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Zweitgutachter: Prof. Dr. Manfred Hild

Disputation am 29.01.2020



Summary

This thesis describes my work in the AutoNOMOS project, dedicated to
the advancement of autonomous driving. Our team of researchers demon-
strated autonomous driving on the German Autobahn and in the inner city
traffic of Berlin, mostly relying on LIDAR scanners and an Applanix POS
LV 220 for self-localization. These sensors are highly precise, yet expensive.
This prompts two questions: Can we achieve reliable environmental percep-
tion at hardware costs suitable for mass-market applications? And secondly,
can we achieve human-like or even superior sensing capabilities, yet use only
passive human-like sensing modalities?
Therefore, this thesis presents computer vision algorithms based on an em-
bedded stereo camera that was developed in our research group. It processes
stereoscopic images and computes range data in real-time. The sensor’s hard-
ware is inexpensive, yet powerful.
This dissertation covers four important aspects of visual environmental per-
ception. First, the camera’s pose must be precisely calibrated in order to
interpret visual data within the car’s coordinate system. For this purpose,
an automatic calibration is proposed that does not rely on a calibration tar-
get, but rather uses the image data from typical road scenes.
The second problem solved is free-space and obstacle recognition. This the-
sis presents a generic object detection system based on the stereo-camera’s
range data. It detects obstacles using a hybrid 2D/3D segmentation method
and employs an occupancy grid to compute drivable and occupied space.
Traffic lights detection at intersections is the third problem solved. Our au-
tonomous car was equipped with two monocular cameras behind the wind-
shield to cover a maximal field of view. The detection is steered by the
vehicle’s planning module and digital maps annotated with the GPS posi-
tions of oncoming traffic lights. The traffic light detection system has also
been tested with the stereo camera in order to map the locations of yet un-
known traffic lights.
The fourth and last problem solved is estimating the car’s ego-motion based
on the stereo camera’s range measurements and sparse optical flow. The
presented algorithm yields the car’s linear and angular velocity at reasonable
accuracy, offering a low-cost alternative to some parts of the Applanix POS
LV 220 reference system.
The integral parts of all presented algorithms rely only on visual data. Thus,
the methods are applicable not only to our vehicle but also to other au-
tonomous cars and robotic platforms.



Zusammenfassung

Diese Dissertation fasst meine Arbeit im AutoNOMOS-Projekt zusam-
men, dass sich der Erforschung des autonomen Fahrens widmet. Unsere For-
schungsgruppe demonstrierte autonomes Fahren auf der Autobahn und in
der Innenstadt von Berlin, wobei sich das Fahrzeug größtenteils auf LIDAR-
Sensoren und das Applanix POS LV 220 zur Lokalisierung verließ. Diese
Sensoren sind sehr präzise, aber auch sehr teuer. Daher stellen sich zwei Fra-
gen: Kann man zuverlässige Umfeldwahrnehmung auch mit kostengünstiger
Sensorik erreichen? Und zweitens, kann man mit passiven Kamerasensoren
menschlichliche Fähigkeiten erreichen oder sogar übertreffen?
Deshalb präsentiert diese Arbeit Computer-Vision-Algorithmen basierend
auf einer intelligenten Stereokamera, die in unserer Forschungsgruppe entwi-
ckelt wurde. Die Kamera nimmt Stereobilder auf und berechnet Entfernungs-
daten in Echtzeit. Dieser Sensor ist preisgünstig und doch leistungsfähig.
In dieser Dissertation werden vier wichtige Aspekte der Umweltwahrneh-
mung aufgegriffen. Erstens, muss die Kamerapose bezüglich des Fahrzeugs
kalibriert werden, um Sensordaten korrekt interpretieren zu können. Deshalb
wird ein Kalibrierungsverfahren vorgestellt, dass ohne Kalibriermuster aus-
kommt und stattdessen Bilder von normalen Fahrten verwendet.
Als Zweites wird ein generisches System zur Hindernis- und Freiraumerken-
nung vorgestellt, das auf den Tiefendaten der Stereokamera basiert. Es er-
kennt mittels einer hybriden 2D/3D-Segmentierung Hindernisse und ermit-
telt mit einer Belegtheitskarte den Freiraum und nichtbefahrbare Flächen.
Das dritte bearbeitete Problem ist die Ampelzustandserkennung. Unser au-
tonomes Fahrzeug wurde zu diesem Zweck mit zwei monokularen Kameras
ausgestattet, um einen möglichst großen Blickbereich abzudecken. Das hier
präsentierte Verfahren wird durch das Fahrpanungsmodul und kartierte GPS-
Positionen der vorausliegenden Ampeln angesteuert. Das System wurde auch
mit der Stereokamera getestet, um noch nicht kartierte Ampeln zu vermessen
und einzutragen.
Das vierte und letzte Problem ist die Abschätzung der Eigenbewegung an-
hand der Stereotiefendaten und des optischen Flusses. Das vorgestellte Ver-
fahren berechnet lineare Geschwindigkeit und Winkelgeschwindigkeiten des
Fahrzeuges in akzeptabler Genauigkeit und bietet damit eine kostengünstige
Alternative für Teile des Applanix POS LV 220 Referenzsystems.
Die Hauptbestandteile der präsentierten Algorithmen benötigen nur visuel-
le Daten und sind daher auch auf andere autonome Fahrzeuge und mobile
Robotikplattformen anwendbar.
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Chapter 1

Introduction

1.1 Motivation

MadeInGermany, the autonomous car of Freie Universität Berlin, was pur-
chased in 2010 to pioneer the research on autonomous driving in the city
of Berlin. Perception is one of the key tasks for an autonomously driving
robotic car and necessary to plan and follow efficient and safe trajectories.
The car is equipped with a wide variety of sensors, i.e. LIDARs, radars,
GPS, IMU, accelerometer, odometry, and cameras. My thesis addresses sev-
eral important applications of visual perception, which have proven useful
for our demonstration of autonomous driving in the city of Berlin:

1. The extrinsic calibration of cameras from normal driving through
urban streets.
The fusion and interpretation of all sensor measurements requires an
exact calibration of the sensor-to-car transformation. Especially the
calibration of the rotation angles is of high importance, because angu-
lar errors have a larger impact on the accuracy of long-range measure-
ments. There are various techniques for the calibration task that use a
dedicated calibration target, e.g. a chessboard pattern. However, there
were cases when cameras where mounted ad-hoc on MadeInGermany
and the specific camera pose was lost after the experiment. Here a
calibration method must work with the available image data. Chap-
ter 3 introduces a novel method to calibrate the rotation angles of a
forward-facing camera. It uses optical flow to perform the calibration
without a target pattern.

2. The detection of other traffic participants using stereoscopic
vision.
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A vital part of autonomous driving is the avoidance of collision with
other traffic participants or obstacles. Most of the intelligent vehicles
rely on LIDAR-based obstacle detection and tracking systems. LIDARs
offer high accuracy but the sensors are quite expensive compared to
cameras and they lack spatial resolution. Our research group has de-
veloped an embedded stereo camera which, like a LIDAR, delivers 3D
data in real-time. An onboard hybrid FPGA and CPU system performs
the image processing and provides disparity maps with 30 frames per
second. Chapter 4 presents my approach to the detection of generic
obstacles and estimation of free space on basis of this data. The re-
sults are compared to measurements from LIDAR sensors mounted on
MadeInGermany.

3. The recognition of traffic light states.
Safe autonomous driving requires reliable and early detection of the
state of oncoming traffic lights. Chapter 5 presents my image-processing-
based approach. It is assisted by an annotated map, that delivers the
exact position and height of traffic lights. With the knowledge of in-
trinsic and extrinsic parameters and the car’s global position, the traffic
lights are projected to regions of interest in the image. This approach
facilitates the detection task and effectively reduces the false positive
rate. Maps with annotated positions of each single traffic light are not
readily available. Therefore, the second part of this chapter uses the
obstacle detection from Chapter 4 to detect objects whose shape resem-
bles those of traffic lights. These objects are projected to the camera
image to generate 2D regions of interest for the traffic light detection
module. If a traffic light has been successfully detected and tracked
over a certain time, the tracked positions are filtered and stored in a
map.

4. Ego-motion estimation using optical flow and disparity maps.
The calibration method from Chapter 3 relied on the optical flow caused
by the vehicle’s movement. However, the movement of non-static ob-
jects also induces optical flow and its detection and removal is an im-
portant task of visual ego-motion estimation. Even the most robust es-
timators may fail if large objects cross the cameras field of view in close
range. Chapter 6 presents a novel approach which uses the disparity
maps from our embedded stereo-camera to facilitate the segmentation
of optical flow and robustly estimate the vehicle’s linear and angular
velocity from the optical flow.
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(a) MadeInGermany is equipped with
various sensors for perception and lo-
calization. Source: [2]

(b) MadeInGermany on the test area
at the former airport Tempelhof.

Figure 1.1: The autonomous car MadeInGermany.

1.2 MadeInGermany - The Automonous Ve-

hicle at Freie Universität Berlin

My thesis is based on research and experiments conducted in the AutoNOMOS
project (and follow-up projects) with the research group Intelligent Sys-
tems and Robotics (now known as Dahlem Center for Machine Learning
and Robotics) at Freie Universität Berlin. After the successful participation
in the DARPA Urban challenge in 2007, the research group had acquired a
new robotic car in 2010 funded by the German Ministry for Education and
Research (BMBF). The car was equipped with a redundant sensor setup such
that many different combinations could be combined and compared to each
other.
Our car MadeInGermany (depicted in Fig. 1.1) is a series Volkswagen Passat
equipped with a very precise localization system from Applanix, the Position
and Orientation System for Land Vehicles (POS LV 220)[1]. It consists of an
odometer, an intertial sensor for linear accelerations and angular rates (IMU)
and a GPS receiver. An embedded computing unit combines all sensor data
to provide smooth and accurate values for angular and linear position, ve-
locity and acceleration. Additionally, we use a mobile data connection to
receive DPGS correction data which reduces, under optimal conditions, the
localization error to a few centimeters.

Integrated into the front and rear bumper, there are six Ibeo Lux laser
scanners[3], together providing a 360◦ surround view. Each scanner has 4
lasers rotated by an internal mirror giving a horizontal field of view of 110◦
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Figure 1.2: Two AV Guppy F-036C cameras were mounted with suction cups
behind the windshield. The camera are pointed upwards and sideways to maximize
the covered field of view for close-range traffic light detection.

and a vertical field of view of 3.2◦. An embedded computing unit merges the
sensor data and provides a black-box object tracking and classification.
On top of the roof is the rotating Velodyne HDL-64E S2 laser scanner[4].
It has 64 lasers arranged vertically and rotates with a frequency of 10 Hz,
delivering 1.3 million points per second. The scanner covers a vertical field
of view of 26.8◦. The higher position allows this scanner to detect objects
behind other cars. The Velodyne scanner provides 1.333 million points per
second and measures distances up to 120 m with a precision of 0.2 mm.
For computer vision different camera setup had been tested. For traffic light
detection we have used two Allied Vision Guppy F036-C cameras[5]. These
are two monocular camera mounted with suction cups behind the windshield.
As can be seen in (Fig. 5.1), the cameras were rotated to the top left and top
right corner of the front window. This is necessary to see traffic lights when
the car stands in the front row at an intersection. The cameras deliver images
at a resolution of 752× 480 and support high dynamic range to mitigate the
problem of over-saturation.
The embedded stereo camera developed in our work group (Fig. 1.3) uses,
like the Guppy cameras, an HDR imaging sensor with a 752×480 resolution.
The stereo camera used for the experiments in this thesis has a baseline of
25 cm and a horizontal field of view of 60◦. It provides stereo images and
depth images at a rate of 30 Hz. An internal ARM Cortex-A9 processor and
a Xilinx ZYNQ FPGA perform the data processing and consume only about
6 W which makes it an excellent choice for automotive and other mobile
applications. The camera removes lens distortion and rectifies the images
before creating a dense depth image by running a block-matching algorithm
on census-transformed images[6]. Technical specifications and details of the
algorithms can be found in the PhD thesis of Bennet Fischer[7].
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Figure 1.3: An embedded stereo camera with onboard FPGA and ARM CPU was
developed in our research group. It provides images and depth maps at 30 frames
per second.

1.3 Contributions

The key contributions of my thesis are:

• A real-time online calibration method to determine the rotation matrix
of cameras mounted on a vehicle. Different to most algorithms known
from literature it does not rely on a dedicated calibration pattern.

• A 3D obstacle detection method based on an embedded stereo camera
developed by our research group.

• A traffic light detection system using two separate monocular cameras
and a digital map with annotated global traffic light positions. It has
contributed to successful public demonstrations in Berlin1 and also to
the win of the Dubai World Challenge for Self-Driving Transport in
20192.

• An application of my obstacle detection and traffic-light detection to
the task of traffic light mapping.

• A method to estimate the linear and angular velocity of the ego-vehicle
using the stereo camera’s depth measurements and optical flow.

1https://autonomos.inf.fu-berlin.de/media/videos/
2https://sdcongress.com/finalists
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1.4 Outline of the Thesis

The thesis is structured as following. Chapter 2 will provide a concise
overview of the start-of-the-art methods and algorithms relevant to my con-
tributions. Chapters chapters 3 to 6 contain the mathematical concepts,
algorithmic details and experimental results for the aforementioned contri-
butions. Finally, Chapter 7 will conclude my thesis with a summary. The
Appendix contains pseudo-code for various algorithms.
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Chapter 2

State Of The Art

This chapter summarizes the state of the art related to my contributions
presented in chapters 3 to 6. In particular, this section will cover:

1. Online extrinsic calibration for monocular cameras on ground vehicles.

2. Obstacle detection for stereoscopic cameras with focus on occupancy
grids and disparity map segmentation.

3. Traffic light detection for monocular and stereoscopic cameras.

4. Ego-motion estimation for forward-facing stereoscopic cameras.

2.1 Extrinsic Camera Calibration Using Op-

tical Flow

Extrinsic camera calibration estimates the camera pose with respect to a
reference coordinate frame. Chapter 3 presents an algorithm which calibrates
the extrinsic parameters while the car is driving. Under these conditions

• calibration must use what is visible, i.e. there is no calibration target
like a chessboard pattern,

• the camera’s movement is bound to the car, and

• visible objects may move independently of the camera.

State-of-the-art methods derive perspective cues from edges forming straight
parallel lines or relate the vehicle’s ego-motion to the observed optical flow.
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Perspective Cues from Parallel Lines

Urban scenes often look like so-called Manhattan worlds in which buildings,
walls, roads, and other structures are aligned to three orthogonal directions.
The projection of lines along these directions converges in vanishing points
from which the original 3D directions can be inferred.
For example, Cipolla et al.[8] proposed a semi-automatic method to recover
vanishing points from several images showing a building from different angles.
Combining the computed projection matrices, they were able to compute all
camera poses and generate a full 3D reconstruction of the building. Zhang
et al.[9] report the full calibration of a static traffic surveillance camera. The
proposed method exploits typical movement patterns of vehicles and pedes-
trians. Usually, they follow a network of parallel or perpendicular roads and
sidewalks. A statistical analysis of the movements reveals two principal di-
rections, while the third (up) direction can be estimated from the principal
component of walking pedestrians. The authors reported results comparable
to classical methods based on correspondences of interest points.
Front-facing cameras on vehicles can observe lane markings to recover the
principal direction of a straight road. Hold et al.[10] propose an online cali-
bration method which recovers pitch and roll angles, and the camera’s height.
Their algorithm measures the frequency of dashed line markings and com-
bines it with the velocity provided by the car’s odometry. The authors report
calibration results with standard deviations less than 0.07◦ for the rotation
angles respectively less then 1.5 cm for the camera’s height. De Paula et
al.[11] calibrate the camera’s orientation and the height from detected lane
boundaries and the vehicle speed. The rotation is reconstructed from vanish-
ing points of parallel lane markings. The authors report errors of less than
0.5◦ for the camera angles, and an average height error of 10%.

