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CHAPTER 4 

The TRAP method 
 

The following work is based on the biophysical model outlined in section 3.1.3. In particular 

equation (3.14), page 45, will play a key role as it allows computing the mismatch energy Ei 

between a given TF and a given site i in the genome. In section 3.1.5 it was outlined how the 

probability of a site i to be bound by a TF can be computed from the mismatch energy, when 

assuming that TFs bind to sites according to Boltzmann statistics. This model, which uses as 

simplifying assumption that all DNA sites are available for binding, is applicable if the TF 

concentration is low (ideally one TF molecule per genome) and competition between TFs for 

the same sites can be neglected. In principle, the molecular partition function of the 

Boltzmann distribution introduced in equation (3.15) could be computed also for the case of 

multiple TFs per genome, however, preclusion effects introduced by a TF blocking a certain 

site for the other TFs quickly makes this an intractable problem.  

Because of these limitations I use a different model to predict the binding probability 

of a TF to a given site. The derivation of this model, which requires next to mismatch 

parameter λ only one additional parameter to be determined, will be outlined below. The 

resulting approach for Transcription factor Affinity Predictions (TRAP) not only avoids the 

assumptions required for applying the simplified Boltzmann distribution but also has a 

number of advantages over hit-based methods. Most notably, TRAP provides a natural 

ranking of sequences with respect to a particular transcription factor or conversely the 

ranking of several TFs with respect to one sequence. It does so by integrating weak and 

strong binding signals across a longer stretch of DNA such as a promoter region. To quantify 

the improvements I compare the results from TRAP with traditional hit-based approaches 

and find that it has higher predictive power over experimental binding data. As will be shown, 

TRAP improves the correlation between predictions and experimental measurements also in 

comparison to methods which use Boltzmann statistics for binding energy predictions. 

 

4.1 Deriving the TRAP model 
 

I first derive the probability that a given site in the genome is bound by a TF. While the 

resulting measure has been used previously for deriving biophysically motivated binding site 

cutoffs (Shreiman et al., 2005) the derivation below nicely illustrates the physical 

interpretation for the unknown parameter that arises in the model. The binding probabilities 

for individual sites will then be used to obtain a measure for the affinity of a TF to a larger 



genomic region such as a promoter. Correlating this affinity measure with experimental ChIP-

chip data subsequently allows for tuning the model parameters. Finally, I will introduce a 

general prescription for setting the parameters in the absence of experimental binding data. 

 

4.1.1 Obtaining TF binding probabilities from mismatch energies 
For the derivation of binding probabilities we can start by considering a solution containing 

identical molecules of a given TF and DNA sites of type Si, with identical sequence and 

length of the TF motif. The binding and dissociation reactions taking place between the TF 

molecules and these sites can be described by the chemical reaction: 
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where TF, Si and TF~Si are the free TF molecules, free DNA molecules and bound TF-DNA 

complexes, respectively (Atkins, 2007). The speed of the binding reaction, VB, is given by the 

laws of chemical kinetics: 
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where square brackets indicate the concentration (or more accurately, the activity of the 

molecules), aB is a reaction specific constant and ∆EB A,U is the energy barrier that the 

molecules need to overcome in order to bind to each other (see Figure 4.1 for details). In this 

reaction the energy barrier will be small as no chemical bonds need to be broken and only 

associated water molecules need to be displaced. Similarly, the speed of the dissociation 

reaction VD is given by: 
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where aD is the reaction constant and ∆EA,i is the kinetic energy required to split the TF-DNA 

complex (see Figure 4.1). Once equilibrium has been reached the binding and dissociation 

reactions occur with equal speed, that is: 
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The ratio between bound and unbound molecules is now given by the mass action law: 

 

 
[ ]

[ ][ ]
iUE

i

i

i
i ea

STF

STF
K ,       

~
    Δ== β  (4.5) 

  56



where Ki is the binding constant of the reaction, which can be approximated by the Arrhenius 

equation shown on the right hand side (Atkins, 2007). The constant ai is referred to as the 

reaction specific Arrhenius constant and ∆EU,i corresponds to the energy change associated 

with the binding of the TF to the site. As illustrated in Figure 4.1, the term  

approximates how many molecules in the unbound state have enough kinetic energy to 

cross the energy barrier as compared to molecules in the bound state. We proceed by 

assigning an energy of 0 to the complex between TF and its consensus site and setting the 

energy of all other TF-DNA complexes in respect to it (see Figure 4.1). In this case equation 

(4.4) can be rewritten as: 

iUEe ,Δ−β
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where ∆EU,0 is the energy change associated with the complex formation of unbound TF and 

its consensus site. The second energy term, ∆Ei,0, measures how much stronger the TF 

binds to its consensus site as compared to site i. This energy difference corresponds exactly 

to the mismatch energy given by equation (3.14) on page 45. Using this relation one can now 

describe the binding reaction of the TF to any site i in terms of the binding energetics of the 

TF-consensus reaction. To this end equation (4.5) is solved for ∆EU,0: 
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which simplifies in case of the consensus site to: 
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Combining equations (4.7) and (4.8) and assuming that the Arrhenius constants ai and a0 

have approximately the same value yields: 
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where the ratio between the concentrations of bound consensus sites and free consensus 

sites has been abbreviated as R0. Considering ai and a0 to be similar is valid because the 

Arrhenius constants measure how often a collision between molecules with sufficient kinetic 
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energy leads to a reaction (Atkins, 2007). In this respect the requirements are similar for any 

type of site, therefore ai ≈ a0. It should be noted that the transcription factor concentration 

cancels out in the above equation. This is so because all sites added to the solution will see 

on average the same amount of TF molecules. The significance of equation (4.9) is that one 

can compute the ratio of free versus bound sites for any sequence just from their mismatch 

energies in respect to the consensus and the ratio R0 of bound versus free the consensus 

sites.  

Figure 4.1 – Kinetics of TF-DNA interaction  
a)           b) 

 
 

a) The binding of a TF to a DNA site with sequence i goes in hand with a change in the free energy of 

the system. Binding to the site with consensus sequence thereby causes the largest energy change 

∆EU,0. The energy levels of all other TF-DNA complexes can be measured relative to the energy level 

E0. The difference between E0 and Ei hereby corresponds to the mismatch energy from equation 

(3.14). b) Maxwell-Boltzmann distribution for the kinetic energy of the molecules. The red and red-

blue areas under the curve correspond to the number of molecules with energy larger than ∆EA,U and 

∆EA,i , respectively. The area can hereby be estimated according to the Arrhenius law as . Ee β−

 The probability of a particular site of type i to be bound by the TF is equivalent to the 

fraction of sites of this type that are bound in solution. This fraction of sites is given by: 
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where the denominator corresponds to the total amount of sites i in solution. Dividing each 

term in equation (4.10) by si and substituting the resulting [ ] [ ]ii ssTF /~  with the right hand 
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term of equation (4.9) one obtains the desired relation for the binding probability of the TF to 

the site: 
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where βEi,0 is the mismatch energy as computed by equation (3.14). Equation (4.11) can also 

be derived by assuming that each energy level, represented by a given type of site, can be 

occupied only once by the TF molecules. Applying this constraint to the Boltzmann 

distribution yields the Fermi-Dirac equation: 
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where the chemical potential, μ, takes the role of R0 in equation (4.11). The physical meaning 

of R0 is nicely illustrated by looking at equation (4.8) from which one obtains: 
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Thus R0 combines the concentration of free TF molecules and the energy difference between 

the unbound and optimally bound states. In practice, neither the binding strength nor the 

concentration of a TF is known. R0 thus constitutes next to λ from equation (3.14) a second 

unknown parameter that needs to be determined from experimental data in order to predict 

meaningful binding probabilities. 

 

 How the function p for the binding probabilities depends on the values of R0 and λ is 

illustrated in Figure 4.2. The parameter λ thereby acts as shape parameter that specifies how 

smoothly the function p changes when introducing deviations form the consensus sequence, 

while R0 acts as a location parameter for the function. Discrete hit based approaches thereby 

appear as a special case of the continuous binding model when choosing R0 and λ 

accordingly. How to optimally set the parameters and how much information is lost when 

running into the regime of discretized binding probabilities will be outlined in the remainder of 

this chapter. 
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It has to be stressed that this binding model assumes that all sites in the genome see the 

same effective TF concentration. While this assumption will not hold in all cases, TF 

molecules have been shown to diffuse quickly through the nucleus (e.g. Sprague et al., 2004, 

Zadeh et al., 2007) and thus assuming a similar effective concentration across the genome 

should constitute a reasonable approximation. 

