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I 

“You're wondering who I am: 
Machine or mannequin? 

[…] 

I'm not a robot without emotions 
I'm not what you see 
I've come to help you 
With your problems,  
So we can be free.” 

Styx, ‘Mr. Roboto’, 1983 
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Abstract 

Unipolar depression ranks first on the World Health Organization’s list of diseases 

responsible for global health burden. Different approaches of pharmacotherapy and face-to-face 

psychotherapy have been proven efficacious in reducing symptoms of depression and are 

available for individuals affected by the disorder. Yet, a majority of those individuals do not 

receive evidence-based treatment. Barriers such as difficulties attending appointments at 

inconvenient locations and at inconvenient times might be responsible for this shortfall in 

mental health care. Internet-based Interventions (IBI) show potential to overcome such barriers 

by offering psychoeducation, treatment tools, and (in some cases) guidance by clinicians 

independent of time and location. While several randomized controlled trials provide 

convincing evidence for the utility of IBI in reducing symptoms of depression, little is known 

about the mechanisms that account for in-treatment symptom change. Possible contributors to 

change within IBI for depression may be features of the intervention (e.g., therapeutic support 

by clinicians), variables related to treatment processes (e.g., treatment uptake, therapeutic 

alliance, outcome expectations) or variables specific to individuals (e.g., sociodemographic or 

socioeconomical characteristics).  

This thesis presents the findings from three studies that seek to broaden our 

understanding of in-treatment symptom change in IBI. All three studies have been conducted 

with data collected from 1089 mildly to moderately depressed individuals drawn from the 

client-base of a public health insurance company. They were randomized to receive weekly 

feedback that was either fully-standardized or individualized by a counselor within an otherwise 

identical cognitive-behavioral IBI for depression.  

STUDY 1 investigated differences between the treatment conditions concerning changes 

on clinical (depression, anxiety, perseverative thinking) and psychosocial variables (emotional 

self-efficacy, quality of life, and perceived social support). The between-condition effects were 

estimated after the intervention as well as 3, 6, and 12 months after participants finished the 
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program. Results revealed large within-group effects for depressive symptom reduction across 

conditions. However, between-group differences were nonsignificant for all outcomes at all 

measurement occasions.  

STUDY 2 compared the contributions of outcome expectations, therapeutic alliance 

(agreement on tasks and goals; bond), extra-therapeutic stressors, and the uptake of specific 

treatment components to weekly symptom change in both treatment arms. Results showed that 

reductions of extra-therapeutic stressors during the intervention and high agreements on tasks 

and goals of treatment were associated with depressive symptom reductions in both conditions. 

While the level of extra-therapeutic stress at baseline was only predictive of in-treatment 

symptom change in the fully-standardized condition, bond ratings were associated with 

symptom deterioration during the final week of treatment in the individualized condition only. 

STUDY 3 investigated whether distinct groups of participants experienced discernable 

symptom courses during the two treatment variants. In addition, we examined whether 

participants’ psychosocial, socioeconomic or clinical characteristics were associated with 

membership in these groups. The results suggested that patterns of change and the associated 

groups did not differ across conditions. In both treatment variants most individuals (62.5%) 

were classified as “immediate improvers” with substantial improvement, commencing even 

before the start of treatment. Another class (37.4%) of individuals was labeled “delayed 

improvers” for their symptoms improved less overall and did not change up until week three of 

treatment. Individuals with higher perceived social support had higher odds of being classified 

as “immediate improvers”. In contrast, individuals fulfilling the criteria for a current MDD in 

a structured clinical interview (SCID-I) and individuals with high outcome expectations had 

higher odds of being classified as “delayed improvers”. 

In summary, the results stressed the similarities between standardized and 

individualized feedback in IBI for depression concerning efficacy and patterns of change. At 

the same time the findings highlighted that individuals’ socio-demographic and clinical features 
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influence both the mechanisms of change and symptom courses in IBI for depression, and they 

had differential effects depending on whether the feedback was standardized or individualized.  
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Abstract in deutscher Sprache 

Unipolare Depression belegt weltweit den ersten Platz in der von der 

Weltgesundheitsorganisation herausgegebenen Liste der Erkrankungen, die mit der höchsten 

Krankheitslast einhergehen. Aktuell stehen Betroffenen verschiedene wirksame 

Behandlungsansätze der Pharmakotherapie und der Psychotherapie zur Verfügung. 

Nichtsdestotrotz nimmt nur ein Bruchteil dieser Menschen eine evidenz-basierte Therapie in 

Anspruch. Gründe für diese Unterversorgung liegen zum Teil darin, dass diese Angebote für 

manche Menschen örtlich schwierig zu erreichen sind oder die zu vereinbarenden Termine nicht 

mit ihrem sonstigen Lebensalltag zusammenpassen. Internet-basierte Interventionen (IBI) 

weisen das Potential auf, diese Barrieren zu überwinden, da sie zeitlich und örtlich flexibel 

Psychoedukation, therapeutische Werkzeuge und (in manchen Fällen) Begleitung durch 

Kliniker*innen bieten. Während zahlreiche randomisiert-kontrollierte Studien die Wirksamkeit 

von IBI in der Reduktion depressiver Symptome belegen, ist wenig über die 

Veränderungsmechanismen bekannt.  

Dabei könnten sowohl Aspekte der Intervention selbst (z.B. die therapeutische 

Begleitung durch Kliniker*innen) als auch Indikatoren des Behandlungsprozesses (z.B. 

Ausmaß der Inanspruchnahme der Behandlung, Therapieallianz, Erfolgserwartungen) und 

individuumsspezifische Variablen (z.B. soziodemografische oder sozioökonomische 

Eigenschaften) einen Beitrag zur Erklärung der Symptomveränderung während der Behandlung 

leisten.  

Die vorliegende Doktorarbeit stellt drei Studien vor, die Erkenntnisse zu diesem Thema 

beitragen. Alle drei Studien basieren auf einer Stichprobe von 1089 leicht- bis mittelgradig 

depressive belasteten Versicherten einer gesetzlichen Krankenkasse. Die Teilnehmenden 

wurden randomisiert einer von zwei Bedingungen zugeteilt: Im Rahmen einer ansonsten 

identischen kognitiv-behavioralen IBI für Depression, erhielten sie wöchentlich entweder 
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automatisches, voll-standardisiertes Feedback oder Feedback, welches durch ein*e Berater*in 

individualisiert wurde.  

In STUDIE 1 wurden Unterschiede zwischen den beiden Experimentalgruppen in der 

Veränderung von klinischen (Depression, Angst, Grübeln) und psychosozialen Variablen 

(emotionale Selbstwirksamkeit, Lebensqualität, wahrgenommene soziale Unterstützung) 

untersucht. Die Zwischengruppeneffekte wurden nach der Intervention sowie 3, 6 und 12 

Monate nach der Teilnahme evaluiert. Während große Innergruppeneffekte zeigten, dass die 

depressive Symptomatik in beiden Bedingungen signifikant zurückging, waren die 

Zwischengruppen-Effekte auf keinem der selbstberichteten Outcome-Maße und zu keinem der 

untersuchten Zeitpunkte signifikant.   

In STUDIE 2 wurden Erfolgserwartungen, therapeutische Allianz (agreement on tasks 

and goals; bond), extra-therapeutische Stressoren sowie die Inanspruchnahme spezifischer 

Behandlungselemente hinsichtlich ihres Beitrags zur Erklärung von wöchentlichen 

Veränderungen depressiver Symptome in beiden Bedingungen untersucht.  Die Ergebnisse 

zeigten, dass eine Verringerung extra-therapeutischer Stressoren und hohe task- und goal-Werte 

in beiden Bedingungen mit einer Verringerung der Symptombelastung einhergingen. Während 

die Ausgangswerte des extra-therapeutischen Stresses nur in der voll-standardisierten 

Bedingung mit Symptomverschlechterung zusammenhingen, waren hohe bond-ratings nur in 

der  individualisierten Variante mit einer Symptomverschlechterung in der letzten 

Behandlungswoche assoziiert.  

In STUDIE 3 wurde in beiden Bedingungen untersucht, ob es verschiedene 

Teilnehmendengruppen gibt, die distinkte Muster der Symptomveränderung aufweisen. 

Zusätzlich wurde geprüft ob psychosoziale, klinische oder sozioökonomische Eigenschaften 

der Teilnehmenden eine Zugehörigkeit zu diesen Gruppen vorhersagen. Die Ergebnisse 

zeigten, dass sich die Veränderungsmuster und die zugehörigen Gruppen nicht zwischen den 

Bedingungen unterschieden. In beiden Varianten wiesen die meisten Teilnehmenden (62.5%) 
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ein Symptommuster über die Zeit auf, welches als „unmittelbare Verbesserung“ charakterisiert 

werden konnte. Diese Gruppe zeichnete sich durch substantielle Symptomreduktion über die 

Zeit aus, welche bereits vor Behandlungsbeginn ihren Anfang nahm. Die Symptomentwicklung 

der zweiten Gruppe (37.4%) kann als „verzögerte Verbesserung“ beschrieben werden. Hier 

stagnierten die Symptome bis zur dritten Behandlungswoche und es war insgesamt eine 

geringere Veränderung über die Dauer der Behandlung zu verzeichnen. Hohe wahrgenommene 

soziale Unterstützung sagte die Mitgliedschaft in der Gruppe mit „unmittelbarer Verbesserung“ 

vorher, während Teilnehmende mit einer aktuellen depressiven Episode (nach strukturiertem 

klinischen Interview, SKID-I) sowie Individuen mit hohen Erfolgserwartungen mit höherer 

Wahrscheinlichkeit der Gruppe mit „verzögerter Verbesserung“ angehörten.  

Zusammenfassend unterstreichen die Ergebnisse die Ähnlichkeiten zwischen IBI mit 

individualisiertem und standardisiertem Feedback sowohl hinsichtlich der Effektivität als auch 

hinsichtlich resultierender Muster der Symptomveränderung. Zugleich weisen die Befunde 

darauf hin, dass die soziodemografischen und klinischen Charakteristika der Teilnehmenden – 

je nach Experimentalbedingung unterschiedlichen – Einfluss auf den Veränderungsprozess 

haben.  
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CHAPTER 1  
THEORETICAL BACKGROUND 



2 

1.1 Introduction 

The global spread of internet technology has fundamentally changed the quantity and 

quality of available information as well as the communication between individuals. A recent 

representative study showed that about 90% of the entire German population use the internet 

(Koch & Frees, 2017). The average German adult spends up to 4.4 hours online per day; that 

time is spent interacting with others, viewing, sharing and creating content, seeking 

entertainment or purchasing goods and services (Ernst & Young GmbH, 2017). As internet 

technologies have impacted virtually every area of life, they have also changed individual 

approaches to communicating about mental health problems and obtaining information about 

them (Birnbaum, Rizvi, Correll, Kane, & Confino, 2017; Naslund, Grande, Aschbrenner, & 

Elwyn, 2014).  

For example, an analysis of data from Google Trends (2018) shows that depression is 

the category of mental disorder1 with the highest search frequency in Germany. As depicted in 

FIGURE 1.1, the popularity of the search term “depression” gradually increased during the last 

10 years, with an outlier peek in November 2009 coinciding with the suicide of popular soccer 

player Robert Enke. Importantly, individuals do not only use the internet to find information on 

this mental health topic but a growing number of individuals participate in treatments for their 

depressive symptoms that are offered partly or exclusively through the internet (Drozd et al., 

2016). This trend is further mirrored by the number of studies per year on these so called 

“Internet-based interventions” (abbreviated: IBI) for depression, which has steadily increased 

for more than ten years (Drozd et al., 2016). 

1 Even though the term “depression” commonly refers to Major Depressive Disorder, it is in fact an umbrella term, 
encompassing multiple distinct disorder categories. Please see CHAPTER 1.2 for definitions and distinctions.  
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FIGURE 1.1 Monthly relative interest in the search term “depression” in Germany from September 2008 to 

September 2018 with linear trend line (dotted). Data is generated by calculating the share the search term 

“depression” has in all Google searches performed in Germany in each month. Data is indexed to 100 (highest 

value in November 2009 is set as 100, other values are calculated relative to that). Source: Publicly available 

Google Trends data set, own analysis. 

While several randomized controlled trials found convincing evidence for the utility of 

IBI in reducing symptoms of depression (e.g., Karyotaki et al., 2018, 2017), little is known 

about the mechanisms that account for in-treatment symptom change in IBI with different levels 

of therapeutic support. The thesis at hand seeks to add knowledge on this important topic by 

presenting the results of three studies on interventional and individual predictors of change in 

IBI for depression.  

The following chapters contextualize the development of these studies by defining 

depressive disorders and quantifying their prevalence (CHAPTERS 1.2 – 1.3). Additionally, face-

to-face treatments for depression and their limitations are briefly described (CHAPTER 1.4). 

Next, IBI will be defined and introduced from a theoretical and empirical perspective (CHAPTER

1.5).  Finally, I will discuss shortcomings of existing trials on IBI for depression (CHAPTER 1.6) 

and provide a short overview of the three studies presented in this thesis (CHAPTER 1.7).  
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1.2 Definitions of Depression 

According to the current editions of the International Classification of Diseases for 

Mortality and Morbidity Statistics (ICD-11; WHO, 2018) and the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5; APA, 2013) depression in adults is characterized by 

depressed mood and/or anhedonia or loss of interest. These core symptoms are frequently 

accompanied by other symptoms such as fatigue, difficulties concentrating, indecisiveness, 

lessened feeling of self-worth, feelings of guilt, thoughts about death or suicide, changes in 

appetite, sleep patterns or motor activity (APA, American Psychiatric Association, 2013). 

Depending on the combination, duration, frequency, intensity and assumed etiology of these 

symptoms, DSM-5 subsumes different disorder categories under the umbrella term 

“depression”2 or “unipolar depression” (as opposed to bipolar disorders). These diagnostic 

categories are summarized in TABLE 1.1. 

 

 

                                                 
2 These categories deviate from the ICD-11, which uses the umbrella term “mood disorders” (F30-F39) and 
includes manic episodes and bipolar disorders as well as mixed episodes of anxiety and depression. Further, 
Premenstrual Dysphoric Disorder is sorted into another category (Diseases of the female genital system/ 
Premenstrual Disturbances). DSM-5 categorization was preferred due to the clearer focus on (unipolar) depressed 
mood. 



5 

TABLE 1.1 (CONT. ON FOLLOWING PAGE) 
Different diagnostic categories of depressive disorder in adults according to DSM-5 

Common features Changes in mood accompanied by somatic changes 
• with clinically significant distress or impairment in social, occupational or other important areas of functioning
• without hypomanic or manic episodes (lifetime)
• not better explained as any psychotic disorder or schizoaffective disorder

Assumptions about etiology mainly not attributable to periodical hormonal changes, substance use or 
medical conditions 

mainly attributable to 
periodic hormonal changes 

mainly attributable to 
substance/medication use or 
another medical condition 

Diagnoses 
Major Depressive Disorder 
(MDD; recurrent or single 

episodes) 

Persistent Depressive Disorder 
 (Dysthymia) 

Premenstrual Dysphoric 
Disorder 

Substance/Medication-
Induced Depressive Disorder 

or 
Depressive Disorder Due to 
Another Medical Condition 

Associated Symptoms 

I. Depressed Mood Yes Yes Yes Yes 

II. Anhedonia or
Diminished Interest in 
Activities 

Yes No Yes Yes

III. Increase/Decrease in
Appetite 

Yes 
or: significant weight change 

Yes Yes
or: specific food craving 

No 

IV. Insomnia or
Hypersomnia 

Yes Yes Yes No

V. Psychomotor Agitation 
or Retardation 

Yes No No No

VI. Decrease in Energy or
Fatigue 

Yes 
i.e., loss of energy 

Yes, 
i.e., low energy 

Yes 
i.e., lethargy 

No 

VII. Reduced Self-Esteem
or Feelings of guilt 

Yes 
i.e., feeling worthless or guilty 

Yes 
i.e., low self-esteem,  

excl. guilt. 

No No
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Associated Symptoms 
Major Depressive Disorder 
(MDD; recurrent or single 

episodes) 

Persistent Depressive Disorder 
 (Dysthymia) 

Premenstrual Dysphoric 
Disorder 

Substance/Medication-
Induced Depressive Disorder 

or 
Depressive Disorder Due to 
Another Medical Condition 

VIII. Reduced Ability to
concentrate, think or 
indicisiveness 

Yes Yes Yes
i.e., subjective difficulty in 

concentrating 

No 

IX. Thoughts of death,
suicidal ideation, plans or 
behavior 

Yes No No No

X. Additional/Other 
Symptoms 

No 1) Hopelessness 1) Affective lability,
2) Irritability/Anger,
3) Anxiety/Tension

4) feeling overwhelmed
5) physical symptoms (e.g.,

breast tenderness, pain)

No 

Time criterion for symptom 
occurrence 

present for nearly every day, nearly 
entire day for at least two weeks 

present more than half of the days 
for more than two years with no 
symptom-free periods >2 months 

present in most final weeks 
before menses; improving 

within few days after menses, 
become minimal/absent in the 

week postmenses 

present during or soon after 
use of, withdrawal from or 

intoxication with 
substance/medication 

or 
symptom is the direct 
pathophysiological 

consequence of another 
medical condition 

Required Number of 
Symptoms 

5, including at least one core 
symptom (I. or II.) 

3, including symptom I. Symptom 
severity may be milder than in 

MDD 

5, specific combinations 
required 

Not specified 

Note. Criteria derived from DSM-5 (APA, 2014). “Other Specified Depressive Disorder” and “Unspecified Depressive Disorder” are excluded from this summary due to the 
lack of specific symptoms, time frames or etiological assumptions. 
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1.3 The Relevance of Depression for Global Mental Health 

The chapter at hand offers an overview of the prevalence of Major Depressive Disorder 

(MDD) and Persistent Depressive Disorder (Dysthymia)3, highlighting their individual and 

societal relevance. Further, findings on epidemiology and comorbidity of unipolar depression 

will be briefly summarized in the current chapter as they are relevant for discussions about 

treatment and treatment uptake provided in CHAPTER 1.4.  

Due to the focus of this doctoral thesis, affective disorders that are attributable to 

periodical hormonal changes, substance use or other medical factors will not be reviewed 

further. Comprehensive summaries of research on these disorders can be found elsewhere (e.g., 

Cosci, Fava, & Sonino, 2015; Hantsoo & Epperson, 2015; Tolliver & Anton, 2015). 

1.3.1 Prevalence 

With lifetime prevalence rates of 11-21% Major Depressive Disorder is the most 

common mental disorder internationally4 (Kessler et al., 2005; Kessler, Petukhova, Sampson, 

Zaslavsky, & Wittchen, 2012; Kessler & Bromet, 2013). While lifetime prevalence rates for 

dysthymia are reported to be much lower (1-3%), the induced amount of suffering and loss of 

productivity is considerable, given the persistence of the disorder (Blanco et al., 2010; Ferrari 

et al., 2013). According to the Global Burden of Disease study (WHO, 2017), at any given time 

(point prevalence), about 2.4% of the German adult population is suffering from unipolar 

depression (MDD: 1.8%; dysthymia: 0.7%). Similar prevalence rates are reported worldwide, 

with slightly higher rates in high-income countries and the “Americas” (Ferrari et al., 2013; 

Thornicroft et al., 2017; WHO, 2017). Given these prevalence rates, unipolar depression was 

                                                 
3 The DSM-IV categories of “chronic major depressive disorder” and “dysthymia/dysthymic disorder” were 
merged into the category “Persistent Depressive Disorder” in DSM-5. Due to the relative novelty of DSM-5, the 
majority of studies cited as well as the three studies presented in this dissertation follow DSM-IV nomenclature.  
4 This holds true on the level of the specific diagnosis. As a group, anxiety disorders are more common than mood 
disorders (Kessler et al., 2005; 2012). 
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responsible for over 54 million disability-adjusted life years (DALYs)5 making it the leading 

cause of disability worldwide (WHO, 2017). 

1.3.2 Epidemiology 

The occurrence of unipolar depression is not distributed equally across the entire 

population. Significantly increased odds of being diagnosed with MDD or Dysthymia are 

reported for women,  individuals over the age of 60, single/divorced or widowed individuals, 

individuals living under economically disadvantaged circumstances and individuals with lower 

levels of formal education (Arias-de la Torre, Vilagut, Martín, Molina, & Alonso, 2018; Salk, 

Hyde, & Abramson, 2017; Vandeleur et al., 2017). Individuals belonging to a social, ethnic or 

sexual minority6 also show a heightened risk for developing MDD or Dysthymia (e.g., Lewis 

et al., 2017; Lucassen, Stasiak, Samra, Frampton, & Merry, 2017; Schouler-Ocak, Aichberger, 

Penka, Kluge, & Heinz, 2015).  

1.3.3 Comorbidity 

The importance and impact of unipolar depression is further underlined by high 

comorbidity rates. Most individuals who fulfill the criteria for MDD or dysthymia also fulfill 

the criteria for at least one other mental disorder: In a nationally representative sample in 

Germany, Jacobi et al. (2014) found that only 32.6% (95% CI: 26.9 - 38.9) of individuals 

fulfilling the diagnostic criteria for dysthymia or MDD during the last 12 months had no 

comorbid mental disorder diagnosis during the same time period. In the presence of unipolar 

depression, 21.5% (95% CI: 16.5 – 27.4) presented with one additional diagnosis, 16% (95% 

CI: 11.4 - 22.0) with two, and 29.9% (95% CI: 23.5 - 37.2) with three or more. Essentially, 

depressed individuals with comorbid mental disorders show significantly increased 

impairments and morbidity when compared to individuals who have only one mental disorder 

                                                 
5 DALYs are the sum of Years of Life Lost (YLL) (i.e., average life expectancy reduced by the age of premature 
death/suicide associated with a disorder/disease) and Years Lived with Disability (i.e., the prevalence of a disorder 
multiplied by a factor representative of the short- and long-term loss of health associated with that disorder).  
6 i.e., individuals identifying as non-cisgendered or non-heterosexual, people of color, individuals who are defined 
as migrants, individuals who are physically handicapped. 
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(Laursen, Musliner, Benros, Vestergaard, & Munk-Olsen, 2016). Essentially, depressed 

individuals with comorbid mental disorders show significantly increased impairment and 

morbidity when compared to individuals who have only report one mental disorder (Laursen et 

al., 2016).  

Notably, not all mental disorders co-occur with unipolar depression to the same degree. 

A WHO study across ten countries (de Jonge et al., 2018) estimated correlations between 

lifetime diagnoses of mental disorders. Regarding diagnoses of unipolar depression (Dysthymia 

and MDD) the authors found the highest correlations with other internalizing disorders such as 

generalized anxiety disorder (r =.61 -.65), PTSD (r =.46 -.56), social anxiety disorder (r =.49 -

.50) and agoraphobia (r =.44 -.46). However, correlations with externalizing disorder diagnoses 

were considerable as well (e.g., Attention Deficit Hyperactivity Disorder: r =.39 -.42; 

Oppositional Defiant and Conduct Disorder r = 0.34 - 0.36; Substance Use Disorder: r =.27 -

.29). A meta-analysis by Friborg (2014) on patients receiving inpatient or outpatient services 

further demonstrated high comorbidities between MDD or dysthymia and personality disorders. 

On average, about 40% of individuals with MDD also fulfilled the criteria for any personality 

disorder. The rates were higher for individuals diagnosed with dysthymia (60%). The authors 

summarized that for the group of patients with unipolar depression, personality disorder 

comorbidity “was lowest in cluster A, higher in cluster B, but highest in cluster C”7 (Friborg et 

al., 2014, p. 7). 

In summary, this chapter demonstrates that depression is frequent and the amount of 

the associated individual and societal detriments is further heightened by high comorbidity-

rates. At the same time, prevalence of unipolar depression is especially pronounced in certain 

subsets of the population. Overall, this suggests a high demand for evidence-based treatments 

7 The clusters of personality disorders according to DSM-5 (APA, 2013) are Cluster A (odd or eccentric) 
encompassing paranoid, schizoid, and schizotypical personality disorder; Cluster B (dramatic, emotional or erratic) 
encompassing antisocial, borderline, histrionic, and narcissistic personality disorder; Cluster C (anxious or fearful) 
encompassing avoidant, dependent, and obsessive-compulsive personality disorder. 
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such as face-to-face psychotherapy and pharmacotherapy (i.e., “conventional treatment 

approaches”). The following chapter will briefly introduce studies on the efficacy of these two 

approaches and will especially focus on barriers to their uptake.  
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1.4 Barriers to the Uptake of Conventional Evidence-Based Treatments for Depression 

Results of multiple meta-analyses including hundreds of RCTs support the notion that 

both pharmacotherapy and different forms of face-to-face psychotherapy (e.g., cognitive-

behavioral therapy, psychodynamic therapy) are efficacious treatments for unipolar depression 

(e.g., Barth et al., 2016; Cipriani et al., 2018; Kamenov, Twomey, Cabello, Prina, & Ayuso-

Mateos, 2017). Contrasted against passive control groups, both treatment approaches yield 

medium to large effect sizes8 on the primary outcome of depressive symptom reduction (Barth 

et al., 2016; Cipriani et al., 2018). Accordingly, these approaches are considered to be the 

current “best practice” and have been included in national guidelines on treating depression 

(e.g., DGPPN, 2017).  

Pharmacotherapy and face-to-face psychotherapy are both available (to a varying 

degree) in middle- and high-income countries. However, a recent meta-analysis, covering 

studies from 21 countries, concluded that only 16.5% of all individuals that fulfilled the criteria 

for MDD during the last 12 months received minimally adequate, albeit not necessarily 

evidence-based treatment9 (Thornicroft et al., 2017). Similar rates10 are reported in a German 

nationally representative study for individuals suffering from any mental disorder (Jacobi et al., 

2014). Notably, minority groups as well as socially or economically disadvantaged populations 

show proportionally lower rates of treatment uptake, despite their heightened rates of depressive 

symptoms (e.g., Miranda, Soffer, Polanco-Roman, Wheeler, & Moore, 2015; Steele et al., 2016; 

Thornicroft et al., 2017). This raises questions on the reasons for this treatment gap and possible 

ways to circumvent it.  

8 Throughout this dissertation effect sizes will be evaluated based on the conventions proposed by Cohen (1992) 
9 Thornicroft et al. (2017) defined minimally adequate treatment as at least one month of medication, plus at least 
four visits to any type of medical doctor or at least eight visits with any professional including religious or spiritual 
advisor, social worker or counsellor, which seems a low threshold that does not necessarily rise to the level of 
being considered “evidence-based”. Stricter criteria will probably result in substantially lower rates. 
10 Jacobi et al. (2014) report that 11% of individuals with one disorder diagnosis during the last year had “any 
contact to the health care system” in the same period, whereas the rates increase with the number of comorbid 
diagnoses (up to 40% of individuals with four or more comorbid disorder diagnoses had any contact with the health 
care system). 
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According to Thornicroft et al. (2017) there are three stages towards receiving 

adequate treatment for depression and each of these stages presents individuals with specific 

barriers (e.g., Harvey & Gumport, 2015). The stages and barriers are collectively illustrated in 

FIGURE 1.2.  

FIGURE 1.2 Stages from fulfilling disorder criteria to receiving adequate treatment and associated barriers. 

Rates/shares for each stage obtained from Thornicroft et al. (2017); barriers are summarized on the basis of the 

review by Harvey and Gumport (2015). Sizes of boxes are approximations of the actual percentages.       

Stage 1: Perceiving a need for treatment. Individuals may have difficulties in 

correctly evaluating their own symptoms and choosing appropriate reactions due to a lack of 

mental health literacy (Bonabi et al., 2016). The problem is exacerbated by detection problems 

in primary care where about half of the individuals fulfilling the criteria for MDD fail to be 

diagnosed by primary care practitioners (Beesdo-Baum et al., 2018). It is estimated that only 

56% of individuals who fulfill the criteria for MDD perceive a need for (depression) treatment 

at all (Thornicroft et al., 2017).  
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Stage 2. Receiving any kind of treatment. Even if depressed individuals feel that they 

need support with their symptoms, lack of internal and external resources inhibits an ultimate 

decision to (regularly) attend treatment. Overall, about 71% of individuals that perceive a 

treatment need also obtain some kind of treatment (Thornicroft et al., 2017). In a narrative 

review on barriers to treatment uptake, Harvey and Gumport (2015) summarized that the central 

problems on the patient level pertain to logistic issues such as “transport, childcare, 

appointments at a convenient time and place, identifying a skilled therapist, attending sessions 

on time and overcoming stigma” (Harvey & Gumport, 2015, p. 41). A detailed look at the types 

of barriers at this stage underlines that they are likely associated with socioeconomic and 

psychosocial disadvantages (e.g., dependence on public transport, not being able reconcile 

regular appointments with a precarious employment or with familial obligations). Indeed, 

empirical studies show that membership in socially marginalized groups, which might need 

treatment the most, reduces the likelihood of receiving treatment for mental disorders (Conner 

et al., 2010; Gulliver, Griffiths, & Christensen, 2010). 

Stage 3. Receiving evidence-based treatment. More than a third of patients who start 

the uptake of psychotherapy discontinue their treatment within or before the first five 

preparatory sessions (Jacobi, Uhmann, & Hoyer, 2011), partly due to the barriers listed in Stage 

2. Additionally, about 10 to 30% of individuals with depression seek complementary or

alternative medicine (CAM) instead of evidence-based interventions (Solomon & Adams, 

2015). Reasons include a lack of knowledge on what might constitute “evidence-based” 

treatments and the importance of treatment adherence as well as a reduced feeling of stigma 

derived from the uptake of CAM as opposed to psychotherapy (Hansen & Kristoffersen, 2016). 

Another important reason lies on a structural level and pertains to limited access to adequate 

treatment, especially in rural areas. Data from Germany indicates that psychological 

psychotherapists or specialized medical staff are scarce and capacity restrictions result in 

multiple months of waiting times. For example, the average patient in Brandenburg has to wait 
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for 29.4 weeks (German average: 19.9) for the start of guideline-based psychotherapy (BPtK, 

2018). Taken together, about 59% of patients receiving “any kind of treatment” either do not 

receive a minimally adequate dosage of evidence-based treatments or they instead use CAM.  

 

1.4.2 Circumventing barriers  

Some of the stage-specific barriers can be targeted by awareness campaigns and 

measures that increase mental health literacy or diagnostic competencies in the general 

population (e.g., Chang, 2008), in specific target groups (e.g., Kutcher, Bagnell, & Wei, 2015) 

or in primary care practitioners (e.g., Gilbody, Whitty, Grimshaw, & Thomas, 2003). These 

measures pertain to stages 1 and 3 where knowledge about depression and evidence-based 

treatments are key issues. However, barriers on stage 2 (receiving any kind of treatment) are 

ingrained in the nature of face-to-face treatments for they are related to the requirement of co-

presence of patient and therapist at a certain place (i.e., the treatment facility) and at a certain 

time (i.e., appointments).  

Thus, these barriers might be effectively reduced by a different approach to treatment 

such as internet-based interventions.  
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1.5 Internet-based Interventions 

1.5.1 Defining Internet-based Interventions 

The umbrella term “Internet-based Interventions” (IBI) subsumes the use of internet-

ready devices (e.g. personal computers, smartphones, tablets) for accompaniment and provision 

of (psycho)therapeutic measures. In that, the medium can be used to 1) provide information to 

patients, 2) offer training, tools, and tasks for patients, and/or 3) communicate between patients 

and therapists11 (Zagorscak & Knaevelsrud, 2019).  

Berger, Stolz and Schulz (2013) further clarify that depending on the function of the 

medium different approaches of IBI exist (see FIGURE 1.3 for a summary): 

FIGURE 1.3. Functions of internet-ready devices and resulting approaches of internet-based interventions. Adapted 

from Berger, Stolz & Schulz (2013).     

Focus on information. If internet-ready devices are used solely as a tool to provide or 

consume structured and comprehensive information (e.g., about a psychological problem or 

disorder, psychoeducation) and/or to offer automated (treatment) tools (e.g. for tracking the 

symptoms or protocoling thoughts) to patients, the approach is best summarized as “internet-

based self-help”. In that case, no “guidance” or contact to other humans (e.g., therapists) is 

11 Please note that for reasons of readability only the terms “patient” and “therapist” are used. Depending on the 
setting, symptom severity and qualification of those providing guidance, wording such as “client” and “counselor” 
or “provider” and “user/recipient” might be more appropriate.  
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offered. Thus, these approaches are also referred to as “unguided” IBI (e.g., Wijnen, Lokman, 

Leone, Evers, & Smit, 2018).  

Focus on communication. If internet-ready devices are used solely as a communication 

tool between patients and therapists (e.g., using text, audio- or video-messaging tools) and no 

standardized or automated online-information or tools are offered, the approach is best 

summarized as “online counseling” or “online (psycho)therapy” due to the structural 

similarities with the respective face-to-face approaches.  

Hybrid forms. If internet-ready devices are used to provide (standardized or automated) 

information and/or treatment tools and at the same time feedback or guidance is provided 

online, this approach is referred to as “guided self-help” or “guided IBI”. Usually, these 

approaches offer fully-standardized or automatically tailored (e.g., differing information for 

men and women) psychoeducation and tasks that can be completed online. Afterwards, a 

therapist assesses the work product of the patient and gives feedback or encouragement. This 

feedback is usually offered in the form of written messages but might also consist of 

accompanying phone calls, chats or video-conferencing (Richards & Richardson, 2012). Some 

of these approaches offer only very little guidance (e.g., a few semi-standardized lines of written 

encouragement weekly) and are thus called “minimal-contact treatments” (e.g., Lappalainen, 

Langrial, Oinas-Kukkonen, Tolvanen, & Lappalainen, 2015). 

Blended treatment. Each of these three basic categories of IBI can be combined with 

face-to-face therapy. These combinations are called “blended treatment”. It may be 

considered as a separate category of IBI. However, blended treatments can usually be 

decomposed into an IBI facet and a face-to-face facet. Concordantly, most trials on blended 

treatments have investigated rather separate than complementary forms of IBI and face-to-

face psychotherapy (Wentzel, van der Vaart, Bohlmeijer, & van Gemert-Pijnen, 2016).  
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1.5.2 Efficacy of IBI for depression 

Dozens of randomized controlled trials have investigated whether IBI are more effective 

than passive control groups (usually waitlists). These studies have been summarized in four 

recent meta-analyses (Karyotaki et al., 2018, 2017; Königbauer, Letsch, Doebler, Ebert, & 

Baumeister, 2017; Sztein, Koransky, Fegan, & Himelhoch, 2018) and a number of older 

reviews and meta-analyses (e.g., Andersson & Cuijpers, 2009; Bhattacharya, Kelley, & 

Bhattacharjee, 2012; Johansson & Andersson, 2012; Richards & Richardson, 2012; So et al., 

2013). In short, all meta-analyses concluded on the efficacy of IBI for depression. The reported 

standardized controlled effect sizes obtained from the four most recent meta-analyses are high 

for guided interventions and small for unguided interventions (see TABLE 1.2). Moreover, there 

have been first randomized controlled trials comparing IBI with similarly structured face-to-

face treatments (i.e., same duration, same topics addressed, similar number of patient-therapist 

contacts), which have also been synthesized in a recently updated meta-analysis (Carlbring, 

Andersson, Cuijpers, Riper, & Hedman-Lagerlöf, 2018). The authors did not find any 

meaningful differences in symptom reductions between IBI and face-to-face treatments. While 

these results are encouraging for the utility of IBI, it is important to stress their preliminary 

nature. The meta-analysis included 20 trials on various somatic and psychiatric conditions. 

Thus, the number of included trials on IBI for depression (k = 4) is still too small to conclude 

evaluation on the equivalence of both approaches for this specific target population.   
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1.5.3 Benefits and challenges  

Apart from the promising results on their efficacy, IBI offer several benefits that might 

help circumvent the barriers to treatment uptake listed in SECTION 1.4.2. These benefits are 

briefly summarized in this section and are discussed in more detail elsewhere (e.g., Andersson 

& Titov, 2014; Zagorscak & Knaevelsrud, 2019).  