Perspective Cues from Motion Flow

The movement of the 3D world relative to the camera is known as motion
field and its projection in the image as optical flow. The two vector fields are
linked by the equations of central projection. If the observed scene is static
the optical flow is caused only by the car’s movement and it can be used to
recover the extrinsic parameters. Practical problems arise because:

1. The vehicle does not move exactly on a plane.

2. Independently moving objects also cause optical flow.

3. Optical flow is error prone due to the aperture problem.
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Additional sensors may increase robustness of optical flow algorithms. For
example, Hwangbo et al.[12] improved the tracking of KLT (Kanade-Lucas-
Tomasi) feature points with a gyroscope. Fast rotations and translations,
violated the KLT assumption of slowly changing optical flow. Predicting the
flow with the gyroscope significantly increased the tracking robustness as the
tracking rate over 50 frames increased from 33% to 50%.
Many calibration methods assume a flat world and estimate a homography
between the ground plane and the image. For example, Miksch et al.[13]
developed a method which uses epipolar constraints, known vehicle speed
and yaw rate, and the assumption of a fixed camera height, to derive a for-
mulation with only one homography parameter left to be optimized. The
authors report a calibration error of approximately 0.35◦ with respect to the
ground truth, and estimate an additional error of 1◦ when the assumed cam-
era height is off by 5%.
Ruland et al.[14] propose a method to calibrate the position of a fish-eye
lens camera mounted on a vehicle. Given the height of the camera and a
known circular ego-motion, the method estimates the two remaining camera
position coordinates. The authors reported an average birds-eye-view back-
projection error of 1.2 mm given the correct height and 53 mm using a wrong
camera height off by 0.7%.
Tapia et al.[15] proposed a method to compute the camera orientation from
optical-flow-induced vanishing points and estimate the camera height by re-
lating the vehicle speed to the projected velocity of points on the road.
Heng et al.[16] proposed a framework to calibrate multiple non-overlapping
fish-eye cameras on a vehicle only by odometry and image data. It is an
offline bundle adjustment method which uses all available data at once, and
optimizes them jointly by finding a parameter set which maximizes the like-
lihood of the data. Such methods are computationally expensive but tend
to yield more accurate results. The authors tested their method with four
surround-view fish-eye cameras on a vehicle and report an average reprojec-
tion error of 0.5 pixel for over 450000 points.

Calibration with Stereo Depth Measurements

Stereo cameras capture both images synchronously and therefore disparity
measurements do not suffer from independently moving objects. Spangen-
berg et al.[17] calibrated roll and pitch angles of a stereo camera by sampling
the space of rotations and using the stereo matching costs as optimization
criterion. Rehder et al.[18] reported a full intrinsic and extrinsic calibration
up to scale using stereo matching, odometry and bundle adjustment.
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This class of algorithms requires to perform stereo matching with varying
parameters in every iteration of the optimization process. Since the embed-
ded stereo camera was used as a black-box system such methods were not
pursued in this thesis.

2.2 Stereoscopic Obstacle Detection with Oc-

cupancy Maps

Occupancy grids are a well-established method for the accumulation and
clustering of 3D point clouds. The grid approach is easy and robust be-
cause it does not require the detection of object boundaries. The depth
measurements of stereo cameras have an uncertainty which increases with
the distance. Perrollaz et al.[19] modeled sensor noise with a Gaussian dis-
tribution, which computes for each 3D point a weighted update distributed
over several occupancy grid cells.
An occupancy grid is a projection of 3D points onto a grid of cells on a refer-
ence plane. Heights of potential obstacles are inferred from the accumulated
height of the grid cells with respect to the reference plane. When the flat-
world assumption is inadequate, more complex models of the road surface
are necessary. Wedel et al.[20] approximated the height profile of a road with
B-Spline, while Oniga et al.[21] employed a quadratic surface.
Schauwecker et al.[22] avoided the notion of a reference plane and proposed a
volumetric method, which creates Voxels from the measurements. They also
considered visibility aspects and updated a volume’s occupancy probability
according to a Gaussian distribution model.
Classical algorithms for LIDAR sensors work on unstructured 3D point clouds
and update the cells for each 3D point independently. Disparity images are
structured because 3D proximity implies proximity in image coordinates.
Therefore, it is often beneficial to perform a segmentation on the disparity
image and then update the cells for each segment. This way, correlation of
neighboring points can be used to filter out noise and errors introduced by
the stereo matching algorithm.
The disparity segmentation is especially simple, if the stereo camera is mounted
parallel to the road surface. Then, objects whose side face is orthogonal to
the road will have constant disparity. The u-v-disparity method was the first
to analyze disparity maps in this way. It detects the ground plane and ver-
tical obstacles by computing histograms of the disparity distributions along
both image axes. Li et al. [23] improved the u-v-approach by tracking feature
points across consecutive frames to segment independently moving objects,
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yielding velocity information for occupied grid cells. Maŕın-Plaza et al. [24]
combined u-v-disparity with ray-tracing to compute occlusion probabilities
for every grid cell. Yu et al. [25] fuse u-disparity and v-disparity space using
the Dempster-Shafer theory in order to model sensor uncertainty. Cordts et
al.[26] presented the so-called stixel world, a segmentation which finds ver-
tical stripes of (nearly) constant disparities. The stixels define the border of
drivable space and single outliers are smoothed out by a dynamic program-
ming algorithm. Harms et al. [27] use the vertical disparity gradient and the
estimated angle deviation from the ground plane to construct a probabilis-
tic occupancy grid. A ray search is used to detect occupied cells according
to a height threshold and curb cells according to a normal vector deviation
threshold. Badino et al.[28] track the velocity of disparities and generate
stochastic occupancy grid. Dynamic programming on the a polar occupancy
grid yields the corridor of drivable free space.

2.3 Traffic Light Detection

Traffic lights must be detected as early as possible to give the path planning
module sufficient time to react. Although traffic lights are designed to be
easily visible through bright monochromatic light, early detection remains
challenging because the projected size of a traffic light in the image is in-
versely proportional to its distance. Small bright and colored image patches
can easily be mistaken as distant traffic lights. Ambiguities can only be re-
solved by context, e.g. a traffic light can only appear at an intersection and
at certain positions relative to the road.
Algorithms differ by the set of features and the order in which different fea-
tures are evaluated. Color is a typical first choice because the traffic light
state is encoded by distinct monochromatic colors. However, in environ-
ments with many other bright light sources or with camera images suffering
from over-saturation it may be beneficial to explore shape features first, e.g.
circular symmetry. The following sections will give a brief overview of meth-
ods focusing on color, followed by a selection of shape-focused algorithms.
The section will be concluded by a review of perspective constraints and
machine-learned features.

Color Focused Algorithms

This class of algorithms searches for pixels of certain color and brightness
and groups them to light blob clusters. These are by far the most distinct
features, because traffic lights emit bright monochromatic light and in many
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countries there are precise specifications on the spectrum and the luminance.
Cameras measure a mixture of the light emanated from the traffic signal
and the ambient light from the sun and other light sources. The former is
affected by distance and viewing angle, while the latter depends on daytime
and weather. As a result, the monochromatic light can appear in different
hues and intensities because the ambient light mixes with the colored light
and makes it appear less saturated. Therefore many published methods start
with a transformation to a suitable color space.
Diaz et al.[29] determine colors using normalized RGB color space and differ-
ent fuzzy-logic membership functions derived from data sets. They propose
to use two different set of rules for day-time and night-time and perform
clustering with a simple sequential scan. Omachi et al.[30] classify colors
by applying fixed interval thresholds on RGB and normalized RGB values.
The clustering of pixels is achieved by a variant of the Hough transform.
Tae et al.[31] threshold colors in the HSI color space and find connected
components by means of a blob labeling algorithm. Cai et al.[32] convert
the image to the YCbCr color space, apply a threshold filter, and use mor-
phological filters to find clusters. The authors propose to detect different
arrows on those clusters by applying a Gabor wavelet transform followed by
an independent component analysis. Sooksatra et al.[33] compute an inter-
mediate image from the CIELab converted color image on which they search
for circular blobs with the radial symmetry transform. Hosseinyalamdary et
al.[34] propose a Bayesian framework to model color classes in a probabilistic
fashion using mixture of Gaussians and Chi distributions. Model parameters
are learned from sample images of traffic lights. Siogkas et al.[35] apply the
fast radial symmetry detector to remove all non-circular elements from color-
thresholded images. Omachi et al.[36] employ a modified Hough transform
to find circular regions in color edge images.

Shape Focused Algorithms

Looking for colors first can be problematic when images are over-saturated
and traffic lights appear partially white. Therefore, some methods start out
by searching for bright circular blobs and rectangular dark boxes. Later on,
colors are only evaluated within such areas of interest.
Cai et al.[32] scan for black pixels and then compute connected components
and filter them by their height-to-width ratio in order to find potential traffic
light boxes. De Charette et al.[37] detect bright spots in the grayscale image
by means of morphological operations. Afterwards an adaptive template
matcher evaluates potential box regions around the spots. They propose a
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flexible XML format to define the templates, which can contain a variety of
properties to be tested, e.g. width/heigh ratio, relative position of lights,
HSV color space thresholds. Jie et al.[38] find rectangular areas and circle
shapes on gray-scale images. Afterwards, they evaluate the colors of pixels
based on pre-defined thresholds in the RGB and the HSI color space.

Perspective Constraints

The size of traffic lights and their placement at intersections can be translated
to perspective constraints, i.e. they can only appear at certain regions of the
image and with a certain size. For example, Diaz et al.[39] compute for each
image row a lookup-table for the expected size of a traffic light at a certain
height. Lights blob that are too small or too large will be rejected.
If the exact global positions of traffic lights and the vehicle’s location are
known, the 3D position can be projected into the image and only a small
region of interest must be evaluated. Its size depends on the accuracy of the
map and of the vehicle’s localization with respect to the map [40, 41].
Stereo cameras can directly measure the height and size of traffic lights.
Since their 3D width and height are known beforehand, false positives can
easily be rejected[42]. Fregin et al.[43] report three ways to improve traffic
light detection through a stereoscopic setup. They test if the area of the
traffic light has a homogeneous distance, if the 3D position of a traffic light
is within reasonable expectations, and if the 3D structure matches the region
of interest in the image. If the third condition is not met, they have found
it beneficial to adapt the region according to the 3D object boundaries.

Machine-learned Features

Some researchers have used machine learning to find effective combination
of features. Kim et al.[44] proposed to train an SVM classifier on a set of
primitive features, like color, size, brightness and geometric moment features.
Shi et al.[45] proposed an adaptive background suppression filter to discover
image regions of interest. Then a cascaded linear SVM trained on RGB and
HOG features, detects circular and arrow traffic lights.
In recent years, deep convolutional neural networks (CNNs) have been very
successful with image recognition tasks. The strength of CNNs is that they
learn relevant image features directly from the data. John et al.[46] propose
to generate regions of interest using GPS localization, and learn from given
detections a salience map, i.e. a probability distribution for traffic lights.
After training only the saliency map is used to generate the regions of interest.
Behrendt et al.[47] modified a YOLO network to tune it specifically for the
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detection of traffic lights. For example, they used a finer grid to detect smaller
objects and created a separate specialized network for the classification of
traffic light states. Weber et al.[48] designed and trained a fully convolutional
neural network which is able to detect traffic lights from single images without
using any priors. The network generates multi-class probability maps which
are grouped to determine the most likely traffic light type and state.

2.4 Ego-Motion Estimation with Stereo Cam-

eras

Visual odometry estimates the vehicle motion from a sequence of image ob-
servations. The main challenge of monocular ego-motion estimation is the
presence of independent movement, i.e. other vehicles or pedestrians. Stereo
cameras capture two images simultaneously which allows easy separation of
the ego-motion from the general motion field.
Nister et al, [49] extract Harris corners from stereo images and match them
with normalized cross-correlation windows. The triangulated 3D points are
tracked over time and poses are generated using a RANSAC scheme and it-
erative refinement. The authors conducted ground vehicle tests and report
relative errors between 1% and 2% for the measured distance. Agrawal et
al.[50] proposed a localization method for a stereo camera combined with a
low-cost GPS receiver. The authors generate motion hypotheses from triplets
of tracked points and evaluate them with RANSAC. A transformation is con-
sidered as an inlier, if the disparity space homography yields a low average
reprojection error on the second view. Experimental results for the raw visual
odometry indicate relative distance errors from 2% to 5%. Howard et al.[51]
propose an algorithm which estimates the ego-motion between consecutive
frames of stereo images and report a relative distance error of 0.25% on a
400 m long path. Talukder et al.[52] present a method which combines dense
stereo disparity maps with dense optical flow. Using the equations which link
the general 3D motion to optical flow, they predict ego-motion induced opti-
cal flow whose difference to the observed optical flow field serves to segment
independently moving objects. The results for visual odometry show a 6.5%
relative displacement error. Badino et al.[53] constructed a 3D motion field
from disparity maps by tracking 3D points over time. The frame-by-frame
motion estimates are registered with previous frames to improve the robust-
ness and accuracy. The presented test result show a relative displacement
error of 4.5% on 700 m traveled distance.
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Chapter 3

Extrinsic Camera Calibration
Using Optical Flow

This chapter presents an automatic online calibration of a camera’s extrinsic
rotation matrix from images captured while driving on streets. The algo-
rithm uses optical flow to estimate the epipolar points induced by the car’s
movement and deduces the camera’s rotation angles from the distribution of
epipolar points.
This chapter will start with a short recall of the basics of projective geometry
and central projection. Then follows an introduction to extrinsic calibration
from parallel lines and their vanishing points from single images. Finally, I
will present my algorithm for extrinsic calibration from optical flow followed
by experimental results and their discussion.

3.1 Basics of Projective Geometry

In the following sections matrices will be denoted in bold capital letters. e.g.
A, vectors in bold letters, e.g. x. If non-homogeneous and homogeneous
vectors appear together homogeneous vectors will be written in bold letters
with a tilde on top, e.g. x̃.

3.1.1 Homogeneous Coordinates

A homogeneous point is a Cartesian point augmented by a 1. For example

in 2D space ( xy ) ∈ R2 is equivalent to the projective point
(
x
y
1

)
∈ P2 .

Homogeneous points are defined up to scale. A multiplication with a non-
zero scalar λ is the same point, i.e. x̃ ≡ λx̃. The cartesian representation

can be recovered through division by the last component, e.g.
(
x
y
w

)
∈ P2 is
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equivalent to 1
w
· ( xy ) ∈ R2 .

Homogeneous coordinates whose last component is 0 do not have a counter-
part in real space. These points are also called points at infinity or vanishing
points because they appear at the horizon where projected parallel lines in-
tersect. We will see later that a vanishing point is the projection of parallel
lines’ common direction vector.
By virtue of homogeneous coordinates it is possible to define a translation as
linear mapping, i.e. a matrix. The translation of a point x ∈ R3 by a vector
t is equivalent to the homogeneous transformation

x̃′ =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 · x̃.
Similarly, a rigid transformation of a point x consisting of a rotation R
followed by a translation given by a vector t can be written as a homogeneous
matrix operation x̃′ = ( R t

0 1 ) · x̃. A sequence of rigid transformations can be
combined by the matrix product and represented as a single matrix. This
property has been used in Alg. 4 (see Appendix).