Figure 4.2 – Dependence of binding probabilities on R0 and λ 
 

 
 
The binding probabilities, p, of sites depend on the chosen values for R0 and λ. The x-axis 

corresponds to the scores (summed log ratios of observed versus consensus base frequencies) of a 

given PFM. The parameter λ converts these scores into mismatch energies (via equation 3.14). With 

λ → 0 (resulting in the red dashed curve) the model approaches the hit based schemes, that is, all 

sites with scores above or below a certain threshold (score ≈ 5, for the red dashed curve) are 

considered unbound (pi = 0) or bound (pi = 1), respectively. The location of the infliction point of the 

probability curves along the x-axis is thereby determined by the location parameter R0. 

 

 The following section will describe how the binding probabilities can be used to define 

an affinity measure for longer sequence and how the parameters R0 and λ can subsequently 

be derived from ChIP-chip binding data. 

 

4.1.2 Deriving a binding measure for longer sequences 
Using equation (4.11) one can in principle compute the binding probability of a TF to any site 

in the genome. However, for many applications such as target gene prediction for a given 

TF, the question is rather whether or not the factor binds to a larger stretch of regulatory 



DNA, such as a promoter region. My measure of choice for the affinity of a TF to a larger 

sequence is the expected number of TFs bound to the region, 〈N〉, which is computed by: 
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where L is the length of the region, M is the width of the TF motif and pi is the binding 

probability to site i in the region. The term affinity will be used synonymously for 〈N〉 

throughout the thesis. To account for competitive binding of a given TF to the same site but 

different strands the binding probabilities of the forward and reverse DNA strand are 

combined using the following approximation: 
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where pF

i and pR
i are the probability of binding to site i in the forward and reverse strand, 

respectively, which are given by equation (4.11). Note that the term (1 - pF
i) corresponds to 

the probability that site i is free for binding of the TF to the reverse strand. Accounting for 

competition becomes relevant only if both pF
i and pR

i are large, which might be the case 

especially for palindromic binding motifs. 

 
4.1.3 Deriving the TRAP parameters 
The following section will outline how the two parameters R0 and λ can be determined in the 

presence and subsequently the absence of experimental binding data. The biophysical 

model outlined above, with the computation of 〈N〉 as the affinity measure, together with the 

general prescription on how to derive the parameters, comprises the TRAP method. TRAP 

will be used in subsequent chapters to predict the binding affinity of a given TF to a given 

promoter region. 

 

How are predictions and experimental binding data related? 
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The binding measure presented in equation (4.14) pertains perfectly to the situation tested 

with Protein binding microarrays (PBMs). As discussed in Section 2.5.2 such experiments 

quantify the binding strength between a TF and a longer stretch of DNA by measuring the 

amount of florescent light that is emitted from the labeled TFs bound to the given spot on the 

array. In this case the predicted number of TFs, 〈N〉, being bound to a certain sequence is 

expected to correlate linearly with the measured florescent light intensity. In contrast, in 

ChIP-chip experiments the amount of fluorescent light emitted from a spot on the microarray 

is expected to grow linearly with the number of sequences that are being pulled down in the 



Figure 4.3 – Relationship between 〈N〉 and the pulled down efficiency 

a)                                                                       b) 

      
 

a) The probability of the antibodies to pull down a sequence with a single bound TF is given by Π

= π. If π is small then 〈N〉 is expected to correlate nearly linearly with the number of pulled down 

sequences and subsequently with the observed R/G ratios. Curves indicate the theoretical relation 

between 〈N〉 and the probability, Π, of a sequence with 〈N〉 bound factors to be pulled down, given 

different values of π. b) Large R/G ratios for the general factor RAP1 from yeast do not show any 

apparent signs of saturation. Blue dots correspond to the experimentally evaluated sequences sorted 

according to their measured R/G ratios in a ChIP-chip experiment (Harbison et al., 2004). No 

plateau effect in large R/G ratios is observed even though several sequences are known to harbor 

clusters of RAP1 bind sites (Gilson et al., 1993). Similar inspection of the later used data sets 

confirmed the absence of any apparent saturation effects for all tested TFs. 

antibody precipitation step. If we assume that the antibodies have probability π of pulling 

down a sequence with a single TF bound to it, then, for a sequence with 〈N〉 associated 

transcription factors the probability, Π, of being pulled down is given by: 

 
 ( ) Nπ−−=Π 11  (4.17) 

 
where ( ) Nπ−1  is the probability that none of the TF molecules bound to the sequence 

causes its precipitation (notice, in case of 〈N〉 = 1 then Π = π). If π is small, which is 

supported by the absence of any apparent saturation effects in the measured R/G ratios (see 

Figure 4.3b for an example), then 〈N〉 is expected to correlate linearly with Π (see Figure 

4.3a) and subsequently with the measured R/G ratios. In fact, incorporating π as an 

additional parameter into the model had no significant effect on the found correlations. 

Therefore, in the following sections only the results as obtained when assuming that 〈N〉 and 

the R/G ratios correlate linearly will be presented. 
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Experimental binding data 
As a first data set to be correlated with the binding predictions I utilized the PBM binding data 

available for the three yeast transcription factors (Rap1, Mig1 and Abf1) from Mukherjee et 

al. (2004). In this study the binding between each factor and all 6725 intergenic regions from 

yeast was tested. The length of the regions varies from ~50 to ~1500bps. It has to be 

stressed again that this in vitro data set constitutes the optimal test case for the binding 

model as the measured affinity grows linearly with the number of TFs sitting on a given 

sequence and since competition with other proteins such as histones is excluded. For a more 

extensive dataset and to investigate the applicability of the model to in vivo data I also 

retrieved the binding data for the comprehensive genome-wide ChIP-chip dataset form 

Harbison et al., (2004), which provides R/G-ratios for > 200 TFs and the 6725 intergenic 

regions in yeast. For many factors the binding behaviour was thereby not only tested in rich 

medium condition (YPD) but also in stress conditions such as oxidative stress (induced by 

H2O2) or amino acid starvation (SM). The hybridizations were performed on the same 

microarrays as in the above PBM experiments.  

 For each of the data sets the authors compute p-values describing the significance of 

the experimentally measured R/G ratios. A p-value threshold of 10-3, which will be utilized in 

later sections of this study, has thereby been suggested to indicate binding of the TF.  

 

Utilized position frequency matrices 
As motif descriptions for the TF binding predictions I used the set of 29 yeast matrices (for 25 

different TFs) provided by the TRANSFAC database (Matys et al., 2003) for which PBM or 

ChIP-chip data is available. A pseudo-count of 1 was added to each element in the count 

matrices. In the framework of physically motivated binding models, this modification can be 

interpreted as setting a maximally allowed contribution to the mismatch energies. For 

comparative purposes also a PC = 0.5 (as recommended by Berg and von Hippel 1987) was 

used, but the results are unaffected by this change (data not shown). In addition to these 

matrices I also tested several PFMs derived in the Harbison et al., study (2004) by people 

from the Fraenkel lab. While many of these matrices yielded good results, they are not use 

for deriving the general parameter description for TRAP in order to avoid any possible 

circularity in the argument. 

 

General parameter determination 
To find the optimal setting of R0 and λ for a given transcription factor equation (4.14) was 

applied to all 6725 intergenic regions in yeast and then correlate the predicted occupancies 

〈N〉, with the measured binding intensities from the above large scale experiments. As an 



Figure 4.4 – Correlation between predicted and measured TF affinities 
 

 
 
A correlation of r = 0.41 is obtained for the factor ABF1 when randomly setting R0 and λ to unity. 

