression values were normalized by a z-score transformation: 

 

 
σ

Φ−Φ
= gt

gtz ,
,  (6.3) 

 
where zt,g is the normalized expression level, Φt,g is the expression value of gene g in tissue 

t, Φ  is the average expression over all tissues and σ is the variance of the expression of 

gene j over all tissues. In the following, a given tissue input gene set for PASTAA consisted 

of all genes with a zt,g value > 0 for the corresponding tissue. For the hypergeometric test all 

genes in a given input set were ranked according to their zt,g values for the tissue. 

 

6.2.3 Assessing TF expression across tissues 
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To test whether TFs are in general preferentially expressed in the tissues most significantly 

enriched with their target genes I first select for each TF-tissue association the PFM, which 

yields the most significant hypergeometric p-value with any of the tissues. This is done to 

avoid any bias possibly introduced by having several PFMs for a given TF. Then to 

determine the expression level of a given TF in a given tissue the protein sequence of the 

TF, as provided by TRANSFAC, was mapped to the mouse or human EST cluster with 

highest sequence similarity according to BLASTX (mapping provided by Stefan Haas). TFs 

with EST cluster p-value < 10-6 in the corresponding tissue were selected as specifically 

expressed. Subsequently, all cases where a TF is specifically expressed in its top ranking 

tissue were put in a first bin, all cases where a TF is specifically expressed in its second to 

top tissue in a second bin and so forth. For each TF this procedure was repeated over all its 



72 tissue associations. The ultimate assessment of the size of the resulting bins is 

complicated by the fact that tissue categories with few ESTs are not only less likely to 

express the TF but are also less likely to produce significant hypergeometric p-values. 

Therefore, there exists an intrinsic negative correlation between the ranks of the tissue and 

the number of TFs expressed per tissue. To assess whether the enrichment is higher than 

expected by chance, I repeated the entire analysis ten times, every time assigning a random 

200 bp long DNA sequences to each of the 26.609 Ensembl gene IDs (alternatively one may 

use a resampling procedure that randomly shuffles the gene identifiers between all genes in 

the genome). The difference between the actual results and the ones obtained from the 

random sequences in each of the 72 bins was finally evaluated by computing the following t-

statistic: 

 
r
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=  (6.4) 

 
where bini,g is the number of TFs assigned to bin i using the real genomic sequences, bini,r is 

the average number of TFs assigned to bin i over all ten random sequence sets and σr is the 

standard deviation of the number of TFs in bin i obtained over the 10 random sets. 

 

 

6.3 Validation of the PASTAA approach 
 

To assess the validity of the outlined statistical measures the z-score and hypergeometric 

tests is first applied to the same PBM and ChIP-chip data sets from yeast already used in 

Chapter 4 (for details on the data sets see Section 4.1.3). The performance of the tests is 

compared to the results of a simple ROC curve analysis. Subsequently, the validation of the 

hypergeometric test is extended to vertebrate data sets with known associated TFs. A 

comprehensive comparison with alternative state of the art approaches will be provided in 

Section 6.4.5.  

 

6.3.1 Performance on ChIP-chip and PBM data sets from yeast 
The ChIP-chip and PBM data sets from yeast constitute an ideal test case for evaluating 

PASTAA’s sensitivity and specificity when searching for elevated average affinity of a given 

TF or an enrichment of predicted TF targets in an input gene group.  

 

 

 
  112



Figure 6.4 – Affinity distribution for ABF1_01 
a )                                              b )  
 

   
 

a) Raw affinities distribution from ABF1_01 over all 6725 intergenic regions from yeast, 

normalized by the length of the corresponding region. b) log-transformed affinity distribution. Red 

highlights the intergenic regions significantly bound in the PBM experiment. 

Results obtained from the z-score test 
When using the z-score statistics PASTAA requires a precise definition of the input gene set. 

To this end, all genes with ChIP-chip binding p-value < 10-2 were defined as the true targets 

of a given TF. As an illustrative example, Figure 6.4 shows the distribution of the raw and 

log-transformed affinities for the matrix ABF1_01, after normalizing by the length of the 

intergenic regions. As indicated, the 885 sequences bound by ABF1 according to in vitro 

PBM binding data have a mean affinity strongly shifted towards higher values of 〈N〉. In this 

case, the average raw affinity of the population of all 6725 genes is 7×10-5 while the average 

raw affinity of the set of significantly bound sequences is 3.1×10-4. With a population variance 

of 2.9×10-4 a z-score of 21.4 was obtained. To convert this z-score into a valid p-value I 

applied 100.000 rounds of resampling, none of which resulted in a larger z-score. The 

significance of this z-score is thus < 10-5. Alternatively, using the log-transformed affinities 

yields a z-score of 36.8, which directly corresponds to a highly significant p-value of 5.5×10-

281. Both procedures indicate that the mean affinity of the input set is very much different from 

the average over all genes. While it is encouraging to see that ABF1_01 obtains a significant 

p-value for the ABF1 chip data set it remains unclear if this matrix exhibits the strongest 

association with the data set or whether other matrices yield even more significant p-values. 

To assess this issue I used either the raw or the log-transformed affinities to obtain the z-

scores for the association of all 110 fungi PFMs in TRANSFAC with the PBM gene set of 

ABF1. By ranking all PFMs according to their z-scores derived from raw affinities the matrix 

ABF_C was found to be top ranking (z-score 29.7) followed by TAF_Q6, another matrix 
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Table 6.1 – Top factors for a given chip data set according to the z-score test 
 

 
 

The first column indicates the ChIP-chip or PBM data set from which the gene set was derived. All 

genes with ChIP p-value < 10-2 were thereby assigned to the respective sets. Columns 2 to 6 show 

the top ranking PFMs for the given condition. Red and yellow indicate matching matrices and

likely co-regulators, respectively. For instance, both LEU3 and GCN4 are involved in controlling 

amino acid synthesis, HSF and MSN2 cooperatively regulate the expression of various stress 

response genes and MCM1 and STE12 are directly interacting factors involved in pheromone 

signaling. Not further assessed associations are denoted as N/A.  

 

describing the ABF binding motif (z-score 27.3), and third ABF1_01. In contrast, the next 

matrix, REPCAR1_01, had a z-score of 4.2 demonstrating a strong separation between the 

ABF matrices and all others. The same ranking was obtained when using z-scores from log-

transformed affinities. 
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To test the overall performance of the method the analysis was extended to all the PBM and 

ChIP-chip data sets from Chapter 4. The ranking of individual PFMs for these data sets is 

shown in Table 6.1 for the z-score test applied to raw affinities. In 18 out of 24 cases the 

correct PFM is identified as the most significantly associated matrix for the corresponding 

chip data set. In addition to these perfect matches, the z-score test detects several known 

co-factors for many of the TFs. For instance, LAC9, a known co-regulator for galactose 

response genes (Salmeron et al., 1989), is the second highest ranked matrix for the GAL4 

data set after GAL4 itself. For the data set from heat shock factor (HSF) a matrix 

corresponding to MSN2/4 is identified, a known co-regulator of HSF controlled genes (Grably 

et al., 2002). Another example is MCM1 and STE12, two directly interacting factors involved 

in the response to pheromone signaling (Primig et al., 1991). Accordingly, the PFMs for 

STE12 and MCM1 are found as top matrices for the STE12 data set. Taken together, 

meaningful associations are found for all but three factors (88% of cases). Importantly, this 

also includes factors such as PHO4 and PDR3 for which in Chapter 4 no significant 

correlation could be detected between the TRAP predictions and the experimental R/G ratios 

due to noise in the ChIP data. The only ChIP-chip data sets where no corresponding 

matrices could be recovered are ADR1 and MATα1 in YPD condition and ROX1 in oxidative 

stress condition. ADR1 is involved in response to glucose deprivation and thus likely not 

bound to its target genes in rich medium (Simon et al., 1991). MATα1 represses mating type 

genes in a/α diploid cells genes but is quickly degraded in haploid cells (Johnson et al., 

1998). Since MATa cells were used by Harbison et al. (2004, http://jura.wi.mit.edu/ 

young_public/regulatory_code/OSStrainList.xls) the protein was likely not present at the 

promtoers of its target genes. ROX1 however, is expected to be bound to its target genes 

under oxidative stress and thus constitutes the only false negative prediction. The z-score 

test based on raw affinities thus performs with high specificity and sensitivity, which suggests 

that such z-scores from different factors are well comparable to each other. In addition, 

converting raw affinity z-scores into p-values via resampling did not further improve the 

rankings in any apparent way (possibly due to the maximal p-value resolution that can be 

obtained by 105 resamplings). Interestingly, using z-scores based on log-transformed 

affinities recovered significantly less of the known TF-chip-set associations indicating that it is 

more important to keep the relative affinity values intact rather than to normalize the affinity 

distributions.  

