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CHAPTER 3  

Predicting TF Binding 
 

The main focus of this thesis lies on improving the detection of TF – target promoter 

interactions through an interpretable biophysical model and subsequently to find TFs that 

cause the regulation of groups of genes. The following chapter is therefore divided into two 

parts. The first part focuses on how TF binding can be inferred from experimentally verified 

TF binding sites. To this end, after describing the most frequent probabilistic models used to 

infer individual TF binding sites the biophysical model by Berg and von Hippel (1987) for the 

prediction of TF binding energies will be introduced. How the statistical and physical 

approaches are related will be briefly outlined. The second part of the chapter is centred on 

how to detect transcription factors that play a role in the regulation of groups of genes. In this 

context a number of frequently cited methods will be discussed. 

 

3.1 Principles of TF binding site discovery 
 

As described in the previous chapter various approaches exist for determining the binding 

preference of TFs. Most of the TF binding data available today stems from small scale 

experiments such as EMSA tests or from a rather limited number of high affinity sites derived 

from SELEX experiments. In this section I will discuss how such experimentally verified sites 

can be used to identify possible binding sites in the genome based on statistical and 

biophysical considerations. 

 

3.1.1 Deriving a Consensus sequence 
 
Basic site search 
The simplest approach for computationally detecting new potential TF binding sites is to 

annotate all sites in a genome that share the sequence with one of the previously 

experimentally identified binding sites of the TF. Naturally, the smaller the number of 

experimentally verified binding sites the smaller will be the fraction of binding sites that can 

be detected in the genome. The success of this method is especially limited if the binding site 

of a TF contains bases not actually contacted by the TF. As was noted in Figure 2.5 such 

bases are often not constricted and therefore change randomly between different binding 

sites. Similarly, due to experimental limitations uninformative flanking sequences, not actually 



  30

contacted by the TF, may be considered as belonging to a given binding site. In turn if such 

sites stem from a SELEX experiment they may not perfectly match to the genome at all. 

 

Consensus sequences 
Early on, the observation was made that different binding sites of a given TF resemble each 

other. Individual binding sites thereby often diverge in only a few bases from a common 

consensus motif. Therefore, a first step towards making a meaningful generalization of the 

observed binding patterns has been to align all experimentally found binding sites of a given 

TF and to construct a consensus sequence from the alignment. This procedure is illustrated 

in Figure 3.1 for six instances of a Pribnow box motif (Pribnow, 1975; Schaller et al., 1975). 

The original description of a consensus was to take the most common base at each position 

in the alignment. The resulting consensus sequence provides a simple representation of the 

preferred binding motif, which can readily be used to scan for occurrences of this motif in a 

sequence. At a time when computers where not widely available this simplicity was an 

important feature. However, the rigidity of such a consensus description causes a high 

number of false negative predictions. For instance, for the example shown in Figure 3.1, if 

one would desire to detect a perfect match to the consensus one would identify only one of 

the six sites used to construct the consensus. At the same time one would detect a false 

positive match statistically only every 46 = 4096 bases. In order to recover more of the true 

positive sites, matching to the consensus can be made more flexible by allowing for one 

mismatch. In this case three true positives would be recovered while a false positive 

prediction would be made every 228 bases. In order to detect all six positive examples one 

needs to allow for two mismatches. However, this goes in hand with obtaining a false positive 

hit every 30 base pairs. The situation can be slightly improved if one uses a more descriptive 

alphabet such as provided by the IUPAC code. Using this alphabet the consensus sequence 

TATAAT can be rewritten as TATRHT. The use of ambiguity codes allows retaining more of 

the information provided by the verified sites. That is, a highly degenerate position in the 

alignment can be treated differently from a position conserved in all sites. Using TATRHT for 

the search one recovers four out of six sites while obtaining a random hit in the genome only 

about every 512 bases. Nevertheless, to recover all six known sites one would again have to 

allow for one mismatch leading back to a false positive rate of one in 30 base pairs. This 

example shows that while consensus motifs are useful visualisations of binding patterns and 

easy to construct their predictive ability is strongly dependent on the used alphabet and the 

rules applied for pattern matching when scanning the genome (Stormo, 2000; Day and 

Mcmorris, 1992). 
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Figure 3.1 – From a binding site alignment to a consensus sequence 
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A simple consensus is derived by aligning experimentally found binding sites and selecting the 

most frequent base at each position of the alignment. An ambiguity alphabet such as the IUPAC 

code shown on the right, can be applied to retain more information about the motif flexibility 

indicated in the alignment. 
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3.1.2 Deriving a TF binding motif 
The main problem of the consensus model described above is that it cannot fully account for 

the relative importance of each position in the binding sites. To alleviate this problem the 

concept of a position frequency matrix (PFM) was introduced by Harr et al. (1983) and 

Staden (1984). PFMs allow putting high weights on important positions in the binding site 

and low weights on positions that show little or no preference for a given base. PFMs as 

used today are two-dimensional arrays where the number of columns corresponds to the 

length of the binding site and the rows correspond to the bases A, C, G and T. As shown in 

Figure 3.2 the entries in the matrix are derived from the alignment of known binding sites. 

The number of occurrences of each base at each position in the alignment is thereby first 

entered into the corresponding position of a so called position specific count matrix (PSCM). 

Today, there exists a large number of PSCMs available for many TFs, which are stored in 

various databases such as TRANSFAC (Matys et al., 2003) and JASPAR (Sandelin et al., 

2004). The counts in a PSCM can be converted into base frequencies by dividing each cell 

by the sum over the four entries in the corresponding column (after adding a pseudo count to 

each element) thereby giving rise to a position frequency matrix (PFM).  