3.1.2 The Duality of Projective Space

Duality in projective geometry refers to the fact that homogeneous coordi-

nates have two interpretations. The homogeneous vector
(
x
y
w

)
∈ P2 can be

a point
( x

w
y
w

)
∈ R2 or a line with a normal vector ( xy ) and distance w to the

origin.
The dot-product of a point p and a line l computes the point-line distance.

It is the (signed) euclidean distance if the point and the line are represented

in their canonical form, i.e. p =
(
x
y
1

)
and l =

(
a
b
c

)
where the line’s normal

is a unit vector with a2 + b2 = 1. The third component c is the (signed)
euclidean distance of the line to the origin O. Its sign is negative if the line’s
normal vector points away from the origin.
Taking the dot product of p and l yields

d = x · a+ y · b︸ ︷︷ ︸
distance O→p

+ 1 · c︸︷︷︸
distance l→O

The point is located on the line if the terms add up to 0, which means both,
the line and the point, have the same distance to the origin. This holds true
for any point on the line. Thus, the cross-product of two points ∈ P2 will yield
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the line through these points. Likewise, the cross-product of two lines will
yield their intersection point. This is especially useful for the computation
of the optical flow’s focus of expansion (see Alg. 1 in the Appendix).
The same can be achieved in higher-dimensional space using the general form
of the cross-product. For example, in P3 the dual of a point is a 3D plane.
Given three points a,b, c ∈ R3 one can compute the plane through these
points as

p⊥ = det

∣∣∣∣∣∣∣∣
e1 ax bx cx
e2 ay by cy
e3 az bz cz
e3 1 1 1

∣∣∣∣∣∣∣∣
where ei is a canonical unit vector with 1 at position i.

3.2 The Pinhole Camera Model

The pinhole camera model, depicted in Fig. 3.1, is also known as central
projection model. It assumes that all incoming light rays pass through a
single point before they hit the image plane. The pinhole camera’s coordinate
system is centered at the pinhole, hence the name central projection. The
image plane is orthogonal to the optical axis (the z-axis) at z = f , where f is
the focal length of the camera. For now, let us assume f = 1. Then, central

projection maps a 3D point p =
(
x
y
z

)
∈ R2 to a 2D image point 1

z
· ( xy ) ∈ P2.

This formula is strikingly similar to the conversion between real points
and homogeneous points. All points along the line connecting p and 0 are
multiples of p and are projected to the same 2D point on the image plane.
Thus, a 3D point can be interpreted as the homogeneous equivalent of its 2D
projection.
Real-world cameras use optical lenses to collect and focus light, and often
they do not adhere to the pinhole projection model. The most important
aberration is radial distortion, where incoming light rays are bent towards the
center. The effect is radially symmetric and is often modeled as polynomial
over the distance to the optical center.
The distortion breaks the linearity of homogeneous projection. This can be
compensated by the process of un-distortion which applies the inverse of the
distortion model to rectify image coordinates. Lens distortion of thin lenses
is often calibrated with the ”plumb bob” model[55]. With this distortion

model a point p =
(
x
y
z

)
projected to p′ =

( x
z
y
z

)
is distorted to:

p′′ =

(
x′(1 + k1r

2 + k2r
4 + k3r

6) + 2p1x
′y′ + p2(r2 + 2x′2)

y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2) + 2p2x

′y′

)
17



xc

yc

zc

Fc

P = (X,Y, Z)

u

v

x

yz = f

ū
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Figure 3.1: The pinhole camera model. (Source: [54])

with distortion parameters k1, k2, k3, p1, p2 and r2 = x′2 + y′2.
Projected (and distorted) coordinates are then scaled and translated ac-

cording to the camera matrix, also called intrinsic matrix. It is defined as fx 0 cx
0 fy cy
0 0 1

 ,

where f is is the focal length in pixels units and (cx, cy) is the offset which
puts the image origin to the top-left corner. The camera matrix is the ho-
mogeneous version of a 2D scaling followed by a 2D translation.
The central projection model assumes that the coordinate system is centered
at the focal point and its axes are aligned to the image plane. When 3D
points are given in another coordinate system, e.g. that of the car or of
another sensor, they must be transformed to the camera’s coordinate frame
before projection equations can be applied. This transformation is a rigid
transformation, a rotation followed by a translation. The rotation matrix
consists of orthogonal unit vectors which span a Cartesian coordinate sys-
tem. A rotation matrix is a redundant representation since a 3D rotation
has only 3 degrees of freedom. However, the matrix representation can be
easily interpreted by visual inspection, because the columns are the image of
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the domain’s basis vectors. For example, the rotation matrix

R =

 0 −1 0
0 0 −1
1 0 0


describes the coordinate rotation which maps the vector

(
1
0
0

)
(x-axis) to the

vector
(

0
0
1

)
(z-axis). The second column maps

(
0
1
0

)
(y-axis) to the vector(

−1
0
0

)
(negative x-axis) and the third column maps

(
0
0
1

)
(z-axis) to

(
0
−1
0

)
(negative y-axis).
Any set of three orthogonal unit vectors will be a valid rotation matrix. As
will be shown in the following section, a vanishing point is the projection of a
direction vector and vanishing points from orthogonal directions can be used
to construct a rotation matrix.
Finally, the full projection transformation (for distortion-free projection) can
be combined into one matrix:

P = K3x3 · T3×4

where T3×4 contains first three rows of the 4 × 4 rigid transformation from

world to camera coordinates. It maps a homogeneous 3D point P =
( x
y
z
1

)
∈

P3 to a homogeneous image point p =
(
u
v
1

)
∈ P2.

3.3 Extrinsic Calibration with a Single Image

The extrinsic parameters define the rigid body transformation between the
car’s and the camera’s coordinate system. The car’s coordinate frame has
its origin at the ground below the front axle midpoint. The axes are aligned
with the car’s body: x points forward, y is directed to the left and z goes
up. The camera’s coordinate frame is centered the camera’s focal center, the
forward direction is the z axis and x- and y-axis span the image plane.
The calibration method presented in this chapter computes the camera’s ro-
tation matrix. Its accurate calibration is crucial for sensor fusion because a
attitude errors have a bigger impact on distance measurements. The cam-
era’s position can be measured manually with acceptable accuracy of approx-
imately 1 cm which has little impact on the accuracy of distance measure-
ments.
Sets of parallel lines in perpendicular directions appear often in cities and
can be directly used to calibrate the rotation matrix from a single image.
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Figure 3.2: The images of two parallel lines intersect at their vanishing point. All
parallel lines share a common vanishing point. It is the projection of the direction
vector.

Criminisi et al. [56] offer a good introduction into the topic of measuring ge-
ometrical quantities from parallel and orthogonal lines and planes. We will
now see how this can be applied to the calibration problem.

3.3.1 Vanishing Points and their Geometric Interpre-
tation

Under central projection, two parallel lines appear to converge and intersect
in the so-called vanishing point. It can be shown that this point is the
projection of the common direction vector of parallel lines.
Let there be two parallel lines l1 and l2 as shown in 3.2) with a direction
vector v. A point on l1 can be parameterized by a parameter λ1 as follows:
l1 = p̃1 + λ1 · v. Given a camera matrix

K =

 fx 0 cx
0 fy cy
0 0 1


the line l1 is mapped to
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K · l1 =

 fx · (x1 + λ1 · (x2 − x1)) + cx · (z1 + λ1 · (z2 − z1))
fy · (y1 + λ1 · (y2 − y1)) + cy · (z1 + λ1 · (z2 − z1))

z1 + λ1 · (z2 − z1)



=


fx·x1+fx·λ1·(x2−x1)

z1+λ1·(z2−z1)
+ cx

fy ·y1+fy ·λ1·(y2−y1)

z1+λ1·(z2−z1)
+ cy

1


.
As λ1 approaches infinity, the terms with λ1 will dominate. The limit is the
homogeneous point  fx · (x2−x1)

z2−z1 + cx

fy · (y2−y1)
z2−z1 + cy

1


which is the projection of the line’s direction vector. The projection of line
l2 will give the same result because with the distance approaching infinity
only the direction vector v matters. Thus, all parallel lines share a common
vanishing point. Conversely, we can re-project a vanishing point p̃ to retrieve
the direction vector v = K−1 · p̃.

3.3.2 Construction of a Rotation Matrix from Vanish-
ing Points

A rotation matrix consists of three orthogonal unit vectors, the three axis
directions. Urban scenes often contain straight parallel lines and if we find
such lines for three orthogonal directions we can compute their vanishing
points p̃x, p̃y and p̃z, and recover the directions vectors

dx = K−1 · p̃x

dy = K−1 · p̃y

dz = K−1 · p̃z

After normalizing the vectors to unit length the rotation matrix is con-
structed as

R =

 dx
T

dy
T

dz
T

 .

21



Figure 3.3:
MadeInGer-
many’s coordi-
nate system.

Figure 3.4: Single-image calibration from parallel lines.
The lane markings yield the car’s x-axis (red), the build-
ing’s roof and windows the y-axis (green), and the lamp
posts the z-axis (cyan).

This rotation matrix is orthogonal if the observed pairs of parallel lines were
exactly orthogonal to each other. However, even if that was true, the pro-
jected lines usually cannot be measured accurately and the resulting vectors
will not be orthogonal. Therefore, in a final refinement step these vectors
must be rectified to create a valid rotation matrix. A straight-forward solu-
tion is the cyclic cross-product

z := x× y

x := y × z

y := z × x

yielding three orthogonal vectors. Since there is no preferred axis, one can
compute this in three different ways, starting with each axis and take the
average of the rotations [57]. Obviously, the method also works if only lines of
two directions are visible because the third direction can be computed by the
cross-product. Figure 3.4 shows an example scene suitable for a single-image
calibration. Assuming the car is aligned with the road lane markings, all
three axis can determined using parallel lines from lane markings, buildings
and lamp posts.

The advantage of this method is the minimal requirement of a single image
view, its disadvantage the relatively strong assumption that the observed
lines are indeed perpendicular and aligned to the vehicle’s body axes.
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3.4 Extrinsic Calibration from Ego Motion

3.4.1 Vanishing Points from Optical Flow

Although human-made structures contain many parallel and orthogonal lines,
they may not always be visible. Therefore, my calibration method is based
on the epipolar geometry of consecutive frames. If the camera is moving
in a static environment, the optical flow moves along epipolar lines. All
epipolar lines intersect in the epipole, the projection of the other frame’s
camera center. The optical flow vectors will converge in the epipole because
all observed points move into the same direction, the inverse of the camera’s
motion. Thus, re-projection of the epipole will recover the direction vector
of the movement. For example, if the car drives straight ahead all optical
flow vectors will converge in the epipole which will be the projection of the
car’s forward direction.
The effect of different camera motions is depicted in Fig. 3.5. The first column
shows optical flow patterns for pure axis-aligned translations. The movement
along the depth axis yields converging vectors, while orthogonal movement
creates parallel vectors. The top row of Fig. 3.5 shows optical flow patterns
of pure rotational movements. A rotation around the depth axis causes a cir-
cular optical flow field which has no point of convergence. Rotations around
the other axes yield, similar to translations in that direction, parallel flow
vectors. Rotation around an arbitrary axis will create a combination of these
patterns, where divergence increases the more the rotation axis aligns with
the depth axis. A camera pointed to the car’s forward direction will observe
patterns similar to the ones shown in the bottom row.
Given enough epipolar points and a mixture of driving straight and in curves,
the set of epipolar points will look like in Fig. 3.6. Since driving forward
usually dominates, there will be a dense central cluster. This center is the
epipolar point of forward movement and is located at the intersection of two
stretched clusters. The large horizontal cluster stems from curve driving,
while the sparse vertical cluster is created when the car stops and pitches
up and down because the remaining kinetic energy is damped by the shock
absorbers.

The epipolar point from forward movement and the horizon vector pro-
vide enough information to construct the rotation matrix. We pick an-
other arbitrary epipolar point pa from the horizon and compute the vectors
da = K−1p̃a and dx = K−1p̃x. Since we know that both vectors are parallel
to the x-y-plane, we can construct the z-direction by taking the cross-product

dz := dx × da
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and then construct the y-direction with

dy = dz × dx

After normalization the rotation matrix R is given by

R =

 dx
T

dy
T

dz
T


.

3.4.2 Implementation Details

The implementation performs several steps:

1. Optical flow computation.

2. Computation of the epipolar point from optical flow.

3. Estimation of the horizon and the central point from all collected epipo-
lar points.

4. Construction of the rotation matrix.

Optical Flow Computation

Optical flow is the apparent movement of image points in consecutive im-
ages. It is deduced from intensity change patterns under the assumption of
constant brightness. The optical flow’s relation to the projection equations
is discussed in detail in Chapter 6. For now, it is sufficient to know that
an optical flow algorithm returns this vector field of apparent image point
movement.
In my algorithm the optical flow is computed using the pyramidal Lukas-
Kanade implementation (calcOpticalFlowPyrLK()) provided by the C++
computer vision library OpenCV1. As input I have used interest points pro-
vided by OpenCV’s function goodFeaturesToTrack(). These interest points
are located at locations of high contrast and therefore suitable for optical flow
computation. The extraction of feature points is steered by an image mask
which enforces an equal distribution of feature points. If flow vectors are
close to each other they tend to be almost parallel. Finding the intersection
point of flow vectors is more stable if the vectors are scattered throughout

1http://www.opencv.org
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the image.
The output of the optical flow method are two lists of matched interest points.
After applying un-distortion, these points are passed to the next step where
we want to find the best possible intersection point given the lines defined
by the matched points.

Epipolar Point Computation

The optical flow’s point of convergence, the epipolar point, is robustly es-
timated using a RANSAC scheme as outlined in Alg. 2 (see Appendix).
RANSAC stands for Random Sample Concensus and is capable of finding
patterns in very noisy data. The idea is to randomly sample a minimal num-
ber of data points to construct the pattern, and check how many of the other
data points support this hypothesis. The pattern with the largest support is
selected.
In our case the minimal set are two flow vectors whose lines are intersected.
The algorithm performs N = 2000 RANSAC iterations. It randomly selects
two flow vectors which are non-parallel, i.e. at least 0.5◦ apart. The intersec-
tion point x is checked against every flow vector and accepted if the support
is larger than a threshold (e.g. n = 20). A vector v is a supporting inlier if
the angle between v and the line through x and the base point of v diverges
by less than 0.5◦. In the end, the intersection point with the largest group
of supporters is used to fit the final solution with a least-squares method.
Ideally, every couple of consecutive image frames yields an epipolar point.
However, the computation may fail if none of the candidates has the required
minimal support. This can happen when there are not enough flow vectors
(e.g. the car stands still) or when the flow field is divergent, i.e. there is
significant camera roll.