 

Having established that z-scores from raw affinities are well suited for ranking PFMs 

for a given gene set I now ask the reverse question, that is, given a PFM, can these z-scores 

be used to identify the corresponding chip data sets? In real world applications this 

corresponds to the case where a TF matrix is known and one wants to find the biological 

http://jura.wi.mit.edu/%20young_public/regulatory_code/OSStrainList.xls
http://jura.wi.mit.edu/%20young_public/regulatory_code/OSStrainList.xls


Table 6.2 – Top ranking ChIP-chip set for a given TF according to the z-score 
 

 
 

Columns 2 to 6 denote which ChIP data set had largest z-scores for the PFM indicated in column 1. 

Red highlights matching TF-data set pairs; yellow indicates sets that correspond to known co-

regulating TFs. For example, both RAP1 and FHL1 are involved in ribosomal gene regulation and 

share many targets. Accordingly, PASTAA identifies the RAP1 and FHL1 ChIP data sets as most 

significantly enriched with predicted RAP1 target genes. Not further assessed associations are 

denoted as N/A.  
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context in which the factor most likely plays a role. To assess the quality of this reverse 

search z-scores are used to rank all ChIP-chip and PBM data sets for a given PFM. The 

results of this ranking are shown in Table 6.2 for the 30 TRANSFAC PFMs for which chip 

data is available. The ranking of the test data sets for a given PFM again proofs to be 

successful. For 26 out of the 30 matrices the corresponding chip data sets are identified as 

top associated. Interestingly, the ranking often resembles what is known about the activity of 

the TFs. For instance, for HSF (heat shock factor) and MSN2/4 (STRE), two factors crucial 

also for the response to oxidative stress (Hashikawa et al., 2006), the appropriate stress 

conditions are top associated while for LEU3 and GCN4, two factors involved in controlling 

amino acid synthesis (Wang et al., 1999), the data set from amino acid starvation is top 

ranking. In addition, for many PFMs the chip data sets from known co-factors are among the 

top ranking associations. Somewhat unexpectedly, for many of the stress response factors 

also the corresponding YPD chip data sets are identified. This indicates that many of the 

stress response factors are bound to their target genes also in rich medium condition (YPD) 

although perhaps without the presence of a required cofactor.  

 

Results obtained from the hypergeometric test 
When using the hypergeometric test statistics PASTAA adjusts the size of the input gene set 

as well as the number of genes predicted as targets for a given TF automatically in such a 

way that the enrichment of predicted targets among the input genes is optimized. Therefore, 

the explicit definition of a cutoff on PBM and ChIP-chip binding p-values is not applied but 

instead all genes, ranked according to chip binding p-values, are supplied to PASTAA.  

 

When performing the analysis for ABF1_01 and the corresponding PBM data set a 

hypergeometric p-value of 7.3×10-253 is obtained (ignoring multiple testing) for the enrichment 

of predicted TF targets among the genes of the optimized input set. This enrichment is found 

when using an optimized input gene set corresponding to the top 800 intergenic region 

according to chip binding p-values and a target set consisting of the top 900 genes according 

to 〈N〉. The resulting sets share a total of 474 intergenic regions. The behaviour of the 

hypergeometric p-values across the entire cutoff space is shown in Figure 6.5a for ABF1_01 

and the corresponding PBM data set. Most significant p-values are found around the line of 

900 target genes and between 700 and 1500 input genes. Importantly, taking the derivative 

of the cutoff space shows that the hypergeometric p-values grow fastest near the origin of 

the plot, indicating that the genes with highest affinity are in fact the most likely ones to 

belong to the input set (data not shown). In addition, the cutoff space reveals a significant 

association between predicted and real targets even if about half of the intergenic regions of 

the yeast genome are considered as input and target sets, respectively, indicating a high 



Figure 6.5 – Cutoff space for the hypergeometric test 
 
a) 

  
b) 
 

 
 
a) Shown are the -log hypergeometric p-values for ABF1_01 and the ABF1 in vitro data set 

depending on the cutoff combination employed for the predicted affinity and PBM binding values. 

The most significant target enrichment (p-value 7.3×10-253) is found when using the top 800 genes 

according to PBM and top 900 genes according to affinity. The steepest increase in -log p-values is 

found at the origin of the plot. b) Same analysis as in a) but for the factor PHO4_01 and the PHO4 

ChIP-chip data set. According to the fact that PHO4 has far less targets than ABF1 an optimal 

hypergeometric p-value = 7.9×10-20 is found when using only the top 300 genes according to ChIP-

chip data and top 100 genes according to affinity. 

  118



  119

robustness of the hypergeometric test against including false positives in either gene set. 

Given that most factors have considerably less real targets than ABF1, which is a global 

transcriptional regulator involved in the regulation of a multitude of genes (Miyake et al., 

2004), the optimal cutoffs for more specifically acting factors are expected to lie below 1000 

genes for both the target and input set. In fact, all other tested yeast matrices (30 from 

TRANSFAC and 4 matrices derived by the Fraenkel Lab, Harbison et al., 2004) had optimal 

cutoffs below 1000 genes. This is illustrated exemplarily in Figure 6.5b for the matrix 

PHO4_01 and its corresponding ChIP-chip data set. For this factor, with only around 40 

target genes (Gonze et al., 2005), the optimal p-value of 7.9×10-20 is found when using the 

top 300 genes according to ChIP-chip data and top 100 genes according to affinity.  

 

The time complexity for an individual hypergeometric test grows with T, the number of 

target genes, and k, the number of genes shared between input set and target gene set 

according to O(k(T+k)). In the following the maximal set sizes are thus restricted to 1000 

genes, which greatly speeds up the computation times. The efficiency of the computation can 

further be improved by limiting the input sets a priori to only the significantly bound genes. In 

this case the cutoff procedure applied by PASTAA merely refines the predefined input set to 

obtain again optimal p-values. For instance, when given the same PBM input genes as 

supplied to the z-score test (885 intergenic regions bound by ABF1 in vitro) then this set is 

refined to contain 700 genes while the target gene set is adjusted to contain 600 genes. This 

yields an overlap of 358 genes between the two sets, which corresponds to a 

hypergeometric p-value of 6.8×10-229. It should be noted that supplying a priori information 

regarding the input gene set also minimizes the risk of running into spurious p-value minima 

somewhere across the cutoff space. When applicable, such a priori knowledge is thus 

incorporated in the analyses presented in subsequent section.  

  

When applying the hypergeometric test procedure to all the PBM and ChIP-chip data sets 

from Chapter 4 PASTAA finds in 19 out of 24 cases the correct PFM as the most significantly 

associated matrix for the corresponding chip data set. In addition, as for the z-score test, for 

many transcription factors known co-factors are recovered. For instance, MIG1 is identified 

as 4th matrix for the GAL4 data set after GAL4_01, GAL4_C and LAC9 (Nehlin et al., 1991). 

The complete list of top ranking associations is shown in Table 6.3. Overall, the outcome 

closely resembles what was found by the z-score test. Interestingly, also the results of the 

reverse search (ranking the data sets for a given PFM) closely resemble what was obtained 

by the z-score test (see Table 6.4). This is in line with the expectation that the 

hypergeometric p-values obtained for different PFMs can directly be compared. Together 

these findings suggest that both statistical methods are well suited for detecting TF-gene set 



associations and indicate that important biological information about regulating TFs can 

straightforwardly be obtained from the ranking of the PFMs for a given data set or 

conversely, ranking data sets for a given PFM. The hypergeometric test has, however, the 

clear advantage of not requiring the a priori definition of any cutoffs. The hypergeometric test 

statistic will therefore be used for subsequent analyses. 

Table 6.3 – Top factors for a given chip data set according to hypergeometric tests 
 

 
 

The first column indicates the ChIP-chip or PBM data set from which a given gene set was derived. 

All genes with ChIP p-value < 10-2 were thereby assigned to the respective sets. Columns 2 to 6 

show the corresponding top ranking PFMs. Red indicates matching matrices, yellow indicates co-

regulators. For instance, GAL4 target genes are oftentimes co-regulated via MIG1 (see Figure 4.18, 

page 86 for an example) while LAC9 and GAL4 both interact with GAL80 and bind to similar 

motifs (Zenke et al., 1993). Overall results match well to what is detected by the z-score test. 
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Table 6.4 – Top ranking ChIP-chip set according to the hypergeometric test 
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Columns 2 to 6 denote which ChIP data set was most significantly enriched with predicted targets 

of the PFM indicated in column 1. Red highlights matching TF-data set pairs; yellow indicates sets 

corresponding to known co-regulating TFs. Importantly, the ranking of the conditions is in 

agreement with what is known about the primary activity of the TFs. For instance, GAL4 is 

primarily active in galactose and raffinose containing medium where it is five fold higher 

expressed than in rich medium (Frolova et al., 1999). Similarly, LEU3 an activator of amino acid 

biosynthesis is active mainly in the absence of amino acids in the cell culture medium (SM 

condition, Wang et al., 1999). Non-matching associations are denoted as N/A.  
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Comparison to results from ROC curve AUCs 
In the following the results obtained by PASTAA are compared to what is achieved by a ROC 

curve analysis. As shown in Chapter 4 and 5, ROC curves are a simple and fast to compute 

measure for the enrichment of true TF targets among the genes top ranking according to 

affinity. The ranking of the chip data sets for the different PFMs according to ROC curve 

AUCs is shown in Table 6.5 again based on defining all intergenic region with ChIP-chip p-

value < 10-2 as. While about 50% of the top ranking associations match the expectation a 

considerable number of TF-data set pairs are not recovered by this procedure as compared 

to the z-score and hypergeometric tests. In addition, only a few co-factors are identified. 