TABLE 1.2 
Results of recent meta-analyses on the efficacy of internet-based interventions for depression. 
Meta-
Analysis 

Experimental 
IBI Conditions 

(and target 
populations) 

Comparator 
Condition 

Included 
Studies (k) and 

Participants 
(n) 

Controlled Effect 
Size (Symptom 
Reduction) or 

Comparative Odds 
of Remission 

Pre-Post 

Controlled 
Effect Sizes 
Follow-Up 

Königbauer 
et al., 2017 

guided and 
unguided 

(depressed 
individuals; 

clinical interview) 

WLC k = 19 
n = 1650 

SMD = 0.90 
(95% CI: 0.73 - 

1.07) 

--- 

Karyotaki et 
al., 2017 

Unguided 
(depressed 
individuals; 

clinical interview 
or self-report) 

WLC, CAU, 
AC 

 

k = 13 
n = 3876 

 

SMD = 0.27 --- 

Karyotaki et 
al., 2018 

Guided 
(depressed 
individuals; 

clinical interview 
or self-report) 

WLC, CAU, 
AC 

 

k = 24 
n = 4889 

OR = 2.41 
(95% CI: 2.07–2.79) 

 

--- 

Sztein et al., 
2018 

CBT only; guided 
and unguided 

(mildly to 
moderately 
depressed 

individuals; self-
report) 

WLC k = 14 
n = 1631 

 

SMD = 0.74  
(95% CI: 0.62 - 

0.86) 

3-6 months 
follow up: 

SMD = 0.83 
(95% CI: 

0.69 - 0.99) 

Note. WLC = waitlist control, CAU = care as usual, AC = attention placebo control, CBT = cognitive-
behavioral therapy, SMD = standardized mean difference (difference in mean outcome between groups 
divided by the standard deviation of outcome among participants), OR = odds ratio.  
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First, IBI can be offered independently of the location of a user (i.e., geographical 

flexibility) and with an increased flexibility regarding the duration, frequency and time they are 

used (i.e., temporal flexibility)12 

Second, the availability of internet-ready devices in everyday situations facilitates the 

convenient use of therapeutic tools and information where they are needed (e.g., Beattie, Shaw, 

Kaur, & Kessler, 2009). Additionally, in most forms of IBI all information that is exchanged 

between patient and therapist is recorded, safely stored and retrievable on the patient’s demand. 

Third, the perceived risk of being stigmatized through the uptake of IBI is lower than 

for face-to-face psychotherapy (Bathje, Kim, Rau, Bassiouny, & Kim, 2014; Griffiths, 

Lindenmeyer, Powell, Lowe, & Thorogood, 2006; Wong, Bonn, Tam, & Wong, 2018).  

Fourth, as treatment capacity is a limited and costly resource, IBI bear the potential to 

offer more efficient treatment to patients: In stark contrast to the time investment of face-to-

face therapy, which is usually 50 minutes per session, a meta-analysis reported guidance time 

in IBI for depression and anxiety to be only between 53 and 150 minutes per entire intervention 

(Pihlaja et al., 2018).    

Fifth, a meta-analysis summarized that IBI have a beneficial effect on empowerment 

and self-efficacy (Samoocha, Bruinvels, Elbers, Anema, & van der Beek, 2010) and patients 

perceived empowerment as a unique benefit of IBI in qualitative studies (Wallin, Mattsson, & 

Olsson, 2016).  

In summary, the list of assets of IBI highlights the potential to circumvent barriers to the 

uptake of treatment for mental disorders. At the same time, the use of digital communication 

bears a number of challenges that patients and therapists are faced with.  

12 While the amount of geographical flexibility is high in all IBI, temporal flexibility is the highest in internet-
based self-help and lower in guided self-help, where a patient might have to wait for her therapist’s feedback in 
order to proceed. Online-counseling or therapy that seeks to duplicate the face-to-face setting suffers from the 
same temporal restrictions as a consequence (e.g., temporal co-presence might be required for video-
conferencing). 
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Zagorscak and Knaevelsrud (2019) argued that in order for IBI to be successfully applied, 

there are challenges on three levels. These challenges are described briefly here, and discussed 

in more detail in the original publication.  

Intervention level. A lack of physical co-presence of patient and therapist and 

(depending on the form of IBI, see SECTION 1.5.1) the absence of nonverbal communication 

cues increases the probability of misunderstandings and decreases the probability of noticing 

emotional nuances  (Beattie et al., 2009). Further, the mode of communication might impede 

diagnosis in general and in particular the detection of a (suicidal) crisis (e.g., from written 

messages alone). This critique has been contested in studies demonstrating that diagnostic 

questionnaires and interviews lead to comparable conclusions regardless of whether they are 

offered online, by telephone or face-to-face (e.g., Fine et al., 2013; Hajebi et al., 2012; Hines, 

Douglas, & Mahmood, 2010; Vallejo, Jordán, Díaz, Comeche, & Ortega, 2007). However, the 

precondition is that reliable and valid diagnostic instruments are indeed used regularly and 

repeatedly. Consequently, implementing frequent screenings for disorder symptoms and 

suicidality and predetermined procedures for patients in crisis or experiencing symptom 

deterioration are important criteria for assessing the quality of existing IBI (Klein et al., 2018). 

Technical level. To participate in IBI, both the patient and the therapist (if involved) need 

to have a stable internet connection and internet-ready devices that are suitable to the purpose 

at hand (e.g., recording and playing audio, installing certain software). In addition, the data and 

the communication of patients (with therapists) need to be secured. Typically, this entails 

encrypted messages stored on servers devised for that purpose, password-protected access or 

two-factor authentication (i.e., transaction authentication numbers for one-time use in addition 

to a stable password) (Zagorscak & Knaevelsrud, 2019). 

Patient level. Most IBI rely heavily on written communication. Thus, individuals with 

physical or psychological impediments (e.g., blindness, mental disabilities, reduced attention 
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span or motivation, illiteracy) might experience difficulties when using IBI (Zagorscak & 

Knaevelsrud, 2019). Further, by definition, IBI make use of mobile or stationary computers. 

Thus, they are not suitable to individuals that do not feel comfortable or competent using such 

devices. Finally, most research on IBI has been done on non-suicidal individuals with mild to 

moderate symptom severity and with no or unreported comorbidities (Andersson & Titov, 

2014). Part of the reason for this lack of studies is the linear nature and disorder-specificity of 

a majority of the available IBI. Nevertheless, first trials suggest that IBI are efficacious and 

suitable for individuals with more severe depressive symptoms, suicidal ideation (e.g., Meyer 

et al., 2015; van Spijker et al., 2018) and comorbid disorders (Johansson, Sjoberg, et al., 2012). 

However, the number of these trials is small and prohibits final conclusions on the 

appropriateness of IBI for these target groups.  

In summary, there are challenges on each of the three levels that can be met by 

organizational or technical adaptations (e.g., buying a new device, changing inclusion or 

exclusion criteria, implementing regular screenings for suicidal symptoms). However, some of 

the challenges evidently indicate a lack of research. The problem, whether IBI is suitable for 

patient populations with severe symptoms, suicidal ideation and/or comorbidities is only one 

illustrative example. It symbolizes a general research question that can be broadly summarized 

as:  

“What kind of IBI works in what way for what kind of individual?” 

Specific aspects of this general question are at the core of this dissertation. They are 

derived from existing controversies and gaps in the literature, which the following section 

details.   
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1.6 Current gaps in research on IBI for depression 

This chapter will give an overview of previously conducted studies and scientific 

discussions that led to the development of the three studies this dissertation is based on. For 

that purpose, it will extend on some general shortcomings in the literature on IBI for depression. 

It will further focus on the theoretical background of each of the three original studies. In 

particular, it will detail controversies surrounding the importance of human “guidance” in IBI 

(STUDY 1), discuss the current knowledge and research gaps concerning factors contributing to 

the success of IBI (STUDY 2), and give an overview of what is known about depressive symptom 

course developments (i.e., “patterns of change”) during IBI (STUDY 3). 

 

1.6.1 General shortcomings  

Sampling bias. While IBI have promising potential to circumvent barriers to treatment 

(SECTION 1.5.3) and thus reach previously undertreated populations, a common critique is that 

they fail to deliver on this promise. In a review Arnberg, Linton, Hultcrantz, Heintz and Jonsson 

(2014) summarized, that 53-61% of participants in IBI already had a history of other 

psychological treatments, reported high employment rates and a high degree of education. Most 

participants were women. Similar sample statistics were reported in recent German-based trials 

on IBI for depression (e.g., Späth et al., 2017). Arnberg et al. (2014) concluded that such 

findings “raise concerns about whether the effects found in most RCTs [on IBI for depression] 

can be generalized to those who today are underserved” (p. 11). This sampling bias in trials on 

IBI seems to be rooted partly in the way recruitment of participants is carried out. So far, the 

largest meta-analysis on the efficacy of IBI for depression conducted by Karyotaki et al. (2018) 

included 24 trials and 15 of those recruited self-selected community-based or occupational 

samples (e.g. through advertisements in newspapers). At least partly clinically recruited 

samples (e.g., from waitlist for other treatments, through primary care or from inpatient or 

outpatient treatment facilities) are included in the remaining nine trials (Hallgren et al., 2015; 
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Johansson, Ekbladh, et al., 2012; Johansson, Sjoberg, et al., 2012; Kenter, Cuijpers, Beekman, 

& van Straten, 2016; Kivi et al., 2014; Klein et al., 2016; Newby et al., 2013; Nobis et al., 2015; 

Sheeber et al., 2012). TABLE 1.3 provides an overview of the studies with clinical recruitment 

strategies.  

TABLE 1.3 
Randomized-controlled trials on IBI for depression with (partly) clinical recruitment 

Trial Recruitment source Specifics of recruitment 
Hallgren et al. (2015) Clinical Invitation after scoring >9 on the PHQ-9 in a 

participating primary care facility 

Johansson, Ekbladh et al. 
(2012) 

Community and 
Clinical 

1) Newspaper advertisement
2) Individuals in waitlist for another IBI

Johansson, Sjoberg et al. 
(2012) 

Community and 
Clinical 

1) Newspaper advertisement
2) Individuals in waitlist for another IBI

Kenter et al. (2016) Clinical Individuals in waitlist for face-to-face treatment 

Kivi et al. (2014) Clinical Recruitment by primary care practitioners 
inviting suitable patients to participate 

Klein et al. (2016) Community and 
Clinical 

Self-selected; advertisement (flyers) in inpatient 
and outpatient medical and psychological clinics. 

Advertisement through other channels (online 
forums, newspaper and radio, health insurance) 

Newby et al. (2013) Community and 
Clinical 

1) Online advertisement
2) Individuals in waitlist for another IBI

Nobis et al. (2015)a Clinical Online and offline advertisement; individuals 
diagnosed with diabetes were informed by health 

insurance representatives about the trial. 

Sheeber et al. (2012)b Clinical Mothers of children participating in a school-
based intervention were invited to participate if 
they reported elevated symptoms of depression 

Note. Trial selection based on the meta-analysis of Karyotaki et al. (2018). aTrial included only individuals diagnosed with 
diabetes. bTrial included only rural mothers of children who participated in the “Head Start Classroom” program. 

A closer look at these nine trials reveals another interesting pattern regarding the 

representativeness of the samples: In most cases they consisted of self-selected individuals as 

well. These individuals were either already recruited and waitlisted for another IBI (or in one 

case face-to-face psychotherapy) or they were made aware of the trial through different forms 

of advertisement. Only in four trials were the individuals recruited by being directly approached 

by a primary care practitioner, an insurance representative or a study employee (external 

selection). Unfortunately, findings from these four studies do not generalize well to the broader 



 

24 
    

field of IBI for depression. This is due to the fact that two focused on very specific populations 

(depressed individuals diagnosed with diabetes, Nobis et al., 2015; rural mothers, Sheeber et 

al., 2012), one investigated an unguided self-help intervention (Hallgren et al., 2015) and the 

fourth included face-to-face meetings and phone calls with study therapists and might thus be 

considered to be a “blended treatment” (Kivi et al., 2014).  

Insufficient Sample Size (Statistical Power). Another aspect that is evident from 

recent meta-analyses on IBI for depression (Karyotaki et al., 2018, 2017; Königbauer et al., 

2017; Sztein et al., 2018) is the small sample size in the included studies (see also TABLE 1.4). 

Depending on inclusion and exclusion criteria, the meta-analyses were based on total sample 

sizes of n = 1631 to n = 4998 stemming from a total of k = 14 to k = 24 individual trials. Only 

seven of the 24 trials included in the largest meta-analyses featured treatment conditions with 

sample sizes of n > 100. Such small sample sizes are only appropriate when two experimental 

conditions are compared on a limited set of variables and large between-group effects are 

expected. However, these conditions are not met when active treatment conditions are 

compared (see TABLE 1.4 for example of underpowered trials comparing active conditions).  

Further, studying mechanisms of change in IBI requires statistical models that simultaneously 

include multiple predictors of symptom development and consider their interrelations, which 

requires large sample sizes as well  (Kazdin, 2007). 

In summary, there is a need for sufficiently powered studies on IBI that include more 

diverse means of recruitment (i.e., self-selection and external selection of participants) in order 

to increase the validity and generalizability of findings. The relevance of these general problems 

will be further highlighted in the following sections, for underpowered trials with biased 

samples have also been used – in part - to generate knowledge about the benefits of guidance 

in IBI (see SECTION 1.6.2), the contributions of different treatment-specific and nonspecific 

factors to the success of IBI (SECTION 1.6.3), and clinical and socio-demographic predictors of 

depressive symptom courses in IBI (SECTION 1.6.4).  
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1.6.2 Shortcomings of Research on the Importance of Guidance in IBI for Depression 

Since the first large meta-analysis on IBI for depression (and anxiety) (Spek et al., 2007) 

concluded that whether guidance is provided “differentiates between large and small effect 

sizes“ (p. 327), the scientific consensus obtained through reviews and meta-analyses seemed to 

favor guided over unguided IBI with regard to efficacy on primary outcomes (Baumeister, 

Reichler, Munzinger, & Lin, 2014; Johansson & Andersson, 2012; Richards & Richardson, 

2012).   

Strikingly, what was defined as guidance varied fundamentally across trials (Baumeister 

et al., 2014; Berger, 2017). The aforementioned reviews and meta-analyses on this topic in IBI 

for depression thus applied a broad definition, and included trials in the “guided” category that 

featured any form of direct contact between a provider (e.g., therapist) and recipient (e.g., 

patient) of IBI (Johansson & Andersson, 2012; Richards & Richardson, 2012). This coarse 

definition had to be used in order to account for the existing inter-trial heterogeneity in intensity, 

frequency, and purpose of guidance. Further differences exist in qualifications of providers or 

the mode/channel of communication. For example, Richards and Richardson (2012) 

summarized that twelve studies in their meta-analysis included no support at all, ten studies 

included a clinician who provided feedback on homework, and twenty studies featured 

administrative support in “logistical or administrative ways and used receptionists, nurses, lay 

people, research coordinators, administrative staff, or technicians.” (Richards & Richardson, 

2012, p. 336). If guidance was provided, it mostly took place through written messages, but 

also by phone, through chats or through face-to-face meetings in-between IBI sessions.  

Other inconsistencies arise in the definition of the opposite category as well: Some 

studies included “contact-on-demand” in their “unguided” conditions, meaning that participants 

could contact the research team at any time if problems (e.g., technical issues) arose (Boss et 

al., 2015). In other studies, individuals in the unguided condition had contact to the research 
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team before the start of the intervention for diagnostic purposes (Johansson & Andersson, 

2012), which was proven to positively affect symptoms of depression in a trial on IBI for social 

anxiety (Boettcher, Berger, & Renneberg, 2012).  

Critical evaluation of meta-analyses. The variability in the definition of guidance is 

problematic, for the coarse integration of qualitatively and quantitatively different support 

conditions might conceal potentially existing differences between them. Concordantly, meta-

analyses that group findings “from studies that measured different things, manipulated different 

variables, and tested different subject populations“ (Sharpe, 1997, p. 882) have been critiqued 

in general for decades for the potential lack of validity of their results (e.g., Sharpe, 1997; 

Szajewska, 2018). This means, with respect to guidance, that imprecise definitions in 

conjunction with other confounding factors like selective sampling and different measurement 

practices lead to effect estimates that represent an uninterpretable blend of all these aspects. A 

closer look at the studies included in the two most influential reviews and meta-analyses reveals 

that they too might suffer from this so called “apples and oranges” problem (Sharpe, 1997) for 

the variable “guidance” was confounded with other trial- and setting-specific conditions that 

are likely to influence outcome.  

In the first review and meta-analysis, Richards and Richardson (2012) compared trials 

based on support that was offered (i.e., unguided trials were compared with trials with 

administrational guidance and therapeutic guidance). Notably, only 31% of the included 

unguided trials recruited participants from clinical settings (primary care, secondary care, 

hospitals, outpatient clinics), whereas the remaining trials used community-based convenience 

samples. In contrast, with 65% the rate of trials that recruited their participants from clinical 

settings was significantly higher in the guided categories.  

In the second review, Johansson and Andersson (2012) created four separate categories 

of trials and compared their controlled effect sizes: 1) Trials with no contact, 2) Trials with 

contact before the intervention (e.g., diagnostic interviews), 3) Trials with contact during the 
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intervention (e.g., regular feedback) and 4) trials with contact before and during the 

intervention. Again, their grouping displays problematic patterns. First, half of the eight trials 

in the “no contact” category targeted adolescents, while all trials in the other categories targeted 

adults (including one trial targeted at senior citizens). Second, 75% of the controlled effect sizes 

in the “no contact” category were based on comparisons with “care as usual”. The same is true 

for 50% of the trials in category 2 (contact before the intervention), none of the trials in category 

3 (contact during the intervention), and 21% of the trials in category 4 (contact during and 

before the intervention). The controlled effect sizes of all other trials were based on 

comparisons with untreated waitlists.  

These trial- and setting-specific conditions are problematic for a number of reasons. 

Previous meta-analyses demonstrate that, IBI trials with adolescents yield lower effect sizes 

than those with adults (Pennant et al., 2015). The same is true for studies recruiting from 

community populations as opposed to more severely affected clinical populations (Bower et 

al., 2013) and for comparisons against “care as usual” as opposed to waitlist control groups 

(Cuijpers et al., 2013). FIGURE 1.4 shows how the results of Johansson and Andersson  (2012) 

would change if these problematic studies (i.e., demographic bias or comparator bias) were 

removed from the data. More specifically, the figure shows, that the differences between the 

four categories cease to exist or are drastically reduced when only comparable trials are 

included. 

While this is just an illustration that has its own shortcomings (e.g., too few studies per 

category), it demonstrates potential validity problems of these reviews and meta-analyses that 

might have shaped the scientific discourse on the topic of guidance in IBI. Finally, it is 

important to note that one recent meta-analysis on IBI for depression without these biases exists 

(Königbauer et al., 2017). In this meta-analysis only trials targeting individuals with a diagnosis 

of MDD obtained from a clinical interview were included. The only comparator condition was 
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waitlist and 17 of the 19 included trials had the same recruitment strategy/source. The authors 

of this meta-analysis did not find “guidance” to be a significant moderator of outcome. 

Direct experimental comparisons of varying levels of guidance. The validity of the 

core finding that „guided“ interventions are superior to „unguided“ interventions is further 

taken into question by the lack of direct experimental comparisons that would support the 

majority of meta-analytic conclusions. So far, only five studies have directly contrasted the 

same or similar IBI for depression and manipulated the quantity or quality of guidance that was 

provided (Andersson, Sarkohi, Karlsson, Bjarehed, & Hesser, 2013; Berger, Hammerli, Gubser, 

Andersson, & Caspar, 2011; Kelders, Bohlmeijer, Pots, & van Gemert-Pijnen, 2015; Titov et 

al., 2010; Vernmark et al., 2010). TABLE 1.4 provides details on these five studies. All 

comparisons yielded no significant differences between the different guidance conditions. 

Importantly, four out of the five studies stated having possibly conducted underpowered trials 

or criticized their own sample size for being too small. Indeed, a sensitivity analysis performed 

on all these studies reveals that most trials were only sufficiently powered to reliably detect 

medium to large between-group effects (see TABLE 1.4). This finding further underlines the 

necessity for studies with larger sample sizes that provide sufficient power to detect effect size 

differences between guided and unguided conditions.  
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TABLE 1.4 
Overview of studies that directly compared different qualities or quantities of guidance in IBI for depression. 

Study Conditions Sample 
Size 

Result Statements 
about 

Sample Size 
in Discussion 

Section 

Result of 
Sensitivity 
Analysisb 

Titov et al. 
(2010) 

1) iCBT with weekly
guidance by clinician 

2) iCBT with weekly
assistance by technician 

3) WLC

N = 
141 

Depressive 
symptom 
reduction 
pre-post: 
1 = 2 > 3 

“The 
relatively 

small sample 
size is one 

limitation of 
this study.” 

(p. 8) 

d = .5 

Vernmark et al. 
(2010) 

1) E-Mail-Therapy
2) Guided self-help

3) WLC

N = 88 Depressive 
symptom 
reduction 
pre-post: 

1 = 2 
2 = 3 
1 > 3 

“The study 
was 

underpowered 
to detect 

differences 
between the 
two active 

treatments.“ 
(p. 375) 

d = 73 

Berger et al. 
(2011) 

1) Guided iCBT
2) Unguided iCBT

3) WLC

N = 76 Depressive 
symptom 
reduction 
pre-post: 
1 = 2 > 3 

“The study 
was 

underpowered 
to detect 

small 
differences 
between the 
guided and 
unguided 

condition.” 
(p. 263) 

d = .84 

Andersson et al. 
(2013) 

1) E-Mail-Therapy
2) Guided self-help

N = 47 Reduction 
in negative 

thinking 
pre-post: 

1 = 2 

“Some 
insignificant 
differences 
between the 

two 
treatments 

[…] 
may be due to 

our small 
sample size.” 

(p. 32) 

d = .83 

Kelders et al. 
(2015) 

1) Human supporta

2) Automated support
N = 
239 

Depressive 
symptom 
reduction 
pre-post: 

1 = 2 

--- d = .36 

Note. iCBT = internet-based cognitive behavioral therapy, WLC = waitlist control group. aThis study featured 
eight conditions the participants were randomized to. However, all eight conditions were grouped as either 
human or automated support and compared accordingly. bResult of own sensitivity analysis indicates the 
smallest detectable between-group effect size with α=.05 and β =.2. 
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FIGURE 1.4. Depiction of controlled effect sizes from the review by Johansson and Andersson (2012) and changes if demographic bias and comparator bias is removed. Each dot 

represents one of the trials included into the original study. Red lines represent means of controlled effect sizes per category. WL = waitlist. Contact categories: 0 = none, 1 = 

before the intervention, 2 = during the intervention, 3 = before and during the intervention.  Panel A shows the results of the original review.  Trials on adolescents and seniors are 

removed in Panel B, additionally in Panel C trials are removed if they used “care as usual” as comparator condition.  Data source:  Johansson and Andersson (2012); own re-

analysis of data after study removal with statistical methods used in the original publication (grand mean total of all studies per category). 



31 

   In summary, while most reviews and meta-analyses support the notion that guided IBI 

for depression is superior to unguided IBI regarding efficacy in depressive symptom reduction, 

there are some methodological shortcomings of the conducted studies, such as sampling and 

comparator biases. In addition, experimental comparisons of different quantities and qualities 

of guidance or feedback do not support their conclusions, but there are very few such trials and 

the majority of studies are too heavily underpowered to detect even moderate group differences 

between two active treatments.   

1.6.3 Research on Factors Contributing to the Success of IBI 

Research on factors contributing to the success of IBI is still in its infancy and only a 

small number of limited studies exists. Thus, this section will introduce this topic from the 

historical perspective of research on contributing factors in face-to-face psychotherapy.   

Theoretical perspectives. Identifying the elements of treatment that are beneficial, 

harmful or irrelevant to outcome is crucial in order to understand and improve psychotherapy. 

As one of the first researchers Rosenzweig (1936) formulated his theoretical assumptions about 

what contributes to the success of psychotherapy. Even before reliable evidence existed, he 

proposed that different therapeutic approaches are only apparently diverse and that all bona 

fide psychotherapies are equally effective. He suspected that the therapist’s personality, attitude 

and general behavior are the most important contributors to treatment success and that given 

these factors “it is of comparatively little consequence what particular method that therapist 

uses” (Rosenzweig, 1936, p. 415).  

Concerning the supposed lack of differences between different schools of therapy, he 

summarized his verdict with a quote stemming from the Dodo bird in the novel Alice’s 

Adventures in Wonderland: “Everybody has won, and all must have prizes” (Carroll, 1922, p. 

33). The influence of Rosenzweig’s ideas extends into the present and both proponents and 

skeptics of this so-called “Dodo-bird-verdict” exist up until today (e.g., Asarnow & Ougrin, 
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2017; César González-Blanch & Laura Carral-Fernández, 2017). The proponents argue that the 

only relevant contributors to the success of treatment are factors common to all psychotherapies. 

Examples of such factors include the therapeutic relationship and related aspects such as the 

therapists’ warmth or empathy as well as patients’ hopes or expectations towards the succes of 

treatment (Wampold, 2015). The skeptics maintain, that there are additional factors specific to 

any given treatment that contribute as well. These factors are centered around the idea of 

therapeutic schools and are involved with the respective theoretical orientation and the applied 

methods or therapeutic techniques that are derived from it (Thomas, 2006).  

The four-factor-model. It is apparent that the dichotomy of broad categories of 

“common” and “specific” factors seems limited in its informative value for research and 

practice. Consequently, more fine-grained models were suggested. One of the most influential 

model propositions is the four-factor-model by Lambert (1992) that was further developed by 

Miller, Duncan and Hubble (1996). The adapted model by Miller et al. (1996) differentiated 

between three aspects that were previously subsumed under “common factors”:  

1) relationship factors (originally labeled “common factors” by Lambert, 1992)

2) expectations (towards treatment (outcome))

3) patient factors or extra-therapeutic factors

In addition, the “specific factor” component by Lambert (1992) was labeled more precisely as  

4) model/ techniques.

On the basis of a non-empirical literature review, Lambert (1992) further estimated the 

amount of contribution of each of these four categories to therapeutic outcome. These numbers 

together with examples of constructs representative of the four factors are illustrated in FIGURE

1.5.  

As Stenzel and Berking (2012) summarized, numerous other theories on contributing 

factors exist such as the Generic Model of Psychotherapy (Orlinsky & Howard, 1987) or 

Grawe’s contributing factors model (e.g., Smith & Grawe, 2003) to name just two examples. 
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However, none of these models were as widely and internationally dissiminated and received 

as the four-factor-model. The main reasons lie in its simplicity and generalizability: The other 

models can be constructed as derivatives, as all of their suggested categories fit in one of the 

four proposed by Lambert (1992) and Miller et al. (1996).  

 

FIGURE 1.5. Four-factor-model by Lambert (1992) and Miller et al. (1996) with estimated percentage of 

contribution to psychotherapeutic outcome by Lambert (1992). Note, that the examples per factor are merely 

illustrative and not representative. CBT = cognitive-behavioral therapy, PD = psychodynamic therapy.  

 

Empirical perspectives. The main reason that the debate about contributing factors is 

still ongoing is that it has not been empirically settled (for a summary see Cuijpers, Reijnders, 

& Huibers, 2019). On the one hand, there are large comparative meta-analyses that demonstrate 

the equivalence of different therapeutic approaches supporting the notion of the dodo-bird-

verdict (Baardseth et al., 2013; Wampold et al., 1997). On the other hand, there are meta-

analyses that report a small but significant superiority of cognitive-behavioral therapy over 

other therapeutic schools in general (Marcus, O’Connell, Norris, & Sawaqdeh, 2014) or for the 

treatment of anxiety disorders and depression in particular (Driessen et al., 2010; Tolin, 2010). 
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Since both sides critiqued the other’s study selection and methodological approaches, the matter 

remains unresolved (e.g., Beutler, 2002; Mulder, Murray, & Rucklidge, 2017; Tolin, 2014; 

Wampold et al., 2017).  

An interesting indirect empirical test of contributing factors in the treatment of 

depression was performed in a meta-analysis by Cuijpers and colleagues (2012). The authors 

investigated the efficacy of non-directive supportive treatments (NDST) for adult depression 

and compared them to specific psychotherapeutic treatments (e.g., cognitive-behavioral or 

psychodynamic), pharmacotherapy (antidepressants) and passive control groups. The authors 

defined NDST as “any unstructured therapy without specific psychological techniques other 

than those common to all approaches (e.g., helping people talk about their experiences and 

emotions and offering empathy), that is not aimed at solutions or acquiring new skills […]” 

(Cuijpers et al., 2012, p. 282).  

The assumptions of the authors were that only common factors are active in NDST (i.e., 

relationship factors, expectations, extra-therapeutic factors), whereas additional specific 

contributing factors are at work in the comparator treatments that are aligned with a particular 

therapeutic school. Further, comparisons with waitlist control groups were used to discern the 

contributions of extra-therapeutic factors, which are assumed to be the only relevant 

contributors in this condition (Cuijpers et al., 2012).  

The study found that common factors seem to be the most important and account for 

half of the improvement during treatment. The other half of the contribution is shared by extra-

therapeutic factors (33.3%) and to a lesser degree treatment-specific factors (17.1%). As 

expectations and placebo effects may be at work in waitlists as well and NDST might feature 

some strategies that are similar to those in specific treatments, Cuijpers et al.’s (2012) 

assumptions seem like rather coarse approximations of reality. Nevertheless, the results bear a 

striking resemblance to the theoretically proposed numbers within the four-factor-model (see 

FIGURE 1.5) and thus support its validity and informative value. 
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Studies on contributing factors in IBI for depression. Given that the debate on 

contributing factors in face-to-face psychotherapy is decades older than the one concerning IBI, 

it is not surprising that no comprehensive explanatory model of treatment success in IBI exists. 

However, in predicting outcome, some studies on IBI have focused on expectations (e.g., 

Boettcher, Renneberg, & Berger, 2013), the therapeutic alliance (Flückiger, Del Re, Wampold, 

& Horvath, 2018) or on comparisons between different specific treatments (e.g., Ljótsson et al., 

2014). These studies are discussed in more detail in CHAPTER 3.  

In short, while there are no studies on extra-therapeutic predictors of symptom change 

in IBI, the studies on expectations and specific factors yield inconsistent and partly 

contradictory results regarding their importance. The only factor that was researched in a larger 

number of IBI studies is therapeutic alliance. A recent meta-analysis showed it to be 

significantly associated with outcome in IBI (Flückiger et al., 2018). However, it is unclear 

which of the subfacets of the construct (i.e., bond between patient and therapist, agreement on 

tasks or goals) are responsible for this finding. There is some preliminary evidence for the 

notion that the emotional bond between patient and therapist is less important in IBI than in 

face-to-face treatments, while an agreement on tasks and goals might be more important in this 

setting (Berger, 2017). Further the causal and temporal interrelations between therapeutic 

alliance and symptom change are unclear (i.e., whether symptom change predicts subsequent 

alliance ratings, alliance ratings predict subsequent symptom change or if it is a bi-directional 

association). 

In summary, there is insufficient and partly contradictory evidence on the relative 

importance of the factors suggested by Lambert (1992) and Miller et al. (1996) in IBI. 

Importantly, if studies considered contributing factors, they focussed on one of these predictors, 

neglecting to controll for others. No study has investigated variables indicative of all four 

factors of the model simultaneously.  
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1.6.4 Research on Depressive Symptom Courses during IBI  

The diagnosis of an MDD might suggests a certain uniformity in the group of patients 

carrying this diagnosis (see CHAPTER 1.2), however, even the diagnostic code formalized in the 

DSM-5 differs “based on whether this is a single or recurrent episode, current severity, presence 

of psychotic features and remission status” (APA, 2013, p. 162). This indicates that individuals 

diagnosed with MDD might display a considerable heterogeneity with regard to their current, 

past and future symptoms.  

Empirical perspectives. Reviewing studies on long-term trajectories of depressive 

symptoms in the general population, Musliner, Munk-Olsen, Eaton and Zandi (2016) found that 

most researchers reported either three or four distinct classes of depressed patients. Patients in 

these classes differed regarding symptom chronicity and symptom severity. Clinical and socio-

demographic variables such as lower income, lower education, stressful life events and female 

gender were linked to memberships in higher-severity groups and this membership was in turn 

associated with unfavorable clinical long-term outcomes (Musliner et al., 2016). Apart from 

naturalistic symptom courses, previous studies suggest considerable heterogeneity in symptom 

trajectories of depressed patients during face-to-face treatment as well (e.g., Aderka, Nickerson, 

Boe, & Hofmann, 2012; Cuijpers, van Lier, van Straten, & Donker, 2005; Lutz, Stulz, & Köck, 

2009; Melchior et al., 2016; Schlagert & Hiller, 2017; Stulz & Lutz, 2007; Uher et al., 2010). 

Most of these studies identified distinct subgroups of patients that 1) benefit early in treatment 

with a high overall improvement, 2) benefit later in treatment and/or improve less, 3) do not 

benefit at all. Both, findings from naturalistic settings and from treatment-studies highlight the 

importance of this research area: In a first step, research on this topic helps to identify 

individuals who are at risk for unfavorable developments. In a second step, interventions that 

are tailored to these individuals’ needs can be developed (Khan, Faucett, Lichtenberg, Kirsch, 

& Brown, 2012; Manen et al., 2015).  
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Studies on symptom courses during internet-based treatment. To date, only four 

studies have investigated depressive symptom courses during and after IBI (Batterham et al., 

2017, 2018; Lutz et al., 2017; Sunderland, Wong, Hilvert-Bruce, & Andrews, 2012). To some 

degree, their results mirror the findings from face-to-face studies in that the IBI trials found at 

least two distinguishable classes of participants. The studies classified most individuals as 

improvers (76 – 95%), while a smaller class of individuals showed delayed or weaker response 

or even deterioration throughout treatment. In addition, consistent with findings from the face-

to-face setting, Lutz et al. (2017) demonstrated that those who experience early improvement 

also achieve the best outcome overall. Still, a closer look at characteristics of these four studies 

reveals significant shortcomings in the generalizability of the results due to the intervention 

under research, the target population, the investigated outcome or the time frame where change 

was modeled (see TABLE 1.5 for an overview of specific study characteristics):  

First, two out of the four studies did not investigate IBI for depression in general, but 

rather applied narrow interventions targeted at suicidal ideation (Batterham et al., 2018)  or 

insomnia (Batterham et al., 2017), respectively.  

Second, all of the studies focused on unguided IBI, albeit Lutz et al. (2017) offered 

additional guidance to more severely affected individuals (written messages). Unfortunately, 

the reported results did not differentiate between those who received guidance and those who 

did not.  

Third, while one of the studies did not focus on fine-grained changes during treatment 

but rather on long-term outcomes of IBI (Batterham et al., 2018), another did not consider the 

treatment in its entirety and instead focused on early changes before and during the first four 

weeks of treatment (Lutz et al., 2017). 

Fourth, the study of Sunderland et al. (2012) did not report symptom courses of 

depressive symptoms. The authors used a measure of non-specific psychological distress that 
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is best understood as a blend of symptoms of anxiety and depression (Kessler Psychological 

Distress Sclae, K10; Kessler et al., 2002).  

Fifth, regarding socio-demographic or clinical characteristics associated with the 

trajectory classes reported in these studies, there are only few consistent findings. Overall, 

individuals that tend to have the worst baseline symptom constellations (e.g., higher symptom 

severity, lower physical health, socio-demographic disadvantages) tend to have the highest 

probability of membership in the least favorable trajectory class.  

In summary, the few studies that exist on trajectories of depressive symptom change 

during unguided or fully-standardized IBI have a number of shortcomings limiting their 

informative value. No studies exist on depressive symptom courses in IBI with individualized 

feedback (guidance) by therapists.  
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TABLE 1.5 
Summary of studies on depressive symptom courses in Internet-based Interventions (IBI) 

Study Study 
intervention 

Target group Target 
outcome 

Investigated Time 
Frame 

(Measurement 
Occasions) 

Sample 
Size 

Resulting trajectory 
classes 

(with share of sample) 

Patient characteristics 
associated with 

membership in least 
favorable classb 

Batterham et al., 
(2017) 

Unguided IBI 
for insomnia 

Individuals with 
clinical insomnia 
and subclinical 

depression 

Depressive 
symptoms 
(PHQ-9) 

(1) Baseline 
(2) 4x biweekly during 

treatment 
(3) Post 

(4) FU-6months 
(5) FU-12 months 
(6) FU-18 months 

n = 1149 (1) improving (95%)  
(2) stable/ deteriorating 

(5%) 

More severe baseline 
depression; younger age, 
limited comfort with the 

internet 

Batterham et al., 
(2018) 

Unguided IBI 
for suicidal 

thinking 

Individuals who 
currently 

experience 
suicidal thoughts 

Depressive 
symptoms 
(CES-D) 

(1) Baseline 
(2) Post 

(3) FU-6months 
(4) FU-12 months 

n = 418 (1) high severity 
decreasing moderately 

over 
time (81%)  

(2)  moderate 
severity with small 

decrease over time (19%) 

Not in a relationship; not 
fulltime employed;  

high baseline insomnia 
and burdensomeness; low 

baseline belongingness 

Lutz et al., (2017) Unguided IBI 
for depression; 

additional 
guidance for 

severely 
depressed 
patients 

Individuals with 
mild to moderate 

depressive 
symptoms 

Depressive 
symptoms 
(PHQ-9) 

(1) Pre-treatment 
screening 

(2) Pre-treatment 
registration 
(3) week 2 
(4) week 4 

n = 409 (1) early response after 
screening (45%) 

(2) early response after 
registration (39%) 

(3) early deterioration 
(16%) 

Lower baseline physical 
health 

Sunderland et al., 
(2012)a 

Unguided IBI 
for depression 

Individuals with 
symptoms of 
depression 

non-specific 
psychological 

distress  
(K10). 