Extraction of the Rotation from the Epipolar Point Cloud

The vehicle’s driving maneuvers move the epipolar point according to the
optical flow field and create certain patterns. During straight driving the
epipolar points will focus on a dense cluster. When the car takes a curve
the epipolar points will scatter along the horizon line. Large rotational flow
components will make the flow vectors increasingly parallel and create inter-
section points with large coordinates. Likewise, epipolar points will scatter
along the up and down direction if the car abruptly pitches, e.g. when the
car stops or drives over a speed bump. These types of flow patterns create
a cross-shaped distribution as shown in Fig. 3.6. The next stage of the cal-
ibration algorithm fits a cross pattern into the point set. It is derived from
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the MATRIX-algorithm developed by von Hundelshausen et. al [58]. The
MATRIX-algorithm was originally proposed to solve the localization prob-
lem for soccer-playing robots where a set of points had to be matched to a
model of the field lines. In our case the model is simply the axis cross of
the coordinate system. If we find the transformation which aligns the point
cloud to the coordinate system axes, then the inverse transformation will
define the position and orientation of the point cloud.
The force at a point is defined as convex combination of the forces to each line
segment. In our case we have two line segments, the two axes, and therefore
two force components. The force vector is defined as

f(p) = w1 · ( −px0 ) + w2 ·
(

0
−py
)

with weights

w1 =
exp(−|x|

k
)

exp(−|x|
k

) + exp(−|y|
k

)
w2 =

exp(−|y|
k

)

exp(−|y|
k

)

The weights w1 and w2 sum up to 1 and ensure a smooth vector field. They
are both 0.5 if a point is equally far away from both axes. Otherwise the
weights favor the component pointing to the closer axis. If one of the dis-
tances is much larger than the other the weights will function like a minimum
operator. The parameter k shapes the sharpness of the transition between
the two extrema as can be seen in Fig. 3.7b. My solution uses a force field
with k = 10 as depicted in Fig. 3.7a which creates a sharp transition to the
minimum distance force component. The average force of all points is used
to define the translation in an iteration. The rotation angle is proportional
to the angular momentum of the force field which is defined as

m(p) = (px − cx) · fy − (py − cc) · fx,

where the point c is the center of the point cloud and also the center of
rotation.
The whole procedure of fitting the cross shape is laid out in Alg. 4 (see
Appendix). The resulting center point and horizon vector are then used to
construct three orthogonal direction vectors which define the extrinsic camera
rotation (see Alg. 5 in the Appendix).
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Rotation X Rotation Y Rotation Z

Translation X Rotation X + Translation X Rotation Y + Translation X Rotation Z + Translation X

Translation Y Rotation X + Translation Y Rotation Y + Translation Y Rotation Z + Translation Y

Translation Z Rotation X + Translation Z Rotation Y + Translation Z Rotation Z + Translation Z

Figure 3.5: The plots show different types of optical flow patterns. Pure transla-
tions and rotations are plotted with gray background. The 3x3 matrix with white
background shows the combinations of pure flow (first row) and pure translation
(first column).
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Figure 3.6: A typical cross-shaped distribution of epipolar points.
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3.5 Experimental Evaluation

The presented calibration method has been tested on four different camera
setups. All video sequences are a mix of straight driving with stop and go at
intersections and some turns. The plots show the distribution of all epipolar
points computed from the optical flow. The result of the calibration process
is shown by the horizon line, the up direction line and the central epipolar
point drawn on top of the point cloud. A second plot is zoomed in at the
central cluster.
Besides, there the same plots showing the results computed on a quarter of
the data. The subsets were split sequentially and the result for the subsets
show the degree of variation given less and differently distributed data.
The evaluation is completed by an analysis of the convergence properties.
The epipolar points are fed one-by-one to the calibration algorithm and the
intermediate results are compared to the final calibration result computed
from all epipolar points.
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(a) Frontal view camera.

Calibration Results for a Frontal View Camera

For this experiment the stereo camera was mounted on the roof tilted up
by approximately 5◦. Fig. 3.9 shows the epipolar points and the resulting
calibration. The numerical results in Tab. 3.1 show high accuracy and low
variance, except for the yaw angle, which suffers from a low number of vertical
epipolar points. This also reflects in a slow convergence of the yaw angle.
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(b) The central cluster captures the
forward direction.
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(c) The data was split into 4 equal se-
quential parts. Depending on how the
vehicle drove, some arms of the cross
are less populated.
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(d) The central cluster of the subsets.

Figure 3.9: The calibration algorithms fits a cross into the point set. The camera’s
roll angle is determined by the angle of the cross, while the location of the center
determines pitch and yaw angles. For numerical details see Table 3.1.
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Full Data Set Subset 1 Subset 2 Subset 3 Subset 4 RMSE
Roll 0.03◦ 0.46◦ −0.18◦ −0.41◦ −0.07◦ 0.29◦

Pitch 4.97◦ 4.92◦ 5.03◦ 4.88◦ 5.07◦ 0.07◦

Yaw −0.40◦ −1.16◦ −0.40◦ −0.13◦ −0.36◦ 0.36◦

Table 3.1: The root-mean-square error is the deviation of the subset results from
the full data set result. The subsets are the first, second, third, and fourth quarter
of the data set.
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Figure 3.10: The plot shows the calibration error over time. The calibration result
on the full data set (N=10000 points) served as ground truth.

Time 60s 120s 180s 240s 300s 360s
Roll Error 0.06◦ 0.07◦ 0.05◦ 0.04◦ 0.03◦ 0.01◦

Pitch Error −0.66◦ 0.15◦ 0.08◦ 0.03◦ 0.01◦ −0.02◦

Yaw Error −40.61◦ −0.10◦ 0.13◦ 0.67◦ 0.76◦ 0.61◦

Table 3.2: The calibration converges after 2 minutes. However, the yaw angle
variance is relatively high. The type of track (several longs loop) may have induced
a data bias.
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Figure 3.11: Camera with significant roll.

Calibration Results for a Rolled Camera

This camera was placed behind the right side of the windshield and used
for traffic light detection. As can be seen in Fig. 3.11) it has significant roll
and pitch with respect to the car’s coordinate frame. Fig. 3.12 visualizes the
distribution of the epipolar points. The numerical results in Tab. 3.1 show
high accuracy and low variance, except for the roll angle. Since this camera
has a significant roll angle, it will rotate around its depth axis, when the car
drives a curve. Hence. the flow vectors will not exactly converge which leads
to higher variance of calculated horizontal epipolar points.

33



-80 -60 0 60 80
horizontal angle [°]

-80

-60

0

60

80

ve
rti

ca
l a

ng
le

 [°
]

Calibration Results With 14866 Epipoles
horizon
upward line
image boundary
epipolar points
epipolar point of forward direction

(a) When the car drives curves the
epipoles scatter along the horizontal di-
rection. When the car stops epipoles
scatter along the vertical direction.

-10 -5 0 5 10 15 20 25 30 35
horizontal angle [°]

0

5

10

15

20

25

30

35

40
ve

rti
ca

l a
ng

le
 [°

]

Calibration Results With 14866 Epipoles
horizon
upward line
image boundary
epipolar points
epipolar point of forward direction

(b) The central cluster captures the
forward direction.
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(c) The data was split into 4 equal se-
quential parts. Depending on how the
vehicle drove, some arms of the cross
are less populated.
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(d) The central cluster of the subsets.

Figure 3.12: The calibration algorithms fits a cross into the point set. The cam-
era’s roll angle is determined by the angle of the cross, while the location of the
center determines pitch and yaw angles. For details see Table 3.3.
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Full Data Set Subset 1 Subset 2 Subset 3 Subset 4 RMSE
Roll 12.49◦ 12.55◦ 12.44◦ 12.79◦ 12.19◦ 0.19◦

Pitch 23.90◦ 23.79◦ 23.87◦ 24.00◦ 23.95◦ 0.07◦

Yaw −16.92◦ −16.82◦ −16.93◦ −16.96◦ −16.97◦ 0.05◦

Table 3.3: The root-mean-square error is the deviation of the subset results from
the full data set result. The subsets are the first, second, third, and fourth quarter
of the data set.
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Figure 3.13: The plot shows the calibration error over time. The calibration result
on the full data set (N=10000 points) served as ground truth.

Time 60s 120s 180s 240s 300s 360s
Roll Error 2.53◦ −0.51◦ −1.07◦ −0.21◦ −0.41◦ −0.04◦

Pitch Error 0.25◦ 0.32◦ 0.26◦ 0.12◦ 0.10◦ 0.08◦

Yaw Error 0.01◦ 0.04◦ −0.03◦ 0.02◦ −0.05◦ 0.00◦

Table 3.4: The calibration converges after 4 minutes. Additional time decreases
the variance.
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Figure 3.14: Camera rotated far to the top-left.

Calibration Results for Left-looking Traffic Light Cam-
era

This is one of the two cameras used in the car MadeInGermany for traffic
light detection. As can be seen in Fig. 3.14, it is pointed far up and left such
that nearby traffic lights are visible. The calibration results can be seen in
Fig. 3.15. It is challenging because the epipolar point of forward movement is
in the bottom right corner of the image. Flow vectors will always move to the
top left direction. The small angles between them makes the computation of
the intersection points numerically less stable. However, the results shown
in Tab. 3.5 are decent with RSME errors of circa. 0.3◦.
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(b) The central cluster captures the
forward direction.
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(c) The data was split into 4 equal se-
quential parts. Depending on how the
vehicle drove, some arms of the cross
are less populated.
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(d) The central cluster of the subsets.

Figure 3.15: The calibration algorithms fits a cross into the point set. The cam-
era’s roll angle is determined by the angle of the cross, while the location of the
center determines pitch and yaw angles. For numerical details see Table 3.5.
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Full Data Set Subset 1 Subset 2 Subset 3 Subset 4 RMSE
Roll −3.49◦ −3.23◦ −3.05◦ −3.55◦ −4.00◦ 0.32◦

Pitch 16.65◦ 16.89◦ 16.50◦ 16.74◦ 16.53◦ 0.14◦

Yaw −25.58◦ −25.93◦ −25.16◦ −25.62◦ −25.44◦ 0.25◦

Table 3.5: The root-mean-square error is the deviation of the subset results from
the full data set result. The subsets are the first, second, third, and fourth quarter
of the data set.
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Figure 3.16: The plot shows the calibration error over time. The calibration result
on the full data set (N=10000 points) served as ground truth.

Time 60s 120s 180s 240s 300s 360s
Roll Error 0.13◦ −0.03◦ −0.07◦ −0.13◦ −0.20◦ −0.26◦

Pitch Error −0.18◦ −0.15◦ −0.14◦ −0.20◦ −0.20◦ −0.20◦

Yaw Error 2.09◦ 0.28◦ 0.06◦ 0.09◦ 0.03◦ 0.33◦

Table 3.6: The calibration converges after 2 minutes of driving.
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Figure 3.17: Camera rotated far to the top-right.

Calibration Results for Right-looking Traffic Light Cam-
era

This is one of the two cameras used in the car MadeInGermany for traffic
light detection. As can be seen in Fig. 3.17), it is pointed far up and right
such that nearby traffic lights are visible. The calibration results can be
seen in Fig. 3.18. It is challenging because the epipolar point of forward
movement is in the bottom left corner of the image. Flow vectors will always
move to the top right direction. The small angles between them makes the
computation of the intersection points numerically less stable. The results
are similar to the other camera.
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(b) The central cluster captures the
forward direction.
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(c) The data was split into 4 equal se-
quential parts. Depending on how the
vehicle drove, some arms of the cross
are less populated.
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(d) The central cluster of the subsets.

Figure 3.18: The calibration algorithms fits a cross into the point set. The cam-
era’s roll angle is determined by the angle of the cross, while the location of the
center determines pitch and yaw angles. For numerical details see Table 3.7.

40



Full Data Set Subset 1 Subset 2 Subset 3 Subset 4 RMSE
Roll 4.42◦ 4.52◦ 4.99◦ 4.18◦ 4.08◦ 0.32◦

Pitch 16.44◦ 16.42◦ 16.48◦ 16.49◦ 16.31◦ 0.06◦

Yaw 24.02◦ 23.84◦ 24.13◦ 24.06◦ 23.94◦ 0.10◦

Table 3.7: The root-mean-square error is the deviation of the subset results from
the full data set result. The subsets are the first, second, third, and fourth quarter
of the data set.
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Figure 3.19: The plot shows the calibration error over time. The calibration result
on the full data set (N=10000 points) served as ground truth.

Time 60s 120s 180s 240s 300s 360s
Roll Error 0.83◦ 0.74◦ 0.69◦ 0.66◦ 0.62◦ 0.60◦

Pitch Error −0.02◦ 0.11◦ 0.06◦ 0.04◦ 0.01◦ 0.03◦

Yaw Error 0.23◦ 0.16◦ 0.18◦ 0.16◦ 0.17◦ 0.17◦

Table 3.8: The calibration converges quickly for pitch and yaw, but not for the
roll angle.
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3.6 Conclusions

This chapter presented an algorithm to calibrate the rotation matrix of a
car-mounted camera using only optical flow computed on consecutive images.
The flow vectors converge in an epipolar point whose location depends on
the current of direction driving. The distribution of epipolar points gathered
from a video exhibits a cross-shaped pattern from which the axes of the
vehicle’s coordinate system and ultimately the rotation matrix is derived.
The results show low variance and good convergence properties. Convergence
time could benefit from more purposeful driving.
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Chapter 4

Obstacle Detection with the
AutoNOMOS Stereo Camera

This chapter presents my obstacle detection system for a stereo camera that
has been developed by our research group. The embedded stereo camera
is a hardware board with image sensors, optics, an ARM processor, and a
FPGA for massive parallel processing. It captures synchronized images at a
resolution of 752 × 480 with a frame rate of 30 Hz, rectifies the images and
computes a dense disparity map.
Stereo vision 3D point clouds differ from LIDAR point clouds with respect
to noise, accuracy, and precision. Therefore, the proposed obstacle detection
system operates in the 2D/disparity space while also considering 3D con-
straints. Neighboring pixels in the disparity image are strongly correlated
because it is likely they belong to the same object. In this way, outliers
caused by mismatches or occlusions can be easily detected and removed.
In the following section, the underlying principles of epipolar geometry and
disparity map computation are introduced. Then, the obstacle detection and
segmentation algorithm will be presented, followed by an evaluation compar-
ing the results to measurement from the Velodyne laser scanner on our test
vehicle.

4.1 The Epipolar Geometry of Stereoscopic

Vision

Epipolar geometry describes the geometric relationship between several cam-
era views. Fig. 4.1 shows an example configuration with two cameras, the left
camera centered at OL and the right camera centered at OR. The cameras
are related by a rigid transformation composed of a rotation R and a trans-
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Figure 4.1: Epipolar geometry of a two-camera setup. The points X, X1, X2,
and X3 project to the point xL in the left view, but to different points in the right
view. All of these points in the right view are located on the same epipolar line.

lation t. It transforms points in left camera’s frame to the right camera’s
frame, i.e. XL = R ·XR + t, or in homogeneous coordinates XL = T ·XR,
where T =

(
R t
0 1

)
.

The respective image planes are depicted in blue. A 3D point is projected to
a location on the image plane, where the line connecting the 3D point and
the camera’s projection center intersects with the image plane. For example,
X is projected to xl and Or to el. The latter point is the projection of the
right camera’s center. The points el and er are called epipolar points or short
epipoles. Any projected line through an epipole is called epipolar line. The
plane spanned by the camera centers OL, OR, and a third 3D point X is the
epipolar plane for X.
If xL and xR are known, X can be reconstructed by intersecting the rays
OLxL and ORxR. When only xL is given, xR must be located on the epipo-
lar line, which is the projection of the ray OLxL. This is known as the
epipolar constraint. It allows to search efficiently for corresponding points in
the right image given points from the left image (and vice versa).
The epipoles are the blind spots of a stereo camera system. Any point X
along the line connecting the camera centers, cannot be triangulated.
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4.1.1 Algebraic Formulation of the Epipolar Constraints

The epipolar contraint for two cameras can be captured in a 3× 3 matrix F,
the fundamental matrix. It has the following properties:

1. It maps a homogeneous image point from one view to the epipolar line
in the other view, i.e. lR = F · xL and lL = FT · xR

2. The dot between a line and a point on it is 0. From eL · xL = 0 and
eR · xR = 0 follows xL

T · F · xR = 0

3. The epipoles are mapped to 0, i.e. F · eL = eR
T · F = 0

4. F has rank 2

For simplicity, let us assume the camera matrices are the identity matrix:
KL = KR = I3×3. In this case, the fundamental matrix becomes the essential
matrix E. In general, they are related by

E = KR
T · F ·KL,

respectively
F = KR

−T · E ·KL
−1.