Among the data sets not correctly recovered by ranking according to ROC curve AUCs are 

primarily those, for which the TRAP analysis in Chapter 4 did not yield significant correlation 

between affinity predictions and R/G ratios. These data sets likely constitute cases where 

only a weak enrichment is present. In addition, also for GAL4_01 and GAL4_C no 

meaningful associations are recovered by ROC curve AUCs. This is likely due to only a small 

number of genes having ChIP-chip binding p-value < 10-2 for the GAL4 data set. In turn, 

random rankings tend to yield spuriously large ROC curve AUCs in cases with only a small 

number of true positives. This also highlights the fact that any analysis based on ROC curves 

naturally requires the definition of a suitable cutoff separating genes into true positives and 

true negatives.  

 
 
6.3.2 Validation on individual vertebrate genes 

To test PASTAA’s applicability to higher eukaryotes first its ability to detect the association 

between single genes and their regulating TFs has been investigated. This represents a 

continuation of the analysis shown in Table 5.2 where TRAP affinities were used to rank 

PFMs for a number of known SRF target genes. The present study thus allows to directly 

compare the simple TRAP ranking and the ranking provided by PASTAA using the 

hypergeometric test. The analysis is extended to a number of other known autoregulatory 

transcription factors each of which binds directly to its own promoter and thereby activates or 

represses its transcription. For this application a given input gene set supplied to the 

hypergeometric test consists only of the autoregulatory gene itself. The cutoff on the putative 

target genes is thus automatically chosen in such a way that the set contains only the genes 

with affinity ≥ to the affinity of the input gene itself. For the case of a single input gene the 

same PFM ranking could be obtained also by considerably simpler measures. Nevertheless, 

when using 1kb long promoters for computing the affinities for all 593 vertebrate TRANSFAC 

matrices, PASTAA finds for the four known SRF targets used in Section 5.3 (SRF, EGR1, 

ACT1, EGR3) only SRF matrices among the top four PFMs (see Table 6.6). In addition, for 



Table 6.5 – Top ranking ChIP-chip data sets according to ROC curve AUCs 
 

 
 

Columns 2 to 6 denote which ChIP data set yielded largest ROC curve AUCs for the PFM

indicated in column 1. Red highlights matching TF-data set pairs; yellow indicates sets that 

correspond to known co-regulating TFs. In comparison to the hypergeometric and z-score test less

ChIP-chip data sets are correctly identified. This applies in particular to sets with few ChIP-chip 

target genes such as in case of GAL4. 

  123



the autoregulatory gene CRX (Nishida et al., 2003) the corresponding matrix CRX_Q4 is 

ranked at position six. Finally, for the autoregulatory gene E2F2 (Neuman et al., 1994) all top 

ten PFMs correspond to matrices representing alternative E2F motifs. Together these results 

demonstrate that PASTAA improves the simple ranking according to affinities, which yielded 

among the top ranking TFs for the above genes a considerable fraction of likely spurious 

factors (compare results to Table 5.2). 

 

Table 6.7 shows the results of this analysis for an extended group of autoregulatory 

genes in dependence on the choice of promoters used to compute the affinities. When using 

200 bp proximal promoters half of these autoregulatory loops are detected with the 

corresponding PFMs ranking on top. In addition, for the CRX gene its PFM is now ranked at 

position 3. When extending the promoters to 500bps all but one autoregulatory loop are 

successfully detected (see Table 6.7). Additionally, among the top ten PFMs ranked for each 

of the autoregulatory genes PASTAA also finds other known regulators of these genes. This 

is true also for Irf1, the only case where the autoregulatory loop was not recovered. Instead 

NFKB and several STATs are found, which fits well to experimental findings (Luo et al., 

2000; Wei et al., 2006). Another example are the genes HNF1 and HNF4 where PASTAA 

predicts as the top regulators HNF4 and HNF1, respectively, indicating cross regulation 

between the two factors. Together these findings indicate that autoregulatory binding signals 

tend to reside within proximal promoters and demonstrate that PASTAA is well suited for 

detecting vertebrate TFs associated with single genes. 

 

 

Table 6.6 – Top ranking PFMs for several genes with known regulators 
 

 
 

Top ranking PFMs for the six genes shown in Table 5.2. The genes SRF, EGR1 ACT1 and EGR3 

are experimentally known targets for SRF. CRX possesses a known autoregulatory loop as does 

E2F. Matrix identifiers in red indicate matching PFMs. 
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Table 6.7 – Autoregulatory binding signals reside within proximal promoters 
 

 
 

The majority of autoregulatory binding signals are located within 200 bps upstream of the 

respective TSS. All but one loop are detected within 500 bps upstream of the TSS. The binding 

signals decay if the promoter is extended further. Numbers in red indicate a rank below 10 (out of 

593 TRANSFAC matrices). N/A indicates that the autoregulatory gene was not among the top 

1000 genes when ranked according to affinity for the corresponding PFM. The hypergeometric test 

was thus not able to assign a meaningful p-value to such cases. 

6.3.3 PASTAA can account for ChIP data from vertebrates 
 
To assess PASTAA’s ability to detect an enrichment of verified TF targets in a large set of 

vertebrate genes I turned to the ChIP-chip data set for the three hepatic transcription factors 

HNF1, HNF4 and HNF6 (Odom et al., 2004). In this study the binding of each of the three 

factors to ~13.000 human promoters was measured. As for the yeast ChIP-chip study, the 

sequences spotted on the utilized microarrays were used to compute the binding affinities for 

each of the 593 vertebrate PFMs contained in TRANSFAC. To speed up the computation of 

the hypergeometric tests, only promoters bound by HNF1, HNF4 or HNF6 (according to the 

usual p-value cutoff of < 10-3) were assigned to the corresponding HNF1, HNF4 and HNF6 

input gene sets. As shown in Table 6.8, for the HNF1 and HNF4 gene sets PASTAA correctly 

finds the highest association for the PFMs corresponding to HNF1 and HNF4, respectively. 

For the HNF6 data set the single HNF6 matrix present in TRANSFAC is ranked at position 

five while four matrices with similar motives to that of HNF6 yield even higher association p-

values. Notably, among the top ten PFMs with highest enrichment for the HNF1 gene set 

PASTAA also lists HNF4, HLF (hepatic leukaemia factor) and the liver specific factor 

C/EBPalpha (Chen et al., 2000) while for the HNF6 data set HNF1 and also C/EBP are 
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detected. These results indicate that the above liver specific factors share many of their 

target genes and thereby confirm the experimental findings made by Odom et al., (2004) as 

well as the results from the previous subsection regarding cross-regulation between HNF1 

and HNF4. 

Table 6.8 – Top associated PFMs for the HNF1, HNF4 and HNF6 target gene sets 
 

 
 
Columns 1-3 show the top ranking PFMs for the HNF1, HNF4 (COUP) and the HNF6 ChIP-chip 

data sets. Column 4 indicates the top 10 matrices for the cMYC ChIP-PET data set. Matching 

matrices are indicated in red while PFMs corresponding to co-regulating factors are indicated in 

yellow. 

 

Similarly to the HNF data sets I also analyzed the cMYC ChIP-PET data set from 

Zeller et al., 2006. As suggested by the experimenters, the 1093 PET clusters with more than 

two overlapping PETs were selected as input sets. The affinities were computed for the 

entire sequences spanning the clusters (average length 2121 bps). 10.000 sequences of 

length 2121 bps with random genomic start positions were selected as background set. As 

shown in the rightmost column of Table 6.8, PASTAA finds two cMYC matrices among the 

top ten PFMs and another MYC matrix at position 13. Interestingly, among the top matrices 

several instances of E2F, an important coregulator of Myc target genes (Ogawa et al., 2002), 

are detected.  

 

 Having demonstrated that PASTAA is well suited for detecting regulating TFs in both 

yeast and vertebrates I now turn to a detailed analysis of human and mouse promoters of 

tissue specific genes. PASTAA is thereby employed to detect the location of binding signals 

within the promoters and subsequently to predict TFs that play an important role in the gene 

regulation of a given tissue. 
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6.4 Analysis of tissue specific promoters 
 

The identification of transcription factors involved in tissue specific gene regulation remains a 

challenging task for both experimentalists and bioinformaticians. Previous computational 

methods have been able to recover some well-known TF-tissue pairs, however, the success 

of these methods has been limited to a relatively small number of individual tissues and 

factors whereby different methods tend to recover complementary sets of associations. For 

instance, while a dedicated analysis of retinal genes uncovered an important function for 

CRX and NRL in this tissue (Quian et al., 2005) a detailed analysis of muscle and liver 

specific genes found a strong association for SRF and MEF2 with muscle and revealed an 

important role of HNF1, 4 and 6 in liver (Johansson et al., 2003). Here PASTAA is applied for 

the detection of a more comprehensive list of TFs involved in the regulation of tissue specific 

genes. In order to find a maximal number of functional TF-tissue associations the first aim 

was to select the promoter regions around the TSSs optimally enriched in tissue specific 

binding signals.  