Each spot represents an intergenic region whereby red and blue colours indicate whether a 

sequence is significantly bound by the factor according to experimenters. x and y axis correspond 

to model predictions and experimentally determined TF binding values, respectively. It has to be 

stressed that there are ~600 bound sequences (red) versus ~6100 unbound sequences (blue). The 

spots shifted towards higher values of 〈N〉 are thus greatly enriched with bound sequences. 

example, Figure 4.4 shows for the transcription factor ABF1 the correlation between the 

actual binding values from the PBM experiment and the predictions made by the model when 

arbitrarily setting R0 = 1 and λ =1. The quality of the correlation is hereby measured by the 

Pearson correlation coefficient r, which is given by: 
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where J is the total number of intergenic regions, µ is the population mean of the respective 

measure and σ〈N〉 and σR/G denote the standard deviation of the binding predictions and R/G 

ratios, respectively (Magrab et al., 2000). For ABF1 with R0 and λ both set to unity the 

observed correlation between binding predictions and real binding values is r = 0.41. The p-

value for the significance of any measured correlation is estimated by means of a t-test 

(Magrab et al., 2000). To this end the following t-score is computed: 
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where J is again the total number of intergenic regions. Since J is in the order of several 

thousand the t-distribution follows the normal distribution and the corresponding p-value can 

be estimated from the area under the Gaussian to the right of the t-score. With this 

procedure one finds the above correlation to be highly significant (p-value < 10-100).  

 

The correlation coefficient (or alternatively the p-value) was used as quality measure 

to determine the values for R0 and λ that optimize the correlation between the predicted 

number of TFs sitting on a sequence, 〈N〉, and the experimental measurements for the TF. 

To this end, for each TF and each data set all pair-wise combinations of the parameter 

values λ ∈ {0.05, 0.10, …, 1.90 , 2.00} and ln(R0) ∈ {-10, -8, …, 28, 30} were tested. The 

result of this analysis is exemplarily shown in Figure 4.5a for the factor ABF1 and the PBM in 

vitro binding data set. For ABF1 an optimal correlation of 0.55 is thereby found when setting 

λ = 0.65 and ln(R0) = 6.91. In contrast, setting the parameters to the values that are assumed 

when applying the simplified Boltzmann statistics introduced in Section 3.14 

(unphysiologically low TF concentration) and setting λ to 1 causes a significant drop in the 

observed correlation to a value of r = 0.25. Not surprisingly, nearly identical correlation (0.25) 

is obtained when using equation (3.25) from PAP (page 52) to compute the affinity scores.  

 

General Features of the parameter space 
Figure 4.5 visualises the magnitude of correlation coefficient across the parameter space for 

the transcription factors ABF1 and GAL4. The resulting surface plots nicely illustrate several 

generic features of the parameter space found for nearly all factors.  

For large λ and R0 the correlation coefficient drops to ≈ 0. This is expected because 

setting λ to a value >> 1 corresponds to severely down scaling all mismatch energies and 

thus treating all sites like the consensus (see Figure 4.6 for a graphical explanation). In 

addition, using a large value for R0 indicates high TF concentration and/or strong binding to 

the consensus (see Figure 4.6). Together this leads to nearly every site in a sequence being 

occupied by the TF with high probability. As a result 〈N〉 correlates linearly with the length of 

the individual regions. Only binding data from proteins that interact completely unspecifically 

with the DNA are expected to show high correlation in such a parameter setting. I have found 

only one factor (ROX1) for which this is the case.  
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In contrast, setting λ to a value << 1 corresponds to introducing large mismatch 

energies even for small deviations from the consensus. Setting at the same time R0 to a 

small value means that the TF concentration and/or the binding strength to the consensus 
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Figure 4.5 – Generic features of the parameter. 
a) 

 
b)  

 
 
a) The magnitude of the achieved correlation between predictions and binding values for each 

parameter combination is shown. Point 1 and 4 respectively correspond to the areas in the 

parameter space where all sequences remain either completely unbound or maximally occupied.

Both of these extremes lead to negligible correlation with the binding data. Point 3 shows the 

parameter combination that results in the optimal correlation (r = 0.55) between predictions and

binding values. Lastly, Point 2 indicates the parameters that correspond to assuming very low TF 

concentration and setting λ to 1. b) Top view on the parameter space for the factor GAL4 in 

raffinose growth medium condition. The optimal choice of parameters, with the highest correlation 

coefficient, is again marked by Point 3. The hyperbola highlights a line of parameter combinations 

with similarly high correlation coefficient. Indicated are also the boundaries (white staggered lines) 

for which the maximal value of  〈N〉  (over all 6725 intergenic regions) lies between 0.5 and 5. 



site are assumed to be very low. Thus, in this regime all sequences are predicted to be 

unbound by the TF which naturally does not reflect the real situation measured in the chip 

experiments. The obtained correlation from using these parameter settings is thus also ≈ 0 

for all factors. As mentioned in context of Figure 4.2, choosing λ → 0 but setting R0 to an 

appropriately large value leads back to the regime of hit based methods. The higher 

correlation values that appear in the bottom right corner of the surface plot thus indicates 

what might be achieved by hit based methods if the score threshold is chosen properly   

(recall that the score computation is however different for the PWM and biophysical models 

as can be seen by comparing equation 3.14 and 3.4). Figure 4.7 illustrates for a group of 50 

intergenic regions how the discussed changes of the parameters affect the individual binding 

affinities.  

Figure 4.6 – Effects of setting ln(R0) and λ 

 

 
 
Top panel: λ determines the spacing between mismatch energy levels. For λ >> 1 mismatches are 

down weighted and all sites behave like the consensus. This scenario might apply to factors that 

bind only non-specifically to DNA. In contrast, λ << 1 introduces large mismatch energies. This 

can lead to an unrealistic setting where already the smallest deviation from the consensus causes a 

mismatch energy greatly overshooting the energy level of the unbound state. In any case, most 

transcription factors can accommodate certain variations in the binding site (Mossing et al., 1985) 

and therefore such a setting is not expected to yield high correlation between model predictions 

and binding data. Lower panel: Importantly, aside from TF concentration, R0 also determines the 

binding energy between a TF and its consensus site. It thus positions the ground state energy level 

of the system. Setting R0 to a too large or too small value causes all sites to be considered as bound 

or unbound, respectively. 
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b) 

 
 
a) Growth in 〈N〉 for the factor ABF1 associated with increasing λ while keeping ln(R0) fixed at 6.91

(R0 = 103). Each line corresponds to an individual intergenic region where red signifies that the 

region is bound by the factor according to PBM measurements. At very small λ all sites except the 

consensus have mismatch energies → ∞. At the same time, given that R0 = 103 the consensus site 

has a binding probability of 1000 / 1001 ≈ 1 according to equation 4.11. This is reflected by two 

intergenic regions both of which contain a consensus site and thus approach a value of 〈N〉 ≈ 1 for λ

< 0.50. Binding sites contained in other regions obtain appreciable binding probabilities only for λ > 

0.25. The optimal value for λ (0.65) given ln(R0) = 6.91 is indicated by a black triangle. b) Shown is 

the growth in 〈N〉 caused by increasing R0 while keeping λ constant at 0.65. The two regions 

containing the consensus sites are again the first to obtain larger binding probabilities with growing 

R0. Plateaus are reached when the sites obtain saturated binding probabilities. Regions bound 

according to experimenters (red) in general tend to obtain larger binding probabilities than unbound 

regions (blue). Optimal correlation is reached when setting ln(R0) = 6.91 (black triangle).  

Figure 4.7 – Changes of 〈N〉 with λ and R0

a)  

 



Another general feature of the parameter space is that for small R0 the expected number of 

bound TFs depends linearly on R0, as can be inferred from a Taylor expansion of equation 

(4.14) around R0 = 0, which yields: 
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Equation (4.21) illustrates that changes of R0 in this range only affect the absolute value of 

〈N〉, but not the correlation of 〈N〉 with R/G ratios. In Figure 4.5 this is reflected by a constant 

correlation coefficient for ln(R0) < 0 and a given λ. Equation (4.21) also highlights the 

transition of the modelled Fermi-Dirac distribution into the regime of Boltzmann statistics. 

Finally, it is evident from equation (4.11) that the affinity of a single site i can be kept 

constant for varying values of R0 and Ei in such a way that . WithceR iE =−β
0 λβ 1∝E  there 

exists a hyperbolic relation: 
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∝
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Interestingly, the characteristic curves of high correlation coefficients seen in Figure 4.5, 

which can be well described by a hyperbola, suggest that this generic behaviour is effectively 

reflected in the behaviour of the correlation coefficients for all TFs. 