The essential matrix is interesting because it solely depends on the extrinsic
parameters R and t. Let us assume the left camera defines the reference
frame, i.e. OL = 0 and the transformation of coordinates from the right
camera’s frame to the reference frame is given by

XL = R ·XR + t

and vice versa
XR = RT · (XL − t).

We know that under central projection a 3D point and its homogeneous image
point are equivalent up to a scale factor λ 6= 0. Therefore, the projection of
the left camera’s center is a multiple of OL in the coordinate frame of the
right camera:

eR = λ ·RT · (OL − t)

= λ · (RT · 0−RT · t)

= λ′ ·RT · t

45



Let us now consider an arbitrary point X and its projection xR. The epipolar
line in the right image must pass through eR and xR. As explained in
Section 3.1.2, this line l can be computed by taking the cross-product

l = eR × xR

= λ′ ·RT · t× xR

= λ′ ·RT · [t] · xR

where [t] the formulation of the cross-product as a matrix-vector product:

[t] =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 .

Thus, the essential matrix E is defined (up to scale) as E = RT · [t].

4.1.2 The Standard Stereo Correspondence Problem

The fundamental problem of stereo correspondence is defined as follows:
Given an image feature in the reference view, find the same feature, i.e.
the projection of the same 3D point, in the other view. By knowledge of the
fundamental matrix the search can be restricted to the epipolar line. How-
ever, the computational burden is still high because sampled pixels along
the line usually have fractional coordinates and the intensity values must be
interpolated from the values at the integer coordinates. Additionally, the
sampling along the line will usually not allow linear memory access which
means that many cache misses will drag down the performance.
That is why most stereo cameras use a parallel setup without rotation be-
tween the cameras and a pure lateral translation. In this case the essential
matrix will be

E = I3×3 [t] =

0 0 0
0 0 −tx
0 tx 0

 .

Multiplying E with an homogeneous image point p =
(
x
y
1

)
yields the epipolar

line l =
(

0
−tx
y

)
, which is a horizontal line. This holds true for any epipolar

line and allows an efficient correspondence search along memory-aligned im-
age rows.
Since all epipolar lines are parallel the epipolar point must be a point at
infinity. In the standard setup the center of the other camera is at Z = 0
and central projection would require a division by 0.
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Figure 4.2: Two perfectly aligned cameras with a common focal length f are
separated by a baseline b. They observe a point at depth Z. From the equations
of central projection follows that the disparity d is computed as d = f ·b

Z .

In practice, it is virtually impossible to achieve a perfect setup with exactly
aligned cameras. Even small rotations or translations will introduce a sig-
nificant error with respect to 3D reconstruction. Offsets in vertical direction
will deteriorate stereo matching because corresponding pixels have different
y coordinates. Offsets in horizontal directions will lead to wrong disparity
measurements affecting the accuracy of distance measurements.
However, the images can be rectified to what they would look like if they
were captured by perfectly aligned cameras. The rectification transform is
a homography computed from the inter-camera rotation and translation. It
maps both images to a common image plane by means of rotation transla-
tion and scaling. The rectification transform is chosen in a way such that
the overlapping area is maximized and the amount of perspective distortion
is minimized.
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4.1.3 The Relation of Disparity and Depth

Let us consider a standard camera setup as shown in Fig. 6.2. Since cor-
responding points have the same y-coordinates only the disparity, the hor-
izontal offset, is relevant. A disparity map D, which is the output of our
embedded stereo camera, stores the disparity for every pixel of the reference
image. For example, D(x, y) = d means that the point (x, y) in the left image
corresponds to the point (x− d, y) in the right image.
As it turns out there is a very simple relationship between the disparity and
the depth Z of a projected 3D point. As shown in Fig. 6.2 the common
coordinate system is centered at the projection center of the left camera.
Then, the transformation matrix for the right camera is the homogeneous
translation (

1 0 0 −b
0 1 0 0
0 0 1 0
0 0 0 1

)
.

Both cameras observe a point
(
X
Y
Z

)
which the left camera projects to

( x1y ) =
(
f X

Z

f Y
Z

)
and the right camera projects to

( x2y ) =
(
f X−b

Z

f Y
Z

)
.

The disparity d is the difference of image x-coordinates

d =x1 − x2

d =
f

Z
(X − (X − b)) =

f · b
Z

.

The equation d = f ·b
Z

is the fundamental to the standard stereo setup. It
gives insight into the properties of stereoscopic depth measurements. As can
be seen in Fig. 4.3, the depth resolution is not equidistant. At close range the
resolution is very fine-grained and becomes very coarse at a larger distance.
For our camera with focal length f = 651.6 and baseline b = 25 cm the dis-
parity at Z = 10 m is d = 16.29. When the distance doubles the disparity
halves. At Z = 50 m it will be at d = 3.258. The smaller the disparity the
larger is the distance gap f ·b

d−1
− f ·b

d
. That is the main disadvantage compared

to LIDAR scanners which measure distances at a constant resolution.
Another drawback is the small number of possible disparity values. The
block-matching algorithm on the stereo camera has a disparity range of
[0..127]. Its matching algorithm compares every pixel location in the left
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Figure 4.3: The relation of disparity d and depth z is governed by z = f ·b
d . Our

stereo camera has a base line of b = 25 cm and a focal length of f = 651.6 px.
The disparity resolution is very dense at close range and coarse at large range.
Distances beyond 10 m have a disparity ≤ 16.29.

image to 128 pixel locations in the right image. Using a window around the
locations it computes the Hamming distance of Census-transformed pixels.
In a winner-takes-it-all fashion the disparity with the lowest cost is chosen.
Then, it uses the matching cost function values C(d− 1), C(d) and C(d+ 1)
to interpolate a disparity with fractional part. The sub-pixel interpolation is
a heuristic which very much depends on the smoothness of the cost function.
Other options to increase the depth resolution are a wider baseline and a
larger focal length, i.e. a narrower field of view.

4.2 3D Image Segmentation

The disparity image provided by the stereo camera holds disparity values for
pixels of the left camera’s image. The re-projection matrix Q is defined as
follows:

Q =


K−1

11 0 0 K−1
13

0 K−1
22 0 K−1

23

0 0 0 1
0 0 1

tx·f 0
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(a) The left (rectified) view of the
stereo images. The other camera is
positioned 25 cm to the right.

(b) The left (rectified) view with dis-
parity overlay. The brightness cor-
responds to the disparity values ∈
[0..127]. The camera computes dispar-
ity values starting at column 128.

Figure 4.4: The embedded stereo camera outputs color images and disparity
images.

where K is the intrinsic matrix of stereo camera’s reference view, f = K11

is the focal length and tx the lateral distance between the two cameras (the

baseline b). Q maps a vector

(
u
v
d
1

)
containing image point ( uv ) and disparity

d to the 3D point

(
X
Y
Z
1

)
∈ P3. The mapped points reside in the camera’s

coordinate system. Using the camera-to-car transformation T4×4 we can di-
rectly transform them to vehicle coordinates using the modified re-projection
matrix Q′ = T4×4 ·Q.
My obstacle segmentation algorithms works on the 3D image created by
re-projection of the disparity image with Q′. Presuming perfect extrinsic
calibration and stereo depth measurements, the ground plane points will be
at z = 0 and planar faces perpendicular to the ground will have constant Z
values along the columns of the 3D image.
The 3D image is processed in several steps:

1. Scan for vertical constant-depth stripes (v-stripes).

2. Merge neighboring v-stripes to objects.

3. Fill the occupancy grid according to the obstacles’ boundaries.

4. Extract free space from the occupancy grid.

Each of these steps will be discussed in detail in the following subsections.
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(a) Vertical 1-column wide stripes al-
ternating in cyan and magenta. Col-
ors follows the scan order, which is first
top-down, then left-to-right.

(b) Bounding boxes and 2D contours
of detected objects.

Figure 4.5: The segmentation works on the reconstructed 3D image. It is scanned
top-down column-wise to find stripes of nearly constant distance. The vertical
stripes are merged according to proximity criteria.

4.2.1 Detection of Vertical Constant-Depth Stripes (V-
Stripes)

This step of the algorithm searches the 3D image for one column wide vertical
stripes of roughly constant longitudinal distance with respect to the local
car coordinate system. The outline of the algorithm can be found in the
Appendix (Alg. 7). The search space of the algorithm is limited to a volume
of interest, e.g. the road area with a height range of 0.3 m–2 m. In a double
loop the 3D image is traversed column-wise from top to bottom. A vertical
stripe is started if a point is within the volume of interest and if it is at a
depth edge, i.e. the above point is much further away. The stripe continues
as long as the longitudinal distance of a succeeding pixel does not deviate too
much from the minimum found so far. Small gaps due to missing values in
the disparity image are ignored. Once a second depth edge has been reached
the vertical patch is complete, and another patch might be found in the in
the remainder of the column.

4.2.2 Horizontal Merge of V-Stripes

When all columns have been processed the vertical stripes are merged to
clusters, if they are close in pixel distance as well as in 3D distance. The
merge criteria have been determined heuristically to work for a high level of
disparity noise. Connected vertical stripes must be
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• less than 10 image columns apart,

• less 1 meter apart in lateral distance,

• and less then 0.5 meter apart in height.

A graphed-based connected component algorithm merges stripes according
to these criteria as outlined in Alg. 8 (see Appendix). The result are clusters
of stripes with a 2D contour defined by outer contour of the clustered stripes
and a 3D contour defined by the 3D points belonging to the stripes.

4.2.3 Filling the Occupancy Grid

In my implementation I have used the ROS Grid Map library[59], an efficient
implementation of occupancy grids. The grid size was set to 100 m length and
16 m width with square cells of 0.25 m width. The library offers a convenient
way to iterate over cells within a polygon. This feature allows to consider
only cells within the stereoscopic field of view.
The 3D points of the segmented objects are filled into the occupancy grid
according to the depth uncertainty of the associated disparity value. The
lower the disparity the more cells in longitudinal direction must be updated.
In my implementation a disparity delta of 0.5 was used to compute the range
of grid cells to be updated.

4.3 Experimental Evaluation

4.3.1 Comparison of Free Space Derived from Occu-
pancy Grids

For this evaluation the occupancy grid cells are scanned radially with the
camera position at the center. The horizontal field of view is separated into
40 equal angular segments. For each segment the distance to the closest
occupied cell is determined. A cell is regarded as occupied if the maximum
height exceeds 0.3m. The same is done with an occupancy grid computed
from measurements of the Velodyne HDL-64 laser scanner. The Velodyne
has 64 lasers covering approximately 26.4◦ vertical field of view, which is an
average vertical resolution of 0.4◦. The rotation frequency of 10 Hz yields a
horizontal resolution of 0.16◦. It is not as dense as the stereo point cloud,
but it is sufficient for comparison. Fig. 4.6 depicts an overview of the test
scenario. The evaluation is limited to the camera’s stereoscopic field of view,
i.e. where depth measurements are available.
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Figure 4.6: This is a top view of the evaluation scenario. The occupancy grid is
displayed in gray, the stereo point cloud in blue, and the velodyne point cloud in
orange. The green polygon is the stereoscopic field of view. The area of interest for
the evaluation is the intersection of the grid and the green polygon. The orange
polygon shows the radial distance computed from stereoscopic occupancy grid,
while the blue polygon was computed from the velodyne occupancy grid.

On a test sequence of 12365 stereo images the free space polygons for the
stereo camera and for the Velodyne have been computed and compared by
the Intersection-over-Union metric (IoU). It measures the overlapping area
divided by the union of both polygons. The average IoU over the whole video
sequence was 0.83 with a standard deviation of 0.11. As can be seen in Table
4.1 the free space congruence increases if the distance is limited to shorter
ranges.

4.3.2 Comparison of Stereo Obstacles and Velodyne
Measurements

In this experiment the position accuracy of detected stereo obstacles is eval-
uated. The contour of each obstacle was intersected with the midpoint of

53



Distance Range [m] <10 m <20 m <30 m <40 m <50 m <60 m <70 m <80 m <90 m <100 m
Free Space IoU average 0.96 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.83 0.82
Free Space IoU standard deviation 0.07 0.09 0.09 0.10 0.10 0.10 0.10 0.11 0.11 0.11

Table 4.1: Comparison of Stereo vs. Velodyne free space by the Intersection over
Union metric (IoU).

Obstacle Distance [m] N TP rate FP rate FP distance FP distance
average [m] standard deviation [m]

<10 m 24095 0.89 0.11 0.34 0.64
10 m–20 m 49783 0.84 0.16 0.43 1.10
20 m–30 m 31994 0.71 0.29 0.78 1.05
30 m–40 m 20736 0.64 0.36 1.37 1.81
40 m–50 m 16484 0.50 0.50 1.77 1.94
50 m–60 m 10290 0.44 0.56 3.10 3.51
60 m–70 m 13796 0.41 0.59 4.19 5.23
70 m–80 m 6994 0.29 0.71 5.89 8.13
80 m–90 m 8286 0.16 0.84 9.07 10.65
90 m–100 m 3475 0.08 0.92 13.31 12.54
any range 185933 0.65 0.35 3.47 6.56

Table 4.2: True positives (TP) are obstacles supported by Velodyne measure-
ments. False positive (FP) have zero support. FP distance refers to the distance
between a FP and the closest Velodyne measurement.

occupied cells from the Velodyne occupancy grid. The grid has a length
of 100 m, a width of 16 m and grid cell size of 25 cm. Table 4.2 shows the
results for a video sequence of 12365 stereo images. The true positive de-
tections (TP) are all obstacle whose contour contour contains at least one
occupied cell of the Velodyne occupancy grid. Otherwise it is counted as
false positive detection (FP) and the distance to the closest occupied cell has
been conputed (FP distance). The TP rate is highest at close range (0.89 at
less than 10 m distance) and falls off with increasing distances. Conversely,
the distances of false positives to Velodyne measurement increase with the
distance limit.

4.4 Conclusions

The presented stereo obstacle detection system can compute the available free
space in front of the car with reasonable accuracy. The camera’s depth mea-
surement noise is considerably higher than that of a Velodyne laser scanner.
Object detections on a frame-by-frame basis have large position uncertainties
increasing with the object distance. The object boundaries in the image are
more robust than the distance measurements, because depth edges provide

54



a strong prior for segmentation. Hence, image-based tracking of obstacles is
more stable than 3D tracking.
The localization of static objects can be improved by filtering distance es-
timates over time. In Chapter 5 we will see an application of the obstacle
detection system to the problem of mapping positions of traffic light poles.
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Chapter 5

Traffic Light Detection

This chapter presents a traffic light detection system for urban driving scenar-
ios with focus on robustness and real-time capability. It has been successfully
tested with our intelligent car MadeInGermany. For the purpose of traffic
light detection our car is equipped with two monocular cameras covering a
wide field of view in order to enable close-range detection. Additionally, the
system relies on a map which contains the global positions of all traffic lights
and their association to lanes. Thus, when the ego-position and the planned
route is known, the position of the next relevant traffic lights can be extracted
from the map and, using the known extrinsic calibration, the position of the
traffic light in the images can be predicted. Effectively, only small areas of
the images must be processed, leading to a higher computational efficiency
and better detection performance.