 

6.4.1 Detection of regulatory regions for tissue specific genes 
When applying PASTAA to detect an enrichment of TF targets among a given input gene set 

the significance of the achieved hypergeometric p-values naturally depends on the definition 

of the putative promoter region used for computing 〈N〉. In the following this dependency was 

used to determine the promoter regions optimally enriched with tissue specific TF binding 

signals. This approach diverges from previous studies, which chose the promoter sequences 

in a rather ad hoc fashion to represent for instance 1kb upstream of each TSS (e.g. Zheng et 

al., 2003; Yu et al., 2006; Smith et al., 2007).  

 

In order to find the optimal region I started by simultaneously shifting 200 bp windows 

in successive steps of 50 bps across all 26000 mouse promoters from Ensembl (version 31). 

All windows are thereby synchronized to start at the same distance x in respect to the TSS of 

their corresponding gene. For a given start position 〈N〉 is computed for all windows and all 

593 TRANSFAC vertebrate PFMs. PASTAA is then used to evaluate the significance of the 

overlap between all combinations of 72 EST derived tissue categories and the target genes 

predicted based on the affinities from the windows starting at x. As objective test criterion for 

the suitability of a given promoter region the average -log p-values, μ, of the hundred most 

significant PFM-tissue associations obtained from a given window start position were 

evaluated. It is important to note that this averaging was not restricted to experimentally 

known TF-tissue associations but was performed without applying any prior knowledge. The 



Figure 6.6 - 200bp proximal promoters yield most significant TF-tissue associations
a) 

 
b) 
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a) Shown are the average -log hypergeometric p-values of the 100 most significant TF-tissue 

associations (black dotted line) as function of the location of the scanned 200 bp windows. The 

significance of the TF-tissue associations peaks when scanning a sequence from 0 to 200 bps 

upstream of each TSS. No strong signals are found for neighbouring windows. The trend is 

confirmed by the behaviour of the topmost association for many individual factors including SRF, 

MEF2 and NFKB. b) Enlarging or reducing the 200 bp core promoter region causes slow decay in 

the TF-tissue association signals for both human and mouse (red triangles and circles, 

respectively). Restricting the sequence space to evolutionary conserved mouse  sequences increases 

the significance of the top 100 associations but does not change the location of the optimal 

promoter regions (blue squares). 
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implicit assumption made here is that the more significant the obtained p-values are the more 

enriched will the corresponding promoter region be with functional tissue specific binding 

signals. In contrast, windows containing primarily random sequence noise should not yield 

any significant associations between PFMs and tissues. 

 

As shown in Figure 6.6a largest average -log p-values (μ = 13.2) are found for the two 

consecutive windows ranging from +50 to -150 and 0 to -200 bps in respect to the TSS. 

Average p-values from the neighboring windows quickly drop by several orders of magnitude 

and eventually level off at around µ = 5 for all windows outside of the region from +200 to -

400. This trend reflects the behavior of many individual TFs such as the HNFs, SRF and 

MEF2. Notable exceptions are some GC rich motifs such as SP1, which achieve significant 

associations primarily with the brain tissue category also for windows located downstream of 

the TSSs (not shown). 

 

Next, the effect of reducing or enlarging the 0 to -200 bp windows has been 

investigated. As shown in Figure 6.6b extending the promoter region further upstream 

causes a slow decay in the significance of the average p-values. This suggests that an 

increasing number of non-functional high affinity sites are being included. Reducing the size 

to 100 or 50 bps upstream of the TSS has a similarly detrimental effect indicating that in this 

case many functional sites are being removed. Finally, extending the region downstream of 

the TSS also causes a decline in the significance of the optimal p-values (μ = 11.8 for the 

region of +200 to -200 bps around the TSS) confirming the apparent lack of tissue specific 

binding signals downstream of the TSSs. A curve of nearly identical shape but somewhat 

smaller magnitude is obtained when using human promoters for the analysis. In contrast, 

restricting the sequence space to only conserved blocks between human and mouse greatly 

increases the significance of the tissue-TF associations without changing the location or size 

of the region producing the most significant results. The increased significance indicates that 

the high level of sequence conservation near the TSS (~39% at the TSS compared to ~9% 

for > 2 kb upstream) likely reflects the preservation of regulatory elements between mouse 

and human. From the peak in significance obtained from the 0 to -200 bp windows I conclude 

that this region yields the optimal trade-off between including functional sites and false 

positives. In the following this region of full genomic sequence will be referred to as the 200 

bp proximal promoter (200PP). 
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6.4.2 TFs preferentially associated with EST derived tissue sets 
Having found that 200 bp proximal promoters yield most significant TF-tissue associations I 

now investigate whether these regions indeed allow for the identification of experimentally 

known associations between tissue specific TFs and their corresponding tissues. To this end, 

all PFMs were ranked according to the significance of their association with a given tissue 

category obtained when computing the affinities for the 200PPs. Table 6.9 shows for a 

number of mouse EST tissue categories the most significantly associated matrices. In 

addition to some frequently identified tissue-TF pairs such as HNF1 and HNF4 for liver and 

kidney (Pennacchio et al., 2007, Smith et al., 2006, Yu et al., 2006) or SRF for heart and 

muscle (Wasserman et al., 1998) several other experimentally known associations - rarely or 

not revealed in previous studies - are detected. For instance, the two pancreatic transcription 

factors IPF1 (Insulin Promoter Factor 1, Ohlson et al., 1993) and PTF1 (Pancreas-specific 

Transcription Factor1, Roux et al., 1989) are listed among the top ten factors for pancreas 

together with HNF1 and two PFMs for HNF3 (HNF3_Q6, XFD3_01), which also play a known 

role in the regulation of pancreatic genes (Kaestner et al., 1999). The lung and thyroid 

specific factor TTF1 (Thyroid Transcription Factor 1, Kimura et al., 1999) is detected as the 

top ranking factor in the lung category and among the top ten factors in the thyroid category 

while the pituitary gland specific factor PIT1 (Pituitary-specific positive Transcription factor 1, 

Li et al., 1990) is detected near the top of the pituitary gland category. In retina the PFMs for 

the eye and pineal gland specific factor CRX (Cone Rod homeobox protein, Furukawa et al., 

1999) and the eye specific factor CHX10 (Liu et al., 1994) rank at positions 2 and 3, 

respectively. In addition, PASTAA finds MAF to be associated with retina, which is known to 

form a dimer with the eye specific factor NRL (Sharon-Friling et al., 1998). Since TRANSFAC 

contains no PFM for NRL I have taken the matrix from Qian et al., (1994) and find a strong 

association with retina (rank 17). For the immune system related tissues spleen and thymus 

a comprehensive number of immune related factors including ETS1, IRF7 and NFKB are 

predicted. Finally, SRF, MEF2 and MTATA (muscle specific TATA) were observe as the top 

ranking PFMs for both the heart and muscle category. Similar results are obtained when 

using the small set of 13 hand picked muscle specific genes defined by Wassermann and 

Fickett (1998). To test whether the results derived from the EST categories depend on the 

incorporation of the gene set from Wasserman and Fickett these 13 genes were removed 

from the EST based lists. Surprisingly, the ranking of the factors for muscle and heart was 

not affected by this change indicating that a considerable number of genes assigned to the 

two tissue categories possess high affinity sites for SRF and MEF2 and that the detection of 

these associations is robust against limited changes in the input gene sets (data not shown). 



 

 
Table 6.9 – Top ranking associations obtained for EST derived tissues 
 

 
 
The table shows for twelve tissues the ten most significant tissue-matrix associations obtained 

when computing 〈N〉 for the 200 bp proximal promoters. Tissue-TF pairs with strong support in 

the literature are indicated in red, associations with likely function are indicated in bold and 

TATA box motifs are indicated in italic. 
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Table 6.10 – Enrichment of TATA box motifs in the first 50 bps upstream of the TSS
 

 
 

A strong enrichment of TATA box elements can be observed in most tissue categories when 

analyzing core promoters. The top four factors exceeding a hypergeometric p-value of 10-6 are 

shown for each tissue. Top ranks (out of 593) for any TATA box motif in a given tissue category 

are indicated in the last column. Obvious exceptions are cerebrum, retina, testis, thymus and whole 

brain (indicated in bold). Experimentally verified tissue-TF association are indicated in italic. 
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Tissue specific genes are associated with TATA box motifs 
By using the 200PPs PASTAA detects TATA box motifs among the top ten associations in a 

variety of tissues (see Table 6.9). This trend becomes even more evident if smaller upstream 

regions are used to compute 〈N〉. In fact, TATA motifs are top ranking in the majority of tissue 

categories when limiting the promoters to only 50 bps upstream of the TSSs. As indicated in 

Figure 6.6a this enrichment goes in hand with a peak in the association p-values between 

the TATA box matrices and the tissue categories. Table 6.10 shows the top four PFMs 

exceeding a hypergeometric p-value of 10-6 for each tissue. The motifs TATA_01, TATA_C, 

ATATA_B (avian TATA box), MTATA_B (muscle specific TATA box), TFIIA_Q6 (general 

transcription factor IIA) and TBP_Q6 (TATA binding protein) are prominently ranked near the 

top of most categories. Exceptions are whole brain, cerebrum, retina, testis and thymus. In 

the case of thymus, testis and retina various specific TFs are ranked on top while in whole 

brain and cerebrum GC rich motifs such as ETF_Q6 and ZF5_01 are dominating. In contrast 

to TATA box motifs most experimentally known tissue-PFM associations become far less 

significant when considering only the first 50 bps upstream of the TSS. Together these 

findings indicate that regulatory motifs of tissue specific TFs tend to be located more than 50 

bps upstream of the predicted TSSs and that aside from primarily neuronal tissues many 

tissue specific genes possess a TATA box. The latter observation is in agreement with the 

notion that the expression of highly regulated genes is often TATA-dependent whereas 

expression of housekeeping genes, which are expressed in all cell types, is TATA-

independent (Yang et al., 2007). 