 

  

 Figure 3.2 – From binding site alignments to PWMs 
a) 
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a) Experimentally verified binding sites for the transcription factor SRF are aligned and the 

frequency of each base at each position is determined. The resulting count matrix can then be 

used to generate a frequency matrix and finally a weight matrix. Databases such as 

TRANSFAC and JASPAR have stored PSCMs for hundreds of TFs. b) The base preference of 

the factor at each position can be illustrated by a sequence LOGO where the height of a letter 

indicates the importance of the base. 
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The mathematical form of a position frequency matrix is given by: 
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where M denotes the length of the sequence and αν ,m denotes the frequency with which base 

α is observed at position m in the known binding sites. Given a set of known binding sites the 

above definition of the PFM corresponds to the maximum likelihood estimate for the M × 4 

parameters that are used by the PFM to model the sites. Instead of making a simple yes or 

no decision when classifying sites in the genome as was the case with consensus matching 

a PFM can be used to compute a continuous score that reflects the similarity between a 

given site and the binding site model. Since positions in the PFM are assumed to be 

independent of each other, a natural choice for the similarity score is the probability of a site 

S being generated by the model. This probability ( )Sp  can be computed by: 

 

 . (3.1) ( ) ∏
=

=
M

m
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The consensus sequence is hereby always generated with the highest probability. For 

example, the consensus sequence GCCCATATATGGC of the transcription factor SRF is 

generated according to the PFM shown in Figure 3.2 with probability: 

 
03.030.088.090.062.088.092.094.086.066.092.068.08.0 2 =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=p . 

 
In contrast, the site AACCAAAAAAGGA, which contains several substitutions in respect to the 

consensus, is generated with probability: 

 
62 1024.088.090.032.088.004.094.008.066.092.02.006.0 −=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=p  

 
and is thus by a factor of ~3×10-5 less likely to be a site sampled from the matrix model than 

the consensus. As illustrated in Figure 2.5 and as quantified in Figure 3.2 for SRF not all 

bases in a binding site interact specifically with a given TF, consequently, not all positions in 

the matrix are equally important for the generated scores. For instance, in position 13 of the 

SRF matrix all bases occur with similar frequency suggesting that this position does not play 

an important role for the specific interaction of the site with the TF. Accordingly, a deviation 
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from the consensus at this position does not down-weight a site strongly. In contrast, at 

position three of the SRF matrix any base except the consensus base causes a severe 

reduction in the probability of a site being drawn from the matrix model. While strong 

differences in the weights are generally desired, an unwanted situation occurs for entries 

with 0, =αν m . Such positions introduce a total probability of 0 for a given sequence to be a 

binding site irrespective of how well all other bases match the consensus. Since TF have a 

general tendency to associate with DNA via unspecific interactions assuming a binding 

probability of 0 for any site is unrealistic. The existence of 0, =αν m  is in general only due to 

the small sampling effect introduced by building the matrix from a few strongly bound sites 

and is particularly harmful at degenerate positions where in reality there exists only a 

moderate preference for a particular base. 

 

Pseudo counts 
Various ways have been suggested for adding pseudo counts (PC) to the elements in a 

count matrix in order to avoid the occurrence of 0, =αν m . The most simple and common 

approach is to add a value of PC = 1 to all elements in the matrix (Bucher 1990, Berg & von 

Hippel 1987). Aside from avoiding the extreme case of 0, =αν m , making the PFM more 

general by adding a PC to all elements is likely of advantage if only a small number of 

observed binding sites is known. Naturally, the larger the number of observed binding sites 

the smaller will be the effect of adding the PC.  

 

Besides such simple PC descriptions, other more involved methods have been 

proposed. For instance, Rahmann et al., (2003) proposed to add a PC that depends on the 

information content of a given column in the matrix. Such a scheme has the advantage that it 

can keep the informative core of a matrix virtually untouched while fluctuations in irrelevant 

positions can be evened out. For example, the expected values in a count matrix column Cm 

generated by picking nine sites from a random background model with base distributions of 

0.25 would be Cm = {2, 2, 2, 3}. The corresponding column in the frequency matrix would 

thus be Fm = {0.22, 0.22, 0.22, 0.33}. However, since none of the bases should in fact carry 

more weight than the others this method suggests to change these frequencies to {0.25, 

0.25, 0.25, 0.25}. 

 

 

 

 

  34



 

3.1.3 Statistical methods for finding binding sites in the genome 
 

Once a position frequency matrix has been derived it can be used to identify likely TF binding 

sites in the genome. As described above the probability of a site being generated by the PFM 

can be computed by taking the product over all corresponding frequencies in the matrix. 

However, using these probabilities to identify likely binding sites is really valid only if all four 

bases occur with equal frequencies in the genome. 

 

Requirement for a background model (BM) 
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If the bases in the genome do not occur with equal probability that is, 

, using raw probability is inadequate. To 

illustrate the problem consider the following PFM with consensus sequence TAAAT 

stemming from 21 hypothetical binding sites (after adding a PC of 1 to all elements): 

{ } { 0.25  0.25,  0.25,  0.25,,,, TGCA ≠= bbbbb
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Two sites found in a given promoter, S1 = TAAAT and S2 = TAGAT would then be generated 

by the model with probabilities:  

 
P(TAAAT | PFM) = 0.48 * 0.48 * 0.36 * 0.48 * 0.48 = 0.019 

 
P(TAGAT | PFM) = 0.48 * 0.48 * 0.32 * 0.48 * 0.48 = 0.017. 