(1) Baseline 
(2) 5 x biweekly during 

treatment 
(3) Post 

n = 302 (1) responders (76%) 
(2) low responders (24%) 

Higher baseline 
psychological distress 

Note. PHQ-9, patient health questionnaire (9-item depression subscale); CES-D, Center for Epidemiological Studies Depression-Questionnaire; K10, Kessler-10 psychological 
distress scale.  astudy reports on two separate interventions, only results of depression trial are reported in Table. bclass (3) in Lutz et al. (2017) and class (2) in all other trials.  
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1.7 The three studies at the core of this dissertation 

As CHAPTER 1.6 demonstrated, there are gaps in the current literature on IBI for 

depression concerning the relevance of guidance, the four factors proposed by Lambert (1992) 

and patient-characteristics associated with discernable patterns of symptom change during 

treatment. Overall, existing knowledge about IBI for depression is mostly derived from trials 

with small samples of self-selected participants. 

The following three chapters will present three studies that contribute new knowledge 

on these questions, while overcoming the methodological shortcomings.  

 Study 1 compares the effects of an unguided (standardized) and a guided

(individualized) variant of the same IBI for depression on clinical outcomes. This

study is presented in CHAPTER 2.

 Study 2 investigates and compares the contributions of variables derived from the

four-factor-model on weekly symptom change during standardized and individualized

IBI for depression. This study is presented in CHAPTER 3.

 Study 3 investigates whether distinct groups of patients experience qualitatively and

quantitatively discernable symptom courses during standardized and individualized

IBI for depression and whether patients’ psychosocial or clinical characteristics are

associated with membership in these groups. This study is presented in CHAPTER 4.

Overall, this thesis seeks to inform the development of IBI for depression by identifying 

features of interventions, patients, and the therapeutic process that are relevant for the success 

of treatment. Knowledge on these factors is essential to improve interventions and their tailoring 

to the patients’ needs.  

All three studies have been conducted with data collected from 1089 mildly to 

moderately depressed individuals drawn from the client-base of a public health insurance 

company, including both self-selected and externally selected individuals. They were 
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randomized to receive weekly feedback that was either fully-standardized and automated or 

individualized by a clinician within an otherwise identical cognitive-behavioral IBI for 

depression encompassing seven modules (“TK-DepressionsCoach”). All participants 

completed tasks on expressive writing, positive behavioral activation, cognitive restructuring 

and relapse prevention. The intervention is described more comprehensively in each of the 

following chapters and detailed in an unpublished intervention manual (Zagorscak, Sommer, 

Haug, & Knaevelsrud, 2014; available upon request). 
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CHAPTER 2 
BENEFITS OF INDIVIDUALIZED FEEDBACK IN 

INTERNET-BASED INTERVENTIONS FOR DEPRESSION: 
A RANDOMIZED CONTROLLED TRIAL 

The following paper was published in the journal Psychotherapy and Psychosomatics: Due to 

copyright restrictions it is not part of the digital copy of this doctoral thesis. Pages 43 through 

56 are omitted. The original publication can be found here:  

Zagorscak, P., Heinrich, M., Sommer, D., Wagner, B. & Knaevelsrud, C. (2018). Benefits of 

Individualized Feedback in Internet-Based Interventions for Depression: A 

Randomized Controlled Trial. Psychotherapy and Psychosomatics, 87 

(1), 32–45. https://doi.org/10.1159/000481515
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Supplementary materials 

The following supplementary materials related to STUDY 1 are available in the APPENDIX: 

 Online Table 1. Change predicted by antidepressant medication, additional e-mail

contacts and pre-interventional symptom load.

 Online Table 2. Estimated within-group changes for both primary outcome measures

under various NMAR conditions.

 Online Table 3. Rates of reliable change, remission and recovery under various

NMAR conditions.

 Online Table 4. Means and standard deviations for each outcome at each measurement

occasion.
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CHAPTER 3 

FACTORS CONTRIBUTING TO SYMPTOM CHANGE IN STANDARDIZED 

AND INDIVIDUALIZED INTERNET-BASED INTERVENTIONS FOR 

DEPRESSION: A RANDOMIZED-CONTROLLED TRIAL. 

A revised version of the following paper was published in the journal Psychotherapy: 

Zagorscak, P., Heinrich, M., Schulze, J., Böttcher, J. & Knaevelsrud C. (in press). Factors 

contributing to symptom change in standardized and individualized internet-based 

interventions for depression: A randomized-controlled trial. Psychotherapy.

© 2020, American Psychological Association. This paper is not the copy of record and 

may not exactly replicate the final, authoritative version of the article. Please do not copy 

or cite without authors' permission. The final article will be available, upon publication, 

via its DOI: 10.1037/pst0000276
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Abstract 

Research suggests four categories of outcome predictors in face-to-face therapy (i.e., treatment 

expectations, extra-therapeutic factors, relationship factors, factors specific to a treatment 

approach/technique). However, it is unclear whether these factors are relevant in standardized 

and individualized internet-based interventions (IBI). To investigate this question, 1089 mildly 

to moderately depressed adults undergoing six weeks of cognitive-behavioral IBI for depression 

were randomized to either receive weekly individualized feedback (IF) or fully-standardized 

feedback (SF). The following variables corresponding to the four categories were tested 

regarding associations with depressive symptom change during multiple treatment periods 

within a multi-group structural equation model: 1) expectations, 2) extra-therapeutic stressors 

and stress change during treatment, 3) mid-treatment working alliance (task, bond) and 4) 

uptake of treatment-specific components (logins, specific tool use). Results confirm the 

importance of extra-therapeutic stressors and working alliance: an increase in stressors was 

associated with detrimental depressive symptom developments in both arms. Initial stress was 

related to deteriorations in SF, but not in IF, suggesting a stress buffer effect of individual 

guidance. Mid-treatment task ratings were related to prior symptom changes in both conditions, 

bond was only predictive for symptom changes in IF. Indicators of specific treatment 

component uptake and expectations showed no associations with symptom change. 

Keywords: mechanisms of change, internet-based treatment, depression, working alliance, 

stress 



61 

Factors contributing to symptom change in standardized and individualized internet-based 

interventions for depression: A randomized-controlled trial. 

Major Depressive Disorder is one of the most significant mental health challenges and 

account for 8.6% of years lived with disease worldwide (WHO, 2008). Consequently, 

psychotherapeutic interventions for depression have been researched intensively. Internet-

based interventions (IBI) increasingly augmented the available treatment options for depressed 

individuals during the last twenty years. IBIs typically include mental health information and 

exercises. In some programs, patients receive professional guidance, which is mostly delivered 

in the form of semi-standardized e-mail feedback but may also take place through phone calls, 

chats or additional face-to-face meetings (Richards & Richardson, 2012). While meta-analyses 

confirm the efficacy of IBI in the treatment of depression (Karyotaki et al., 2017; Königbauer, 

Letsch, Doebler, Ebert, & Baumeister, 2017), factors contributing to treatment outcomes are 

not well understood. Nevertheless, most IBIs are based on treatment techniques (e.g., CBT) that 

are derived from literature on face-to-face therapy, where comprehensive theoretical models of 

contributing factors have already been proposed. 

Contributing Factors in Face-to-Face Therapy  

Reviewing the literature, Lambert (1992) and Miller, Duncan & Hubble (1996) 

suggested four categories of factors contributing to the outcome of face-to-face therapy (“four-

factor-model”):  1) relationship factors  (e.g., therapeutic bond and similar aspects such as 

agreement on tasks and goals, therapist’s empathy or encouragement); 2) client’s expectations 

towards treatment; 3) specific factors or techniques (i.e., therapeutic methods specific to one 

treatment approach), and 4) extra-therapeutic factors (e.g., client characteristics or changes in 

the client’s life events and stressors outside of therapy). 
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While recent reviews confirmed these categories (e.g., Wampold, 2015), there is an 

ongoing debate on the relative importance of contributing factors. For example, some meta-

analyses emphasize the role of factors specific to a given treatment approach (e.g., Marcus, 

O’Connell, Norris, & Sawaqdeh, 2014), while others deemphasize it (e.g., Baardseth et al., 

2013). Only one meta-analysis attempted to empirically quantify the contributions of factors 

common to all treatment approaches and specific factors (Cuijpers et al., 2012). The authors 

constrasted the effects of non-directive supportive treatments (“common factors only”) with 

specific treatments (e.g. cognitive-behavioral or psychodynamic treatments) and passive 

control groups on symptoms of depression. Results suggested that extra-therapeutic factors 

accounted for 33.3%, common factors for 49.6% and specific factors for 17.1% of overall 

improvement (Cuijpers et al., 2012). The effects were aggregated across multiple studies that 

did not address multiple contributing factors themselves, which is a limitation of the study 

design. Studying multiple predictors of change and their interrelations simultaneously requires 

large sample sizes and repeated assessments, requirements more easily realized in IBI. The 

current study aims at examining the relationship of different predictors of change in a large IBI 

study with depressive patients to close this research gap. Following the four-factor-model 

(Lambert, 1992; Miller et al., 1996), we assessed indicators of common as well as specific 

mechanisms of change, of external factors, and of client expectations. Overall, it is unclear, to 

what extent the four-factor-model (Lambert, 1992; Miller et al., 1996) transfers to the online 

context. Nonetheless, some previous studies have tested single predictors of outcome in IBI 

that correspond to the suggested categories. 

Working Alliance as Common Factor in Internet-Based Interventions 

There are only few studies that investigated the contributions of common factors to 

outcome in IBI. On the one hand, research on face-to-face treatments indicates that therapists’ 
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general behaviors and personal characteristics do have a small measurable influence on 

outcome (Wampold, 2015), but these associations seem to be very low or non-significant in IBI 

(Almlöv, Carlbring, Berger, Cuijpers, & Andersson, 2009; Holländare et al., 2016). Features 

unique to IBI may explain these findings: Even in guided interventions, communication is 

usually highly standardized and supervisors revise feedback messages. As a result, all therapists 

behave fairly consistent across all patients, and therapists’ characteristics do not seem to impact 

treatment substantially (Baldwin et al., 2011). On the other hand, there is variance in how 

patients perceive their therapists and treatments. Accordingly, a recent meta-analysis reported 

significant alliance-outcome relationships in IBI (Flückiger, Del Re, Wampold, & Horvath, 

2018). However, results were inconsistent across sub constructs of working alliance. In a review 

on this topic, Berger (2017) summarized that a number of studies did not find significant 

alliance-outcome associations. In cases where the associations were significant “it was rather 

the client’s agreement with the tasks and goals of the treatment than the bond between therapist 

and patient that predicted outcome” (p. 516). It is important to note that significant findings in 

previous studies might have emerged due to a lack of control of other variables, such as 

symptom severity before alliance assessments. Lately, trials on face-to-face interventions 

demonstrated that alliance is dependent on early symptom change (Zilcha-Mano, Dinger, 

McCarthy, & Barber, 2014) and the predictive validity of alliance ratings was drastically 

reduced in some trials when prior symptom change was accounted for (e.g., Constantino et al., 

2017). Recent papers promote more detailed analyses of therapeutic alliance and their 

interactions with outcome over multiple time points during and after treatment (e.g, 

Falkenstrom, Ekeblad, & Holmqvist, 2016). These types of analyses have not been 

implemented in studies on IBI yet. 
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Client’s Expectations towards Internet-based Interventions 

The majority of studies exploring the role of clients’ treatment expectations stems from 

IBIs targeting social phobia and results confirm that positive expectations towards outcome of 

treatment predict favorable symptom courses (Boettcher, Renneberg, & Berger, 2013; El 

Alaoui et al., 2015; Hedman, Ljotsson, & Lindefors, 2012). Interestingly, Nordgreen et al. 

(2012) only found significant associations with changes in social anxiety symptoms in the 

unguided but not in the guided arm of their trial. In contrast, expectations were a strong 

predictor of outcome in another study, where guided IBI for depression was provided (El Alaoui 

et al., 2016). To date, there are too few studies to conclude on the importance of expectations 

as predictors of symptom change, especially considering possible differences between guided 

and unguided treatments. 

Treatment-Specific Factors in Internet-based Interventions 

There is conflicting evidence from treatment component studies on the importance of 

specific therapeutic techniques. For example, research on internet-based CBT with and without 

behavioral strategies (such as exposure or behavioral activation) found them to provide small 

incremental benefits (Ljótsson et al., 2014) or no benefits at all (Christensen, Griffiths, 

Mackinnon, & Brittliffe, 2006; Schneider, Mataix-Cols, Marks, & Bachofen, 2005). 

While there is value in assessing the contributions of specific factors through 

comparisons of different treatments in randomized controlled trials, Kazdin (2005) critiqued 

these approaches due to their coarseness. Following this line of reasoning, Sieverink and 

colleagues (2017) argued for opening up the so-called „black-box” of internet-based 

interventions by tracking the uptake of specific components of treatments that represent certain 

theoretical concepts. The authors suggest that the use of detailed log-data (e.g., login-duration, 

use of specific treatment tools, and completion of certain treatment modules) might shed light 
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on “the usage (the dose) that is needed to reach certain effects (the response)” (Sieverink et al., 

2017, p. 2). First attempts at investigating the dose-response relationships in IBI for depressive 

symptoms found promising associations between the uptake of specific treatment components 

and overall outcome (Donkin et al., 2013; Whitton et al., 2015). However, these studies did not 

consider symptom changes immediately after the uptake of treatment components but instead 

focused on overall pre-post improvements, which impedes conclusions about the real source of 

symptom change. 

Extra-therapeutic Factors in Internet-based Interventions 

While the client’s characteristics and life circumstances are an essential contributing 

factor to therapeutic success in face-to-face treatments (Cuijpers et al., 2012), the two most 

recent meta-analyses on IBI for depression did not identify any socio-demographic variables as 

significant predictors of improvements (Karyotaki et al., 2017; Königbauer et al., 2017). 

Importantly, other extra-therapeutic factors, such as changes in life-circumstances (e.g., in 

family life, working situation, financial situation) have not been included as predictors of 

outcome in IBI. Accordingly, only static baseline characteristics of patients have been 

researched, while the influence of changes in life circumstances during therapy on outcome has 

not been included in trials on IBI yet.  

The Current Study 

In summary, while common and specific factors have been considered as predictors of 

outcome in IBIs to some degree, the results of existing studies are inconclusive. Furthermore, 

only single predictors of outcome were investigated so far. The current study aims at shedding 

more light on mechanisms of change in IBI for depression. Due to the lack of established 

explanatory models for outcomes in IBI, the aim is to identify relevant variables in an 

exploratory fashion which is nevertheless guided by the theoretical propositions of the four-
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factor-model. Different common factors (e.g., working alliance, expectations towards 

treatment), specific factors (e.g., uptake of specific treatment tools) and extra-therapeutic-

factors (e.g., distress due to external life circumstances) are assessed regarding their predictive 

value for depressive symptom change over multiple time periods during and after treatment in 

a large sample of clinically depressed adults. Following the previously outlined 

recommendations and inconclusive results (Falkenstrom et al., 2016), this study aims to 

evaluate working alliance as both a predictor and a criterion. To our knowledge, this is the first 

trial that examines multiple predictors of change and their interaction within a comprehensive 

model in IBI. The role of these factors is assessed in an individualized form (IF: semi-

standardized weekly written feedback from a counselor; contact-on-demand) and a 

standardized form (SF: fully-standardized written weekly feedback; contact-on-demand) of the 

same IBI for depression within a two-arm randomized controlled trial with parallel group 

assignment. Consequently, the current study will investigate and compare mechanisms of 

change in IBI for depression with varying levels of written guidance (individualized vs. 

standardized feedback). 

Method 

Data was collected within a randomized controlled trial exploring the benefits of 

individualized, semi-standardized feedback compared to standardized feedback in otherwise 

identical internet-based cognitive-behavioral-therapy (CBT) for individuals with mild to 

moderate depression. Further details on this trial can be found in a previous publication, 

reporting on the comparative efficacy of individualized vs. standardized feedback in the form 

of a “black-box” evaluation [omitted for blinded review]. Given the established efficacy of 

internet-based CBT, only two active treatment arms were compared due to the ethical 
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implications of withholding an efficacious treatment from patients in need (Lemmens, Müller, 

Arntz, & Huibers, 2016). 

Participants 

Individuals were recruited from the client base of a German health insurance company. 

Nationwide recruitment started in March 2014 and ceased as planned after one year. Only 

participants meeting the criteria for mild to moderate depression (scores between 14 and 28) 

according to the Beck Depression Inventory II (BDI-II; Hautzinger, Keller, & Kühner, 2006) 

and not at risk for suicide (score ≤ 1 on BDI-II item 9) were included. Additionally, participants 

with current mania/hypomania or psychotic symptoms (lifetime) were excluded after a 

structured clinical interview by phone (SCID-I). A detailed flow-chart is provided in Figure 1. 

Overall, N = 1089 individuals (IF: n = 555; SF: n = 534), with a mean age of 45.7 (SD = 11.3) 

years were included. The majority was female (65.6%). No significant differences between the 

experimental groups were found at pre-treatment assessment (all p-values > .05, see Table 1). 

Treatment 

The intervention encompassed seven consecutive modules (M1-M7). The completion 

of one module took one week on average, resulting in a treatment period of six to eight weeks. 

Most treatment topics were offered for two modules each (i.e., M1 and M2: Exploring 

Thoughts, Feelings, and Behaviors; M3 and M4: Behavioral Activation; M5 and M6: Cognitive 

Restructuring and Interpretational Bias Training), while a single module focused on relapse 

prevention (M7). Figure 2 illustrates primary goals and treatment methods. In the IF condition, 

each participant was assigned to a personal counselor who provided semi-standardized, written 

feedback on the platform after each module. In the SF condition, participants automatically 

received fully-standardized feedback. Treatment content was the same for both groups. 

Independent of feedback, participants of both conditions could contact the research team (SF-
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condition) or the individually-assigned counselor (IF-condition) upon demand (e.g., in case of 

technical problems). A previous publication revealed that both treatment arms yielded large 

pre-post effects on depression, as well as improvements in all other outcomes. Between-group 

differences were statistically nonsignificant in pre-post comparisons as well as 3, 6 and 12 

months later [omitted for blinded review]. 

Treatment Allocation 

After providing informed consent, eligible participants were randomized to either the 

IF- or the SF-condition. Treatment allocation was performed automatically by a computer-

based random number generator supported by the host website. 

Ethical Approval 

The Research Ethics Committee of [omitted for blinded review] approved the protocol 

before recruitment of participants commenced. The trial was preregistered (New Zealand 

Clinical Trials Registry, URL: https://www.anzctr.org.au (ID: [omitted for blinded review])). 

Measures 

Figure 2 provides an overview of the measurement occasions. The present study only 

reports outcomes that are relevant for investigating predictors of change. Other outcomes that 

were assessed within the randomized controlled trial can be obtained from the public trial 

registry. 

Patient Health Questionnaire-9. The severity of depression was assessed using the 

DSM based PHQ-9 (Löwe, Spitzer, Zipfel, & Herzog, 2003). Participants rated the frequency 

of depression-related behaviors/feelings during the past two weeks on a 4-point rating scale 

[not at all (0) to nearly every day (3)]. 

Expectations. Expectations towards treatment were assessed before the intervention 

with five established seven-point semantic differentials by Ajzen (1991) that were originally 
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developed to assess Theory of Planned Behavior constructs. Previous clinical studies that used 

similar (Lin, Updegraff, & Pakpour, 2016; Mausbach et al., 2013) or identical scales (Mendez, 

Rodrigues, Cornélio, Gallani, & Godin, 2010) demonstrated good psychometric properties of 

the instrument in this context. The original wording was adapted to address expectations 

towards future participation in IBI. Patients rated, whether participation in the intervention 

during the next six weeks would be “beneficial” to “harmful,” “pleasant” to “unpleasant,” 

“good” to “bad,” “meaningful” to “meaningless,” “favorable” to ”unfavorable” for them.  

Working Alliance. Working alliance was assessed mid-treatment (at the beginning of 

M5) using the Working Alliance Inventory-Revised (Hatcher & Gillaspy, 2006) as adapted by 

Berger, Boettcher, and Caspar (2014) for online self-help programs. In contrast to the original 

version, items of the goal and task component assess the individuals’ perception of the program 

rather than the therapist’s efforts (e.g., “I know what I can expect as a result of using the online 

program”). The third component assesses the perceived bond between participants and their 

counselor (IF condition) or the research team responsible for the intervention (SF condition). 

As highlighted by Falkenstrom, Hatcher, Skjulsvik, Larsson, and Holmqvist (2015), the goal 

and task component of the WAI have shown high factor inter-correlations across different 

studies (Falkenström, Hatcher, & Holmqvist, 2015; Falkenström, Hatcher, Skjulsvik, et al., 

2015; Munder, Wilmers, Leonhart, Linster, & Barth, 2010) and are not differentiable. 

Consequently, items assessing task and goal were summarized within one factor. The bond 

component represented the second factor. 

Patient Health Questionnaire - Stress Module. The amount of psychosocial stress 

was assessed using the Patient Health Questionnaire-Stress Module (PHQ-S; Löwe et al., 

2003). Participants rated the degree to which they felt stress corresponding to ten different 

psychosocial events (i.e., difficulties with their partner or family or financial worries) on a 
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three-point rating scale [not impaired (0) to strongly impaired (2)]. The mean score was used 

as a proxy for the participants’ overall burden. The PHQ-S was assessed prior to the intervention 

and at post-assessment. 

Uptake of specific treatment components. The platform hosting the intervention 

automatically tracked several quantitative indicators of the participants’ intensity of treatment 

use. The number of logins and the time spent on the platform (login-duration) was counted for 

each treatment module. Participants could access the treatment module they currently work 

with as well as the content of completed modules at any time. There is no upper bound regarding 

the number of logins and minutes participants were allowed to spend working on treatment 

tasks. As a proxy of specific treatment component use, the number of written letters in 

expressive writing tasks (M1, M2 and M7), the number of entries in the activity planner (M3 

and M4) as well as the number of completed sessions of the interpretational bias training (M5 

and M6) and the number of written thought protocols (M6) were automatically tracked. To 

address the question whether specific treatment components account for symptom change, 

indicators were averaged over modules addressing the same topic with the same techniques 

(i.e., M1+M2; M3+M4; M5+M6; M7). Averaged indicators for login time, login duration and 

specific tool use were included as predictors of symptom change in further analyses. 

Statistical Analysis 

Structural Equation Models. Mean changes, as well as predictors of change, were 

investigated using multi-group (MG) latent difference (LD) models (Steyer, Eid, & 

Schwenkmezger, 1997). The MG approach allows for differences in means, variances, and co-

variances between the IF and SF condition and was therefore favored. 

Measurement Invariance. Strong measurement invariance is needed to compare 

means (Millsap, 2011). Measurement invariance was tested in the following sequence: A model 
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assuming configural invariance (free loadings and intercepts across groups and time) was 

followed by assuming weak factorial invariance (loadings constrained equal across time and 

group) and strong factorial invariance (equal loadings and intercepts across groups and time).  

Mean change in depression. As a precondition for investigating predictors of mean 

change in depression, the amount of depressive symptom change during each treatment period 

was estimated, tested for significance and compared across groups using Wald tests. Due to the 

focus on changes during time periods, where specific treatment components were offered (see 

Figure 2), depressive symptom changes were calculated between M1 and M3, M3 and M5, M5 

and M7 as well as M7 and post-assessment.  

Predictors of change. To identify significant predictors of symptom change, depression 

change scores for each treatment period were regressed on expectations, baseline stress, 

changes in stress between pre- and post-assessment and depressive symptom change during the 

previous treatment period. Furthermore, bond and task ratings, obtained at the beginning of M5, 

were used as predictors of symptom change during subsequent treatment periods (M5-M7, M7-

Post). Additionally, depressive symptom change during each treatment period was regressed 

on usage behavior (e.g., login duration, specific tool use) during that period and the previous 

one (“lagged path”). For example, usage behavior between M1 and M3 was used to predict 

depressive symptom change between M1 and M3 as well as between M3 and M5.  

In order to account for the possible role of working alliance as both a predictor and a 

criterion, expectations, change in depressive symptoms during treatment periods prior to M5, 

as well as initial stress and depressive symptom-load were tested as predictors of working 

alliance components at M5. 
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Estimation and Model Fit 

 Taking the complexity of the model into account, parcels were formed for depressive 

burden as well as for the task/goal and bond component of the WAI. Models were estimated 

using the MLR estimator as implemented in Mplus 8. Model fit was evaluated taking the 

RMSEA (< .05 good fit; .05 < RMSEA ≤ .08 acceptable fit), the CFI (.97 ≤ CFI ≤ 1.00 good 

fit; .95 ≤ CFI < .97 acceptable fit), and the SRMR (0 ≤ SRMR ≤ .05, good fit; .05 < SRMR ≤ 

.10 acceptable fit) as well as the chi-square test of exact model fit into account (Schermelleh-

Engel, Moosbrugger, & Müller, 2003). Due to the large sample size, more weight was put on 

RMSEA, CFI and SRMR. In addition, a decrease in CFI smaller than .010 (RMSEA < .015 and 

SRMR < .030) was considered as acceptable when testing for measurement invariance (Chen, 

2007). 

Missing Data 

Overall, 234 (21.5%) participants did not complete the intervention (e.g., did not start 

working with every treatment module), with higher rates in the SF condition, 25.8% vs. 17.3%, 

χ2(1, N = 1089) = 11.780, p = .001, φ = -.10. Missing data patterns for the PHQ-9 ratings are 

monotone up to M7 with increasing rates of missingness from 2.2% (IF) and 2.8% (SF) at M1 

to 17.3% (IF) and 25.8% (SF) at M7. All randomized participants were invited to complete the 

post-assessment. As a consequence, the rate of missingness at post-assessment deviated from 

the strictly monotone pattern: 21.4% (IF) and 24.2% (SF). Except for group comparisons in 

usage behaviors (pairwise deletion), missing data was handled using Multiple Imputation (MI) 

via chained equations using MICE in R 3.4.3 (100 data sets) under the assumption that data are 

missing at random (van Buuren & Groothuis-Oudshoorn, 2011). An inclusive imputation 

strategy was used (Collins, Schafer, & Kam, 2001), that is, the imputation model included all 

variables used in the later analysis. MI was conducted separately for each group to maintain 
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consistency between group assignment, change and association with predictors. All results are 

pooled across all imputed data sets. 

Results 

Primary Data Analysis 

 Primary analyses revealed that some participants displayed irregular patterns of uptake. 

For example, 97.5% of the participants did not log-in more than five times at M1; however, 

some participants logged in more than 30 times (maybe due to technical problems). 

Consequently, the upper 5% of the number of letters and login-durations and the upper 2.5% of 

planner-entries and login-frequencies were replaced with less extreme values while maintaining 

the ordering of all individuals within the sample (Winsorizing) (Wilcox, 2003). 

Measurement Invariance  

Under the assumption of strong measurement invariance, a baseline model (only 

containing depressive symptom load over time) showed a good approximate fit to the data: 

average χ²(136) = 269.725, average RMSEA = .042, average CFI = .984, average SRMR = 

.037. The same is true for the final model (including all predictor and criterion variables): 

average χ²(918) = 1151.300, average RMSEA = .026, average CFI = .977, average SRMR = 

.036. Results of model comparisons further support the assumption of strong measurement 

invariance in both cases (model comparisons are detailed in Appendix B/Table B.1).  

Change in Depressive Symptoms over Time and across Conditions 

Within-group effect size estimates revealed statistically significant improvements in 

depression severity from M1 to M3, M3 to M5 and from M5 to M7 in both treatment conditions 

(all p-values < .001; range of effect estimates: dw = -0.461 to dw = -0.686). However, symptoms 

increased significantly from M7 to post-assessment in the SF-condition, MLD = 0.094, p < .001, 

dw = 0.410, but remained stable in the IF-condition, MLD = 0.025, p = .117. Depressive symptom 
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change during each treatment period was tested for between-group differences by constraining 

all corresponding means to be equal across conditions and testing whether such a constraint 

leads to a worsened model fit (Wald test). 

This indicated a significant between-group difference in change overall, W = 12.591, df = 4, p 

= .014. Post-hoc pairwise comparisons revealed that the increase in symptom load from M7 to 

post-assessment was stronger in the SF condition (ΔLDSF-IF = 0.069, SE = 0.023, p = .003, dW 

= -0.297). All other between-group differences were non-significant. Details on within-group 

and between-group differences in mean change are available in Table B.2 (Appendix B). 

Predictors of Depressive Symptom Change 

The following sections summarize predictors of change in depressive symptoms. 

Significant standardized and unstandardized regression weights are summarized in Table 2 and 

are illustrated in Figure 3. Regression weights and significance tests of all other paths are made 

available in Table B.3 in (Appendix B). Only unstandardized regression weights are reported 

in-text due to being better comparable across groups. Please note, that numerical increases in 

change scores over time can be summarized as less favorable symptom courses (i.e., stronger 

deterioration or weaker improvement), whereas decreases in change scores indicate more 

favorable symptom courses (i.e., stronger improvement or weaker deterioration; please refer to 

Appendix A for additional information on interpreting change scores).  

Prior depressive symptom change. In both treatment conditions, changes in depressive 

symptoms (Δ) during one treatment period were negatively associated with symptom changes 

during the subsequent treatment period (ΔM1-M3  ΔM3-M5, IF: b = -0.177, p = .040; SF: b = -

0.257, p =.038; ΔM3-M5  ΔM5-M7, IF: b = -0.264, p = .005; SF: b = -0.294, p < .001; ΔM5-M7  

ΔM7-Post, IF: b = -0.423, p < .001; SF: b = -0.242, p = .006). On average, more favorable symptom 
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courses during one treatment phase were associated with less favorable symptom courses 

during the subsequent treatment phase. 

Expectations towards treatment. Expectations were not associated with symptom 

change during any treatment period. 

Specific factor “uptake of treatment components”. None of the indicators of 

treatment uptake showed significant associations with symptom change during the respective 

treatment module or the following treatment module (lagged path). 

Extra-therapeutic factor “external psychosocial stressors”. In the IF condition, pre-

post changes in PHQ-Stress ratings were positively associated with depressive symptom change 

during all modules (M1-M3: b = 0.156, p = .006; M3-M5: b = 0.168, p = .006; M5-M7: b = 

0.196, p < .001; M7-Post: b = 0.133, p = .010). In the SF-condition, the same pattern emerged, 

but the association between PHQ-stress change and depressive symptom change during 

cognitive restructuring (M5-M7) was non-significant (M1-M3: b = 0.124, p = .022; M3-M5: b 

= 0.184, p = .013; M5-M7: b = 0.082, p = .132; M7-Post: b = 0.244, p < .001). On average, 

individuals that felt less stressed by external psychosocial events between pre- and post-

assessment, also experienced more favorable depressive symptom courses during all (IF) or 

most (SF) treatment periods under investigation.  

Common factor “working alliance”. In the IF condition, task ratings assessed at M5 

showed negative associations (b = -0.089, p < .001) with depressive symptom change between 

M7 and post-assessment, whereas bond ratings assessed at M5 showed positive associations 

with symptom changes during that later period (b = 0.051, p = .014). On average, individuals 

in the IF-condition that reported higher task-ratings mid-treatment (M5), reported more 

favorable symptom courses during the final period of the intervention. In contrast, individuals 

in the IF-condition that reported a stronger bond to their counselor mid-treatment reported less 
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favorable symptom courses during the final period of the intervention. Neither task nor bond 

ratings showed significant associations with later depression change in the SF-condition. 

Predictors of Mid-Treatment Working Alliance Ratings 

Expectations. In both treatment-conditions, expectations towards treatment at pre-

assessment were positively associated with mid-treatment task-ratings (IF: b = 0.278, p < .001; 

SF: b = 0.224, p < .001). On average, individuals that reported more optimistic expectations 

before treatment also reported stronger agreement with the tasks and goals of the intervention 

later on. Additionally, expectations were positively associated with mid-treatment bond-ratings 

in the IF-condition (IF: b = 0.303, p < .001), but not in the SF-condition. On average, individuals 

in the IF-condition that reported more optimistic expectations before treatment also reported a 

stronger bond.  

Baseline symptom severity. In both treatment conditions, baseline symptom severity 

(M1) was negatively associated with mid-treatment task ratings (IF: b = -0.381, p = .002; SF: b 

= -0.530, p = .002). On average, individuals with higher baseline symptom severity reported 

weaker agreement with tasks and goals of the intervention later on. 

Depressive symptom changes prior to alliance ratings. Symptom changes during the 

first two treatment periods (M1-M2: Expressive Writing; M3-M4: Behavioral Activation) were 

negatively associated with mid-treatment task ratings (M1-M2, IF: b = -0.749, p = .001; SF: b 

= -0.560, p =.034; M3-M4, IF: b = -0.693, p < .001; SF: b = -0.918, p = .041). On average, 

individuals reporting more favorable symptom courses during these modules also reported 

stronger agreement with task and goals of treatment later on.  

Additionally, symptom changes during behavioral activation (M3-M4) were negatively 

associated with bond-ratings in the SF-condition (SF: b = -0.594, p = .015), but not in the IF-
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condition. On average, individuals in the SF-condition reporting more favorable symptom 

courses during M3-M4 also reported a stronger bond. 

 

Discussion 

The current study is the first to investigate and compare mechanisms of change in IBI for 

depression with varying levels of guidance (individualized vs. standardized feedback) on the 

basis of the theory of contributing factors proposed by Lambert (1992). The results indicate 

significant associations of the common factor working alliance and extra-therapeutic factors 

(perceived psychosocial stress) with outcome in IBI for depression. By contrast, neither 

expectations nor the uptake of specific tools or modules were directly linked to outcome.  

Previous Symptom Change 

The study revealed that previous symptom changes are the most consistent predictors of 

subsequent symptom changes. On average, individuals displaying more favorable symptom 

courses during earlier modules showed less favorable symptom courses in later modules and 

vice versa. This mirrors findings from meta-analyses on the efficacy of psychotherapy, 

demonstrating that individuals who experience larger initial improvements in their symptoms 

may improve less afterward and that patients who start out with more severe symptoms have a 

more potential for improvement (e.g., Bower et al., 2013). 

Relationship factors 

Overall, this study yielded an interesting pattern regarding the common factor of working 

alliance. First, we replicated findings from face-to-face studies (e.g., Zilcha-Mano et al., 2014) 

in that initial symptom severity and early symptom change predicted later task ratings. 

Second, working alliance ratings were significant predictors of subsequent symptom 

change for patients that received individual feedback (IF-condition). However, only higher 
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task-ratings had a beneficial influence on depressive symptoms. Regarding bond ratings, 

associations pointed in the opposite direction: Patients who perceived the bond to their 

counselor as stronger, showed higher depression change scores in the first two weeks after 

termination, indicating lessened improvement or deterioration immediately after the end of 

treatment. On the one hand, these findings are in line with Berger’s (2017) review on 

therapeutic alliance in IBI in that it is mostly the task/goal-component of the alliance ratings 

that predicts outcome. On the other hand, it seems counterintuitive, that higher bond ratings are 

associated with detrimental symptom developments at the end of treatment. Nonetheless, there 

are indications from multiple studies that patients see the termination phase as a critical time 

point in psychotherapy that is associated with feelings of loss and pain (Knox et al., 2011). In 

IBI there is a very short termination phase and some patients may experience the loss of their 

therapist as abrupt – especially if they experienced a positive bond during treatment. This might 

be associated with depressive symptom increase. Interestingly, in a consensus statement on 

possibly adverse side effects stemming from IBI, multiple researchers did not consider 

“withdrawal symptoms” from psychotherapy or psychotherapists as a possibility (Rozental et 

al., 2014). Therefore, future research should investigate whether this phenomenon can be 

replicated and whether it generalizes over different forms of IBI and different patient 

populations. It seems reasonable to assume that termination should be addressed more explicitly 

during treatment and should be prepared more thoroughly to avoid detrimental outcomes. 

Expectations towards treatment 

Patient’s expectations did not predict outcomes directly. This contrasts suggestions by 

Lambert (1992) who proposed a small but significant influence of patients’ expectations. A 

meta-analysis on the contributions of expectations on outcome in psychotherapy found small 

effects (d = 0.24) (Constantino, Arnkoff, Glass, Ametrano, & Smith, 2011). This effect estimate 
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was based on a summary of studies, which usually did not control for other variables and might 

thus have overestimated the contribution of expectations. For example, Patterson, Anderson, 

and Wei (2014) controlled expectation-outcome associations for the influence of working 

alliance and found expectations to be mostly related to therapeutic alliance. Only one in four 

facets of the construct (expectation for counselor expertise) was independently related to 

outcome. These results are in line with our finding that expectations predicted working alliance, 

and working alliance predicted some aspects of symptom change.  