 
6.4.3 Tissues preferentially associated with a given TF 
As demonstrated in Section 6.3.1, the computed hypergeometric p-values can be used to 

reverse the search and identify gene groups most strongly associated with a given TF. In 

order to identify the top ranking tissues for a given TF and to assess how well this ranking 

agrees with experimental knowledge in the following I thus switched from a tissue centric to a 

TF centric view. The subsequent analysis was thereby performed using the association p-

values as computed above for the 200PPs but this time ranking tissues instead of PFMs. 

For a group of ten PFMs the three top ranking tissues are shown in the first two 

columns of Figure 6.7. The listed associations are in good agreement with the experimentally 

known tissue specific functions of the corresponding TFs. For several TFs two or more 

tissues in which the factor plays a known role compete for the top rank. For instance, HNF6 

plays a role not only in liver but also in pancreas (Odom et al., 2004), CRX has been 

described as a retina and pineal gland specific factor (Furukawa et al., 2002) and TTF1 plays 

a dual role as thyroid and lung specific factor (Kimura et al., 1999). 
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Figure 6.7 – Dependence of tissue ranks on the promoter size 
 

 
Ten PFMs and their top ranking tissues obtained when computing 〈N〉 for the 200PPs are shown in 

columns 1 and 2. Associations supported by literature are indicated by an asterisk. Grey shades 

symbolize the ranks of the tissues obtained when computing 〈N〉 for different promoter regions 

(white: rank 1; black: rank ≥ 10). Columns in the left panel correspond to regions of indicated 

range upstream of the TSS. Regions located between 0 and 400 bps thereby frequently confirm 

same TF-tissue associations. Columns in the central and rightmost panel correspond to 〈N〉 being 

computed for upstream regions of indicated size starting that the TSS, with considering the full 

genomic sequence (central panel) or only the conserved sequence blocks (right panel). For full 

genomic sequences the detection of experimentally confirmed associations is robust against 

extending the promoters to ≈ 500 bps upstream of the TSSs. In contrast, using phylogenetic 

footprinting yields oftentimes identical tissue rankings even when extending promoters to > 10kb. 

TFs tend to be themselves over-expressed in their top ranking tissues 
To assess how meaningful the top ranking tissue associations are I first analyzed the 

expression patterns of the TFs themselves. The underlying assumption is that a TF 

specifically expressed in a certain tissue is likely to play a regulatory function in the very 

same tissue. In turn a TF should be over-expressed more frequently among its top-ranking 



tissues rather than among randomly assigned tissues. In the entire data set there are 352 

TF-tissue associations where the TF is specifically expressed in the corresponding tissue 

(EST cluster p-value < 10-6 for the respective TF). In 29 of these cases the tissue is indeed 

top ranking for the TF. This constitutes a twofold increase (p-value for enrichment: 1.3×10-6) 

over what would be expected based on the randomization procedure outlined in Section 

6.2.3. In 21 cases the tissue is ranked second (1.6 fold increase, p-value 0.019) and in 17 

cases third to top (1.7 fold increase, p-value 0.017). Over all 72 possible ranks 

(corresponding to all 72 tissues) a clear trend exists for the higher ranking tissues to express 

the corresponding TFs more often than expected while lower ranking tissues tend to express 

the TFs as often as or less frequently than expected (Figure 6.8). These results are stable 

against removing groups of tissues from the analysis (for instance all immune related 

tissues) or performing the analysis for all 593 PFMs instead of the reduced set of 

corresponding TFs.  

Figure 6.8 – TFs are over expressed in their top ranking tissues 
 

 
 
Tissues top ranking for a given TF express the factor more often than expected, while bottom

ranking tissues express the TF equally or less often than expected. This is indicated by the height of 

bins representing the number of TFs expressed in the associated tissue of given rank based on the 

real sequence data (dark blue) or on the results obtained from random sequence sets (light blue). 

Error bars show the 95% confidence interval for the results obtained from the random sequence 

sets. The enrichment is particularly significant for the first three bins corresponding to all the three 

top ranking TF-tissue associations (p-value of enrichment for bins 1-3 combined: 2.2×10-12). The 

general trend in the light blue bins indicates the technical bias caused by the dependency of the 

hypergeometric tests on the number of ESTs in the tissue categories. 
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While these findings support a considerable number of predicted TF-tissue associations this 

verification method fails for factors such as SRF and HNF1, which are broadly expressed 

despite their known tissue specific activities, or for factors such as PTF1, which do not have 

enough support by EST or GNF data to validate their expression patterns. To confirm such 

TF-tissue associations I performed a manual Pubmed search looking for strong evidence for 

the involvement of the TF in the regulation of the respective tissue. Mapping the findings 

back to the matrices both validation methods together strongly support 282 out of the 1779  

(three times 593 PFMs) three top ranking PFM-tissue associations (133 through expression 

data and 149 through literature). In the following, these cases will be considered as a test set 

of verified associations. 

 
Exemplary analysis of eye specific target genes for CHX10 and CRX 
As a detailed example of two verified associations between TFs and a tissue category I 

investigated more closely the link between the homeobox transcription factors CRX and 

CHX10 and the retina specific gene set. As shown in Table 6.9, both TFs are found to be 

associated with the eye and retina category. In addition, both factors are themselves 

significantly expressed in terminally differentiated retina and are known to be involved in the 

development of the eye. CRX is a known transactivator of retina specific genes (Furukawa et 

al., 2002) whereas CHX10 has been proposed to act as a transcriptional repressor for a 

number of eye specific genes including several CRX targets (Dorval et al., 2006). While the 

binding motifs of the two factors share the homeobox core (ATTA) the flanking bases are 

clearly distinct from each other leading to the proposal that the two factors bind primarily 

distinct sites (Dorval et al., 2006). The eye specific genes considered as targets for the two 

TFs by PASTAA are shown in Table 6.11. Especially the gene encoding the transcription 

factor Mab21l1, which is also required for proper eye development, is ranked among the top 

targets for both factors. Mab21l1 has been placed in the same developmental pathway as 

CHX10 (Yamada et al., 2004) with CHX10 being severely down regulated in Mab21l1 

knockout mice. Figure 6.9 illustrates the Mab21l1 locus with the predicted DNA binding 

affinities according to TRAP and predicted binding sites according to the balanced cutoff 

method (Rahmann et al., 2003) for CRX and CHX10. In agreement with the observation of 

Dorval et al., (2006) the majority of predicted binding sites are distinct for the two factors. 

However, the sites with highest predicted affinity for CRX and CHX10 (located near the TSS 

of Mab21l1) are overlapping. This suggests competitive binding of CRX and CHX10 at the 

Mab21l1 locus. Furthermore, with Mab21l1 being a positive regulator of CHX10 expression 

and CHX10 acting as a transcriptional repressor it implies the presence of a negative 

feedback loop for Mab21l1 in the absence of CRX. While this analysis indicates the amount 

of detailed biological information that can be obtained when combining expression data with 



transcription factor affinity predictions we now return to the large scale analysis of tissue 

specific promoters. 
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6.4.4 Distribution of functional binding signals across promoters  

Table 6.11 – Eye specific targets for CHX10 and CRX in mouse 
 

 
 
First two columns indicate the PFM and the corresponding eye specific target genes as predicted by 

PASTAA. Column 3 shows the expression rank in the EST data set. The last column shows the 

corresponding affinity rank of the target gene in respect to the entire set of 26609 mouse genes. 

Indicated in red are target genes shared between the two TFs. Most notably, the gene Mab21l1 is 

ranked near the top for both TFs while the CRX gene is ranked among the top CRX targets. 

In the following the distribution of binding signals for the set of 282 top ranking TF-tissue 

associations (page 136) among the corresponding promoters will be investigated. In this 

context it is important to remember that the selection of the 200 bp proximal promoters in 

Figure 6.6 was simply based on the average significance over the top 100 associations 

without restricting the search to experimentally verified TF-tissue associations. The analysis 

of the verified associations is subsequently extended to explore how robust the top ranks are 

against changing the promoter definition and how well the ranks are conserved between 

human and mouse.  