 
The consensus sequence, S1, would consequently be recognized as binding site with 

greatest significance. However, now consider these sites are located in an extremely AT rich 

genome with GC content 0.02, { }0.49  0.01,  0.01,  0.49,=b . Sequences such as TAAAT 

would therefore be found randomly in the genome every ≈ 32 bps while a sequence like 

TAGAT would be found only every ≈ 1600 bps. That 1/3 of the known binding sites contain a 

G would thus indicate a strong bias of the TF to recognize a G in the central position. Given 

the vast excess of AT containing sequences in the genome the other 2/3 of the 

experimentally found sites might have been bound by the factor only in an unspecific fashion. 

Sites in the genome resembling TAGAT are hence more indicative of a true binding site than 

a sequence consisting only of A’s and T’s. To take care of the bias introduced by skewed 



background distributions one can first compute the probability that the sites were generated 

by the background. For S1 and S2 the probability of stemming from a background model 

(which assumes the above base distribution b and independence of bases) would be: 

 
P(TAAAT | BM) = 0.49 * 0.49 * 0.49 * 0.49 * 0.49 = 0.028 

 
P(TAGAT | BM) = 0.49 * 0.49 * 0.01 * 0.49 * 0.49 = 0.00058. 

 
Given these probabilities one can now ask the question of whether a given site is more likely 

to be generated by the PFM or by the background model. To this end one computes the log 

likelihood ratio given by: 
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where  and  are the likelihoods of the PFM model parameters and 

background model parameters, respectively, given the observed site S. The larger 

( )SPFML | ( SBML | )
Λ  the 

more likely it is that the site represents a true binding site of the TF. For S1 and S2 the log 

likelihood ratios would be: 
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The consensus site is generated with slightly higher probability by the BM (Λ = -0.2) and 

would thus not be indicative of a true binding site. In contrast, S2 is ≈ 30 times more likely (Λ 

= 1.5) to represent a true binding site than a site from the BM. While this was an extreme 

example it demonstrates the principal requirement for the use of a background models if 

bases do not occur with uniform frequency in the genome. Using genome frequencies and 

independence between the bases constitutes the simplest BM. Other more sophisticated 

models have been proposed including higher order Markov chains (Kim et al., 2006). Such 

models take into account that promoter sequences tend to contain CpG islands and AT rich 

stretches (consecutive bases are thus not independent). On the other hand such models 

cannot be applied blindly as they might filter out the actual binding signal for certain factors 

such as for the transcription factor SP1 which binds GC rich sequences or TBP which binds 

TATAA.  
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When using the simple BM, fast scanning of sequences for binding sites can be facilitated by 

pre-computing the log likelihood ratios. To this end every element of the PFM is divided by 

the background frequency bα of the corresponding base α. Taking the log of each resulting 

element yields a so called position specific scoring matrix (PSSM) also referred to as position 

weight matrix (PWM) with weights  replacing the α,mw αν ,m  of the PFM (see Figure 3.2). The 

total score ( ) of a site S is then given by: Λ
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Which score is large enough to indicate a binding site? 
Deciding whether a computed score (the log likelihood ratio between PFM and background 

model) is large enough to suggest a true binding site is traditionally solved by introducing a 

score threshold T that needs to be surpassed. Sites with score > T are subsequently 

considered to be binding sites or hits for the TF while all sites with score < T are considered 

non-binding sites. The choice for the threshold thereby depends on the quality of the PFM 

and the ultimate goal of the analysis. If a stringent cutoff is chosen then the number of false 

positive binding site predictions is reduced (minimizing the type I error) while true binding 

sites might be missed. On the other hand, using a lenient cutoff allows detecting more true 

positives (minimizing the type II error) but might quickly lead to an overwhelming number of 

false positive predictions. 

Conveniently, the magnitude of the type I and type II errors, given a certain threshold, 

can be estimated from the distribution of the scores produced by selecting the elements of 

the PWM either according to the background or the PFM model (Rahmann et al., 2003). For 

illustration let us assume the simplest background model with independence between the 

bases and base frequencies { }0.25 0.25,0.25, 0.25,=b . In complete analogy to a coin 

flipping experiment, any site of length M is generated by this model with probability 0.25M 

where each occurrence of a site is considered to have arisen by chance. We can now ask 

how many of these randomly generated sequences will obtain a score higher than the 

threshold. For visualisation we can plot the probability mass function of the score distribution 

according to the background model. Figure 3.3 shows an example of this distribution for a 

PWM from the transcription factor HNF1. The probability that a score larger than the 

threshold will appear by chance in the genome (type I error) is then given by the area under 

the curve to the right of the chosen threshold. For the example in Figure 3.3 the background 

model generates with highest frequency sequences with score around -17 but rarely a 

sequence with score larger than the indicated threshold. Therefore, the expected type I error 
  37



Figure 3.3 – Empirical score distribution based on BM and PFM  

a)  

 
b) 

 
 

a) Empirical score distribution of the scores from a high quality PWM for HNF1 given the 

background model (blue) or matrix model (red), respectively. The x axis shows the size of the 

score and the y axis the probability of obtaining the score. The probability of finding a score larger 

than a certain threshold T given the BM (→ type I error) is shown by the blue area under the curve. 