 

Optimal Parameter Choice Derived from Experimental Data 

For all three PBM data sets optimal parameters have been found which yield highly 

significant correlation (r > 0.5, p-value < 1e-100), as shown in Table 4.1. This indicates that 

the binding model can successfully account for a considerable fraction of the observed in 

vitro binding affinities.  

Next I analysed the more comprehensive ChIP-chip data set by Harbison et al., 2004. 

This in vivo data corresponds to a more complicated situation, where one cannot always 

assume that the transcription factor is available for DNA binding and that the DNA is 

accessible under the tested condition. Therefore, without additional information about 

competing TFs, chromatin structure and TF concentration, the model cannot always be 

expected to yield high correlation with the data. Despite these caveats, significant 

correlations are found for a large number of the in vivo data sets. 

The t-score statistics outlined in equation (4.20) thereby produces significant p-values 

also for small correlation coefficients of ~0.05 suggesting that the assumptions underlying the 

t-test are violated in some cases. To more rigorously assess the quality of the optimal 

correlations I therefore performed a resampling test for each TF and each condition. To this 
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Figure 4.8 – Resampling verifies the significance of obtained optimal correlations 
a)                                                                      b) 

   
 
a) The correlation coefficients obtained from binding data where the R/G values for CBF1 have 

been randomly shuffled over the 6725 intergenic regions never exceed a value of 0.08. The 

correlation of r ≈ 0.67 obtained for the original ChIP-chip binding values (denoted as “real 

correlation”) thus appears highly significant and is assigned a p-value < 1e-4. b) For LEU3, 

500.000 reshufflings never yielded a correlation as high as the original ChIP-chip data set. The p-

value of the correlation is thus < 2×10-6. 

end the experimental R/G binding values were randomly shuffled between the 6725 

intergenic regions. Subsequently the correlation between model and shuffled data was 

computed using the optimal parameters from the original data set. This procedure was 

repeated a minimum of ten thousand times for each factor. Figure 4.8 shows the results of 

this test exemplarily for the factors CBF1 and LEU3 in amino acid starvation condition. As the 

histogram shows, the correlation coefficients for the resampled data sets cluster around r = 0 

and never produce a correlation as high as the original data. Similar results are found for all 

factors and conditions where the correlation with the original is larger 0.3. In these cases 

none of the resamplings achieved a correlation as high as the one obtained from the original 

data. In contrast, many correlations with r < 0.2 were found to be of low significance (p-value 

> 10-4) by the resampling technique. The shuffling procedure was also performed across the 

entire parameter space, i.e. without using the optimal parameters, in order to exclude the 

possibility that other parameter pairs could yield a higher correlation by chance. The 

parameter space for ten such resampled data sets is shown in Figure 4.9 for the factor 

CBF1. In accordance with equation (4.22) the correlation coefficients obtained from the 

resampled data also show hyperbolic curves across the parameter space, however, the 

magnitude of the correlations never exceeds a value of 0.06. 
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Figure 4.9 – Correlations across the parameter space obtained by resampling  
 

 
 

The top left plot shows the correlation coefficients obtained from the real data set while the other

plot shows the correlation coefficients obtained from a particular reshuffling of the R/G ratios over 

al 6725 intergenic regions. While hyperbolic curves are discernable in all plots the magnitude of 

the correlations never exceeds a value of 0.06.  
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Table 4.1 summarizes the results of the correlation analysis for a group of 15 PFMs for which 

the affinity predictions show high correlation (Pearson r > 0.3) with the experimentally 

observed R/G ratios and the resampling p-values are < 1e-4 (that is, no resampling yielded 

higher correlation than the actual data). Remarkably, the optimal parameters for all factors 

and conditions yield maximal values of 〈N〉 (over all 6725 intergenic regions) in the range of 

0.5 to 5, that is, each factor recognizes at least one intergenic region with high probability. 

This is biologically reasonable assuming that each transcription factor should strongly bind 

some promoter region, in at least one condition while at the same time the factor should not 

cover nearly all sites in the sequence. 〈N〉max falls outside of the meaningful range only in two 

cases. In the case of Hap1 the ‘’optimal’’ R0 is small and thus poorly defined in the sense 

explained in context of equation (4.21). Conversely, for Rap1 several sequences have large 

clusters of neighbouring Rap1 binding sites (Gilson et al., 1993) which yields a 〈N〉max of ≈ 

12.5. In general only a limited area of the parameter space allows 〈N〉max to lie within the 

biologically meaningful bounds. This area is indicated by the white staggered lines in Figure 

4.5 for the transcription factor GAL4 while a generic picture of how 〈N〉max changes across the 

parameter space is shown in Figure 4.10 for the factor CBF1. The fact that the optimal 

parameters yield meaningful values for 〈N〉max thus strongly underlines the validity of the 

found correlations and the location of the optimal parameters.  

 

Parameter Choice in the Absence of Experimental Data 

While it is possible to determine the optimal coefficients R0 and λ in the presence of sufficient 

binding data, it is clearly desirable to have some prescription, which would allow the 

parameter determination on general grounds also for factors for which no binding data is 

available. 

By investigating the parameter space for many different TFs it became apparent that 

the location of the hyperbolic lines of high correlation across the parameter space is 

dependent on the motif length M of the respective TF. The hyperbolic lines thereby appear 

shifted towards larger values of R0 if M is large. This is indicated in Figure 4.11 (size of white 

arrows) for four factors with binding motifs of varying length. Astonishingly, when setting λ to 

a fixed value for all TFs then there exists a linear correlation between the optimal values of 

ln(R0) and the motif length of the respective TF. In addition, it is evident that the optimal 

correlation coefficients are rather insensitive to small changes in the parameters, particularly 

when following the hyperbolic lines of high correlation (notice the width of the hyperbolas 

representing high correlations in Figures 4.5b and 4.11). Based on these observations and 

on the optimal values for λ shown in Table 4.1 I decided to fix λ to an average value of 0.7 for 

all transcription factors and all conditions. This fixation reduces the parameter space to only 
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Table 4.1 – Summary of the correlation analysis for 15 TFs 
 

 
 

The first column denotes the matrix identifier (TRANSFAC version 11.1) of those TFs, for which 

the affinity predictions yield highly significant correlation (r > 0.3, p-value << 1e-6) with the 

genome-wide R/G binding ratios from ChIP-chip in at least on of the tested conditions (second 

column). The motif length (M) is given in the third column followed by the parameter settings for λ 

and R0 that result in the maximal correlation coefficient r and some maximal value 〈N〉max over all 

intergenic regions. The last column denotes the correlation coefficient that is achieved by setting λ

= 0.7 and deriving R0 from the regression analysis of Figure 4.12. It is apparent that in all but one 

case the differences between the correlation obtained from optimal and predicted parameters are 

small. The only exception is GNC4_01 whose motif has been arbitrarily extended by many 

unspecific positions. Stars indicate PFMs obtained from Frankel et al., 2004. These matrices were 

not included for the derivation of the generic parameter prescription yielding rpred in the last 

column. 



R0, which can now be described as a function of M. Figure 4.12 shows the regression 

analysis of ln(R0) against M for all TRANSFAC matrices with significant correlation between 

model predictions and experimental data. The resulting regression formula: 

Figure 4.10 – Changes of 〈N〉max across the parameter space 

 

 
 
How ln(〈N〉max) changes across the parameter space for CBF1 is in indicated by colour shades. The 

yellow area thereby highlights the part of the parameter space in which 〈N〉max stays within 

biologically meaningful bounds of 0.5 to 5.0. These bounds are based on the assumption that a 

given TF will bind at least some sequence with probability > 0.50 in some cellular condition in 

which the factor is actually expressed. As indicated for CBF1 the optimal correlation between 

model predictions and experimental ChIP-chip data lies in fact within this area. Assuming ln(R0) < 

0 causes a  〈N〉max to quickly decline to unrealistically small values (given that CBF1 is expressed in 

the shown condition). In contrast, assuming a large value for λ and R0 causes all sites of a given 

intergenic region to be occupied. It follows that 〈N〉max will take on the value of the longest 

intergenic region (disregarding the preclusion effects of neighbouring TFs).  