Specific factors 

Regarding specific factors, this study did not find associations between the uptake of any 

specific tools, login durations or login frequencies and outcome. Results were consistent over 

both conditions. These findings may be interpreted in support of the dodo-bird verdict which 

proposes that all bona fide treatments yield comparable effects  due to the contributions of 

common factors (e.g., Baardseth et al., 2013). Nevertheless, it is important to stress that the 

assessed indicators of uptake in this trial are only proxies of the target behavior. While the use 

of the intervention and its tools were objectively tracked, it is unknown what the patients did 

“offline.” For example, some patients might have used the information they received from the 

intervention and applied techniques such as positive behavioral activation utilizing a paper-

pencil calendar instead of online tools. Additionally, only the quantity of uptake was assessed, 

while content quality and compliance with instructions were not measured. For instance, it was 

not possible to control whether entries in thought protocols indeed contained alternative views 

of situations that would lead to positive emotional consequences. Finally, in both conditions 

only cognitive-behavioral techniques were offered, limiting the generalizability of results over 

other forms of treatments (e.g., psychodynamic, mindfulness-based or interpersonal 

interventions). A suggestion for future studies addressing the uptake of specific treatment 
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components in IBI would be to assess other treatment approaches as well and to include quality 

and compliance ratings as moderators of dose-outcome associations. 

Extra-Therapeutic Factors 

The results of the current trial further showed that changes in extra-therapeutic factors 

(perceived external psychosocial stressors) predicted outcomes at most time points in both 

treatment arms. On average, patients that reported alleviation in stressful life circumstances 

during treatment also showed larger depressive symptom improvements at multiple time points. 

This finding is not surprising, given the large body of evidence supporting the role of stress in 

the etiology of depression (for a review of the literature see Pizzagalli, 2014). The relative 

importance of life circumstances outside of therapy that is found in this trial on IBI is consistent 

with theoretical propositions of Lambert (1992) and empirical results from Cuijpers et al. 

(2012). Both researchers suggest that extra-therapeutic changes are the most critical factors 

contributing to outcomes in face-to-face psychotherapy. The current trial suggests a similar 

pattern in IBI for depression and points to the importance of considering patients extra-

therapeutic life circumstances during online therapy. However, the current study relies on self-

assessments of the perceived burden by external stressors, which might also show some overlap 

with symptoms of depression themselves. While perceptions of external stressors might change 

due to participation in IBI regardless of objective changes in external stressors, it is unlikely 

that the assessed burden (i.e., from work, education, family or financial situation) is sufficiently 

explained by perceptions alone. Therefore, it is reasonable to assume that a substantial portion 

of variance in this variable indicates real changes in stressful life circumstances. High 

correlations between objective assessments of stressors (i.e. financial circumstances, familial 

obligations), stress perceptions, and biological markers of stress support this conclusion (Bull, 

Almond, Christensen, & Fenech, 2014; Ursache, Noble, & Blair, 2015). Another limitation 
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stems from the questionnaire’s focus on a limited set of adverse conditions, while previous 

studies also emphasized the importance of positive life events (e.g., Blonski, Conradi, 

Oldehinkel, Bos, & de Jonge, 2016). For that reason, future studies should include more diverse 

uplifts and hassles while relying on more objective assessments. 

Differences between IBI with Individualized and Standardized Feedback 

One of the assets of the present study is the possibility to investigate differences between 

IBI with individualized and standardized feedback regarding the underlying mechanisms of 

change. While results within IF and SF conditions revealed similar patterns, there were some 

differences regarding the influence of working alliance ratings and perceived stress. 

In contrast to the IF condition, neither bond nor goal/task ratings of the working alliance 

were predictive of symptom change in the SF condition. A possible explanation lies in 

difficulties of patients to rate bond-items in the SF condition. It is unclear, whether patients 

validly rate the “alliance to the program” or if they feel obliged to answer these questions, even 

if they are not sure how to interpret them. Incidentally, 24 participants of the SF condition 

complained about the working alliance questionnaire in the open-comments section at the end 

of treatment. These patients indicated that they had difficulties answering adequately, given the 

lack of interaction with clinicians. There are reports from multiple studies on working alliance 

in IBI suggesting that the construct in IBI may differ from the one in face-to-face therapy and 

that different working alliance measures are needed (Berger, 2017). The same review also 

reported that some participants in IBIs were confused by working alliance questionnaires. Since 

this seems to be an overarching problem, future studies should analyze the validity of the 

instrument’s facets for assessing bond in unguided IBI more thoroughly, applying qualitative 

methods (e.g. focus groups, thinking-aloud-techniques).  
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Second, the results indicate differences in the influence of perceived stress on outcome 

between the two conditions. While changes in stress seem to be influential in both treatment 

conditions, the initial level of perceived burden due to external stressors assessed at baseline 

only showed significant associations with changes in depressive symptoms in the SF condition. 

On average, participants with high initial stress levels showed lower improvements or stronger 

deteriorations in their depressive symptoms at multiple time points during the SF treatment. 

That was not the case in the IF condition. This finding is consistent with the “buffer-hypothesis” 

of social support on stress that was established through meta-analyses in the past (Smith, 

Fernengel, Holcroft, Gerald, & Marien, 1994). Participants in the IF condition received more 

individual contact and human support, while participants in the SF condition typically only 

received support in the form of standardized psychoeducation. Social support and “formal help” 

in the form of psychotherapy share similarities in the way they may buffer stress (Barker & 

Pistrang, 2002). Thus it is to be expected that the initial stress levels of participants play a lesser 

role in the IF condition. In practical terms, it seems especially important for unguided 

interventions to assess patient’s initial stress levels and to offer them tools to cope with their 

environmental stressors that compensate for the missing “social buffer” in the form of a human 

online counselor. 

Limitations and directions for future research 

There are some general limitations to be considered when interpreting the results. Only 

patients with mild-to-moderate symptom severity were included in this trial, thus limiting the 

generalizability of findings. This may have resulted in low covariance between the assessed 

predictors and outcome and could have reduced the probability of detecting significant 

pathways (restriction of range). Further, this trial lacks a passive (i.e. waitlist) control group. 

However, summarizing qualities of good randomized controlled trials researching variables 
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associated with treatment outcome Kraemer (2002) highlights the need for a comparison group 

that may be both active or passive. Additionally, for the variables under investigation in this 

trial (uptake of treatment components, expectations towards treatment, therapeutic alliance) it 

is difficult to investigate them within an untreated sample. 

Another limitation pertains to the frequency of assessments. While symptoms were 

assessed before and after each treatment phase, other variables such as stress and therapeutic 

alliance were only assessed once or twice, thus possibly neglecting fine-grained changes and 

impeding interpretations about chronology and causality. It is important to emphasize that it is 

challenging to establish causality within a single trial (Kazdin, 2007). Further studies should 

aim to confirm these findings using more intensive and methodological diverse assessment 

strategies. While this study sheds light on the associations of essential constructs representing 

the four categories proposed by the four-factor-model (Lambert, 1992; Miller et al., 1996), the 

included variables only represent a limited set of proxies of these broad categories. For example, 

common factors such as therapists’ or programs empathy, genuineness or cultural 

appropriateness might complement the results of this study.  

It is critical to note that most trials on the topic of contributing factors, including the one 

at hand, focused on guidance through written messages exchanged between clinician and 

patient. It is noteworthy that the results of studies featuring guidance through (video-)chats, 

telephone or other means of communication might deviate from the findings presented here. 

These alternative forms of interaction might be more similar to face-to-face communication due 

to their synchronicity or the availability of visual or acoustic cues (Dennis, Fuller, & Valacich, 

2008). 

Consequently, given the overall lack of research on mechanisms of change in IBI, the most 

important challenge for future research on this topic is the replication and extension of our 
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findings in more diverse settings of IBI (e.g., blended-treatments, telephone-guided treatments, 

mobile-based treatments) and within more diverse and less restricted groups of patients. 

Conclusion 

The current study emphasizes the relevance of researching contributing factors in IBI for 

depression. On the one hand, therapeutic alliance and changes in external life circumstances 

were identified as influential predictors of symptom change. On the other hand, further factors 

proposed as influential in face-to-face-treatments by Lambert (1992), such as expectations 

towards treatment and proxies of specific treatment component uptake showed no significant 

contribution to symptom change. While this study does not explicitly address the question 

whether the same mechanisms of change are in place in IBI and face-to-face therapy, the results 

indicate that there is a lot of variance in symptom change left to be explained and that the 

mechanisms suggested for face-to-face treatments might not be replicated in every form of IBI. 

This finding calls for additional studies on this topic in the future, moving beyond mainly 

considering the contributing factors suggested for face-to-face interventions. Moreover, the 

differential patterns between the standardized and the semi-standardized feedback condition 

found in this trial, underline the fact that “IBI” stands for a heterogeneous group of interventions 

and the quality and quantity of “human” guidance in this form of treatment has to be addressed 

more explicitly in upcoming studies on the mechanisms contributing to the success or failure 

of online therapy.  
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Table 1 
Socio-demographic and clinical sample characteristics 

Variable  Total IF SF  χ2  p 

socio-demographic characteristics 

age a M (SD) 45.7 (11.3) 45.7 (11.8) 45.8 (10.7)  0.166 b .868 

female gender n (%) 714 (65.6) 360 (64.9) 354 (66.3) 0.246  .620 

education     5.673  .339 

no certificate n (%) 7 (0.6) 4 (0.7) 3 (0.6)   

lower secondary  n (%) 66 (6.1) 34 (6.1) 32 (6.0)   

secondary school n (%) 263 (24.2) 122 (22.0) 141 (26.4)   

trade school n (%) 245 (22.5) 118 (21.3) 127 (23.8)   

college n (%) 162 (14.9) 88 (15.9) 74 (13.9)   

university n (%) 346 (31.8) 189 (34.1) 157 (29.4)   

marital status     1.354  .716 

single n (%) 373 (34.3) 196  (35.3) 177 (33.1)   

married n (%) 561 (51.5) 286 (51.5) 275 (51.5)   

divorced n (%) 141 (12.9) 66 (11.9) 75 (14.0)   

widowed n (%) 14 (1.3) 7 (1.3) 7 (1.3)   

clinical baseline characteristics 

PHQ-9  M (SD) 11.8 (3.4) 11.9 (13.4) 11.7 (3.5) 1.044 b .297 

SCID diagnosis     3.194 .670 

current major depression n (%) 458 (42.1) 247 (44.5) 211 (39.5)   

remitted depressive episode n (%) 285 (26.2) 137 (24.7) 148 (27.7)   

dysthymic disorder n (%) 90 (8.3) 46 (8.3) 44 (8.2)   

double-depression n (%) 58 (5.3) 27 (4.9) 31 (5.8)   

bipolar or NOS c n (%) 65 (6.0) 32 (5.8) 33 (6.2)   

no current/past affective 

disorder 
n (%) 133 (12.2) 66 (11.9) 67 (12.5)   

Expectations a M (SD) 10.0 (4.0) 9.9 (4.0) 10.1 (4.0) 0.462 b .644 

PHQ-S a M (SD) 9.5 (3.2) 9.5 (3.2) 9.5 (3.2) 0.144 b .886 

Note. N = 1089. IF = Individualized Feedback (n = 555); SF = Standardized Feedback (n = 534); NOS = not 

otherwise specified. a variables have some missing values: age n  = 1081; Expectations n  =  1081; PHQ-S: n  = 

1067. b t-test for independent samples. c individuals with bipolar disorders were included only if they were not 

experiencing current mania/hypomania 
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Table 2 
Regressive Paths for Each Treatment Condition  

Path - Group IF b [95% CI] p bstdxy (SE) R² 
ΔDEPM3- M1 ON ΔSTRESSPost-Pre 0.156 [0.044, 0.268] .006** 0.200 (0.057) .05 
ΔDEPM5- M3 ON ΔDEPM3- M1 -0.177 [-0.346, -0.008] .040* -0.172 (0.086) .09 

ΔSTRESSPost-Pre 0.168 [0.048, 0.288] .006** 0.208 (0.061) 
ΔDEPM7- M5  ON ΔDEPM5- M3 -0.264 [-0.446, -0.082] .005** -0.312 (0.093) .17 

ΔSTRESSPost-Pre 0.196 [0.094, 0.298] < .001*** 0.289 (0.052) 
ΔDEPPOST-M7 ON ΔDEPM7-M5 -0.423 [-0.599, -0.247] < .001*** -0.439 (0.090) .10 

ΔSTRESSPost-Pre 0.133 [0.031, 0.235] .010* 0.203 (0.052) 

TASKM5  -0.089 [-0.136, -0.042] < .001*** -0.307 (0.024) 

BONDM5  0.051 [0.010, 0.092] .014* 0.188 (0.021) 

BONDM5 ON EXPPRE 0.303 [0.148, 0.458] < .001*** 0.226 (0.079) .06 
TASKM5 ON EXPPRE  0.278 [0.141, 0.415] < .001*** 0.221 (0.070) .17 

DEPM1  -0.381 [-0.746, -0.016] .041* -0.161 (0.186) 

ΔDEPM3- M1 -0.749 [-1.186, -0.312] .001*** -0.258 (0.223) 

ΔDEPM5- M3 -0.693 [-1.063, -0.323] < .001*** -0.246 (0.189) 

Path - Group SF b [95% CI] p bstdxy (SE) 
ΔDEPM3- M1 ON ΔSTRESSPost-Pre 0.124 [0.018, 0.230] .022* 0.186 (0.054) .04 
ΔDEPM5- M3 ON ΔDEPM3- M1 -0.257 [-0.500, -0.014] .038* -0.184 (0.124 .12 

STRESSPRE   0.148 [0.013, 0.283] .032* 0.141 (0.069) 

ΔSTRESSPost-Pre 0.184 [0.039, 0.329] .013* 0.198 (0.074) 

ΔDEPM7- M5 ON  ΔDEPM5- M3 -0.294 [-0.455, -0.133] < .001*** -0.363 (0.082) .17 
ΔDEPPOST-M7 ON ΔDEPM7- M5 -0.242 [-0.414, -0.070] .006** -0.290 (0.088) .27 

STRESSPRE  0.157 [0.057, 0.257] .002** 0.221 (0.051) 

ΔSTRESSPost-Pre 0.244 [0.150, 0.338] < .001*** 0.388 (0.048) 

BONDM5 ON ΔDEPM5- M3 -0.594 [-1.074, -0.114] .015* -0.190 (0.245) .08 
TASKM5 ON EXPPRE  0.224 [0.104, 0.344] < .001*** 0.192 (0.061) .22 

DEPM1  -0.530 [-0.857, -0.203] .002** -0.246 (0.167) 

ΔDEPM3- M1 -0.560 [-1.077, -0.043] .034* -0.180 (0.264) 

ΔDEPM5- M3 -0.918 [-1.232, -0.604] < .001*** -0.410 (0.160) 

Note. Only paths with p < .050 are shown. For all estimated paths see supplementary Table B.3. * p < .050; ** p < .010; *** p < 
.001. b /bstdxy = un-/standardized regression weight; DEP = PHQ-9 depression score; STRESS = PHQ-Stress score; EXP = 
expectations; BOND = bond-component of the Working Alliance Inventory; TASK = task-component of the Working Alliance 
Inventory. Measurement occasions are indexed. 
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Figure 1. Flowchart in accordance with CONSORT guidelines. SF = standardized feedback condition; 

IF = individualized feedback condition; SCID = structured clinical interview (section for affective and 

psychotic disorders).  

a 
Completers were defined as participants who at least started with the respective treatment module. 
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Figure 2. Treatment goals and methods of the intervention as well as questionnaires and their measurement occasions included in the analyses. PHQ-9 = Patient-

Health Questionnaire – Subscale assessing depressive symptoms; PHQ-S = Patient-Health Questionnaire – Subscale assessing psychosocial stressors; WAI-R = 

Revised Working Alliance Inventory. 
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Figure 3. Visual depiction of significant paths in the model based on multiple imputations with 

respective unstandardized regression weights. SF = standardized feedback condition; IF = individualized 

feedback condition; PHQ-9 = Patient-Health Questionnaire – Subscale assessing depressive symptoms; 

PHQ-Stress = Patient-Health Questionnaire – Subscale assessing psychosocial stressors; EXP = 

expectations; M1 through M7 = measurement occasions prior to respective modules; Δ = difference 

scores; “+” and “-” illustrate positive and negative regression weights, respectively.  
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Supplementary materials 

The following supplementary materials related to this article are available: 

 Appendix A. Aid with interpreting change scores.

 Appendix B. Supplementary results on model comparisons with different measurement

invariance restriction (Table B1), results on general mean change (Table B2) and

results on non-significant regression weights (Table B3).
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CHAPTER 4 

HOW INDIVIDUALS CHANGE DURING INTERNET-BASED 

INTERVENTIONS FOR DEPRESSION: A RANDOMIZED CONTROLLED 

TRIAL COMPARING STANDARDIZED AND INDIVIDUALIZED FEEDBACK. 

A revised version of the following paper was published in the journal Brain and 

Behavior: 

Zagorscak P, Heinrich M, Bohn J, Stein J, Knaevelsrud C. How individuals change 

during internet-based interventions for depression: A randomized controlled trial 

comparing standardized and individualized feedback. Brain Behav. 2020;10:e01484. 

https://doi.org/10.1002/brb3.1484
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Abstract 

Background: Standardized and individualized internet-based interventions (IBI) for depression 

yield significant symptom improvements. However, change patterns during standardized or 

individualized IBI are unknown. Identifying subgroups that experience different symptom 

courses during IBI and their characteristics is vital for improving response.  

Methods: Mildly to moderately depressed individuals according to self-report (N = 1089) were 

randomized to receive module-wise feedback that was either standardized or individualized by 

a counselor within an otherwise identical cognitive-behavioral IBI for depression (seven 

modules over six weeks). Depressive symptoms were assessed at baseline and before each 

module (Patient-Health-Questionnaire; PHQ-9). Other individual characteristics (self-report) 

and presence of an affective disorder (structured clinical interview) were assessed at baseline. 

Growth-mixture modeling was used to identify and compare subgroups with discernable change 

patterns and associated client variables across conditions.  

Results: Model comparisons suggest equal change patterns in both conditions. Across 

conditions a group of immediate (62.5%) and a group of delayed improvers (37.4%) were 

identified. Immediate improvers decreased their PHQ-9 score by 5.5 points from pre to post, 

with 33% of improvement occurring before treatment commenced. Delayed improvers were 

characterized by stable symptom severity during the first two modules and smaller overall 

symptom decrease (3.2 points). Higher treatment expectations, a current major depressive 

disorder (interview) and lower social support were associated with delayed improvement.  

Conclusion: IBI for depression with individualized and with standardized feedback lead to 

comparable patterns of change. Expectation management and bolstering of social support are 

promising strategies for individuals that are at risk for delayed improvement.  

Keywords: depression; patterns of change; internet-based interventions; growth mixture 

modeling; social support; expectations 
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How Individuals Change During Internet-Based Interventions for Depression: A Randomized 

Controlled Trial Comparing Standardized and Individualized Feedback 

The World Health Organization (2017) identified depression as the leading cause of 

disability worldwide. Even in high-income countries, only one in five depressed individuals 

receives adequate treatment (Thornicroft et al., 2017). Different researchers (e.g., Kazdin, 2018) 

proposed Internet-based interventions (IBI) as one approach to circumvent individual-level 

barriers like problems with transportation, inconvenient treatment hours and locations (i.e., long 

distance from home) and fear of stigma that impede the uptake of evidence-based treatments 

(Harvey & Gumport, 2015). Meta-analyses confirm the efficacy of standardized and 

individualized IBI for depression (e.g., Karyotaki et al., 2018, 2017). However, research on 

why, when and how individuals improve throughout IBI with varying levels of 

individualization is lacking.  

Identifying individuals who improve during IBI and their sociodemographic and 

clinical characteristics is a prerequisite for offering interventions that are tailored to the needs 

of specific populations and thus might increase response rates (Khan, Faucett, Lichtenberg, 

Kirsch, & Brown, 2012; Manen et al., 2015; Mueller et al., 2018). Moreover, learning about the 

particular point during treatment (and the associated intervention elements) at which certain 

individuals change is essential to advance the understanding of the underlying mechanisms of 

change (Klein & Kotov, 2016; Silberschatz, 2015). Growth mixture modeling (GMM) is a 

statistical approach that addresses these questions. It explores whether populations with 

heterogeneous symptom trajectories contain distinct homogenous subgroups (e.g., Jung & 

Wickrama, 2008; B. Muthén, 2006).  

While GMM has been regularly used to investigate depressive symptom courses 

during face-to-face psychotherapy (e.g., Rubel, Lutz, & Schulte, 2015), there has only been a 

limited number of trials on this topic in IBI for depression (Batterham et al., 2018; Lutz et al., 

2017; Sunderland, Wong, Hilvert-Bruce, & Andrews, 2012). Sunderland et al. (2012) and 
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Batterham et al. (2018) found two discernable symptom trajectories during IBI, with 75 to 81% 

of individuals showing improvement and the remainder showing no or low symptom 

improvements. Divergently, Lutz et al. (2017) found three distinct groups of depressed 

individuals. One group improved immediately after baseline assessment (45%), another after 

being randomized to the intervention and registered on the website (39%), and a third showed 

early symptom deterioration (16%). The differing number of identified subgroups might be due 

to significant differences in study design and interventions under research. Lutz et al. (2017) 

focused exclusively on symptom change during the first four weeks of IBI, while Sunderland 

et al. (2012) and Batterham et al.(2018) aimed to explore the heterogeneity in symptom 

trajectories beyond the early stages of treatment. In addition, the studies differed with regard to 

the provided intervention. While Lutz et al. (2017)  and Sunderland et al. (2012) focused on 

individuals with depression and anxiety, Batterham et al. (2018) treated depressive symptom 

load as secondary outcome in an intervention focusing on reducing suicidal thoughts. Another 

critical difference between the three studies pertains to the level of individualization offered. 

Batterham et al. (2018) and Sunderland et al. (2012) evaluated a self-guided treatment (i.e., 

standardized, without regular guidance or feedback by clinicians) and Lutz et al. (2017) 

provided more severely depressed individuals with additional guidance (individualized weekly 

e-mail support).  

Since the intensity of guidance is considered to be one of the most central moderators 

of outcome in IBI for depression (e.g., Johansson & Andersson, 2012), more research is 

necessary to assess the influence of contact quantity and quality on patterns of change. 

Consequently, the current study investigates depressive symptom courses and their associations 

with pre-interventional client characteristics in an individualized form (IF-condition: feedback 

individualized by a counselor; contact-on-demand) and a standardized form (SF-condition: 

standardized feedback; contact-on-demand) of the same IBI for depression within a randomized 

controlled trial. To our knowledge, this is the first study exploring a) if individualization of 
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feedback leads to quantitatively and qualitatively different patterns of change and b) if these 

change patterns show diverging associations with participants’ characteristics in a large clinical 

sample of adults provided with IBI for depression.  

Method 

Design and Sample 

Clients in this two-arm assessor-blind randomized controlled trial were recruited 

nationwide in Germany between March 2014 and March 2015 from the client-base of a German 

public health care provider. The trial was prospectively registered (URL 

https://www.anzctr.org.au (ID: ACTRN12614000312640) and approved by the Research 

Ethics Committee of Freie Universität Berlin. Informed consent was obtained from all clients. 

Only non-suicidal individuals with mild to moderate depression (Beck Depression 

Inventory-II score between 14 and 28; score ≤ 1 on suicide item) were included. Individuals 

with current mania, hypomania or psychosis as assessed during a telephone-administered 

structured clinical interview for DSM IV (SCID-I, sections A through F; Wittchen, Zaudig, & 

Fydrich, 1997) were excluded. A previous publication comparing the efficacy of the two 

treatment arms describes the recruitment strategy in more detail (Zagorscak, Heinrich, Sommer, 

Wagner, & Knaevelsrud, 2018). Overall, N = 1089 individuals participated in the intervention. 

The mean age of the sample was 45.7 (SD = 11.3) years; 65.6% were female. A majority of 

individuals was married (51.5%), employed (88.2%) and highly educated (69.2% finished 

college-preparatory school). Table 1 displays baseline sample characteristics. No significant 

differences between study conditions were found regarding any clinical or sociodemographic 

variables (all p-values > .05). 

Treatment 

Clients were randomly assigned to one of two variants of an IBI for depression. Both 

conditions offered the same psychoeducation and intervention tools in seven modules (M1-

M7). In particular, clients completed two expressive writing tasks (M1-M2, one week), 
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behavioral activation through a daily planner (M3-M4, two weeks), cognitive restructuring 

through thought protocols and interpretational bias training (M5-M6, two weeks) as well as 

relapse prevention (M7, one week). Clients received either standardized feedback (nSF = 534) 

or feedback individualized by a counselor (40 counselors, 21 holding a bachelor’s degree and 

19 holding a master’s degree in psychology, nIF = 555). Feedback was offered via written 

messages within a password-protected internet platform after completion of each module. 

Clients in both intervention groups could receive contact on demand in case of technical 

problems or specific questions concerning the intervention. 

Measures 

Categorical diagnoses of affective disorders (e.g., current or past major depressive 

disorder (MDD), current dysthymia) were obtained from telephone-administered structured 

clinical interviews (SCID-I, sections A through F; Wittchen et al., 1997). 

Depressive symptom burden was assessed with the nine-item Patient Health 

Questionnaire-9 (PHQ-9; Kroenke, Spitzer, & Williams, 2001).  

The tendency for perseverative thinking was measured using the 15-item Perseverative 

Thinking Questionnaire (PTQ; Ehring et al., 2011). 

Expectations were assessed with five seven-point semantic differentials (Mendez, 

Rodrigues, Cornélio, Gallani, & Godin, 2010). The original item wording was slightly adapted 

to address expectations in the specific IBI context (e.g., “For me, participation in the IBI during 

the next six weeks would be “beneficial” to “harmful”).  

Perceived social support was measured using the respective 8-item subscale of the 

Berlin-Social Support Scale (BSSS; Schulz & Schwarzer, 2003).  

Several socio-demographic characteristics were assessed, that is, age and gender, 

level of education, employment, marital status and history of psychotherapeutic treatment.  
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Clients completed the PHQ-9 at baseline and after the completion of the intervention, 

as well as at the beginning of each week (at the beginning of M1, M3, M4, M5, M6, and M7). 

All other variables were assessed during baseline assessment only.  

Statistical Analysis 

Overall, the analysis aimed to identify subgroups of clients with different patterns of 

change in depressive symptoms as measured with the PHQ-9 in the IF- and SF-condition. The 

analysis had to consider that the two conditions might differ with regard to the number of 

change patterns and shape of the derived trajectories. GMM with latent base specifications was 

used for this purpose. The PHQ-9 measurement structured the change process. A detailed 

description of the modeling process is available in the supporting online information (Appendix 

C). In short, the modeling process comprised three steps: First, the optimal number of classes 

for each condition was determined separately using single-group GMM. Second, to test for 

potential differences in change trajectories between conditions, multi-group GMM was used. 

Third, potential predictors of class membership, initial symptom load and inter-individual 

differences in overall symptom change were included directly into the model (Asparouhov & 

Muthén, 2014). Model selection was based on information criteria (AIC, aBIC, BIC and CAIC). 

All models were estimated using MPlus 8.1 (L. K. Muthén & Muthén, 2017). Missing data 

were dealt with using FIML (depressive symptom load) and single-value imputation (predictor 

variables).  

Results 

Number of Trajectory Classes and Patterns of Change 

Single-group GMM. The single-group analyses pointed towards a two-class solution 

in both intervention arms. Visual inspection indicated that the derived change patterns of both 

conditions showed considerable similarities. An illustration of the estimated change patterns of 

both classes together with estimated parameters separately for each intervention arm can be 

obtained from the supporting online information (Appendix C: Figure C1, Table C1). 
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Multi-group GMM. The multi-group analysis provided further evidence for the 

similarity of the derived classes across the two intervention conditions. All information criteria 

favored the more parsimonious model assuming no differences in change patterns between 

conditions (Appendix C: Table C2). This result supports the notion that the intervention 

conditions do not differ regarding the number of classes, class sizes and change trajectories. 

Therefore, class characterizations based on this constrained model are reported in the following. 

Class 1 (delayed improvers) comprises 37.5% of all randomized individuals. The 

average trajectory was marked by a low decrease in depressive symptoms (average initial 

symptom-load: 12.4 points on the PHQ-9; average pre-to-post decrease by 3.4 points, see Figure 

1). The growth factor loadings of the first two measurement occasions were not significant (l 

= -0.13, p = .298 and l = .18, p = .220) indicating a rather stable average symptom load during 

early stages of the intervention. In other words, delayed improvers showed no early change in 

reference to overall improvement. The residual variances (i.e., scatter of the observed variables 

around the predicted curves) of delayed improvers were relatively large throughout the 

intervention ranging from 5.5 points (post-treatment) to 9.1 points (baseline). The numbers 

indicate that the observed individual trajectories are marked by ups and downs scattered around 

the individually predicted curve. 

Class 2 (immediate improvers) was the larger class and comprises 62.5% of the clients. 

The average symptom decrease in this class was larger than in Class 1 (5.5 points on the PHQ-

9) while the average initial symptom-load was similar (11.2 points). In contrast to class 1,

immediate improvers went through a significant proportion of their average symptom 

improvement immediately after the initial screening. The growth factor loadings indicate that 

33% of the average overall improvement had already occurred before intervention commenced 

(Slope-loading at M1: l = 0.33, p < .001). Immediate improvers showed the largest residual 

variances early during intervention ranging from 4.09 (M3) to 5.12 (pre-assessment). The 

residual variances decreased towards the end of the intervention ranging from 1.44 (M6) to 3.02 
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(post-assessment) indicating more stable symptom trajectories at this stage than in Class 1. 

Table 2 summarizes estimated parameters for both classes, the average change trajectories are 

illustrated in Figure 1.  

Predictors of Class Membership and Symptom Course 

Models were compared on the basis of information criteria. Results favored the use of 

a model that constrains the associations of predictors with initial symptom-load and with the 

amount of symptom improvement to be equal across conditions and classes. For detailed results 

on model comparisons see the supporting online information (Appendix C, Table C2).  

Initial Level of Depressive Symptom Load across Classes. When compared to 

individuals who did not receive any diagnosis in the SCID-I, those who fulfilled the diagnostic 

criteria for MDD (SCID), b = 1.93, 95% CI [1.33, 2.52], p < .001, or double depression, b = 

2.29, 95% CI [1.41, 3.18], p < .001 reported higher baseline depressive symptoms. Further, 

individuals with more severe perseverative thinking also reported higher baseline symptom 

severity, b = 0.07, 95% CI [0.05, 0.10], p < .001. In contrast, individuals with higher 

expectations towards the intervention showed lower initial depressive burden, b = -0.06, 95% 

CI [-0.11, -0.01], p = .012.  

Amount of Overall Symptom Improvement across Classes. On average, larger 

depressive symptom improvements over the course of the intervention were reported by 

individuals who fulfilled the criteria for MDD, b = -1.26, 95% CI [-1.97, -0.56], p < .001, and 

by individuals who reported more severe perseverative thinking b = -0.04, 95% CI [-0.06, -

0.01], p = .008. In contrast, unemployed individuals experienced less improvement throughout 

the intervention, when compared to employed individuals, b = 0.67, 95% CI [0.01, 1.34], p = 

.048. 

Predictors of Class Membership. A current MDD diagnosis (SCID-I), expectations 

and perceived social support were statistically significant predictors of class membership. 

Individuals with higher initial expectations, OR = 1.09, 95% CI [1.01, 1.17], p = .020, and 
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individuals with a current MDD diagnosis, OR = 2.68, 95% CI [1.34, 5.32], p = .005, showed 

increased odds of being classified as delayed improvers. Individuals with higher perceived 

social support showed increased odds of being classified as immediate improvers, OR = 1.08, 

95% CI [1.04, 1.12], p < .001. All predictor variables and their associations with slope, intercept 

and class membership are summarized in Table 3.  

Discussion 

The current study is the first to investigate and compare qualitatively and quantitatively 

discernable patterns of change in IBI for depression with varying levels of feedback-

individualization.  

Across conditions, the study identified two groups of individuals that showed distinct 

average change patterns. Nearly two-thirds of individuals randomized in the current trial 

belonged to an immediate improver class. Interestingly, this class size corresponds with 

response rates in previous studies on IBI for depression, which were summarized to range 

between 55% and 96% in a recent meta-analysis (Königbauer et al., 2017). The depressive 

symptom change in this class is characterized by significant improvements after the initial 

screening phase with 33% of overall improvement taking place before the beginning of the first 

treatment module. On average, this class improved by 5.5 PHQ-9 points overall, which is 

considered to be clinically significant change according to measure-specific conventions (Titov 

et al., 2011).  

In contrast, individuals in the second class were delayed improvers (37.4% of the 

sample). Depressive symptom change in this class is characterized by smaller symptom 

improvement (by 3.2 PHQ-9 points) and by an initial treatment phase marked by stagnant 

symptom severity. These results complement the study by Lutz et al. (2017) in that they stress 

the importance of changes before and during early phases of IBI for depression and their 

association with overall outcome. Divergent from findings of the study at hand and two other 

studies on IBI for depression  (Batterham et al., 2018; Sunderland et al., 2012), Lutz et al. (2017) 
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found three discernable classes. However, two of them differed with regard to change patterns 

during two separate periods prior to treatment (after screening and after registration on the study 

website). This distinction is not suitable for the present study design since screening and 

registration happened simultaneously.  

Importantly, the results suggest that whether written feedback was individualized by a 

counselor or fully-standardized did not influence the number of discernable subgroups or 

associated change patterns in otherwise identical intervention arms. These results are consistent 

with a recent meta-analysis on the efficacy of IBI for individuals diagnosed with depression 

which did not find the presence of guidance to be a meaningful moderator of intervention 

success overall (Königbauer, Letsch, Doebler, Ebert, & Baumeister, 2017). Moreover, the 

current study extends the research by showing that not only the amount of pre- to post-changes 

is equal, but the average change patterns follow the same trajectories as well. Conversely, 

earlier meta-analyses on pre-post changes during IBI for depression found feedback quantity 

and quality to be an essential contributor to treatment success (e.g., Johansson & Andersson, 

2012; Richards & Richardson, 2012). Here, it is important to note that the study at hand 

investigated module-wise change and change-associated subgroups between two treatment 

conditions, which only differed in the degree feedback was individualized. Our study thus 

represents an encouragement to use GMM for the investigation of change patterns across more 

dissimilar forms of contact in IBI (e.g., guidance by telephone vs. standardized written 

guidance), which might result in divergent conclusions.  

Regarding individuals’ characteristics associated with depressive symptoms and class 

membership, the results show that individuals who fulfill the criteria for MDD in a structured 

clinical interview show heightened baseline depressive symptom severity and larger 

improvement over time. That is not surprising, given that PHQ-9 items are derived from the 

DSM-IV criteria for depression (Kroenke et al., 2001). Furthermore, the finding is consistent 

with meta-analyses on psychotherapy for depressive patients highlighting  that the expected 
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pre-post effect sizes (the amount of improvement) are lower for subclinical patients than those 

for individuals that fulfill the diagnostic criteria for MDD (Cuijpers, Karyotaki, et al., 2014; 

Cuijpers, Koole, et al., 2014). Interestingly, the presence of an MDD diagnosis is also associated 

with heightened odds of membership in the delayed improver class. In contrast to an individual 

that reports mild to moderate depressive symptoms on a questionnaire (PHQ-9) only, an 

individual that further fulfills all criteria for a current MDD diagnosis might have a more 

complex symptom and comorbidity profile that decreases the probability of fast response to 

treatment (Melchior et al., 2016). While perseverative thinking was not associated with class 

membership, individuals with high levels of perseverative thinking reported more severe 

depressive symptoms at baseline and increased improvement. This finding is in line with several 

studies highlighting the importance of perseverative thinking for the prediction of symptoms of 

anxiety and depression (e.g., Spinhoven, van Hemert, & Penninx, 2018).  

Regarding sociodemographic and psychosocial variables, the results demonstrate that 

unemployed individuals report lower symptom improvement than employed individuals, which 

is in accordance with previous results on the relationship between socioeconomic risk factors 

and depressive symptoms (e.g., Arias-de la Torre, Vilagut, Martín, Molina, & Alonso, 2018). 

Moreover, individuals with higher perceived social support exhibit higher odds of being 

classified as an immediate improver. Apart from established cross-sectional associations of 

social support and depression (e.g., Gariépy, Honkaniemi, & Quesnel-Vallée, 2016), previous 

studies demonstrated, that individuals with low social support profit less from short-term 

treatments and might benefit from treatment extension (Lindfors, Ojanen, Jääskeläinen, & 

Knekt, 2014). These findings stress that providers of IBI might increase response rates by 

identifying individuals with low social support and either improve their access to social 

resources or offer more extended treatment.  

Finally, higher expectations were associated with lower baseline scores, a finding 

congruent with previous studies on baseline expectation-symptom associations (e.g., Cohen, 
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Beard, & Björgvinsson, 2015). These correlations may be explained through hopelessness that 

increases with depressive symptom severity (e.g., Horwitz, Berona, Czyz, Yeguez, & King, 

2017) and dampens expectations for improvement (through treatment). Higher expectations 

were further associated with membership in the delayed improver class. Given that the contents 

and procedures of IBIs are still mostly unknown to the public (Apolinário-Hagen, Vehreschild, 

& Alkoudmani, 2017), some clients may have unrealistic expectations towards treatment. As a 

consequence, initial disappointment might reduce the probability of experiencing rapid 

improvement (Greer, 1980). Overall, these findings stress the importance of assessing 

expectations in IBI for depression in order to react to expectations that might be either 

unrealistic or pessimistic. While a recent study highlighted that expectations might change 

during treatment (Vîslă, Flückiger, Constantino, Krieger, & Holtforth, 2018), there are no 

studies on how expectations develop through the course of IBI for depression. Thus, future 

studies should assess expectations at multiple time points to further explore the expectation 

symptom-course interplay.  