Similarly, the probability of a score being smaller than T given the PFM (→ type II error) is 

indicated by the area in red. b) Empirical score distribution given a low quality matrix for SRF. In 

this case the two distributions show a larger overlap which complicates the classification of sites 

within that range. The score distributions can efficiently be derived using a Fourier transform of the 

PFM or BM. 
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will be small. Similarly to this procedure, we can generate sequences also according to the 

PFM model and ask how many of these sequences have a score below the threshold. Such 

a case means that a sequence has in fact been generated by the PFM model but is not 

recognized as a TF binding site. Thus we can estimate the number of false negative 

predictions (type II error) by measuring the area under the probability mass function of the 

PFM model to the left of the threshold. The higher the quality (information content) of a PFM 

the more clearly will be the separation of the PFM and BM score distributions. 

 

 The score distributions for any PWM according to BM and PFM model can be 

efficiently be derived via their moment generating or characteristic functions (Staden, 1989; 

Rahmann et al., 2003). Given the probability mass functions several score cutoffs have been 

suggested for the annotation of binding sites. One common prescription is to limit the type I 

error to 5%. A second more sophisticated method aims at balancing the number of false 

positive and false negative predictions (Rahmann et al., 2003). This approach works well for 

high information matrices but can cause a large number of false positive predictions if the 

score distributions between BM and PFM are not clearly separated.  

 

The statistical interpretation of TF binding as outlined above has gained wide 

popularity with most sequence analysis tools available today relying on similar statistical 

measures for the predicting of discrete TF binding sites. The following section switches from 

the statistical to a biophysical interpretation of TF binding and outlines how a set of known 

binding sites can be used to predict the binding free energy between a TF and a given site.  

 

 

3.1.4 A biophysical model to predict TF binding energies 
 

While the above considerations are very useful for identifying likely binding sites of a factor 

they have a number of limitations. Most notably, the strength with which a factor binds to a 

given site (the binding energy between TF and site) and thus the probability of the TF 

actually sitting on the sequence is not predicted. In addition, once a cutoff has been chosen 

all sites with scores above the threshold are considered to be “bound” while all sites below 

the cutoff are considered “unbound”. This discretization causes a loss of information about 

the actual divergence from the consensus. Lastly, the number of predicted sites greatly 

varies with the choice of the score threshold.  

 



In the following I outline the groundbreaking work by Otto Berg and Peter von Hippel, which 

allows to derive the binding free energy of a TF to any given site in a DNA sequence based 

on a set of verified binding sites. These binding energies can subsequently be used to find 

the probability of given TF binding a given DNA site. Much of the logic applied by Berg and 

von Hippel (1987) stems from a classical derivation of the Boltzmann distribution in statistical 

mechanics (Atkins, 1978). The reader is referred to Appendix A for an outline of the 

Boltzmann distribution and a description of the similarities to the present derivation of TF 

binding energies. 

 

Statistical mechanical theory for TF-DNA interactions 
As illustrated in Figure 3.4 the binding of a TF to a piece of DNA with the length of its binding 

site goes in hand with a favourable change in the energy of the system. In the following we 

want to derive a measure to estimate the magnitude of the energy change associated with 

the TF binding to any site i. To start with, as in case of the purely statistical analysis of TF 

binding sites, individual positions in a site are assumed to be independent from each other, 

i.e., seeing a particular base at position m in the site does not affect the probability of 

observing a particular base elsewhere. Following this prescription, each base pair α at 

position m in a site of length M contributes a specific energy εm,α to the total binding energy 

E, between the TF and the site: 

 . (3.4) ∑
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M
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The site with strongest possible binding (the optimal binder) is thereby set to have total 

binding energy E0 = 0, that is, all εm,α = εm,0 = 0. For all other sites, changing a base pair in 

respect to the optimal binder will introduce a specific mismatch energy, εm,α > 0 (see Figure 

3.4). We assume that all experimentally found binding sites for a given TF have a maximal 

total mismatch energy of less than some critical value, EC, 
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m
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Sites which bind weaker to the TF (E > EC) are assumed to not be specifically associated 

with the factor and are thus not to be found in the set of experimentally known regulatory 

sites. On the other hand, all sites with E < EC are assumed to be equally well suited as 

regulatory sites and are therefore, a priori, equally likely to be found in the set.  
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For any given TF with binding sites of length M there exist W(M, EC) possible sites which 

have E < EC. However, choosing εj,α > 0 at any given position j in a site puts a restriction on 

all other positions,  

Figure 3.4 – Energy changes associated with TF – DNA binding 
 

 
 
The binding of a TF to DNA goes in hand with a favourable change in the energy of the system. 

The largest energy change occurs hereby if the TF binds to its consensus site (e.g. ATGCAT). 

Changing bases in respect to the consensus site (highlighted in red) introduces a mismatch energy 

that lowers the binding energy of the TF to the corresponding site. The cutoff introduced by the 

PWM approach can be viewed as a maximal mismatch energy above which no binding can occur. 

From the biophysical point of view introducing such a cutoff is unnecessary however.  
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In general, the larger εj,α in a given position the more sequence combinations are disallowed. 