 
 ( ) 0.66ln 0 −⋅= MR  (4.23) 

 
allows to determine R0 for any motif length. This finding can be understood if one remembers 

that R0 determines the binding energy between a TF and its consensus site. This binding 

energy likely grows with the width of the TF motif through an increasing number of protein-

DNA contacts (see Figure 2.5). Thus, since R0 grows exponentially with the binding energy, 

ln(R0) grows linearly with M (see equation 4.13). On the other hand, R0 also depends on the 

  74



concentration of free TF molecules. Its value should thus vary between different cellular 

conditions. Indeed such changes are observed for instance in case of GAL4, which is known 

to be fivefold overexpressed in galactose compared to glucose containing medium. 

Accordingly, its optimal ln(R0) shifts form 6.9 to 8.1 between the corresponding ChIP-chip 

data set (indicated by a white cross in Figure 4.11). However, this shift amounts to such a 

small change in R0 that good correlation with the experimental data is obtained when deriving 

ln(R0) based on the regression formula from Figure 4.12. Over all data sets the changes in 

ln(R0) due to varying conditions are found to be much smaller (±2 around the average) than 

Figure 4.11 – R0 grows with the length of the TF motif 
 

    

    
 
Comparing the parameter space of different TFs reveals that the optimal ln(R0) grows in an almost 

perfect linear fashion with the length M of the TF motif for any given λ (compare length of arrows with 

M, highlighted for the case λ = 0.7). The effect of changes in TF concentration is illustrated for GAL4. 

The optimal ln(R0) changes for this factor from 6.9 to 8.1 (indicated by a white cross) when analysing 

ChIP-chip data from cells grown in galactose instead of glucose containing medium. This is in 

accordance with experiments which showed GAL4 to be 5 times higher expressed under this condition. 
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the overall dependence on the motif length of the respective TF. This robustness against 

changes in TF concentration is explained by R0 depending only linearly on the concentration 

but exponentially on the optimal binding energy. In turn, the motif length is found to strongly 

dominate the behaviour of R0.  

Figure 4.12 – Deriving a general prescription for setting R0

 

 
 
For each matrix the optimal value of ln(R0) for a fixed value of λ = 0.7 is plotted. For factors that 

were tested in various cell culture conditions the average of the optimal ln(R0) for the 

corresponding matrix is plotted. Deviations from this value, due to condition-dependent (TF-

concentration-dependent) variation, are generally small (maximally ln(R0) ± 2). The p-value of the 

resulting regression is 1.2⋅10-7. The errors in the formula denote the 95% confidence interval on the 

regression parameters. 

It should be noted that instead of setting λ to a fixed value one could instead fix R0 in 

which case λ would grow linearly with M. While λ might indeed vary between factors, it is 

difficult to find a meaningful biophysical explanation as to why interrupting a certain amino 

acid - base pair interaction would cause a much higher mismatch energy in a TF with long 

binding motif as compared to one with a short motif. For a more mathematical explanation 

consider the following scenario where all mismatch energies εj,α have the same value ε’ . In 

this case the number of ways, W, in which a binding site for a given factor can be realized 

without exceeding a critical mismatch energy, EC, can be analytically derived. With a maximal 

number of K deviations from the consensus (→ EC = K ε’ ) one obtains (von Hippel et al., 

1986) as a first order approximation for W: 
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Applying equation (3.11) for deriving λ yields: 

 

 
( ) ( ) '' 33lnln εελ −≈= CEM

dE
Wd

. (4.25) 

 
If EC is considered a constant then λ grows logarithmically with M. This behaviour is expected 

to carry over also to other more general situations where the different εj,α‘s may have  

individual values. A linear correlation between λ and M would thus be difficult to explain. 

Moreover, if we assume that the binding energy, and with it the maximal mismatch energy 

EC, increases with the motif length then EC ∝ M and thus, λ should be largely independent of 

M. From these considerations, it appears biologically meaningful to assume R0 instead of λ to 

be dependent on M. For purely practical purposes it is however irrelevant which of the two 

parameters is considered to be invariant. 

 

Computing ln(R0) for different TFs based on the regression formula shown in Figure 

4.12 completes the derivation of the TRAP method and provides the basis for the 

subsequent analyses. As shown in the last column of Table 4.1 this approach yields indeed 

correlations with the R/G-ratios that are almost as high as the optimal correlations. 

Importantly, using this prescription for setting R0 yields values for 〈N〉max that always lie in the 

meaningful range of 0.5 to 5.0. In later sections this way of obtaining R0 and λ will therefore 

be used to predict relative binding affinities for transcription factors with known motifs for 

which no genome-wide binding data is available that could be used to obtain the optimal 

parameters. In this context it has to be stressed that the above prescription for determining 

the parameters yields as good results for the matrices directly derived by Harbison et al., 

(2004) as it does for the TRANSFAC matrices. This is important as the Harbison matrices 

were not included in deriving the regression model for obtaining ln(R0), equation (4.23), and 

thus serve as a control for its general validity. 

 

Choosing the proper motif length 
As mention in context of Figure 2.5 and 3.2 matrices may contain unspecific positions which 

then define an arbitrary consensus site. In the above situation such a consensus obtains a 

spuriously low binding energy through the dependence of R0 on M as given by equation 

(4.23). The resulting overestimation of the optimal R0 in turn causes the prediction of 

arbitrarily high binding affinities. For instance, for the factor GCN4 there exist two matrices in 

TRANSFAC namely, GCN4_01 with M = 27 bp and GCN4_C with M = 10 bp (sequence 

LOGOs shown in Figure 4.13). For identical λ, GCN4_01 therefore results in a vastly larger 

estimate of R0 as compared to GCN4_C. That the estimate for R0 based on GCN4_01 is 
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Figure 4.13 – Sequence LOGO of GCN4_01 and GCN4_C 

a) 

b) 

  
 

The TRANSFAC motif GCN4_01 a) is derived from a SELEX experiment and shares the 

informative core with the matrix GCN4_C b). From the sequence LOGO in a) it is apparent that the 

PFM has been arbitrarily extended beyond the actual binding motif. The uninformative tails of the 

PFM can be truncated by applying a cutoff to the information content of the matrix positions. 

(Sequence LOGOs were obtained from TRANSFAC online.)

indeed inaccurate can be seen in Table 4.1, where GCN4_01 is the only matrix with a large 

difference in the correlation obtained from the optimal and estimated model parameters (r = 

0.34 vs. 0.15). The problem of overestimating R0 due to arbitrarily added bases in a matrix 

can be avoided by restricting the motif to positions with higher information content. Following 

equation (3.20) the information content of a single position i in the PFM can be computed by 

the Kullback-Leibler entropy (Kullback et al., 1951) difference between the PFM and 

background base frequencies: 
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where Ιi can range between 0 and 2 bits. Using an entropy cutoff of 0.1 bits for bases near 

the motif core and a cutoff of 0.2 for distant flanking bases reduces the motif length of 

GCN4_01 to 11 bases and in turn greatly improves the obtained correlation coefficients 

between predictions and ChIP-chip data (r = 0.56 vs. r = 0.15). The results could likely be 

further improved by first applying a sophisticated method for adding pseudo counts 

(Rahmann et al., 2003) as outlined on page 34. It should be noted that the regression line in 

Figure 4.12 is not sensitive to such influences. 
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4.2 Results 
 

4.2.1 Comparison of TRAP with Hit-Based Methods 
As outlined in section 3.1.3 traditionally, computational target predictions have focused on 

the identification of individual binding sites for a given TF. This is usually done by scanning a 

position weight matrix along the sequence and assigning a TF hit, whenever the log 

likelihood score exceeds the pre-defined threshold (Wasserman et al., 2004, Rahmann et al., 

2003). Such traditional methods may suffer from the arbitrariness of the score threshold and 

perhaps also from the subsequent discretization of the binding site scores. In the following I 

will investigate how well hit based approaches can account for the experimental binding 

values as compared to TRAP (using predefined parameters according to equation 4.23). This 

analysis will show how much information about the relative binding strength of a TF to a 

sequence is contained in the continuous affinity predictions made by TRAP as compared to 

the binary values assigned by the hit based approaches. 