Some other directions for future research can be derived from the limitations of the 

present study design. The findings of this study pertain to cognitive-behavioral IBI that utilizes 

written feedback (standardized vs. individualized) and includes mildly to moderately depressed 

individuals only. Patterns of change and associated individual characteristics might differ in 

other populations, in forms of treatment that apply other qualities or quantities of feedback or 

use treatment techniques that might entail other change trajectories (e.g., interpersonal or 

psychodynamic treatments). Furthermore, this study is limited to exploring change patterns 

derived using PHQ-9 sum scores. While this is standard in clinical research and practice, it 

might cover up relevant changes on the symptom level (i.e., cognitive symptom change during 

modules targeting cognitive restructuring). Thus, a fruitful direction for future studies would be 

more symptom-oriented modeling of depression and depression change (e.g., Heinrich, 

Zagorscak, Eid, & Knaevelsrud, 2018).  
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Conclusion 

 Individualizing feedback did not influence patterns of change when compared to 

standardized feedback, and a majority of clients showed immediate improvements in both 

treatment conditions. However, a smaller group was at risk of delayed and reduced 

improvements. Fruitful directions for clinicians aiming to increase improvements during IBI 

are expectation management, treatment extension and a bolstering of socially supportive 

relationships.  
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Table 1 

Socio-Demographic and Clinical Sample Characteristics at Baseline 

Variable  Total IF SF  χ2  p 

Socio-Demographic Characteristics 

Age † M (SD) 45.7 (11.3) 45.7 (11.8) 45.8 (10.7)  0.166 ‡ .868 

Female Sex n (%) 714 (65.6) 360 (64.9) 354 (66.3) 0.246  .620 

Unemployed n (%) 127 (11.8) 59 (10.6) 68 (12.7) 1.169 .280 

Lower level of formal education ¶ n (%) 336 (30.9) 160 (28.8 176 (33.3) 5.673  .140 

Marital status     1.301 .521 

Single n (%) 373 (34.3) 196 (35.3) 177 (33.1)   

Married n (%) 561 (51.5) 286 (51.5) 275 (51.5)   

Widowed/Divorced n (%) 155 (14.2) 73 (13.2) 82 (15.4)   

Clinical Baseline Characteristics 

PHQ-9  M (SD) 11.8 (3.4) 11.9 (13.4) 11.7 (3.5) 1.044 ‡ .297 

SCID-I diagnosis     3.194 .670 

Current MDD n (%) 458 (42.1) 247 (44.5) 211 (39.5)   

Remitted MDD n (%) 285 (26.2) 137 (24.7) 148 (27.7)   

Dysthymia n (%) 90 (8.3) 46 (8.3) 44 (8.2)   

Double Depression n (%) 58 (5.3) 27 (4.9) 31 (5.8)   

Bipolar or NOS § n (%) 65 (6.0) 32 (5.8) 33 (6.2)   

No Affective Disorder 
Diagnosis (current/past) 

n (%) 133 (12.2) 66 (11.9) 67 (12.5)   

Expectations † M (SD) 10.0 (4.0) 9.9 (4.0) 10.1 (4.0) 0.462 ‡ .644 

Perseverative Thinking † M (SD) 37.4 (8.7) 37.2 (8.8) 37.6 (8.7) 0.739 ‡ .460 

Perceived Social Support M (SD) 25.7 (5.0) 25.5 (5.0) 25.8 (5.0) 1.051 ‡ .294 

 

Note. N = 1089. IF, Individualized Feedback (n = 555); SF, Standardized Feedback (n = 534); PHQ-9, Patient Health 

Questionnaire-9; SCID-I, Structured Clinical Interview for DSM-IV; NOS, not otherwise specified. 

† variables have some missing values: age, n = 1081; expectations, n  = 1081; PHQ-9, n  = 1067. ‡ t-test for independent 

samples. § individuals with bipolar disorders were included only if they were not experiencing current mania/hypomania. 

¶ “lower” category encompasses no certificate or certificates from lower secondary/secondary school, “higher” category 

encompassing certificates from trade school/college-preparatory school, college or university. 
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Table 2  

Model Parameters of the Single-Group and the Constrained Multi-Group GMM Model  

Parameter Multi Group Model

Delayed Improvers Immediate Improvers 

k1 0 0

k2 -0.13 (0.13) NS 0.33 (0.05)

k3 0.18 (0.15) NS 0.55 (0.04)

k4 0.57 (0.12) 0.84 (0.03) 

k5 0.80 (0.07) 0.90 (0.02) 

k6 1.03 (0.07) 1.02 (0.02) 

k7 1.12 (0.05) 1.11 (0.02) 

k8 1 1

Ik 12.39 (0.33) 11.23 (0.28) 

Sk -3.41 (0.76) -5.54 (0.37) 

ySk,Ik -2.23 (0.87) -3.42 (1.04) 

yIk 5.75 (0.73) 6.27 (0.78) 

ySk 10.43 (2.48) 7.07 (1.15) 

Var(εi1k) 8.91 (1.60) 5.12 (0.96) 

Var(εi2k) 7.79 (1.94) 5.35 (1.33) 

Var(εi3k) 6.51 (1.46) 4.09 (0.87) 

Var(εi4k) 8.21 (1.14) 2.21 (0.30) 

Var(εi5k) 8.31 (1.71) 2.45 (0.32) 

Var(εi6k) 5.50 (1.17) 1.44 (0.30) 

Var(εi7k) 5.77 (1.08) 1.19 (0.22) 

Var(εi8k) 9.12 (1.56) 3.02 (0.40) 

Note. kt = class and time specific growth factor-loading, where k = refers to the class and t to the 

measurement occasions. mIk and mSk = mean of the intercept and slope, respectively. yIk  and ySk =  

variance of the intercept and slope. ySk,Ik = covariance between slope and intercept. Var(εitk) = 

residual variance at the corresponding measurement occasion t. All parameters significant with p < 

.05 if not indicated otherwise.  NS = non-significant. 



 

118 
 

Table 3  

Association Between Predictor Variables and Class-Specific Intercepts, Slopes and Class-Membership 

Predictor Intercept  Slope  Predict Delayed Response Class-Membership 

 b (SE) p  b (SE) p  b (SE) p OR [95% CI] 

Age 0.01 (0.01) .554  -0.01 (0.01) .456  -0.02 (0.01) .158 0.99 [0.96, 1.01] 

Male Sex 0.26 (0.20) .181  -0.26 (0.24) .275  0.14 (0.24) .540 1.16 [0.73, 1.84] 

Higher Degree of Formal Education (Ref. Lower)† -0.10 (0.22) .641  -0.21 (0.27) .433  -0.27 (0.24) .258 0.76 [0.47, 1.22] 

Marital Status (Ref.: Single)          

Married  -0.21 (0.23) .368  -0.29 (0.29) .313  0.01 (0.27) .963 1.01 [0.60, 1.71] 

Widowed/Divorced 0.29 (0.33) .375  -0.64 (0.40) .109  0.09 (0.34) .786 1.10 [0.56, 2.14] 

Prior Psychotherapy (Ref.: No Prior Psychotherapy) 0.16 (0.19) .412  -0.01 (0.23) .970  0.39 (0.22) .076 1.48 [0.96, 2.29] 

Unemployed (Ref.: Employed) -0.39 (0.29) .181  0.67 (0.34) .048  -0.10 (0.33) .764 0.90 [0.47, 1.74] 

SCID-I Diagnosis (Ref.: No Affective Disorder)          

Current MDD  1.93 (0.30) < .001  -1.26 (0.36) < .001  0.98 (0.35) .005 2.68 [1.34, 5.32] 

Dysthymia  0.55 (0.39) .152  0.32 (0.45) .479  0.52 (0.46) .262 1.67 [0.68, 4.12] 

Remitted MDD  -0.16 (0.31) .606  0.16 (0.36) .663  0.49 (0.36) .174 1.64 [0.81, 3.32] 

Double Depression  2.29 (0.45) < .001  -0.28 (0.55) .605  0.09 (0.55) .873 1.09 [0.37, 3.17] 

MDD NOS  0.53 (0.47) .260  -0.08 (0.57) .889  -0.11 (0.52) .828 0.89 [0.32, 2.49] 

Perseverative Thinking 0.07 (0.01) < .001  -0.04 (0.01) .008  -0.00 (0.01) .790 1.00 [0.97, 1.02] 

Expectations -0.06 (0.02) .012  -0.03 (0.03) .329  0.08 (0.04) .020 1.09 [1.01, 1.17] 

Perceived Social Support -0.02 (0.02) .346  -0.05 (0.03) .069  -0.07 (0.02) < .001 0.93 [0.89, 0.96] 

 

Note. Beta-regression weights as estimated in a model with class and group invariance. Ref., category used as reference; MDD, Major Depressive Disorder; NOS, not otherwise 

specified. † “lower” category encompasses no certificate or certificates from lower secondary or secondary school and is contrasted against the “higher” category encompassing 

certificates from trade school/college-preparatory school, college or university.  
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Figures

 

Figure 1. Observed patterns of change in the immediate improver class and the delayed 

improver class. Bold line depicts average change pattern.  
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Supplementary materials 

The following supplementary materials related to STUDY 3 are available in the APPENDIX: 

 Appendix C. Detailed description of the statistical approach.
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CHAPTER 5 

DISCUSSION, OUTLOOK, AND CONCLUSION 
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In this chapter I will summarize and discuss the results of each of the three studies and 

portray their core findings (CHAPTERS 5.1 – 5.3). The discussion of each study features three 

sections: 

In the first section, I seek to embed the results into a broader context of findings on IBI 

in general and – if applicable – of findings on face-to-face psychotherapy. Due to the fact that 

all studies featured a comparison between a guided (individualized; IF) and an unguided 

(standardized; SF) feedback condition, this aspect will be reviewed more extensively within the 

discussion of the first study. In the second section, I will highlight specific problems of our own 

studies and problems within the respective research fields in order to suggest comprehensive 

solutions of these problems in future studies within the third section.  

Finally, in CHAPTER 5.4 I will present a more generalized outlook on the future of 

research and practice regarding the application of “new media” and the internet as a tool to 

provide relief for individuals with mental disorders in general and depression in particular.  
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5.1. Study 1: Benefits of Individualized Feedback in IBI 

5.1.1 Summary of Findings 

The first study investigated differences between the SF and the IF condition 

concerning changes on clinical (depression, anxiety, perseverative thinking) and psychosocial 

(emotional self-efficacy, quality of life, and perceived social support) variables. The between-

condition effects were estimated immediately after the intervention as well as 3, 6, and 12 

months after participants finished the program. The results revealed significant within-group 

pre-post effects across conditions on all variables in the program-intended direction. The two 

conditions did not differ on any of the self-reported measures and at none of the measurement 

occasions. However, it is worth mentioning that the dropout rates were significantly higher in 

the SF condition than in the IF condition (25.8% vs. 17.3%). The core result on the primary 

outcome of depressive symptoms (Beck Depression Inventory – II) is visualized in FIGURE 

5.1. This figure shows the high overlap in symptom change between both treatment arms.  

 

 
 
FIGURE 5.1. Depressive Symptom Scores for the Standardized Feedback-Condition (blue) and the 
Individualized Feedback-Condition (green) across all measurement occasions. Vertical lines indicate 
95%-confidence intervals for each score (all respective intervals overlap between groups). FU, follow-
up measurement with adjacent number indicating months after post-assessment. BDI-II, Beck-
Depression-Inventory II. 
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5.1.2 Discussion  

These findings are in conflict with results from most reviews and meta-analyses (e.g., 

Johansson & Andersson, 2012; Richards & Richardson, 2012) and question the superiority of 

“guided” over “unguided” treatments. A potential equivalence of unguided and guided IBI 

bears significant implications for clinical practice. Since qualified personnel that may offer 

“guidance” is limited and costly, it seems reasonable to focus resources on potentially more 

cost-effective unguided treatments in order to provide broader patient populations with easily-

accessible and quickly-available treatment (e.g., Romero-Sanchiz et al., 2017). Given the 

fundamentality of this notion, it is important to question its generalizability and to critically 

evaluate the foundations it is based on.  

 Context. Studies comparing guided and unguided IBI exist for a variety of mental 

disorders. To present an unbiased collection of studies representative of the field, I performed 

a literature search13 on “ISI Web of Science”, on “guided” and “unguided” interventions. Note, 

that this search was not limited to depression. It produced 50 search results, from which I 

excluded study protocols, offline-studies or studies on other topics than psychological 

interventions. The results are summarized in TABLE 5.1. While this approach to literature 

provides only a simplified overview, it reveals that across disorder categories the differences in 

experimental comparisons of guided and unguided interventions are mostly non-significant. 

Apart from two meta-analyses on guidance in IBI for depression with significant shortcomings 

(see SECTION 1.6.2 for a review), none of the reviewed studies yield evidence for the superiority 

of “guided” over “unguided” IBI for any disorder category. 

  

                                                 
13 The exact search terms were: TITLE: (guid*) AND TITLE: (unguid*) Timespan: All years. Indexes: SCI-
EXPANDED, SSCI, A&HCI, ESCI. Date of search: 28th of December 2018. 
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TABLE 5.1 (CONT. ON FOLLOWING PAGE) 
Results of randomized controlled studies and meta-analyses on guided and unguided IBI for a 
variety of mental disorders 

Study Sample Target 
Disorder 

Interventions Pre-Post 
Group 

Comparisons  

Mode of 
Contact with 
Participants 

Berger et al. 
(2011) 

n = 81 Social 
Phobia 

1) guided iCBT  
2) iCBT + contact on-
demand (written first, 
phone calls second)  
3) unguided iCBT 

 

Social Phobia 
Symptoms: 
1 = 2 = 3 

Written 
(on-demand 

phone calls in 
one treatment 

arm) 
 

Ciuca et al. 
(2018) 

n = 111 Panic 
Disorder 

1) iCBT guided 
2) iCBT unguided 

3) WLC 

Symptoms of 
Panic Disorder: 

1 = 2 > 3 
 

Diagnostic 
Status: 
1 > 2 
1 > 3 
2 > 3 

real-time audio-
video 

communication 

Furmark et al. 
(2009) 

n = 235 Social 
Phobia 

1) guided iCBT 
2) bibliotherapy with 

discussion group 
3) internet-delivered 
applied relaxation 

+ online discussion group  
4) bibliotherapy 

alone 
 
 

Social Phobia 
Symptoms: 

1 = 2 = 3 = 4 
 
 
 

Written 
(clinician + 
discussion 

group) 

Ivanova et al. 
(2016) 

n = 152 Panic 
Disorder 
Social 
Phobia 

1) Online ACT guided 
2) Online ACT unguided 

3) WLC 

General and 
Social Anxiety 

Symptoms 
1 = 2  > 3 

 

Written 
(clinician) 

Kass et al. 
(2014) 

n = 151 Binge 
Eating 

Disorder 

1) Online-psychoeducation 
with guided discussion 

group 
2) Online-psychoeducation 

 

Binge Eating 
Symptoms  

1 = 2 
 

Weight Concerns 
1 > 2 

Written 
(discussion 

group) 

Romero-
Sanchiz et al. 

(2017) 
 
 

n = 296 Depression 1) iCBT guided 
2) iCBT unguided 

3) TAU 

Cost-
Effectiveness 

1 = 2 > 3 

Written 

Sundstrom et 
al. (2016) 

n = 80 Alcohol 
Use 

1) iCBT + chat counseling 
2) iCBT + e-mail 

counseling 
3) iCBT unguided 

 

Self-Reported 
Alcohol 

Consumption: 
1 = 2 > 3 

 
 
 
 
 

Written 
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Meta-
Analysis 

Sample Target 
Disorder 

Interventions Result 
regarding 
guidance 

Mode of 
Contact with 
Participants

Küster et al. 
(2016) 

k = 20 Post-
traumatic 

stress 
disorder 

Meta-Analysis Post-traumatic 
stress: 

No differences 
between guided 
and unguided 
interventions 

Not reported, 
but mostly 

written 
(expressive 

writing or CBT 
with written 
messages) 

Riper et al. 
(2014) 

k = 16 Alcohol 
Misuse 

Meta-Analysis Alcohol Misuse: 
No differences 
between guided 
and unguided 
interventions 

14 Written 
1 SMS 

1 Written + 
Phone 

Note. iCBT, internet-based cognitive-behavioral therapy; TAU, treatment as usual; WLC, waitlist control 
group. The table is adapted from a response letter sent during the publication process of STUDY 1. 

However, due to methodological shortcoming in the current literature, neither does it 

follow that “unguided” IBI is superior nor that both treatment modalities are equivalent.  

For example, a sensitivity analysis (see also TABLE 1.4, p. 29) demonstrates that three 

of the five studies with experimental comparisons of different levels of guidance in IBI for 

depression have only been sufficiently powered to detect large between-group effects of 

d ≥ .73 (Andersson et al., 2013; Berger, Caspar, et al., 2011; Vernmark et al., 2010). Only two 

studies were appropriately designed to detect small to medium effects of d ≥ .36 or d ≥ .5, 

respectively (Kelders et al., 2015; Titov, 2011). As is evident in TABLE 5.1., most studies on 

IBI for other mental disorders did not feature larger sample sizes either. Given that these studies 

compared the same interventions with and without  an additive component (i.e., guidance) it is 

implausible that the effects are anything but small (Bell, Marcus, & Goodlad, 2013; Cuijpers, 

Cristea, Karyotaki, Reijnders, & Hollon, 2019). Thus, it remains unclear whether there may be 

smaller differences between “guided” and “unguided” IBI.  

The trial presented in this thesis is the only sufficiently powered study on IBI for 

depression to draw reliable conclusions on this question – but a singular study on a specific 

intervention with narrow inclusion criteria is far from sufficient to generalize regarding such an 

important question. This is partly due to specific problems with the definition of “guidance” 
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and the general heterogeneity in what is considered “guidance” in IBI (see also SECTION 1.6.2 

for a summary).  

Specific problems. The way contact, support or guidance for patients is provided within 

a comprehensive trial cannot be reduced to single words like “guided” or “unguided”. The 

following BOX 5.1 provides details on how guidance was provided in the IBI that this thesis is 

based on (“TK-DepressionsCoach”). It illustrates the different facets of (human or automated) 

contact that are to be accounted for.  

BOX 5.1. DETAILS ON THE QUALITY AND QUANTITY OF HUMAN CONTACT 

IN THE INTERVENTION TK-DEPRESSIONSCOACH 

All participants in the TK-DepressionsCoach had contact per phone with an insurance 

representative and subsequently completed an hour-long structured clinical telephone interview by a 

student assistant from our research group. Participants may have even been in contact with a member 

of the IT-company responsible for hosting the intervention, if they had (technical) questions during 

initial symptom screening and registration. Further, during the intervention all participants were 

able to contact members of the research team via written messages in case of technical problems or 

were contacted by members of the research team by phone in case of symptom exacerbation. All 

participants received friendly, automated e-mail reminders if they did not login after a certain period 

of time or if a new treatment module was available for them. This is already a significant amount of 

(human or automated) contact – regardless of the condition a participant was randomized to.  

Evidently, the conditions also differed. Individuals in the IF condition received module-wise 

feedback (six times) based on pre-written text modules that were adapted by counselors carrying a 

bachelor’s or master’s degree in psychology to fit the participants situation or the specific work 

product he or she submitted as therapeutic homework (e.g., completed thought protocols). Only a few 

paragraphs of feedback to clients had to be written without pre-typed text modules (e.g., summarizing 

an expressive writing task). Over the course of the entire intervention, counselors invested 120 – 180 

minutes per client to provide feedback (about 15-45 minutes per feedback). Please see APPENDIX 5.2 
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for an excerpt from the treatment manual that illustrates how individualized feedback is written 

(Zagorscak et al., 2014; manual available upon request). 

At the same time, individuals in the SF condition received completely automated feedback 

(“one size fits all”) with generic encouragements and attempts at predicting possible difficulties.  

Importantly, the feedback section comprises only about 15% of the overall text that is 

provided. Psychoeducation (including videos), therapeutic tools and instructions on how to use them 

are standardized and the same for every participant. All these texts, including the text modules used 

for individualized feedback are authored by the same group of researchers (Zagorscak et al., 2014). 

 

This extensive description serves to demonstrate three things: First, the absolute 

difference between the compared conditions in our trial is small. Thus, the lack of differences 

between our treatment arms should not be used to draw conclusions on differences between 

more dissimilar forms of guidance in IBI.  

Second, the level of detail in the description is necessary to determine what kind of 

“guidance” (if any) a participant in IBI received. Yet, no published paper (including our own) 

features such an extensive description. However, only detailed information on who contacted 

participants when, in what frequency, and with what kind of aim (e.g., technical assistance vs. 

therapeutic guidance) allows for meaningful discussions and (meta-analytic) comparisons of 

studies on “guidance”. A solution for future studies might be a standardized form that details 

necessary information on guidance in every trial on IBI. Such a short checklist could 

complement publications as supplementary material. An example that is derived from my own 

review of the literature is provided in APPENDIX 5.1. 

Third, the quantity (invested time per client) and quality (aim and scope) of feedback in 

our IF condition is consistent with what other studies considered to be “guided” IBI (Pihlaja et 

al., 2018). Similarly, our SF condition is consistent with what other trials defined as “unguided” 

IBI, since most trials on “unguided” IBI offered contact-on-demand and researchers contacted 



 

129 
 

participants when symptoms deteriorated (e.g., Berger, Caspar, et al., 2011, 2011; Ciuca et al., 

2018; Kelders et al., 2015). When examining the descriptions of „guidance“ of our intervention 

and other guided self-help or minimal contact treatments (see SECTION 1.5.1 for definitions), it 

becomes clear, that this form of human contact is quite different from the one patient and 

therapist experience within face-to-face psychotherapy. It thus seems reasonable to expand on 

the meaning of guidance in IBI for patients.  

For example, the intervention manual of the TK-DepressionsCoach explicitly instructs 

counselors to give encouraging, resource-focused, empathetic and non-confrontative feedback 

(see APPENDIX 5.2). This is due to the fact, that the asynchronous mode of communication is 

not suited for a faster-paced back-and-forth between patient and therapist, which is necessary 

for Socratic Questioning and other therapeutic techniques central to cognitive-behavioral 

therapy (and other schools of psychotherapy). Furthermore, the structure of guided self-help 

IBI restricts the number of interactions between counselor and client. In addition, the guidance 

is mostly focused on module-specific tasks. Nevertheless, there is some room for correcting the 

clients as the following fictitious BOX 5.2 illustrates, where a counselor gives feedback on a 

client’s thought protocol:  

BOX 5.2. FICTITIOUS EXAMPLE OF COUNSELOR FEEDBACK ON THOUGHT PROTOCOLS 
(BASED ON THE ORIGINAL GERMAN TEXT MODULES) 

“In Ihren Gedankenprotokollen hatten Sie eine Situation berichtet, wo Ihre Kolleginnen Ihre 

Einladung zu einem Feierabendbier ausgeschlagen haben. Ich habe gesehen, dass Sie den 

alternativen Gedanken “Sie wollen einfach nichts mit mir zu tun haben“ formuliert haben. Denken 

Sie daran, dass „alternative Gedanken“ das Potential eröffnen können, auch alternative Gefühle zu 

empfinden. Wie Sie an Ihrem Gedankenprotokoll erkennen können, würde Ihr „alternativer 

Gedanke“ genauso zu „Traurigkeit“ führen, wie Ihr ursprünglicher Gedanke „Für mich hat nie 

jemand Zeit“. Fällt Ihnen noch ein anderer Gedanke zur Erklärung der Reaktion Ihrer Kolleginnen 

ein, der möglicherweis mit einem anderen Gefühl einhergegangen wäre? Ich möchte Sie einladen 

noch ein weiteres Gedankenprotokoll zu dieser Situation auszufüllen.“ 
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If a client reacts to such a correction, the counselor in our treatment has the opportunity 

to give feedback on the revised thought protocol a week later and no more than twice in total, 

given that cognitive restructuring takes place during the final two weeks. Accordingly, the 

potential for “trial and error” is limited. This structure is common to all guided self-help or 

minimal contact interventions (e.g., Cuijpers, Kleiboer, Karyotaki, & Riper, 2017). Thus, 

school-specific elements (i.e., cognitive-behavioral or psychodynamic techniques) are mostly 

contained to the automated or standardized psychoeducational parts or the provided online-

tools. In contrast, the central role of human contact in these interventions is to encourage 

participants to keep up their work and provide them with empathy. In that aspect, the aim of the 

interaction is more similar to non-directive supportive face-to-face treatments (e.g., Cuijpers et 

al., 2012).  

For a comprehensive representation of the meaning of human interaction in IBI, it is 

important to consider the perspective of the participants as well. When asked about their 

experiences with the TK-DepressionsCoach, more than half of the participants (NSF = 289; NIF 

= 280) left free-form comments after completing the intervention. Large proportions of 

participants (NIF = 147, 52%; NSF = 115, 40%) wrote to thank the creators of the intervention, 

the public insurance company (or the counselor, in the guided variant) for offering treatment 

and support. A closer look at the contents of their comments emphasizes what they took from 

the provided guidance – and what was missing (see BOX 5.3 a-c)14: 

  

                                                 
14 All comments printed in this chapter were slightly adapted to guarantee anonymity of participants without 
changing the meaning of the content. They were not translated to English to maintain the general style of the 
comments. 
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BOX 5.3. THREE EXAMPLES OF COMMENTS BY PARTICIPANTS IN THE TK-

DEPRESSIONSCOACH CONCERNING THE QUALITY AND QUANTITY OF HUMAN CONTACT 

a) „Ich hätte gerne nach jeder Woche auch Stellung zu meinen Erlebnissen und Erfahrungen 

abgegeben damit es zu einem Dialog zwischen mir und meiner Beraterin kommt. Ansonsten nehme 

ich diese Zeit als eine sehr bereichernde Erfahrung und Ergänzung zu meinem Wissen um meine 

Situation mit.“ 

b) “Danke für die aufmunternden Worte als Antworten auf meine Schreiben!“ 

c) „Der DepressionsCoach gibt wirklich viele interessante Denkanstöße. Es ist auf eine ganz andere 

Art hilfreich als eine ambulante Therapie. Ich fände die Kombination aus persönlichem Gespräch 

und Online-Arbeit gut.“ 

 

Concordantly, about 10% (N = 27) in the IF and 31% (N = 86) in the SF condition 

criticized the intervention for being too “impersonal”. Other participants explicitly wished for 

more phone calls as an add-on to the written communication (NIF = 12; NSF = 16). 

Interestingly, a small and not precisely quantifiable share of participants in the SF 

condition were not aware that they did not receive feedback individualized by a counselor. This 

became evident when they were called due to symptom exacerbation and inquired whether the 

person calling was the same as the one writing the feedback (which was in fact fully-

standardized). An ambivalence about whether or not the letters are written by a human and 

whether someone reads the client’s work product is nicely summarized by the comment of a 

participant in the SF-condition (BOX 5.4):  

BOX 5.4. EXAMPLE OF A COMMENT BY A  SF-PARTICIPANT IN THE TK-

DEPRESSIONSCOACH CONCERNING AN AMBIVALENCE ABOUT HUMAN SUPPORT 

 „Ich bin [IT-Beruf, anonymisiert] und verstehe die Mechanismen hinter einem solchen 

Projekt. Eventuell liest das niemand, und eventuell schreibt mir auch niemand. Vielleicht dreht sich 

das Pilot-Projekt in Wirklichkeit um völlig automatisierte Behandlung *zwinker* 

Na ja, so krass wird es auch nicht sein, aber ich habe diese Fragen [Working Alliance 

Inventory; Anm. d. Autors] nicht beantwortet, weil sie (in meinen Augen) nicht beantwortbar sind.“ 
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This illusion of human presence might be fostered by a trustworthy authority 

recommending a well-designed intervention (the participant’s health insurance company), and 

an unguided condition providing generic but warm, encouraging and empathetic feedback. 

Further, the clinical interview, the contact-on-demand option and the phone call after symptom 

deterioration by a clinical expert might have further contributed to a feeling of being “looked 

after”, even in the SF-condition. This is consistent with ideas by Mulder, Murray and Rucklidge  

(2017), who argued that participants in IBI form symbolic connections with the intervention 

which have repercussions, comparable to the disembodied relationships formed with beloved 

books or movies. The authors summarized that “although  very  different  from  the  traditional  

image  of a   real-time   healing   encounter,   engagement   with   an e-therapy  website  (laden  

with  evidence  of  benevolent therapeutic  intention)  might  nonetheless  constitute  a 

meaningful    relationship    with    therapeutic    benefits.” (Mulder et al., 2017, p. 6). Indeed, 

a first study that addressed this question through interviews with 9 individuals found 

preliminary evidence for the notion that participants assign relationship-associated qualities to 

an unguided mental health app, such as feeling a supporting partnership with the inanimate 

treatment tool (Berry, Salter, Morris, James, & Bucci, 2018). 

In summary, there are a number of conclusions to be drawn from the findings of our 

study, the practical experiences in carrying it out, and the participants’ comments: 

 First, well-designed unguided interventions with pre-treatment clinical interviews and 

contact-on-demand options have the potential to be as efficacious as comparable 

interventions with feedback individualized by a therapist. Nevertheless, higher drop-

out rates are to be expected when feedback is fully-standardized.  

 Second, guidance in text-based guided self-help or minimal-contact IBI is not 

comparable to the human interaction in school-specific face-to-face psychotherapy for 

it has a different quantity and quality (different aims, different forms of dialogue). The 
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aims of guidance seem to be more similar to those of non-directive supportive 

treatments.  

Future studies. Since the first conclusion is based primarily on our trial (due to similar 

trials being underpowered), it is necessary to conduct other sufficiently powered trials that 

compare different qualities and quantities of guidance with more diverse target populations 

(e.g., other mental disorders, more severely affected individuals, individuals with 

comorbidities). Most importantly, the circumstances under which this trial was conducted were 

those of a typical efficacy study. Among other aspects of quality control, all counselors were 

under the employ of the university and a strict adherence to the treatment manual was ensured 

by introductory courses and regular supervision for all employees.  

In an earlier review on studies of IBI effectiveness Andersson and Hedman  (2013) found 

only two open trials on IBI for depression that featured no control condition. Similar 

effectiveness studies without appropriate control groups have been published since 

(Hadjistavropoulos et al., 2016; Newby, Mewton, & Andrews, 2017). Only one large-scale 

study (N = 639) in Great Britain compared the effectiveness of two usually unguided IBI for 

depression in routine care (“MoodGYM” and “Beating the Blues”) with added technical 

support15 against a control condition (“care as usual”). The authors did not find any significant 

differences between any of the three conditions and reported low adherence and engagement 

with the IBI offered (Gilbody et al., 2015). Nevertheless, they cautioned in their conclusion that 

“support in [this] trial did not involve detailed explanations of cognitive behavioral therapy and 

did not involve detailed review of homework or tasks between sessions. The [IBI] was therefore 

a form of supported self-help but was not one that was guided by a clinician.” (Gilbody et al., 

2015, p. 11). It seems reasonable to assume that without the circumstances common in studies 

                                                 
15 Technicians tried to call the participants weekly (average: 6-7 calls per patient) for providing a few minutes of 
additional support. However, only an average number of 3-4 calls were taken per patient for the entire duration of 
the intervention. 
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on the efficacy of IBI (e.g., clinical interviews, contact-on-demand, strictly manualized 

procedures, symptom tracking and reactions to exacerbation), providing guidance by clinicians 

would become more important. Thus, different qualities and quantities of guidance should be 

investigated within future effectiveness studies.  

The second conclusion in the paragraph above regarding the meaning and nature of 

guidance and the formation of a symbolic relationship with an IBI are not yet empirically 

researched. They require more qualitative approaches and detailed inquisitions of the 

participants’ experiences within IBI (e.g., Berry et al., 2018). They are necessary to determine 

what participants need from an intervention and whether the perception of human presence 

might be enough for some participants, whereas others need more care and human attention in 

order to adhere to and profit from IBI. Thus, a major challenge for future studies on IBI is to 

identify whether certain types of individuals (e.g., depending on personality, clinical or 

psychosocial variables) might reliably profit from less resource-intensive and immediately 

available unguided IBI, whereas other individuals are better served with guided treatments or 

face-to-face psychotherapy, even if these incur costs and might require waiting times. This 

notion bears some similarities with the idea of personalized medicine (for a summary see Foster, 

Petrie, Mischoulon, & Fava, 2019). However, for this approach to work, further studies on 

interventional, clinical, biological and psychosocial predictors of symptom change in IBI is 

required. 
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5.2 Study 2: Contributing factors in IBI for depression 

5.2.1 Summary of Findings 

The second study investigated the contributions of different variables to in-treatment 

depressive symptom change in standardized and individualized IBI for depression. The 

variables investigated corresponded to the four-factor-model (Lambert, 1992; Miller et al., 

1996). Results show that reductions of extra-therapeutic stressors during the intervention and 

high agreements on tasks and goals of treatment are associated with depressive symptom 

reductions in both conditions. The study yielded interesting differences between the two 

conditions: On the one hand, the level of baseline stressors was only predictive of in-treatment 

symptom change in the standardized feedback condition, possibly indicating a stress-buffer 

effect of guidance. On the other hand, bond ratings were associated with symptom deterioration 

during the final week of treatment in the individualized feedback condition only, which might 

indicate “parting pains”. In contrast to assumptions made by the four-factor-model, baseline 

expectations and the uptake of specific treatment components were not significantly associated 

with depressive symptom change in this trial. See FIGURE 5.2. for an illustration of findings. 

 
FIGURE 5.2. Simplified illustration of factors contributing to symptom change in IBI for depression. 
Black lines indicate findings valid across conditions; the green line indicates findings specific for the 
individualized feedback condition; the blue line indicates findings specific for the standardized feedback 
condition. “-” and “+” indicate negative and positive associations, respectively. No significant 
associations were found for factors in grey boxes.  
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5.2.2 Discussion 

The findings of this study are in line with previous results, in that they emphasize the 

associations of therapeutic alliance with treatment outcome (Flückiger et al., 2018; Pihlaja et 

al., 2018). At the same time, they confirm that agreement on tasks and goals might be more 

relevant for symptom change in IBI than bond ratings (Berger, 2017). Concerning the relevance 

of expectations as contributing factor, multiple studies on IBI for social anxiety found 

significant associations with outcome (Boettcher et al., 2013; El Alaoui et al., 2015; Hedman 

et al., 2012; Nordgreen et al., 2012). In contrast, a significant expectation-outcome association 

has only been reported in one study on IBI for depression (El Alaoui et al., 2016). While it is 

possible that predictors of outcome differ in dependence of the mental disorder of an individual 

or the treatment offered (Wolitzky-Taylor, Arch, Rosenfield, & Craske, 2012), the contradiction 

to our results might also be due to the fact that the other studies did not control for the influence 

of other potential contributing factors, such as working alliance (e.g., Patterson, Anderson, & 

Wei, 2014). Overall, this highlights the strength of our multi-factor approach. 

Another strength of our study is its focus on the uptake of treatment-specific tools and 

extra-therapeutic stressors as possible contributors to module-wise symptom change. This has 

not been investigated in other studies on IBI.  Thus, our results will be contextualized more 

broadly and compared to factors known to contribute to outcome measures in face-to-face-

psychotherapy.  

Context. Knowledge on the importance of common vs. specific factors in face-to-face 

psychotherapy is mostly derived from comparative trials of different treatment approaches (e.g., 

psychodynamic vs. cognitive-behavioral) and from treatment component studies (“dismantling 

studies”). Meta-analyses of comparative treatment studies have mostly concluded on the 

equivalence of different psychotherapeutic approaches or have only found small differences 

between differing treatments (e.g., Baardseth et al., 2013; Tolin, 2010). Similarly, dismantling 

studies that compared treatments with added specific components to those without these 
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components, yielded small or non-significant between-group effects (for meta-analyses, see 

Ahn & Wampold, 2001; Bell et al., 2013; Cuijpers, Cristea, et al., 2019). Both the results from 

treatment component studies and from comparative meta-analyses have been used in support 

of the notion that all schools of psychotherapy are mostly effective due to the same mechanisms 

of change (“common factors”) and that specific factors only play a minor role (e.g., Wampold, 

2015).  

Apart from these studies on the broader categories of “common” and “specific” factors, 

there have been numerous trials on the contribution of therapeutic alliance and expectations. 