The situation is illustrated in Figure 3.5a for a hypothetical TF with a binding site of length 3 

and EC = 7.5. For this factor, when putting α = A in position j = 1 then there are nine 

sequence combinations from position 2 and 3 which yield E < EC (ATG, ATC, ATT, ATA, 

ACG, ACC, ACT, ACA, AGG). In comparison, putting G in the first position would yield seven 

allowed combinations while using a T would allow only two possible combinations with E < 

EC (TTG and TTC). Similarly, choosing a G in the second position requires that all other 

bases match the sequence of the optimal binder to avoid E > EC. It follows that there is only 

one possible realisation of a binding site with G in the second position. Generally speaking, 

the number of possible sequences which are allowed, given that we have chosen base α at 

position j, can be written as W(M - 1, EC - εj,α). If we assume that all sites of length M - 1 occur 



with the same a priori probability in the genome then the fraction of known binding sites with 

base α at position j will be given by: 

  1 2 3 
A 9 0 3 
C 0 7 5 
G 7 1 6 
T 2 10 4 

 
 
a) Illustration of the energy configurations of a number of binding sites for a hypothetical TF. The 

leftmost panel shows the energy levels εj,α (horizontal bars) that are associated with putting the 

indicated base α at position j in the shown motif of length 3. Reminiscent of the distribution of 

particles among available energy levels in an ideal gas, red balls signify which of the energy levels 

are occupied in a given site. Panel 1 hereby shows the energy configuration for the most strongly 

bound site, ATG. In this case always the lowest energy level ε1,A = ε2,T = ε3,G = 0 is occupied. For a 

maximal total mismatch energy of EC = 7.5 panels 2 through 4 show the allowed energy 

configurations resulting from putting a T in the first or a G in the second position. b) Most likely 

count matrix arising from the energy levels in a). 

Figure 3.5 – Hypothetical energy configurations for a TF with binding site length 3 
a) 

 
b) 
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In turn, the number of times one will find a given base α at position j with respect to the 

corresponding base found in the optimal binder (with εj,0 = 0) is: 
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The observed frequencies of the bases in the set of experimentally identified binding sites 

will be proportional to these fractions. Figure 3.5b shows the position specific count matrix for 

the hypothetical TF that would result in the ideal case (ignoring possible sampling effects) 

from the binding energetics described above. It should be noted that similar counts across a 

given column in the PSCM indicate that the energy difference between the observed and the 

optimal base pair are small. In contrast, if only the optimal base pair is found then all other 

bases must have  εj,α >> εj,0. 

 

Given the base utilization frequencies in the set of known binding sites, Berg and von 

Hippel obtained the underlying εj,α’s by following the logic of a common derivation of the 

Boltzmann distribution (see Appendix A). They started by taking the natural logarithm of the 

ratio in equation (3.8) and expanding the numerator in powers of ε, using the following Taylor 

expansion: 
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where higher order terms of ε can be neglected. In the resulting equation the first term 

cancels out, which yields to a first order approximation the desired relation between 

observed base frequencies (determined from the known binding sites) and the underlying 

discrimination energies: 
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where nj,α and nj,0 correspond to the counts for the observed and the most frequent base in 

the corresponding PSCM, respectively, and λ has been defined to be: 
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=λ  (3.11) 

 
(for a graphical illustration see Figure 3.6). As the authors further showed, this approximation 

is valid as long as εj,α < EC which holds in most cases. In addition, while λ cannot be derived 

directly from the PSCM it was shown to be largely independent of j and to vary only slowly 

with changing EC. While equation (3.10) thus holds best for small εj,α it can be used to 

estimate the binding energy contributions from all position in a binding site. As will become 

evident in the next chapter λ can be viewed as scaling parameter that adjusts how close the 

mismatch energy levels are packed together. The above derivation is based on the 

assumption that all four bases occur with equal frequency in the genome. In general this is 
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not the case and a correction for the computation of binding energies is advisable. For 

illustration consider the example shown in Figure 3.5 but this time assuming a genomic GC 

content of 0.80. In this case, while A is still the base with smallest mismatch energy for 

position 1, there are four times more sites in the genome containing a G at the first position 

than an A. The base frequencies observed in the experimentally verified binding sites will 

thus be biased towards having a G in the first position. This situation can be viewed as 

energy level ε1,G being four-fold degenerate in comparison to ε1,A (Figure 3.7). In general, the 

fraction of sequences with a given base α at position j will therefore be given by: 

 

 
The number of ways, W, in which a binding site can be realized increases quickly with the maximal 

critical energy Ec. The slope of the curve at E = Ec corresponds to the value of λ as derived in the 

main text. With other words, λ measures how quickly the number of possible binding sites decreases 

when reducing the maximal mismatch energy. 

 

  

Figure 3.6 – A graphical interpretation for the meaning of λ 
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where bα is the genome wide frequency of base α. Again dividing αν ,j  by 0,jν  and following 

the above procedure one obtains for the individual mismatch contributions from each base 

pair the corrected estimate: 
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and for the total mismatch energy, E, of a given site of length M: 

Having four times as many G’s in the genome as A’s can be viewed as εj,G being four fold 

degenerate in comparison to εj,A. The probability of a binding site starting with a G thus increases 

by a factor of four in comparison to the case shown in Figure 3.5. 

 
 

 
Figure 3.7 – Effect of background base frequencies on energy predictions 
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where the genome wide frequencies b0 and bα have to be taken from the organism from 

which the corresponding PFM has been derived (for SELEX derived matrices bα = 0.25). 

 

Several physically motivated models exist that convert predicted mismatch energies 

into probabilities of a TF occupying a given site in the genome. Each of these models makes 

a number of simplifying assumption about the situation found in cells. The most frequent of 

these approaches, which is based on assuming a Boltzmann distribution for the binding 

probabilities, will be outlined in the next section. 