 

Comparison of achieved correlations 
For the comparison I consider two commonly used hit-based methods (see Section 3.1.3 for 

details). The first approach is referred to as “balanced cutoff” and constitutes a state of the 

art method that invokes a likelihood score threshold, which is chosen in such a way that the 

expected number of false positive hits is balanced by the expected number of false negatives 

(Rahmann et al., 2003). For each sequence this method predicts a discrete number of hits, 

which can be compared to experimental binding ratios and the TRAP predictions for 〈N〉. The 

difference between the predictions made by TRAP and the balanced method is illustrated for 

the factor Leu3 in Figure 4.14a. The TRAP approach thereby leads to improved correlation 

with experimental data. 

 

For a second comparison, I applied a different threshold prescription, referred to as 5-

FP, in which the expected false-positive rate is arbitrarily set to 5%. Table 4.2 provides a 

complete comparison of the results obtained from all three methods for those experimentally 

tested TF-condition pairs that yielded a Pearson correlation r > 0.3 for at least on of the 

methods. It can be seen that in ≈ 75% of cases TRAP results in better correlations with 

experimental binding ratios than the hit-based methods. This percentage is increased to 90% 

if uninformative matrix positions are removed from the matrices before computing affinities 

and deriving ln(R0).  

 



 

      
 

a) As an example, the results for Leu3 (in amino acid starved condition) from TRAP (left panel) are 

compared with the results obtained from the balanced cutoff method (right panel). Sequences with 

significant R/G ratios (ChIP-chip p-value < 0.001) are shown as red stars. It is apparent that TRAP 

improves the correlation with R/G ratios and in particular also the ranking of the significant ChIP-chip 

targets. b) The improved ranking of LEU3 targets is signified by the larger area under the ROC curve 

(AUC = 0.70) obtained by TRAP as compared to the balanced cutoff method (AUC = 0.66). 

Importantly, as the inset shows, especially the start of the ROC curve, which refers to the sequences 

with highest predicted affinity and thus to the most relevant range for experimentalists, is improved.  

 

Figure 4.14 – Comparison of TRAP to a standard hit based method 
a) 

 
b) 

 

Comparison of target gene rankings 

In addition to improving the correlation with experimental data, TRAP also improves the 

ranking of the sequences considered to be bound in the ChIP-chip or PBM experiments. As 

shown in Figure 4.14a, out of the top seven ranking sequences according to affinity six were 

indeed bound by LEU3 in the chip experiment. In contrast, only one out of the five sequences 
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with a maximum of three annotated hits according to the balanced cutoff method was bound 

by the TF according to experimentalists (ChIP-chip p-value < 10-3). 

Given a set of “true” target sequences (ChIP-chip p-value < 10-3) the quality of a 

particular ranking scheme can be evaluated by means of a ROC curve analysis. To this end 

one passes sequentially through the list of all intergenic regions, ranked according to the 

affinity measure, starting with highest predicted affinity. Then to generate the ROC curve, 

beginning at the origin of the plot, each time a true target is encountered in the list one 

moves a step upwards and if a non-target is encountered one move a step to the right. The 

step size is thereby chosen in such a way that all vertical and horizontal moves sum to 1 

separately. The quality of the ranking is then measured by the area under the generated 

curve (AUC) which can range from 0 to 1. An AUC of 1 thereby corresponds to a perfect 

ranking, i.e. 100% sensitivity (all true positives are found on top) and 100% specificity (no 

false positives is ranked above a true positive), while an AUC of 0.5 (corresponding to a 

diagonal line across the plot) indicates an arbitrary ranking that does not provide 

discrimination between experimentally bound and unbound sequences. The ROC curve 

corresponding to the ranking of LEU3 targets according to TRAP is shown in the left panel of 

Figure 4.14b. 

Table 4.2 shows the comprehensive results of the ROC-curve analysis. Most AUCs 

are much larger than 0.5, indicating a strong predictive power of TRAP over the experimental 

binding data. To compare again with the hit-based methods I took the number of hits as 

measure to rank the intergenic regions and computed the ROC curve area based on this 

ranking. The result of this analysis for LEU3 is shown in the right panel of Figure 4.14b. As 

shown in Table 4.2 TRAP again performs consistently better than the hit-based approaches. 

On the entire set of 29 TRANSFAC matrices TRAP yields a ROC curve area of ≥ 0.7 for 22 

matrices in at least one of the experimentally tested conditions as opposed to only 16 and 14 

matrices for the balanced and 5-FP cutoff methods, respectively.  

The correlation and ROC AUC results for all experimentally tested pairs of TF and cell 

culture conditions are shown in Figure 4.15 and 4.16 for TRAP using unmodified or modified 

matrices   (according to a simplified entropy cutoff of 0.1 bits for all positions in the matrix) 

and for the balanced cutoff method. For the entire list of 25 factors and 13 conditions (61 

experimentally tested combinations), the TRAP predictions result in highly significant 

correlations (r > 0.3) for 23 of these combinations. In addition, for 36 combinations TRAP 

yielded a ROC curve area ≥ 0.7 including cases such as PHO4, which yielded low correlation 

likely due only to high noise in the experimental data. Removing uninformative positions from 

the matrices resulted in better correlation and larger ROC curve areas in almost all cases. 

Particularly the matrices with many arbitrarily included positions (GCN4_01 and to a lesser 

extent ABF1_01) profited from applying the entropy cutoff. 

http://en.wikipedia.org/wiki/Sensitivity_%28tests%29
http://en.wikipedia.org/wiki/Specificity_%28tests%29


 

Table 4.2 – Comparison of TRAP to the balanced cutoff and 5-FP methods 
 

 
 
Results from the correlation and ROC curve analysis. N/A denotes those cases for which the 

transcription factor does not have any true associations in the specified condition according to 

experimenters. Even when using the unmodified matrices TRAP yields the highest correlation in 

23 out of 30 TF-condition pairs as well as the largest ROC curve area in 25 out of 28 cases. 

Between the two hit based methods the balanced cutoff approach shows slight advantages in the 

ROC curve analysis while the 5-FP methods tends to yield somewhat higher correlations. 

However, overall the differences are small between the two hit based methods.  
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Figure 4.15 – Correlations obtained for all TF-condition pairs 

 
 
Each bar represents the correlation obtained between a given experimental data set and TRAP (Blue 

bars) or the balanced cutoff method (red bars). TRAP improves the correlation in virtually all cases 

with a significant correlation of r > 0.3. Light blue triangles point to the correlation obtained when 

restricting the motifs to positions with information content > 0.1 bits indicating in general further 

improved correlations. Stars refer to TFs primarily active in the indicated stress condition. 
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Figure 4.16 – Comparison of ROC curve areas 

 
Each bar represents the ROC AUC obtained for a given data set by TRAP (blue) or the balanced 

cutoff method (red). TRAP yields larger ROC AUCs for nearly all TF-conditions pairs. Results are 

usually further improved if only informative motif positions are considered for the affinity 

computation (triangles). Blank lines correspond to cases where no TF targets were found in the 

chip experiments (all p-values > 0.001). Stars refer to TFs which are active primarily in the 

indicated stress condition. 
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4.2.2 Predicted affinities are comparable between factors 
The above analysis shows that TRAP successfully ranks sequences for a given transcription 

factor. Here I address the complementary question: given a certain intergenic region, can 

TRAP successfully predict which TFs bind to the sequence? In general, factors bound to a 

given intergenic region in the ChIP experiments should have higher predicted values of 〈N〉 

than unbound factors. Since experimental R/G ratios for different factors are not directly 

comparable, I follow again the binding prescription as given in (Harbison et al., 2004, 

Mukherjee et al., 2004) and distinguish binding TFs from non-binders according to the p-

value threshold of 10-3. 

 

Figure 4.17 shows as an example the intergenic region between the genes GAL1 and 

GAL10 with its experimentally verified high affinity sites for Gal4 and Mig1 (Selleck et al., 

1987, Frolova et al., 1999). This region is also significantly enriched in the ChIP-chip 

experiment of Gal4 and in the PBM experiment of Mig1. In contrast, none of the other 23 

factors were bound to the region according to ChIP chip or PBM data. In accordance with 

these experimental findings, TRAP predicts the highest affinities for Gal4 followed by Mig1, 

Adr1 and Ste12. All other factors have only negligible predicted affinities in good agreement 

with ChIP-chip data. Interestingly, independent chromatin precipitation experiments have 

shown that Ste12 has also weak but measurable affinity to the GAL1 - GAL10 intergenic 

region (Reeves et al., 2005). The balanced cutoff method also predicts these 4 factors as 

potential binders but in addition 4 others (Ap1, Gcr1, Hsf1 and Rox1). If one ranks traditional 

annotations according to the number of hits, then Gal4 is ranked highest with seven 

annotated hits followed by Adr1 with two while Mig1 and Ste12 with one binding site each are 

assigned a tied rank with Ap1, Gcr1, Hsf1 and Rox1. 