Meta-analyses show significant correlations with outcome in face-to-face psychotherapy for 

both variables, with larger associations reported for therapeutic alliance (r = .28, 95% CI [.26, 

.30]; d = .58) than for expectations (r = .12, 95% CI [0.04, 0.20]; d = .24) (Constantino, Vîslă, 

Coyne, & Boswell, 2018; Flückiger et al., 2018).  

Evidence for the importance of extra-therapeutic factors can be derived from work by 

Cuijpers et al. (2012). This meta-analysis compared the effects of non-directive supportive 

treatments to specific treatments and passive control groups. It was estimated that extra-

therapeutic factors contribute 33.3% to overall outcome (for a detailed description of this study 

see SECTION 1.6.3). 

Despite the fact that meta-analyses on all these topics exist, the evidence for the 

relevance of different contributing factors in face-to-face psychotherapy is still questionable for 

a couple of reasons, which also apply to similar studies on IBI:  

First, it is problematic to infer similar mechanisms of change for all therapeutic 

approaches from the fact that they yield comparable outcomes. Alternative explanations for this 

finding may exist, e.g., while one therapeutic approach may change behaviors first, another 

might change interpersonal interactions or thoughts. These facets of change then interact with 

each other and subsequently influence the therapeutic interaction with the therapist (Cuijpers, 

Reijnders, et al., 2019). Inappropriately, such complex aspects are usually reduced to (pre-post 
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differences of) sum scores of a given questionnaire and thus do not allow for valid conclusions 

about the pathways to change (e.g., Heinrich, Zagorscak, Eid, & Knaevelsrud, 2018; Kazdin, 

2007).  

Second, most studies investigating predictors of change display methodological or 

design flaws that impede reliable conclusions on the importance of the factors under research. 

In a recent review on this topic Cuijpers, Reijnders et al. (2019) concluded that 

“[p]sychotherapies may work through techniques that are specific to each therapy or through 

factors that all therapies have in common, but currently, there is insufficient evidence to enable 

either common factors or specific factors to explain how therapies work.” (p. 19). The authors 

justified this conclusion by summarizing that most studies on contributing factors are 

correlational, observational and do not investigate temporal associations, possible mediators or 

dose-response relationships. As other papers have previously pointed out, these shortcomings 

impede interpretations about causality and thus do not validly inform the debate on mechanisms 

of change in psychotherapy (Kazdin, 2005, 2007).   

 In summary, there are a large number of studies on the correlational association of the 

four factors proposed by Lambert (1992) and Miller et al. (1996) with outcome in face-to-face 

psychotherapy, which have been summarized in multiple meta-analyses (e.g., Constantino et 

al., 2018; Cuijpers et al., 2012; Flückiger et al., 2018). Based on this evidence, the strongest 

associations with outcome seem to exist with extra-therapeutic factors and the common factor 

of therapeutic alliance. Smaller associations are reported for expectations and specific factors 

or techniques. Nevertheless, the current state of research does not permit reliable conclusions 

on their relative importance due to methodological and design problems of the conducted 

studies. The following points represent recommendations by several different research groups 

to overcome the limitations in the study of mechanisms of change as discussed above (for a 

detailed summary, see Cuijpers, Cristea, et al., 2019; Cuijpers, Reijnders, et al., 2019; Kazdin, 

2005, 2007; Mulder et al., 2017; Sieverink, Kelders, Poel, & Gemert-Pijnen, 2017; Silberschatz, 
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2017). These suggestions offer important guidelines for future research on both IBI and face-

to-face psychotherapy:  

 Clinical trials require multiple measurement occasions to establish temporal associations 

of factors contributing to change (Kazdin, 2007). 

 The specific variable of interest must not solely be derived from observational designs 

(Kazdin, 2005), but should rather be manipulated to control for possible confounders.  

 Instead of focusing on single predictors of change, studies on mechanisms of change need 

to include possible mediators. This requires statistical methods that allow for the 

inclusion of multiple variables and are suited for modeling change over time (Cuijpers, 

Reijnders, et al., 2019).  

 The included variables need to be derived from and supported by theoretical frameworks 

(Cuijpers, Reijnders, et al., 2019).  

 Dose-response relationships need to be investigated (Kazdin, 2007). That requires small-

grained investigations of the amount of different treatment components a specific 

individual receives or the experimental manipulation of that amount through dismantling 

designs.  

 Patient populations are not homogenous. Thus, it is necessary to identify and investigate 

subgroups with discernable characteristics on mechanisms of change to improve 

psychotherapy (Silberschatz, 2017). 

 Large sample sizes are imperative for the investigation of small effects (e.g., dismantling 

studies or other comparisons of active treatments) (Cuijpers, Cristea, et al., 2019).  

Again, this list highlights the potential of IBI for psychotherapy research. Within IBI 

studies it is easier to track all activities of participants within an intervention in order to 

investigate dose-response relationships. Due to the fact that all activities take place within an 

online environment, it is easier to implement questionnaires for repeated assessments. Further, 
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given the lower cost of providing treatments with reduced human contact, it is less resource-

intensive to acquire large samples of individuals participating in treatment. Finally, the high 

amount of standardization and control reduces possible confounders. Even experimental tests 

of factors that are very difficult to manipulate in face-face-psychotherapy are more easily 

changed in IBI. For example, concerning possible improvements on research on therapeutic 

alliance, Cuijpers, Reijnders et al. (2019), caution that it might be challenging from an ethical 

and organizational standpoint to reliably manipulate aspects of therapeutic alliance or 

therapists’ behavior. Interestingly, the common comparison of different quantities and 

qualities of guidance in IBI entails such a manipulation.   

At the same time, in spite of the available potential, previous IBI studies have rarely 

fulfilled many of the listed requirements. This emphasizes the strengths and qualities of the 

three studies in this thesis that has carefully manipulated “guidance” as an important aspect of 

treatment within an experimental design. Further, we investigated multiple possible factors 

contributing to symptom change on the basis of a theoretical framework while accounting for 

temporal ordering of change and possible dose-response relationships. 

Specific problems. Apart from the many strengths of our trial, some specific problems 

and questions remain. They are related to the use of the working alliance inventory, the 

operationalization of the theoretical model and the temporal modeling of changes.  

First, the instrument we used to asses therapeutic alliance is a version of the  Working 

Alliance Inventory (WAI; Hatcher & Gillaspy, 2006; Munder, Wilmers, Leonhart, Linster, & 

Barth, 2010) as adapted by Berger, Boettcher, and Caspar (2014) for the IBI setting. The WAI 

is the most commonly used instrument for assessing this construct in trials of face-to-face 

psychotherapy and IBI (Berger, 2017; Flückiger et al., 2018). 

The original instrument assesses the three sub-facets bond (e.g., „I believe my therapist 

likes me”), agreement on goals (e.g., “My therapist and I agree on what is important for me to 

work on.”) and agreement on tasks (e.g., “I believe the way we are working with my problem 
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is correct.”). However, it is important to note that multiple studies have shown that the task and 

goal component are not differentiable in factor analyses  (Falkenström, Hatcher, & Holmqvist, 

2015; Falkenström, Hatcher, Skjulsvik, Larsson, & Holmqvist, 2015; Munder et al., 2010). 

The adapted version by Berger, Böttcher and Caspar (2014) differs in that it assesses 

agreement with tasks and goals of the intervention rather than agreement with tasks and goals 

set personally with the therapist (e.g., “I believe the way I am working within the online-

program on my problem is correct.”). In our own trial, for items assessing the bond component, 

the term “therapist” was replaced with “counselor” (IF) or “The Team of the Online-

Intervention” (SF). While these adaptations seem appropriate for the IBI-setting, they already 

highlight a change in meaning to the original instrument and might impede comparisons 

between them.  

Further, the validity of the general construct in the IBI context, and of bond-ratings in 

particular, is questioned by the fact that participants in previous studies reported problems with 

answering WAI-questions due to the fact that they do not feel they know their therapists  

(Berger, 2017). In our study, about 5-10% (NSF = 24; NIF = 11) of the participants’ open 

comments at the end of treatment addressed problems with the WAI, either highlighting the 

participants’ refusal to answer the questions deemed inappropriate or trying to explain why they 

were reporting poor mid-treatment ratings (see BOX 5.4 in SECTION 5.1.2).  

Second, we chose the four-factor-model as a theoretical basis for our study due to its 

large significance in face-to-face psychotherapy and its broad influence on discourse on 

contributing factors in the past. Thus, we sought to highlight the similarities between face-to-

face psychotherapy and IBI. However, contrary to what the model predicts for the face-to-face 

setting, expectations and specific factors were not associated with symptom change in our 

analysis. Further, while Lambert (1992) proposed that the four factors explain all of the variance 

in outcome, our model explained only a small proportion, which is exemplified by low R² values 

(between .05 and .17 depending on the measurement occasion, see CHAPTER 3/TABLE 2, p. 92). 
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It is important to note, that the amount of explained variance in psychological research is 

generally low due to the complexity of human thoughts, emotions and behavior. For example, 

the therapeutic alliance was summarized to account for 7% of outcome across empirical face-

to-face psychotherapy trials (Koole & Tschacher, 2016), whereas the four-factor-model 

suggests (based on a non-empirical review of the literature) relationship factors to account for 

40% of the outcome (Lambert, 1992). 

Nevertheless, the low R²-values found in our trial indicate that there are probably other 

variables predictive of outcome that have not been taken into account. One reason might lie in 

the particular operationalization of the four factors in STUDY 2. It should be kept in mind that 

our trial did not assess all facets of the four-factor-model. Instead, we used the model as a basis 

to derive variables that might be particularly representative of the four factors. For instance, we 

assumed therapeutic alliance ratings to represent the factor “relationship” or the uptake of 

specific treatment components to represent the factor “specific technique”. Adding further 

indicators for the four factors may contribute to a higher explained variance in symptom 

improvement. 

Reviews and meta-analyses on all these constructs highlight a wide variety of definitions 

and operationalizations (e.g., Constantino et al., 2018; Cuijpers, Reijnders, et al., 2019; 

Flückiger et al., 2018; Wampold, 2015). While it is impossible to discuss them all in the context 

of this thesis, I want to highlight a few important gaps in our operationalization in order to 

suggest ways to close them in the context of the next section.  

While the largest quantity of studies exists on therapeutic alliance, other relationship 

factors have been discussed and partly empirically confirmed as being correlated to outcome 

as well (for a summary see Wampold, 2015). Rather than being related to patients’ perceptions 

of the therapeutic alliance, they are related to the therapists’ behavior (e.g., warmth, empathy, 

encouragement, positive regard). Even though a meta-analysis has shown these factors to be 

highly correlated and oftentimes indistinguishable from each other (Nienhuis et al., 2018), it 
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seems reasonable to quantify therapists’ behaviors in more detail in future studies (e.g, Paxling 

et al., 2013).  

With regard to extra-therapeutic factors, our operationalization (extra-therapeutic stress 

as assessed with the PHQ-S) was quite coarse, given that the entire life of the client is 

considered to be “extra-therapeutic” (Thomas, 2006). This pertains to critical life events, daily 

hassles and uplifts and to a lesser degree to the client’s stable traits (e.g., personality, inner 

strengths) and changes in external resources (e.g., socioeconomic, personal relationships), 

which have been previously linked to well-being and depression (Luhmann, Hofmann, Eid, & 

Lucas, 2012; Maybery, Neale, Arentz, & Jones-Ellis, 2007; McIntosh, Gillanders, & Rodgers, 

2010; Vinkers et al., 2014). 

Similarly, our approach to specific factors was limited to quantitative indicators of the 

uptake of specific treatment components (e.g., number of completed thought protocols). 

However, we were neither able to track how much of the specific techniques individuals were 

applying in their everyday life (as they were supposed to) nor if the uptake was as intended by 

the treatment rationale (e.g., if the thought protocols indeed contained alternative thoughts that 

might have led to improved emotional reactions).  

Finally, while the operationalization of expectations seems somewhat straightforward, 

our questionnaire was limited to outcome expectations alone. A review of expectations in the 

setting of psychotherapy research stresses that other facets of this construct exist, such as 

treatment credibility or expectations towards the general utility of treatment (Constantino, 

Arnkoff, Glass, Ametrano, & Smith, 2011). However, the authors highlight that these constructs 

are highly-correlated and difficult to differentiate. Thus, while different options of assessing 

expectations and related facets exist (e.g., Patterson et al., 2014), it is unclear whether they 

might have incremental benefits over assessing expectations as done in STUDY 2.  

Apart from the way constructs were assessed, it is also important to consider how often 

they were assessed. Following the recommendations on how to conduct studies on mechanisms 
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of change in psychotherapy (e.g.; Kazdin, 2007; see above for summary), we evaluated 

symptom-change and specific-treatment uptake during each module. Further, we considered the 

temporal ordering of important variables when modeling predictive paths (i.e., previous 

symptom change  mid-treatment alliance ratings  subsequent symptom change). 

However, we failed to apply this design to all the variables in our model due to having 

otherwise overburdened participants with large batteries of weekly online questionnaires. Thus, 

expectations were assessed only at the beginning of treatment and extra-therapeutic stressor 

could only be considered with regard to baseline ratings and pre-post change.  

Future applications. As a direction for future studies, it seems most reasonable to 

follow the solid foundation STUDY 2 has built, while overcoming some of its methodological 

flaws. In particular, I suggest a more comprehensive operationalization of the four-factor model 

with a broader set of variables, assessed on more measurement occasions and with a broader 

variety of methods. 

For example, extra-therapeutic factors should consider baseline traits of the client 

(personality, inner resources). Further, daily hassles and uplifts as well as other extra-

therapeutic changes (e.g., changing jobs or relationships) are best assessed with diary methods 

applied in individuals’ everyday lives (e.g., ambulatory assessment) and would thus offer a 

more complete picture of relevant events and changes outside of the therapeutic setting. Recent 

studies demonstrated that these variables can be reliably and validly obtained by using 

smartphone apps that present individuals with questionnaires multiple times a day (Y. Chan et 

al., 2019; Starr & Hershenberg, 2017).  

Mobile diary-tools might also be used to protocol whether participants were applying 

the specific therapeutic techniques outside of the online environment. Diary and tracking data 

could be complemented by ratings of the therapist on the quality and quantity with which 

specific treatment components have been used during the last session (or in the participant’s 

homework). 
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Regarding relationship factors, text-analysis tools may be applied to the therapists’ 

feedback in order to identify the amount of warmth, empathy, encouragement, or positive 

regard. Appropriate text-analytic methods have already been applied on written feedbacks in 

IBI (e.g., Paxling et al., 2013) or texts written by patients (e.g., Rosenbach & Renneberg, 2015). 

Consequently, it seems reasonable to include these methods within a more comprehensive study 

on contributing factors. Concerning the therapeutic alliance, the reliance on the WAI which was 

derived from the face-to-face setting should be reconsidered. The design of questionnaires that 

are specific to the IBI context might be necessary to obtain valid data on the perceived alliance 

in this setting (for an example see Berry et al., 2018). 

As to the factor of expectations, it is important to broaden the scope from considering 

baseline expectations to evaluating changes of expectations over the course of treatment. The 

plausible assumption that expectations and therapeutic outcome interact with each other during 

treatment has been demonstrated in recent trials on in-treatment expectation change (Vîslă, 

Flückiger, Constantino, Krieger, & Holtforth, 2018).   

Concordantly, independent of specific constructs, all variables of interest should be 

assessed multiple times and the analysis should ideally focus on facets of constructs or even 

single-symptoms where appropriate (for an example see Heinrich et al., 2018). In the context 

of depression for instance, this would allow for investigations on whether specific techniques 

do indeed change specific facets of the disorder (e.g., does anhedonia change after behavioral 

activation; are feelings of guilt decreased after cognitive bias modification). This type of 

research is not possible with the current focus on sum scores of questionnaires.  

All recommendations for a future study on the basis of the four-factor-model and our 

own experiences are summarized in FIGURE 5.3.  
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FIGURE 5.3. Illustration of a possible research design to study mechanisms of change in IBI. 
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5.3 Study 3: Patterns of change 

5.3.1 Brief Summary of Findings 

The third study investigated whether there are subgroups of individuals participating in 

standardized and individualized IBI for depression showing discernable patterns of symptom 

change. The study found that most individuals (62.5%) can be classified as “immediate 

improvers” with substantial improvement before the start of treatment. Another class (37.4%) 

of individuals was labeled “delayed improvers” for their symptoms did not change up until 

week three of treatment. Overall, these individuals displayed slightly smaller change in 

depressive symptoms than the class of “immediate improvers”. Individuals with higher 

perceived social support had higher odds of being classified as “immediate improvers”. In 

contrast, individuals fulfilling the criteria for MDD in a structured clinical interview (SCID-I) 

and individuals with high outcome expectations had higher odds of being classified as “delayed 

improvers”. No differences between the standardized and individualized feedback condition 

emerged concerning the number of discernable classes or the resulting change patterns. FIGURE 

5.4 illustrates the core findings of STUDY 3.  

 

FIGURE 5.4. Simplified illustration of discernable classes of symptom change in IBI for depression 
with predictors of class membership. OR, odds ratios indicating the increase in odds of belonging to 
the respective class if the variable in question is increased by one unit of measurement (social support, 
expectations) or is categorized as “present” (MDD diagnosis).  
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5.3.2 Discussion 

Overall, results of STUDY 3 complement findings of other studies on IBI for depression 

(for a detailed review see CHAPTER 3 and SECTION 1.6.4). Three studies have also identified two 

distinct classes of symptom change (Batterham et al., 2017, 2018; Sunderland et al., 2012). In 

these studies, a majority of participants with early or more profound improvements and a 

minority of individuals with delayed or stagnant symptom change were identified. While these 

studies targeted insomnia or suicidal ideation (Batterham et al., 2017, 2018) or reported on 

generalized levels of psychological distress (Sunderland et al., 2012), we investigated 

depressive symptom change during IBI for depression. Furthermore, we modeled multiple time 

periods during the entire duration of IBI, rather than solely focusing on pre-post-change 

(Batterham et al., 2017, 2018) or early change (Lutz et al., 2017). 

Regarding predictors of class membership, our study confirmed previous findings 

showing that more severely depressed participants or participants with a confirmed disorder of 

MDD have increased odds of membership in less favorable classes16 (Batterham et al., 2017, 

2018; Lutz et al., 2017; Sunderland et al., 2012). Other findings on predictors of membership 

in less favorable classes were not consistent across the previously conducted trials on IBI for 

depression and include younger age, unemployment, and not being in a relationship (Batterham 

et al., 2017, 2018). Given that strong positive associations exist between interpersonal 

relationships and social support (Feeney & Collins, 2015), our finding on perceived social 

support being predictive of immediate improvement seems consistent with the finding that 

individuals in a  relationship tend to be in a more favorable class (Batterham et al., 2018). While 

we did investigate age and employment status, we did not find them to be predictive of class 

membership. We rather found that unemployment was a general predictor of symptom 

                                                 
16 The classes have been labeled differently in the trials. The term “less or least favorable class” was used as a 
descriptive umbrella, that stands for the the minority class in all trials that was characterized by mostly stable or 
deteriorating symptoms over time (see TABLE 1.5 in CHAPTER 1 for details).  
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deterioration over time without predictive power for class membership. This also highlights an 

important difference between our work and previous studies; we separately considered general 

predictors of initial symptom load and symptom change across classes. Given that there are few 

studies on IBI with significant differences in trial design, our results will be compared to 

findings from studies on patterns of change that have been published for the setting of face-to-

face-psychotherapy.  

Broader context. While there are some studies that have applied Growth Mixture 

Modeling (GMM) to face-to-face psychotherapy, the method is still relatively rarely used. For 

example, a recent summary on in-treatment depressive symptom change reported on six trials 

(Altmann et al., 2015). The number of discernable classes varied widely from two to five classes 

(Cuijpers et al., 2005; Gueorguieva, Mallinckrodt, & Krystal, 2011; Hunter, Muthén, Cook, & 

Leuchter, 2010; Keller & Hautzinger, 2007; Lutz et al., 2009; Pöhlmann et al., 2008). 

When comparing the number of resulting classes across trials it is important to note that 

two studies reporting four or more classes investigated in-treatment and post-treatment changes 

of up to 18 months after treatment, potentially enabling a broader heterogeneity in symptom 

courses in the long term (Pöhlmann, et al., 2008; Cuijpers et al., 2005). Given the length of our 

IBI, it seems most appropriate to compare our findings to those from face-to-face psychotherapy 

studies that investigated symptom change within a comparable timeline.  

A recent study summarized findings from such trials, investigating symptom change 

across disorder categories during the first eight weeks of face-to-face psychotherapy. The 

authors identified eight trials that found one to five discernable classes (Koffmann, 2018). As 

only two of these trials were primarily focused on depressive symptom change (Keller & 

Hautzinger, 2007; Lutz et al., 2009), I will review these two trials in detail. 

First, Keller and Hautzinger (2007) investigated depressive symptom trajectories in a 

German sample of 341 inpatients and outpatients diagnosed with MDD. These patients were 

randomized to either receive medication, medication and CBT, or CBT only. The study design 
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featured baseline and post-assessments (after eight weeks), as well as weekly assessments of 

depressive symptoms (IDS; Hautzinger, 2003). Across treatment conditions the authors found 

four discernable classes of patients with symptom courses labeled as “late response” (5.9% of 

sample), “quick response” (2.7%), “slow and steady improvement” (65.2%), and “stagnant 

symptoms” (26.2%).   

Second, Lutz et al. (2009), reanalyzed data from a sample of 250 outpatients diagnosed 

with MDD in the United States that scored 14 or above on the Hamilton Rating Scale for 

Depression (Elkin, Parloff, Hadley, & Autry, 1985). Patients were randomized to one of four 

conditions (CBT, Interpersonal Psychotherapy, psychopharmacological treatment with 

“clinical management”17, or pill placebo with “clinical management”). Symptoms were 

assessed with the Beck Depression Inventory at intake, as well as four and eight weeks after the 

beginning of treatment. Based on these measurements, Lutz et al. (2009) found three different 

patterns of change across conditions: “moderate to severe depression with moderate early 

improvement” (19.8% of the sample), “moderate to severe depression with rapid early 

improvement” (61.1%), and “mild to moderate depression with moderate improvement” 

(19.1%). As is evident from the labels, these classes differed not only with regard to patterns of 

change but also with regard to initial symptom severity. Consequently, the authors reported 

initial symptom severity to be a significant predictor of class membership. The three classes 

were distributed evenly across the four conditions, indicating that symptom change patterns are 

not dependent on allocation. While no other predictors of class membership were investigated, 

the authors speculate that treatment motivation and expectancy might predict membership in 

the class that experiences rapid improvement (Lutz et al., 2009).  

                                                 
17 According to the original study design “clinical management” entails meetings with psychiatrists and 
pharmacotherapists that provide a generally supportive atmosphere as well as bi-weekly appointments in order to 
obtain blood levels of the substance under research (Imipramine; same procedure as pill placebo group).  
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In summary, both trials found a class with rapid early improvement. However, the size 

of this class differed substantially between trials (2.7% vs. 61.1%). Furthermore, the two studies 

differed with regard to class enumeration and the resulting patterns of symptom change. When 

integrating findings from the face-to-face and the IBI-setting, the only consistent finding seems 

to be that higher baseline symptom severity is associated with membership in less favorable 

classes of symptom change. Class numbers, other associated predictors and patterns of 

symptom change are inconsistent both between settings (IBI vs. face-to-face psychotherapy) 

and within each of the respective settings.  

In search for possible reasons for the lack of consistency in GMM treatment studies in 

general, Koffmann (2018) summarized that “there are important sample and design differences 

among the studies. Sample sizes differed dramatically, patient populations varied, lengths of 

treatment differed, and the treatments offered ran the gamut from treatment as usual to various 

manualized approaches, among many other differences. In short, no study replicated any other 

study” (p. 9). However, the differences between the trials might be due to specific 

methodological problems that affect our trial as well as other studies on patterns of change. 

Apart from these problems, the following section will also highlight restrictions that arise from 

the choice of questionnaires and measurement occasions in our trial.  

Specific problems. First, all studies on patterns of change have to be considered 

exploratory in nature. That is due to the fact that multiple decisions have to be made by the 

researchers. For example, assumptions about differences and similarities between hypothesized 

classes might exist that influence the way a researcher formulates the model that is tested: Do 

different treatment groups display the same patterns of change or could their data be merged? 

Do researchers assume that the change follows a certain form and are reasonable alternative 

models tested (e.g. quadratic or linear symptom change)? Are the within-class variance–

covariance structures (which stand for variability of the curve-specific parameters, e.g. 

deviations of observed values from the estimated change curve) the same across all classes and 
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measurement occasions? All these decisions might lead to different restrictions imposed on the 

compared models and might explain divergence between our trial and others.  

Additionally, a wide array of possible indices and tests can be considered when deciding 

between models suggesting different numbers of classes (e.g., Akaike Information Criteria, 

AIC; Corrected AIC, CAIC; Bayes Information Criteria, BIC; sample-size adjusted BIC, aBIC; 

Vuo-Long-Mendel Likelihood Ratio-Test, VLM-LRT, entropy). While all studies reviewed by 

Koffmann (2018) use BIC for this decision, the number and choice of other indices that are 

considered vary between studies. That is problematic, given that different indices might arrive 

at different conclusions (e.g., Diallo, Morin, & Lu, 2016). In that case, the final decision on the 

number of derived classes has to include visual inspection of patterns of change in different 

models and a judgement based on theoretical considerations about the probable number of 

classes.  

Second, so far all studies on GMM have considered only symptom change on the basis 

of sum scores of questionnaires. The limits of this approach have already been discussed with 

regard to mechanisms of change (see SECTION 5.2.2), but they apply to the idea of modeling 

symptom courses in IBI as well. As an illustrative example, some participants in our IBI 

reported that the modules on behavioral activation helped them with their anhedonia. At the 

same time, they felt that they led a tedious life in comparison to others due to the fact they were 

not able to protocol many activities in their daily planner. In a hypothetical scenario, these 

participants might have reported reduced anhedonia and increased feelings of worthlessness at 

the same time. The sum score of a depression screening instrument, such as the one applied in 

our trial (PHQ-9) would have indicated a symptom pattern characterized by stagnation for this 

participant during modules on behavioral activation, falsely suggesting that nothing changed.  

Third, patterns of depressive symptom change have been modeled on the basis of 

measurements in weekly or broader intervals. This is potentially problematic, given previous 

research that has shown that individuals tend to recollect unpleasant emotions (i.e., anger, 
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anxiety, sadness) more vividly than pleasant ones in retrospective assessments (Urban, Charles, 

Levine, & Almeida, 2018). The effect was especially pronounced in individuals with (a history 

of) depression, questioning the validity of retrospective symptom surveys in this specific 

population  (Urban et al., 2018; Wenze, Gunthert, & German, 2012). Further, the retrospective 

approach might conceal important differences between individuals that may arise during shorter 

periods of time. One illustrative example concerns the investigation of “chronotypes” in 

depression:  

Previous studies highlighted that depressive symptoms are dependent on the time of day 

and that individuals belong to different “chronotypes” (e.g. “evening types”, “eveningness” vs. 

“morning types”, “morningness”) (e.g., Jankowski, 2016). These chronotypes are likely to show 

distinct symptom courses during the day.  

Discerning symptom trajectory classes according to chronotypes and investigating 

socio-demographic and clinical characteristics of individuals in these classes has potential for 

improving treatment. For example, studies showed that “morning types” responded better to 

treatment with antidepressants than “evening types” (Corruble et al., 2014) and that 

“eveningness” was related to insomnia, suicidality, more severe depressive symptoms and non-

remission of MDD (J. W. Y. Chan et al., 2014; Müller, Kundermann, & Cabanel, 2016). Thus, 

patients might profit from treatment methods that are tailored to their chronotype (e.g., coping 

with a circadian rhythm that is shifted towards the evening). However, chronotypes have mostly 

been identified through the use of questionnaires that assess “morningness-eveningness” as a 

trait (e.g., Horne & Östberg, 1976), instead of tracking the symptoms themselves over the 

course of the day, which would likely be more reliable (e.g., Jankowski, 2016). That is due to 

the fact that this approach requires investigations of symptom developments through multiple 

measurements in shorter periods of time (i.e., multiple times a day), which are usually resource-

intensive and obtrusive, especially when done in paper-pencil format.  
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In summary, current shortcomings in GMM-based studies on patterns of change in 

treatment settings offline and online concern inconsistencies in restrictions imposed on models 

for class enumeration across trials and a sole reliance on sum scores of symptoms that are 

assessed relatively infrequently.  

Future applications. I will briefly outline some directions for future studies that might 

contribute to overcoming the three previously raised issues and thus augment the findings 

derived from our trial. 

Concerning the exploratory nature of GMM, while the method will always have a 

certain potential for subjective influences of researchers, Ram and Grimm (2009) have argued 

that “the method should be a guided and constrained exploration of the data” (p.568). The 

authors made a first step towards unifying the heterogeneous field of GMM research by 

suggesting a path diagram of procedures that studies should follow when implementing GMM. 

In particular, they suggested the formulation of a-priori hypotheses of expected class numbers 

and their symptom developments. In addition, they provide guidelines on how to perform model 

specification, model estimation and model selection (details on these steps can be obtained from 

the original publications and from STUDY 3/APPENDIX C). Similar guidelines and instructions 

were provided by other authors (e.g., Diallo et al., 2016; Jung & Wickrama, 2008; Koffmann, 

2018; Muthén, Brown, Leuchter, & Hunter, 2010). Koffmann (2018), for instance, further 

proposed that comparable restrictions on models should be imposed across trials and 

commended a certain unity in applying the BIC as a criterion for deciding between different 

models of change in recent studies.  

Importantly, the multiple different steps of the analysis and the flexibility in decision-

making within GMM emphasize the need for more transparency. A-priori hypotheses and each 

step of the analysis (including every decision and its basis) should be detailed in an appendix 

to papers published in the future. This was done for STUDY 3 (see APPENDIX C), but most other 
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trials have not provided the necessary information to evaluate the similarities and differences 

to other studies in the field.  

Apart from the theoretical propositions on how to perform GMM, future studies should 

also base their methodology on more recent simulation studies that have highlighted assets and 

pitfalls of different approaches to GMM. Specifically, Diallo et al. (2016) investigated the 

consequences of different forms of restrictions imposed on the models. They concluded that 

more unrestricted models should be preferred in most circumstances, since unnecessary 

restrictions tend to lead to inflated class numbers  (e.g., Diallo et al., 2016; Peugh & Fan, 2012). 

However, unrestricted models oftentimes do not converge and require larger computational 

resources than models with restrictions. Thus, the authors suggested a number of steps that can 

be taken if these models do not converge properly (for a detailed discussion see Diallo et al., 

2016). 

Further, different simulation studies have investigated the performance of different 

model fit indices within GMM under different circumstances (e.g., Diallo et al., 2016; Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). Overall, they discourage the use of 

the AIC. While two studies reported the best results for the BIC in most scenarios (Nylund et 

al., 2007; Tofighi & Enders, 2008), none of the information criteria was consistently superior 

to others across simulation studies and conditions. Consequently, Diallo et al. (2016) 

summarized that “each of the four remaining [information criteria] (CAIC, BIC, SCAIC, SBIC) 

outperformed the others within specific design conditions, and thus all appear useful and 

complementary” (p. 526). Given the exploratory nature of most GMM studies, it might be 

difficult to know a-priori which of the information criteria is most useful. I recommend 

considering (and reporting) multiple information criteria when selecting statistical models.  

 
Concerning the focus on sum scores in previous studies, future studies should focus on 

modeling of change on the level of single symptoms. Decomposing the sum score in patterns 
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of change research might help to disentangle the true effects of an intervention and thus help 

with identifying both the strengths and weaknesses of a given treatment module. In the 

hypothetical example from the previous section where both anhedonia and self-worth were 

reduced during behavioral activation, a symptom-focused approach might have confirmed that 

the behavioral activation module works as intended, i.e. reduces anhedonia. At the same time, 

it would be revealed that this module might have side-effects, such as reduced feeling of self-

worth.  Accordingly, actions could be taken to decrease this side-effect, e.g., by improved 

instructions for participants who have only few entries in their daily planner. An interesting 

example of a more symptom-oriented approach to the Beck Depression Inventory-II (and the 

Patient-Health-Questionnaire-9) is discussed elsewhere (Heinrich et al., 2018). 

Concerning the issue of infrequent assessments, future studies should expand our 

findings by assessing symptom courses with more fine-grained temporal resolution to 

investigate phenomena where short-term changes are relevant, such as chronotypes and their 

reaction to treatment modules in IBI. This approach is very promising, given that recent studies 

suggested that ecological momentary assessment (e.g., asking for an individual’s depression-

related symptoms multiple times a day through ambulatory assessment) might lead to more 

unbiased results on depressive symptom severity versus retrospective questionnaires (Moore, 

Depp, Wetherell, & Lenze, 2016; Wenze & Miller, 2010).  
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5.4. Conclusion and Outlook 

The three studies presented in this doctoral thesis contribute knowledge on mechanisms 

of change in IBI for mild to moderate depression and highlight ways to improve future IBI-

related research and practice. 

STUDY 1 showed that well-designed unguided interventions with initial phone calls and 

written contact-on-demand options have the potential to be as efficacious as (guided) 

interventions featuring individualized feedback. STUDY 2 demonstrated that changes in extra-

therapeutic stressors and agreement on tasks and goals are important predictors of symptom 

change in IBI for depression. Further, this study showed that initial extra-therapeutic stress 

levels have negative effects on in-treatment depressive symptom development in unguided IBI 

only, whereas higher bond ratings were predictive of symptom deterioration in the final week 

of treatment in guided IBI only. STUDY 3 identified two discernable classes of symptom change 

in IBI for depression with about two-thirds of individuals responding immediately and 

profoundly to the offered treatment (“immediate responders”) – partly even before it 

commenced – and about one-third showing a delayed and weakened response (“delayed 

responders”). Individuals with a diagnosis of MDD based on a structured clinical interview, 

with low perceived social support, and with high expectations were more likely to experience 

delayed response. 

On a general level, the results highlight the utility of fully-standardized IBI, which 

seems to have been underestimated on the basis of previously conducted trials and meta-

analyses. While there are slight differences in the importance of different factors contributing 

to symptom change between the experimental conditions investigated in our trial (STUDY 2), 

they differed neither concerning overall efficacy (STUDY 1) nor on any features related to 

patterns of change (STUDY 3). Thus, the findings encourage further studies on the efficacy and 

effectiveness of IBI that differ in the quality and quantity of human contact. Careful and 
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empirically-based discussions of the costs and benefits of different forms of IBI need to take 

place in the future, in order to determine which IBI is best offered to which individual.  

On a more specific level, our studies pinpoint ways to improve the yield of both guided 

and unguided IBI for depression. STUDY 1 shows that individuals profit from guidance in IBI 

through lowered dropout rates. At the same time, results from STUDY 2 indicate that individuals 

with a strong bond to their counselor might suffer from “parting pains” as is observable through 

an increase in depressive symptoms at the end of treatment. Currently, IBI are usually short and 

the end of treatment is quite abrupt. Thus, a more thorough preparation of the discontinuation 

of treatment and the offering of tools to cope well with farewell might be helpful.  

Additionally, STUDIES 2 and 3 underscore the value of obtaining baseline diagnostic 

information from participants in IBI. This allows providing a treatment experience that is better 

tailored to their specific situation. Firstly, individuals with low social support and high 

expectations tended to show delayed response to treatment in STUDY 2, thus suggesting the 

provision of tools for realistic expectation management (e.g., Ekberg et al., 2015) or treatment 

approaches that are better suited to individuals with low social support (e.g., Lindfors, Ojanen, 

Jääskeläinen, & Knekt, 2014), respectively. Secondly, participants with high levels of extra-

therapeutic stress at the beginning of treatment might profit more from guided IBI. The results 

of STUDY 2 suggest that the human contact provided in guided IBI has a “stress buffering” 

effect on these individuals. 

Overall, the findings of all three studies are derived from a large randomized controlled 

trial (N = 1089), that recruited self-selected and externally-selected (by insurance 

representatives) individuals drawn from the client base of a large public health care company. 

These aspects testify to the validity of conclusions drawn in this thesis. However, it is important 

to note that strict inclusion and exclusion criteria and our study design resulted in a sample of 

non-suicidal individuals with mild to moderate symptom severity that participated in mostly 

text-based IBI. These limitations reduce the generalizability of our findings to other forms of 
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IBI and differently-structured clinical populations. Importantly, these are common trial-specific 

restrictions that can be overcome in future studies with different target populations or variations 

of interventions under research. Nonetheless, this thesis highlights the potential of IBI to study 

mechanisms of change due to the ease of acquiring large sample sizes, implementing multiple 

assessments and controlling numerous variables through the tracking of all events within the 

internet-platform (e.g., login-duration, uptake of specific treatment components, text-based 

interaction). Concordantly, the suggestions for future research in the previous chapter have 

alluded to the fact that continuous technological developments might lead to studies that make 

use of an even broader scope of diagnostic tools.   

Specifically, I argued that future studies should implement more frequent assessments 

and consider a broader set of assessment methods in order to offer a more comprehensive 

picture of the individuals’ thoughts, emotions, and behaviors both within and outside of IBI. 