 

 

3.1.5 From the biophysical approach to PWMs 

This section describes how the mismatch energies derived above can be used to predict 

relative TF-DNA binding probabilities by assuming that binding sites are occupied by a TF 

molecule according to Boltzmann statistics (see Appendix A). I will thereby focus on the 

simplified model outlined by Heumann et al. (1994), which forms the argumentative basis for 

many current bioinformatics applications (among which are PAP and Clover, two methods 

described in Section 3.2). The main claim hereby is that the exponential of PWM scores 
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derived in Section 3.1.2 is directly proportional to the binding probability of a TF to DNA. 

Combining the results of the previous section with the model of Heumann et al. (1994) will 

highlight under what special circumstances this claim holds and the likelihood ratios and 

binding probabilities converge. 

 

For the derivation of the binding probabilities from mismatch energies imagine a 

single TF molecule together with a mixture of all 4M types of sequences of length M, where M 

is the length of the binding motif of the TF (Gerland et al., 2002; Heumann et al., 1994; Fields 

et al., 1998; Stormo 2000). This system can be viewed as a greatly simplified version of a 

real genome. The energy scale of the system is thereby set so that the TF bound to its 

consensus site resides on energy level E0 = 0. Without any competition between TF 

molecules for the sites (since there is only one TF molecule in the system) and since in 

contrast to a real genome the sites do not overlap, the probability of a site i to be bound by 

the factor is given by the Boltzmann distribution: 
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where Et is the mismatch energy between the TF and a site of type t and β = 1 over 

Boltzmann constant times absolute temperature. The probability of a site to be bound by the 

TF is here given by its Boltzmann factor  scaled by Z, the so called molecular partition 

function of the system. In this case Z is simply the sum over the Boltzmann factors of all N 

sites in the system. If each type of site occurs exactly n times then N = n 4

tEe β−

M. Assuming the 

presence of only one TF molecule is important in this context as it allows us to view all sites 

as being available for binding. Otherwise certain sites would be occupied and not accessible 

for other factors. In turn, Z would need to be adjusted accordingly, which would make the 

following calculations hard to carry out. 

 

 The connection between PWM scores and the binding probabilities derived by the 

above simplified biophysical approach will be illustrated below. To this end I follow the 

analytical derivation of Z as outlined by Heumann et al. (2004) but substituting their 

undefined binding energy term with the binding energy as given by equation (3.14). To arrive 

at the notation used by PWMs we can start by noting that each type t of sites contributes to 

the partition function a certain value , where ƒtE
t efN β− t is the fraction of sites of the type t in 

the system. If all types of sites occur equally often then ƒt can be expressed in terms of the 

individual base frequencies, bα as: 
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where st(m,α) is a site specific selector function that is either 1 if α matches the observed 

base in the site or 0 otherwise. By assuming that all sites occur equally often the base 

frequencies have to be 0.25 for all four bases. After replacing Ei with the mismatch energy 

description of Berg and von Hippel (equation 3.14), the contribution of each type of sites to 

the partition function is now: 
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where nm,α and nm,0 correspond to the counts for the observed base α and the most frequent 

base in the PSCM of the corresponding TF and λ is the scaling parameter for the mismatch 

energies. With adding up the individual contributions from all 4M types of sites, the partition 

function becomes: 
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For a hypothetical factor with binding site length 3 there exist 43 different sites: 
 
 AAA 
 AAC 
 AAG 
 ... 
 TTT. 
 
For these 43 sequences we can write down the terms from equation (3.18) by denoting  
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b A
A  as A2 and so forth. Using this annotation and assuming that 

every type of site occurs only once we get for Z: 

 
 A1 A2 A3 + A1 A2 C3 + A1 A2 G3 + A1 A2 T3 + 

 A1 C2 A3 + A1 C2 C3 + A1 C2 G3 + A1 C2 T3 + 

 A1 G2 A3 + A1 G2 C3 + A1 G2 G3 + A1 G2 T3 + 

 ... 

 T1 T2 A3 + T1 T2 C3 + T1 T2 G3 + T1 T2 T3 = 
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( ) ( ) ( )333322221111 TGCATGCATGCAZ +++⋅+++⋅+++= . 

 
By generalizing for any TF with binding motif of length M we obtain: 
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By replacing Z in equation (3.15) we can now compute the probability, pi, of a particular site 

being bound: 
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Except for the scaling factor 1/N this quantity is identical to the result obtained by Heumann 

et al. (1994) for their optimal position specific weights and the likelihood ratio described in 

Section 3.1.3. To see that the above result is intuitively correct imagine a PFM with νm,0 = 1 

for one base in each column and νm,α = 0 for all other elements. If we assume that all types of 

sites occur exactly once then it follows that N = 4M and bα = 0.25. The binding probability is 

thus computed as: 
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From the physical point of view, assuming νm,0 = 1 for every position in the matrix means 

mismatch energy E = 0 for the consensus and E → ∞ for all other sites. The consensus site 

is therefore the only site that could be bound by the TF molecule. In turn, the probability of 

the consensus to be bound is 1 in agreement with the above computation. 