5.1 Prior Knowledge about Traffic Lights

Traffic lights have a well defined appearance. For example in German, they
are specified by official regulations which define measurements, light frequen-
cies, brightness etc. Different stages of the presented traffic light detection
system use these information to accept or reject intermediate detection re-
sults. The most relevant priors used by my implementation are:

1. The traffic signal light is monochromatic red (613-631 nm), yellow (585-
597 nm), and green (489-508 nm). The emitted light is directed. It has
maximal luminance towards its principal direction.

2. Circular traffic light signals have a diameter of either 20 or 30 cm.

3. Traffic lights signals are mounted with a housing at certain heights,
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Figure 5.1: Two AV Guppy F-036C cameras were mounted with suction cups
behind the windshield. The camera are pointed slightly upwards and sideways to
maximize the covered field of view for close-range traffic light detection.

either on poles in ca. 2 m height or hanging above lanes in circa 4.5 m
height.

4. The traffic light housing is usually of rectangular shape and has a dark
green, gray or black color.

5. The different signal elements are ordered vertically with the red light
at the top.

6. There are four valid active states (in Germany): Red light, red and
yellow light, yellow light, and green light.

These rules are represented by different parameters in the detection modules,
which can be adapted if some of the rules change, e.g. in other countries.

5.2 System Overview

The overall system is shown in Fig. 5.2. It consists of four components:

1. ROI prediction: Given the planned trajectory and the ego-position,
find the relevant traffic lights in the map and project their positions to
regions of interest (ROIs).

2. Detection: Search each ROI for traffic light candidates.

3. Tracking and Selection: Track all traffic light detections over time, and
choose for each ROI the most likely traffic light.

4. Traffic Light State Selection: Decide most likely state from all detec-
tions.
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The traffic light detection system processes the image stream of two color
cameras of type Guppy F-036C, which are fully calibrated with respect to
intrinsic and extrinsic parameters. They are mounted behind the windshield
pointed slightly upwards and to the side in order to cover a maximum field of
view for close range detection. Detection is triggered only when traffic lights
are expected to be visible. This mechanism relies on information from other
modules:

• The vehicle MadeInGermany has a very precise localization system,
the Applanix POS LV 200. Additionally, differential GPS and a lane
detection system increase the accuracy. In combination with a map
of global traffic light locations, including the height, it is possible to
project the expected position of the traffic lights. The projection accu-
racy directly depends on the quality of the map and of the localization.
Depending on the estimated accuracy a volume around the 3D posi-
tion is projected and represented as a bounding box in the image. This
box serves as Region of Interest (RoI) and thus simplifies the detection
task. Small RoIs reduce the number of false positives significantly.

• Applanix’ navigation solution delivers exact roll and pitch measure-
ment for the car, allowing the correction of the pitch and roll rotations
induced by the uneveness of the road. These high-frequency rotations
move the horizon and the correction is necessary to compute a correct
projection of traffic light positions to the images.

• The measurement of the ego-velocity enables the exact prediction of
tracked traffic lights.

• The path planning module creates a trajectory along road lanes, to
which the associated traffic lights are stored in the map. Thus, only
the traffic lights relevant to the planned trajectory must be considered
for the RoI projection.
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Figure 5.2: System overview: Map-assisted traffic light detection system for
MadeInGermany

5.3 Computation of Regions of Interest (ROI)

While driving autonomously MadeInGermany ’s planning module decides
which route to take and which lanes to follow. The route planning takes
place on a graph deduced from the annotated digital map. There is a N-
to-M mapping between lanes and traffic lights. A lane can be associated to
several traffic lights and a traffic light can govern several lanes. Knowing the
planned trajectory, the ROI generation module retrieves all relevant traffic
light positions and maps them to image coordinates. If there is no traffic
light within the planning horizon, ROIs will not be generated and the detec-
tion will not be triggered.
The projection uses the global pose of the car (Rw, tw), the pre-calibrated ex-
trinsic matrix of the camera with respect to the car (Rc, Tc), and the intrinsic
calibration of the camera K. Rw contains the car’s heading direction (yaw
angle) and the roll and pitch angles which determine the car’s attitude with
respect to the ground plane. The homogeneous projection matrix, which
maps global a point P to an image point p is constructed as follows:

p3×1 =
[
K 0

]
3×4

[
Rc tc
0 1

]
4×4

[
Rw tw
0 1

]
4×4

P4×1

The actual ROI is the projection of the traffic light’s known 3D extent plus a
margin of 1 meter to reflect errors of the mapped positions or of the vehicle’s
localization. The procedure is repeated for the second camera’s image as well
and the ROIs are then forwarded to the image processing modules.
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(a) A histogram of hue values from de-
tected traffic light pixels. Red and yel-
low hue ranges overlap.
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(b) The product of hue and satura-
tion yields a better separation of red
and yellow pixels.

5.4 Detection of Traffic Lights within a ROI

This part of the pipeline constructs and verifies the traffic light candidates,
which consist of a bounding box for each of the three color signals and their
state (on or off).

HSV Color Classification

The first step converts the images from RGB to HSV (hue, saturation, value)
color space. The conversion is defined as:

R,G,B ∈ [0..1]

M := max(R,G,B)

m := min(R,G,B)

H :=


0 if R = G = B
60◦ · (0 + G−B

M−m) if M = R

60◦ · (2 + B−R
M−m) if M = G

60◦ · (4 + R−G
M−m) if M = B

H :=H + 360◦ if H < 0

S :=

{
0 if R = G = B = 0
M−m
M

else

V :=M

With respect to traffic light colors, HSV has more meaningful components
than RGB. Traffic light signals emit monochromatic bright light, which di-
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Hue [◦] Saturation ∈ [0..1] Value ∈ [0..1] Hue · Saturation [◦]
Red 0◦-43◦ 0.3-1.0 0.3-1.0 0-27.7
Yellow 19◦-84◦ 0.3-1.0 0.3-1.0 27.7-44.3
Green 144◦-181◦ 0.5-1.0 0.3-1.0 55.4-166.1

Table 5.1: Thresholds used for color classification. Values may vary depending
on the camera settings and hardware specifics.

rectly translates to a small hue range with high value and high saturation.
However, cameras measure all incoming light which includes also the ambient
light from the sky and other light sources. Figure 5.3a shows a typical dis-
tribution of hue values collected from samples of detected traffic lights. The
hue ranges of red and yellow pixels overlap significantly leading to potential
confusion of red and yellow lights. The influence of ambient (white) light
can be measured by the saturation of traffic light pixels. Adding white light
to monochromatic light increases all RGB values and therefore reduces the
saturation. Depending on the white balance settings of the camera, white
light can increase one RGB component more than others. In case of our
cameras, there is a slight bias towards green. Ambient white light shifts the
hue angle towards green (hue=180◦). Therefore, in Fig. 5.3a the red pixels
with larger hue values tend to have a lower saturation. The overlap of hue
ranges can be resolved by evaluating the product of hue and saturation. As
shown in Fig. 5.3b the product creates a good separation of red and yellow
pixels.
The classification performs a color thresholding on values of hue, saturation,
value, and the product of hue and saturation. Thresholds are sensor depen-
dent and have been derived from collected data. A typical parameter set for
our cameras is shown in Table 5.1. The pixels within the ROIs are tested
against thresholds and collected for further processing.
For performance reasons the number of points per color class has been lim-
ited to N = 2000. The exact number depends on available processing time
and the resolution of the image. It guarantees that the system is not bogged
down by circumstances which create a lot bright colored points, e.g. direct
sun-light into the camera. When there too many points, the ones with the
least saturation are discarded.

Color Point Clustering

This phase of the algorithm finds connected components in the pixels of each
of the three color classes. The clustering method uses OpenCV’s implementa-
tion of the Connected-Component algorithm from Chapter 21 in Introduction
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to Algorithms [60]. It is a graphed-based method working with Union-Find
data-structures. The adjacency relation of the graph can be freely defined
which offers more flexibility than a simple flood-fill algorithm. For example,
one can define an inter-pixel distance larger than 1 to merge across gaps. The
draw-back is the O(N2) asymptotic run-time of the algorithm. Therefore, I
have implemented a two-step variant of the connected component analysis.
The points of a color class are ordered by their image position from top left
to bottom right. The list of points is split into parts spanning at most two
rows. Then, the connected component algorithm is run on each of the subset
which generates a list horizontal stripes of color pixels. A second iteration of
the connected component algorithm merges the horizontal stripes to larger
cluster spanning more than two image rows. A pseudo-code implementation
of this clustering method can be found in the Appendix (Alg. 9).
The resulting clusters are then filtered by a range of perspective and geomet-
ric filters:

1. The width-to-height ratio must be close to 1.

2. The ratio of number of pixels and the bounding box area must larger
than a density threshold.

3. The size must be consistent with the expected (projected) size derived
from the known 3D position and known light diameter.

Construction of Traffic Lights from Detected Light Blobs

In this phase the green, yellow, and red light blobs from the previous stage
are analyzed to generate hypotheses of 3-segment traffic lights.
The algorithm loops over all colored clusters and computes the theoretical
positions of the other (unlit) lights. Depending on the color these may be
above or below of the given light blob. It requires to know the projection of
the 3D up direction for an image position. Since this is a recurring operation
the up vectors are computed beforehand and stored in a lookup table. The
up vector is computed by re-projecting an image point to any point along
the direction of a pixel. Then the height of this point is increased and the
modified point is projected back to the image, yielding the up direction in
the image.
The areas of unlit light segments are tested for low saturation (S < 0.15)
and moderately low value (V < 0.5). If the density, the number of these
pixels divided by the area, is larger than a threshold, the three segments are
accepted and stored as a traffic light candidate.
A special case is the state in which the red and yellow light are switched on
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simultaneously. To detect these, all pairs of red and yellow light blobs are
tested if they are close to each other and of similar size. If the region at the
position of the green light passes the test the candidate is accepted.
Pseudo-code of the algorithm can be found in the Appendix (Alg. 10).

Tracking of Traffic Lights and State Determination

The tracking of detected traffic lights is very effective to remove spurious
false positives. The tracker enforces:

• temporal consistency (remove spurious detection),

• spatial consistency (feasible trajectory), and

• size consistency (diameter).

When a new set of measurements arrives, the already tracked traffic lights
are predicted to the time stamp of the new measurements, using the known
ego-motion. Then, the new detected traffic lights are matched to tracked
ones by comparing their size and the distance between measured and pre-
dicted position. Tracking enforces consistency because it removes traffic light
candidates not updated for some time.
For each input region of interest a tracked traffic light will be selected if its
last observation happened within a small time range and it has been tracked
for at least 3 frames. If several candidates are available the one with the
most plausible light blob diameter is chosen.
Finally, the joint traffic light state must be decided. If the detected states
from all ROIs have are contradictory the majority wins. In case of a split
vote, the more prohibitive signal wins. The joint state is then passed through
a hysteresis filter. A change is published only if the new state has been de-
tected three times in a row.

5.5 Experimental Evaluation

The testing track is a 13km long loop on the Straße des 17. Juni, in the
inner city of Berlin as shown in Fig. 5.4. It comprises of four-lane roads with
two large roundabouts and intersections with groups of 2 to 4 traffic lights.
The evaluation has been run on image data from different days with different
lighting conditions. Altogether there were 130 traffic lights belonging to 44
groups where a group is defined by having a common state. Table 5.2 shows
statistics for the detection of single traffic lights. The first column refers to
the distance at which the traffic light detection was trying to detect it for the

63



Figure 5.4: Straße des 17. Juni, a main avenue in Berlin with two large round-
abouts and more than 130 traffic lights.

First Sight [m] N Average First Detection [m] Standard Deviation [m] Not detected
<40 m 20 15.6 11.4 6
40 m–60 m 19 38.4 6.5 0
60 m–80 m 55 40.1 22.8 4
80 m–100 m 477 68.4 27.5 32
any Range 571 62.8 29.4 42

Table 5.2: Detection results for single traffic lights. First sight denotes at which
range the detection system was triggered the first time for a traffic light.

first time. A successful detection is assumed when it has been detected for
at least ten times. Some of the traffic lights appear at rather short distances.
This usually happens in the roundabouts where there are many intersections
close to each other. Both roundabouts have five connecting roads with up
to four lanes each. The average detection range was 62.8 m with a rather
high standard deviation of 29.4 m. There are two main reasons for missed
or late detections. First, there is dense traffic on that street, large vehicles
may obstruct line of sight to a traffic light. And second, there were two
types of light sources, LED lights and conventional light bulbs focused by a
mirror behind them. The LEDs emit bright light in almost any direction,
while the conventional lights have a narrow cone of high luminance. This was
especially problematic at the exit of the roundabout where the car approaches
the traffic light at a steep angle.
On many intersections there are multiple traffic lights showing the same state.
Often it is enough to detect only one of them correctly. Table 5.3 shows
results for this case. Here, the average first detection range was at 90.2 m.
There are some outliers, where the state could only be determined very late
which happens for the reasons mentioned before, especially for groups of one
or two traffic lights.
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First Sight [m] N Average First Detection [m] Standard Deviation [m] Worst First Detection [m]
<40 m 9 27.3 7.1 13.6
40 m–60 m 10 48.5 2.4 43.9
60 m–80 m 22 74.8 3.6 69.7
80 m–100 m 153 98.9 3.9 80.5
any Range 194 90.2 19.4 13.6

Table 5.3: Detection results for traffic light groups. Traffic lights with a shared
state constitute a group. On average three traffic lights belong to a group of which
at least one must be detected. First sight denotes at which range the detection
system was triggered the first time for a group.
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5.6 Stereoscopic Traffic Light Detection and

Mapping

Traffic light detection can employ the depth measurements to discard single
pixels at very early stage[42] because traffic lights appear either on poles
next to the road or hang above the road. However, because of the inverse
relationship of disparity and depth (see Section 4.1.3) this constraint cannot
be enforced very rigorously.
Robuster than a pixel-wise depth evaluation is the detection of the poles
using the obstacle detection system from Chapter 4. It provides 3D locations
of potential traffic lights which the traffic light detection system maps to
regions of interest. The 3D positions of detected and tracked traffic lights
are collected and used to create a filtered estimate of the global 3D traffic
light position. This solves the problem of annotating maps with positions
and heights of yet unknown traffic lights.

5.6.1 Detection of Potential Traffic Light Locations

For the purpose of this task the obstacle detection system from Chapter 4
is parametrized in two ways. Firstly, the 3D regions of interest define a
”tunnel” around the road. Objects on the road are not of interest. Instead
the volume of interest covers the area next to the road up to a height of 3 m
and the height range of 3 m to 6 m above the road.
Secondly, the found objects are filtered by their 3D shape. Traffic lights next
to the road are mounted on poles usually at a height of 2 m and the whole
housing is at least 1 m tall. Hence, the algorithms scans for thin (width
< 0.5 m) and tall (height > 2.5 m) objects. Traffic lights hanging above the
road have a height of at last 1 m and the height-width ratio of the housing
is circa 3 to 1. Also, it must be surrounded by clear depth edges as there
should be no other object nearby.
All objects meeting these criteria are passed as potential locations of interest
to the traffic light detection system. The resulting regions of interest usually
capture potential traffic lights, but also appear on pole-like structures like
trees, lamp posts or sign posts.