For that purpose, I suggested the use of smartphones (ambulatory assessment). A growing 

number of such studies are already being done, albeit not necessary to investigate mechanisms 

of change in IBI for depression (e.g., BinDhim et al., 2015; Y. Chan et al., 2019). Notably, the 

possibilities far exceed the use of ambulatory assessment. For example, researchers have started 

to exploit the sensory capabilities of smartphones and wearables (e.g., smart-watches) to track 

a wide variety of variables (e.g., movement and GPS-location, app use, sleep patterns, heart 

rate) (e.g., Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015). The expansion of possible 

sources of data are tempting for research and practice and it seems promising to take advantage 

of them to understand, predict, and change human behavior in the future within IBI and beyond. 

Nevertheless, there are ethical challenges inherent in this approach and researchers should keep 

in mind that the accumulation of large amounts of data bear a growing potential for their misuse 

as well – while the utility for patients is yet to be conclusively demonstrated in studies in the 

future (Zagorscak & Knaevelsrud, 2019).  
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As an overall conclusion, this thesis demonstrated the similarities between standardized 

and individualized feedback in IBI for depression concerning efficacy and patterns of change. 

At the same time the results highlight the importance of individual characteristics when 

deciding on which type of IBI to offer in what composition. Individuals’ socio-demographic 

and clinical features influence both the mechanisms of change and symptom courses in IBI for 

depression, and they have differential effects depending on whether the feedback is 

standardized or individualized.  

More fine-grained research that offers a more comprehensive picture of participants’ 

thoughts, feelings and behaviors in IBI is needed to offer interventions that are individually 

tailored. Significant technological developments are likely to help research and practice in this 

endeavor, as long as the possible pitfalls of amassing data are carefully weighed against the 

benefits.   
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APPENDIX 

The following materials supplement the doctoral thesis: 

  

APPENDICES FOR STUDY 1 

 Online Table 1. Change predicted by antidepressant medication, additional e-mail 

contacts and pre-interventional symptom load. 

 Online Table 2. Estimated within-group changes for both primary outcome measures 

under various NMAR conditions. 

 Online Table 3. Rates of reliable change, remission and recovery under various 

NMAR conditions. 

 Online Table 4. Means and standard deviations for each outcome at each measurement 

occasion. 

 

APPENDICES FOR STUDY 2 

 Appendix A. Aid with interpreting change scores 

 Appendix B. Supplementary results on model comparisons with different measurement 

invariance restriction (Table B1), results on general mean change (Table B2) and results 

on non-significant regression weights (Table B3).  

 

APPENDICES FOR STUDY 3 

 Appendix C. Detailed description of the statistical approach. 

 

APPENDICES FOR CHAPTER 5 

 Appendix 5.1. Scaffold for providing information about guidance in IBI 
 Appendix 5.2. Excerpts from the treatment manual of the TK-DepressionsCoach 
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APPENDICES FOR STUDY 1 
ONLINE TABLE 1 
Change predicted by antidepressant medication, additional e-mail contacts and pre-interventional symptom load 

Group Predictor Pre score  Pre- to post-treatment 
Pre-treatment  

to 3-month follow-up 
 Pre-treatment 

 to 6-month follow-up 
Pre-treatment  

to 12-month follow-up 

  b (SE) p  b (SE) p b (SE) p  b (SE) p b (SE) p 

Beck Depression Inventory-II 

CoD AD 0.12 (0.38) .743 NS  -0.28 (0.74) .701 NS 0.67 (0.87) .443 NS  0.98 (1.14) .393 NS 2.26 (1.08) .036 NS 

 contacts - -  0.24 (0.19) .198 NS 0.40 (0.24) .091 NS  1.01 (0.35) .004 NS 0.67 (0.33) .039 NS 

 pre-BDI - -  -0.64 (0.08) < .001 -0.73 (0.10) < .001  -0.75 (0.12) < .001 -0.53 (0.12) < .001 

IC AD 0.28 (0.37) .440 NS  0.16 (0.74) .829 NS -1.20 (0.81) .138 NS  -1.21 (0.84) .151 NS 0.62 (1.02) .548 NS 

 contacts - -  0.22 (0.24) .362 NS -0.07 (0.27) .782 NS  0.40 (0.25) .109 NS 0.10 (0.33) .754 NS 

 pre-BDI - -  -0.62 (0.09) < .001 -0.59 (0.10) < .001  -0.71 (0.11) <.001 -0.71 (0.12) < .001 

Patient Health Questionnaire - 9 

CoD AD 0.50 (0.33) .132 NS  -0.31 (0.37) .406 NS -0.16 (0.47) .732 NS  0.05 (0.55) .926 NS 1.31 (0.58) .023 NS 

 contacts - -  0.14 (0.10) .168 NS 0.29 (0.15) .044 NS  0.60 (0.19) .001 0.39 (0.15) .009 NS 

 pre-PHQ-9 - -  -0.60 (0.05) < .001 -0.66 (0.07) < .001  -0.77 (0.07) < .001 -0.70 (0.08) < .001 

IC AD 0.44 (0.31) .159 NS  0.05 (0.35) .897 NS -0.45 (0.40) .258 NS  -0.64 (0.46) .168 NS 0.12 (0.53) .823 NS 

 contacts - -  0.13 (0.13) .314 NS -0.05 (0.13) .684 NS  0.22 (0.15) .136 NS 0.02 (0.16) .905 NS 

 pre-PHQ-9 - -  -0.72 (0.05) < .001 -0.74 (0.06) < .001  -0.80 (0.07) < .001 -0.80 (0.07) < .001 

Note. N = 1089. Bonferroni-correction was applied to keep familywise errors rate at .05, therefore, only paths with p  < .001 were considered as statistically significant. Unstandardized 

parameter estimates are reported.  Both models including the predictor variables provided a good overall model fit, PHQ-9: average χ2(df = 2) = 1.264, SD = 1.019, average RMSEA 

= .005, SDRMSEA = .011, average CFI = 1.000, SDCFI =.001, average SRMR = .007, SDSRMR =.003; BDI-II: average χ2(df = 2)  = 2.316, SD = 1.131, average RMSEA = .017, SDRMSEA 

= . 017, average CFI = 1.000, SDCFI =.001, average SRMR = .008, SDSRMR =.002. CoD, Contact on Demand group; IC, Individual Counseling group; AD, antidepressant medication; 

Contacts, number of unplanned e-mail contacts during the intervention. NS  = non-significant.  
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ONLINE TABLE 2  
Estimated within-group changes for both primary outcome measures under various NMAR conditions 

 
Outcome Group Pre- to post-treatment  Pre-treatment to 3-month follow-up  Pre-treatment to 6-month follow-up  Pre-treatment to 12-month follow-up 

  
MLC 

(SELC) 
p d [95% CI]  

MLC 
(SELC) 

p d [95% CI]  
MLC 

(SELC) 
p d [95% CI] 

 MLC 
(SELC) 

p d [95% CI] 

Beck Depression Inventory-II   
MAR IC -12.06 

(0.36)  
< .001 -1.53 [-1.69, -1.36]  

-11.75 
(0.42) 

< .001 -1.40 [-1.58, -1.21]  
-11.46 
(0.43) 

< .001 -1.35 [-1.52, -1.17]  
-11.05 
(0.49) 

< .001 -1.17 [-1.35, -0.99] 

 CoD -10.81 
(0.37) 

< .001 -1.37 [-1.51, -1.22]  
-11.38 
(0.44) 

< .001 -1.35 [-1.51, -1.19]  
-11.13 
(0.51) 

< .001 -1.16 [-1.34, -0.98]  
-11.95 
(0.49) 

< .001 -1.35 [-1.56, -1.15] 

+ 3 BDI-II IC -11.69 
(0.36) 

< .001 -1.47 [-1.63, -1.31]  
-11.31 
(0.42) 

< .001 -1.33 [-1.51, -1.15]  
-11.03 
(0.43) 

< .001 -1.29 [-1.46, -1.12]  
-10.58 
(0.5) 

< .001 -1.12 [-1.29, -0.94] 

 CoD -10.27 
(0.37) 

< .001 -1.3 [-1.44, -1.15]  
-10.75 
(0.44) 

< .001 -1.27 [-1.43, -1.11]  
-10.45 
(0.51) 

< .001 -1.08 [-1.26, -0.91]  
-11.26 
(0.49) 

< .001 -1.27 [-1.47, -1.07] 

+ 6 BDI-II IC -11.33 
(0.37) 

< .001 -1.4 [-1.56, -1.24]  
-10.87 
(0.43) 

< .001 -1.25 [-1.43, -1.07]  
-10.59 
(0.44) 

< .001 -1.22 [-1.38, -1.05]  
-10.12 
(0.5) 

< .001 -1.05 [-1.22, -0.87] 

 CoD -9.74 
(0.38) 

< .001 -1.2 [-1.35, -1.06]  
-10.13 
(0.45) 

< .001 -1.17 [-1.33, -1.01]  
-9.77 
(0.52) 

< .001 -0.99 [-1.16, -0.82]  
-10.57 
(0.5) 

< .001 -1.16 [-1.35, -0.97] 

+ 9 BDI-II IC -10.97 
(0.38) 

< .001 -1.31 [-1.46, -1.15]  
-10.43 
(0.44) 

< .001 -1.16 [-1.33, -0.99]  
-10.16 
(0.45) 

< .001 -1.13 [-1.29, -0.97]  
-9.65 
(0.51) 

< .001 -0.97 [-1.13, -0.8] 

 CoD -9.2 
(0.39) 

< .001 -1.09 [-1.23, -0.96]  
-9.50 
(0.46) 

< .001 -1.05 [-1.2, -0.9]  
-9.09 
(0.53) 

< .001 -0.89 [-1.05, -0.73]  
-9.87 
(0.51) 

< .001 -1.04 [-1.22, -0.86] 

Patient Health Questionnaire-9 
MAR IC -5.22 

(0.19) 
< .001 -1.20 [-1.32, -1.08]  

-5.30 
(0.22) 

< .001 -1.14 [-1.28, -1.00]  
-4.86 
(0.25) 

< .001 -0.95 [-1.08, -0.81]  
-4.74 
(0.28) 

< .001 -0.87 [-1.01, -0.73] 

 CoD -4.47 
(0.20) 

< .001 -1.04 [-1.16, -0.92]  
-4.58 
(0.25) 

< .001 -0.93 [-1.06, -0.79]  
-4.62 
(0.27) 

< .001 -0.85 [-0.99, -0.71]  
-5.13 
(0.28) 

< .001 -1.00 [-1.16, -0.84] 

+ 2 PHQ-9 IC -4.98 
(0.19) 

< .001 -1.15 [-1.27, -1.02]  
-5.00 
(0.23) 

< .001 -1.07 [-1.20, -0.93]  
-4.57 
(0.25) 

< .001 -0.89 [-1.03, -0.76]  
-4.43 
(0.28) 

< .001 -0.81 [-0.95, -0.67] 

 CoD -4.11 
(0.20) 

< .001 -0.96 [-1.08, -0.84]  
-4.16 
(0.25) 

< .001 -0.83 [-0.96, -0.7]  
-4.17 
(0.27) 

< .001 -0.76 [-0.89, -0.63]  
-4.67 
(0.28) 

< .001 -0.91 [-1.06, -0.75] 

+ 4  PHQ-9 IC -4.74 
(0.2) 

< .001 -1.07 [-1.19, -0.95]  
-4.71 
(0.23) 

< .001 -0.98 [-1.11, -0.84]  
-4.28 
(0.26) 

< .001 -0.82 [-0.95, -0.69]  
-4.12 
(0.29) 

< .001 -0.74 [-0.88, -0.61] 

 CoD -3.75 
(0.2) 

< .001 -0.85 [-0.97, -0.73]  
-3.75 
(0.26) 

< .001 -0.73 [-0.85, -0.60]  
-3.71 
(0.28) 

< .001 -0.66 [-0.78, -0.53]  
-4.21 
(0.29) 

< .001 -0.79 [-0.94, -0.64] 

+ 6  PHQ-9 IC -4.49 
(0.20) 

< .001 -0.97 [-1.09, -0.85]  
-4.42 
(0.24) 

< .001 -0.87 [-1.00, -0.74]  
-4.00 
(0.26) 

< .001 -0.74 [-0.87, -0.61]  
-3.81 
(0.29) 

< .001 -0.66 [-0.8, -0.53] 

 
CoD -3.4 

(0.22) 
< .001 -0.73 [-0.84, -0.61]  

-3.33 
(0.27) 

< .001 -0.61 [-0.73, -0.49]  
-3.26 
(0.29) 

< .001 -0.55 [-0.67, -0.43]  
-3.75 
(0.30) 

< .001 -0.67 [-0.8, -0.53] 

Note. CoD, Contact on Demand group; IC, Individual Counseling group; MAR, missing at random; BDI-II, Beck Depression Inventory II; PHQ-9, Patient Health Questionnaire 9. 
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ONLINE TABLE 3 
Rates of reliable change, remission and recovery under various NMAR conditions 

  Pre- to post-treatment   pre to 3-month follow-up   pre to 6-month follow-up   pre to 12-month follow-up 

  IC CoD Total   IC CoD Total   IC CoD Total   IC CoD Total 

 MAR imputation 

Improvement 312.3b (56.3) 268.9 (50.4) 581.2 (53.4) 
 

320.0 (57.7) 282.6 (52.9) 602.6 (55.3) 303.9 (54.8) 284.3 (53.2) 588.3 (54.0) 314.1 (56.6) 304.8 (57.1) 618.9 (56.8) 

No change 233.3 (42.0) 254 (47.6) 487.3 (44.7) 
 

223.6 (40.3) 231.6 (43.4) 455.3 (41.8) 223.6 (40.3) 218.8 (41.0) 442.5 (40.6) 210.6 (37.9) 207.2 (38.8) 417.8 (38.4) 

Deterioration 9.4 (1.7) 11.1 (2.1) 20.5 (1.9) 
 

11.4 (2.1) 19.8 (3.7) 31.2 (2.9) 27.5 (4.9) 30.8 (5.8) 58.3 (5.4) 30.4 (5.5) 22.0 (4.1) 52.3 (4.8) 

asymptomatic 151.4 (27.4) 115.4 (21.7) 266.8 (24.6)  165.3 (29.9) 147.5 (27.7) 312.8 (28.8)  153.7 (27.8) 156.5 (29.4) 310.2 (28.6)  159.2 (28.8) 181.9 (34.1) 341.1 (31.4) 

RCSC 251 (60.8) 209.2 (55.6) 460.2 (58.3) 
 

257 (62.2) 220.7 (58.7) 477.7 (60.5) 248.9  (60.3) 227.3 (60.5) 476.2 (60.4) 253.9 (61.5) 240 (63.3) 493.9 (62.6) 

 MAR Imputation + 2 PHQ-9 points 

Improvement 299.8 (54) 251.1 (47) 550.9 (50.6)  305.3 (55) 265 (49.6) 570.2 (52.4)  290.5 (52.3) 266.5 (49.9) 557 (51.1)  300.9 (54.2) 284.7 (53.3) 585.6 (53.8) 

No change 244.3 (44) 269.1 (50.4) 513.4 (47.1)  236.2 (42.6) 245.6 (46) 481.8 (44.2)  234.9 (42.3) 232.1 (43.5) 467 (42.9)  221.5 (39.9) 223.6 (41.9) 445.1 (40.9) 

Deterioration 11 (2) 13.7 (2.6) 24.7 (2.3)  13.6 (2.5) 23.4 (4.4) 37 (3.4)  29.6 (5.3) 35.4 (6.6) 65 (6)  32.7 (5.9) 25.7 (4.8) 58.3 (5.4) 

asymptomatic 137.2 (24.8) 99.4 (18.6) 236.6 (21.8)  148.7 (26.9) 127 (23.8) 275.8 (25.4)  140.1 (25.3) 136.3 (25.6) 276.4 (25.5)  144.3 (26.1) 159.7 (30) 304 (28) 

RCSC 240.3 (58.2) 195 (51.9) 435.4 (55.2)  245.5 (59.4) 207.7 (55.2) 453.3 (57.5)  238.1 (57.7) 213.8 (56.9) 451.8 (57.3)  241.9 (58.6) 224.8 (59.8) 466.6 (59.1) 

 MAR Imputation + 4 PHQ-9 points 

Improvement 288.4 (52) 234.9 (44) 523.2 (48)  291.8 (52.6) 247.3 (46.3) 539.1 (49.5)  278.3 (50.1) 249.5 (46.7) 527.8 (48.5)  287.5 (51.8) 264.8 (49.6) 552.3 (50.7) 

No change 253.1 (45.6) 280.7 (52.6) 533.7 (49)  246 (44.3) 256.7 (48.1) 502.7 (46.2)  243.7 (43.9) 242.4 (45.4) 486.1 (44.6)  230.9 (41.6) 237.7 (44.5) 468.6 (43) 

Deterioration 13.6 (2.5) 18.5 (3.5) 32 (2.9)  17.3 (3.1) 30 (5.6) 47.3 (4.3)  33.1 (6) 42.1 (7.9) 75.1 (6.9)  36.6 (6.6) 31.5 (5.9) 68.1 (6.3) 

asymptomatic 132.5 (24) 93.9 (17.6) 226.4 (20.8)  141.4 (25.6) 118.6 (22.3) 260 (23.9)  132.6 (24) 122.1 (22.9) 254.7 (23.5)  135.5 (24.5) 142.7 (26.8) 278.2 (25.6) 

Recovery a 
228.2 

(55.25) 
179 (47.6) 407.2 (51.6)  232.8 (56.37) 191 (50.8) 423.8 (53.7)  224.4 (54.33) 198.2 (52.7) 422.5 (53.5)  228.5 (55.33) 207.6 (55.2) 436.1 (55.3) 

 MAR Imputation + 6 PHQ-9 points 

Improvement 280.6 (50.6) 224 (41.9) 504.6 (46.3)  281.7 (50.8) 235.1 (44) 516.8 (47.5)  270.3 (48.7) 235.4 (44.1) 505.7 (46.4)  277.8 (50.1) 248.6 (46.6) 526.3 (48.3) 

No change 256.3 (46.2) 283 (53) 539.2 (49.5)  249.6 (45) 258.6 (48.4) 508.2 (46.7)  245.5 (44.2) 245.8 (46) 491.2 (45.1)  234.1 (42.2) 244.1 (45.7) 478.1 (43.9) 

Deterioration 18.2 (3.3) 27 (5.1) 45.2 (4.2)  23.7 (4.3) 40.3 (7.5) 64 (5.9)  39.2 (7.1) 52.9 (9.9) 92.1 (8.5)  43.2 (7.8) 41.4 (7.8) 84.5 (7.8) 

asymptomatic 131.6 (23.8) 92.7 (17.4) 224.3 (20.7)  139.8 (25.3) 115 (21.6) 254.8 (23.5)  131.2 (23.7) 118.8 (22.3) 249.9 (23)  133.2 (24.1) 138.2 (25.9) 271.4 (25) 

RCSC 219.6 (53.2) 169.3 (45) 389 (49.3)  223.1 (54) 179.1 (47.6) 402.2 (51)  215.5 (52.2) 184.2 (49) 399.8 (50.7)  218 (52.8) 191.9 (51) 409.9 (52) 

Note. CoD , Contact on Demand group; IC, Individual Counseling group; NMAR, not missing at random; MAR, missing at random; RCSC, reliable change significant change. 
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ONLINE TABLE 4 

Means and standard deviations for each outcome at each measurement occasion 

Pre-Treatment Post-treatment 3-month FU 6-month FU 12-month FU 

M SD M SD M SD M SD M SD 

BDI-II IC 21.987 3.947 9.932 7.656 10.242 8.246 10.529 8.139 10.940 9.089 

CoD 21.802 3.986 10.997 7.641 10.427 8.003 10.676 9.198 9.854 8.815 

PHQ-9 IC 11.886 3.353 6.668 3.731 6.591 4.024 7.027 4.415 7.147 4.786 

CoD 11.670 3.471 7.205 4.002 7.091 4.552 7.052 4.831 6.541 4.678 

GAD-7 IC 9.804 3.585 5.910 3.298 6.09 4.071 6.241 4.168 5.874 3.807 

CoD 9.554 3.480 6.328 3.475 6.045 3.886 6.104 4.066 5.788 3.825 

PTQ IC 37.159 8.752 28.739 11.871 27.364 12.766 27.829 12.154 26.68 12.443 

CoD 37.591 8.684 29.918 11.561 27.767 13.147 26.744 13.290 25.859 13.350 

ESWE IC 15.008 2.704 16.118 2.541 15.694 2.729 15.66 2.690 15.684 2.857 

CoD 15.198 2.711 15.784 2.792 15.679 2.897 15.611 2.872 15.902 2.994 

WHO-5 IC 6.507 3.442 11.758 5.711 11.656 5.966 11.478 6.082 11.373 6.002 

CoD 6.770 3.749 11.260 5.794 11.582 6.033 12.023 6.067 11.891 6.115 

BSSS IC 25.533 4.972 26.987 4.922 26.327 5.332 26.187 5.514 26.009 5.717 

CoD 25.832 5.018 26.602 5.056 26.319 5.429 26.484 5.443 26.902 5.263 
Note. All results are pooled across 100 imputed data sets; CoD, Contact on Demand group; IC, Individual Counseling group; BDI-II, Beck Depression Inventory; BSSS, Berlin 
Social Support Scale perceived social support; ESWE, Scale to Assess Emotional Self-Efficacy; GAD-7, General Anxiety Disorder – 7-item scale; PHQ-9, Patient Health 
Questionnaire-9; PTQ, Perseverative Thinking Questionnaire; WHO-5, Well Being Index. 



 

 

APPENDICES FOR STUDY 2 
APPENDIX A. Supplementary Information on Interpreting Change Scores 

Overall, interpreting change scores and their relationships to predictor variables is challenging. 

To ease the interpretation of the coefficients reported in the paper, we aim to clarify the 

interpretation with some illustrative (fictitious) examples. 

 

Interpreting Change Scores Derived from PHQ-9 Ratings 

The model depicting changes in depression in this paper implies that  

 change scores < 0 (“negative change scores”) indicate symptom improvement. 

For example, Whitney’s PHQ-9 sum score (assessing severity of depressive symptoms) at 

the beginning of treatment (module 1; M1) is 12. Two weeks later (module 3; M3) her score 

fell to 8. Consequently, her change score is ΔM3-M1, Whitney = 8 – 12 = - 4. She improved by 

4 points.  

 change scores > 0 (“positive change scores”) indicate symptom deterioration.  

For example, John’s PHQ-9 sum score at module 1 is 12. Two weeks later (module 3; M3) 

his score increased to 16. Consequently, his change score is ΔM3-M1, Whitney = 16 – 12 = 4. He 

deteriorated by 4 points.  

It is important to note, that wording like “higher change score” or “lower change score” refers 

to neither improvement nor deterioration, but to the numerical meaning of the scores, that is, -

1 is higher than -3 and 1 is higher than -3  (-3 < -1 < 1 < 3) and so on.  

 

Change Scores Regressed on “Simple” Predictors 

General remarks. A depression change score can be regressed on a predictor. In our 

example, higher values of this predictor are indicative of higher symptom severity on the 

predictor variable (e.g. higher scores in the PHQ-stress module indicate more perceived stress). 

A positive regression weight of bPRE-STRESS = 0.157 in this instance indicates that increases in 

reported PHQ-S scores by one unit of the questionnaire correspond to a change score that is 

heightened by .157 units (of the PHQ-9 depressive symptom questionnaire). 

Illustrative example. James and Whitney are expected to improve regarding their 

depressive symptoms between Module 3 and 5. That is, their change score is negative, based 

on estimates derived from all other predictors [αM5-M3 = -1 for both individuals]. However, 

Whitney’s perceived stress at pre-assessment (STRESSPRE = 1) is one unit higher compared to 
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James’ (STRESSPRE = 0). Consequently, Whitney [E(ΔM5-M3, Whitney) = αM5-M3 + STRESSPRE, 

Whitney × bPRE-STRESS  = -1 + 1 × .157 = -0.843] will have an expected change score that is .157 

units higher compared to James [E(Δ M5-M3, James) = αM5-M3 + STRESSPRE, James × bPRE-STRESS  = -

1 + 0 × .157 = -1.000]. In summary, both individuals are expected to improve, but Whitney is 

expected to improve less given her heightened stress levels.  

In contrast, Daniel and Mary are expected to deteriorate regarding their depressive 

symptoms between Module 3 and 5. That is, their change score is positive, based on estimates 

derived from all other predictors [αM5-M3 = 1]. However, Daniel’s perceived stress at pre-

assessment (STRESSPRE, Daniel = 1) is one unit higher compared to Mary’s (STRESSPRE, Mary = 

0). Consequently, Daniel [E(Δ M5-M3, Daniel) = αM5-M3 + STRESSPRE, Daniel × bPRE-STRESS  = 1 + 1 × 

.157 = 1.157] will have an expected change score that is .157 units higher compared to Mary’s 

[E(Δ M5-M3, Mary) = αM5-M3 + STRESSPRE, Mary × bPRE-STRESS  = 1 + 0 × .157 = 1.0]. In summary, 

both individuals are expected to deteriorate, but Daniel is expected to deteriorate more given 

his heightened stress levels. 

 

Change Scores Regressed on Change Scores 

General remarks. When relating change-scores to change-scores, the interpretation is 

more complex than in the examples above. For illustrative purposes, let us assume that change 

in depression is a significant predictor of later change in depression (bM3-M1 = -0.177). A 

negative regression coefficient indicates that higher change scores on the predictor are 

associated with lower change scores on the dependent variable.  

Illustrative example. Again we take Whitney and James as example. Both individuals 

are expected to improve regarding their depressive symptoms between Module 3 and 5. That 

is, their change score is negative, based on estimates derived from all other predictors [αM5-M3 

= -1 for both individuals]. However, there are differences between Whitney and James 

regarding their previous symptom changes (changes between modules 1 and 3; ΔM3-M1). While 

both individuals improved during the first modules, James (ΔM3-M1, James = -2) showed bigger 

improvements compared to Whitney (ΔM3-M1, Whitney = -1). Since James showed a stronger 

improvement between M3 and M1, we expect a higher subsequent change score for James [E(Δ 

M5-M3, James) = αM5-M3 + ΔM3-M1, James × bM3-M1  = -1 + -2 × -0.177 = -.646] than for Whitney [E(Δ 

M5-M3, Whitney)  = αM5-M3  + Δ M3-M1, Whitney × bM3-M1  = -1 + -1 × -0.177 = -.823]. In summary, both 



 

182 
 

individuals are expected to improve, but James is expected to improve less given that he already 

improved more during the previous time period. 

Again, Daniel and Marry show a different change pattern. Both individuals are expected 

to deteriorate regarding their depressive symptoms between Module 3 and 5. That is, their 

expected change score is positive, based on estimates derived from all other predictors [αM5-M3 

= 1 for both individuals]. During the first two modules Daniel (ΔM3-M1, Daniel = 2) showed a 

stronger increase in symptom load than Mary (ΔM3-M1, Mary = 1), therefore, we expect a lower 

change score for Daniel (1 + 2 × -0.177 = 0.646) than for Mary (1 + 1 × -0.177 = 0.823). In 

summary, both individuals are expected to deteriorate, but Mary is expected to deteriorate 

more, given that she deteriorated less during the previous time period.  

 

Describing the Results in Relation to Change Score Means 

As highlighted by Hauk et al. (2016) it can be helpful to take the average change score 

into account to assess the extent of changes in the majority of individuals (we assume that the 

mean change score is indicative for the direction of change in the majority of individuals and 

not confounded by a subset of influential outliers). In the previous example, both change score 

means are negative. This indicates that the majority of individuals improved during both time 

periods (between measurement occasions M1-M3 and M3-M5). 

In this case, the most accurate description of the results would be: 

 “Individuals that showed higher change scores during the first time period have 

lowered expected change scores during the consecutive time period.” 

However, this description is somewhat difficult to understand and given the negative mean of 

both change scores (indicating improvements in the majority of individuals during both time 

periods) it seems reasonable to adapt the following wording to describe the results while 

keeping in mind that this wording is simplified:  

 Example 1: “On average, individuals that showed stronger improvements during the 

first time period improved less during the consecutive time period.”   

 Example 2: “On average, individuals that showed more favorable symptom courses 

(i.e., stronger improvements or less deterioration) during the first time period, showed 

less favorable symptom courses (i.e., stronger deterioration or less improvement) 

during the consecutive time period.” 
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Again, this example shows that the interpretation of beta-coefficients related to change scores 

as predictors of change scores depends on the value of the beta-coefficient (positive or negative) 

and on the mean of both change scores. An illustration on how the interpretations of change 

scores depend on beta-coefficients and means/intercepts is given in FIGURE A1 on the following 

page. 
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FIGURE A1. Different fictitious constellations of intercepts and regression weights and their consequences for interpreting the regression of change scores on change 

scores (illustrated in different colors). Panel A depicts the regression of depressive symptom change on previous depressive symptom change. The resulting 

regression weight is negative. The effect depicted in this panel can be summarized as “More favorable symptom courses in one module are associated with less 

favorable symptom developments in the next module”. Panel B and C depict the regression of depressive symptom change on changes in stress. The resulting 

regression weights are positive. The differences in the intercepts between Panel B (negative) and Panel C (positive) can result in different interpretations depending 

on the specific change score values of individuals. Regardless, the effects depicted in both panel B and C can be summarized as “More favorable stress symptom 

courses are associated with more favorable depressive symptom courses”. 

  



 

185 
 

APPENDIX B. Supplementary Tables 

 

  

TABLE B.1 

Estimated Model-Fit For the Different Models  

Model Name χ² (df)  RMSEA  CFI  SRMR Change in Fit (Δ) 

  M  SD   M  SD   M  SD   M  SD  RMSEA  CFI  SRMR 

1  depression only - no invariance restrictions 192.899 (100) 16.597  .041  .004  .989 .002  .033 .002 ‐‐ ‐‐ ‐‐ 

2  Model 1 + equal loadings across groups and time 232.533 (118) 17.403  .042  .003  .986 .002  .037 .002  .001 -.003 .004 

3  Model 2 + equal intercepts across groups and time 269.725 (136) 17.766  .042  .003  .984 .002  .037 .002  .000 -.002 .000 

4  Model 3 + other psychological constructs 896.217 (486) 29.530  .039  .001  .971 .002  .038 .001 ‐‐ ‐‐ ‐‐ 

5  Model 4 + other psychological constructs with equal 

loadings across groups and time 

899.611 (492) 28.898  .039  .001  .972 .002  .038 .001  .000 .001 .000 

6  Model 5 + other psychological constructs with equal 

intercepts across groups and time 

912.466 (498) 29.928  .039  .001  .971 .002  .038 .001  .000 -.001 .000 

7  Model 6 + objective indicators  1570.851 

(914) 

36.819  .036  .001  .958 .002  .033 .001  -.003 -.013 -.005 

Note. Fit indices for the different models, as well as change in RMSEA, CFI and SRMR after adding invariance restrictions. All results are pooled across the 100 imputed data-

sets.  
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TABLE B.2 

Within-Group and Between-Group Differences in Mean-Change and respective Standardized Effect Measures 

 IF-Condition SF-Condition  Between-Group Differences 

  M (SE)  p  dw  [95%CI]  M (SE)  p  dw  [95%CI]  M (SE)  p  db  [95%CI] 

DEPM1 
1.201 

(0.018) 
< .001  ‐‐‐  ‐‐‐   

1.202 

(0.02) 
< .001  ‐‐‐  ‐‐‐    ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ 

Δ(M3-M1) 
-0.161 

(0.016) 
< .001  -0.577  [-0.702, -0.452]   

-0.125 

(0.016) 
< .001  -0.511  [-0.654, -0.368]   

0.036 

(0.023) 
.111  0.137  [-0.032, 0.306] 

Δ(M5-M3) 
-0.196 

(0.018) 
< .001  -0.686  [-0.849, -0.523]   

-0.192 

(0.021) 
< .001  -0.560  [-0.699, -0.421]   

0.004 

(0.027) 
.885  0.012  [-0.155, 0.179] 

Δ(M7-M5) 
-0.112 

(0.016) 
< .001  -0.461  [-0.608, -0.314]   

-0.157 

(0.018) 
< .001  -0.571  [-0.712, -0.430]   

-0.045 

(0.024) 
.054  -0.175  [-0.353, 0.003] 

Δ(POST-M7) 
0.025 

(0.016) 
.117  0.108  [-0.029, 0.245]   

0.094 

(0.017) 
< .001  0.410  [0.257, 0.563]   

0.069 

(0.023) 
.003  0.297  [0.103, 0.491] 

Note. Mean derived from the model assuming strong measurement invariance across groups and measurement occasions. Within-group effects were calculated in terms of 

standardized response means (dw) that is, dividing the mean LD by the group-specific standard deviation of the LD. Between-group effect sizes were estimated by dividing the 

difference in mean LD scores by the pooled standard deviation. Δ(M3-M1) = Change between Module 1 and Module 3, negative values indicate that individuals improved on 

average. dw /db = standardized within/between group difference. 
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TABLE B.3 (CONT. ON FOLLOWING PAGE) 

Significant and non-significant regression weights in both treatment conditions.  