 

When computing Z according to the simplifying assumptions made above then the 

binding probabilities as derived by this biophysical model are identical to the exponential of 

the PWM scores introduced in Section 3.1.3, except for the scaling factor 1/N. In turn, the 

ranking of sites according to the two approaches is identical. This relationship is frequently 

used to motivate a biophysical interpretation of PWM scores (Frith et al., 2004; Fields et al., 

1998; Stormo, 2000). However, it is important to recall the assumptions required for the two 
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approaches to converge. Most notably, it requires that there is a single TF molecule in the 

cell. Only in this case is the probability of a given site i (energy state i) to be occupied by a 

TF molecule equivalent to its Boltzmann factor normalized by the simple molecular partition 

function used above. This is so because the partition function used implicitly assumes that all 

energy levels (DNA sites) can be occupied by an infinite number of molecules (Appendix A). 

With DNA sites representing the available energy levels of the system this is not the case as 

every site can be occupied by at most one factor. Secondly, the scaling parameter λ for the 

mismatch energies was set to 1, which for most TFs will not be the optimal value. Lastly, the 

genome in which the sites are located was assumed to contain an equal fraction of all 

possible sites. In Chapter 4 I will show the derivation and application of a more realistic 

binding model that avoids all of the above assumptions. This model will in turn be shown to 

yield higher correlation between predicted and actual binding probabilities than the above 

model. In conclusion, while the exponential of PWM scores (the likelihood ratio between PFM 

and background model) can be viewed as related to binding probabilities the statistical and 

biophysical approach do converge only under special conditions. The last section of this 

chapter will introduce several state of the art bioinformatics methods that use either the 

statistical or the above simplified biophysical approximation in order to detect TFs regulating 

groups of genes.  

 

 

3.2 Predicting regulating TF 
 

The previous section focussed on methodologies used to identify likely TF binding sites in 

the genome. Here we will discuss how such predictions can be used to infer which TFs likely 

regulate a group of genes. Such gene groups arise in many different experimental settings. 

For instance, treating cultured cells with cortisol might cause the upregulation of a number of 

genes. Given these genes, a natural question is then which TF was mediating the signal and 

finally causing the altered gene expression. Similarly, one might asked which TFs are 

responsible for tissue specific gene expression or the activation of stress response genes. 

There are a number of different approaches concerned with identifying TF that regulate 

cohorts of genes. Three frequently cited methods addressing this question are oPOSSUM 

(Sui et al., 2005), PAP (Chang et al., 2007) and CLOVER (Frith et al., 2004). oPOSSUM 

relies on statistical TF binding site predictions while CLOVER and PAP use a more physical 

motivated model. To reduce false binding site predictions oPOSSUM and PAP both make 

heavy use of phylogenetic footprinting a technique used to restrict the sequence space to 



regions with likely regulatory function. After a brief review of phylogenetic footprinting the 

main characteristics of the above three methods will be outlined.  

 

3.2.1 Phylogenetic footprinting 
The concept of phylogenetic footprinting is based on the idea that important regulatory 

sequences are retained during evolution while all other non-coding sequences are free to 

mutate. To identify such sequences the open reading frame, typically the most strongly 

conserved part of a gene, is used to first find likely orthologs (genes in different species 

stemming from the same common ancestral gene) in other species. Given a pair of orthologs 

their promoter regions can subsequently be aligned and conserved sequence blocks can be 

identified (see Figure 3.8) using dedicated alignment programs such as BLASTZ. The higher 

the conservation the more likely it appears that a given sequence block plays an important 

role in the gene regulation. It has been estimated that about 70% of all functional TF binding 

sites are conserved between mouse and human (Lenhard et al., 2003, Dermitzakis et al., 

2002). At the same time on average only 20% of the promoter regions are conserved. Thus 

the number of non-functional binding site predictions will be cut down by a factor of ~5 while 

the number of  false negative predictions increases only slightly when restricting the search 

to conserved blocks. Given the high prevalence of predicting non-functional binding sites that 

occur by chance in the genome most methods thus scan only the conserved sequence 

elements found in a given promoter for TF binding sites. 

 

 

Figure 3.8 – Phylogenetic footprinting 
 

 
 
Shown is the alignment between orthologous genes from two related species such as human and 

mouse. Dark blue boxes indicate the open reading frame of the genes, narrow light blue boxes the 5’ 

and 3’ untranslated regions and red boxes indicate non-coding evolutionary conserved sequence 

blocks. The ORF is usually the best conserved part of a gene and can be used to identify orthologs 

between species. Conserved non-coding sequence blocks located near the ORF indicate the presence 

of important regulatory elements. As shown such elements can relocate in respect to the TSS.  
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3.2.2 oPOSSUM 
oPOSSUM (Sui et al., 2005) uses vertebrate PWMs stored in the JASPAR database 

(Sandelin et al., 2004) to scan all highly conserved non-coding regions located within 5kb 

upstream and downstream of all orthologous human and mouse genes. In order to reduce 

spurious predictions only PWMs with information content > 8 bits are utilized. The information 

content of a PWM is thereby defined as the total Kullback-Leibler entropy distance (Kullback 

et al., 1951) between the underlying PFM and a background model {bα}, which can be 

computed by the following equation: 
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where αν ,m is the frequency of base α at position m in the PFM of length M. In the following, a 

TF binding site is annotate if its PWM score from Section 3.1.3 lies in the top 15% of scores 

and the position of the site is conserved between mouse and human. Once the binding sites 

have been annotated for all human or mouse genes oPOSSUM uses two statistical tests to 

check for the overrepresentation of binding sites of a given TF in the user defined input gene 

list in comparison to the background set of all mouse or human genes. The first test 

computes the following z-score statistics: 

 

 
σ
μ 5.0−−

=
xz  (3.21) 

 
with x being the number of binding sites for a given TF in the input gene set, μ being the 

expected number of binding sites for the input set and σ being the standard deviation for the 

binding site predictions assuming a binomial distribution. μ is thereby given as: 

 

 
N
nB=μ  (3.22) 

 
where B is the number of predicted binding sites in the background gene set, and n and N 

are the number of nucleotides scanned in the input set and background set, respectively. 