  138

  

Figure 6.9 – Visualization of the genomic region around the retina gene Mab21l1 
 

 
 
Predicted binding behavior of CRX and CHX10 across the Mab21l1 gene locus. CpG islands, 

conserved bocks and the Mab21l1 ORF are indicated on top. Binding sites for CHX10 and CRX, as 

predicted by the balanced cutoff method, are indicated below. TF affinities as predicted by TRAP 

are indicated at the bottom. As highlighted by a black arrow highest predicted affinities lie in a 

conserved block within the proximal promoter of Mab21l1 while predicted binding sites are more 

broadly distributed across the gene locus. The inset shows that the high affinity sites near the TSS 

overlap, suggesting competitive binding between CRX and CHX10. 

As a first test, the tendency of different promoter fragments to confer same tissue ranks as 

the 200PPs was analyze. To this end, the ranks of the 282 confirmed TF-tissue associations 

for alternative promoter regions were compute. As a global measure of how well a region 

agrees with the 200PPs next the median over the ranks for all the 282 associations (in Figure 

6.7 this would correspond to taking the median over one of the grey shade columns) was 

taken. A region leading to the same results as the 200PPs thereby got a median rank of 2 

while random sequences obtained a median rank of about 36 (as there are 72 tissues). The 

results of this in silico promoter bashing analysis are shown in Figure 6.10a. The 50 bp long 

fragments located between 25 and 200 bps upstream of the TSS all yielded a median rank of 

3 demonstrating strong independent support for the ranks obtained from the entire 200PPs. 

The fragments ranging from 0 to 50 bps obtained a median rank of 5 reconfirming the notion 

that the verified TF-tissue associations become less significant when limiting the region to 

only the core promoter (see Table 6.10 for comparison). Remarkably, the fragments from 

200 to 400 bps upstream of the TSS, which were not included in the 200PPs, yielded a 

median rank of 10 indicating that this region has a considerable tendency to contain tissue 



specific sequence signals in agreement with those found in the 200 bp proximal promoters. 

Analyzing fragments further upstream of the TSSs resulted in increasingly higher median 

ranks emphasizing that tissue specific sequence signals tend to be located near the TSSs. 

As a control, this analysis was also performed for the set of 45 PFMs (respectively the 135 

corresponding top three associations) representing those TFs which are least likely to display 

any real preference for any of the 72 tissue categories. This group of TFs includes general 

Figure 6.10 – Stability of ranks in respect to changing the promoter definition 
 

 
 
The median rank over the set of 282 verified TF-tissue associations remains near the minimum of 2 

for fragments included in the 200PPs (blue circles, panel a). For the verified associations also 

adjacent upstream fragments tend to assign the same rank as the 200PPs. In contrast, much larger 

median ranks are obtained for a group of 45 PFMs which are not expected to have any real tissue 

specificity (red squares). Panel b) shows that the ranks obtained for the verified TF-tissue 

associations only slowly deteriorate when the proximal promoters are extended while the ranks for 

the associations in the control set are very sensitive to changing the sequence space. Including 

phylogenetic footprinting allows extending the core promoters much further before the median 

ranks of verified associations deteriorate (panel c). In contrast the sequence signals for the control 

set seem to be only marginally conserved between mouse and human as is indicated by their large 

median ranks even when using the region of the 200PPs. 
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TFs such as TATA box binding protein, SP1, heat shock factor and P53, but also viral factors 

such as papilloma virus regulator E2 or the lentiviral TATA upstream element. Indeed, when 

using these PFMs there was a much weaker tendency, even for the fragments within the 

region from 0 to 200 bps, to support the tissue ranks assigned by the 200PPs while any 

fragments located further upstream produced seemingly random median ranks (red curves in 

Figure 6.10a). 

 

Windows with maximal affinity are located near the TSS 
All of the above evidence supporting the notion that functional binding signals are located 

primarily within 200PPs has been based on the significance of the found TF-tissue 

associations. TRAP affinity predictions, however, offer the possibility to confirm these 

findings by locating the region preferentially containing the high affinity sites for a given 

tissue specific TF. To address this question I used again the sliding window approach 

introduced in Section 5.3. For the current analysis a window of length 100bps was shifted in 

steps of 100bps across the promoter (± 1kb around the respective TSS) of a given tissue 

specific gene. The affinity of each window was computed and the location of the window with 

highest affinity for the TF was evaluated. The histogram in Figure 6.11 shows the preferential 

location of the windows with largest affinity for the 50 tissue specific genes with highest 

overall affinity for the corresponding TF. For instance, for the 50 genes with highest affinity 

for HNF1 and specific expression in liver (EST p-value < 10-6) there exists a clear trend for 

the windows with largest affinity to be located near the TSS (about 50% are located within 

the 200PPs). A similar trend is observed for many of the TFs with verified tissue specific 

association. A notable exception is presented by the neuronal-gene repressor NRSF. The 

high affinity sites of this factor show a tendency to cluster downstream of the TSSs. In 

general, the preferential location of highest affinities close to the TSS is observed only in the 

appropriate tissue of the given tissue specific TF. For instance, no preference for the 200PPs 

is observed for HNF1 when analysing brain specific genes (not shown). In contrast, the 

windows with largest affinity for the two general TFs SP1 and YY1 cluster near the TSS 

across all tissues in accordance with experimental findings (Hui et al., 2007). 

 

 Together these findings represent strong additional support for the identified top 

ranking TF-tissue associations and further underline the tendency of tissue specific binding 

signals to accumulate within the 200PPs. 
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Figure 6.11 – Location of windows with maximal affinity around the TSSs 
 

 
 
Histograms of the location of the max affinity windows within a region of ± 1kb around the TSSs

for several PFM-tissue combinations. For the top six factors the analysis was carried out in their 

most significantly associated tissues. The two general factors YY1 and SP1 were tested across all 

tissues. Strong peaks in the histogram indicate evolutionary pressure to keep the sites near the 

TSSs. 
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TF-tissue ranks are robust against changes in promoter size and applying 
phylogenetic footprinting 
Having confirmed that high affinity sites for tissue specific TFs tend to accumulate within the 

200PPs I now assessed the robustness of the computed ranks for the confirmed TF-tissue 

associations against enlarging the promoter regions. That is, how much sequence noise can 

be included before the ranks of the confirmed associations deteriorate? For the matrices 

shown in Figure 6.7 the tissue rankings are relatively stable against enlarging the genomic 

sequences to a size of ≈ 500 bps upstream of the TSSs (limited change of grey shades in the 

central panel of Figure 6.7). However, extending them to > 1kb causes many of the 

associations to obtain increasingly larger ranks. This signal decay can presumably be 

counteracted by applying phylogenetic footprinting and indeed, when limiting the sequence 

space to only conserved blocks most of the confirmed TF-tissue associations remain top 

ranking even if regions >10 kb are scanned (rightmost panel of Figure 6.7). One of the few 

exceptions is the associations of TTF1 with thyroid gland, which appears to be not 

conserved.  

For a general assessment of the robustness of the PASTAA analysis against 

sequence noise I again determined the change in median ranks obtained for the verified set 

of 282 TF-tissue associations or the control set of general TFs (Figure 6.10b and c, 

respectively). In case of full genomic sequences median ranks remain at the best possible 

value of 2 up to a promoter size of 500 bp while further enlarging the promoters causes the 

median ranks to slowly increase. When applying phylogenetic footprinting the median ranks 

stay nearly unchanged even when extending the promoters to 10kb upstream of the TSSs. In 

addition, using conservation allows in some cases the detection of associations not found 

when using the full genomic sequences. For instance, while the known association between 

MYOD and muscle is ranked only at position 14 when using the full genomic 200PPs it is 

ranked on top when restricting the sequence space to the evolutionary conserved blocks. 

Another interesting change in ranks accompanying the application of phylogenetic 

footprinting is observed for the eye and pineal gland specific factor OTX2 (Nishida et al., 

2003). Here the top ranking association switches from the pineal gland category to retina 

when applying conservation. Together these findings indicate that the majority of verified TF-

tissue associations are highly conserved between mouse and human and that sequence 

noise in the upstream regions is effectively filtered out by applying phylogenetic footprinting. 

In contrast, when performing the analysis for the control set of 45 PFMs corresponding to 

TFs with tissue independent function median ranks appear highly sensitive to enlarging the 

sequence space and change greatly when applying phylogenetic footprinting, indicating that 

the top ranking TF-tissue associations assigned to these factors are, as expected, rather 

meaningless. 



6.4.5 Overlap between GNF and EST data 
For comparative purposes and to validate the above findings made based on EST derived 

groups of tissue specific genes I next switched to the comprehensive GNF microarray tissue 

expression data from Novartis (Su et al., 2004). As shown in Table 6.12, when using the 

tissue categories derived from the GNF data set, nearly identical top ranking associations are 

found for most of the corresponding tissue categories including retina, pancreas and spleen. 