 

This analysis was carried out on the entire set of 4451 intergenic sequences which 

have a ChIP-chip p-value assigned for all the 25 TFs for which TRANSFAC contains a 

matrix. In total this set yields 2388 (~2% of all 25 × 4451 interactions) TF-DNA interactions 

with chip p-value < 10-3 (true positives). For each intergenic region the TFs are ranked 

according to predicted affinity in case of TRAP or the number of annotated binding site hits in 

case of the balanced and 5-FP methods. Subsequently, all cases are counted in which a true 

positive is ranked above all true negatives. For the case of the GAL1 – GAL10 intergenic 

region this yields a count of two as both Gal4 and Mig1 are true positives and are ranked 

above all other TFs. For the standard methods, an ambiguous ranking can arise if two factors 

have the same number of hits annotated. In cases where the ambiguous rank involves true 



Figure 4.17 – Affinities for the upstream region of GAL1 and GAL10 
 

 
 

The histogram shows the affinity scores as predicted by TRAP. Triangles indicate the factors that 

have hits annotated according to the balanced cutoff method (black: 7 binding sites, dark grey: 2 

binding sites, light grey: 1 binding site). The lower panel indicates the experimentally verified 

binding sites are indicated (Selleck et al.,1987, Frolova et al., 1999). 

positives and a true negatives I count 
negatives  true positives true

positives true
+

, which corresponds to 

the probability of picking a true positive among the TFs with same number of hits. The 

analysis shows that 643 (27%) of the significant interactions are correctly ranked on top 

according to TRAP as compared to 343 (14%) in case of the balanced cutoff and 551 (23%) 

in case of the 5-FP method. These findings show that in a considerable number of cases the 

ranking of TFs according to TRAP is in accordance with ChIP-chip data and again overall 

better than what is obtained by traditional hit-based methods. Due to using unmodified 

matrices (for the purpose of comparing with the hit based methods) especially GCN4_01 

yielded artificially high affinities for many regions. Refining matrices by retaining only 

positions with higher information content would thus further improve the obtained results. It is 

important to note that using binding site scores obtained from the log likelihood method or 

the simplified Boltzmann model yield meaningless results in the above setting, as the scores 

obtained by these methods for different PFMs differ by many orders of magnitude. 
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These results together with the findings from Section 4.2.1, which showed that TRAP 

improves the correlation with the data as well as the ranking of sequence, suggest that the 

affinity scores contain information that is lost by discretizing the individual binding site scores. 

One possibility is hereby that it is important to retain the relative binding strength between the 

higher affinity sites (the sites that are predicted as hits by the balanced or 5-FP methods). 

The other possibility is that integrating over low affinity sites (which are considered non-hits 

by the classical methods) may yield significant overall affinities that contribute strongly to the 

correlation coefficients. Which of these scenarios plays a larger role for the improvement of 

binding predictions is addressed below. 

 

4.2.3 Contributions from Low Affinity Sites to 〈N〉 
While TRAP predicts the overall affinity of a transcription factor to a sequence region, it is 

interesting to ask which sites add most significantly to 〈N〉 and to what extent strong and 

weak sites contribute. To address this question I studied in more detail the relative 

contribution of different sites to the total expected count, 〈N〉, and therefore to the correlation 

of 〈N〉 with the observed binding ratios. To this end, first all sites in a given sequence are 

ranked according to their probability of being bound, p, as given by equation (4.11). Then the 

expected number of TFs bound to the sequence is approximated by the sum of its n top-

ranking sites, 

 ∑
=

=
n

i
in

pN
1

. (4.26) 

 
The resulting quantities 〈N〉n for all intergenic regions and a given value of n are then 

correlated with the experimental binding values. The result of this analysis is illustrated in 

Figure 4.18 for Leu3. Averaged over all 6725 intergenic regions one sees that the strongest 

binding sites contribute about 50% to the total affinities and the second strongest sites about 

10%. All other sites together add up to only about one third of the affinities. These results 

apply also to other factors where the strongest bound sites sometimes contribute over 90% 

of the total affinity. This is in line with what was observed in Figure 4.7 for ABF1 where the 

total affinity of many intergenic regions with apparent plateaus in 〈N〉 was determined 

primarily by a few sites with higher affinity. Nevertheless, for the majority of matrices a better 

correlation is obtained when all sites are taken into account rather than a single strongest 

site. This suggests that the relative binding affinities for a given intergenic region are well 

modelled by taking the total sum over all sites in the region, and supports the claim that a 

mechanistic description of binding data is possible without imposing any threshold. Table 4.3 

provides the results of this analysis for all factors and conditions for which a significant 
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correlation has been obtained. The arbitrary focus on only a few binding sites (n = n*) has 

little effect on the overall correlation with the data and in many of cases performs worse. On 

the other hand the analysis suggests that the measured Pearson correlations are primarily 

determined by the higher affinity sites in each sequence.  
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Figure 4.18 – Contribution of sites with lower affinity 
 

 
 
When 〈N〉 is arbitrarily constrained to only the top n scoring sites then the expected number of 

bound TFs is reduced, which in turn affects the correlation with the experimental R/G ratio. The 

upper line shows the changes in the correlation coefficient with varying n, the lower line the 

changes in 〈N〉. The right-most circled dots denote the values when all sites are taken into account. 

The increase in the correlation coefficient suggests that the inclusion is biologically meaningful 

until the correlation coefficient saturates (optimal r = 0.335) as more and more sites with vanishing 

affinity are taken into account. This demonstrates that integrating the contributions from all sites 

provides a more robust approach than limiting the annotation to a few best sites determined by 

some arbitrary cutoff. 

An important assumption in the model by Berg and von Hippel is that different base-pairs 

contribute independently from each other to the overall binding energy. This assumption also 

entails that mismatch energies for large deviations from the consensus sequence are not 

calculated differently from small deviations, which likely does not reflect the behaviour of real 

TFs. This is because TF-DNA complexes can, presumably, compensate for mismatches 

through, for instance, conformational changes. Such conformational changes would also 

likely go in hand with changes in the mismatch energy levels εi,α that are assumed to be 



Table 4.3 – Contributions of top-ranking sites 
 

 
 
This table illustrates that in the majority of cases the best correlations can be obtained when all 

sites are taken into account, rather than just the best site. Choosing an optimal number, n*, of best 

binding sites sometimes results in a minor improvement in the correlation at the expense of an 

additional and arbitrary parameter. This suggests that the relative binding affinities for a given 

intergenic region are well modeled by taking the total sum over all sites in the region.  
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invariant in the Berg and von Hippel model. Thus while real TFs can bind to DNA in an 

unspecific fashion the model may predict mismatch energies that would result in binding 

probabilities far below the unspecific binding probability (see Figure 4.19 for an illustration). 

The contribution of low affinity sites to 〈N〉 might therefore be larger than suggested by the 

above analysis. To see whether the correlation with the data can be improved by assuming a 

maximal mismatch energy for completely unspecific sites I introduced an additional 

parameter ξ into the TRAP model representing the minimal binding probability for a given TF 

to DNA. This measure thus adds a term that grows linearly with the length of the intergenic 

sequences to 〈N〉. Surprisingly, neither the correlation with the experimental data nor the 

ROC AUCs could thereby be improved. This suggests that the unspecific binding probability 

is indeed very low and not detectable given the noisy ChIP-chip binding data.  

 

Together the results indicate that the improved correlations and ROC AUCs obtained 

from TRAP as compared to the hit-based methods are mainly due to retaining the relative 

binding probabilities among the higher affinity sites in each intergenic region and to a lesser 

extent due to integrating over weak sites, which normally lie below the hit-based cutoffs. 

 
 
Figure 4.19 – Assumptions of the biophysical model. 
 