Finally, due to the binomial assumption the standard deviation can be computed by: 

 
 )1( PnP −=σ  (3.23) 

 
where P is the probability of a hit for the TF, which is given by B / N. 
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As a second statistical test oPOSSUM computes the Fisher exact probability that k genes in 

the input set have at least one TF binding site as compared to the number of genes with at 

least one binding site in the background set. TFs with large z-score or small Fisher exact p-

value are subsequently considered as likely regulators of the input gene set. As we will see 

in Chapter 4 a likely shortcoming of the method is that it relies on predefined score cutoffs. 

These cutoffs do not allow to distinguish between a consensus binding site and a site just 

surpassing the threshold. In addition, for the Fisher exact test, due to the large number of 

false positive predictions assuming that any hit in a promoter indicates a TF target makes it 

difficult to find a meaningful target enrichment in the input gene set. 

 

 

3.2.3 PAP 

PAP (Chang et al., 2007) starts by computing binding site scores for a given PWM and a set 

of sequences as described in section 3.1.3. Scores above a given threshold are in the 

following considered to be directly proportional to the probability of the TF being bound to the 

corresponding site i via the relation: 
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while all scores below the threshold are ignored. For a sequence with several hits for the 

same factor the probability score, PSeq, for the entire sequence is then calculated as: 
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The resulting probability scores are used to rank all N sequences from highest to lowest PSeq. 

Subsequently the ranks are converted into rank-order values, R, in the following way: 

 
 ( ) ( )rankNR lnln −=  (3.26) 

 
Finally, to detect TFs associated with a given input gene set the average rank value across 

all genes in the set is computed: 

 ∑=
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The TFs with largest average 〈R〉 are considered likely regulators of the input gene set. As 

mentioned in section 3.1.5 while the log likelihood scores are related to the binding free 

energy the value of escore is directly proportional to the binding probability only under special 



assumptions. Since these assumptions are presumably not met in general the magnitude of 

the contributions in equation (3.25) from the individual sites to the total affinity score of a 

longer sequence will be distorted. 

 

Like oPOSSUM, PAP scans only sequence blocks conserved between orthologous 

genes from various species. It thereby includes UTRs, introns and exons. Promoter regions 

are extended to 10kb upstream of the TSS and 5kb downstream of the respective gene. It 

should be noted that scanning the ORFs is somewhat contrary to the concept of using 

phylogenetic footprinting since the coding region of a gene is likely conserved only to 

preserve the amino acid sequence of the protein and not because of the presence of TF 

binding sites. The web interface through which one can access PAP does not allow to select 

the size of the upstream and downstream regions to be scanned but searches the conserved 

blocks in the defined range around the TSS. The user thus only has to specify gene 

identifiers to start the search for associated TFs. 

 

3.2.4 CLOVER 

As input, Clover (Frith et al., 2004) requires a set of PFMs, a set of DNA sequences for which 

one seeks regulating TFs and in addition, a set of background sequences. Clover starts, in 

complete agreement with PAP, by computing the binding site scores, called LR1 in this 

application, according to the PWM model outlined in section 3.1.2. The obtained scores are 

again viewed as being directly proportional to the probability of the TF occupying a site. 

However, in contrast to equation (3.25) here the average likelihood ratio of a TF sitting 

anywhere on a sequence of length L is computed as: 
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where scorei is the PWM score obtained for site i in the sequence. The authors interpret this 

average likelihood ratio as the probability of the TF binding to the sequence. However, the 

quantity LR2 rather represents the average expected number of TFs bound per site in a 

given sequence as the authors perform a sum over individual binding probabilities from all 

sites in a sequence and divide by the length of the sequence. Nevertheless, by reasoning 

that it cannot be expected that a given TF regulates all genes in an input gene set of total 

size N the authors proceed by computing the “likelihood ratio” for a motif being present 

across only a subset containing n genes. This “likelihood ratio” is calculated as: 
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Since there are Cn ways of selecting n genes out of a set of size N the program subsequently 

computes the average likelihood ratio of a TF binding all sequences in any subset of size n. 

This average is given by: 

 ∑=
ln

aLR
C

bLR 313  (3.30) 

 
where the index i runs over all possible subsets of size n. The final score is computed as the 

log of the average over all possible values of n ( )Nn ≤≤1 : 
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The magnitude of the final score is dependent on the size and quality of the applied PWM. 

Therefore the scores obtained for a given input gene set are compared to scores obtained 

from a resampling procedure that randomly picks sequences of identical length from the 

control sequence set. As with PAP, the interpretation of LR2 in equation (3.31) as a binding 

probability is valid only under special circumstances. Particularly LR3a relies on adequate 

binding probabilities however, as spurious probabilities might strongly effect the product. 

PAP in contrast to Clover largely avoids this problem by using its PSeq scores to simply rank 

all sequences (and ignores all scores < 0). In addition, although the authors have found an 

efficient way to compute the scores of all possible subsets of size n the required resampling 

procedure is computationally expensive and causes long runtimes. 

 

Having outlined the major concepts for TF binding site predictions and the detection 

of TFs that regulate groups of genes the next chapter will introduce the TRAP binding model 

and its application to yeast. 
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