Exceptions are thymus (not shown), thyroid gland and pituitary gland where the appropriate 

TFs could not be detected among the top ten matrices. Intriguingly, also the promoter 

regions yielding the most significant results are identical to those obtained from EST based 

tissues thereby strongly validating the previous findings. A possible reason for the similarity 

of the detected tissue-TF associations could be high correspondence between the 

expression patterns obtained from EST and GNF data. To test this possibility I analyzed the 

overlap among the top 100 genes in each of the corresponding tissue categories and found 

that in nearly all cases less than 50% of the genes overlap. This is in accordance with 

previous studies, which showed that microarray and EST data often predict different gene 

expression profiles (Munoz et al., 2004). To investigate in more detail how PASTAA is 

nevertheless able to detect identical associations for corresponding EST and microarray 

tissue categories I evaluated the overlap between EST and GNF data only among the target 

genes of a given TF as predicted by PASTAA. The results of this analysis are shown 

exemplarily in Figure 6.12 for the pancreatic factor PTF1 and the muscle specific factor 

 
Figure 6.12 – Overlap between GNF and EST tissue assignments 
 

 
 
The left Venn diagram shows the overlap of PTF1BETA_Q6 targets (as chosen by PASTAA) 

among the genes in the pancreas categories derived from EST and GNF data, respectively (top

numbers) and the overlap between the genes considered to be pancreas specific according to each 

data set (numbers in parenthesis). The right panel illustrates the situation for MEF2_02 and the 

genes assigned to the skeletal muscle categories. For this factor, the intersection between EST and 

GNF data shows the most significant enrichment with predicted MEF2 targets (8 out of 19 genes). 
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MEF2. For PTF1 from a total of 14 pancreas specific target genes only four are shared 

between the two data sets while five targets are unique to each of the pancreas category 

derived from GNF and EST data. For MEF2 from a total of 24 skeletal muscle specific targets 

only eight are shared between the EST and GNF muscle categories. In general I observe 

that only a fraction of the designated targets of a given TF are assigned to the same tissue 

category in both the EST and GNF data set. It is encouraging to see that despite this small 

Table 6.12 – Top ranking GNF tissue-PFM associations obtained from 200PPs 
 

 
 
Most significant tissue-matrix associations obtained when computing 〈N〉 for 200 bp proximal 

promoters and using GNF data for defining the tissue categories. Tissue-TF pairs with strong 

support in the literature are indicated in red while associations with likely function in the tissue are 

indicated in bold. For most tissues the same PFMs are recovered as when using EST derived 

tissues. Shown exceptions are thyroid and pituitary gland for which the corresponding PFMs could 

not be found. 
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overlap the sequence signals and the enrichment of target genes in either data set are strong 

enough to allow PASTAA to recover many of the functional tissue-TF associations. These 

findings also support the notion that GNF and EST data often rather complement each other.  

 

6.4.6 Comparison to oPOSSUM, PAP and Clover  
The results obtained by PASTAA were compared to the outcome of the three alternative 

methods, Clover (Frith et al., 2004), PAP (Chang et al., 2007) and oPOSSUM (Sui et al., 

2005), each of which has been described in detail in Section 3.2. The oPOSSUM database 

contains pre-computed binding site hits only for the JASPAR database matrices (Sandelin et 

al., 2004) and for predefined promoter regions. Therefore, the 5-FP method (Rahmann et al., 

2003) was utilized for the annotation of TF hits and subsequently the statistics introduced by 

oPOSSUM to detect any binding site enrichment in a given tissue category was applied 

(alternatively the balanced cutoff method was used to annotate binding site hits but the 5-FP 

method yielded better results). In order to make the results optimally comparable between 

PASTAA, Clover, PAP and oPOSSUM the tissue sets were restricted to only those genes 

with EST expression p-value < 10-6 and whose IDs could be unambiguously matched to 

entries in the PAP database. Usually less than 10% of the Ensembl IDs in a given EST 

derived tissue category could not be matched via either gene symbol or Refseq ID to a PAP 

entry. Both Clover and oPOSSUM were used with 200 bp proximal promoters as input while 

the PAP interface automatically uses larger promoter regions refined by phylogenetic 

footprinting.  

The results of the comparative analysis are shown in Table 6.13 for five tissues. PAP 

detects well characterized associations for the liver and leukocyte specific tissue categories 

while for muscle and heart only two PFMs corresponding to muscle specific factors (MTATA 

and TEF) are detected. Clover tends to detect GC rich motifs (most notably SP1 and MAZ 

with consensus sequences GGGGCGGGG and GGGGAGGG, respectively) as highly enriched in 

all tested categories. The resulting ranking for more tissue specific factors suffers from this 

bias. oPOSSUM recovers many of the known muscle and liver specific associations and also 

detects several NFKB matrices for the leukocyte category among the top ten. However, also 

in the case of oPOSSUM many broadly acting factors with GC rich motifs including SP1 and 

UF1-H3beta (consensus motif GGTGGGGGAGGGGC) are detected as top ranking in several 

categories. This trend becomes stronger when extending the promoter regions to 500 bps 

(data not shown). Surprisingly, none of the three retina specific factors CRX, CHX10 and 

NRL was listed among the top ten matrices for the retina category by any of the alternative 

methods. However, Clover listed CRX and NRL among the top 20 matrices with position 11 

and 13, respectively. In addition to the tissues shown in Table 6.13 PASTAA finds more 
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Table 6.13 – Comparison between Clover, oPOSSUM, PAP and PASTAA 
 

 
 
Top ranking PFMs according to PASTAA and three alternative approaches. Predictions 

corresponding to experimentally well characterized TF-tissue associations are shown in red. SP1 

matrices are indicated in yellow while JASPAR matrices (used by PAP in addition to TRANSFAC) 

are shown in brackets. Results of Clover are first rank by p-values and in case of ties also on raw 

scores. *The PFM for NRL is not contained in TRANSFAC and JASPAR and was therefore not 

available for the PAP analysis. 
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experimentally known associations also for the other compared tissue categories. For 

instance, for pituitary gland, PASTAA ranks the pituitary specific factor PIT1 as the top matrix 

while the other methods rank this factor only around position 10 and for pancreas PASTAA 

recovers PTF1 (pancreas specific transcription factor 1) as the top matrix, which is not listed 

among the top 10 matrices by any of the alternative approaches. 

 

One might expect that PASTAA detects more of the experimentally known TF-tissue 

associations because the above analysis was carried out on the optimized 200 bp proximal 

promoters. However, this is not the case. In fact, PASTAA performed even more favourably if 

the sequence space was enlarged. When using 1kb long promoters without applying 

phylogenetic footprinting PASTAA retained many of the known TF-tissue associations for the 

above tissues while both oPOSSUM and Clover did not detect any of the experimentally 

known associations as top ranking. 

 

In addition, oPOSSUM and Clover were applied to the HNF ChIP-chip and cMYC 

ChIP-PET data sets (see Section 6.3.3). For the HNF data sets both Clover and oPOSSUM 

produced similar rankings to those of PASTAA. In contrast, for the MYC data set Clover 

ranked the first MYC matrix at position 48 while all but one other MYC matrix were 

considered anti-correlated with the input set. Similarly, oPOSSUM ranked the first MYC 

matrix at position 28 while top ranking matrices correspond to immune related and heat 

shock factors. As a final test PASTAA was applied also to the muscle specific gene set used 

in the Clover publication and the muscle and NFKB microarray data sets used in the original 

oPOSSUM paper. For these data sets PASTAA obtained very similar results to those found 

by the corresponding methods. Over all the tested data sets PASTAA thus performed with 

greater specificity and sensitivity than the assessed alternative approaches. 

 

6.5 Web implementation of PASTAA 
 
With the help of Sean O’Keeffe I have implemented a simple and user-friendly website 

located at http://trap.molgen.mpg.de that allows users to find the TFs most strongly 

associated with their gene sets. The webpage thereby uses the hypergeometric test statistic 

together with the resampling procedure to compute accurate association p-values. The list of 

gene identifiers provided by the user can be composed of Ensembl Ids, Refseq Ids and gene 

symbols. For fast computation, TF affinities have been pre-computed for various promoter 

sizes for all human and mouse genes (Ensembl version 31). All genes not belonging to the 

input set are used as default background set.  

http://trap.molgen.mpg.de/
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Figure 6.13 – Web implementation for PASTAA 
 

 
 
a) Primary result pages of the PASTAA web interface shown for an example input set of the 50 

liver specific genes. After providing a list of gene identifiers PASTAA ranks all 593 PFMs from 

TRANSFAC according to their association with the input set. b) For a given PFM of interest a 

second page displays the ranking of all mouse or human genes according to predicted affinities. 

Finally, a link to a GBrowse implementation is provided, which displays the gene of interest and 

the annotated TF affinities by default.  
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The primary results page shows the ranking of all 593 PFMs according to the significance of 

their association with the input gene set (Figure 6.13a). The ranking of all mouse or human 

genes based on predicted affinities for a given TF can be obtained (Figure 6.13b) by clicking 

on the link next to the respective PFM. Genes in the ranked list belonging to the input set are 

hereby highlighted with a tick mark. The target genes are linked to a Genome Browser 

implemented by Stefan Haas and Sean O’Keeffe that automatically displays the gene 

structure, conservation between human and mouse as well as the annotated affinities for the 

chosen TF. Additional tracks displaying for instance TF binding site according to the 

balanced cutoff method (Rahmann et al., 2003) can be activated optionally (Figure 6.13c). 