 
 
The left panel shows energy levels as they are likely to be found for real TFs in which subsequent 

mismatches cannot exceed the maximal mismatch energy Eunspecific. If Eunspecifc is reached the factor 

will simply bind in an unspecific fashion. In addition the real mismatch energy introduced by several 

deviations from the consensus is likely smaller than the sum over the individual mismatch energies

εi,α as computed by equation (3.20) since every mismatch will weaken the entire protein – DNA 

interaction and thus reduce the contributions from the other mismatches. These issues are not 

reflected in the biophysical model (right panel) which assumes independent mismatch contributions 

and invariant energy levels for the mismatch energies. 
 

  90



4.2.4 Ranking of Intergenic Regions is Robust 
In Section 4.1.3 I showed that the correlations obtained from the biophysical model are 

relatively insensitive to changes in λ and R0, which allowed to derive a general prescription 

for setting the parameters. Given that much of the binding analysis revolves around 

adequate ranking of TFs for a given sequence or promoters for a given transcription factor I 

also analyse to what extent the ranking of intergenic regions according to the affinity 

measure 〈N〉 is affected by changes in the parameters. Figure 4.20 presents a rank 

correlation analysis for Leu3 under two different parameter settings representing: a) a large 

change in ln(R0) from 1.2 to 4.6, which corresponds to ≈ 30-fold change in TF-concentration, 

b) a 20% change in λ. Even for such large changes the ranking of intergenic regions is hardly 

affected. Correlating the ranks of the intergenic sequences obtained from one setting of λ 

versus the other results in Spearman rank correlation coefficients of ≈ 0.98. Similarly, the 

change in R0 gave a Spearman correlation coefficient of ≈ 0.99. 

 

 

a)                                                                    b) 
 

     
 
Comparison of the ranking of intergenic regions according to predicted affinities for Leu3 using 

different parameter settings. The rank correlation plot for different values of ln(R0), is shown in a). 

The corresponding plot for a 20% change in λ is shown in b). 

Figure 4.20 – Robust ranking of affinities 

 

4.3. Discussion 
 

In order to derive a method that pertains to the gradual binding behaviour of TFs and at the 

same time allows for the robust prediction of TF targets I have applied a biophysical model 

that predicts the relative binding affinities of transcription factors to promoter regions in yeast. 

In contrast to the traditional search for discrete binding sites, I do not impose any threshold, 
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but integrate the contributions from individual strong sites and weak sites to calculate the 

expected number of transcription factors bound to a given sequence. In contrast to the 

ranking provided by hit-based methods, which often varies strongly with the choice of the 

cutoff, the ranking of sequence fragments according to this affinity measure is robust with 

respect to sizable variations in the space of two model parameters. Using recent in vitro and 

in vivo data from budding yeast, I find that the mismatch scaling parameter λ lies in the range 

of 0.4 to 1.5 for most factors, in agreement with original predictions made by Berg and von 

Hippel 1987. The second parameter R0 is largely determined by the number of informative 

positions in the binding motif of a given TF, and to a much lesser extent by the transcription 

factor concentration. This likely reveals a general tendency of TFs with long motif to bind 

stronger to the DNA than factors with short motifs through an increased number of amino 

acid base pair interactions. These observations together with the relative insensitivity of the 

model to small changes in the parameters allowed to provide a simple parameterization of 

the model with λ = 0.7 and R0 = R0(M) for all factors and conditions. The resulting TRAP 

method is able to account for a highly significant part of the experimentally measured R/G 

ratios in one or more cellular conditions. Importantly, the parameterization proved to be 

applicable not only for the TRANSFAC matrices but also for the matrices derived directly 

from the ChIP-chip data by (Harbison et al., 2004), which had not been included in the 

derivation of the generic prescription of how to obtain λ and R0. 

 

The results of the comparison between TRAP and hit-based methods indicate that 

TRAP can better predict relative binding affinities than any of the hit-based approaches. This 

improvement is largely due to accounting for differences in the binding strength of sites, 

which are traditionally only reported as hits and to a lesser extent also due to integrating over 

weak sites, which likely fall under the threshold of the traditional methods. These findings are 

complementary to an analysis by Tanay (2006) where it was shown that predicted PWM 

scores allow to distinguish not only high but also intermediate R/G ratios from low ones, 

indicating that a large range of affinities contribute to the observed binding behaviour of 

many TFs. 

 

The success of the TRAP approach is not only reflected in better correlation but also 

in a more accurate and robust ranking of transcription factors. TRAP also performs 

consistently better than the simple Boltzmann model outlined in Section 3.1.4 with always 

yielding larger correlations with experimental data. In particular, correlations for PFMs with 

longer motifs (ABF1_01, GAL4_C, GCN4_01, MCM1_02) were improved by some 100% 

compared to what is achieved by assuming very low TF concentration and setting λ = 1.0. 
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Interestingly, the TRAP predictions also match what is known about the involvement of 

transcription factors in various cellular conditions. For example, Hsf1, Rcs1 and Leu3 are 

known to be involved in several aspects of stress response (Raitt et al., 2000, Blaiseau et al., 

2001, Zhou et al., 1987) and their predicted affinities show high correlation with R/G ratios 

only in conditions of oxidative stress (H2O2) and amino acid starvation (SM), but not in rich 

medium (marked by a star in Figure 4.15). This also suggests why the physical model cannot 

be expected to predict binding affinities in vivo for certain factors and cellular conditions. For 

9 factor-condition pairs with only small correlation (r < 0.3) the transcription factors may 

indeed not be expressed or available for binding under the condition tested. These include 

Adr1, Hac1, Mata1, Pdr3, Pho4, Xbp1, Yap1, Rox1 and Zap1 in rich medium and Mig1 in 

medium with galactose as carbon source. For example, Mig1 is known to be located only in 

the cytoplasm in the presence of galactose, and hence it is not available for DNA-binding in 

the nucleus (Vit et al., 1997). However, the predictions for Mig1 do show a high correlation (r 

= 0.60) with in vitro binding data.  

 

Despite this success the TRAP approach appears to fail for a number of matrices and 

conditions, even though there is no indication that the corresponding TF is absent from the 

nucleus in the tested cell condition. In this context it has to be stressed that the affinity 

approach requires the definition of matrices which can be used as good approximation for 

mismatch energies in the physical model. There are several cases where one can suspect 

that the matrix description may be inappropriate. For example, for Hsf1 TRANSFAC lists four 

matrices, but only one of them (an alternating trimer motif HSF1_04) yields good correlations 

with the experimental binding ratios. Interestingly, the trimer combination of this matrix has 

been described as the site with highest affinity for Hsf1 (Sorger et al., 1987, Xiao et al., 

1991). Other technical problems may affect the quality of the found correlations. For 

instance, as mentioned before, ChIP-chip data is very noisy and many large R/G ratios are 

not supported by a significant binding p-value. On the computational side a problem arises 

when a high affinity site is located just outside of a particular intergenic region. In this case 

while longer fragments containing the site are able to hybridize to the corresponding spot on 

the microarray the annotation programs cannot detect the site and thus reports a spuriously 

low affinity score. Such cases exist for several factors including LEU3 and PHO4. In these 

cases the correlations can be improved by extending the sequences by some 100 bases 

beyond the fragments spotted on the microarrays. Finally, it is possible that better predictions 

can be achieved by improving given PFMs or deriving matrices directly from the ChIP-chip 

data (Foat et al., 2006, Tanay 2006, Kinney et al., 2007). The focus of this work, however, is 

to explain ChIP-chip data in a biophysical framework that is applicable to all PFMs. Hence 

only publicly available matrices were utilized. This stays also in contrast to a study by Granek 
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et al., (2005), who employed a biophysical model for RAP1, but did not provide a rationale for 

choosing the parameters of their model. 

 

As mentioned in Section 4.2.3 the model of Berg and von Hippel makes a number of 

assumptions about the binding energetics that are likely not reflected by the real binding 

behaviour of many TFs. The fact that using such a simplified model allows to account for a 

highly significant fraction of yeast binding data is all but obvious given the noisy data and the 

complicated binding mechanisms in eukaryotes. In the next chapter I will investigate to what 

extent the observations made for yeast carry over to multi-cellular organisms. 

 

 

 

 

 