Fig. 5.5 shows an example scene which illustrates the criteria for obstacles
to be selected as potential traffic light. The pedestrians on the road are not
selected because they are outside the volume of interest and they are not tall
enough. The car parked on the right side is too wide to be a traffic light
pole, and the same is true for the obstacles far in the back.
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Figure 5.5: From top left to bottom right: 1. Image with overlaid disparities
2. Left image view 3. Vertical obstacles stripes 4. 2D obstacles contours and
bounding boxes. Proposed traffic light RoIs are in red.

5.6.2 Automatic Mapping of 3D Traffic Light Positions

The 3D objects will be mapped by the traffic light detection to image regions
of interest and from that point the detection pipeline proceeds as described
in the previous sections. It will detect traffic lights, and track them including
their (global) 3D positions. A tracked traffic light will expire once it has not
been seen for some defined duration threshold. The discarded tracks will be
analyzed if they are long enough and if the last position has been close to the
car, i.e. if the car has just passed it. If these criteria are met the positions
are combined using the measurement update steps of a Kalman Filter.
The Kalman Filter[61] models the global (x, y) coordinates. The height is
derived from the stereo obstacle’s height and set to either 2.1 m for pole-
mounted traffic lights, or 4.5 m for suspended traffic lights. The measurement
and transition matrix are set to the identity matrix. The measurement noise
matrix is directly derived from the covariance matrix of the points belonging
to the 3D object received from the stereo obstacle detection. The process
noise is assumed to be very small, it is basically the localization error of the
GNSS system (Applanix POS LV 550).
The traffic light’s facing direction is stored as the opposite of the car’s heading
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Number of ROIs Number of ROIs Traffic Light Detection Range Traffic Light Detection Range
Average Standard Deviation Average[m] Standard Deviation [m]

5.1 2.1 28.3 5.3

Table 5.4: The stereo obstacle detection generates on average 5–6 regions of
interest. The first detection of an actual traffic light pole happened on average at
a distance of 28 m.

direction, when it was closest to the traffic light. The final filtered position
will be published and stored in a database. The mapping is repeated multi-
ple times to compensate for localization and spurious detection errors. Given
enough repetitions, repeatedly mapped traffic light will cluster around the
their true position.

5.6.3 Experimental Evaluation

Traffic Light Proposal

The first evaluation metric compares regions of interest generated from dis-
parity maps with those generated from pre-mapped GPS positions. There
are two metrics: the distance at which the correct RoIs are generated and
the number of proposed 3D objects per frame. The experiment was con-
ducted on video data where the cars drives through Berlin and occasionally
encounters intersections with up to three traffic lights. The stereo obstacle
detection system searches every frame for potential traffic light objects. Pole-
like structures like trees, lamp post, traffic signs appear frequently such that
on average the system proposes 5–6 potential traffic light objects per frame.
As can bee seen in Table 5.4 the actual traffic light poles were detected at
distances of up to 28 m. At larger distances thin structures like poles could
not be reliably segmented due to a lack of depth resolution.

Traffic Light Position Mapping

The second experiment compares the mapped traffic light positions with
manually mapped positions at the Thielallee intersection close to the Freie
Universität Berlin. For each direction there was one suspended and two
pole-mounted traffic lights. The traffic light detection module will search all
proposed regions of interest and create a track of detections including the
estimated map positions. Table 5.5 shows the numerical results for the in-
tersection depicted in Fig. 5.6. Traffic lights detections are clustered around
the ground truth mapped positions. The longitudinal position standard de-
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Figure 5.6: The plot shows the outline of a small 3-way junction near the Freie
Universität Berlin. The manually mapped positions of traffic lights are marked
red, three at each stop line. Each colored circle corresponds to the final state of a
Kalman filter which has processed a whole sequence from the tracker. The ellipses
visualize the covariance of a cluster.

viation is on average 1.6 m, while the lateral deviation is on average 0.3 m.
The mapping was evaluated on image data from five different days. Repeated
mapping is necessary to filter out false positive detections which do not create
such dense clusters of positions.
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Number of Ground Truth Ground Truth Mapped Mapped σ1 [m] σ2 [m]
Detection Tracks X [m] Y [m] X [m] Y [m]

22 -42.7 26.4 -41.7 24.0 0.2 1.4
15 -46.3 24.5 -45.4 22.5 0.2 1.2
9 -50.0 22.7 -49.0 20.8 0.1 0.6
13 -22.0 0.8 -20.6 -1.2 0.4 1.5
12 -18.4 2.9 -17.5 1.9 0.5 1.8
8 -14.8 5.0 -14.5 4.1 0.5 3.2

Table 5.5: Detection results for the six traffic lights depicted in Fig. 5.6. Data was
collected on five different days. A detection track is a whole sequence of detections
filtered to one position estimate. The standard deviations refer to the scatter of
the mapped positions.

5.7 Conclusions

The presented traffic light detection system using two monocular cameras
can robustly detect traffic light states at intersections. The distance of first
detection was on average 60 m. The main challenges were occlusion by other
vehicles and the narrow cone of high luminance for some non-LED traffic
lights. The detection was guided by a map with annotated traffic light loca-
tions and their association to lanes.
The second part of this chapter showed how a combination of my stereo-
scopic obstacle detection and the traffic light detection maps the locations
of yet unknown traffic lights. The former system proposes potential traffic
light objects, while the latter verifies and filters the 3D positions. The po-
sition’s longitudinal standard deviation was on average 1.6 m and the more
important lateral standard deviation was around 0.3 m.
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Chapter 6

Visual Ego-Motion Estimation

This chapter presents an ego-motion estimation method that processes dis-
parity maps provided by our stereo smart camera and sparse optical flow
in order to measure the car’s velocity and angular velocity. First, we will
quickly recapture the concepts of motion field and optical flow. Then, the
algorithm will be presented followed by results from experiments, where vi-
sual ego-motion is compared to measurements of our very precise navigation
solution (Applanix POS LV 220).

6.1 The Motion Field of a Moving Camera

The motion field is a vector field that describes the movement of 3D points
relative to the camera. Besides illumination changes, the motion flow is the
principal cause for changes in image intensities, also known as optical flow.
In static scenes optical flow is exclusively caused by the camera’s movement.
The presence of independently moving objects causes additional optical flow.
With monocular cameras these two components cannot be easily separated
which makes visual ego-motion estimation from optical flow challenging.

The Projection of Motion

As can be seen in Fig 6.1, 3D coordinates refer to the camera’s coordinate
frame at a given time t. The observed motion vector on the image plane is
a projection of the object’s movement. The velocity of a 3D point P is the
first derivative by time t: V = dP

dt
. In case of discrete time steps, the velocity

is the change between two consecutive poses. The transformation between
two poses is defined by a rotation matrix R and a translation vector T. The
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Figure 6.1: The camera’s movement is described by a rotation vector ω and a
translation vector T. It moves the location of a point P in the camera’s coordinate
frame and its projection on the image plane. The vector v between the two image
points is determined according to equations 6.2 and 6.3.

velocity is computed as the difference of consecutive camera positions:

V = P(t+1) −P(t) = R(t) ×P(t) + T(t) −P(t) (6.1)

An arbitrary rotation can be decomposed into three consecutive rotations
around the coordinate system axes. Here, we will work with the Tait-Bryan
angles, where the rotation matrix is the composition of rotations around z-,
y-, and x-axis, in that order. This sequence is often used in aviation and
also used by our navigation solution system (Applanix POS LV 220), which
will serve as ground truth in the experiments. The multiplication of three
rotation matrices R = Rx ·Ry ·Rz yields:

R =

 cωycωz cωysωz −sωy
sωxsωycωz − cωxsωz sωxsωysωz + cωxcωz cωysωx
cωxsωycωz + sωxsωz cωxsωysωz − sωxcωz cωycωx


With the small angle approximation (cosα ≈ 1, sinα ≈ α, sinα sin β ≈ 0)
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we get a linear function

L{R(ωx, ωy, ωz)} =

 1 ωz −ωy
−ωz 1 ωx
ωy −ωx 1

 =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

+R = Sω + I

which can be written as the sum of the skew matrix Sω and the Identity I.
Replacing R with Sω + I equation 6.1 becomes:

V = (Sω + I) ·P + T−P

= Sω ·P + T

= Sω ×P + T

Now we want to define the pixel velocity v = ( vxvy ) of a pixel p = ( xy ) , which

is a projection of the 3D point P =
(
X
Y
Z

)
. Under central projection they are

related by the equation

p =
f ·P
Z

The pixel velocity v is defined as first time derivative of p:

v =
dp

dt
=
df ·P

Z

dt

Using the quotient rule for derivatives and dP
dt

= V we get:

v = f · V · Z −P · Vz
Z2

= f · V
Z
− P · Vz

Z

The components of v are

vx = f · Vx
Z
− x · Vz

Z

vy = f · Vy
Z
− y · Vz

Z

where the components of V can be substituted by

VX = Tx − ωy · Z + ωz · Y

VY = Ty + ωx · Z − ωz ·X

VZ = Tz − ωx · Y + ωy ·X

which yields
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vx =
Tx · f − Tz · x

Z
− ωy · f + ωz · y +

ωx · x · y
f

− ωy · x2

f
(6.2)

and

vy =
Ty · f − Tz · y

Z
+ ωx · f − ωz · x−

ωy · x · y
f

+
ωx · y2

f
(6.3)

The image velocity vector v consists of translation terms, which are inversely
proportional to depth Z, and of rotational terms, which are independent of
depth Z. Under pure rotation all image points will move with the same
speed. In contrast, the projection of a translation depends on an object’s
distance. Close objects appear to move faster than far away objects.

6.2 Motion Field Reconstruction from Opti-

cal Flow and Disparity Maps

6.2.1 Motion Perception Through Optical Flow

The motion field’s projection onto the image is measurable by the optical
flow, which is defined as the intensity change of pixels over time. Optical
flow relies on the brightness-constancy assumption

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t),

which postulates that the projected intensity of moving objects is the same on
consecutive frames. This a reasonable simplifications for small time-intervals
because lighting conditions do not change much in short time.

As described in Chapter 3 the optical flow implementation from OpenCV
has been used to compute sparse optical flow on key-point descriptors. The
optical flow is augmented by the stereo depth measurements, reconstructing
a sparse version of the 3D motion field.

6.2.2 Depth Perception with Disparity Maps

The stereo camera’s FPGA computes disparity maps on rectified images.
The rectification transformation establishes the standard stereo setup as de-
scribed in Chapter 4 where epipolar lines are horizontally aligned, such that
corresponding points have the same y coordinate. This camera setup, as
shown in Fig. 6.2, projects an observed point P to image coordinates which
only differ by a horizontal offset, the disparity d. The difference between the
left camera’s projection

x =
fX

Z
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Figure 6.2: The standard stereo camera setup relates a pixel disparity d in the
image space to a baseline disparity b of the stereo rig. This canonical setup yields
the simple equation: Z = fb

d

and the right camera’s projection

x− d =
f(X − b)

Z

yield a simple relationship between d and Z:

d =
f · b
Z

.

The stereo depth measurements serve two purposes in the ego-motion algo-
rithm. They are used to detect flow vectors that belong to distant points,
whose projection generate pure rotational flow in the image. And secondly,
motion flow of close-range points is used to estimated the vehicle’s velocity.

6.3 The Ego-Motion Algorithm

Fig. 6.3 shows an overview of the proposed algorithm. It uses stereo depth
measurements to identify flow vectors that were caused only by rotation of
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Figure 6.3: Left: Overview of the Algorithm. Right: Detailed View of the Ego-
Motion Estimator.

the camera. If we recall the equations for v (Eq. 6.2 and 6.3), we see that
for large distances the translation term becomes very small. Hence, we can
assume that optical flow of distant points is only caused by rotation of the
camera. Once the ego-rotation has been computed, it can be subtracted
from the 3D flow vector field, leaving only the 3D translation component.
On this vector field the ego-translation is estimated as the solution which
minimizes the error between projected 3D flow end points and the optical
flow end points.

The following subsections provides details of the crucial steps of the al-
gorithm.

6.3.1 Separation of Rotational Flow Components

As stated in equations 6.2 and 6.3, optical flow induced by rotation is inde-
pendent of the distance to an observed object, while the translation compo-
nent is inversely proportional to depth. With the help of disparity maps, we
have the distance for all pixels available. Any points further away than 60 m
are considered as bearing only rotational flow and used for the next process-
ing step. For robustness reasons, the disparity of both vector end points is
checked to have similar depth.
Simplifying the equations 6.2 and 6.3 to the pure rotational case yields:

vx = −ωy · f + ωz · y +
ωx · x · y

f
− ωy · x2

f
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and

vy = ωx · f − ωz · x−
ωy · x · y

f
+
ωx · y2

f

which generates two linear equations per flow vector. The equations for all
available flow vectors are stacked to an over-determined equation system and
solved for [ωx, ωy, ωz, ] in a least squares manner.

6.3.2 Velocity Computation

Once the rotation vector ω is known, all 3D flow vector start points are
rotated accordingly. As a result, only the translation part of the 3D flow
remains. Ideally, all vectors are now identical but due to noise in the optical
flow, an inaccurate estimate of the rotation matrix, or independently moving
objects the vectors are usually very different. Therefore, all available 3D
translation vectors are evaluated as candidates. First, the start points of the
3D flow is rotated and translated by the transformation to be evaluated. The
resulting 3D points are then projected to the camera image and compared
to the end point of the optical flow vectors. The sum of distances serves as
error metric and the translation with the lowest overall error is finally chosen
as best estimate of the vehicles inter-frame movement.

6.3.3 Velocity Smoothing with a Kalman Filter

The frame-by-frame velocity estimates are then smoothed with a Kalman
filter. Due to inertia the velocity cannot change abruptly and the ego-motion
state must be updated accordingly. The Kalman filter’s transition matrices
are set to the identity matrix making no assumptions about the intentions
of the driver. The state vector consists of three linear and three angular
velocity components. The measurement noise matrix is set to an identity
matrix scaled according to the relative end point error. It is defined as the
ratio of the average end point error (computed by the algorithm) and the
average length of optical flow vectors.