For de novo annotation of sequences and matrices not provided on the webpage a stand 

alone C program is provided that requires as input a set of matrices, a FASTA file with 

sequences corresponding to a set of input genes and a FASTA file corresponding to a 

background set.  

 
6.6 Discussion 
In order to detect TFs regulating groups of genes I have embedded the TRAP model into a 

statistical framework called PASTAA that uses either a z-score statistic or a series of 

hypergeometric tests to assess the significance of the association between a given TF and a 

gene set. Although both statistical tests were highly successful in detecting TFs associated 

with a given ChIP-chip data set in yeast, the hypergeometric test has the advantage of being 

insensitive to outliers in the affinity predictions and to require only a minimum of a priori 

knowledge about gene set construction. In this setting PASTAA yields robust results against 

changes in the size of scanned promoter regions particularly when restricting the sequence 

space to evolutionary conserved blocks. Additionally the predicted associations are 

insensitive against considerable changes in the TRAP parameters. This stays in stark 

contrast to classical annotation methods where the number of predicted TF binding site hits 

and consequently the predicted associations often depend strongly on the chosen score 

threshold. Combining the hypergeometric test statistic with an iterative search for the optimal 

cutoffs applied to both input and target gene sets not only minimizes the amount of required 

a priori knowledge but further increases the robustness of the approach. In fact, using this 

method PASTAA was able to recover a majority of detected and verified TF-tissue 

associations even when using different expression data sets.  

 

However, in many cases input genes will not be derived from ranked lists but from 

categorical data, such as all genes belonging to a given metabolic pathway. In an extreme 

case such a group may consist of only a single gene. Nevertheless, as was demonstrated for 
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several SRF target genes and promoters of direct autoregulatory factors PASTAA is highly 

successful in recovering corresponding regulators for individual genes. As an example for a 

larger gene group stemming from categorical data, PASTAA was supplied for instance with 

all genes assigned to the “early onset of diabetes” pathway in the KEGG database (Aoki et 

al., 2005) and recovered among the top 5 matrices the PFM representing the pancreas 

specific factor IPF1, which is a direct regulator of insulin expression (data not shown). 

 
When applied to ranked lists of tissue specific genes PASTAA detects a 

comprehensive number of experimentally known TF-tissue pairs. These include not only 

associations such as SRF-heart, MEF2-muscle, HNF1-liver and NFKB-leukocyte, which are 

largely recovered also by the alternative computational approaches but also experimentally 

verified associations such as CRX-retina or PTF1-pancreas, which are not detected by 

Clover, PAP and oPOSSUM. Interestingly, meaningful associations are found by PASTAA 

not only for highly informative matrices such as NRSF_01 (Chen et al., 1998) with an 

information content of over 21 bits but also for matrices such as XPF1_Q6 (alternative PFM 

for PTF1) with an information content of only ≈ 3 bits. 

 
Several lines of evidence support the identified TF-tissue associations. A) In 

accordance with previous studies (Xie et al., 2005; Tabach et al., 2007), which showed a 

general accumulation of regulatory signals near the transcription start site, PASTAA finds the 

region from 0 to 200 bps upstream of the TSS to yield most significant TF-tissue 

associations. This finding is further confirmed by the preferential location of windows with 

maximal affinity near the TSS. B) The verified associations obtained from the 200CPs are 

often confirmed by the rankings obtained when analyzing adjacent, non-overlapping 

promoter regions in particular from 200-400 bps upstream of the TSS. C) TFs are 

significantly more often over-expressed in their top ranking tissues than what would be 

expected based on results derived from random sequence sets. D) With a few exceptions, 

the majority of verified associations are found to be conserved between mouse and human. 

E) EST and GNF data yield identical top ranking TFs for the majority of tissue categories. 

 
Aside from this evidence there is a considerable fraction of top ranking TF-tissue pairs 

well confirmed by literature. It should be stressed that only the most strongly supported TF-

tissue associations (via literature or specific expression of the TF in the corresponding tissue) 

were considered for the analysis of expression preference and binding signal location in 

order to avoid any contamination of the set with false positives. However, there are some 

hundred additional top ranking associations that appear to be meaningful based on 

experimental findings. For instance, the hormone receptors GR (glucocorticoid receptor) and 

AR (androgen receptor) have testis as top associated tissue and are both considered to play 
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an important role in spermatogenesis (Weber et a. 2000, Collins et al 2003). Another 

example is the top association between cerebellum and NKX61, which is supported by 

literature (Qiu et al., 1998, Nelson et al., 2005) as well as expression of NKX61 in 

cerebellum. 

 

In comparison to PASTAA and the other three tested methods there exist also several 

studies dedicated only to finding TFs regulating sets of tissue specific genes. For instance, 

by employing phylogenetic footprinting to select promoter regions and enhancer elements 

around gene loci, Pennacchio et al. (2007) were able to detect a number of experimentally 

verified associations for various tissues including liver, muscle and leukocytes. Alternatively, 

a study by Yu et al. (2006) investigated the tissue specificity of co-occurring binding sites for 

different pairs of TF. The authors were able to accurately assign several of their detected TF 

pairs to muscle, heart, liver, kidney, eye and lymph node. Finally, a group of works have 

focused on detecting binding signals within groups of tissue specific genes based on de novo 

motif finding (Smith et al. 2005; Huber et al. 2006). Such methods do not rely on known 

binding profiles but instead use motif finding programs such as MEME (Timothy et al., 2006) 

in order to detect overrepresented sequence patterns within promoters of co-expressed 

genes. Attempts to subsequently assign the found motifs back to PFMs of TFs with known 

function in the respective tissue were of limited success however. This is highlighted by a 

study of Huber et al. (2006) where combining four state of the art motif finding algorithms did 

not detect most of the experimentally confirmed TF-tissue associations including such well 

known cases as HNF1 and liver (Odom et al., 2004).  

PASTAA compares well also against all of the above approaches by not only 

detecting the vast majority of experimentally verified TF-tissue associations recovered by 

these dedicated studies but also by recovering associations such as PTF1-pancreas not 

found by any of the alternative methods. 

 

Despite the progress reported here for the detection of TF-tissue associations there 

are still a large number of tissues for which no known meaningful associations could be 

recovered. One reason for this might be the lack of EST expression data from several tissue 

or noise in the GNF data. In line with this notion, most verified and stable results were 

obtained for those tissues with large EST support. Given the dependency of the results on 

the quality and availability of expression data combining EST with GNF data in a sensible 

way (as suggested by Qian et al., 2005) might be of advantage. For instance, for tissues with 

low EST sampling depth one may form the union between the genes considered highly 

expressed in the tissue according to either microarray or EST measurements. On the other 

hand, in order to reduce noise in the data one could restrict the genes assigned to a given 
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tissue to only those with high level of support in both microarray and EST data. For instance, 

the most significant association between the muscle enhancer factor MEF2 and the muscle 

category is observed when restricting the input set to those genes, which are highly 

expressed in muscle according to both EST and microarray measurements (indicated by the 

intersection between EST and GNF data shown in Figure 6.12). 

 
Apart from a lack of expression data, another reason for missing or perhaps 

downgraded associations could be the presence of sequence signals not directly linked to TF 

binding. For instance, many brain and testis specific genes have been found to possess 

promoters with high GC content. In turn computational methods tend to find a strong 

association between these tissues and PFMs representing GC rich binding motifs. However, 

such promoters might in fact be regulated primarily via methylation of CpG islands and 

changes in chromatin structure. Interestingly, this hypothesis can be partially substantiated 

by separating all genes into two groups, one possessing promoters with high CpG content 

and one with low CpG content. When using only the genes with low CpG promoters for the 

tissue analysis PASTAA detects nearly all of the presented TF-tissue associations. In 

contrast, when running the analysis on the high CpG promoters barely any experimentally 

known associations are recovered (data not shown). This indicates a profound distinction in 

the regulatory mechanisms controlling gene expression in different tissues and suggests that 

the discovery of regulating TFs might be facilitated by removing sequence signals that 

correspond to TF independent ways of regulation. 

 

Finally, a last point to mention is that although the sequences up to 200 bps upstream 

of the TSS yielded the most significant results as well as many interpretable tissue-TF 

associations clearly a large number of functional high affinity sites will be located in enhancer 

regions far upstream or downstream of the respective TSS. For individual factors it might 

therefore prove advantageous to extend the search space to 5’-UTRs and intronic regions as 

was suggested for instance by Pennacchio et al. (2007). In this context it is interesting to 

mention that for the vast majority of tissue specific factors PASTAA does not detect 

significant binding signals downstream of the TSS (Dostie et al., 2006). In contrast, the 

ENCODE project (Birney et al., 2007) showed symmetrical distribution of TF binding sites 

around the TSS for a number of general transcription factors including E2F, MYC and the 

SWI/SNF chromatin-modifying complex. As was shown for NRSF (Figure 6.11) this might be 

the case also for some tissue specific factors. Therefore, it might prove advantageous to 

extend the PASTAA approach to not only adjust the size of the input and target gene set but 

also to automatically find the promoter region most enriched with tissue specific binding 

signals for a given TF.  
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