 IF-Condition  SF-Condition 
Path  b [95% CI] pindi bstd (SE)  b [95% CI] pindi bstd (SE) 

ΔDEPM3-M1 ON EXPPRE  0.016  [-0.035, 0.067]  .538  0.037 (0.060)   0.026  [-0.031, 0.083]  .359  0.070 (0.076) 
 STRESSPRE  0.034 [-0.076, 0.144] .544 0.039 (0.064)   0.008 [-0.100, 0.116] .884 0.011 (0.072) 
 ΔSTRESSPOST-PRE  0.156 [0.044, 0.268] .006** 0.200 (0.071)   0.124 [0.018, 0.230] .022* 0.186 (0.084) 
 LOGDURM1M2  -0.004 [-0.012, 0.004] .306 -0.068 (0.067)   -0.002 [-0.010, 0.006] .628 -0.038 (0.079) 
 LOGINS M1M2  0.013 [-0.028, 0.054] .518 0.041 (0.063)   -0.003 [-0.054, 0.048] .895 -0.011 (0.084) 
 LETSIZEM1M2  -0.003 [-0.015, 0.009] .633 -0.031 (0.064)   0.001 [-0.015, 0.017] .877 0.013 (0.082) 

ΔDEPM5- M3 ON ΔDEPM3- M1  -0.177  [-0.346, -0.008]  .040*  -0.172 (0.083)   -0.257  [-0.500, -0.014]  .038*  -0.184 (0.089) 
 EXPPRE  0.011 [-0.044, 0.066] .697 0.024 (0.063)   -0.016 [-0.075, 0.043] .593 -0.031 (0.058) 
 STRESSPRE  0.019 [-0.093, 0.131] .745 0.020 (0.063)   0.148 [0.013, 0.283] .032* 0.141 (0.064) 
 ΔSTRESSPOST-PRE  0.168 [0.048, 0.288] .006** 0.208 (0.074)   0.184 [0.039, 0.329] .013* 0.198 (0.078) 
 LOGDURM1M2  -0.001 [-0.009, 0.007] .763 -0.023 (0.075)   -0.002 [-0.012, 0.008] .641 -0.032 (0.069) 
 LOGINS M1M2  -0.004 [-0.047, 0.039] .868 -0.011 (0.065)   0.028 [-0.021, 0.077] .260 0.065 (0.058) 
 LETSIZE M1M2  0.009 [-0.005, 0.023] .219 0.087 (0.070)   -0.009 [-0.027, 0.009] .349 -0.063 (0.067) 
 LOGDURM3M4  0.000 [-0.004, 0.004] .947 -0.005 (0.070)   -0.001 [-0.007, 0.005] .704 -0.030 (0.079) 
 LOGINS M3M4  -0.018 [-0.038, 0.002] .084 -0.144 (0.082)   -0.024 [-0.051, 0.003] .086 -0.143 (0.081) 
 PLANFREQ M3M4  0.000 [-0.002, 0.002] .845 -0.014 (0.074)   0.000 [-0.002, 0.002] .759 0.025 (0.082) 

ΔDEPM7- M5 ON ΔDEPM5- M3  -0.264  [-0.446, -0.082]  .005**  -0.312 (0.106)   -0.294  [-0.455, -0.133]  < .001***  -0.363 (0.094) 
 EXPPRE  -0.011 [-0.064, 0.042] .675 -0.030 (0.071)   -0.001 [-0.060, 0.058] .983 -0.002 (0.071) 
 STRESSPRE  0.011 [-0.079, 0.101] .811 0.014 (0.060)   -0.021 [-0.135, 0.093] .715 -0.025 (0.067) 
 ΔSTRESSPOST-PRE  0.196 [0.094, 0.298] < .001*** 0.289 (0.076)   0.082 [-0.024, 0.188] .132 0.109 (0.072) 
 TASKM5  -0.034 [-0.089, 0.021] .223 -0.114 (0.092)   -0.002 [-0.073, 0.069] .945 -0.007 (0.099) 
 BONDM5  0.007 [-0.040, 0.054] .780 0.024 (0.085)   -0.017 [-0.060, 0.026] .428 -0.066 (0.084) 
 LOGDURM3M4  -0.001 [-0.005, 0.003] .771 -0.031 (0.105)   0.004 [-0.002, 0.010] .205 0.136 (0.109) 
 LOGINS M3M4  -0.008 [-0.030, 0.014] .484 -0.072 (0.103)   0.020 [-0.007, 0.047] .156 0.144 (0.100) 
 PLANFREQ M3M4  0.001 [-0.001, 0.003] .118 0.115 (0.072)   -0.001 [-0.003, 0.001] .519 -0.051 (0.079) 
 LOGDURM5M6  -0.001 [-0.007, 0.005] .746 -0.035 (0.110)   -0.003 [-0.013, 0.007] .486 -0.085 (0.123) 
 LOGINS M5M7  0.011 [-0.014, 0.036] .392 0.075 (0.088)   0.015 [-0.024, 0.054] .444 0.072 (0.096) 
 NBTFREQ M5M7  -0.001 [-0.007, 0.005] .637 -0.038 (0.081)   -0.003 [-0.009, 0.003] .316 -0.088 (0.087) 
 PROTFREQ M5M7  -0.001 [-0.015, 0.013] .836 -0.015 (0.071)   -0.004 [-0.026, 0.018] .723 -0.028 (0.079) 
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  IF-Condition  SF-Condition 
 Path  b [95% CI] pindi bstd (SE)  b [95% CI] pindi bstd (SE) 

ΔDEPPOST-M7 ON ΔDEPM7- M5  -0.423  [-0.599, -0.247]  < .001***  -0.439 (0.090)   -0.242  [-0.414, -0.070]  .006**  -0.290 (0.104) 
 EXPPRE  0.008 [-0.041, 0.057] .737 0.023 (0.069)   0.036 [-0.015, 0.087] .173 0.102 (0.074) 
 STRESSPRE  0.087 [-0.005, 0.179] .065 0.118 (0.063)   0.157 [0.057, 0.257] .002** 0.221 (0.072) 
 ΔSTRESSPOST-PRE  0.133 [0.031, 0.235] .010 0.203 (0.076)   0.244 [0.150, 0.338] < .001*** 0.388 (0.071) 
 TASKM5  -0.089 [-0.136, -0.042] < .001*** -0.307 (0.084)   0.012 [-0.053, 0.077] .727 0.038 (0.109) 
 BONDM5  0.051 [0.010, 0.092] .014* 0.188 (0.077)   -0.021 [-0.064, 0.022] .339 -0.098 (0.101) 
 LOGINS M5M7  0.010 [-0.012, 0.032] .327 0.072 (0.073)   -0.001 [-0.030, 0.028] .947 -0.006 (0.085) 
 LOGDURM5M6  -0.002 [-0.008, 0.004] .500 -0.060 (0.089)   -0.002 [-0.008, 0.004] .478 -0.071 (0.099) 
 NBTFREQ M5M7  0.004 [-0.002, 0.010] .109 0.123 (0.076)   -0.001 [-0.007, 0.005] .841 -0.018 (0.092) 
 PROTFREQ M5M7  -0.007 [-0.021, 0.007] .318 -0.078 (0.078)   -0.006 [-0.024, 0.012] .482 -0.052 (0.074) 
 LOGINS M7POST  -0.002 [-0.016, 0.012] .752 -0.028 (0.089)   -0.008 [-0.020, 0.004] .229 -0.113 (0.094) 
 LOGDURM7POST  0.000 [-0.004, 0.004] .903 -0.012 (0.098)   0.002 [-0.004, 0.008] .579 0.062 (0.110) 
 LETSIZEM7  -0.005 [-0.023, 0.013] .605 -0.036 (0.071)   -0.015 [-0.040, 0.010] .235 -0.090 (0.076) 
BOND ON EXPPRE  0.303 [0.148, 0.458] < .001*** 0.226 (0.057)   0.120 [-0.056, 0.296] .181 0.074 (0.055) 
 DEPM1  0.025 [-0.396, 0.446] .908 0.010 (0.085)   0.094 [-0.382, 0.570] .699 0.031 (0.081) 
 ΔDEPM3- M1  -0.108  [-0.614, 0.398]  .675  -0.035 (0.083)   0.529  [-0.243, 1.301]  .180  0.121 (0.087) 

 ΔDEPM5- M3  -0.146  [-0.581, 0.289]  .511  -0.048 (0.073)   -0.594  [-1.074, -0.114]  .015*  -0.190 (0.077) 
TASK ON EXPPRE  0.278 [0.141, 0.415] < .001*** 0.221 (0.053)   0.224 [0.104, 0.344] < .001*** 0.192 (0.051) 
 DEPM1  -0.381 [-0.746, -0.016] .041* -0.161 (0.080)   -0.530 [-0.857, -0.203] .002** -0.246 (0.078) 
 ΔDEPM3- M1  -0.749  [-1.186, -0.312]  .001***  -0.258 (0.077)   -0.560  [-1.077, -0.043]  .034*  -0.180 (0.088) 

 ΔDEPM5- M3  -0.693  [-1.063, -0.323]  < .001***  -0.246 (0.066)   -0.918  [-1.232, -0.604]  < .001***  -0.410 (0.067) 

Note. * p < .050; ** p < .010; *** p < .001. b /bstdxy = un-/standardized regression weight; DEP = PHQ-9 depression score; STRESS = PHQ-Stress score; EXP = 
expectations; BOND = bond-component of the Working Alliance Inventory; TASK = task-component of the Working Alliance Inventory. Measurement occasions 
are indexed. 
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APPENDICES FOR STUDY 3 
APPENDIX C. Detailed description of the statistical approach. 

In the first section of the supporting information we present a detailed description of the 

applied statistical methods and the steps taken during the analysis. The second section of the 

supplement offers a more detailed explanation and extension of the results of the single-group, 

the multi-group and the predictor analysis.   

Statistical Methods 

Analysis. We used Growth Mixture Models (GMM; Muthén & Shedden, 1999; Ram & 

Grimm, 2009; please see Morin for an introduction to GMM) with latent base-specification 

(first and last slope-factor loading fixed at 0 and 1, respectively) to investigate whether the data 

set contains subgroups of individuals characterized by similar average change trajectories in 

depressive symptom load (Morin et al., 2011; Morin, Maiano, Marsh, Nagengast, & Janosz, 

2013). The latent base specification allows for the modeling of non-linear change (Morin et al., 

2011). We used PHQ-9 measurements obtained at the beginning of each specific treatment 

module to structure the change process. Importantly, the current data set contains data from two 

separate treatment conditions. Each treatment condition might lead to different patterns of 

symptom changes in participating patients. Consequently, the number of classes and the 

quantitative features of these classes (e.g., different amount of change) might differ across 

conditions. Therefore, a modeling approach considering these conditions seemed necessary 

(Muthén, Brown, Leuchter, & Hunter, 2008). 

In a first step, we analyzed each treatment condition separately to account for the 

possibility that both treatment conditions show a different number of classes (single-group 

GMM). As suggested by Diallo, Morin, and Lu (2016), we used a rather unrestricted GMM for 

class-enumeration. Means (mSk and mIk; I represents the intercept-factor and S represents the 

slope-factor), variances (yIk and ySk), and co-variances (yIk,Sk), were estimated class-specific (k 

= 1, …, K, K = number of classes), while slope-loadings (ltk; t = 1, … , T; T = number of 



 

190 
 

measurement occasions) and the residual terms of the indicators were estimated class and time-

specific (eitk). Only if estimation difficulties occurred (best-likelihood not replicated, negative 

variances, excessively small classes) and the information criteria did not favor a specific model, 

more restrictive models were tested. These models included constraints on the residual terms 

(eik, eit or ei). Recent simulation studies have shown, that unrestricted models are beneficial in 

identifying the appropriate number of classes and help to avoid small classes which might 

represent artefacts of unnecessary restrictions on variance or co-variance parameters of the 

model (Diallo et al., 2016, 2017; Peugh & Fan, 2012). Following the suggestions by several 

groups of authors, the optimal number of classes for each treatment condition was determined 

on the basis of several statistical information criteria (Akaike Information Criteria, AIC; 

Corrected AIC, CAIC; Bayes Information Criteria, BIC; sample-size adjusted BIC, aBIC; Vuo-

Long-Mendel Likelihood Ratio-Test, VLM-LRT), the appropriateness of the estimated model 

parameters as well as the interpretability, distinctiveness and sizes of derived classes to decide 

for the optimal number of classes (Masyn, 2013; Meyer & Morin, 2016; Morin et al., 2011). In 

line with recommendations from recent studies, we decided to do class enumeration using an 

unconditional GMM, that is without inclusion of covariates (Diallo et al., 2017; Masyn, 2013).   

In a second step, we specified a multi-group GMM taking the known membership of 

individuals to two distinct treatment conditions and the number of change patterns derived in 

the single group-analysis into account (g = SF or g = IF). The multi-group approach allows for 

the testing of potential differences in the configuration of change patterns and class sizes across 

treatment conditions. In other words, the MG approach provides answers to the question as to 

whether the provision of qualitatively different feedback (i.e., individualized vs. standardized) 

leads to differences in average change of classes. We used a model with the optimal number of 

classes for each treatment condition as determined by the single-class analysis with group and 

class-specific means (mSkg and mIkg), variances (yIkg and ySkg), co-variances (yIkg,Skg) as baseline-

model. Furthermore, slope loadings (ltkg) and residuals (eitkg) were estimated separately and 
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specifically for each treatment condition, class and measurement occasion. Class sizes were 

allowed to vary across treatment conditions. We compared this model against a model assuming 

the same configuration of means, variances, co-variances and residuals for corresponding 

classes across treatment conditions with equal class sizes across treatment conditions (mSk, mIg 

yIk, ySk, yIk,Sk, ltk, eitk). We used information criteria to decide on whether the unrestricted or 

restricted model should be favored.  

In a third step, predictor variables for slope and intercept, as well as class-membership 

were included directly into the model. Therefore, the models consider inaccuracy of class-

assignment properly. In a baseline model, all regression weights were allowed to vary group- 

and class-specific (slope regression-weights: bxSkg; intercept regression-weights: bxIkg) which is 

comparable to including an interaction term into multiple regression. A more restricted model 

assuming equal regression weights across classes and treatment conditions (bxI and bxS) 

followed this baseline model. We evaluated information criteria to decide which model should 

be favored. Given the exploratory fashion of the analysis, we favored parsimony when 

comparing models.  

All models were estimated with Mplus 8.1 (Muthén & Muthén, 1998-2017; normal 

distribution, 10’000 initial starts, 500 stage optimizations and 500 initial stage iterations). 

Missing data on the PHQ-9 scores were dealt with using the full information maximum 

likelihood estimation procedure, while missing values on predictor variables were replaced 

using a single value imputation.  

Results of Single-Group GMM  

Individualized Feedback-Condition. Models with 1 to 3 classes with class-specific, 

means (mSk and mIk), slope (ySk) and intercept variances (yIk), co-variances (ySkIk) as well as 

class- and time-specific factor loadings (ltk) and residuals (eitk) converged properly. The best 

likelihood replicated several times. All parameter estimates were within a plausible range (no 

variances smaller than zero, no inflated standard errors). However, the best likelihood value of 
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the 4-class solution could not be replicated even after increasing the number of random starts. 

Since BIC and CAIC reached a plateau at the 3-class solution, no further models with additional 

restrictions models were estimated and class enumeration was performed considering the 

statistically sound models with one to three classes (all information criteria are summarized in 

Supp. Table C2). The AIC and sBIC were uninformative and decreased continuously from the 

1-class to the 3-class-soluation. While the VLM-LRT favored a 3-class solution over a 2-class-

soluation (still significant after adding a third class), the BIC and CAIC favored a 2-class-

solution. Visual inspection of the derived change patterns showed large similarities of two 

classes in the 3-class solution. Therefore, we favored the 2-class model as the most 

parsimonious one.  

Class 1 (delayed improvers) comprises 46.0% of the participants. The average trajectory 

is marked by an average improvement of mS1 = -3.5, which is below the cut-off suggested for 

reliable change using the PHQ-9 (Titov et al., 2011). Class 2 (immediate improvers) comprises 

54.0% of the participants. The average symptom improvement in this class was mS2 = -6.2 points. 

Interestingly, these two classes differ in their early symptom development. Immediate 

improvers showed a significant proportion of their average symptom improvement immediately 

after the SCID-I interview and prior to treatment uptake at Ml (l12 = 0.266, p < .001), while no 

such changes occurred in the class of delayed improvers (l11 = 0.071, p = .626). Both classes 

showed not only considerable heterogeneity in initial symptom-load (yI1 = 6.1, yI2 = 7.9) but in 

changes throughout the intervention (yS1 = 9.3, yS2 = 9.4). Supp. Table C1 summarizes all 

estimated parameters. Supp. FIGURE C1 (Panel IF-condition) visualizes the derived change 

patterns.  

Standardized Feedback-Condition. The 1- and 2-class solution with class-specific 

means (mSk and mIk), slope (ySk) and intercept variances (yIk), co-variances (ySkIk) as well as 

class- and time-specific factor loadings (ltk) and residuals (eitk) converged properly. The best 

likelihood replicated several times and all parameter estimates were in a plausible range. The 
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best likelihood value of the 3-class solution did not replicate. In order to determine whether a 

more parsimonious 3-class model fits the data better, additional restrictions were added. A 

model with class-specific but time-unspecific residuals did not converge and the best likelihood 

value could not be replicated (eik). However, models with error variances constrained to be 

equal across classes and measurement occasions (ei) as well as across classes but specific for 

each measurement occasion (eit) converged and were considered during the model selection 

process. The statistical information criteria (AIC, BIC, SA-BIC, CAIC, see Supp. Table C2) 

pointed to the more complex 2-class model. Therefore, we selected this model as optimal 

solution for the SF group (see FIGURE C1).  

Class 2 (immediate improvers) comprises 64.2% of the participants. The average 

improvement in the class was mS2 = -5.5 points on the PHQ-9, which is descriptively larger than 

the 5 points reliable change benchmark of the PHQ-9 (Titov et al., 2011). Class 1 (delayed 

improvers) comprises 35.8% of the participants. The average improvement throughout the 

interventions was smaller (mS1 = -2.4) than in class one. As in the IF condition, the classes 

showed considerable difference in the symptom course at early treatment periods. Individuals 

in the immediate improvers class started to show a significant proportion of their average 

symptom improvement immediately after the SCID-I interview and prior to starting to treatment 

uptake at Ml (l12 = 0.33, p < .001) while no beneficial changes occurred in class 1 (l11 = -0.48, 

p < .001; l21 = -0.33, p < .001). In contrast, the trajectory showed a slight increase in symptom 

load followed by improvements later throughout the intervention. Again, both classes showed 

not only significant heterogeneity in initial symptom-load (yI1 = 6.3, yI2 = 6.2) but in changes 

throughout the intervention (yS1 = 7.2, yS2 = 5.6). Supp. Table C1 summarizes all estimated 

parameters. Supp. Figure C1 (Panel SF-Condition) visualizes the change patterns.  
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Results of Multi-Group GMM  

The single group analysis pointed towards two classes in each treatment condition. 

Based on visual inspection, the two classes of both groups showed considerable similarities. 

First, both treatment conditions comprised a class of individuals showing constant 

improvement throughout the whole treatment. Second, we observed a class of individuals with 

delayed and lower overall-improvements in both treatment groups. Based on these results, we 

specified a two class-model for each treatment condition. In a first step, we allowed class-sizes, 

(mSkg and mIkg), slope (ySkg) intercept variances (yIkg) and co-variances (ySkg,Ikg) to vary across 

groups and classes. Additionally, factor loadings (ltkg) and residuals (eitkg) were allowed to vary 

across treatment conditions, classes and time-points. The model converged and the best 

likelihood values were replicated several times. To check for differences between the treatment 

conditions, we estimated a more constrained model assuming that not only the numbers of 

classes are equal, but the configuration of class-specific average change patterns and their sizes 

were constrained to be equal across the different treatment conditions as well (e.g. there is no 

condition-specificity, mSk, mIk yIk, ySk, yIk,Sk, ltk, eitk). All information criteria pointed towards 

the more parsimonious model assuming no condition-specificity. This suggests that the patterns 

of change between both treatment conditions are highly similar.  

Results of Multi-Group Modeling, including descriptions of the two classes are provided 

in the manuscript. 

Results of the Predictor Analysis  

First, we estimated an unconstrained model estimating the classes within each treatment 

condition freely (ltkg, ySkg, yIkg, ySkg,Ikg, eitkg). Predictors of slopes (bxSg) and intercepts (bxIg) 

were allowed to vary across treatment conditions, while they were restricted to be equal across 

condition-specific classes. A model constraining shape of change trajectories and regression 

weights of predictor variables to be equal across classes and treatment conditions (bxg and bxg, 

respectively) was estimated in a second step. Again, both models resulted in proper parameter 
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estimates and the best likelihood value was replicated several times. The shape of the derived 

trajectories did not change. All information criteria clearly favored the most parsimonious 

model with equal regressive relations across classes and treatment conditions. Therefore, it 

seems reasonable to assume, that symptom change in the two treatment arms does not only 

follow the same trajectories but also shares the same predictors. We present a detailed 

discussion of the estimated paths in the manuscript.  

In order to illustrate and contextualize the meaning of the OR in this setting, we would 

like to provide a comparative example: Current MDD is a dichotomous variable, but 

expectations are measured with sums of longer scales. Fulfilling the criteria for a current MDD 

increases the odds of being in the delayed responder class by a factor of 2.8 (ORMDD = 2.8). In 

order to achieve such an increase in the odds, the individually reported expectations need to be 

raised by 12 units of measurement (OREXP = 1.09; 1.0912 = 2.81).  
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SUPP. TABLE C1 
Model Parameters of the Single-Group GMM and the constrained Multi-Group GMM models.  
 IF-Condition  SF-Condition  MG-Model 
Parameter Delayed 

Improvers 
Immediate 
Improvers 

 Delayed 
Improvers 

Immediate 
Improvers 

 Delayed 
Improvers 

Immediate 
Improvers 

 Est (SE) Est (SE)  Est (SE) Est (SE)  Est (SE) Est (SE) 
lk1  0 0  0 0  0 0 
lk2 0.07 (0.15)NS 0.27 (0.05)  -0.48 (0.15) 0.33 (0.07)  -0.13 (0.13) NS 0.33 (0.05) 
lk3 0.34 (0.14) 0.54 (0.04)  -0.32 (0.15) 0.57 (0.07)  0.18 (0.15) NS 0.55 (0.04) 
lk4 0.60 (0.14) 0.83 (0.03)  0.34 (0.16) 0.86 (0.04)  0.57 (0.12) 0.84 (0.03) 
lk5 0.78 (0.11) 0.92 (0.03)  0.78 (0.13) 0.87 (0.03)  0.80 (0.07) 0.90 (0.02) 
lk6 1.01 (0.09) 1.02 (0.02)  0.98 (0.12) 1.06 (0.04)  1.03 (0.07) 1.02 (0.02) 
lk7 1.08 (0.07) 1.09 (0.02)  1.13 (0.09) 1.17 (0.03)  1.12 (0.05) 1.11 (0.02) 
lk8 1 1  1 1  1 1 
mIk 12.35 (0.27) 11.37 (0.28)  11.78 (0.31) 11.41 (0.21)  12.39 (0.33) 11.23 (0.28) 
mSk -3.46 (0.49) -6.23 (0.45)  -2.37 (0.54) -5.45 (0.32)  -3.41 (0.76) -5.54 (0.37) 
ySk,Ik -2.50 (0.95) -5.80 (1.30)  -0.74 (0.81) -2.99 (0.90)  -2.23 (0.87) -3.42 (1.04) 
yIk 6.06 (0.88) 7.87 (1.17)  6.27 (1.03) 6.15 (0.86)  5.75 (0.73) 6.27 (0.78) 
ySk 9.30 (1.91) 9.43 (1.36)  7.24 (1.95) 5.64 (1.04)  10.43 (2.48) 7.07 (1.15) 
Var(εi1k) 6.40 (1.26) 4.51 (0.99)  8.61 (1.72) 6.21 (1.07)  8.91 (1.60) 5.12 (0.96) 
Var(εi2k) 7.47 (1.45) 6.46 (1.23)  3.65 (1.20) 7.79 (1.41)  7.79 (1.94) 5.35 (1.33) 
Var(εi3k) 5.33 (0.76) 4.45 (0.66)  4.74 (1.16) 4.43 (1.18)  6.51 (1.46) 4.09 (0.87) 
Var(εi4k) 7.28 (1.33) 1.99 (0.34)  8.35 (1.40) 2.40 (0.34)  8.21 (1.14) 2.21 (0.30) 
Var(εi5k) 6.92 (1.43) 1.86 (0.42)  9.01 (3.59) 3.53 (0.75)  8.31 (1.71) 2.45 (0.32) 
Var(εi6k) 4.72 (0.95) 0.84 (0.35)  6.88 (2.24) 1.91 (0.33)  5.50 (1.17) 1.44 (0.30) 
Var(εi7k) 6.13 (1.26) 1.03 (0.41)  5.11 (1.27) 1.12 (0.31)  5.77 (1.08) 1.19 (0.22) 
Var(εi8k) 8.88 (1.44) 2.25 (0.79)  8.44 (2.50) 3.85 (0.63)  9.12 (1.56) 3.02 (0.40) 
 
Note. lkt = class and time specific growth factor-loading, where k = refers to the class and t to the measurement 
occasions. mIk and mSk = mean of the intercept and slope, respectively. yIk and ySk = variance of the intercept and slope. 
ySk,Ik = covariance between slope and intercept. Var(εitk) = residual variance at the corresponding measurement 
occasion t. All parameters significant with p < .05 if not indicated otherwise.  NS = non-significant.  



 

197 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPP. TABLE C2 
Information Criteria and Entropy for Each of the Estimated Models.  

 

Model #par logL scaling AIC BIC aBIC CAIC 
VLM-
LRT 

entropy 

IF-Group a          
1 class 19 -9584.172 1.294 19206 19288 19228 19320 --- --- 
2 classes 39 -9417.485 1.369 18913 19081 18958 19147 .014 0.556 
3 classes 59 -9356.155 1.195 18830 19085 18898 19184 .013 0.547 

SF-Group           
1 class 19 -9013.258 1.590 18065 18146 18086 18178 --- --- 
2 classes 39 -8861.870 1.425 17802 17969 17845 18035 .011 0.571 
3 classes b 36 -8915.305 1.275 17903 18057 17942 18118 .186 0.487 
3 classes c 43 -8888.899 1.422 17864 18048 17911 18121 .538 0.650 

MG-Group           
2 classes 79 -19033.990 1.392 38226 38620 38370 38699 --- 0.782 
2 classes, constrained 40 -19068.615 1.463 38217 38417 38290 38457 --- 0.769 

MG-Group incl. Predictors          
2 classes 85 -18912.895 1.221 37996 38420 38150 38505 --- 0.787 
2 classes, constrained 213 -18811.701 1.191 38049 39113 38436 39326 --- 0.823 

 
Note.  a Models were estimated with class specific means, variances, covariance’s and class- and time-specific loadings and 
variances if not stated otherwise.  b additional constraint: ei

   c  additional constraints added: eit      
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SUPP. FIGURE C1. Estimated Change Pattern of the Single-Group Analysis (IF-Condition and SF) Condition and the Constrained Multi-Group Model 

 



 

199 
 

 

References for Appendix C 
Diallo, T. M. O., Morin, A. J. S., & Lu, H. (2016). Impact of Misspecifications of the Latent 

Variance–Covariance and Residual Matrices on the Class Enumeration Accuracy of Growth 
Mixture Models. Structural Equation Modeling: a Multidisciplinary Journal, 23, 507–531. 
https://doi.org/10.1080/10705511.2016.1169188 

Diallo, T. M. O., Morin, A. J. S., & Lu, H. (2017). The impact of total and partial inclusion or 
exclusion of active and inactive time invariant covariates in growth mixture models. Psychological 
Methods, 22, 166–190. https://doi.org/10.1037/met0000084 

Masyn, K. E. (2013). Latent Class Analysis and Finite Mixture Modeling. The Oxford Handbook of 
Quantitative Methods, 551. 

Meyer, J. P., & Morin, A. J.S. (2016). A person-centered approach to commitment research: Theory, 
research, and methodology. Journal of Organizational Behavior, 37, 584–612. 
https://doi.org/10.1002/job.2085 

Morin, A. J. S., Maiano, C., Marsh, H. W., Nagengast, B., & Janosz, M. (2013). School life and 
adolescents' self-esteem trajectories. Child Development, 84, 1967–1988. 
https://doi.org/10.1111/cdev.12089 

Morin, A. J. S., Maïano, C., Nagengast, B., Marsh, H. W., Morizot, J., & Janosz, M. (2011). General 
Growth Mixture Analysis of Adolescents' Developmental Trajectories of Anxiety: The Impact of 
Untested Invariance Assumptions on Substantive Interpretations. Structural Equation Modeling: a 
Multidisciplinary Journal, 18, 613–648. https://doi.org/10.1080/10705511.2011.607714 

Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM 
algorithm. Biometrics, 55, 463–469. 

Muthén, B., Brown, H., Leuchter, A., & Hunter, A. (2008). General approaches to analysis of course: 
applying growth mixture modeling to randomized trials of depression medication. Causality and 
Psychopathology: Finding the Determinants of Disorders and Their Cures. Washington, DC: 
American Psychiatric Publishing, 159–178. 

Muthén, L. K., & Muthén, B. (1998-2017). Mplus User’s Guide.: Eighth Edition. Los Angeles, CA: 
Muthén & Muthén. 

Peugh, J., & Fan, X. (2012). How Well Does Growth Mixture Modeling Identify Heterogeneous 
Growth Trajectories? A Simulation Study Examining GMM's Performance Characteristics. 
Structural Equation Modeling: a Multidisciplinary Journal, 19, 204–226. 
https://doi.org/10.1080/10705511.2012.659618 

Ram, N., & Grimm, K. J. (2009). Growth Mixture Modeling: A Method for Identifying Differences in 
Longitudinal Change Among Unobserved Groups. International Journal of Behavioral 
Development, 33, 565–576. https://doi.org/10.1177/0165025409343765 

Titov, N., Dear, B. F., McMillan, D., Anderson, T., Zou, J., & Sunderland, M. (2011). Psychometric 
comparison of the PHQ-9 and BDI-II for measuring response during treatment of depression. 
Cognitive Behaviour Therapy, 40, 126–136. https://doi.org/10.1080/16506073.2010.550059 

 

 

  



 

200 
 

APPENDICES FOR CHAPTER 5 
Appendix 5.1 Scaffold for providing information about guidance in IBI 

1. General information 
Type of 
Treatment 

 CBT 
 Psychodynamic 
 Interpersonal 
 Mindfulness-Based 
 Cognitive Bias Modification 
 Non-directive supportive 
 Other SPECIFY  

 

Target Group  Specific mental disorders SPECIFY  
 Metal disorders, transdiagnostic SPECIFY 
 Specific somatic disorders SPECIFY  
 Other SPECIFY  

 

Average 
Duration of 
Intervention 

[        ] weeks  

Number of 
treatment 
modules/topics 
or sessions 

 Fixed, [       ] modules/sessions 
 Variable, [       ] modules/sessions on average 
 

 

Structure/ 
chronology of 
intervention 

 Fixed 
 Unstructured 
 Adaptive, tailored or variable SPECIFY  
 

 
 
 

Standardization 
of Treatment 

 Completely individualized, with manual 
CONTINUE WITH SECTION 2 

 Completely individualized, without manual 
    CONTINUE WITH SECTION 2 
 Completely standardized 
 Semi-standardized, please estimate the share of 

standardized treatment content  

 

Standardized 
Elements 

 General psychoeducation 
 Instructions on the use of therapeutic techniques 
 Therapeutic tools/techniques 
 Feedback on completed tasks 
 Other specify 
 

 

2. Automated Reminders
Existence of 
automated 
Reminders 

 No CONTINUE WITH SECTION 3 
 Login-Reminders 
 Reminders of new treatment content 
 Other SPECIFY  
 

 

Communication 
channel of 
reminders 

 Written e-mails 
 Messages sent to phone 
 Other SPECIFY 
 

 

3. Contact Before Treatment 
Contact before 
treatment 

 No CONTINUE WITH SECTION 4 
 Face-to-face 
 Telephone 
 Online, written 
 Online, video-/audio 
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 Other SPECIFY 
Purpose of 
contact before 
treatment 

 Diagnostics, approx. [         ] minutes 
 Technical/organizational instruct., approx. [         ] 
minutes 
 Therapeutic, approx. [         ] minutes; SPECIFY 
 Other, approx. [         ] minutes; SPECIFY  

4. Planned Contact During Treatment
Planned Contact 
during 
treatment 

 No CONTINUE WITH SECTION 5 
 Yes  

Frequency of 
planned contact 

 Singular 
 Weekly 
 Bi-weekly 
 Other SPECIFY 

Purpose of 
planned contact 

 Technical/organizational assistance 
 Encouragement/motivation 
 Feedback on completed tasks 
 Comprehensive therapeutic interaction comparable 

to face-to-face psychotherapy 
 Other SPECIFY  

Invested Time 
for providers of 
contact 

 Approx. [        ] minutes per interaction/module 
 Approx. [        ] minutes per patient (total) 

Fixed/stable 
provider for the 
entire treatment 

 Yes 
 No 

Qualifications 
of providers of 
contact 

If diverse, please indicate share in brackets: 

 Psychologists (B.Sc.) 
 Psychologists (M.Sc.) 
 Licensed psychotherapists 
 Psychiatrists 
 Primary care practicioners  
 Technicians 
 Study nurses  
 Other SPECIFY  

5. Contact-on-Demand During Treatment
contact-on-
demand during 
treatment 

 No END 
 Yes, explicitly encouraged 
 Yes, as existing option 

Communication 
channel of 
contact-on-
demand 

 Face-to-face 
 Telephone 
 Online, written 
 Online, video-/audio 
 Other SPECIFY  

Purpose of 
contact-on-
demand 

 Encouragement 
 Feedback 
 Technical assistance 
 Organizational assistance (e.g., pausing treatment) 
 Issues with clinical relevance (e.g., instructions on 
how to improve work on therapeutic tasks) 
 Other SPECIFY  
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APPENDIX 5.2 Excerpt from treatment manual 

The following excerpt is taken from the unpublished treatment manual by  
Zagorscak et al. (2014; pp. 52-56): 

 



203 



204 



 

205 
 

 

  



206 

LIST OF OWN PUBLICATIONS 

BOOKS AND BOOK CHAPTERS 

Schultze-Krumbholz, A., Zagorscak, P., Roosen-Runge, A. & Scheithauer H. (2018, 2nd ed.). 
Medienhelden. Unterrichtsmaterialien zur Prävention von Cybermobbing. München: 
Reinhardt. 

Zagorscak P. & Knaevelsrud C. (2019, 2nd ed.). Online-Therapie. In S. Schneider & J. Margraf (Eds.), 
Lehrbuch der Verhaltenstherapie. Band 3: Störungen im Kindes- und Jugendalter (pp. 233-
247). Berlin: Springer. 

Schultze-Krumbholz, A., Zagorscak, P., & Scheithauer, H. (2017). A school-based cyberbullying 
preventive intervention approach: The Media Heroes program. In M. Campbell & S. Bauman 
(Eds.), Reducing cyberbullying in schools: International evidence-based best practice (pp. 
145-158). San Diego, CA/Cambridge, MA, USA: Academic Press. doi: 10.1016/B978-0-12-
811423-0.00011-0 

Knaevelsrud, C., Küster, A., & Zagorscak, P. (2016). E-Mental-Health. In: I. Hauth, P. Falkai & A. 
Deister (Eds.) Psyche Mensch Gesellschaft (pp. 25-30). Berlin: Springer. 

Renneberg, B. & Zagorscak, P. (2016). Sexuelle Orientierung aus psychologischer und medizinischer 
Sicht. In C. D. Classen, D. Richter & B. Łukańko (Eds.) „Sexuelle Orientierung“ als 
Diskriminierungsgrund: Regelungsbedarf in Deutschland und Polen? (pp. 1-12). Tübingen: 
Mohr Siebeck. 

Zagorscak P., Schultze-Krumbholz, A., & Scheithauer H. (2015). Cybermobbing. In Deutsche 
Gesetzliche Unfallversicherung (DGUV) (Ed.), Taschenbuch 2015 -Sicherheitsbeauftragte 
im öffentlichen Dienst (pp. 154-161). Wiesbaden: Universum. ISSN 0942-0274 

Jäkel, A., Schultze-Krumbholz, A., Wölfer, R., Zagorscak, P. & Scheithauer, H. (2013). Il progetto 
Medienhelden: prevenzione del cyberbullismo e promozione delle competenze mediatiche 
nella sculoa, In: M.L. Genta, A. Brighi & A. Guarini (Eds.) Cyberbullismo. Ricerche e 
strategie di intervento (pp. 163-170). Rome (Italy): Franco Angeli.. 

Zagorscak, P. (2013). Medienhelden. In Landeskommission Berlin gegen Gewalt (Ed.), Schöne neue 
Welt - total vernetzt! Fluch oder Segen? (pp. 66–68). Berlin: Herausgeber. 

Schultze-Krumbholz, A., Zagorscak, P., Siebenbrock, A. & Scheithauer H. (2012). Medienhelden. 
Unterrichtsmaterialien zur Prävention von Cybermobbing. München: Reinhardt. 

PUBLICATIONS IN PEER-REVIEWED JOURNALS 

Zagorscak, P., Heinrich, M., Sommer, D., Wagner, B. & Knaevelsrud, C. (2018). Reply to the Letter 
by Singer, Mitter, and Porsch Related to Our Paper “Benefits of Individualized Feedback in 
Internet-Based Interventions for Depression: A Randomized Controlled Trial”. 
Psychotherapy and Psychosomatics, 1–2. doi:10.1159/000493394 

Heinrich, M., Zagorscak, P., Eid, M. & Knaevelsrud, C. (2018). Giving G a Meaning: An Application 
of the Bifactor-(S-1) Approach to Realize a More Symptom-Oriented Modeling of the Beck 
Depression Inventory-II. Assessment. Advance online publication. doi: 10.1177/ 
1073191118803738 

Zagorscak, P., Schultze‐Krumbholz, A., Heinrich, M., Wölfer, R. & Scheithauer, H. (2018). Efficacy 
of Cyberbullying Prevention on Somatic Symptoms—Randomized Controlled Trial 



207 

Applying a Reasoned Action Approach. Journal of Research on Adolescence. Advance 
online publication. doi: 10.1111/jora.12429 

Zagorscak, P., Heinrich, M., Sommer, D., Wagner, B. & Knaevelsrud, C. (2018). Benefits of 
Individualized Feedback in Internet-Based Interventions for Depression: A Randomized 
Controlled Trial. Psychotherapy and Psychosomatics, 87 (1), 32–45. doi:10.1159/000481515 

Schultze-Krumbholz, A., Schultze, M., Zagorscak, P., Wölfer, R., & Scheithauer, H. (2016). Feeling 
cybervictims’ pain - The effect of empathy training on cyberbullying. Aggressive Behavior, 
42, 147-156. doi: 10.1002/ab.21613  

Schultze-Krumbholz, A., Zagorscak, P., Wölfer, R., & Scheithauer, H. (2014). Das Medienhelden-
Programm zur Förderung von Medienkompetenz und Prävention von Cybermobbing: 
Konzept und Ergebnisse aus der Evaluation. Praxis der Kinderpsychologie und 
Kinderpsychiatrie, 63(5), 379-394. doi: 10.13109/prkk.2014.63.5.379 

Schultze-Krumbholz, A., Zagorscak, P., Wölfer, R., & Scheithauer, H. (2014). Prävention von 
Cybermobbing und Reduzierung aggressiven Verhaltens Jugendlicher durch das Programm 
Medienhelden: Ergebnisse einer Evaluationsstudie. Diskurs Kindheits- und 
Jugendforschung, 9(1), 61–79. doi: 10.3224/diskurs.v9i1.19083 

Wölfer, R., Schultze-Krumbholz, A., Zagorscak, P., Jäkel, A., Göbel, K., & Scheithauer, H. (2014). 
Prevention 2.0: Targeting cyberbullying @ school. Prevention Science, 15, 879-887. doi: 
10.1007/s11121-013-0438-y  



208 

Eigenständigkeitserklärung 

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und keine anderen 

als die angegebenen Hilfsmittel verwendet habe. Die Arbeit ist in keinem früheren 

Promotionsverfahren angenommen oder abgelehnt worden. 

Berlin, Januar 2019 

Pavle Zagorscak 


	Doktorarbeit_Zagorscak_2020_Final_CR
	Chapter 1+5_Diss_2019_FINAL_Neue Abbildungen
	Doktorarbeit_Zagorscak_2020_Final_CR.pdf
	Chapter 3-4
	Chapter 1+5_Diss_2019_FINAL_Neue Abbildungen