6.4 Experimental Evaluation

Several experiments have been conducted which compare the estimated lin-
ear and angular velocities generated by the proposed algorithm against the
ground truth provided by the Applanix POS LV 220 system installed on our
vehicle. The test drive was a round track where the car drove up to 50 km/h

77



(circa 17 m/s) and took several U-turns. Table 6.1 presents the mean stan-
dard deviations and percentile distribution of the absolute tracking error for
the estimated linear and angular velocities. Figures figs. 6.4 to 6.8 show the
results for one minute of video compared against the ground truth from the
Applanix POS LV 220.
The Pearson correlation coefficient serves as similarity measure to compare
the sequence of estimates with the sequence of ground truth values. The
Pearson coefficient P for two discrete functions A and B is defined as:

P (A,B) =
covar(A,B)√

var(A) ·
√
var(B)

where

var(X) =
1

N

N∑
i=1

(xi − µ(X))2

µ(X) =
1

N

N∑
i=1

xi

covar(X, Y ) =
1

N

N∑
i=1

(xi − µ(X)) · (yi − µ(Y ))

For a car driving on a almost-planar world, the three most important numbers
are the x- and y-component of the velocity and the yaw rate. According to
the Pearson correlation, the presented algorithm can track the true values of
yaw rate and forward speed with very good accuracy. The lateral velocity
component was estimated with reasonable accuracy, while the correlation
coefficents for roll and pitch are fairly low. Most likely this is caused by high
frequent changes of roll and pitch due to the vehicle’s shock absorbers. It is
fairly reasonable to assume that the estimation will improve with a higher
frame rate of the camera. The variance of the estimated velocity increases
significantly with the speed of the vehicle. The main reason for that is that
the stereo camera estimation have the highest accuracy at close range, but
points at close distance may disappear on consecutive frames and thus no
optical flow can be reliably computed. Again, a higher frame rate of the
camera could mitigate this problem.
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Video Duration [s] long. speed lat. speed yaw rate roll pitch
460 0.998 0.896 0.993 0.547 0.664
325 0.994 0.878 0.987 0.225 0.318
667 0.998 0.896 0.992 0.384 0.385

Table 6.1: Pearson correlation coefficients for longitudinal and lateral speed, yaw
rate, roll and pitch on three different test drives.
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Figure 6.4: The estimated forward component of the vehicle’s velocity (blue)
compared to the ground truth from the Applanix POS LV 200 (orange).
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Figure 6.5: The estimated lateral component of the vehicle’s velocity (blue) com-
pared to the ground truth from the Applanix POS LV 200 (orange).
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Figure 6.6: The estimated vehicle’s yaw rate (blue) compared to the ground truth
from the Applanix POS LV 200 (orange).
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Figure 6.7: The estimated vehicle’s roll rate (blue) compared to the ground truth
from the Applanix POS LV 200 (orange). High frequency oscillation are not ac-
curately estimated.
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Figure 6.8: The estimated vehicle’s pitch rate (blue) compared to the ground
truth from the Applanix POS LV 200 (orange). High frequency oscillation are not
accurately estimated.
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6.5 Applications

A useful application of my algorithm is fault detection. The camera might
become de-calibrated after an accident, or by material exhaustion. The pre-
sented algorithm provides very good estimates of the speed and the yaw rate
which can be compared to vehicle’s on-board sensors, e.g. wheel odometry.
Measurement disagreement can indicate that either of the sensors is faulty.

A second use-case could be the fusion of the visual estimates with an
IMU and/or an odometer. The ground truth odometry is provided by the
expensive Applanix POS LV 220 system which fuses the information from
GPS, wheel odometry and an IMU. Combining the results of my algorithm
with a cheaper (and less accurate) wheel odometry or IMU should yield good
results.

And finally, the estimated ego-motion can be applied to the obstacle de-
tection task. It can help to detect regions in the image, where the optical
flow cannot be explained by the ego-motion flow. The detection of indepen-
dently moving objects is useful to detect other vehicles approaching the lane
on which our car plans to drive.

Fig. 6.9 shows two examples. On the left image the segmentation indicates
an approaching vehicle which appears only shortly between a row of trees.
The right image shows how the flow segmentation distinguishes the moving
cars on the intersection from the waiting car on the left.

(a) The approaching vehicle per-
turbs the ego-motion flow.

(b) Optical flow separates
stopped cars from moving cars.

Figure 6.9: Optical flow vectors are green. Optical flow which cannot be explained
by the estimated ego-motion is marked with red circles.
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6.6 Conclusions

The presented algorithm uses stereo depth measurements to identify opti-
cal flow belonging to far away 3D points. According to the equations of
central projection this type of optical flow is almost entirely caused by ro-
tational movement of the camera. This separation of optical flow is used
to separately estimate the rotation and the translation part of the camera’s
movement between consecutive frames. The experimental results show ac-
curate estimates for longitudinal speed and yaw rate, and reasonably good
estimates for the lateral speed. Pitch and roll estimates were very noisy due
to high frequency oscillations.
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Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis I have presented:

• A real-time online calibration method to determine the rotation matrix
of cameras mounted on a vehicle.

• A 3D obstacle detection method based on an embedded stereo camera
developed by our research group.

• A traffic light detection system using two separate monocular cameras
and a digital map with annotated global traffic light positions.

• An application of my obstacle detection and traffic-light detection to
the task of traffic light mapping.

• A method to estimate the linear and angular velocity of the ego-vehicle,
using stereoscopic vision and optical flow.

My calibration method is able to calibrate from scratch or iteratively re-
fine the rotation parameters of a vehicle-mounted camera. Different from
standard methods it does not rely on a dedicated calibration target. Instead,
it uses the optical flow computed on images during a test drive. The method
exploits the fact that a car must obey movement restrictions which results in
distinctive optical flow patterns. The flow converges in epipolar points whose
distribution is used to recover the camera’s rotation matrix with respect to
the car frame. The experimental evaluation on several differently mounted
camera’s showed robust calibration results with diminishing variance and
good convergence properties.
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My obstacle detection framework evaluates the depth measurements from an
embedded stereo camera and generates a representation of obstacles and free
space. It performs a hybrid 2D/3D segmentation, which enforces heuristic
constraints defined in image space as well as in 3D space. The evaluation
against a LIDAR-based occupancy grid showed high congruence of the driv-
able space border, but also identified limitations caused by the stereo cam-
era’s functional principle. The experimental results showed that accuracy
drops of significantly beyond 30 meters distance, indicating that the stereo
camera cannot function as a drop-in replacement of LIDAR sensors.
My traffic light detection system relies on a two-camera setup covering the
left and right hemisphere in front of the car to detect oncoming traffic lights
in real-time. It relies on the self-localization and planned trajectories of the
car to retrieve the global positions of relevant traffic lights. The global po-
sitions are mapped to regions in the image which benefits execution time as
well as the detection accuracy. The detection system was successfully demon-
strated to the public (e.g. ”Mission Brandenburg Gate”1) or in competitions
(1st place Dubai World Challenge for Self-Driving Transport 20192). The ex-
perimental evaluation showed high true-positive rates and detection ranges
of 60 m on average which is decent given the resolution of the cameras.
Combining the obstacle detection with the traffic light detection, I have used
detected objects resembling the shape of traffic lights as an input to the traf-
fic light detection system. It projects these objects to regions of interest to
be searched for traffic lights. The experimental evaluation showed that the
effective detection range was around 25 meters. Traffic light poles were hard
to detect at larger distances because depth boundaries of far away objects are
not distinct enough for a robust segmentation. However, this range proved
enough to verify the existence of a traffic light (by detection) and to robustly
estimate the global position.
My last contribution was the estimation of ego-motion purely from visual in-
put provided by the embedded stereo camera. Combining disparity maps and
optical flow image interest points were tracked in time and space in order to
estimate the vehicle’s movement. The main challenge was the separation of
static and dynamic environment. The latter causes motion flow inconsistent
to the ego-motion flow. Here, I implemented my novel idea to separate the
optical flow of points by their 3D distance. Far away points barely contribute
to the optical flow. They provide a reliable way to estimate the inter-frame
rotation of the camera. Removing the rotational component from the flow
field drastically simplifies the estimation of the linear velocity. This two-step

1https://autonomos.inf.fu-berlin.de/media/videos/
2https://sdcongress.com/finalists
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approach yielded linear velocity and yaw rate comparable to the measure-
ments of the Applanix reference localization system, albeit variance and noise
were higher. However, the strong correlation provides a good tool to deter-
mine a faulty camera calibration, or if it is deemed correct a faulty calibration
of the reference sensor.
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Chapter 8

Appendix

8.1 Pseudo Code for Extrinsic Camera Cali-

bration

Algorithm 1 Compute homogeneous line for two points

Require: p ∈ R2, q ∈ R2

Ensure: l ∈ R3 ∧ l2x + l2y = 1

l←
(
px
py
1

)
×
(
qx
qy
1

)
l← l√

lx
2+ly

2
// make the normal vector of the line unit length
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Algorithm 2 Compute Epipole e from Optical Flow with RANSAC

Require: P1 ∈ RN×2, P2 ∈ RN×2, n ∈ N+, K ∈ N+ (RANSAC iterations)
Ensure: e ∈ R2 ∧ |I| ≥ n (inlier set I)
U ← ∅ // Used flow vector pairs
e = (∞∞ )
I = ∅ // inliers for e
for i = 1 to K do

repeat
a, b← random indices ∈ [1...N ]
v1 ← P2[a]− P1[a]
v2 ← P2[b]− P1[b]

until a 6= b ∧ (a, b) /∈ U ∧ ∠(v1, v2) > 0.5◦ // non-parallel lines
U ← U ∪ {(a, b), (b, a)}
l1 ← constructLine(P1[a], P2[a])
l2 ← constructLine(P1[b], P2[b])
x← l1 × l2 // homogeneous intersection point of l1 and l2
x← x

||xz ||
J ← ∅ // inliers for x
for j = 1 to N do
l← constructLine(P1[j], P2[j])
m← constructLine(P1[j], x)
if |lx ·mx + ly ·my| > cos(0.5◦) then

// less than 0.5◦ deviation
J ← J ∪ {j}

end if
end for
if |J | ≥ max(n, |I|) then
e← x
I ← J

end if
end for
e← refit using all inliers
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Algorithm 3 Compute Force f and Angular Momentum m for a Point

Require: p ∈ R2, k ∈ R, D ∈ R
Ensure: f = force(p, k)

if ||p|| > D then
f ← ( 0

0 ) // ignore outliers
else
s = exp(−|px|

k
) + exp(−|py |

k
)

w1 ←
exp(

−|px|
k

)

s

w2 ←
exp(

−|py |
k

)

s
// w1 + w2 = 1

f ←
( −w1·px
−w2·py

)
r =

√
||p− c|| // vector from center of point cloud to p

M = rx · fy − ry · fx
// shorten length to square root
f ← f√

||f ||

M ← M√
|M |

end if
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Algorithm 4 Compute Forward Epipole e and Horizon Angle θ

Require: P ∈ RN×2, N ∈ R, k ∈ R, D ∈ R
Ensure: e ∈ R2, θ ∈ R
c← median(P ) // or init T with solution from previous iteration

T ←
(

1 0 −cx
0 1 −cy
0 0 1

)
P ← T · P // subtract median
c← ( 0

0 ) // keeps track of current center of P
for i = 1 to N do
f ← ( 0

0 )
m← 0
for p ∈ P do
f ← f + force(p, ...)
m← m+momentum(p, ...)

end for
t← computeTranslation(f, ...) // proportional to the average force
φ← computeAngle(m, ...) // proportional to the average momentum

Ti ←
(

1 0 tx
0 1 ty
0 0 1

)(
1 0 cx
0 1 cy
0 0 1

)(
cosφ − sinφ 0
sinφ cosφ 0

0 0 1

)(
1 0 −cx
0 1 −cy
0 0 1

)
// rotate around c, then translate by t
P ← Ti · P
c← T · c

end for
U ← T−1

e←
(
U02
U12

)
θ ← atan2(U10, U00)
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Algorithm 5 Compute the Camera’s Extrinsic Rotation Matrix R

Require: e ∈ R2, θ ∈ R, P ∈ R3×4(Camera’s Projection Matrix)
Ensure: R ∈ R3×3

dx = P−1 ·
(
ex
ey
1

)
// reproject the epipole to the 3D direction vector

dx = dx
||dx|| // car’s forward direction (x) in camera coordinates

h =
(

cos(θ)
sin(θ)

)
d′ = P−1 ·

(
ex−hx
ey−hy

1

)
//
(
ex−hx
ey−hy

)
is a point on the horizon left to e

d′ = d′

||d′||
dz = dx × d′
dz = dz

||dz || // car’s up direction (z) in camera coordinates

dy = dz × dx // car’s sideway direction (y) in camera coordinates

R =

(
dx

T

dy
T

dz
T

)
// R rotates from the camera’s to car’s coordinate frame
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8.2 Pseudo Code for Obstacle Detection on

Disparity Maps

Algorithm 6 Segment Vertical Stripes on 3D Image

Require: D : N2 → R3, V ∈ R3 // 3D image D, Volume of Interest V
Require: g ∈ N, d ∈ R // maximal pixel gap g, maximal depth gap d
Ensure: S
S ← [ ] // list of stripes
M,N ← dim(D) // (rows, columns) of 3D image D
for u = 1 to N do
s← [ ] // list of stripe points (u, v, x, y, z)
for v = 1 to M do

(x, y, z)← D(u, v)
if D(u, v) ∈ V then

if |s| = 0 then
// start a new stripe
s← s⊕ (u, v, x, y, z)

else
if v −maxv(s) > g ∨ |D(u, v)−minx(s)| > d ∨ v = M then

// finish stripe
S ← S ⊕ [s]
s← [ ]

else
// continue stripe
s← s⊕ (u, v, x, y, z)

end if
end if

end if
end for

end for
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Algorithm 7 Adjacency relation for vertical stripes

Require: a, b ∈ S2, d ∈ R3, h ∈ R, w ∈ N // two vertical stripes a, b, max.
3D deviation d, max. 3D height gap h, max. image column gap w

Ensure: c = true if a and b are adjacent, else c = false
∆← |meanxyz(a)−meanxyz(b)|
z1 ← maxz(a)
z2 ← maxz(b)
c← |au − bu| < w ∧∆x < dx ∧∆y < dy ∧∆y < dy ∧ |z1 − z2| < h

Algorithm 8 Merge neighbored vertical stripes

Require: S, t ∈ N // Vertical stripes S
Ensure: O // obstacles O
V ← S // Vertices: vertical stripes
E ← {(a, b) ∈ V 2 | adjacent(a, b, ...)} // Edges: defined by Alg. 7
G← (V,E) // a graph
O ← Connected-Components(G) // see Chapter 21 of [60]

92



8.3 Pseudo Code for Traffic Light Detection

Algorithm 9 Cluster color-thresholded points to light blobs

Require: P ∈ Nn×2 // Pixels of on color (red/yellow/green)
Ensure: B // list of circular shaped point sets
T ← splitPoints(P, 100) // split points P in small subsets (at least 100
points and two image rows)
U ← [ ] // clusters created from subsets
for t in T do
V ← P // Vertices: points
E ← {(a, b) ∈ V 2 | |ax − bx| ≤ m ∧ | |ay − by| ≤ m} // two points
adjacent if within L1 range m
G← (V,E) // a graph
u← Connected-Components(G) // see Chapter 21 of [60]
U ← U ⊕ [u]

end for
V ← U // Vertices: subset clusters
E ← {(a, b) ∈ V 2 | boundingBox(a) touches boundingBox(b)}
G← (V,E) // a graph
B ← Connected-Components(G) // see Chapter 21 of [60]
B ← apply heuristic filters on B // removes clusters with wrong
shape/position (see Subsection 5.4)
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Algorithm 10 Construct traffic lights from colored pixel clusters

Require: R, Y,G // red, yellow, green pixel clusters
Ensure: T // list of traffic light candidates

for c in R ∪ Y ∪G do
g ← area of unlit signals
if isDark(g) then
T ← c⊕ g // add traffic light: colored pixel cluster + dark area

end if
end for
S ← {(a, b)|a ∈ R, b ∈ Y, correct relative position} // set of red/yellow
cluster which could make one traffic light
for cr, cyinS do
g ← area of unlit green signal
if isDark(g) then
T ← cr ⊕ cy ⊕ g // add red yellow traffic light: red cluster + yellow
clusters + dark area

end if
end for
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8.4 Pseudo Code for Ego-Motion Estimation

Algorithm 11 Compute rigid motion from stereo-flow

Require: O,P // optical flow O, 3D flow P
Ensure: T // rigid 4× 4 transformation T
Of , Pf ← 2d/3D flow of points at least 60 meters away
A, b ← motion field equations with points from Of , Pf // the equations
are derived in Subsection. 6.3.1
ω ← SV D(A, b)
Pt ← P 	 ω // remove rotational component from 3D flow
e←∞
for t in Pt do
Ti ← ω ⊕ t
p2 ← P · (Ti · P1) // transform 3D points from frame 1, project them to
camera frame 2
ei ← endpoint error of input optical flow vs. p2

if ei < e then
e← ei
T ← Ti

end if
end for
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